
A Deontic Formalism for Co-ordinating Software Development in Virtual
Software Corporations

Zsolt Haag, Richard Foley, Julian Newman
Glasgow Caledonian University
Department of Computer Studies

70 Cowcaddens Road
Glasgow G4 0BA
United Kingdom

email: {z.haag, r.foley, j.newman}@gcal.ac.uk

Abstract

The concept of the Virtual Software Corporation (VSC)
has recently become a practical reality as a result of
advances in communication and distributed technologies.
However, there are significant difficulties with the
management of the software development process within
a VSC. The main problem is the significantly increased
communicational complexity of the process model for
such developments. The more classic managerial
hierarchy is generally replaced by a “ flatter” network of
commitments. Therefore new solution approaches are
required to provide the necessary process support. The
purpose of this paper is to present a solution approach
which models the process based on deontic logic. The
approach has been validated against a case study where
it was used to model commitments and inter-human
communications within the software development process
of a VSC. The use of the formalism is exemplifi ed through
a prototype system using a layered multi -agent
architecture.

1. Introduction

In just over four decades of software engineering a
multitude of approaches have been defined to improve the
controllabilit y of developing software and to improve the
quality of the final product [Christie 1995]. Current
challenges for software engineering include economies of
scales, specialisation of activities and the emergence of
the global network [Boldyreff et al 1996]. A natural
response to these challenges is the emergence of a new
concept - The Virtual Software Corporation (VSC) which
represents a novel form of co-operation between firms.
VSCs are alli ances of firms with distinct expertise which

are co-operating to achieve a common goal. A
characteristic of VSCs is the intensive use of IT to provide
support for stronger interactions between its members.
The VSC is not only a modern approach to economies of
scale but also brings together scarce competencies and
resources to meet development requirements [Boldyreff et
al 1996].

The specific feature of a VSC is the replacement of the
classical hierarchical managerial structure with a dynamic
network of commitments [Zimmermann 1996]. These
changes induce an increase in the environmental
complexity of the software development process. The
issues identified as crucial in reducing the environmental
complexity and providing eff icient support in maintaining
consistency within VSCs are co-ordination of actions and
inter-human communication [Haag et al 1997].

Process Support Environments(PSEs), as the approach
to software process automation, have to address the issues
of software development in VSCs. Their main goal is to
support developers by providing process management,
tool integration and capabiliti es for communication
between actors. Actions carried out by the individuals
working within a PSE will cause changes to those working
contexts, therefore PSEs must be seen as providing
support for human beings as they carry out their activities
within the overall development process [Snowdown &
Warboys 1994]. The underlying process model of current
PSEs (which have been based on Petri Nets, logical rules
or object abstractions) is an apriori process model
[Christie 1995] which cannot readily adapt to “on the fly”
modifications. On the fly modifications cannot be
foreseen in the process model definition phase and are due
to events such as process roll backs after performed
actions have been invalidated, changes in requirements,
and changes in personnel when firms are joining or

leaving the VSC. Therefore VSCs have a more dynamic
development process and require a more flexible process
model.

Such factors are causing exceptions from the apriori
model and have to be dealt with. The solution approach is
to reconsider the apriori model and re-enact it
[Sommervill e 1992], resulting in a modified set of
constraints and requirements to be fulfill ed by the human
actors. As the process unfolds, occurring exceptions will
require changes in the process model as the result of a
series of feedbacks, leading to an iterative process, as
illustrated in Fig. 1. adapted from [Lehman 1996].

Fig. 1. The iterative nature of the process model
definition

The purpose of this paper is three fold. First, it presents
the specific issues to be addressed by process support
environments for VSCs. These issues are emerging from
the case study of an actual (and typical) VSC. Second, it
introduces and discusses a formalism for process
modelli ng based on a reduction of deontic logic to action
logic which provides support for VSCs. Third, details a
practical usage of the formalism through the
implementation of a prototype co-ordination mechanism.
The prototype is adapted to the flatter network of
commitments characterising VSCs [Zimmermann 1996],
the set of relations occurring between process actors and
the temporary nature of emerging alli ances between VSC
members. This provides support for co-ordination issues
and addresses the iterative nature of the process model.

2. The case study of a VSC

The issues to be addressed in supporting co-ordination
of the software development in VSCs have been identified
from the information flow of a case study VSC. The
analysis of the actual (and typical) VSC included
interviewing key organisational roles and accessing
corporate documents which formally described the
development process.

2.1. The information flow in the case-study VSC

The organisational pattern of the case-study VSC
included two distinct firms having a common parent
organisation, located in London and Edinburgh and a third
partner located in Singapore. The firms in London and
Edinburgh formed what was called “The Group” , and
there main task was the development of the “Core
Product” which was a system for the international
financial investment market. The role of the team in
Singapore was to develop the user interface for the core
product being developed by The Group. Communication
between sites was co-ordinated by the Product Manager
located in Edinburgh.

The information flow of the VSC is summarised in Fig.
2 on the next page. The arrows in Fig. 2. Indicate
informational pathways. The meaning of the numbers is
summarised in Table 1. Below. The informational
pathways presented with a dotted line represent
undocumented informational flows for which the structure
and/or informational content was not specified in any
corporate documents and have been identified through
interviews.

Table 1. - Keys for the informational pathways

Nr Meaning
1 managerial and technical directives to the project

teams. The Product Manager and the Technical
Manager are considered to provide the necessary
feed-back from Project Teams(PT) to the SC.

2 PT must know and follow the procedures defined
in the PDCD, therefore they are permitted to read
the PDCD.

3 PT are permitted to access the Core Product
Repository (Cruk) in order to implement the
required functionality of the product but are
forbidden to modify the structure.

4 the SC must maintain and develop the PDCD and
the Cruk while following the procedures defined
in the PDCD

5 undocumented information flow; informal
communication between the UK PT involving
actions undocumented in the PDCD

 Environment

Apriori Process
Model

Enacted Process
Model

Set of
Constraints and
Requirements Exception

(feed-back)

 Human
actors

Design

Enaction

Execution

Nr Meaning
6 undocumented information flow; change to the

CRuk by PT due to technical constraints.
7 undocumented information flow; change to the

CRuk by a co-operating site due to differences in
development practices.

2.2. Identified problems

Building on the information flow, problems specific to
co-ordination within VSCs have been identified. The
analysis indicated that the problems varied depending on
the nature of the co-operation between teams, tightly or
loosely coupled. For example, due to geographical,
temporal and corporate proximity, organisational borders
were blurred between London and Edinburgh. The volume
of information exchanged was high with several “ to do”
lists generated; which often led to important actions on the
list being delayed. In contrast, the co-operation between
UK and Singapore was characterised by a low volume of
information being exchanged and in many instances
implicit knowledge was assumed, which led in cases to
misunderstandings of procedures and subsequent process
rollbacks.

Further study into the causes of the undocumented
information flows (5 to 7 in Table 1) identified that the
classical approach to process co-ordination leads to
informational overload and managerial bottle necks [Haag

et. Al 1997a]. The Product Manager, was flooded with
change reports from the developer teams. This led to
failure in informing all relevant partners about changes
and to the generation of these undocumented information
flows.

The findings of the case study support the views
emerging from research on Virtual Corporations
[Zimmermann 1996] which has identified a major process
of change in the organisational structure of corporations
involved in virtual organisations. The classical hierarchy
of the managerial structures is being replaced by a
network of commitments, often with more than one actor
assigned to the same organisational role. The change leads
to commitments being blurred across organisational
borders (including invisibilit y of key roles and artefacts),
communication bottle-necks, assumptions about the
practices of co-operating organisations.

3. Deontic logic for process modelling in VSCs

Research has indicated that deontic logic, a modal
logic concerning norms, can be successfully applied in
modelli ng and maintaining the consistency of processes
with a high degree of complexity [Meyer and Wieringa
1993]. Such examples include legal expert systems
[McCarty 1989], normative systems [Minsky & Lockman
1985] and organisational bureaucracies [Lee 1988].

Fig. 2. - Parties involved in the development process and the links between them.

Steering Committee - SC
(London and Edinburgh)
 Group Manager
 Pre-sales Manager
 Marketing Manager
 Client Services

Product Manager -PMuk
Technical Manager -TM

 Co-operating si te
(Singapore)

 Clients - internal
- external

 Market

Product Development
Control Documents -
PDCD (London and

Edinburgh)

Core Repository (CASE
Repository, Configuration
Management Tool) - CRuk

(Edinburgh)

Project Teams
in London

Project Teams
in Edinburgh

User Interface
Repository

Project Teams
in Singapore

requirements

reports/upgrades

change requests

1

1

2

2
3

3
4

4

5

6

7

source versions

3.1. A case for using deontic logic in modelling
VSCs

The network of commitments within VSCs requires a freer
flow of information to which traditional managerial
hierarchies find it diff icult to adapt. Using a hierarchical
approach within VSCs leads to information overload and
managerial bodies becoming a bottle-neck in the process.
This is exempli fied in Fig. 3. which presents the obligation
of a process actor to report the performance of an action to
the manager in two scenarios: single firm and VSC
development.

Fig. 3. Reporting the performance of an action

Actions within the development process could be
discretionary or obligatory, however reporting the
performance of an action is an obligatory consequence.
For a single site development this is achieved by informing
the line manager. This generally works since reporting
channels are well established and clear procedures are in
place. Within VSCs, however, the network of
commitments and the interactions of the process actors
mean that often one action at one site requires as a
consequence several related actions to take place at other
sites. Therefore using the hierarchical reporting structure
leads to problems, examples of which have been identified
in section 2.2 of this paper. However it is possible to
define, using deontic rules, a formalism which could form
a suitable basis for supporting such commitment networks.
The feature that makes this logic successful is the abilit y to
formalise both obligatory behaviour (duties) resulting from
a formal definition and discretionary actions which result
from individual initiatives of process actors.

3.2. Introducing the formalism used for process
modelling

The proposed formalism for modelli ng the information
flow of VSCs includes a non standard logic and an
abstraction of commitments. The non standard logic is

derived from deontic logic which has been successfully
applied in consistency maintenance in several fields of
computer science. Building on these results, a reduction of
deontic logic to action logic proposed by [Meyer 1988] is
considered. The reduction defines V as the violation atom,
meaning a liabilit y to some sanction or punishment as the
result of an action. With the V atom the concepts of
deontic logic are summarised in Fig. 4.

The notations in Fig. 4. are: α represents a generic
action, -α is the non-performance of α, [α] is the
execution of α and <α> a possible execution of α. The
deontic operators provide a formalism to represent the
restrictions, constraints and possible actions which define
the development process. To ensure the consistency of the
model a set of deontic axioms and theorems of the
standard system KD presented in [Wieringa et al 1991] are
used.

Fig. 4. The Deontic operators

The actions, part of the deontic rules, are carried out by
human actors within a context. An abstraction of
commitments introduced by [Castelfranchi 1995] provides
an integration of an action and its context. The abstraction
considers that an organisational role is committed to
perform an action on a target object or transfer authority
for an action; therefore a triplet and quadruplet structures
is considered to represent commitments. The triplet
contains: the committed actor; the action the actor is
committed to perform (an elementary process such as
inform, change structure, change content); and the target
of the action (an organisational role, artefact or
commitment). The quadruplet extends the previous
structure with an additional element indicating a
commitment. These abstractions are summarised in Fig. 5.

Fig. 5. Abstraction for commitments

Considering the abstractions from Fig. 5. and the defined
deontic operators it becomes possible to formalise actions
within the software development process. For example, in
company documents it is specified that the Technical
manager (TMuk) is permitted (P) to modify the content
(m_c) of the core repository (CRuk). Similarly, TMuk is

Fα ≡ [α] V :action α is forbidden if the performance of α
yields a state where V holds
Pα ≡ ¬Fα (≡ <α>¬V) :action α is permitted if action α
is not forbidden (if there is some way to perform α that
leads to a state where V does not hold)
Oα ≡ F(-α) (≡ [-α] V) :action α is obligatory if not-
doing α is forbidden

Process
Actor

Process
Actor

Manager

Process Actor
Company B

Process Actor
Company A

Single Firm
Development

Process Actor
Company C

VSC Development

Manager

 (actor, action, target)
 (actor, action, target{, comm})

required (O) to inform the Project Manager (PMuk) about
modifications to the CRuk. These statements are
formalised by the rules in Fig. 6. which is a snapshot from
a specific example of a tightly coupled problem identified
in section 2.2.

Fig.6. Formalised process rules

Using the presented formalism the content of company
documents of the case study VSC has been formalised
[Haag et al, 1997a]. The resulting deontic rules have been
parsed applying the consistency rules of the standard KD
system. The resulting logical equivalencies have
demonstrated the abilit y of the formalism in modelli ng the
process of VSCs. Any deviation from the formally defined
process would raise the violation atom identifying any
inconsistencies. Commitments which would be an
implication of actor’s actions constitute the context of the
given action. The commitments cover different levels of
generality and have to be available in the process of
computing the implications without regard to geographical
and organisational boundaries.

3.3 The prototype co-ordination mechanism

The prototype is built on a process model defined using
the deontic formalism. The multi -agent system of the
prototype includes agents representing actors and artefacts
of the development process. The different levels of
interactions identified in the case study are addressed
through a layered implementation as presented in Fig. 7.

Layer 1 formed by Generic Model Agents (GMA)
contains generic rules of the process. At this level actors
are not instantiated and reference is made to actor
categories rather than individual actors. The agents at this
stage are an abstraction for artefacts (company
documents). Each agent has a database containing
formalised rules and a deontic consistency checker. When
a new partner joins the VSC, the GMAs exchange the
content of their database using KQML performatives (such
as ask_all and reply), the rules are parsed and human
actors are informed about contradictory rules (rules for
which the violation atom holds). The violation atom holds
if action permitted in one organisation are forbidden in
any other organisation. The resolution of such
inconsistencies is left to the human actors who will have to
define additional generic rules or modify existing ones.

 Layer 2, formed by Role Level Agents (RLA), captures
the commitments of organisational roles providing a
model of the development process within groups. The
commitments at this level identify the committed roles and
artefacts. The commitments result from the first layer and

additional rules contained in artefacts local for the group.
The organisational roles can be assigned to one human
actor or a group of human actors. Similarly to GMAs,
when interaction occurs between different roles, RLAs
exchange the content of their database and draw attention
to any inconsistencies that could affect the development
process.

Fig. 7. - The layered multi-agent architecture of
the co-ordination mechanism.

The commitments captured by Layer 1 and 2 come from
the formal company documents or formal meetings. Layer
3, in contrast, captures the commitments of individual
human actors as they emerge from daily interactions and
contains references to relevant commitments from
previous layers. Actor Level Agents (ALAs) are the
abstraction for human actors within the development
process.

The interface between the co-ordination mechanism and
human actors is provided by User Interface Agents
(UIAs). Human actors initiate a work session by starting a
UIA on their local machine. The UIA seeks a connection
with the closest Validation Agent (VA). Once the human
actor has been identified, the VAs which form the Central

User 1
 Human
Actor

User 2
Human
Actor

Central Directory

Validation Agent 1

Validation Agent 2

Validation Agent _

Layer I

Generic Model Agent 1

Generic Model Agent 2

Generic Model Agent _

Layer II

Role Level Agent 1

Role Level Agent 2

Role Level Agent _

Layer III

Actor Level Agent 1

Actor Level Agent 2

Actor Level Agent n

User
Interface
Agent 1

User
Interface
Agent 2

User n
Human
Actor

User
Interface
Agent n

P(TMuk, m_c, CRuk)
O(TMuk, i, PMuk, (TMuk, m_c, CRuk))

Directory will provide the address of the corresponding
ALA. The UIA retrieves current actions and their contexts
from the ALA. The human actor is provided with a list of
action being carried out or to be carried out.

The presented layered architecture allows for changes to
be localised. The co-ordination support consists of
identifying and highlighting possible reasons for conflict
created by different practices and restrictions of the
individual development process.

4. Conclusion

The concept of VSCs is a practical reality, firms are
already taking advantage of the competitive edge offered
by this novel managerial approach. This paper presented a
formalism to model the commitments within VSCs as a
means to support co-ordination.

From the analysis of a VSC, specific problems requiring
support were investigated and identified. The analysis
included interviewing key organisational roles and
accessing corporate documents which formally describe
the development process. Building on the results of the
case study a formalism has been introduced based on
deontic logic and an abstraction of commitments. The
abilit y of the formalism to represent commitments within
the software development was discussed.

The defined formalism constitutes the basis of a
prototype co-ordination mechanism. The mechanism has a
layered architecture to adapt for the specific problems
within VSCs. The trials conducted with the prototype on
the case study examples demonstrate that the use of
deontic logic and commitment management based
approach can support the key areas of inconsistency and
co-ordination within the software process of a VSC.

Further work on the formalism and the prototype
mechanism consists of testing and validating them against
other VSCs different from the case study. This will
provide an increased level of generality for the presented
approach.

References

[Boldyreff et al 1996] -C. Boldyreff , J. Newman, J. Taramaa -
Managing Process Improvement in Virtual Software
Corporations - Proceedings, IEEE 5th Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises
(WETICE ’96), June 19-21, 1996, Stanford University
Californian, USA

[Castelfranchi 1995] - C. Castelfranchi - Commitments: From
Individual Intentions to Groups and Organizations - ICMAS ’95
The First International Conference on Multiagent Systems June
12-14, 1995 San Francisco, California
[Christie 1995] - A. M. Christie - Software Process Automation -
The Technology and Its Adoption - Springer-Verlag 1995
[Finkelstein et al. 1994] - Software Process Modelli ng and
Technology - edited by: A. Finkelstein, J. Kramer and B.
Nuseibeh - Research Studies Press Ltd. 1994
 [Haag et al 1997]- Zs. Haag, R. Foley, J. Newman - Software
Process Improvement in Geographically Distributed Software
Engineering: An Initial Evaluation - Proceedings of The 23rd

Euromicro Conference, Budapest September 1997, Hungary,
IEEE-CS Press
[Haag et al 1997a] - Zs. Haag, R. Foley, J. Newman - “Using a
Deontic Logic Based Model for maintaining Consistency within
the Software Process of Virtual Software Corporations” ,
Research Report COS/CSCW/02/1997 -Glasgow Caledonian
University
[Lee 1988] - R.M. Lee - Bureaucracies as Deontic Systems -
ACM Transactions on Off ice Information Systems, vol 6 no 2
April 1988
[Lehman 1996] - M. Lehman - Feedback, Evolution And
Software Technology - European Workshop on Software
Maintenance, Durham 1996
[McCarty 1989] - L.T. McCarty - A language for legal discourse
I: Basic features - Proceedings of The Second International
Conference on Artificial Intelli gence and Law, June 1989,
printed by ACM
[Meyer 1988] - J.-J. Ch. Meyer, A Different Approach to
Deontic Logic: Deontic Logic Viewed as a Variant of Dynamic
Logic, Notre Dame J. of Formal logic 29 (1), 1988 p109-136
[Meyer and Wieringa 1993] - J.-J.Ch. Meyer and R.J. Wieringa
(eds) - Deontic Logic in Computer Science: Normative System
Specification - Wiley 1993
[Minsky & Lockman 1985] - M. Minsky, A. Lockman -
Ensuring integrity by adding obligations to privileges. In 8th

IEEE International Conference on Software Engineering, p92-
102, 1985
[Snowdown & Warboys 1994] - R.A. Snowdown and B.C.
Warboys - An Introduction to Process-Centred Environments in
[Finkelstein et al 1994] p1-8
[Sommervill e 1992] - I. Sommervill e - Software Engineering -
4th Edition, Adison-Wesley 1992
[Wieringa et al 1991] -R.J. Wieringa, H. Weigand, J.-J.Ch.
Meyer & F.P.M. Dignum - The Inheritance of Dynamic and
Deontic Integrity Constraints - Annals of Mathematics and
Artificial Intelligence 3, 1991, pp393-428.
[Zimmermann 1996] - F.-O. Zimmermann - Structural and
Managerial Aspects of Virtual Enterprises - electronically
available at http://www.teco.uni-karlsruhe.de/IT-VISION/vu-e-
teco.htm

