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Abstract

We discuss some first steps towards experimental design for neural network

regression which, at present, is too complex to treat fully in general. We

encounter two difficulties: the nonlinearity of the models together with the

high parameter dimension on one hand, and the common misspecification of

the models on the other hand.

Regarding the first problem, we restrict our consideration to neural net-

works with only one and two neurons in the hidden layer and a univariate

input variable. We prove some results regarding locally D−optimal designs,

and present a numerical study using the concept of maximin optimal designs.

In respect of the second problem, we have a look at the effects of misspecifi-

cation on optimal experimental designs.
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Chapter 1

Introduction and Motivation

The starting point of this thesis was the desire for some guidelines for ex-

perimental design in neural network regression, motivated by some practical

problems in the context of industry cooperation at the Fraunhofer Institute

for Industrial Mathematics (Fraunhofer ITWM).

Let us consider the case of a one-dimensional regression only, where we have

real-valued data Yj depending on a real-valued xj :

Yj = m(xj) + εj j = 1, . . . , n,

with independent identically distributed (i.i.d.) residuals εj with mean E εj =

0.

In neural network regression, the unknown regression function

m(x) = E{Yj|xj = x}

is approximated by a feedforward neural network with, say, one hidden layer

with H hidden neurons. This means that m(x) is approximated by a function

1



2 CHAPTER 1. INTRODUCTION AND MOTIVATION

of the following parametric form:

m(x, θ) = v0 +
H∑
h=1

vhψ(w0h) + w1hx

for some given activation function ψ(u). Here, we consider the popular logistic

activation function

ψ(u) =
1

1 + e−u

which is of sigmoid form, i.e. it looks like the distribution function. The pa-

rameter vector θ = (v0, . . . , vH , w01, . . . , w0H , w11, . . . , w1H)T consists of the

network weights. For a survey on neural networks, compare e.g. Haykin

(1999) or Anders (1997). Furthermore, papers on optimal experimental de-

sign for neural networks are found in the engineering and machine learning

literature, but they focus on numerical studies and algorithms, compare e.g.

Cohn (1996), Choueiki and Mount-Campbell (1999) and Witczak (2006). We

are looking for a theoretical basis for those methods.

Given a prescribed sample size n, the experimental design problem consists

of the choice of x1, . . . , xn ∈ [a, b] such that the regression function m(x) may

be estimated as good as possible on the interval [a, b]. Of course, we have to

be precise about what we mean by “as good as possible.”

For the original problem of choosing optimal designs for neural network re-

gression, it turned out to be much too ambitious for two reasons:

i) Even if the neural network output function m(x, θ) describes the data-

generating mechanism exactly, i.e. m(x, θ0) = m(x) for some θ0, the

structure of the functions m(x, θ) for general H is much too complicated.

The current literature on optimal design for nonlinear regression is still

concerned with much simpler regression functions and low-dimensional
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parameters, compare, e.g. Dette and Pepelyshev (2008) and Dette et al.

(2006).

ii) Additionally, in neural network regression, one does not usually assume

that the model is completely correct, i.e. we only have m(x) ≈ m(x, θ0)

for some θ0 and large enough H. So we have to deal with optimal design

in misspecified regression models which has also not been investigated a

lot in the literature. Some first steps have been done in the context of

robustness of design, compare, section 2.4.

So in this thesis we can only do some first steps towards a theory of exper-

imental design for neural network regression. The outline of the thesis is as

follows:

In chapter 2, we give a review of some literature on experimental designs

and also the introduction of some concepts which we shall need later. We

start with the classical optimal design problem for linear regression models.

In section 2.2, we have a look at nonlinear regression models. Then, in sec-

tion 2.3, we consider sequential optimal designs which may be appropriate for

nonlinear regression in particular, since one chooses the design points one af-

ter the other and may exploit preliminary estimates of the parameters since,

in general, the optimal design will be local, i.e. depending on the unknown

true parameter value. We close in section 2.4 with a survey on misspecified

models in the context of experimental designs.

In Chapter 3, we consider neural network regression with H = 1 or 2 hidden

neurons only. We follow Dette and Pepelyshev (2008) by focusing on locally

D−optimal designs, proving some results and having a look at some simula-

tions. We conclude the chapter with a numerical study which concerns the
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concepts of locally D−optimal designs and maximin designs.

Finally, in chapter 4, we study the effect of model misspecification on ex-

perimental design in general without referring to neural network regression

in particular. We prove convergence of parameter estimates and asymptotic

normality including formulas for the error covariance matrix which is a major

tool in judging the quality of an estimate and, therefore, in choosing good

designs.



Chapter 2

A Survey of Optimal Design

Problems

2.1 Classical Regression Optimal Designs

Regression is a statistical tool used for obtaining information on a response

variable Y that depends on a (possibly vector valued) variable x. When the

variable x is under the control of an experimenter, he may like to know the

values of x where it is “best” to observe the response Y . Usually, the ex-

perimenter is constrained by resources such as money, time and the number

of observations he can take. The optimal regression design problem is about

choosing levels of x and allocating observations at x so as to optimize speci-

fied criteria related to various constraints. There is a vast number of criteria

in the experimental design literature. The choice of criteria would depend

on the objective of the experiment.

Following Kiefer and Wolfowitz (1960), we suppose that z1, z2 . . . , zp are p

given linearly independent functions on a space Ω and are continuous in a

5



6 CHAPTER 2. A SURVEY OF OPTIMAL DESIGN PROBLEMS

topology in which Ω is compact. The space Ω will usually be a closed compact

set in a Euclidean space of a particular dimension. In the linear regression

setting, we assume that at each point x in Ω the experimenter observes a

random response variable Yj, given a vector of predictors xj for a subject

j; j = 1, 2, . . . , n assuming a model of the form

Yj = m(xj, θ) + εj (2.1)

where m(xj, θ) = zT (xj)θ, where θ is the p× 1 column vector of p unknown

real parameters, zT (x) consists of a p× 1 column vector of p regressor X =

z(x) = (z1(x1), z2(x2), . . . , zp(xn))T and εj are random errors such that they

are uncorrelated and have constant variance σ2. The least squares estimate

of the vector of model parameters is given by

θ̂ = I−1XTY (2.2)

where the response, Y = (Y1, Y2, . . . , Yn)T , and the information matrix,

I = XTX. Thus, the information matrix depends on the design vector x

through the matrix X, which is also called the design matrix.

Suppose an experimenter would like to conduct an experiment whose re-

sponse Y satisfies (2.1). When the total number of observations to be taken

is n, the objective of the optimal regression designs is to choose optimal val-

ues of x1, x2, . . . , xn not necessarily distinct, from a design space Ω such that

certain criteria are satisfied. In experimental designs, it is vital to distinguish

between discrete and continuous designs. Wynn (1970), Kiefer (1961) and

Adewale and Wiens (2009) are among the authors that helped to establish

the distinction.

An n−tuple of points x1, x2, . . . , xn not necessarily distinct, from the design
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space Ω is an exact or discrete design. Thus, the exact or discrete design,

denoted by Dn corresponds to a discrete probability measure ξ on Ω which is

formed by attaching masses which are integral multiples of n−1 to each point

in Dn. A design measure, referred to merely as a measure, is a probability

measure, denoted by ξ, on Ω. The probability measure ξ on Ω is also called

approximate or continuous design. Specifically, ξ is a member of the set Ξ,

of all measures defined on the Borel field B generated by the open sets of Ω

and such that ∫
Ω

ξ(dx) = 1.

It is assumed that B contains all one-point sets. Finding exact designs is an

integer optimization problem- optimization in a discrete domain - which is,

in general, analytically intractable. The intractability of the exact problem

led to the development of Kiefer’s “approximate theory.” With approximate

theory comes mathematical convenience such that the various optimizations

which are otherwise unwieldy in the exact theory become tractable through

convex theory. However, the resulting designs from approximate theory are

not directly implementable. They need to be approximated by exact designs.

The books by Fedorov (1972), Silvey (1980) and Pukelsheim (1993) are clas-

sical references on this subject.

We denote the information matrix of θ corresponding to the design ξ as

I(ξ). The p× p matrix I(ξ) is assumed here to be positive definite and for a

measure ξ on Ω it can be written as

I(ξ) =

∫
Ω

z(x)zT (x)dξ(x).

Furthermore, from these definitions,

XTX = nI(ξ) (2.3)
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where X is an n× p design matrix.

Optimal designs are usually obtained by optimizing functions of the infor-

mation matrix, I(ξ). The most intensively studied design criterion is the

D-optimality criterion (Silvey (1980)) and it is the design ξ∗ that maximizes

the determinant of the information matrix. That is,

ξ∗ = arg max
ξ∈Ξ

det{I(ξ)}.

This design minimizes the determinant of the variance-covariance matrix of

the estimates of the model parameters.

Other criteria that have been studied in the literature include the G-optimality

criterion, the design minimizing the maximum (over the design space) vari-

ance of the predicted response (Kiefer and Wolfowitz (1960)). That is,

ξ∗ = min
ξ∈Ξ

max
x∈Ω
{zT (x)I−1(ξ)z(x)}.

The Q-optimality criterion, also known as I-optimal criterion seeks the design

minimizing the integrated (or average) variance of the estimated response

over the design space;

ξ∗ = min
ξ∈Ξ

∫
Ω

zT (x)I−1(ξ)z(x) dx.

The A-optimality criterion seeks the design minimizing the trace of the

variance-covariance matrix;

ξ∗ = arg min
ξ∈Ξ

trace{I−1(ξ)}.

The E-optimality criterion seeks the design minimizing the maximum eigen-

value (λ) of the variance-covariance matrix of model estimates;

ξ∗ = arg min
ξ∈Ξ

λmax{I−1(ξ)}.
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The c-optimality criterion seeks the design minimizing the variance of a given

linear combination of parameter estimates. For a fixed vector c, the c-optimal

design is given by

ξ∗ = arg min
ξ∈Ξ
{cT I−1(ξ)c}.

Kiefer and Wolfowitz (1960) presented extensive results on D- and G-optimality,

including the celebrated Equivalence Theorem. The Equivalence Theorem

established that a design is D-optimal if and only if it is G-optimal.

Theorem 2.1.1 (General Equivalence Theorem (Kiefer and Wolfowitz (1960))).

A measure ξ∗ is D−optimum if ξ is chosen such that

det{I(ξ∗)} = sup
ξ∈Ξ

det{I(ξ)}. (2.4)

Let

d(x, ξ) = zT (x)I−1(ξ)z(x). (2.5)

A measure ξ∗ is G−optimum if ξ is chosen such that

sup
x∈Ω

d(x, ξ∗) = inf
ξ∈Ξ

sup
x∈Ω

d(x, ξ). (2.6)

The integral with respect to ξ of d(x, ξ) is p; hence, sup
x∈Ω

d(x, ξ) ≥ p. Thus, a

sufficient condition for ξ to satisfy (2.6) is

sup
x∈Ω

d(x, ξ) = p. (2.7)

(2.4), (2.6) and (2.7) are equivalent wherever I(ξ) is nonsingular.

From the above theorem, we note that the design that maximizes det{I(ξ)}

also minimizes the maximum value of zT (x)I−1(ξ)z(x) over the design space
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Ω.

We also note that from (2.3) and (2.5),

d(x, ξ) = nzT (x)(XTX)−1z(x). (2.8)

2.1.1 Standard Designs

Experimental designs are chosen based on the objectives of the experiment

and the number of factors to be investigated. Screening designs for instance

may be used if the aim of the experiment is to select or screen out the

few important main effects from the many less important ones. Comparative

designs are employed when we have one or several factors under investigation,

but the main aim of our experiment is to make a conclusion whether a factor,

in the presence of, and/or in spite of the existence of the other factors,

is significant. That is, whether or not there is a significant change in the

response for different levels of that factor. Response surface method (RSM)

designs are used when we intend to estimate interaction and even quadratic

effects, and therefore also have an idea of the (local) shape of the response

surface we are investigating. They are used to find improved or optimal

process settings and also used to make a product or process more robust

against external and non-controllable influences. “Robust” means relatively

insensitive to these influences. If you have factors that are proportions of a

mixture and you want to know what the “best” proportions of the factors are

so as to maximize (or minimize) a response, then you need a mixture design.

Furthermore, regression designs are used if we want to model a response

as a mathematical function (either known or empirical) of a few continuous

factors and we desire “good” model parameter estimates (i.e., unbiased and

minimum variance). Below are other standard or classical designs which are
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employed for various experimental objectives.

2.1.1.1 Full factorial designs

An experimental design with all possible combinations of high and low levels

(or ‘+1’ and ‘-1’) of all the input factors is called a full factorial design. In

other words, a design in which every setting of every factor appears with

every setting of every other factor is a full factorial design. As an example,

if there are k factors, each at 2 levels, a full factorial design has 2k runs.

When the number of factors is 5 or greater, a full factorial design requires a

large number of runs and is not very efficient. Fractional factorial design or

a Plackett-Burman design is a better choice for 5 or more factors.

2.1.1.2 Fractional factorial designs

A factorial experiment in which only an adequately chosen fraction of the

treatment combinations required for the complete factorial experiment is

selected to be run. Considering a full factorial design of k factors, each of 2

levels as above, even if the number of factors in a design is small, the runs

specified for a full factorial can quickly become very large. For example,

26 = 64 runs is for a two-level, full factorial design with six factors. To this

design we need to add a good number of center point runs and we can thus

quickly run up a very large resource requirement for runs with only a modest

number of factors. This problem is solved by using only a fraction of the

runs specified by the full factorial design. Which runs to keep and which to

leave out is the subject of interest here. In general, we pick a fraction such

as 1/2, 1/4, etc. of the runs called for by the full factorial. Various strategies

are used to ensure an appropriate choice of runs. Thus, a carefully chosen

fraction of the runs may be all that is necessary.
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2.1.1.3 Plackett-Burman(PB)

Plackett and Burman (1946) described the construction of very economical

designs with the run number a multiple of four rather than a power of 2.

Plackett-Burman (PB)designs are very efficient screening designs when only

main effects are of interest. These designs are used for screening experiments

because, in a PB design, main effects are, in general, heavily confounded

with two-factor interactions. The PB design in 12 runs, for example, may

be used for an experiment containing up to 11 factors. With a 20-run design

we can run a screening experiment for up to 19 factors, up to 23 factors in

a 24-run design, and up to 27 factors in a 28-run design. PB designs even

exist for design runs higher than 28. These Resolution III designs are known

as Saturated Main Effect designs because all degrees of freedom are utilized

to estimate main effects.

These designs do not have a defining relation since interactions are not iden-

tically equal to main effects. With the 2k−pIII designs, a main effect column Xi

is either orthogonal to XiXj or identical to ±XiXj. For Plackett-Burman de-

signs, the two-factor interaction column XiXj is correlated to every Xk (for k

not equal to i or j). However, these designs are very useful for economically

detecting large main effects, assuming all interactions are negligible when

compared with the few important main effects.

2.1.1.4 Central Composite Design

A Box-Wilson Central Composite Design, commonly called ‘a central com-

posite design,’ contains an embedded factorial or fractional factorial design

with center point that is augmented with a group of ‘star points’ that allow

estimation of curvature. If the distance from the center of the design space to
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a factorial point is 1 unit for each factor, the distance from the center of the

design space to a star point is ±α with |α| > 1. The precise value of α as well

as the number of center point runs the design contains, depends on certain

properties desired for the design and on the number of factors involved. A

central composite design always contains twice as many star points as there

are factors in the design. The star points represent new extreme values (low

and high) for each factor in the design.

There are three types of central composite designs. These depend on where

the star points are placed:

1. Circumscribed (CCC): This is the original form of the central composite

design. The star points are at some distance α from the center based

on the properties desired for the design and the number of factors in

the design. These designs have circular, spherical, or hyper-spherical

symmetry and require 5 levels for each factor. Augmenting an existing

factorial or resolution V fractional factorial design with star points can

produce this design.

2. Inscribed (CCI): This is a scaled down CCC design with each factor

level of the CCC design divided by α to generate the CCI design. When

true limits for factor settings are specified, the CCI design uses the

factor settings as the star points and creates a factorial or fractional

factorial design within those limits. This design also requires 5 levels

of each factor.

3. Face Centered (CCF): The star points are at the center of each face of

the factorial space, so α = ±1. This type requires three levels of each

factor. Augmenting an existing factorial or resolution V design with
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appropriate star points can also produce this design.

2.1.1.5 Box-Behnken Design

This is an independent quadratic design in that it does not contain an em-

bedded factorial or fractional factorial design. In this design the treatment

combinations are at the midpoints of edges of the process space and at the

center. It is an alternative choice for fitting quadratic models that requires

three levels of each factor.

2.1.1.6 Latin Square

A Latin square is an n × n array filled with n different Latin letters, each

occurring exactly once in each row and exactly once in each column.

2.1.2 DOE Terminology

The following are some definitions for some of the basic terms used in design

of experiment.

2.1.2.1 Design

A set of experimental runs which allows you to fit a particular model and

estimate your desired effects.

2.1.2.2 Balanced Design

An experimental design where all cells (i.e. treatment combinations) have

the same number of observations.
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2.1.2.3 Design Matrix

A matrix description of an experiment that is useful for constructing and

analyzing experiments.

2.1.2.4 Effect

This is how changing the settings of a factor changes the response. The effect

of a single factor is also called a main effect.

2.1.2.5 Treatment factors and their levels

A treatment is a specific combination of factor levels whose effect is to be

compared with other treatments. Although the term treatment factor might

suggest a drug in a medical experiment, it is used to mean any substance or

item whose effect on the data is to be studied. The levels are the specific

types or amounts of the treatment factor that will actually be used in the

experiment.

2.1.2.6 Orthogonality

Two vectors of the same length are orthogonal if the sum of the products of

their corresponding elements is zero. An experimental design is orthogonal

if the effects of any factor balance out (sum to zero) across the effects of the

other factors.

2.1.2.7 Randomization

A schedule for allocating subjects or experimental material to treatments

such that the conditions in one run neither depend on the conditions of the

previous run nor predict the conditions in the subsequent runs. The impor-
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tance of randomization cannot be over stressed. Randomization is necessary

for conclusions drawn from the experiment to be correct, unambiguous and

defensible. It is to prevent systematic and personal biases from being intro-

duced into the experiment by the experimenter.

2.1.2.8 Rotatability

A design is rotatable if the variance of the predicted response at any point

x depends only on the distance of x from the design center point. A design

with this property can be rotated around its center point without changing

the prediction variance at x. Rotatability is a desirable property for response

surface designs (i.e. quadratic model designs).

2.1.2.9 Blocking

The experimental conditions under which an experiment is run should be

representative of those to which the conclusions of the experiment are to be

applied. For inferences to be broad in scope, the experimental conditions

should be rather varied. However, an unfortunate consequence of increasing

the scope of the experiment is an increase in the variability of the response.

Blocking is a technique that can often be used to help deal with this problem.

To block an experiment is to divide, or partition, the observation into groups

called blocks in such a way that the observations in each block are collected

under relatively similar experimental conditions. If blocking is done well,

then comparisons of two or more treatments are made more precisely than

similar comparisons from an unblocked design. Blocking also isolates a sys-

tematic effect and prevents it from obscuring the main effects.
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2.1.2.10 Replication

Performing the same treatment combination more than once. Replication

allows an estimate of the random error independent of any lack of fit error.

There is a difference between replication” and repeated measurements.” For

example, suppose four subjects are each assigned to a drug and a measure-

ment is taken on each subject. The result is four independent observations

on the drug. This is replication.” On the other hand, if one subject is as-

signed to a drug and then measured four times, the measurements are not

independent. We call them repeated measurements.”

2.1.2.11 Resolution

A term which describes the degree to which estimated main effects are aliased

(or confounded) with estimated 2-level interactions, 3-level interactions, etc.

In general, the resolution of a design is one more than the smallest order

interaction that some main effect is confounded (aliased) with. If some main

effects are confounded with some 2-level interactions, the resolution is III.

Full factorial designs have no confounding and are said to have resolution

“infinity”. For most practical purposes, a resolution V design is excellent

and a resolution IV design may be adequate. Resolution III designs are

useful as economical screening designs.

2.1.2.12 Screening Designs

A DOE that identifies which of many factors have a significant effect on the

response. Typically screening designs have more than five factors.
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2.1.2.13 Scaling or Coding Factor Levels

Transforming factor (input) levels so that the high value becomes +1 and

the low value becomes −1.

2.1.2.14 Experimental Units

These are the “material” to which the levels of the treatment factor(s) are

applied. For example, in agriculture these would be individual plots of land,

in medicine they would be human or animal subjects, in industry they might

be batches of raw material, factory workers, etc. If an experiment has to be

run over a period of time, with the observations being collected sequentially,

then the times of the day can also be regarded as experimental units.

2.2 Nonlinear Optimal Designs

According to Khuri and Cornell (1996), a model Yj = m(xj, θ) + εj is said

to be nonlinear if at least one of its parameters appears nonlinearly. For

example, the models

Yj = θ1e
−θ2xj + εj (2.9)

Yj = θ1 + θ2e
−θ2xj + εj (2.10)

Yj =
1

θ1 + θ2xj
+ εj (2.11)

Yj =

(
θ1

θ1 − θ2

)
(e−θ2xj − e−θ1xi) + εj (2.12)

The term partially nonlinear is used to describe a model in which some of

the parameters are linear and some are nonlinear, such as models (2.9) and

(2.10). Khuri and Cornell (1996) call a model intrinsically linear if:
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1. it can be reduced to a linear model by a suitable re-parameterization

of the model. For example, the nonlinear model

E(Yj) = θ1 + eθ2xj (2.13)

can be reduced to a linear model, E(Yj) = θ1 + γ1xj, by transforming

γ1 = eθ2 ;

2. the nonlinear model is reduced to a linear form by applying a transfor-

mation to the model itself. For example, if we consider the model in

(2.9), then a natural logarithmic transformation can reduce E(Yj) to

the linear form ln[E(Yj)] = ln(θ1)− θ2xj provided θ1 > 0.

Such a transformation can change the structure and distribution of the error

term associated with the model. To explain this, let Y and ε be the observed

response and random error, respectively, for model (2.9). Then

ln (Y ) = ln [η(x) + ε] (2.14)

= ln [η(x)] + ln

[
1 +

ε

η(x)

]
The error term for the transformed model is now ln [1 + ε/η(x)] , which in

general has the distribution different from that of ε. For example, if ε sat-

isfies the usual assumptions of normality, independence, and homogeneity of

variance, the error term for model (2.14) will have a non-normal distribution

which depends on x through ε(x). Thus, the variance of this error term can-

not be assumed to be constant as in the original model. Consequently, even

if the mean η(x) in a nonlinear model can be reduced to a linear form by a

proper transformation, such a transformation should be used only if it can

be demonstrated that the aforementioned assumptions with respect to the

transformed model are not severely violated. Nonlinear models have been

used in many fields, particularly in biological and chemical sciences where
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the growth of a particular organism, or the yield that results from a chemical

reaction, can be depicted by a nonlinear model. Draper and Smith (1981)

and Chaudhuri and Mykland (1993) had listed several examples.

2.2.1 Generalized linear Models (GLMs)

Another example (or class) of nonlinear models is generalized linear models

which are quite frequently used in clinical or epidemiological studies where

the data violate the assumptions of a linear model. In standard general linear

model, the responses are assumed to be continuous (quite often, normally dis-

tributed) with uncorrelated errors and homogeneous variances. Introduced

by Nelder and Wedderburn (1972), GLMs are a unified class of regression

models for discrete and continuous response variables, and have been used

routinely in dealing with observational studies.

A generalized linear model consists of three (3) components:

1. The elements (or observations) y1, y2, . . . , yn of a response vector y,

with respective means µ1, µ2, . . . , µn are distributed independently ac-

cording to a certain probability distribution considered to belong to

the exponential family whose probability density (or mass) function is

given by

m(y, θ, φ) = exp

[
yθ − b(θ)
a(φ)

+ c(y, φ)

]
, (2.15)

where a(·), b(·) and c(·) are specific (known) functions; θ is a natural

location parameter, and φ is often called dispersion parameter. The

function a(φ) is frequently of the form a(φ) = φ ·ω where ω is a known

constant. The binomial, Poisson, gamma, probit and normal distribu-

tions are members of this family. For some common members of the
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family, φ = 1− like the binomial and Poisson- except in situations of

over-dispersion. The most prominent member of the exponential fam-

ily is the normal distribution. The probability density function for a

normal random variable y with parameters µ and σ is given by

m(y;µ, σ) = exp{−[y − µ]2/2σ2} · 1

σ
√

2π

= exp

{
(yµ− µ2/2)/σ2 − 1

2
[y2/σ2 + ln(2πσ2)]

}
.

This density function is of the form given in equation (2.15) with

θ = µ, b(θ) = µ2/2, a(φ) = φ, φ = σ2, and c(y, φ) = −1
2
[ y

2

σ2 + ln(2πσ2)].

The location parameter and the natural scale parameters here are re-

spectively, µ and σ2 as expected.

For the Poisson distribution, the probability function is given by

m(y;u) =
e−µµy

y!

= exp[ylnµ− µ− ln(y!)].

As a result, θ = lnµ, b(θ) = eθ, and c(y, φ) = −ln(y!). Thus, the loca-

tion parameter is µ and the scale parameter is φ = 1.

For any distribution in the form of (2.15), the mean and variance of

the response variable y are respectively given by

E(y) = µ =
db(θ)

dθ
= b′(θ) (2.16)

and

Var(y) =
d2b(θ)

dθ2
a(φ) = a(φ)b′′(θ)

=
dµ

dθ
a(φ),
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where primes denote differentiation with respect to the canonical pa-

rameter θ.

Let Varµ be the variance of the response, y, apart from a(φ); Varµ

denotes the dependence of the variance of the response on its mean.

Thus,

Varµ =
Var(y)

a(φ)
=
dµ

dθ
.

As a result, we have
dθ

dµ
=

1

Varµ
. (2.17)

2. A linear regression function, or linear predictor, in n control variables

x1, x2, . . . , xn of the form

η = zT (x)θ, (2.18)

where z(x) = (z1(x), z2(x), . . . , zp(x))T are p regressors depending on

a vector of n control (input) variables x = (x1, x2, . . . , xn). θ is an

unknown parameter vector of order p× 1 and zT (x) is the transpose of

z(x).

3. A link function g(µ) which relates η in (2.18) to the mean response µ

so that

ηj = g(µj), j = 1, 2, . . . , n,

where g(·) is a monotone differentiable function. The term link is de-

rived from the fact that the function is the link between the mean and

the linear predictor. The expected response is

E(yj) = g−1(ηj) = g−1[zT (x)θ].

When g is the identity function and the response has the normal distri-

bution, we obtain the special class of linear models. Thus, in multiple
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linear model

µj = ηj = zT (x)θ j = 1, 2, . . . , n

suggests a special case in which g(µj) = µj, and thus the link function

used is the identity link. There are many possible choices of the link

function. If we choose

ηj = θj (2.19)

then we say that nj is the canonical link.

Also, the variance σ2
j (j = 1, 2, . . . , n) is a function of the mean µj. The mean

response, µ(x), at a point x in a region of interest, R, is given by

µ(x) = g−1[zT (x)θ] = g−1[η(x)], (2.20)

where η(x) is the linear predictor in (2.18), and g−1 is the inverse function

of the g. An estimate of µ(x) is obtained by replacing θ in (2.20) with θ̂, the

maximum likelihood estimate of θ, that is

µ̂(x) = g−1[zT (x)θ̂]. (2.21)

2.2.2 Dependency of the Information Matrix

The Fisher information associated with a nonlinear experiment is typically

a complex nonlinear function of the unknown parameter of interest. As a

result, we face an awkward situation. Designing an efficient experiment will

require knowledge of the parameter, but the purpose of the experiment is

to generate data to yield parameter estimates. Cochran (1973) described

this dependency: “You tell me the value of θ, and I promise to design the

best experiment for estimating θ.” Bates and Watts (1988) also remarked on

page 129 of their book : “It is awkward to specify initial estimates ... before

an experimental design can be obtained, since, after all, the purpose of the
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experiment is to determine parameter estimates.” The following are some

approaches that have been outlined by many authors including Adewale and

Wiens (2009) and Chaudhuri and Mykland (1993) for handling this depen-

dency problem.

The easiest and earliest approach is to adopt a best guess of the param-

eter values. Given best guesses for parameter values, the nonlinear design

problem becomes amenable to the theory of optimal design for linear models.

Chernoff (1953) dubbed this design locally optimal design. An obvious prac-

tical drawback of this approach, noted by several authors, is that the choice

of the best guesses for the parameters may be far from the true parameters

and the behavior of the locally optimal design may be quite sensitive to even

small perturbations in the parameter value.

An approach that has been used to remedy the non-robustness of the lo-

cally optimal design is a Bayesian paradigm. In the Bayesian approach a

prior distribution, say π(θ), is assumed on the unknown parameters. The

Bayesian optimal design is the design optimizing the expectation of the cri-

terion of interest, where expectation is taken with respect to the assumed

prior distribution. That is, if we let Ψ(I(ξ, θ)) be a function of I(ξ, θ),

EθΨ(I(ξ, θ)) =

∫
Ψ(I(ξ, θ))π(θ)dθ.

The prior distribution is usually interpreted as the experimenter’s prior be-

lief in the adequacy of the model over a specified range of parameter values.

Chaloner and Larntz (1989), Chaloner and Verdinelli (1995) and others have

studied Bayesian designs.
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An alternative to the Bayesian paradigm is the minimax (or maximin) ap-

proach used by Sitter (1992). The approach assumed that there is range

of plausible values for unknown parameters. That is, θ ∈ Θ, where Θ is a

range of specific (not represented by distribution) parameter values the ex-

perimenter beliefs are plausible. The minimax optimal design is the design

minimizing the maximum (over the range of the parameters) of the criterion,

that is,

min
ξ

max
θ∈Θ

Ψ(I(ξ, θ)).

This approach is robust in the sense that it produces the optimal design with

the least loss when the parameters take the worst possible value within their

ranges. These least favorable parameter values are those that maximize the

loss (King and Wong (2000); Dette et al. (2003)).

Sequential design is another strategy that has been used in dealing with

parameter-dependency of design criteria. In sequential design, the experi-

ment is done in stages. The fundamental idea behind such a strategy is to

divide the resources (e.g., time, money, and human power) into small groups

and to split the entire experiment into several steps or stages. At each step or

stage an experiment is carried out using only a single portion of the divided

resources. Analysis is carried out at the end of stage. Parameter estimates

from a previous stage are used as best guesses for the current design i.e.

updating the parameter estimates by using the available data to efficiently

design the next step. Sequential design can be described as progressive lo-

cally optimal design. Sinha and Wiens (2002) are among authors that have

taken this approach to nonlinear design.
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2.2.3 Least Squares Estimates

Ratkowsky (1983a) discussed the least squares (LS) estimate of the parameter

θ by considering the nonlinear model

Yj = m(xj, θ) + εj. (2.22)

Just like in linear models, the least squares estimate of the parameter θ is

obtained by minimizing the function

S(θ) =
∑

(Yj −m(xj, θ))
2 (2.23)

Writing S in place of S(θ) to simplify the notation, the minimum of S may

be obtained by differentiating (2.23) with respect to θ, setting the derivative

equal to zero, as follows:

∂S

∂θ
= −2

∑
(Yj −m(xj, θ))(log xj)m(xj, θ) = 0

and attempting to solve for θ, the solution to which is denoted θ̂. However,

this does not lead to explicit expression for θ̂. Instead, the resulting rear-

ranged equation∑
Yj(log xj)m(xj, θ̂) =

∑
(log xj)m(xj, θ̂)

2 (2.24)

can yield the LS estimate θ̂ only by an iterative procedure starting from some

assumed value of θ̂. This procedure can be very complex.

Khuri and Cornell (1996) mention several methods for computing the least

squares estimates which include the the most widely used Gauss- Newton

method and its modified version by Hartley (1961), the steepest descent

method, and the method developed by Marquardt (1963) and finally the

derivative-free Gauss-Newton algorithm developed by Ralston and Jennrich
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(1978). All the aforementioned methods require that initial values be spec-

ified for the nonlinear model’s parameters. The convergence of any of these

methods to the least squares estimates and the rate of convergence heav-

ily depend on the choice of initial values but Ratkowsky (1983a) described

procedures for obtaining good initial values of the parameters. Lawton and

Sylvestre (1971) also introduced a method whereby the specification of initial

values is required only for those parameters which appear nonlinearly in the

model.

2.3 Sequential Optimal Designs

A sequential D-optimal design scheme is described by Wynn (1970) in the

following procedure by making use of equation (2.8).

Let Dn0 be a discrete design with n0 points, x1, . . . , xn0 which is admissi-

ble in the sense that XT
n0
Xn0 is non-singular. From x1, . . . , xn0 , by successive

addition of points, he generates a sequence of designs such that in the limit

the associated measures become D−optimum. Thus, he first finds a point

xn0+1 ∈ Ω which maximizes the variance function obtained by using Dn0 ;

that is choose xn0+1 such that

sup
x∈Ω

d(x, ξn0) = d(xn0+1, ξn0).

He then forms a new design Dn0+1, with n0 + 1 points by adding xn0+1 to

Dn0 and continues the process to obtain a sequence Dn0 ⊂ Dn0+1 ⊂ · · · ⊂

Dn ⊂ · · · , where Dn is obtained from Dn−1 by adding a point of maximum

variance, over Ω, of the estimated response mean obtained from using Dn−1.

The following theorem contains the basic result of his paper which concerns

the sequence of associated measures {ξn}∞n0
.
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Theorem 2.3.1 (Wynn (1970)). As n → ∞, lim det{I(ξn)} = det{I(ξ∗)},

where ξ∗ is a D−optimum measure.

Chaudhuri and Mykland (1993) investigated the designing of nonlinear ex-

periments that allowed them construct efficient estimates of parameters. The

experiments considered were in two stages: a static design in the initial stage,

followed by a fully adaptive sequential stage in which the design points were

chosen sequentially, exploiting a D− optimality criterion and using parame-

ter estimates based on available data. Their methodology is as follows:

2.3.0.1 Description of Sampling Scheme

Suppose resources available allow altogether n trials in the experiment, n1 of

these trials are performed in the initial static stage and the remaining n−n1

of the trials are performed in a sequential manner.

Let x1, x2, . . . , xn1 be the first n1 design points, Y1, Y2, . . . , Yn1 the responses

observed after the initial experiment is carried out and θ∗n1
the estimate of θ

based on (Y1, x1), . . . , (Yn1 , xn1). For each j such that n1 + 1 ≤ j ≤ n, the

design point xj, which belongs to the sequential stage of the experiment, will

be chosen in such a way that the determinant of the total Fisher Informa-

tion
∑j

r=1 I(xr, θ
∗
j−1) is maximized. Here θ∗j−1 is an estimate of θ based on

(Y1, x1), . . . , (Yj−1, xj−1), the data available prior to the jth trial.

Two conditions that play a crucial role in implementing the scheme and

studying its performance are:

Condition 2.3.1. The design space Ω is a compact metric space.
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Condition 2.3.2. It is possible to express I(x, θ) in the form

I(x, θ) = {V(x, θ)}{V(x, θ)}T , where V is the Rd−valued function that is

jointly continuous in θ and x.

2.3.0.2 Asymptotic Optimality

We discuss the asymptotic optimality of the chosen design whose performance

depends on the choice of n1, the initial design points x1, x2, . . . , xn1 and the

estimates, θ∗j ’s. Sufficient conditions to ensure the convergence of the chosen

design to the D−optimal one as n→∞ are as follows:

Condition 2.3.3. (Choice of initial design). As n→∞, n1 →∞. Further,

the initial design points x1, x2, . . . , xn1 , are chosen in such a way that the

smallest eigenvalue of the matrix

1

n1

n1∑
j=1

I(xj, θ)

remains bounded away from 0 as n→∞ for any θ ∈ Θ.

Condition 2.3.4. (The relative size of the initial experiment). The fraction

n1

n
→ 0 as n→∞.

Condition 2.3.5. (A consistency condition). For any ε > 0,

max
n1≤j≤n

Pθ(|θ∗j − θ| > ε)→ 0

as n→∞.

Condition 2.3.6. (A stability condition). For n1 < k < n, let Uk denote

the product of the determinants

k∏
j=n1+1

det

{
j∑
r=1

I(θ∗j−1, xr)

}
det

{
j∑
r=1

I(θ∗j , xr)

}−1

.

Then, for any ε > 0, max
n1<k<n

Pθ(Uk > 1 + ε)→ 0 as n→∞.
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Lemma 2.3.1. The function h(A) = −log{det(A)}, where A is the sym-

metric d × d positive definite matrix, is a strictly convex function. In other

words, for 0 < α < 1 and two positive definite matrices A and B such that

A 6= B, we have

h{αA + (1− α)B} < αh(A) + (1− α)h(B).

Lemma 2.3.2. Let {θn} be a sequence of points in Θ such that, as n→∞,

θn → θ ∈ Θ. Let ξ∗n be the locally D−optimal design associated with θn and ξ∗

be associated with θ. Then under conditions (2.3.1) and (2.3.2), the matrix∫
Ω

I(x, θn)ξ∗n(dx) −→
n→∞

∫
Ω

I(x, θ)ξ∗(dx),

provided ∫
Ω

I(x, θ)ξ∗(dx)

is nonsingular.

Fact 2.3.1. Let 1 < n1 < n be integers (n1 may be a function of n) such

that n1

n
−→
n→∞

0. Then as n→∞, the sum
∑n

j=n1

1
n

diverges to infinity.

Theorem 2.3.2. Assume Conditions (2.3.1) to (2.3.6) and ξ∗ is a locally

D−optimal design at θ. If design points are chosen following the scheme at

the sequential stage of the experiment, then

1

n1

n1∑
j=1

I(xj, θ)
p−→
∫

Ω

I(x, θ)ξ∗(dx)

as n→∞.

Now in order to discuss the behavior of the maximum likelihood estimate θ̂n,

Chaudhuri and Mykland (1993) introduced the following conditions on the

model m(x, θ). The parameter space is assumed to be an open convex subset

of Rd. We will write | · | to denote the usual Euclidean norm of vectors and

matrices.
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Condition 2.3.7. The support of m(x, θ) does not depend on θ or x. Fur-

ther, for every fixed x ∈ Ω and y ∈ R, log m(xi, θ)} is thrice continuously

differentiable in θ.

Condition 2.3.8. Let ∇log m(x, θ) = G(x, θ) be the gradient vector obtained

by computing the first-order partial derivatives of log m(x, θ)} with respect to

θ. Then G(x, θ) satisfies∫
R

G(x, θ)m(x, θ)µ(dy) = 0

and

supx∈Ω

∫
R
|G(x, θ)|2+tm(x, θ)µ(dy) <∞

for some t > 0.

Condition 2.3.9. Let H(x, θ) denote the d×d Hessian matrix of log m(x, θ)

obtained by computing the second-order partial derivatives with respect to θ.

Then H(x, θ) satisfies∫
R

H(x, θ)m(x, θ)µ(dy) = −
∫
R
{G(x, θ)}{G(x, θ)}Tm(x, θ)µ(dy) = −I(x, θ),

and

sup
x∈Ω

∫
R
|H(x, θ)|2m(x, θ)µ(dy) <∞.

Condition 2.3.10. For every θ ∈ Θ, there is an open neighborhood N(θ) of

θ and a nonnegative random variable K(x, θ) such that

sup
x∈Ω

∫
R
K(x, θ)m(x, θ)µ(dy) <∞,

and each of the third-order partial derivatives of log m(x, θ′)} with respect to

θ′ is dominated by K(x, θ) for all θ′ ∈ N(θ).
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Theorem 2.3.3 (Chaudhuri and Mykland (1993)). Assume that in addition

to conditions assumed in Theorem (2.3.2), Conditions (2.3.7) to (2.3.10)

hold. Then there is a consistent choice of the maximum likelihood estimate θ̂n

of θ such that, as n→∞, the distribution of n1/2(θ̂−θ) converges weakly to a

d−dimensional normal distribution with zero mean and
{∫

Ω
I(x, θ)ξ∗(dx)

}−1

as the variance-covariance matrix.

Corollary 2.3.1. Suppose that all the conditions assumed in Theorems (2.3.2)

and (2.3.3) hold and let θ̂ be consistent choice of the maximum likelihood es-

timate. Then, as n→∞, the estimated average Fisher information

1

n

n∑
j=1

I(θ̂n, xj)

converges in probability to the D−optimal Fisher information∫
Ω

I(θ̂n, xj)ξ
∗(dx).

Further, the asymptotic distribution of{
n∑
j=1

I(θ̂n, xj)

}1/2

(θ̂n − θ)

is d−variate normal with zero mean and the d × d identity matrix as the

variance-covariance matrix.

Chaudhuri and Mykland (1993) have shown that sequential design in gen-

eral parametric nonlinear settings, including GLMs, could lead to fully ef-

ficient designs and asymptotically efficient maximum likelihood estimators.

The work of Dror and Steinberg (2008) is similar to that of Chaudhuri and

Mykland (1993) with few differences. Dror and Steinberg (2008) were con-

cerned with small samples, and thus, rapid progress toward efficient design,

whereas Chaudhuri and Mykland (1993) emphasized only asymptotic prop-

erties. While Chaudhuri and Mykland (1993) gave only general conditions
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for initial designs , which could be quite large, Dror and Steinberg (2008)

provide an algorithm for efficient design beginning with the first observation.

The methodology of Dror and Steinberg (2008) used a Bayesian methods

to jump start the sequential process to achieve good initial small-sample

designs, taking advantage of computationally efficient representation of the

posterior distribution of the coefficients. The local D−optimality criterion

for a particular parameter vector θ is |I(θ, ξ)|, where |A| denotes the deter-

minant of the matrix A. Following Chaloner and Larntz (1989), Dror and

Steinberg (2008) began with a proper prior for the parameters in the model.

The Bayesian D−optimality criterion of Chaloner and Larntz (1989) is

φ(d) =

∫
log(|I(θ, ξ)|)dπ(θ), (2.25)

where π(θ) is the prior distribution on θ.

Their algorithm can be run in a fully sequential mode, adding one new site

at each step, or in a group-sequential mode, adding a fixed number of sites.

The number of sites added are usually determined by practical issues in run-

ning the experiment and so is set by the user. The augmentation strategy

also ensures that enough design points are used in order that the informa-

tion matrices will be nonsingular. The implementation of the fully Bayesian

approach is based on the posterior distribution of θ which is computed based

on the data at hand. The exact posterior distribution which is used as a

basis to find the next design point requires substantial computation at each

iteration of the design. So they used an alternative approach. The posterior

is represented by using a large (say, N = 10, 000) discrete set of random

vectors sampled from the prior, θ1, . . . , θN . The likelihood L(θu) for each of

these vectors at any stage of the experiment is then computed and normal-
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ized across the sample to generate weight ru = L(θu)∑N
v=1 L(θv)

. Functionals of the

posterior are then estimated as weighted summaries of the vectors sampled

from our prior. e.g. the posterior mean vector can be estimated as
∑
ruθu.

This is essentially an important sampling scheme, with the prior serving as

the base sampling distribution and the important weights coming from the

fact that the posterior provided by the prior is proportional to the likelihood.

The fully Bayesian approach for adding points to an existing design is im-

plemented by using φ(d) from (2.25), averaging at each step with respect to

the posterior distribution. This average is then approximated by using the

criterion

φ1(d) =
N∑
u=1

rulog|I(θu, ξ)|. (2.26)

Optimizing this criterion is not trivial.

They therefore suggested to replace the average by log|I(θu; ξ)| at a sin-

gle point for an even faster computation. The posterior median for each of

the parameters is evaluated and again the weighted representation of the

posterior is used to estimate the median. This gives the criterion

φ2(d) = log|I(θ̃, ξ)|, (2.27)

where θ̃ is the median of θ. The algorithm involves using the computationally

fast approximate design criterion φ2 to produce a limited set of candidate

points. The better, but more computationally intensive φ1 is then used to

evaluate this small set. The algorithm also provides a simple fix for early

stages in the experiment when the information matrix is singular. Since

the singularity of the information matrix is a function only of the regression



2.4. MISSPECIFIED MODELS 35

matrix X, it is sufficient to check for the singularity at the posterior median.

2.4 Misspecified Models

For nonlinear models, most of the authors we have already mentioned and

also Fedorov (1972), Ford and Silvey (1980) have explored the construction of

optimal designs while assuming that the nonlinear model (including GLM) of

interest is correctly specified. The expository article Ford et al. (1989) hinted

that in the context of nonlinear models, as in the case of linear models, the

misspecification of the model itself is of serious concern. They asserted that

“indeed, if the model is seriously in doubt, the forms of design that we have

considered may be completely inappropriate.” Adewale and Wiens (2006)

and Adewale and Wiens (2009) have developed criteria that generate ro-

bust designs and use such criteria for the construction of designs that insure

against possible misspecification in the models. While Adewale and Wiens

(2006) dealt with linear models, Adewale and Wiens (2009) discussed logistic

models. We now present a summary of their work.

Suppose an experimenter is faced with a set Ω = {xj}Nj=1 of possible design

points from which he is interested in choosing n, not necessarily distinct,

points at which to observe response Y. The experimenter makes nj ≥ 0 ob-

servations at xj such that
∑N

j=1 nj = n The design problem is how to choose

n1, . . . , nN in an optimal manner. Alternatively, the objective is to choose

a probability distribution {pj}Nj=1 with pj =
nj
n
, on the design space Ω. the

resulting design is said to be integer valued.
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Adewale and Wiens (2006) considered the model:

Yj = m(xj) + εj (2.28)

where m(x, θ) = E(Y |x) = zT (x)θ and zT (x) consists of p regressors z(x) =

(z1(x), z2(x), . . . , zp(x))T .

The experimenter believes that the mean response E(Y |x) may be approxi-

mated by zT (x)θ but since E(Y |x) = zT (x)θ is just an approximation to the

true model, the “best ” θ0 for predicting the mean response is defined to be

the minimizer of the average-squared error of the approximation:

θ0 = arg min
t

1

N

N∑
j=1

(
E[Y |xj]− zT (x)t

)2
. (2.29)

We define f(x) = E[Y |x]− zT (x)θ0, so that the model becomes

Yij = zT (x)θ0 + f(xi) + εij, i = 1, 2, . . . , N j = 1, 2, . . . , ni (2.30)

where εij is the random error associated with the jth observation chosen at

the ith design point and var(εij) = σ2.

From (2.29), Adewale and Wiens (2006) defined

F =

{
f :

1

N

N∑
i=1

z(xi)f(xi) = 0,
1

N

N∑
i=1

f 2(xi) ≤ τ 2

}
(2.31)

as the class of contamination functions f(x). The first condition in F says

that f and z are orthogonal. The second condition is to ensure that the bias

in the least-squares estimate θ̂ remains within bounds by placing a bound on

the misspecification.
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Adewale and Wiens (2006) defined the loss I as the average mean-squared

error (amse) of Ŷ = zT (x)θ̂ as the estimate of E(Y |x) :

L =
1

N

N∑
j=1

E
{
Ŷ (xi)− E[Y |xj]

}2

(2.32)

=
1

N

N∑
j=1

(
E[Ŷ (xj)]− zT (xi)θ0

)2

+
1

N

N∑
i=1

var[Ŷ (xj)] +
1

N

N∑
j=1

f 2(xj).

Fang and Wiens (2000) used a minimax approach to construct integer-valued

designs. The optimal design in the minimax sense is the design that mini-

mizes the maximum, over the misspecification neighborhood F , value of the

loss. The minimax approach aims to obtain the best design for the worst pos-

sible case of model misspecification. Adewale and Wiens (2006) introduce

new criteria for robust designs which they claim may have more intuitive

appeal to practitioners. Rather than minimizing the maximum loss they in-

stead choose the design which minimizes the average value of the loss over

the misspecification neighborhood. The averaging requires a parameteriza-

tion of F . This approach can be seen as a generalization of the approach

employed by Läuter (1974) and Läuter (1976). While Läuter accommodated

model uncertainty in the choice of design by averaging design criterion func-

tions over a finite set of plausible models, Adewale and Wiens (2006) have

an infinite set of plausible models as defined above. While Läuters criterion

is based on variance only, in the spirit of Box and Lucas (1959), Adewale and

Wiens (2006) based their design criteria on possible bias engendered by the

model misspecification as well as on variance.

Given the misspecification neighborhood, Adewale and Wiens (2006) sought

integer-valued designs that minimize the average (over F) value of the loss.

Let {pj = nj/n}Nj=1 be an integer-valued design on Ω, P the N ×N diagonal
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matrix with diagonal elements {pj}, X the N × p matrix, assumed to be of

full rank, with rows zT (x1), . . . , zT (xN). Define f = (f(x1), . . . , f(xN))T . In

this notation, the amse defined in (2.32) can be written as

L =
1

N

{σ2

n
tr
[
(XTPX)−1XTX

]
+fTPX(XTPX)−1XTX(XTPX)−1XTPf + fTf

}
.

Adewale and Wiens (2006) noted that assuming the design is feasible for the

full parameter vector θ, or equivalently that it has a minimum of p distinct

support points xi in Ω such that the vectors z(xi) are linearly independent.

This implies the nonsingularity of XTPX.

Averaging is carried out using the singular value decompositionX = UN×pΛp×pV
T
p×p,

with UTU = V TV = Ip and Λ diagonal and invertible. U is augmented by

ŨN×(N−p) such that [U : Ũ ]N×N is orthogonal. Then from (2.31), there is an

(N − p)× 1 vector c with ‖c‖ ≤ 1, satisfying f(= fc) = τ
√
NŨc, and then

L =
1

N

{σ2

n
tr
[
(UTPU)−1

]
(2.33)

+τ 2Ntr
[
ŨTPU(UTPU)−2UTPŨccT

]
+ τ 2NcT c

}
.

Fang and Wiens (2000) gives details of this development. Adewale and Wiens

(2006) define their design criterion as I, with f integrated over c :

Lave =
σ2

nN
tr
[
(UTPU)−1

]
(2.34)

+τ 2

∫
‖c‖≤1

(
tr
[
ŨTPU(UTPU)−2UTPŨccT

]
+ cT c

)
dc.

Adewale and Wiens (2006) hence formulated the following theorem:

Theorem 2.4.1. Define

κN,p =
π(N − p)/2

((N − p)/2 + 1)Γ((N − p)/2
=

∫
‖c‖≤1

cT cdc.
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The average of I, the amse over the misspecification neighborhood F , is given

by Iave = (σ2/n+ τ 2κN,p)Lave, where

Lave = ρ
tr
[
(UTPU)−1

]
N

+ (1− ρ)

(
1 +

tr
[
(UTPU)−2(UTP 2U)

]
N − p

)
(2.35)

for ρ = σ2/n/(σ2/n+ τ 2κN,p).
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Chapter 3

Robust and Efficient Designs

3.1 Introduction

Exponential regression models or Sigmoidal growth curves are widely used

tools for analyzing data from processes arising in various fields such as biol-

ogy, chemistry, pharmacokinetics or microbiology. Dette et al. (2006) and

Dette and Pepelyshev (2008) mention a few examples. In microbiology

these models are usually applied for describing growth and death of microor-

ganisms, dose-response analysis and risk assessment (Coleman and Marks

(2010)), and kinetics of metabolite production. These models are also in-

corporated in the numerous models in predictive microbiology for describing

effects of temperature (Geeraerd et al. (2010)). Typical applications also in-

clude subject areas such as biology (see Lawdaw and DiStefano III (2010)),

pharmacokinetics (see Liebig (1988) or Krug and Liebig (2010)) or toxicology

(Becka et al. (1993); Becka and Urfer (1996)).

An appropriate choice of the experimental conditions can improve the qual-

ity of statistical inference substantially. The goal of an optimal or efficient

41



42 CHAPTER 3. ROBUST AND EFFICIENT DESIGNS

experimental design usually is the maximization of a real-valued function

φ of the Fisher information matrix, or the minimization of the generalized

inverse of this matrix. This is usually referred to as optimality criterion.

There are numerous optimality criteria proposed in the literature to dis-

criminate between competing designs. We restrict ourselves to the famous

D−optimality criterion, where the determinant of the Fisher information is

maximized by the design ξ, thus minimizing the (first order approximations

of the) volume of the ellipsoid of concentration for the parameter θ. When a

confidence ellipsoid for θ is constructed based on the asymptotic covariance

matrix, its content is proportional to [det I(ξ, θ)]−1/p , which is minimized by

a D−optimal design.

When a model has been specified, locally optimal designs which were pro-

posed by Chernoff (1953) are the oldest and simplest to determine. When

the model is nonlinear, the implementation of local optimal designs in prac-

tice requires a prior guess (nominal value) for the unknown parameter, which

is rarely available in real experiments according to Dette et al. (2006), thus

making practical implementation difficult. These nominal value typically

comes from pilot studies, experts’ opinion or related studies from the liter-

ature. Many authors including Melas (1978) and Han and Chaloner (2003)

concentrate on locally optimal designs, where it is assumed that a prelim-

inary guess for the unknown parameter is available (see Chernoff (1953);

Silvey (1980)). A locally optimal design can be verified to be optimal using

an equivalence theorem. Equivalence theorems are available when the design

is a convex of the information matrix (Pukelsheim (1993)) and allows one to

easily verify a design optimality by plotting the directional derivative of the

criterion evaluated at that design over the design interval.
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It is well known that locally optimal designs can depend on the prior guess

or nominal value sensitively. This means that small misspecification in the

nominal value can result in a very different optimal design. Consequently, a

locally optimal design constructed under one set of nominal values can be-

come inefficient when another set of nominal values is assumed.

To avoid this problem, several authors use a Bayesian approach to obtain ro-

bust designs (see Mukhopadhyay and Haines (1995); Dette and Neugebauer

(1997) or Han and Chaloner (2003)). The Bayesian methodology requires the

specification of a prior distribution for the nonlinear parameters in the mod-

els. Moreover, because statistical inference based on a local optimal design

might be very sensitive with respect to a misspecification of this preliminary

guess, as an alternative for the construction of robust designs, standardized

maximin optimal designs were introduced by Dette (1995) and Müller and

Pázman (1998) as another way to avoid the dependence on the guesses or

nominal values. In the simplest case, they maximize the minimum of effi-

ciencies that may arise from misspecification of the nominal values.

The method used by Dette and Pepelyshev (2008), which is based on the

D− optimality criterion, determines a design which maximizes a minimum

of D-efficiencies (see also Müller (1995); Dette (1997); Imhof (2001)). Equiv-

alently, minimax optimal designs seek to minimize the worst possible loss

from misspecification of the nominal values. In either the minimax or max-

imin approach, we need to specify a plausible region for all possible values

of the model parameters so that we may optimize within this region. This

is usually accomplished by specifying a plausible interval (range) for each
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unknown parameter of the model. We are motivated by the fact that in

some cases practitioners will have difficulties to specify a single best guess

or prior distribution for the unknown parameter, especially if this is mul-

tidimensional. Consequently, maximin or minimax optimal designs can be

appealing in practice. However, according to Dette, the construction of min-

imax or maximin optimal design for nonlinear models is notoriously difficult

and they defy analytical description, except for the simplest problems. Wong

(1992) provided an overview of theoretical design issues for minimax opti-

mality criteria and Dette (1995) provided yet another compelling rationale

for use of such optimal designs in practice. Note that Bayesian and maximin

are two different concepts. While the maximin approach addresses the worst

case scenario by definition, Bayesian designs consider an average over the

parameter space.

The maximin approach is started by assigning an index to each model pa-

rameter of interest to form the index set, say J = {1, 2, 3, . . . , p} if all the p

model parameters are of interest. For a given set of nominal values, we define

a standardized maximin optimal design as one that maximizes the minimum

of efficiencies over the index set J. In practice, for a given set of parameters

of interest, we first determine the locally optimal design for estimating each

of the parameters in the index set J and the variances of all these parameter

estimators. The standardized maximin optimal design sought is the one that

provides th maximal minimum of efficiencies among a class of all designs on

the design interval.

In many experiments, we may be constrained to use only a fixed maximal

number of time points. This may arise because it is impractical to sample at
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a new point or simply because of budget limits. This means that if we are

only allowed s time points, then we must search within the class of designs

with s points. We call the resulting design a s−point standardized maximin

optimal design. Dette pointed out that such designs are typically easier to

find numerically than the standardized maximin optimal designs.

The standardized maximin optimal design still depends on the nominal val-

ues. One may extend the above optimization by specifying a plausible inter-

val for each parameter. A second maximin approach which is a clear natural

extension of the first is used. The plausible region now comprises (i) the set

J and (ii) the plausible interval for each parameter. The resulting optimal

design is called a robust design because the design maximizes the minimum

of the set of efficiencies of estimated parameters in the set J and, for each

parameter, over each of its possible values in the plausible interval.

Even though, Dette et al. (2006) and Dette and Pepelyshev (2008) have

considered some sigmoidal and exponential models using the maximin ap-

proach and found it to be very useful, not much attention has been paid to

the problem of designing experiments for these models. We therefore wish

to consider further models in this area.

Let us consider the nonlinear regression model

Yj = m(xj, θ) + εj j = 1, . . . , n; (3.1)

where m(xj, θ) = Eθ(Yj|xj = x), εj ∼ i.i.d. N(0, σ2), xj ∈ Ω is explanatory

variable, Ω ⊂ R a compact design space, θ ∈ Θ ⊆ Rp an unknown parameter

vector with p parameters.
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Without loss of generality we let σ2 = 1 and also assume that m(x, θ) is differ-

entiable with respect to θ with continuous derivatives g(x, θ) = ∂
∂θ
m(x, θ) =

(g1(x, θ), . . . , gp(x, θ)) for all θ ∈ Θ.

Definition 1. Following Kiefer (1974), we define an (approximate) exper-

imental design ξ with finite support x1, . . . , xn ∈ Ω, xi 6= xj (i 6= j) and

masses (weights) w1, . . . , wn > 0,
∑n

j=1wj = 1 as a probability measure

ξ =

 x1 . . . xn

w1 . . . wn


on the interval or design space Ω.

The support points which are also referred to as design points give the lo-

cations where observations have to be taken, while the associated masses

(weights) correspond to the relative proportions of the total observations to

be taken at the particular points.

According to O’Brien (1995), the design problem for the nonlinear model

(3.1) typically involves choosing an n−point design, ξ, to estimate some func-

tion of the above p−dimensional parameter vector, θ, with high efficiency.

He stated that the design points, xj are not necessarily distinct.

If the distribution of Yj in (3.1) is normal, the matrix

I(ξ, θ) =

∫
Ω

g(x, θ)gT (x, θ)dξ(x)

is called the information matrix of the design ξ. If ξ puts masses
nj
n

at the

points xj(j = 1, . . . , n), then the experimenter takes observations, nj at each

xj, and the information matrix is proportional to the asymptotic matrix of
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the maximum likelihood estimator for θ.

Since the model m(x, θ) is nonlinear in the parameters, the information ma-

trix I(ξ, θ) which is usually a function of the unknown parameter θ and

consequently an optimal design, maximizing (or minimizing) φ(I(ξ, θ)) will

depend on θ.

Now let the integrand of I(ξ, θ) be given by the expression

F (x, θ) = g(x, θ)gT (x, θ),

where g(x, θ) = (g1(x, θ), . . . , gp(x, θ))
T is the gradient of the regression func-

tion m(x, θ) with respect to θ. That is,

g(x, θ) =
∂

∂θ
m(x, θ)

=

(
∂

∂θ1

m(x, θ), . . . ,
∂

∂θp
m(x, θ)

)T
= (g1(x, θ), . . . , gp(x, θ))

T .

Now from our general regression model (3.1), we consider the following ex-

ponential regression models whose regression functions are as follows:

m(x, θ) =
θ3

1 + θ1eθ2x
(3.2)

with

g(x, θ) =

(
− θ3e

θ2x

(1 + θ1eθ2x)2
,− θ3θ1xe

θ2x

(1 + θ1eθ2x)2
,

1

1 + θ1eθ2x

)T
;

m(x, θ) =
θ3

1 + θ1e−θ2x
(3.3)

with

g(x, θ) =

(
− θ3e

−θ2x

(1 + θ1e−θ2x)2
,
θ3θ1xe

−θ2x

(1 + θ1e−θ2x)2
,

1

1 + θ1e−θ2x

)T
;
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m(x, θ) = θ4 +
θ3

1 + θ1eθ2x
(3.4)

with

g(x, θ) =

(
− θ3e

θ2x

(1 + θ1eθ2x)2
,− θ3θ1xe

θ2x

(1 + θ1eθ2x)2
,

1

1 + θ1eθ2x
, 1

)T
;

and

m(x, θ) = θ4 +
θ3

1 + θ1e−θ2x
(3.5)

with

g(x, θ) =

(
− θ3e

−θ2x

(1 + θ1e−θ2x)2
,
θ3θ1xe

−θ2x

(1 + θ1e−θ2x)2
,

1

1 + θ1e−θ2x
, 1

)T
.

In many applications the systematic part of the response is known to be

monotonic increasing in x. Nonlinear regression models with this property

are called growth models. The simplest growth model is the exponential

growth model m(x, θ) = θ1e
−θ2x, but pure exponential growth is usually

short-lived. A more generally useful growth curve is the logistic curve like

(3.3) which produces a symmetric growth curve which asymptotes to θ3 as

x→∞ and to zero as x→ −∞. Of the two other parameters, θ1 determines

horizontal position or ‘take-off point’, and θ2 controls steepness.

3.1.1 Maximum Likelihood Estimation

If it is assumed that εj in (3.1) is normally distributed with mean zero and

variance σ2, that successive values of the stochastic term εj are independent

and that the values for x are predetermined, then it is possible to write the

log-likelihood function for Yj, using (3.2), as

logL = − log(σ2)

2
− log(2π)− 1

2σ2
ε2
j , (3.6)

where

εj = Yj −
θ3

1 + θ1eθ2x
.
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Differentiating log L with respect to θ1, θ2, θ3 and σ2 gives the following first

partial derivative expression for each observation:

∂logL

∂θ1

= − 1

σ2

(
εjθ3[1 + θ1e

θ2x]−2eθ2x
)

(3.7)

∂logL

∂θ2

= − 1

σ2

(
εjθ3[1 + θ1e

θ2x]−2xθ1e
θ2x
)

(3.8)

∂logL

∂θ3

=
1

σ2

(
εj[1 + θ1e

θ2x]−1
)

(3.9)

∂logL

∂σ2
= − 1

2σ2
+

1

2σ4
ε2
j . (3.10)

Writing the maximum likelihood estimators of θ1, θ2, θ3 and σ2 as θ̃1, θ̃2, θ̃3

and σ̃2, it is evident that θ̃1, θ̃2 and θ̃3 can be derived from (3.7)-(3.9) inde-

pendently of equation (3.10). These are the least squares equations and their

solutions require numerical optimization. The properties of maximum likeli-

hood estimation ensure that, in large samples, θ̃1, θ̃2, θ̃3 and σ̃2 are normally

distributed with mean (θ1, θ2, θ3 and σ2) and a variance-covariance matrix

found by differentiating equations (3.7)-(3.10) again. This double differenti-

ation will produce 16 columns of derivatives, some of which will be identical

in pairs, with the length of each column equaling the sample size. If the

expected value for each observation in each column is taken and the totals

from each column placed 4 × 4 matrix, then the negative of this matrix,

when inverted, equals the asymptotic covariance matrix. The second partial

derivatives are located down the diagonal and cross-partials off the diagonal

in this 4× 4 matrix.

3.2 Locally D-Optimal Designs

Optimal designs typically maximize some convex function of I(ξ, θ) or mini-

mize some convex function of I−1(ξ, θ). For example, designs which maximize
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the determinant |I(ξ, θ)| of I(x, θ) are called D−optimal. The term “locally”

is used to emphasize that the design is based on an initial estimate of the

parameter vector θ.

We let ξ∗θ denote a locally D−optimal design with respect to θ, i.e. a design

which maximizes the determinant under the assumption that θ is the ‘true’

parameter. One measure of the “distance” between ξ and ξ∗θ is D−efficiency.

Pukelsheim (1993) and Atkinson (1992) defined the D−efficiency of ξ (with

respect to the locally D−optimal design) as

effD(ξ, θ) =

(
det I(ξ, θ)

det I(ξ∗θ , θ)

) 1
p

. (3.11)

To verify these locally D−optimal designs, we employ an analogue of Kiefer

and Wolfowitz’s General Equivalence Theorem (i.e. Theorem (2.1.1)) given

by White (1973) for the nonlinear model.

3.2.1 Analogue of General Equivalence Theorem For

The Nonlinear Model.

Let ξ be a member of the set Ξ of all measures and defined on the Borel field,

B generated by the open sets of Ω and such that∫
Ω

ξ(dx) = 1.

A design measure ξ∗ is called D−optimum if

det{I(ξ∗, θ)} = max
ξ∈Ξ

det{I(ξ, θ)} (3.12)
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for θ taking its true value.

Let the variance function of m(x, θ) for the given ξ be given by

d(x, ξ, θ) = gT (x, θ)I−1(x, θ)g(x, θ) (3.13)

where I(ξ, θ) is as usual nonsingular. A generalized inverse is used whenever

I(ξ, θ) is singular.

A design measure ξ∗ is called G−optimum if

sup
x∈Ω

d(x, ξ∗, θ) = min
ξ∈Ξ

sup
x∈Ω

d(x, ξ, θ). (3.14)

for θ taking its true value.

Theorem 3.2.1 (White (1973)). The following conditions on a design mea-

sure ξ are equivalent:

(i) ξ is D−optimum,

(ii) ξ is G−optimum,

(iii) sup
x∈Ω

d(x, ξ, θ) = p.

As in Kiefer and Wolfowitz’s General Equivalence Theorem, (2.1.1), this anal-

ogous theorem (3.2.1) of White (1973) establishes the equivalence between

locally D−optimal designs and G−optimal designs; which are those designs

which minimize the maximum (over all x ∈ Ω) of the variance function in

(3.13). Also a corollary to this theorem states that the variance function in

(3.13) evaluated using D−optimal design achieves its maximum value at the

support points of this design.

Now Silvey (1980) gives the following important lemma which we shall later

make use of to prove Theorem 3.2.2.
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Lemma 3.2.1. If Ω ∈ Rp and spans Rp, and if a D−optimal design measure

is supported on p points, then it puts a probability of p−1 at each of them.

Proof. For the linear case generally, Silvey (1980) states that if ξ is a design

measure then

I(ξ) =

∫
Ω

z(x)zT (x)ξ(dx) =
n∑
j=1

wjz(xj)z
T (xj) = XTDξX (3.15)

whereX is the n×pmatrix whose jth row is zT (xj) andDξ is diag(w1, . . . , wn).

When n = p,

det I(ξ) = (detX)2

p∏
j=1

wj, (3.16)

and for nonsingular X this is maximized, subject to wj ≥ 0 and
∑
wj = 1,

by wj = n−1, j = 1, . . . , p.

We now formulate an analogue of this proof for the nonlinear case:

According to O’Brien (1995), if we consider our nonlinear model (3.1), the

information matrix is given by

I(ξ, θ) = V TDξV, (3.17)

where V is the n× p Jacobian of m and Dξ is diag(w1, . . . , wn) as above.

Hence, again when n = p,

detI(ξ, θ) = (detV )2

p∏
j=1

wj, (3.18)

and for nonsingular V this is maximized, subject to wj ≥ 0 and
∑
wj = 1,

by wj = n−1, j = 1, . . . , p.

Now, we consider in detail model (3.5) where

m(x, θ) = θ4 +
θ3

1 + θ1e−θ2x
.
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This function corresponds to the output function of a feedforward neural

network with one hidden neuron and activation function ψ(u) = (1 + e−u)−1

as

m(x, θ) = v0 +
v1

1 + e−(w01+w11x)

= v0 + v1ψ(w01 + w11x)

with θ4 = v0, θ3 = v1, θ2 = w11 and θ1 = e−w01 . We observe that θ1 > 0 which

we assume henceforth.

Moreover, the parameters are not identifiable. For example, we have

ψ(x) =
1

1 + e−x
= 1− 1

1 + ex
= 1− ψ(−x).

That is, parameters θ1 = 1, θ2 = 1, θ3 = 1, θ4 = 0 and θ1 = 1, θ2 = 1, θ3 =

−1, θ4 = 1 give rise to the same function. Due to this property of the

activation function: ψ(−x) = 1− ψ(x), we have in general that

m(x, θ) = θ4 + θ3 −
θ3

1 + 1
θ1
eθ2x

.

That is, (θ1, θ2, θ3, θ4) and (θ−1
1 ,−θ2, θ3, θ3 + θ4) define the same function.

To avoid this non-identifiability we assume henceforth that θ2 > 0, compare

Rüger and Ossen (1997) for a discussion of that issue for general number of

neurons.

Another popular activation function in neural network regression is the hy-

perbolic tangent, ψ(u) = tanh(u). The following results for the logistic

activation function may be used more or less directly for that case too by ex-

ploiting the close relationship between D−optimal designs for the two cases

given in Theorem 2 of Witczak (2006).
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Now in Theorem 3.2.2, we present some results on locally D−optimal de-

signs with respect to several parameter combinations and also give locally

D−optimal designs on different design spaces for model (3.5). Obviously,

analogous results hold for model (3.4). We remark the results are similar to

Theorem 2.6 of Dette and Pepelyshev (2008) and use similar ideas for the

proof.

Theorem 3.2.2. Assume model (3.5) with a parameter set Θ chosen such

that θ1, θ2 > 0.

(a) The locally D−optimal design does not depend on θ3 and θ4. If we

let xj(θ1, θ2, xmax) denote a support of a locally D − optimal design on the

interval [0, xmax], then

xj(θ1, rθ2, xmax) =
1

r
xj(θ1, θ2, rxmax)

for any r > 0. The weights of the locally D−optimal designs do not depend

on the factor r.

(b) The locally D-optimal 4-point designs on the interval [0, xmax] are

uniquely determined and have equal masses at the four points 0 = x1 < x2 <

x3 < x4 = xmax.

(c) Any locally D−optimal design consisting of k ≥ 4 points x1, . . . , xk

includes the boundary points x1 = 0 and xk = xmax.

Proof. (a) Recalling

g(x, θ) =

(
− θ3e

−θ2x

(1 + θ1e−θ2x)2
,
θ3θ1xe

−θ2x

(1 + θ1e−θ2x)2
,

1

1 + θ1e−θ2x
, 1

)T
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of (3.5) we see straightforward that g(x, θ)gT (x, θ) as well as I(ξ, θ) does not

depend on θ4. Hence, the locally D−optimal design does not depend on θ4.

By the elementary properties of determinant, for any n × n matrix A and

any scalar k, |kA| = kn|A|. Hence, |I(ξ, θ1, θ2, θ3, θ4)| = θ4
3 |I(ξ, θ1, θ2, 1, 1)| .

Therefore, the locally D−optimal designs do not depend on the parameters

θ3 and θ4.

If we let F (x, θ1, θ2) = g(x, θ1, θ2, 1, 1)gT (x, θ1, θ2, 1, 1),

then

det

∫ xmax

0

F (x, θ1, θ2)dξ(x) =
1

r2
det

∫ xmax

0

F (rx, θ1, θ2)dξ(x) (3.19)

=
1

r2
det

∫ rxmax

0

F (u, θ1, θ2)dξ(u/r).

This identity is proved as follows for model (3.5).

First of all,

g(x, θ1, θ2, θ3, θ4) =

(
− θ3e

−θ2x

(1 + θ1e−θ2x)2
,
θ1θ3xe

−θ2x

(1 + θ1e−θ2x)2
,

1

1 + θ1e−θ2x
, 1

)T
,

g(x, θ1, rθ2, 1, 1) =

(
− e−rθ2x

(1 + θ1e−rθ2x)2
,

θ1xe
−rθ2x

(1 + θ1e−rθ2x)2
,

1

1 + θ1e−rθ2x
, 1

)T
,

g(rx, θ1, θ2, 1, 1) =

(
− e−rθ2x

(1 + θ1e−rθ2x)2
,

rθ1xe
−rθ2x

(1 + θ1e−rθ2x)2
,

1

1 + θ1e−rθ2x
, 1

)T
.

This implies,

g(x, θ1, rθ2, 1, 1) = Ag(rx, θ1, θ2, 1, 1),
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where

A =


1 0 0 0

0 1
r

0 0

0 0 1 0

0 0 0 1

 .

Therefore,∫ xmax

0

F (x, θ1, rθ2, 1, 1)dξ(x) = A

∫ xmax

0

F (rx, θ1, θ2, 1, 1)dξ(x)AT .

This proves the first equality of (3.19), noting that detA = 1
r
. From Dette

and Pepelyshev (2008), the second equality in (3.19) is a direct consequence

of the definition of the Stieltjes integral.

(b) Standard arguments of Silvey (1980), given in Lemma 3.2.1 above,

show that the weights of a locally D−optimal design ξ consisting of 4 points

x1 < · · · < x4 have to be equal, i.e. 1
4
. Then, we have

det I(ξ, θ) =

(
1

4

)4 [
φ̃(x1, x2, x3, x4)

]2

with

φ̃(x1, x2, x3, x4) = det (g(x1, θ), g(x2, θ), g(x3, θ), g(x4, θ)) .

We use the same kind of arguments as the in the proofs of Lemma 2.4 and

2.5 of Dette and Pepelyshev (2008). First, we remark that the components

of the vector

g(x, θ) =

(
− θ3e

−θ2x

(1 + θ1e−θ2x)2
,
θ3θ1xe

−θ2x

(1 + θ1e−θ2x)2
,

1

1 + θ1e−θ2x
, 1

)T
form a Chebyshev system; proven as Corollary 3.2.1 below. This implies that

φ̃(x1, x2, x3, x4) does not vanish and, due to continuity, therefore always has

the same sign for all 0 ≤ x1 < x2 ≤ x3 < x4 < xmax (compare Zalik (1978)).
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Hence, det I(ξ, θ) is always positive.

Now let us consider ψ1(x) = φ̃(x, x1, x2, x3) with fixed x1, x2, x3. Since a de-

terminant is linear in the values of the first column, we get, with ψ′ denoting

the derivative w.r.t x,

ψ′1(x) = det (g′(x, θ), g(x1, θ), g(x2, θ), g(x3, θ)) .

An elementary calculation shows that

g′(x, θ) = Q(x, θ)

(
θ3θ2

θ1

q(x, θ), θ3(1− θ2xq(x, θ)), θ2, 0

)T
with Q(x, θ) = θ1e−θ2x

(1+θ1e−θ2x)2
> 0 and q(x, θ) = 1−θ1e−θ2x

1+θ1e−θ2x
.

Using these abbreviations, we also have

g(xj, θ) =

(
−θ3

θ1

Q(xj, θ), θ3xjQ(xj, θ),
1

1 + θ1e−θ2xj
, 1

)T
, j = 1, 2, 3.

Let

D1,3 = det


− θ3
θ1
Q(x1, θ) − θ3

θ1
Q(x2, θ) − θ3

θ1
Q(x3, θ)

x1θ3Q(x1, θ) x2θ3Q(x2, θ) x3θ3Q(x3, θ)

1 1 1

 ,

D1,2 = det


− θ3
θ1
Q(x1, θ) − θ3

θ1
Q(x2, θ) − θ3

θ1
Q(x3, θ)

1
1+θ1e−θ2x1

1
1+θ1e−θ2x2

1
1+θ1e−θ2x3

1 1 1

 ,

D1,1 = det


x1θ3Q(x1, θ) x2θ3Q(x2, θ) x3θ3Q(x3, θ)

1
1+θ1e−θ2x1

1
1+θ1e−θ2x2

1
1+θ1e−θ2x3

1 1 1
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be the determinants of the adjoints w.r.t. to the non-zero elements of the

first column of ψ′1, such that

1

Q(x, θ)
ψ′1(x) =

θ3θ2

θ1

q(x, θ)D1,1 − θ3(1− θ2xq(x, θ))D1,2 + θ2D1,3

=
θ2

3θ2

θ1

q(x, θ)D∗1,1 −
θ2

3

θ1

(1− θ2xq(x, θ))D
∗
1,2 +

θ2
3θ2

θ1

D∗1,3

where D∗1,1, D
∗
1,2 and D∗1,3 do not depend on θ3. A lengthy and tedious argu-

ment, using the Chebyshev property of the sets of functions

{Q(x, θ), xQ(x, θ), 1}, {xQ(x, θ), (1+θ1e
−θ2x)−1, 1} and {Q(x, θ), (1+θ1e

−θ2x)−1, 1}

which can be shown by the same arguments as for the full set in Corollary

3.2.1, shows that ψ′1(x) < 0 for 0 ≤ x < x1 < x2 < x3 ≤ xmax i.e. ψ1(x) is

decreasing in x.

Analogously, with

ψ4(x) = φ̃(x1, x2, x3, x), 0 ≤ x1 < x2 < x3 < x4 ≤ xmax,

with fixed x1, x2, x3, we get ψ′4(x) = −ψ′1(x), and, hence, ψ′4(x) > 0 for

0 ≤ x1 < x2 < x3 < x ≤ xmax. i.e. ψ4(x) is increasing in x.

Consequently, the boundary points 0 and xmax are both part of the locally

D−optimal 4-point design by the same argument as in the proof of Lemma

2.4 of Dette and Pepelyshev (2008).

(c) We use the same kind of arguments as in the proof of Lemma 2.5 of

Dette and Pepelyshev (2008). We let ξ be the k−point design with weights

w1, w2, . . . , wk at the support points x1 < x2 < · · · < xk. Due to the Cauchy-

Binet formula,

det I(ξ, θ) =
∑

1≤i1<i2<i3<i4≤k

wi1wi2wi3wi4

[
φ̃(xi1 , xi2 , xi3 , xi4)

]2

.
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From part (b) of the proof, we know then that det I(ξ, θ) is decreasing with

respect to the smallest support point x1 and increasing with respect to the

largest xk. Hence, any D−optimal design includes the boundary points 0 and

xmax.

An important consequence of Theorem 3.2.2(a) is that it is not necessary

to calculate locally D−optimal designs for all combinations of the parame-

ters θ = (θ1, θ2, θ3, θ4) and xmax. In many cases locally D−optimal designs

on different design spaces or with respect to a different specification of the

parameters can easily be calculated by a non-linear transformation. For ex-

ample if xj of D−optimal design on the interval [0, xmax] are known, when

θ = (θ1, θ2, θ3, θ4) are known, the points 1
r
xj are the support points of the

locally D− optimal design on the interval [0, rxmax] when θ = (θ1, rθ2, θ3, θ4).

Therefore, if the locally D−optimal designs for θ1, θ2 and xmax are known,

then the locally optimal designs for any θ1, θ2 and any design space can easily

be derived.

We later give some numerical results for the models (3.2)- (3.5) in Tables

(3.3) - (3.6) in section 3.4.

Lemma 3.2.2. For λ 6= 0, the functions 1, x, e−λx, eλx form a Chebyshev

system on the interval [0, xmax] for any xmax > 0, i.e. any linear combination

γ(x) = α1 + α2x+ α3e
−λx + α4e

λx

has at most 3 roots in [0, xmax] except for the trivial case of α1 = · · · = α4 = 0.
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Proof. We have to distinguish several cases.

i) α3 = α4 = 0. Here γ(x) = α1 + α2x has at most 1 root.

ii) α3 and α4 have the same sign. Then,

γ′′(x) = α3λ
2e−λx + α4λ

2eλx

is either positive or negative for all x ≥ 0, and, hence, γ(x) is either convex

or concave and has at most 2 roots.

iii) α3 and α4 have different signs. Then,

γ′′′(x) = −α3λ
3e−λx + α4λ

3eλx

is either positive or negative for all x, i.e. γ′′(x) is either increasing or de-

creasing in [0, xmax] and has at most one root, say x0, in that interval. So,

γ(x) is either convex or concave in [0, xmax] or convex on one side of x0 and

concave on the other side, and it can have at most 3 roots.

This almost immediately implies the desired result that the coordinate func-

tions of g(x, θ) form a Chebyshev system. We have to assume that θ1, θ2, θ3 6=

0, since otherwise those functions would not be linearly independent. How-

ever, this only excludes the trivial cases where the regression function m

would be constant but not genuine sigmoid.

Corollary 3.2.1. For θ1, θ2, θ3 6= 0,

− θ3e
−θ2x

(1 + θ1e−θ2x)2
,
θ3θ1xe

−θ2x

(1 + θ1e−θ2x)2
,

1

1 + θ1e−θ2x
, 1

form a Chebyshev system on the interval [0, xmax] for any xmax > 0.

Proof. We have to show that any non-trivial linear combination of the four

functions has at most 3 roots in [0, xmax]. By multiplying with the positive
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factor (1+θ1e
−θ2x)2, this is equivalent to, including the non-vanishing factors

−θ3 and θ3θ1 into the coefficients α1 and α2.

0 = α1e
−θ2x + α2xe

−θ2x + α3(1 + θ1e
−θ2x) + α4(1 + θ1e

−θ2x)2

= (α1 + α3θ1 + 2α4θ1)e−θ2x + α2xe
−θ2x + α4θ

2
1e
−2θ2x + (α3 + α4)

= β1e
−θ2x + β2xe

−θ2x + β3e
−2θ2x + β4

= e−θ2x
(
β1 + β2x+ β3e

−θ2x + β4e
θ2x
)

for appropriately defined β1, . . . , β4. As e−θ2x > 0 for all x, this can happen

for at most 3 values of x in [0, xmax] by Lemma 3.2.2.

Models (3.4) and (3.5) correspond to a regression function represented by a

feedforward neural network with one neuron in the only hidden layer, where

the activation function is the logistic one. We now consider the model

m(x, θ) = θ7 +
θ6

1 + θ4e−θ5x
+

θ3

1 + θ1e−θ2x
(3.20)

which corresponds to a feedforward neural network with two neurons in the

hidden layer. For this function we get the gradient with respect to θ as

g(x, θ) =
(
gT1 (x, θ), gT2 (x, θ), 1

)T
where

g1(x, θ) =

(
− θ3e

−θ2x

(1 + θ1e−θ2x)2
,
θ3θ1xe

−θ2x

(1 + θ1e−θ2x)2
,

1

1 + θ1e−θ2x

)T
;

and

g2(x, θ) =

(
− θ6e

−θ5x

(1 + θ4e−θ5x)2
,
θ6θ4xe

−θ5x

(1 + θ4e−θ5x)2
,

1

1 + θ4e−θ5x

)T
.

We conclude this section by proving an analogous version of part (a) of

Theorem 3.2.2 for the more complicated model (3.20).
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Theorem 3.2.3. The locally D−optimal design in model (3.20) does not

depend on θ3, θ6 and θ7. If we let xj(θ1, θ2, θ4, θ5, xmax) denote a support of a

locally D−optimal design on the interval [0, xmax], then

xj(θ1, rθ2, θ4, rθ5, xmax) =
1

r
xj(θ1, θ2, θ4, θ5, rxmax)

for any r > 0. The weights of the locally D−optimal design do not depend

on the factor r.

Proof. (i) Since we have for model (3.20), g(x, θ) =
(
gT1 (x, θ), gT2 (x, θ), 1

)T
,

the integrand of I(ξ, θ) is of the form

g(x, θ)gT (x, θ) =


g1(x, θ)gT1 (x, θ) g1(x, θ)gT2 (x, θ) g1(x, θ)

g2(x, θ)gT1 (x, θ) g2(x, θ)gT2 (x, θ) g2(x, θ)

gT1 (x, θ) gT2 (x, θ) 1

 .

Recalling that

g1(x, θ) =
1

(1 + θ1e−θ2x)2
(−θ3e

−θ2x, θ3θ1xe
−θ2x, 1 + θ1e

−θ2x)T

and

g2(x, θ) =
1

(1 + θ4e−θ5x)2
(−θ6e

−θ5x, θ6θ4xe
−θ5x, 1 + θ4e

−θ5x)T ,

we immediately see that g(x, θ)gT (x, θ), and by extension therefore I(ξ, θ)

does not depend on θ7 at all. Hence, the locally D−optimal design does not

depend on θ7.

As a next step, we show that the optimal design ξ∗ does not depend on

θ3 and θ6 as well. For that purpose, let

F (x, θ) = g(x, θ1, θ2, 1, θ4, θ5, 1, 1)gT (x, θ1, θ2, 1, θ4, θ5, 1, 1)
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which does not depend on θ3, θ6 and θ7.

Using the particular form of g1(x, θ) and g2(x, θ) as parts of g(x, θ); and

using the abbreviation a = θ3 and b = θ6; and setting

B =



a2 a2 a ab ab a a

a2 a2 a ab ab a a

a a 1 b b 1 1

ab ab b b2 b2 b b

ab ab b b2 b2 b b

a a 1 b b 1 1

a a 1 b b 1 1


,

we immediately get

g(x, θ)gT (x, θ) = B � F (x, θ)

where � denotes the Hadamard product, i.e. the element wise product of

two matrices. Since B does not depend on x, we also have

I(ξ, θ) = B�
∫

F(x, θ)dξ(x). (3.21)

An elementary, but lengthy and tedious calculation shows that for any per-

mutation (i1, . . . , i7) of (1, . . . , 7) we have

(B1i1 · ... ·B7i7) = a4b4. (3.22)

This relationship can be checked by a MATLAB program which we put at

subsection 3.2.2.

By the basic definition of the determinant of I = I(ξ, θ),

| I | =
∑

Π=(i1,...,i7)

(sgnΠ)I1i1 · ... · I7i7 (3.23)
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where the summation runs over all permutations Π of (1, . . . , 7).

Using equations (3.21) and (3.22), we see that in each summand, a and b

show up in the same factor a4b4. We therefore, finally have

|I(ξ, θ)| = θ4
3θ

4
6

∣∣∣∣∫ F (x, θ)dξ(x)

∣∣∣∣ .
i.e. the locally D−optimal design ξ∗ does not depend on θ3 and θ6 since

F(x, θ) depends only on θ1, θ2, θ4 and θ5. This finishes the proof of the first

part.

(ii) As in the proof of Theorem 3.2.2, we have

g(x, θ1, rθ2, 1, θ4, rθ5, 1, 1) = Ag(rx, θ1, θ2, 1, θ4, θ5, 1, 1)

where A is a diagonal matrix with diagonal entries 1, 1
r
, 1, 1, 1

r
, 1, 1. This fol-

lows immediately from the explicit formulas for g given above. Therefore, we

have∫ xmax

0

F (x, θ1, rθ2, 1, θ4, rθ5, 1, 1)dξ(x) = A

∫ xmax

0

F (rx, θ)dξ(x)AT .

Since det A = 1
r2
, we get

det

∫ xmax

0

F (x, θ1, rθ2, 1, θ4, rθ5, 1, 1)dξ(x) =
1

r4
det

∫ xmax

0

F (rx, θ)dξ(x)

=
1

r4
det

∫ rxmax

0

F (u, θ)dξ(u/r)

where the last equality follows by substitution setting u = rx. The second

assertion of the theorem relating locally D− optimal designs on [0, xmax] and

[0, rxmax] follows immediately.

Unfortunately, we were not able to show the Chebyshev property of the 7

functions which form the coordinates of g(x, θ) in the model (3.20). There-

fore, we cannot show the analogue of part (b) of the Theorem 3.2.2 though

we believe it to be true.
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3.2.2 MATLAB Program

function C = optdesnn2

% checks the claim in Proof of Theorem 3.2.3 that the matrix B satisfies

% the condition

% B(1, p(1))...B(7, p(7)) = a4 ∗ b4 for all permutations p

v = [ 1 2 3 4 5 6 7 ];

P = perms(v); % 5040× 7 matrix containing all permutations of v

BE = [20 20 10 11 11 10 10;

20 20 10 11 11 10 10;

10 10 0 1 1 0 0;

11 11 1 2 2 1 1;

11 11 1 2 2 1 1;

10 10 0 1 1 0 0;

10 10 0 1 1 0 0];

% BE(i,j) = 10 ∗m+n if B(i,j) = am ∗ bn

% to show: S = BE(1, p(1)) · ... · BE(7, p(7)) = 44 for all permutations

% p

% 5040× 1 vector for those sums over all those permutations: S

S = zeros(5040, 1);

for z= 1 : 5040;

p = P(z, :);
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S(z) = BE(1, p(1)) ∗ BE(2, p(2)) ∗ BE(3, p(3)) ∗ BE(4, p(4)) ∗ BE(5, p(5)) ∗

BE(6, p(6)) ∗ BE(7, p(7));

end;

C = (S == 44); % vector with entry C(i)=1 if S(i)=44 and =0 else

% running the program results in sum(C)=5040, i.e. the claimed condition

% is true

3.3 Standardized Maximin D−optimal Designs

Clearly, the D−optimal designs in section (3.2) depend on the model pa-

rameters that we try to estimate and so they are locally optimal. To re-

move the dependence on the nominal values, Dette et al. (2006) introduced

a concept of robust optimality criterion and define ξ∗ as a standardized max-

imin D−optimal (with respect to Θ) if it maximizes the minimal (worst)

D−efficiency calculated over a certain range for the parameter θ, thus pro-

tecting the experiment against the worst case scenario. That means that ξ∗

maximizes (over ξ) the expression

min
θ∈Θ

effD(ξ, θ) = min
θ∈Θ

[(
det I(ξ, θ)

det I(ξ∗θ , θ)

) 1
p

]
, (3.24)

where the parameter space Θ ⊂ Rp is a given set of possible (plausible) val-

ues for the unknown parameter θ which has to be specified in advance by the

experimenter. In practice, the set Θ is a Cartesian product of the intervals

specified for each parameter.

Following Dette and Pepelyshev (2008), we compute standardized maximin

designs by maximizing the optimality criterion within the class of all k−point

designs on the given design space. Here k is typically the minimal number of
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points required for estimation of all parameters in the model. We employ the

Nelder-Mead algorithm in the MATLAB package for optimization. After the

optimal k−point standardized maximin design is found, we consider the class

of all k + 1−points designs and find an optimal design within this class and

repeat the procedure. At each iteration, we increase the number of points by

one, until no reduction in the criterion value is observed. The value of k for

all our models was k = 4.

An advantage of this approach compared to the Bayesian set-up is that it

is not required to specify a prior distribution for the unknown parameter

θ, which is not possible in all circumstances. The only “prior knowledge”

needed to use the standardized maximin D−optimality criterion is an ap-

proximate range Θ for the parameter θ.

Dette et al. (2006) noted that the optimality criterion (3.24) is not dif-

ferentiable and as a consequence the problem of determining standardized

maximin D−optimal designs is not trivial. This difficulty is also reflected in

the following equivalence theorem for this type of optimality criterion which

gives a characterization of standardized maximin D−optimal designs.

Theorem 3.3.1. (Dette and Pepelyshev (2008)) A design ξ∗ is standardized

maximin D−optimal with respect to Θ if and only if there exists a probability

distribution (prior) π∗ supported on the set N (ξ∗) ⊆ Θ

N (ξ∗) =

{
θ̃ ∈ Θ|effD(ξ∗, θ̃) = min

θ∈Θ
effD(ξ∗, θ)

}
(3.25)

such that the inequality

d(ξ∗, x) =

∫
N (ξ∗)

gT (x, θ)I−1(ξ∗, θ)g(x, θ)dπ∗(θ) ≤ p (3.26)
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holds for all x ∈ Ω, where g(x, θ) = (g1(x, θ), . . . , gp(x, θ))
T has previously

been defined above. Moreover, there is an equality in (3.26) for all support

points of the design ξ∗.

The distribution π∗ is called least favorable prior. The definition of the stan-

dardized maximin D−optimality criterion requires the knowledge of the local

D−optimal design ξ∗θ , or at least knowledge of the value of the optimal de-

terminant det I(ξ∗θ , θ).

Obtaining the standardized maximin D−optimal designs is a lot more dif-

ficult than the local D−optimal design. This is due to the fact that the

number of support points in the standardized maximin D−optimal designs

are not necessarily equal to the number of parameters in the regression mod-

els. Once again if we consider the representations of the information matrices

for the models (3.2)- (3.5), the D−efficiency (3.11) of our designs depend on

only the parameters θ1 and θ2. We therefore use the notation effD(ξ, θ1, θ2)

for the efficiency and

min
θ1,θ2∈Λ

effD(ξ, θ1, θ2)

for the optimality criterion (3.24), where Λ is an interval in the positive

real line. i.e. Λ = [[θ11, θ12] ∈ θ1, [θ21, θ22] ∈ θ2] . The standardized maximin

D−optimal design (for the set Λ) is denoted by ξ∗Λ.

We use standardized maximin D-optimal designs in our models for similar

reasons given by Dette and Pepelyshev (2008):

1. They are very efficient for a rather broad range of the non-linear pa-

rameters in the model.

2. They have approximately between 80− 90% D-efficiency.
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3. They often advise the experimenter to take observations at a large

number of different locations. For this reason these designs can also be

used for testing the postulated models against models with more than

four parameters by means of a goodness-of-fit test.

As we have already stated, Dette and Pepelyshev (2008) advocates the use of

numerical methods in all cases of practical interest in determining the stan-

dardized maximin D−optimal designs since it is a very hard problem. For

our numerical calculation we first considered the standardized maximin opti-

mal 4-point designs. The optimality of the best 4-point designs was checked

by the application of Theorem (3.3.1). If the optimality of the minimally sup-

ported design could be established, the procedure is terminated. Otherwise,

we increase the number of support points and determine the standardized

maximin optimal design within the class of all 5-point designs. This proce-

dure is repeated until it terminates. This usually happens after a few steps.

We considered standardized maximin D−optimal designs for models (3.4)

and (3.5).

We present some results in Tables (3.7) and (3.8) in section 3.4.
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3.4 Numerical Results and Discussion

To demonstrate the potential benefits of using maximin D−optimal designs

for the analysis of our models, we re-design an experiment and re-analyze

the data presented in Ratkowsky (1983b). The data which is listed in Table

3.1 shows the water content of bean root cells (Y ) vrs the distance from tip

(x).

x Y

0.5 1.3

1.5 1.3

2.5 1.9

3.5 3.4

4.5 5.3

5.5 7.1

6.5 10.6

7.5 16.0

8.5 16.4

9.5 18.3

10.5 20.9

11.5 20.5

12.5 21.3

13.5 21.2

14.5 20.9

Table 3.1: The water content of been root cells (Y ) versus the distance from

tip (x).
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We fitted model (3.5) to this data and obtained the following parameter

estimates and their corresponding 95% confidence and results of goodness of

fit.

Statistical Analysis of the data in Ratkowsky (1983b)

θ Estimate LCB UCB Goodness of fit

θ1 93.33 -7.537 194.2 SSE 5.19

θ2 0.6977 0.5422 0.8532 R-square 0.9945

θ3 20.4 18.7 22.09 Adj. R-square 0.993

θ4 0.8845 -0.3293 2.098 RMSE 0.6869

Table 3.2: Parameter estimates, lower and upper confidence bounds (LCB &

UCB), the sum-of-squares-error (SSE), (Adjusted) R-square values and the

root-mean-square-error (RMSE).

The design used in the experiment is uniform design with 15 observations

on the interval [0.5, 14.5] while the maximin D−optimal design with respect

to the intervals [θ11, θ12] = [0.4, 0.8] and [θ21, θ22] = [0.4, 0.8] is supported at

only five points by

 0.5 1.3008 2.7496 5.1232 14.5

0.2448 0.1842 0.1656 0.1590 0.2464

 (3.27)

and this design has a minimal D−efficiency of 91.92%. This makes the max-

imin D−optimal design cost effective and highly recommendable.
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θ1 θ2 x1 x2 x3

0.2 0.1 0 4.4488 10

0.2 1 0 1.1364 10

0.2 5 0 0.2274 9.5852

5 0.1 0 5.9663 10

5 1 0 2.4664 10

5 5 0 0.4938 9.7546

0.1 5 0 0.2142 9.4454

0.2 0.2 0 3.7802 10

2 2 0 0.9397 10

(a) Initial Design space [1, 9].

θ1 θ2 x1 x2 x3

0.2 0.1 0 4.4502 10

0.2 1 0 1.1366 10

0.2 5 0 0.2274 8.1607

5 0.1 0 6.0187 10

5 1 0 2.4665 10

5 5 0 0.4938 8.3335

0.1 5 0 0.2142 8.3283

0.2 0.2 0 3.7804 10

2 2 0 0.9397 10

(b) Initial Design space [4, 7].

Table 3.3: Locally D-optimal designs for m(x, θ) = θ3
1+θ1e−θ2x

in space [0, 10].

Table 3.3 shows locally D−optimal 3-point designs for model (3.3) on the

interval [0, 10] for various choices of parameters, θ1 and θ2. We remark that

by Theorem 2.6 of Dette and Pepelyshev (2008), the design does not depend

on θ3.

We need a MATLAB program of Dette and Pepelyshev (2008) which re-

quires the simplification of an initial interval. We choose [1, 9] and [4, 7] and

it turns out that the choice does not have much influence on the final result.

Nevertheless, a few of the results seem to correspond to the local optima of

the target function. Therefore, working with various initial values and using

the best final result may be desirable.
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θ1 θ2 x1 x2 x3 x4

0.2 0.1 0 2.3006 6.6678 10

0.2 1 0 0.5451 1.9867 10

0.2 5 0 1.0062 9.0280 10

5 0.1 0 3.1344 7.5256 10

5 1 0 1.3461 3.1571 10

5 5 0 0.8188 9.8442 10

0.1 5 0 0.9998 9.0044 10

0.2 0.2 0 1.8712 5.9285 10

2 2 0 0.4729 1.3117 10

(a) Initial Design space [1, 9].

θ1 θ2 x1 x2 x3 x4

0.2 0.1 0 2.3007 6.6679 10

0.2 1 0 0.5451 1.9867 10

0.2 5 0 4.0574 6.9996 10

5 0.1 0 3.1345 7.5256 10

5 1 0 1.3461 3.1571 10

5 5 0 4.0494 7.0694 10

0.1 5 0 4.0988 7.6554 10

0.2 0.2 0 1.8712 5.9285 10

2 2 0 0.4729 1.3117 10

(b) Initial Design space [4, 7].

Table 3.4: Locally D-optimal designs for m(x, θ) = θ4 + θ3
1+θ1e−θ2x

in space

[0, 10].

θ1 θ2 x1 x2 x3

0.2 0.1 0 5.2075 10

0.2 1 0 1.3482 3.1625

0.2 5 0 0.9688 9.4219

5 0.1 0 3.7204 10

5 1 0 0.5455 1.9885

5 5 0 1.0227 9.2642

0.1 5 0 0.8950 9.7753

0.2 0.2 0 4.9421 10

2 2 0 1.0671 0.3146

(a) Initial Design space [1, 9].

θ1 θ2 x1 x2 x3

0.2 0.1 0 5.2082 10

0.2 1 0 1.3482 3.1625

0.2 5 0 1.4562 9.7070

5 0.1 0 8.6898 10.6219

5 1 0 0.5455 1.9885

5 5 0 1.3939 9.5438

0.1 5 0 0.8950 9.7753

0.2 0.2 0 4.9439 10

2 2 0 1.0671 0.3146

(b) Initial Design space [4, 7].

Table 3.5: Locally D-optimal designs for m(x, θ) = θ3
1+θ1eθ2x

in space [0, 10].
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θ1 θ2 x1 x2 x3 x4

0.2 0.1 0 3.1345 7.5255 10

0.2 1 0 1.3461 3.1571 10

0.2 5 0 1.0500 8.5501 10

5 0.1 0 2.3007 6.6679 10

5 1 0 0.5451 1.9867 10

5 5 0 0.9043 9.6610 10

0.1 5 0 1.0068 8.5496 10

0.2 0.2 0 3.2599 7.4676 10

2 2 0 0.3146 1.0671 10

(a) Initial Design space [1, 9].

θ1 θ2 x1 x2 x3 x4

0.2 0.1 0 3.1345 7.5256 10

0.2 1 0 1.3461 3.1571 10

0.2 5 0 4.2344 7.1941 10

5 0.1 0 2.3006 6.6679 10

5 1 0 0.5451 1.9867 10

5 5 0 3.5624 7.5103 10

0.1 5 0 4.0024 7.1760 10

0.2 0.2 0 3.2598 7.4676 10

2 2 0 0.3146 1.0671 10

(b) Initial Design space [4, 7].

Table 3.6: Locally D-optimal designs for m(x, θ) = θ4 + θ3
1+θ1eθ2x

in [0, 10].

Tables (3.4)-(3.6) show the same kind of numerical results as Table (3.3), but

now for 4-point designs for model (3.5), 3-point designs for model (3.2) and

4-point designs for model (3.4). We remark that the numerical minimization

confirms the theoretical result of Theorem 3.2.2 where we have shown that

the boundary points always belong to the optimal design. Also, the results

strongly suggest that our models (3.2) and (3.3) are supported at only three

points while models (3.4) and (3.5) are supported at only four points. The

number of design points for the locally D−optimal designs coincide with the

number of parameters in the respective models. We verify the optimality of

these derived designs within the class of designs by using Theorem (3.2.1).

We illustrate this with two examples in Figures (3.1) and (3.1) using partic-

ular choices of (θ1 = 0.2, θ2 = 0.1 and θ1 = 0.2, θ2 = 1) of parameters for the

case of Table 3.6(a), taking the variance in equation (3.13) of Theorem 3.2.1.

We see that the maxima are assumed at the 4 points of the optimal design.
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Figure 3.1: Plot of Variance vrs Design Space using initial values:θ1 = 0.2

and θ2 = 0.1.
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Figure 3.2: Plot of Variance vrs Design Space using initial values:θ1 = 0.2

and θ2 = 1.
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θ11 θ12 θ21 θ22 x1 x2 x3 x4 x5 w1 w2 w3 w4 w5 min eff

0.8 1.2 0.8 1.2 0 0.7551 2.3585 10 0.25 0.25 0.25 0.25 0.9615

0.6 1.4 0.6 1.4 0 0.5730 1.5584 3.2930 10 0.2338 0.1776 0.1636 0.1538 0.2712 0.9073

0.4 1.6 0.4 1.6 0 0.6594 1.8174 4.3396 10 0.2428 0.1829 0.2097 0.1544 0.2103 0.8890

0.2 2.0 0.4 1.8 0 0.4632 1.7429 4.9499 10 0.2259 0.1549 0.2143 0.1430 0.2620 0.8072

0.1 1.2 0.5 1.9 0 0.6510 2.3868 5.8119 10 0.2482 0.1849 0.1380 0.1653 0.2637 0.8510

0.3 1.7 0.4 1.5 0 0.5841 1.8543 4.7041 10 0.2071 0.2053 0.1908 0.1798 0.2170 0.8598

0.5 1.5 0.5 1.5 0 0.6462 1.7427 3.8369 10 0.2527 0.1734 0.1937 0.1537 0.2266 0.9062

0.7 1.1 0.4 1.3 0 0.8134 2.5815 10 0.25 0.25 0.25 0.25 0.9545

0.9 1.1 0.9 1.1 0 0.7508 2.3359 10 0.25 0.25 0.25 0.25 0.9903

0.2 0.8 0.3 1.2 0 0.9677 2.8243 5.9427 10 0.2453 0.1792 0.2010 0.1577 0.2167 0.9131

Table 3.7: Maximin D-optimal designs for m(x, θ) = θ4 + θ3
1+θ1e−θ2x

in space

[0, 10].

θ11 θ12 θ21 θ22 x1 x2 x3 x4 x5 w1 w2 w3 w4 w5 min eff

0.8 1.2 0.8 1.2 0 0.7551 2.3585 10 0.25 0.25 0.25 0.25 0.9615

0.6 1.4 0.6 1.4 0 0.5730 1.5584 3.2930 10 0.2338 0.1776 0.1636 0.1538 0.2712 0.9073

0.4 1.6 0.4 1.6 0 0.6594 1.8174 4.3396 10 0.2428 0.1829 0.2097 0.1544 0.2103 0.8890

0.2 2.0 0.4 1.8 0 0.4562 1.6750 4.8324 10 0.1965 0.1645 0.2209 0.1623 0.2559 0.8144

0.1 1.2 0.5 1.9 0 0.3703 1.7743 4.9222 10 0.1997 0.1128 0.2999 0.1356 0.2520 0.7354

0.3 1.7 0.4 1.5 0 0.5841 1.8543 4.7041 10 0.2071 0.2053 0.1908 0.1798 0.2170 0.8598

0.5 1.5 0.5 1.5 0 0.6462 1.7427 3.8369 10 0.2527 0.1734 0.1937 0.1537 0.2266 0.9062

0.7 1.1 0.4 1.3 0 0.8651 2.6638 10 0.25 0.25 0.25 0.25 0.9525

0.9 1.1 0.9 1.1 0 0.7508 2.3359 10 0.25 0.25 0.25 0.25 0.9903

0.2 0.8 0.3 1.2 0 1.6690 4.8258 10 0.25 0.25 0.25 0.25 0.8145

Table 3.8: Maximin D-optimal designs for m(x, θ) = θ4 + θ3
1+θ1eθ2x

in space

[0, 10].
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Tables (3.7) and (3.8) are concerned with the maximin D−optimal designs

discussed in section 3.3. They don’t depend on single values θ1, θ2 but rather

on prior intervals for them, where [θ11, θ12] 3 θ1 and [θ21, θ22] 3 θ2 denote

those ranges.

It turns out here that the 4-point designs do not always seem to be opti-

mal but rather in the majority of cases we need 5 points. Though we did not

prove that, it seems that still the boundary points 0 and 10 always belong to

the support of the optimal design. In the 4-point designs, the optimal weights

are equal just like for the locally D−optimal designs, but in the cases where

5-point designs are better, the weights differ. We get the same behavior for

both models (3.4) and (3.5).

The last column of both tables gives the minimal D−efficiency defined in

equation (3.11). As Dette and Pepelyshev (2008) already remarked for the

simpler models (3.2) and (3.3), the minimal D−efficiency is pretty close to

1. So we do not lose much by the maximin approach.
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Tables 3.9 - 3.16 study the effect of misspecification. We distinguish between

the data generating model on one hand and the assumed model on the other

hand. The assumed model is the basis for calculating the optimal design in

the maximin sense. We use the root of the average mean squared error as a

performance measure, which is used as an approximation of the integrated

mean squared error.

Tables (3.9), (3.10), (3.13) and (3.14) correspond to correctly specified situ-

ations where we find the expected behavior. i.e. the error becomes smaller

with sample size. we use our model (3.5) and, for comparison, a model with

m(x, θ) = θ1 − θ2e
−θ3xθ4

which has been discussed by Dette and Pepelyshev (2008). In the misspec-

ified of Tables (3.11) and (3.12), the effect of assuming a wrong model is

rather bad. The errors decrease slowly if at all with sample size N. Misspec-

ification the other way round, shown in Tables (3.15) and (3.16) is relatively

more well-balanced. Here the errors decrease with sample size with reason-

able rate, but they are much larger than in their respective correctly specified

cases.

What can we learn from this numerical study? If in doubt about the re-

gression model, then choosing an optimal design for a wrong model may not

be a good idea. In such cases, it would probably be better to use an equidis-

tant design or another simple design which spreads the observations more or

less homogeneously over the whole design space to catch the unknown shape

of the regression function. An alternative would be to develop a theory for

optimal design under misspecification which is still lacking. We do some first

steps in that direction in the next chapter.



Chapter 4

Optimal Designs in

Misspecified Models

Most papers on experimental design assume that the underlying model de-

scribes the data-generating process exactly. In this section, we want to start

a discussion on how model misspecification may be taken into account.

To have a concrete situation in mind, let us assume that the given data

zj = (Yj, xj); z1, z2, . . . , zn i.i.d., are generated by the following correct

(true) model

true: Yj = m(xj) + εj (4.1)

with εj i.i.d. (0, σ2
ε), and independent of xj; j = 1, . . . , n. m(x) is a com-

pletely arbitrary regression function.

The data are fitted with an assumed parametric model

assumed: Yj = m(xj, θ) + εj for some θ ∈ Θ. (4.2)

83
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We talk of misspecification if m(x) 6= m(x, θ) for all θ ∈ Θ. On the other

hand, the model is correctly specified if m(x) = m(x, θ0) for some θ0 ∈ Θ.

If we are working with regression models based on feedforward neural net-

works, then we are typically confronted with misspecification, since the out-

put functions of neural networks are usually only approximations for the

unknown regression function m(x). If the networks are large enough, then

the approximations are good but not perfect.

In the correctly specified case, experimental design looks for optimal designs

which in some sense allow for the most precise estimation of the true parame-

ter value θ0 from a given sample of size n. We have discussed such situations

in the previous chapters. In a misspecified situation we do not have a true

parameter. Hence, we have to ask what then should the goal of experimental

design be. Given the assumed model, but allowing for misspecification, we

formulate this goal in a rather general form which still guarantees enough

freedom to look at various approaches by making the vague formulationas

much information as possible precise and by choosing the method of fit, i.e.

of estimating the parameter of the assumed model.

Goal: Choose the design x1, . . . , xn, to get as much information as possible

about the true regression function m(x) from fitting the assumed regression

function m(x, θ) to the data.

One possibility to make this goal precise is the following: We choose some

distance D between the function m(x) which we want to estimate and the

function which we get from estimation based on the misspecified model where
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the latter depends on the chosen design ξn = (x1, . . . , xn). Let θ̂(ξn) de-

note the parameter estimate in model (4.2). Then, the estimated function is

m̂ξn(x) = m(x, θ̂(ξn)). We can then formulate an optimal design as a solution

to

ED(m, m̂ξn) = min
ξn

.

Before we continue our discussion, we give a short survey of estimation in

misspecified models in the next two sections.

4.1 Consistency

If we estimate the parameter in model (4.2) by a maximum likelihood ap-

proach, but the model does not hold, then we are dealing with a quasi (or

pseudo) maximum likelihood (QML) estimate which is a special case of an

M-estimate.

Definition 2 (M-Estimates). Let zj = (Yj, xj); j = 1, . . . , n be given, z =

(z1, . . . , zn), and let Qn : R2n × Θ → R be a measurable function. θ̂n is an

M-estimate of a parameter θ of the distribution of z if

θ̂n = arg min
θ∈Θ

Qn(z, θ). (4.3)

If in model (4.2), we pretend additionally that the residuals εj are Gaussian,

we get as the QML estimate of θ

θ̂n = arg min
θ∈Θ

1

n

n∑
j=1

(Yj −m(xj, θ))
2

which is an M-estimate with

Qn(z, θ) =
1

n

n∑
j=1

q(zj, θ), q(zj, θ) = (Yj −m(xj, θ))
2 .
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In case of a random design, where z1, . . . , zn are i.i.d., we get under appro-

priate assumptions from a law of large numbers that

Qn(z, θ)→ E q(zj, θ) = E (Y1 −m(x1, θ))
2

and, by well-known standard arguments for M-estimates, which we will also

use below in proving Theorem 4.1.2,

θ̂n → θ0 = arg min
θ∈Θ

E (Y1 −m(x1, θ))
2 = arg min

θ∈Θ
E q(z1, θ),

i.e. θ̂n is a consistent estimate of θ0.

If we assume model (4.1) with εj independent of xj and having mean 0

and finite variance σ2
ε we have

E (Y1 −m(x1, θ))
2 = E (m(x1)−m(x1, θ))

2 + σ2
ε .

Therefore,

θ0 = arg min
θ∈Θ

E (m(x1)−m(x1, θ))
2 ,

i.e. θ0 minimizes the L2-distance (w.r.t. the distribution of the xj) between

the functions m(x) and m(x, θ). In this sense, θ0 can be interpreted as the

best parameter for approximating m(x) by m(x, θ).

However, in experimental design, we want to choose the xj by ourselves,

i.e. we have to deal with a deterministic design. Therefore, we have to

modify the standard consistency argument for M-estimates in the i.i.d. case

and make appropriate assumptions. We need the following general result

on the consistency of M-estimates (compare Theorem 5.7 of van der Vaart

(1998)).
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Theorem 4.1.1. van der Vaart (1998)

If for some deterministic function q(θ) of θ, Qn(z, θ) satisfies

sup
θ∈Θ
|Qn(z, θ)− q(θ)| → 0 (in probability),

inf
θ:‖θ−θ0‖≥δ

q(θ) > q(θ0) for all δ > 0,

then a sequence of M-estimates θ̂n given by (4.3) converges in probability to

θ0.

Assuming model (4.1), we have for deterministic x1, . . . , xn

Qn(z, θ) =
1

n

n∑
j=1

(Yj −m(xj, θ))
2 (4.4)

=
1

n

n∑
j=1

(m(xj)−m(xj, θ) + εj)
2

=
1

n

n∑
j=1

(m(xj)−m(xj, θ))
2 +

2

n

n∑
j=1

εj(m(xj)−m(xj, θ)) +
1

n

n∑
j=1

ε2
j .

Since εj are i.i.d. with mean 0 and finite variance σ2
ε , we have from the law

of large numbers

1

n

n∑
j=1

ε2
j → E ε2

j = σ2
ε (in probability).

Let ξn = (x1, . . . , xn) denote the design as well as the empirical measure with

respect to x1, . . . , xn such that we may write

1

n

n∑
j=1

(m(xj)−m(xj, θ))
2 =

∫
(m(x)−m(x, θ))2ξn(dx)

Let us furthermore assume that x1, . . . , xn ∈ [a, b] for some finite interval.

The crucial assumption, which is rather common in experimental design,

is about the limiting behavior of ξn for n→∞ :
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A1. There exists a probability measure ξ on [a, b] such that

ξn → ξ (weakly)

If m(x) and m(x, θ) are continuous in x on [a, b], then we have∫
(m(x)−m(x, θ))2ξn(dx)→

∫
(m(x)−m(x, θ))2ξ(dx) = e(θ).

In order to apply Theorem 4.1.1, we need this convergence to be uniform in

θ, and we need e(θ) to have a unique global minimum in θ0 :

A2.

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
j=1

(m(xj)−m(xj, θ))
2 −

∫
(m(x)−m(x, θ))2ξ(dx)

∣∣∣∣∣ −→ 0

in probability.

A3.

inf
θ:‖θ−θ0‖≥δ

e(θ) > e(θ0) for all δ > 0.

We also need smoothness of the regression functions m(x, θ) as functions

of the parameter:

A4. m(x, θ) is continuous in x and Lipschitz continuous in θ uniformly

in x ∈ [a, b].

That is

|m(x, θ)−m(x, η)| ≤ L ‖ θ − η ‖ for all x ∈ [a, b]; θ, η ∈ Θ
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for some Lipschitz constant L.

Theorem 4.1.2. Assume model (4.1) with continuous m(x) and i.i.d. εj

having mean 0 and variance σ2
ε < ∞. Let θ̂n denote the Gaussian QML-

estimate based on model (4.2), i.e. the M-estimate corresponding to

Qn(z, θ) =
1

n

n∑
j=1

(Yj −m(xj, θ))
2.

Let the design ξn = (x1, . . . , xn) satisfy A.1, and let A2.-A4. be satisfied.

Then, with

q(θ) =

∫
(m(x)−m(x, θ))2ξ(dx) + σ2

ε

= e(θ) + σ2
ε ,

we have

θ̂n → θ0 = arg min
θ∈Θ

q(θ)

= arg min
θ∈Θ

e(θ).

Proof. (a) We have to check the conditions of Theorem 4.1.1. A3. guarantees

that the second assumption of that theorem holds. We only have to check

the first one. From (4.4) and the triangular inequality, we have

sup
θ∈Θ
|Qn(z, θ)− q(θ)| ≤ sup

θ∈Θ

∣∣∣∣∣ 1n
n∑
j=1

(m(xj)−m(xj, θ))
2 −

∫
(m(x)−m(x, θ))2 ξ(dx)

∣∣∣∣∣
+ 2 sup

θ∈Θ

∣∣∣∣∣ 1n
n∑
j=1

εj (m(xj)−m(xj, θ))

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
j=1

ε2
j − σ2

ε

∣∣∣∣∣
The first term converges to 0 by assumption A2., and also the last term by
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the law of large numbers. For the second term, we have

var

(
1

n

n∑
j=1

εj (m(xj)−m(xj, θ))

)
=

1

n2

n∑
j=1

var (εj (m(xj)−m(xj, θ)))

=
1

n2

n∑
j=1

(m(xj)−m(xj, θ))
2 σ2

ε

∼ 1

n

∫
(m(xj)−m(xj, θ))

2 ξ(dx)σ2
ε −→ 0

using the independence of the εj and assumption A2.

Since E εj = 0, and, hence, the mean of the second term is 0, we have

1

n

n∑
j=1

εj (m(xj)−m(xj, θ)) −→
p

0.

However, we need the convergence to be uniform in θ, which we shall show

in the second part of the proof. This will finish the proof of the 1st condition

of Theorem 4.1.1.

b) We use the abbreviation g(x, θ) = m(x)−m(x, θ). Since Θ is compact, we

have for any 4 > 0 a K ≥ 1; θ1, . . . , θK ∈ Θ such that for any θ ∈ Θ there is

a k ≤ K with ‖θ − θk‖ < 4. Then, using that for arbitrary positive random

variables U, V, U1, . . . , UK and for δ > 0, we have

pr (U + V > δ) ≤ pr

(
U >

δ

2

)
+ pr

(
V >

δ

2

)
pr

(
sup
k≤K

Uk > δ

)
≤

K∑
k=1

pr (Uk > δ) .

Restricting the suprema always to θ, η, · · · ∈ Θ, we get

pr

(
sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
j=1

εj g(xj, θ)

∣∣∣∣∣ > δ

)
= pr

(
sup
k≤K

sup
‖θ−θk‖<4

∣∣∣∣∣ 1n
n∑
j=1

εjg(xj, θ)

∣∣∣∣∣ > δ

)
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= pr

(
sup
k≤K

sup
‖θ−θk‖<4

∣∣∣∣∣ 1n
n∑
j=1

εj (g(xj, θ)− g(xj, θk)) +
1

n

n∑
j=1

g(xj, θk)

∣∣∣∣∣ > δ

)
(4.5)

≤ pr

(
sup

‖θ−η‖<4

∣∣∣∣∣ 1n
n∑
j=1

εj (g(xj, θ)− g(xj, η))

∣∣∣∣∣ > δ

2

)
+

K∑
k=1

pr

(∣∣∣∣∣ 1n
n∑
j=1

g(xj, θk)

∣∣∣∣∣ > δ

2

)
.

(4.6)

For any given K, the second term can be made as small as we like by choosing

n large enough since by the argument at the end of part a) of the proof,

1

n

n∑
j=1

g(xj, θk)→ 0 in probability.

It remains to show that the first term of (4.6) becomes small if we choose

4 and K appropriately and let n → ∞. We have, for ‖θ − η‖ < 4, from

assumption A4.,∣∣∣∣∣ 1n
n∑
j=1

εj (g(xj, θ)− g(xj, η))

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
j=1

εj (m(xj, η)−m(xj, θ))

∣∣∣∣∣
≤ 1

n

n∑
j=1

|εj|L4.

Therefore, we have for the first term of (4.6),

pr

(
sup

‖θ−η‖<4

∣∣∣ 1
n

∑n
j=1 εj (g(xj, θ)− g(xj, η))

∣∣∣ > δ
2

)

≤ pr

(
1

n

n∑
j=1

|εj| >
δ

24L

)

= pr

(
1

n

n∑
j=1

|εj| − E |εj| >
δ

24L
− E |εj|

)
−→ 0

for n → ∞ by the law of large numbers for |ε1|, |ε2|, . . . if we choose 4

small enough such that δ
24L > E |εj|. Since δ may be chosen arbitrarily, the

assertion follows.
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We remark that assumption A4. on the assumed regression model is not

particularly strong. It is, for example, satisfied if m(x, θ) is continuously

differentiable in θ with derivative which is bounded for θ ∈ Θ; x ∈ [a, b]. This

holds, for example, for linear regression models where m(x, θ) = θ1f1(x) +

· · ·+ θdfd(x) with f1, . . . , fd bounded on [a, b].

4.2 Asymptotic Normality

In this section, we limit our discussion to the case of a one-dimensional pa-

rameter θ to simplify notation. The general multi-dimensional case could be

handled in exactly the same manner. m′(x, θ), . . . denotes the partial deriva-

tive of m(x, θ), . . . w.r.t. θ. Let θ0 be defined as in Theorem 4.1.2. We assume

A5. m(x, θ) is twice continuously differentiable w.r.t θ for all θ ∈ Θ,

m′(x, θ0) is continuous in x ∈ [a, b]; and m′′(x, θ) is Lipschitz continuous in θ

uniformly in x, i.e. for some constant L

|m′′(x, θ1)−m′′(x, θ2)| ≤ L · |θ1 − θ2| for all x.

Since θ0 is the minimizer (point of minimum) of q(θ), we have

q′(θ0) = −2

∫
(m(x)−m(x, θ0))m′(x, θ0)ξ(dx) = 0. (4.7)

We conclude from our assumptions on the design ξn = (x1, . . . , xn) that

1

n

n∑
j=1

(m(xj)−m(xj, θ0))m′(xj, θ0)→
∫

(m(x)−m(x, θ0))m′(x, θ0)ξ(dx) = 0.

For asymptotic normality, we need a certain rate of this convergence. There-

fore, we assume
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A6. 1
n

∑n
j=1(m(xj)−m(xj, θ0))m′(xj, θ0) = o( 1√

n
),

This assumption is not too strong. Assume, for instance, that ξn is an

equidistant design on the interval [a, b] and that the integrand (m(x) −

m(x, θ0))m′(x, θ0) is Lipschitz continuous in x. Then, Kabajah concluded

from a result of Wals and Sewell (1937) that A6. holds even with a rate

O(1/n) instead of o(1/
√
n) (compare Corollary 2.2 of Kabajah (2010)).

Similarly, we need

A7. For a(x, θ) = (m′(x, θ))2 − (m(x) − m(x, θ))m′′(x, θ) we have uni-

formly in θ

1

n

n∑
j=1

a(xj, θ)→
∫
a(x, θ)ξ(dx) = A(θ).

Theorem 4.2.1. Let θ̂n and θ0 be as in Theorem 4.1.2, and let the assump-

tions of that theorem be satisfied. Furthermore, assume A5., A6., A7., and

that the third absolute moment of the residuals is finite: E |εj|3 = γε < ∞.

Then,
√
n(θ̂n − θ0)→

L
N
(

0,
B(θ0)

A2(θ0)

)
where A(θ) is given in A7., and

B(θ) =

∫
|m′(x,θ)|2ξ(dx)

Proof. a) Since the M-estimate θ̂n is the minimizer of

Qn(z, θ) =
1

n

n∑
j=1

(Yj −m(xj, θ))
2,
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we have Q′n(z, θ̂n) = 0 with

Q′n(z, θ) = − 2

n

n∑
j=1

(Yj −m(xj, θ))m
′(xj, θ)

= − 2

n

n∑
j=1

(m(xj)−m(xj, θ))m
′(xj, θ)−

2

n

n∑
j=1

εjm
′(xj, θ). (4.8)

Let us use the mean value theorem f(a) = f(b) + f ′(c)(a − b) for c ∈ [a, b]

with f(θ̂n) = Q′n(z, θ̂n), a = θ̂n and b = θ0. Therefore linearizing around θ0,

we have

0 = Q′n(z, θ̂n) = Q′n(z, θ0) +Q′′n(z, θ∗n)(θ̂n − θ0)

for some θ∗n ∈ [θ̂n, θ0]. From here we get

θ̂n − θ0 = −Q
′
n(z, θ0)

Q′′n(z, θ∗n)

and

√
n(θ̂n − θ0) = −

√
nQ′n(z, θ0)

Q′′n(z, θ∗n)
. (4.9)

We now discuss the asymptotic behavior of the numerator and denominator

of (4.9) separately.

b) We first have a look at

−1

2
Q′n(z, θ0) =

1

n

n∑
j=1

(m(xj)−m(xj, θ0))m′(xj, θ0) +
1

n

n∑
j=1

εjm
′(xj, θ0),

compare (4.8). From our assumptions on the design and the regression func-

tions m(x) and m(x, θ0), we have immediately that the first term on the

right-hand side converges to∫
(m(x)−m(x, θ0))m′(x, θ0)ξ(dx) = 0
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by (4.7). For the second term, we have from the same kind of argument and

from independence of the residuals

n var(
1

n

n∑
j=1

εjm
′(xj, θ0)) =

1

n

n∑
j=1

σ2
ε(m

′(xj, θ0))2

→ σ2
ε

∫
(m′(x, θ0))2ξ(dx) <∞

since m′(x, θ0) is continuous and therefore bounded on the finite interval

[a, b]. We conclude Q′n(z, θ0)→ 0 in mean-square and, hence, in probability.

Therefore, the asymptotic mean of Q′n(z, θ0) is 0.

Now, we want to show asymptotic normality of the numerator of (4.9).

We want to apply Lyapunov’s central limit theorem. Let Zjn = (Yj −

m(xj, θ0))m′(xj, θ0). The Zjn are independent with mean and variance

µjn = (m(xj)−m(xj, θ0))m′(xj, θ0), σ2
jn = σ2

ε(m
′(xj, θ0))2

and third moment

γjn = E |Zjn − µjn|3 = E |εjm′(xj, θ0)|3 = γε|m′(xj, θ0)|3.

We have to check the Lyapunov condition:

ρn =

∑n
j=1 γjn(∑n
j=1 σ

2
jn

) 3
2

=
γε√
nσ3

ε

1
n

∑n
j=1 |m′(xj, θ0)|3

( 1
n

∑n
j=1 |m′(xj, θ0)|2)

3
2

∼ γε√
nσ3

ε

∫
|m′(x, θ0)|3ξ(dx)

(
∫
|m′(x,θ0)|2ξ(dx))

3
2

Since the right-hand side converges to 0, the Lyapunov condition is satisfied,

and we conclude that ∑n
j=1(Zjn − µjn)√∑n

j=1 σ
2
jn

L−→ N (0, 1)
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in distribution. Using Slutsky’s Lemma (Lemma 2.8. of van der Vaart (1998))

and
1

n

n∑
j=1

σ2
jn →

∫
|m′(x,θ0)|2ξ(dx) = B(θ0),

we get
1√
n

n∑
j=1

εjm
′(x,θ0)

L−→ N (0, B(θ0)),

and, applying assumption A6.,

1√
n

n∑
j=1

(Yj−m(xj, θ0))m′(x,θ0) =
1√
n

n∑
j=1

εjm
′(x,θ0)+

1√
n

n∑
j=1

µjn
L−→ N (0, B(θ0)).

Therefore, we finally have from (4.8)

−
√
nQ′n(z, θ0)

L−→ N (0, 4B(θ0)). (4.10)

c) Next let us consider the denominator in (4.9). For all θ,

Q′′n(z, θ) = −

[
2

n

n∑
j=1

(Yj −m(xj, θ))m
′(xj, θ)

]′

= − 2

n

n∑
j=1

Yjm
′′(xj, θ) +

2

n

n∑
j=1

(m′(xj, θ))
2 +m(xj, θ)m

′′(xj, θ)

= − 2

n

n∑
j=1

εjm
′′(xj, θ) +

2

n

n∑
j=1

a(xj, θ) (4.11)

with

a(x, θ) = (m′(x, θ))2 − (m(x)−m(x, θ))m′′(x, θ).

The first part of (4.11) converges to 0 in probability uniformly in θ by a uni-

form law of large numbers which we shall discuss below (compare Corollary

4.2.1). The second or deterministic part of (4.11) converges uniformly in θ

to 2A(θ) by assumption A7.

Since by definition, θ∗n is a point between θ̂n and θ0 and since from the
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consistency result of Theorem 4.1.2, θ̂n →
p
θ0 (n → ∞), we have θ∗n → θ0 in

probability.

Together we get, using the continuity of A(θ) which follows from assump-

tion A5.,

Q′′n(z, θ∗n)→ 2A(θ0) (4.12)

in probability. Combining (4.9),(4.10) and (4.12) and using Slutsky’s Lemma

again, we have

√
n(θ̂n − θ0)→

L

N (0, 4B(θ0))

2A(θ0)
= N

(
0,
B(θ0)

A2(θ0)

)
.

In the previous proof we have used the following result which is a corollary

of the uniform law of large numbers Theorem 3 of Andrews (1992).

Corollary 4.2.1. Under the assumptions of Theorem 4.2.1

1

n

n∑
j=1

m′′(xj, θ)εj → 0

uniformly in θ in probability

Proof. We prove this result by using Theorem 3 of Andrews (1992) and check-

ing its assumptions. Let Vj,θ = m′′(xj, θ)εj which are independent, but not

identically distributed with common mean EVj,θ = 0. Our goal now is to

show
1

n

n∑
j=1

Vj,θ → 0 uniformly in θ ∈ Θ.

Boundedness (BD): This condition of Andrews (1992) follows immediately

from the assumed compactness of Θ.
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Pointwise Weak Law of Large Number (P-WLLN): As

var

(
1

n

n∑
j=1

Vj,θ

)
=

1

n2

n∑
j=1

var Vj,θ

=
1

n2

n∑
j=1

(m′′(xj, θ))
2 · σ2

ε

∼ C(θ)

n
σ2
ε −→
n→∞

0

with

C(θ) =

∫
(m′′(x, θ))

2
ξ(dx).

As the Vj,θ have mean 0, we conclude a pointwise weak law of large numbers

1

n

n∑
j=1

Vj,θ −→
p

0.

Weak Lipschitz (W-LIP) Condition: From A5., we have

|m′′(xj, θ∗)εj −m′′(xj, θ)εj| ≤ |εj|L|θ∗ − θ|,

and, as the εj are i.i.d., we have 1
n

∑n
j=1E|εj| = E|ε1|, and, therefore, the

condition sup
n≥1

1
n

∑n
j=1E|εj| <∞ is trivially fulfilled.

From Theorem 3(a) of Andrews (1992), BD, P-WLLN and W-LIP imply

the uniform weak law of large numbers, i.e.

sup
θ∈Θ

1

n

n∑
j=1

Vj,θ −→
p

0
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4.3 Forecasting in misspecified linear models

In this section, we consider only misspecified linear models with, for sake of

simplicity, [a, b] = [0, 1].

Yj = m(xj, θ) + εj θ ∈ Rp, xj ∈ [0, 1], (4.13)

with, for some given vector of functions f = (f1, . . . , fp)
T ,

m(xj, θ) =

p∑
k=1

fk(xj)θk = fT (xj)θ.

4.3.1 The case of correct specification

When our model (4.13) is correctly specified, i.e. there is a true parameter θ0

for which m(x) = m(x, θ0), assuming εj is i.i.d. N (0, σ2), the least squares

estimate θ̂n of θ0 equals the maximum likelihood estimate. Also,

L
(√

n(θ̂n − θ0)
)

= Np
(
0, σ2

ε(X
TX)−1

)
where X = (fj(xi))i=1,...,n,j=1,...,p is the n × p design matrix and (XTX)−1

is the covariance matrix. Therefore, the variability of the estimate θ̂n is de-

termined by (XTX)−1 which, as a function of the design ξn = (x1, . . . , xn),

should be small in an appropriate sense to obtain a good design. More

precisely, for D-optimal designs, det(XTX)−1 should be small or det(XTX)

should be large.

Instead of looking at the precision of the estimate θ̂n, we could look at the

performance of forecasts as a design criterion. Let us assume that we shall

observe an additional pair (t, Yt), and we are asked to forecast the observa-

tion Yt given t. The best predictor of Yt given t would be the expectation

EYt, but that depends on the unknown m(t) which coincides with m(t, θ0)
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in the correctly specified case. The latter is estimated by m(t, θ̂n) using only

the already available Y1, . . . , Yn. Therefore we predict Yt by ÊY t = fT (t)θ̂n.

Given the available data {(xj, Yj), j = 1, 2, . . . , n} the least squares estimate

θ̂n of θ0 is

θ̂n = arg min
θ∈Θ

n∑
j=1

(Yj −m(xj, θ))
2 = (XTX)−1XTY (4.14)

with Y = (Y1, . . . , Yn)T , which implies

Eθ̂n = (XTX)−1XTEY

with EY = (m(x1), . . . ,m(xn))T . Using the notation

µ(ξn) =
1

n
XTEY =


1
n

∑n
j=1 f1(xj)m(xj)

...

1
n

∑n
j=1 fp(xj)m(xj)

 =


∫
f1(x)m(x)ξn(dx)

...∫
fp(x)m(x)ξn(dx)


and 1

n
XTX = I(ξn), we can write this as

Eθ̂n = I−1(ξn)µ(ξn), (4.15)

where I(ξn) is a p× p information matrix.

For the estimate ÊY t = fT (t)θ̂n of EYt we get correspondingly

var
(
ÊY t

)
= var

(
fT (t)θ̂n

)
= fT (t)cov(θ̂n)f(t)

= fT (t)σ2
ε(X

TX)−1f(t) =
σ2
ε

n
fT (t)I−1(ξn)f(t). (4.16)

In the correctly specified case, where θ̂n is an unbiased estimate of θ0 and,

therefore,

E(ÊY t) = fT (t)Eθ̂n = fT (t)θ0 = EYt,

the mean squared error (mse) of ÊY t is also given by

mse
(
ÊY t

)
=
σ2
ε

n
fT (t)I−1(ξn)f(t).
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4.3.2 The case of misspecification

If the model is misspecified, i.e. where (4.1) holds, but m(x) 6= m(x, θ) for

all θ, the covariance matrix of the data vector Y is still σ2 times the identity

matrix such that the covariance matrix of the least-squares estimate given

by (4.14) is still σ2(XTX)−1. Therefore, the variance of the forecast ÊY t is

still of the form (4.16).

However, due to misspecification, a bias is introduced in the calculation of

the mean-squared forecasting error mse
(
ÊY t

)
.

bias
(
ÊY t

)
= E(fT (t)θ̂n)−m(t)

= fT (t)Eθ̂n −m(t)

= fT (t)I−1(ξn)µ(ξn)−m(t)

by (4.15). Therefore, we get for the mean-square forecasting error

mse
(
ÊY t

)
=
σ2
ε

n
fT (t)I−1(ξn)f(t) +

[
fT (t)I−1(ξn)µ(ξn)−m(t)

]2

Example: We consider the case of a one-dimensional parameter (p = 1),

where

Yj = θf1(xj) + εj, θ ∈ R, X =


f1(x1)

...

f1(xn)

 ,

XTX =
n∑
j=1

f 2
1 (xj), I(ξn) =

1

n
XTX.

Therefore, the mean-square forecasting error is in this case

mse
(
ÊY t

)
=
σ2
ε

n

f 2
1 (t)

1
n

∑n
j=1 f

2
1 (xj)

+

[
1
n

∑n
j=1 f1(xj)m(xj)

1
n

∑n
j=1 f

2
1 (xj)

f1(t)−m(t)

]2

.
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Suppose that θ0 is the parameter vector for which θ0f1(x) will be the best

approximation of the function m(x), i.e. from the results of section 4.1

θ0 = arg min
θ

∫
(m(x)− f1(x)θ)2 ξ(dx).

By setting the derivative of the function to be minimized w.r.t. θ to 0, we

get immediately

θ0 =

∫
f1(x)m(x)ξ(dx)∫
f 2

1 (x)ξ(dx)
.

For the least-squares estimate, we have

θ̂n = (XTX)−1XTY

=
1∑n

j=1 f
2
1 (xj)

n∑
j=1

f1(xj)Yj

=
1

1
n

∑n
j=1 f

2
1 (xj)

(
1

n

n∑
j=1

f1(xj)Yj

)

=
1∫

f 2
1 (x)ξn(dx)

[∫
f1(x)m(x)ξn(dx) +

1

n

n∑
j=1

f1(xj)εj

]
.

For consistency, i.e. for θ̂n → θ0, we only need assumption A1 and continuity

of m(x), f1(x) as functions of x, as then∫
f1(x)m(x)ξn(dx)→

∫
f1(x)m(x)ξ(dx)

and ∫
f 2

1 (x)ξn(dx)→
∫
f 2

1 (x)ξ(dx),

and the latter also implies

var

[
1

n

n∑
j=1

f1(xj)εj

]
=

σ2
ε

n2

n∑
j=1

f 2
1 (xj)

=
σ2
ε

n

∫
f 2

1 (x)ξn(dx) −→
n→∞

0,
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and, therefore, using E εj = 0 and Chebyshev’s inequality

1

n

n∑
j=1

f1(xj)εj → 0 (in probability).
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