
1

A concept for suppor ting the formation of Vir tual Corporations
through negotiation

Bor is Kötting
University of Kaiserslautern

AG Expert Systems
P.O. Box 3049

67653 Kaiserslautern, Germany
koetting@informatik.uni-kl.de

Frank Maurer
University of Calgary

2500 University Dr NW
Calgary, Alberta, T2N 1N4 Canada

maurer@cpsc.ucalgary.ca

ABSTRACT
This paper describes a system that supports software
development processes in virtual software corporations. A
virtual software corporation consists of a set of enterprises
that cooperate in projects to fulfill customer needs.
Contracts are negotiated in the whole lifecycle of a
software development project. The negotiations really
influence the performance of a company. Therefore, it is
useful to support negotiations and planning decisions with
software agents. Our approach integrates software agent
approaches for negotiation support with flexible multi-
server workflow engines.

Keywords
Virtual Software Corporation, Distributed Software
Development, Process support, Internet, Workflow
Replication, Software Agents, Contract net

1 INTRODUCTION
The term “Virtual corporation” is not new and was first
discussed intensively by [DM 92] where they describe it
as form to organize enterprises. Since then the numbers of
publications concerning virtuality in connection with
companies was growing extensively and lead to some
different definitions of the term depending on different
views. A good description comes from [BBP 93]:

“A virtual corporation is a temporary network of
independent companies – suppliers, customers, even
erstwhile rivals – linked by information technology to
share skills, cost and access to one others markets. It will
have neither central office nor organizational chart.”

The most important properties of such temporary
networks are

• each company brings in its core competence

• relationships are not permanent and less formalized

• mutual dependencies between participants

• heavy use of information technology

All authors agree on the aim of virtual companies: to react
faster on changes in the environment of the company.

Confidence and understanding between the corporation
partners as well as intensive use of information
technologies were mentioned as success factors [DM 92,
GS 98].

A virtual software development corporation is one
example for a virtual enterprise. In this paper, we propose
an approach that supports software development processes
in virtual software corporations. We believe that a virtual
software development corporation will have to fulfill the
following roles

• a representative

The representative is an entity that acquires customer
contracts and is the addressee for the customer for the
whole project. From customer perspective, the
representative is the virtual company: it is the point of
contact, signs the development contract, and is responsible
for fulfilling it.

• a coordinator

Coordination is necessary for software development
projects. This entity is responsible for the well-organized
process execution and for enabling collaboration between
the participating companies. The coordinator
communicates with both, the development companies and
the representative.

• software development companies

Companies (or parts of companies) collaborate in the
actual software development in the project. For a new
project, the set of companies that participate in the virtual
software corporation has to be determined. This set may
change at any time in the course of the project because
other competence is needed that can only be provided by
different companies. These changes in the organizational
structure and the interactions between companies and

2

customer are the reason for describing a virtual
corporation as fluid [BBP 93].

It should also be mentioned that virtual software
development corporations already exist and are successful
[Sie 98].

Different implementations of this organization model are
conceivable.

The most often case is that one company takes the role of
the representative, the coordinator and one software
development company. This company undoubtedly leads
the software development process and sources out some
parts of the development where it has little competence.
This is a rather centralized approach for a virtual
enterprise that – according to theory – should be formed
by a set of peer companies.

An alternative would be splitting the roles of the
coordinator and the representative between two
companies. The company with the strongest core
competence required for the project would act as the
coordinator and lead the development process whereas
another company would represent the virtual enterprise
against the customer. The representative needs to know
the core competencies of the companies participating on
the project and then select one company as the
coordinator. Then the coordinator and the representative
together have to select the companies that should
participate in the project.

The best case - according to economic theory - is that
every role is performed by a different and independent
company and that there is no leading company in the
network. So, one company can act as representative and is
responsible for public relation, promotion and recruiting
of customers. Other companies coordinate the
development process. The software companies
participating on the project can concentrate on software
development, their core competence.

Existing workflow management systems (WFMS) are
typically focused on process support for a single company.
They are rigidly relying on the stability of the company
structure - which is not the case for virtual software
development corporation (VSDC) - and require much
work if the structure changes completely. Hence they
support the distributed execution of a workflow and shared
access to data but they do not support virtual corporations
at all.

Most of the required planning, coordination, and change
impact management functionality required is not fulfilled
by traditional WFMS. Approaches like [SK 98] can
support cross-organization projects but omit coordinator
functionality.

To build a virtual software corporation it is necessary to
split up the tasks to be performed between the companies
involved. If a task is not executed by the coordinator itself

negotiations with other companies need to be carried out.
Successful negotiations will lead to a contract. The parties
involved in the set of contracts made for the project form
the VSDC. A process support system for a VSDC must
therefore provide the coordinator with data to help her
making decisions for or against possible participating
companies.

We want to assist development processes in virtual
software companies that follow any of the structures
discussed above. Our approach supports

• modeling & planning of software development
processes,

• negotiation processes,

• distributing the enactment of task sets to different
companies, and

• the execution of tasks using communicating workflow
engines.

In Section 2, we introduce our current approach and the
extensions needed to support virtual software
corporations. Section 3 deals with our concept for
supporting negotiations using software agents. The state of
the implementation is described in Section 4. A discussion
of the approach and related work follows in Section 5.

2 PROCESS SUPPORT FOR VSDC
In the following, we first discuss our MILOS system.
Then we explain extensions that are steps towards a
process support environment for virtual software
enterprises.

2.1 The existing system
Over the last couple of years, we developed the software
process support system MILOS. Its focus was on
providing flexibility by interleaving project planning with
project enactment and on supporting changes by automatic
change notifications.

The major components of the MILOS are the resource
pool, the process model, the project plan and the workflow
engine (Fig.1). Components are linked by an event
propagation mechanism that sends notifications about
changes to all observers (other components and users). For
a more detailed description see [MD 98] [Bendeck et al.
98].

The resource pool component manages roles, agents and
agent properties. It allows representing the organizational
structure of a company as well as hierarchical skill sets.
An agent can have a set of skills. The project planner can
query the resource pool for all agents with specific skills.
The query would result in best matches based on the
hierarchical structure of the skill sets.

The process model component handles process definitions
including control flow (pre- and postconditions),

3

information flow, and process decompositions. For every
process, we can describe required skills.

� � � � � � � � � � � � 	
 � � � � � 	
 � �
 �
� �
 �
 � � � �

� � � � � �
� � � �

����� �����
� � � �

�
 � � � �
 �
� � � � � �
� � !#"�$�% &
' " ()
(' " ' *

+ , - . / & '% ! (' " ! & * (

021 "3!#4 *+ " ' ' * , !56"3!#"�4 * $ * ! '

738:9<;>=�?A@B8C=
@BDFE = GIH J

K
L�M� �N �
�	L� �O�

N
P�Q
I� � � �

RS@BTFU TF9<J�@BD
V H G>W @B;>= V<X 9<8Y8YE 8YZ
@BDFE = GIH J

� �[�
6� �\
6� �
6�
� �
O�

] � � � �M�
^ �
_	L�_� �
` �L	L
L�PaQb

c d e � 	 � � � � � �
 �
�
 �
 � � � � � �

� � �
 � � 	 �
^
L
L�

f 4 * ! ' (^ �
Oe �L	2�LaQ�
��
�
 �
 � � � � � �

g " () h
� * & - $ i - (% ' % - !

j k l m n o o p l q n r s

+ t "�! ! % !#4 u v & 1 * .�w� * &�% (% -3! (

xzy|{�H GCW @B;>=

x~} � ��y
73� V GIH = @�H

Fig. 1: The MILOS-Architekture

The project plan management component customizing a
process model resulting in a project plan. Beside
adding/removing tasks, customizing includes scheduling
planned start and end times of processes and assigning
agents to processes.

 The workflow management component is responsible for
enacting the project plan and managing products. It
generates to-do lists for agents and maintains the current
state of the project. The workflow engine is able to react
dynamically to project plan changes during execution,
without interrupting the execution.

Process modeling, planning and execution can be
distributed to different companies and areas by running
the clients on an arbitrary machine connected to the
Internet. Nevertheless, the disadvantage is the centralized
structure of the system. For every project, there is exactly
one process model, project plan and workflow engine on
the main server. In this approach, everybody is working
on one model and the possibility for conflicts is very low.1

Furthermore, security and access to data is handled by a
central authority (who runs the server) and relies on a trust
relationship between this company and all companies that
store data on the server.

A single server may also become a bottleneck and a single
point of failure. Latency and bandwidth between a client
and the server may not be acceptable resulting in delays in
accessing the server.

It is also debatable if companies would join a project
executed in such an environment because they do not have
control over their data. The server - and therefore their
data stored on it - is outside their control. These arguments
are psychological but nevertheless relevant. In fast-
changing virtual enterprises, trust between participating

1 We use an OODBMS to handle conflicts resulting from

concurrent access to the data.

companies may not be there (at least at the beginning of
the cooperation) and companies tend to (or need to)
protect their intellectual property.

2.2 A first extension of the MILOS-System
Enactment in distributed network areas leads us to the first
step of distributing the enactment component of the
MILOS system: the replication of the workflow engine2.
The main reasons for this replication is to overcome
bandwidth problems (at least from the user’s perspective)
and to increase the reliability of the system.

Our system will create replicates of the workflow engine
on several servers distributed all over the world. All
engines have the same rights and the same data, although
the project starts with one initial workflow engine. To
synchronize the state of the project enactment, every
engine propagates changes to all other. The replication is
transparent to the user. S/he is not aware of the
synchronization process running in the background but
gets notifications caused by changes in other workflow
engines that influence her work.

Every client is connected to his “ local” engine – an engine
to which a fast Internet/Intranet connection exists whereas
there may be only slow connections between engines
running on remote servers. From the user’s point of view,
this results in fast answers by his server.

Another benefit from the replication of workflow engines
is the possibility for a company to go off-line. For the time
it is off-line, it gets no change notifications but all changes
are buffered by the other WFEs. When the workflow
engines are reconnected, they are synchronized by sending
all buffered messages. The users have to resolve any
existing conflicts manually after receiving a notification
messages about the conflict.

The replication approach as described above has some
disadvantages.

First, complete replicates are created requiring that all
data is transferred to every environment. This leads to
large redundancy. Companies store data about activities
and products that they will never use. Moreover, the data
transferred could be company-sensitive and so the transfer
should be forbidden.

Second, the fact that every workflow engine has equal
rights allows everybody to change the model, plan and
workflow descriptions. An approach for realizing
permissions is necessary for proper development process
support and also a role for setting and managing these
permissions. Compared with the structure of a virtual

2 We focus here on the replication of the workflow engine

because it is the central component for process support.
Clearly, to replicate the WFE, we also have to replicate its
underlying data structures (project plan and process model).

4

software development company described above, this is a
task that should be performed by a coordinator.

2.3 A second extension
A first improvement would be an approach where one
workflow engine (WFE) is the center and its data is
replicated on demand to others. Companies only fetch data
they really need. This breaks down the network traffic and
the data stored locally but it leaves other problems
unsolved.

The workflow engines do not work on complete replicates
which increases the risk that a user experiences delays
because data is fetch on-demand via a slow connection.

This approach offers the possibility for granting access
rights for specific parts of the project. The central WFE
fulfills the role of a coordinator and leads the execution of
the project.

To improve the multi-server, full-replication model, a
communicator object is inserted into the WFE design
[WFMC 96]. This object takes advantage of the workflow
replication mechanism described above and acts as a filter
for messages to be send to other companies1. Additionally,
it avoids broadcasting of changes by sending messages
only to workflow engines that are affected by a change.
The leading workflow engine reflects the coordinator role
of a virtual software development company. The
communicator object talks to the local workflow engine as
well as to communicator objects of all other WFEs. This
assumes that it knows all other companies involved in the
virtual enterprise. The approach results in a star-like
communication structure.

Besides forwarding and filtering messages the
communicator object needs to support the initialization of
a partial project plan in a different company. It has to
contact the communicator object in that company and
transport a partial plan to the other location.

Planning support is improved by expanding the project
plan component. Imagine a process model that was
tailored by adding planning decisions and scheduling. The
project plan forms a decomposition tree reflecting process
refinement from the root node to leaves. For every node in
the tree the responsible planner can transfer the execution
of a process to a different company by marking it as
external and assigning it to a another company.
Automatically, all subprocesses of the external process are
also marked as external. Furthermore s/he can set the right
for changing project plan and process model. That leads to
several possible relationships between the two companies.
If the right to plan the project stays with the coordinator, it
is an outsourcing relationship. The company acting as
contractor can only state their change suggestions to the
coordinating company that makes the decision of

1 Specifically: To the workflow engines in other companies.

accepting or refusing them. If the right to change the plan
is given away the contractor can be make changes. He
only needs to make sure that the correct results are
produced.

Sometimes the aim of the coordinator is to completely
guide another company but in other cases the results of a
process might be the only point of interest. If the later is
the goal, it is useful to omit the planning at all and to mark
a leave node of the project plan as external. For the
coordinating workflow engine this planned process is like
a stub. The workflow engine in the other domain needs the
change right to refine the node and create an own (sub-)
project plan.

This approach is still restrictive. Communication is routed
via the central coordinator. The economic reality shows
that the coordinator normally would also be a software
developing company itself. So, this approach is most
suited for an outsourcing structure.

One major aim of lean management, which is one of the
reasons for creating a virtual enterprise, is to flatten
communication structures. Concentrating the control flow
and data flow on one company generates an artificial
bottleneck. In many cases it would be best if two
companies would communicate directly to solve a
problem without involving the leading company.
Probably, the leading company has no interest in
controlling every little step of the development process.

2.4 The third extension
Ideally, the communication links between the workflow
engines of the companies involved need to be peer-to-peer
(Fig. 2). Communicator objects send messages to the local
workflow engine as well as to communicator objects of all
other companies. This results in a network of
communication links.

�C� � � � � � �B�3� � � � �

�[� � � � �

�[� �L�L� � � � � � � �3�O� � � � �

�C� � � � � � �B�3� � � � �

��� � � � �

�[� �6�_� � � � � � � �3�O� � � � �

�C� � � � � � �B�3� � � � �

�[� � � � �

�[� �L�L� � � � � � � �3�O� � � � �

�Y� � � � � � �B� � � � � �

��� � � � �

�[� �6�_� � � � � � � �3�O� � � � �

��� � � � � �[� � � � �

Fig. 2: The third extension of the MILOS-System

In extension 2 only the leading workflow engine has
knowledge about all companies and knows when to
inform which communicator object about changes. All
other engines only address the central communicator.

5

3 INTRODUCING NEGOTIATION AGENTS
Consider the following scenario. A customer
announcement regarding a software product leads over
negotiations to a software development contract with the
representative. This contract will be forwarded to the
coordinator who plans the project. There are different
ways to determine the tasks that need to be done [Karolak
98]. We focus on architectural considerations (which is
probably the most often used criteria). After the system
architecture parts are defined, the virtual corporation
needs to be formed by starting negotiation to sign
contracts that guarantee a successful enactment of the
software development process.

For supporting negotiation, we provide the concepts of
software agents. The agents have no common goal but
each agent pursues his own agenda and interests, either
competing or collaborating with other agents. In a first
step, the agents are semi-auto mated by contacting a
human agent when a negotiation is offered. There are
mainly two points we want to look at in this Section:

• how can agents interact with each other

• what is the format for the bidding process to get a
contract

3.1 The contract net protocol
The Contract-net is a negotiation protocol proposed by
[Smith 80]. It provides a model how agents can interact in
negotiations.

An agent with a task to offer broadcasts a call for bids and
waits for replies for some time. After this time elapsed, it
awards a contract to the best bid (according to its selection
criteria).

This protocol has been widely used and there are some
expansions of that protocol like [SL 98].

3.2 Negotiation requirements
In the easiest scenario of negotiations, a contractor offers
an announcement to another agent and waits for a positive
or negative reaction. If the contractee accepts the offer,
the contractor needs to commit the contract to make it
valid (Fig.3).

�F���L� � ����� �O� �F���_� � �[��� [¡�¢_£<¤ ¤ ��

¥6¢2¦ ���� 3§2��¨ ©< ª ��3� «

¬L¢ �B�_­I­I® �

Fig. 3: Basic Commitment

But negotiations aren’ t that easy today. Usually the
announcement will be send to a set of agents. There are
many ways for determining potential agents for the
broadcast. In our first realization, every agent is able to

announce himself (respective its core competence and,
optionally, available resources) to other agents.

An agent accepting an offer has no guarantee that he will
get the contract (Fig.4). A contractor can reject the offer
or may not even react at all. The same holds for the
contractee: he may not even respond to the offer. For this
reason, broadcast offers have a timeframe in which a
reaction is excepted. If this time has passed, the contractor
decides which contractee will get the contract1.

¯�°_±<² ² ³�´

µ6°�¶¸·�·�³�¹Oº
»6°O¼F½O¾�¾�¿ º

¼F½�ÀLº ´ Á�·�º ³�³

µ�°O¶¸·�·�³�¹Oº

»L° ÂF³ Ã ³�·�º

µ6°�ÂF³ Ã ³�·�º
¼B½�À_º ´ Á[·�º ³[³

¼B½�À_º ´ Á[·�º ³[³

¼B½�À_º ´ Á[·�º ³[³

¼<½�À_º ´ Á�·�º ½O´

Fig. 4: Broadcast Commitment

Often the payment for a contract is open and can be
negotiated, too. Contractors now have to bid to get the
contract. This is a more complex situation for the agent
because it needs to calculate the costs (which could be
very difficult, especially without existing data). This
calculation can also include outsourcing of parts of that
contract. So, it can directly put the contractee into the role
of a contractor.

Awarding the contract is a complex function and will not
be automated in our system. The decision for a contractee
not only depends on the monetary best bid but also on past
experiences with the contractee and other contract
conditions. If this information is available, the computer
agent will provide it to the human agent.

Another enhancement of the negotiation is the possibility
for the contractee to make a counterproposal. This is for
example the case if

• the contractee cannot perform the whole contract but
parts of it (he has not the needed resources to perform
the whole contract)

• the contractee does not want to perform parts of the
contract (because there are parts that are beyond its
core competencies)

• the contractee wants a different amount of money or a
different schedule

1 We do not realize the contract net concept of penalties because

it seems not be realistic in our application setting.

6

The contractee can offer a modified contract to the
contractor, waiting for its reaction. The contractor can also
make counterproposal to this contract and so on. It has to
be mentioned that any company involved in this process
cannot retreat from an offer it has made in a
counterproposal.

This enhancement clearly complicates the process of
awarding the contract to a contractee because the
responsible human agent has a lot more options.
Especially if his offers gets no direct accept, he needs to
consider the different offers carefully.

3.3 An negotiation suppor t approach
From the requirements above, we derive the following
structures for our software agent support for negotiation.

The announcement structure
The negotiation about a set of possible tasks can consist of
some iterations. The terms of the contract may change but
are still based on the first offer. Version management is
necessary to clearly identify what agent makes which bid
or counterproposal. Therefore, the structure we propose
has a negotiation part and a contract part for the contents.

For negotiation purposes, we decided to include following
information:

• The identifier for the sender of the message

• The announcement identifier

• The version number of the announcement

With this information, a unique identification of an
announcement is possible.

The structure of a contract is based on [Karolak 98]. We
expanded it to fulfill the demands of our model. A
contract describes:

• Tasks or activities to be performed

• Deliverables (code, documentation, tools to be used)

• Standard or methods to be followed

• Schedules for tasks and deliverables

• Type of equipment to be used (development
platforms, target platforms, test tools)

• Miscellaneous items (special interfaces, performance
requirements)

• Partial project plan that need to be performed
(optional)

• Cost structures (There exists several static and
dynamic payment models)

• Capital equipment
Describes if the subcontractor will have access to

capital equipment (i.e. hard and software) and in what
size this access will be

• Warranty

• Conditions for payment (For example, payment can
be linked to milestones or paid after complete
delivery).

Software agent structure and activities
Every agent has access to the set of tasks that need to be
performed and access to the set of resources available to
handle tasks (including financial resources). These sets
vary during project enactment because resources are
needed for performing tasks and new tasks come from
other agents. Also tasks can be outsourced. Furthermore,
the agent manages a list of announcements that include the
history of its bidding (proposal) process.

As a first approach, agents can offer to subcontract tasks
to other agents by paying money, the amount depends on
the contract terms. Agents offer tasks for reasons of
profitability: subcontracting of a task is profitable, when
the subcontractor can handle the task cheaper as the
contractor or if the contractor cannot perform the task at
all (e.g. because of missing resources).

Every software negotiation agent can act as a contractor
and as a contractee. Hence he needs to provide the
following functionality:

• methods to create and edit a contract

• methods to administer existing and incoming
contracts

• methods to access resources and tasks

• methods to manage information about other
negotiation agents

• methods to provide support to the connected human
agent that finally makes the decision (i.e. provide
negotiation history)

• announce capabilities or introduce itself to a set of
agents

• announce contracts to a set of agents

• send a counterproposal to a contractor

• send a counterproposal to a contractee

• make a bid to the contractor

• send accept/reject message to a contractor

• commit a contract to contractee

To commit/reject/accept a contract, the agent only needs
to transfer the announcement-id and the version-id
introduced above. For a counterproposal or a bid the agent

7

needs to transfer the new announcement object to the
receiver.

4 STATE OF THE IMPLEMENTATION
A single-server version of the MILOS system will be
demonstrated as part of the formal research demo track on
ICSE 99 in LA in May 1999. The implementation of
extension 1 (complete replication of WFE) and extension
2 (lead WFE plus independent client WFEs) is under way
and is planned to be finished early summer 1999.

MILOS is implemented in Java. We are using the OODB
GemStone/J 2.0 as an Enterprise Java Bean (EJB) server
that provides transaction management and persistency
services. EJB is a portable, highly scalable, multi-platform
component architecture that dramatically simplifies the
development of thin-client, multi-tier applications. The
clients of our system are Web-based applets using Java
Remote Method Invocation (RMI) to communicate with
the EJB server.

5 DISCUSSION AND RELATED WORK
Several areas of research, particularly workflow
management approaches, process modeling & enactment
research, and software agents bear similarities to our
work.

Most commercial workflow management systems like
Staffware1, FlowMark2, or TeamWARE3 focus on
enactment in one company. The work process can be
geographically distributed but the assumption is that the
process is carried out within a company. They provide no
support for a virtual software development corporation.
Support for change management is not even sufficiently
solved for single company solutions. With increasing
numbers of VDSC and the focus of commercial WFMS
will probably soon be adopted to the new requirements.

OzWeb [Kaiser et al. 98] is a web-based system that
supports multiple users, grouped together into
collaborative teams. It is based on Oz that provides a rule-
based process modeling language with a process engine
using forward and backward chaining. It is based on an
International Alliance metaphor that implies using
(dynamically definable) treaties for building contracts
(and handling access rights) between companies. But the
main focus seems to be more on communication and
interaction between companies than on supporting and
coordinating a virtual software development process. The
authors mention a foundation that is comparable with our
coordinator. Some functions of the foundation are
described but a realization is not a goal of Oz. So they use
a state/task server (ProcessWall) as foundation. In
comparison, we focus on realization of the coordinator

1 http://www.staffware.com/

2 http://www.software.ibm.com/ad/flowmark

3 http://www.teamware.com/

and on management support, like resource allocation and
time scheduling. This also leads to handling and triggering
many kinds of project changes. Oz’ successor project
GRACE focus on the middleware layer which is not our
research interest.

A project management system that does provide both
planning and execution support is the Mesa/Vista
Enterprise4 tool, which is an environment for collaborative
project execution and management. From the view on
distribution, it supports large, geographically dispersed
developer teams that belong to one company. It does not
address the additional requirements from VSDC. A basic
notification service exists, but needs to be installed
manually. Complex plan changes are not supported.

Endeavors [BT 96] supports distributed execution of
(workflow) processes [Kammer et al. 98]. Endeavors
provides support for dynamic process changes but most of
it is “manual” work by its users. It is currently being
extended to support World Wide Web (WWW) protocols.
We could not identify support for negotiation or the
different roles described above.

EPOS [NWC 96] is a software engineering environment
with emphasis on process modeling, software
configuration management and support for cooperative
work. EPOS provides versioning and transaction
management, controlled by an application-specific process
model. It does not address issues of VSDCs.

The SPADE [Bandinelli et al. 93] project aims at defining
and developing a software engineering environment for
software process modeling and enactment. Its process
modeling language is based on a high-level Petri net
formalism. Theoretically, it is possible to distribute project
parts but other requirements for VDSC are not handled.

Some aspect not mentioned in our first approach
discussion of the negotiator agent are important and will
be realized in a later implementation. It is useful that
agents can subcontract not only a task but also a set of
tasks to other agents. The advantage is that different
partitions of the overall task set can be provided. Task sets
reduce the messages send between the agents.
Nevertheless, it gets harder for agents to calculate the
effort for a set if alternative partitions are defined and
subcontracts have to be taken into account.

We need to enhance bidding support in the future. It is
useful to have information about calculation and bidding
strategies of other agents.

Pre-selecting recipients of announcements would be
helpful for both sender and receivers. It helps preventing
message congestion, a well known problem in multi-agent
systems. In our first approach, an agent can advertises his
capabilities to make other agents aware of it and all

4 http://mesasys.com/vistapm/

8

negotiation agents send offers to all agents they know.
With increasing amount of agents, there will be increased
messaging between the agents. This will lead to the need
for pre-selection strategies to reduce the recipients of
broadcasts. First, it is desirable that a pre-selection can be
performed when tasks with special core competence will
be announced. An expansion of our concept requires
maintaining data about the core competence of other
agent’s companies. Making bad experience with a
company is a reason for excluding it from the list of
recipients. A possible approach is to maintain lists that
hold information about this bad experience. A last point to
mention is that subcontract loops should be avoided. If an
agent gets a contract offer and it wants to outsource parts
of the contract, it makes sense that the message will not go
to the contractor.

Another point to mention concerns levels of commitment.
In our first approach it is not possible to retreat from an
existing contract. In reality, it is possible to retreat from a
contract by paying a penalty for breach of contract. Our
current negotiation support approach does not allow for a
retreat from a contract. This is the same as if the penalty
for a retreat is extremely high. Surely, it influences the
decisions of the agent because a low penalty means a
lower risk [SL 98].

A contractee may ask for resources instead of money in a
counterproposal. If, for example, a company has the core
competence but not the resources needed to maintain the
system, they may offer to use staff from the contractor.
This staff can provide maintenance and support after
development is finished.

Agents have no information about other agent’s resources
and tasks. In the future, our negotiation agents will try to
collect this information. Although agents from other
autonomous companies will not grant access to their data,
agents from the same company or from tightly coupled
companies may offer information about resources and
tasks. This will lead to enhanced information to the human
agent and so provide a better support.

Currently, our approach does not take into account time-
decreasing/increasing payment. This functions can
motivate people to accelerate their offers because the
money a company earns is higher the sooner it response to
an announcement.

A special point we want to mention is the possibility that
the supplier delivers products that do not meet an
organization’s needs [CMM 95]. A contractor can accept
the delivered product, lower its standards, help the
supplier to meet the contractor’s needs or choose another
supplier. In the last case, a new negotiation phase will be
started that has to take into account that time was wasted.

A next step will be the automation of the negotiation
supporting agents.

ACKNOWLEDGEMENTS
This work is supported by NSERC, Nortel, the University
of Calgary, and the DFG with several research grants. We
would specifically thank Alexander Herzlinger and Sascha
Mugenas for developing the replication components.
Thanks also go to Barbara Dellen, Sigrid Goldmann, and
Harald Holz for providing valuable input on MILOS.

REFERENCES
[Bandinelli et al. 93] S. Bandinelli, A. Fuggetta, S. Grigolli. Process
Modeling-in-the-large with SLANG. In IEEE Proceedings of the 2nd
International Conference on the Software Process, Berlin (Germany),
1993.

[Bendeck et al. 98] F. Bendeck, S. Goldmann, H. Holz, B. Kötting.
Coordinating Management Activities in Distributed Software
Development Projects in IEEE Post-Proceedings of the 7th Intl.
Workshops on Enabling Technologies: Infrastructures for
Collaborative Enterprises, Stanford (USA), 1998.

[BT 96] G.A. Bolcer and R.N. Taylor. Endeavors: A Process System
Integration Infrastructure in Proceedings of the Fourth International
Conference on the Software Process, Brighton, England, December
1996.

[BBP 93] J.A. Byrne, R. Brandt, O. Port. The virtual corporation” ,
Business Week, 1993.

[CMM 95] R. Bate, D. Kuhn, C. Wells. A systems engineering
capability maturity model, Version 1.1. Software Engineering Institute,
1995.

[DM 92] W. H. Davidow, M. S. Malone. The virtual corporation:
Structuring and Revitalizing the Corporation for the 21st Century.
1992.

[GS 98] J. Griese, J.Sieber. Virtualitaet bei Beratungs und
Softewarehaeusern. In U.Winand, K. Nathusius (Hrsg.):
Unternehmungsnetzwerke und Virtuelle Organisationen, 1998.

[Kaiser et al. 98] G.E. Kaiser, St.E. Dossick, W. Jiang, J.Jingshuang
Yang and S.X. Ye. WWW-based Collaboration Environments with
Distributed Tool Services, World Wide Web Journal, Baltzer Science
Publishers, 1998.

[Kammer et al. 98] P.J. Kammer, G.A. Bolcer, R.N. Taylor,
M.Bergman. Techniques for Supporting Dynamic and Adaptive
Workflow. Submitted for publication, December, 1998

[Karolak 98] D.W. Karolak. Global Software development Published
by IEEE Computer Society

[MD 98] F. Maurer, B. Dellen: An Internet Based Software Process
Management Environment, Web proc of the ICSE 98 workshop on
“Software engineering over the Internet” ,
http://sern.cpsc.ucalgary.ca/~maurer/ICSE98WS/Submissions/Maurer/I
CSE.html

[NWC 96] M.N. Nguyen, A.I. Wang, R. Conradi. Total Software
Process Model Evolution In EPOS. 4th ICSP, 1996, Brigthon, UK.

[SL 98] T. Sandholm, V. Lesser. Issues in automated Negotiation and
Electronic Commerce: Extending the Contract Net Framework.
Readings in Agents, 1998

[Sie 98] J. Sieber. Virtuelle Unternehmen in der IT-Branche, die
Wechselwirkung zwischen Internet-Nutzung, Organisation und
Strategie, Dissertation, 1998.

[SK 98] I.Z. Ben-Shaul, G.E. Kaiser. Federating Process-Centered
Environments: the Oz Experience, Journal of Automated Software
Engineering, 5(1), 1998.

9

[WFMC 96] The Workflow Management Coalition. Workflow standard
– Interoperability Abstract Specification, Document Number WFMC-
TC-1012, 1

