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Chapter 1

Introduction

Wireless communication has fundamentally changed our information based
society in the last decade. Error-correcting codes are used in wireless commu-
nication systems for correcting transmission errors which occur due to noise
in the transmission medium. In systems using error-correcting codes, at the
transmitter end, an assembly of original and redundant information is con-
structed in form of codewords and sent through the transmission medium.
At the receiver end, decoding of codewords is performed. The original in-
formation is regenerated with the help of redundant information. Maximum
likelihood decoding (MLD) is the optimal decoding approach for any channel
code and it is known to be NP-hard.

In practice, channel codes, for example low density parity-check (LDPC)
codes or turbo codes, are generally decoded by heuristic approaches called it-
erative message passing decoding (IMPD), subsuming sum-product algorithm
decoding (SPD) (see [3], [47]) and min-sum algorithm decoding (MSD) (see
[74]). In these algorithms probabilistic information is iteratively exchanged
and updated between component decoders. Initial messages are derived from
the channel output. IMPD exploits the sparse structure of parity-check matri-
ces of LDPC and turbo codes very well and achieves good performance. How-
ever, IMPD approaches are neither guaranteed to converge nor do they have
the maximum likelihood certificate property, i.e., if the output is a codeword,
it is not necessarily the maximum likelihood (ML) codeword. Furthermore,
performance of IMPD is poor for arbitrary linear block codes with a dense
parity-check matrix.

Mathematical programming is a branch of applied mathematics and has
recently been used to derive alternative decoding approaches. Introducing in-
teger programming (IP) formulations of the MLD problem for binary linear
codes, Breitbach et al. [9] and Feldman et al. [27] have done pioneering work
in this field. A standard approach to deal with difficult IP problems is to relax
the integrality constraints and study the relaxation. Linear programming de-
coding (LPD) was introduced in [27]. LPD offers some advantages and thus it
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2 CHAPTER 1. INTRODUCTION

has become an alternative decoding technique. First, this approach provides
analytical statements on convergence, complexity, and correctness of decoding
algorithms. Second, LPD is not limited to sparse parity-check matrices. Third,
performance improvements can be achieved by enhancing LPD with integer
programming techniques, e.g., branch and bound algorithms, cut generation
algorithms. Since the work of Feldman et al. [27], LPD has been intensively
studied in a variety of articles (see Chapter 5) especially dealing with low den-
sity parity-check (LDPC) codes.

The content of this thesis has a very strong interdisciplinary background.
MLD of binary linear codes is a real world problem from the field of electri-
cal engineering which can be solved by mathematical programming methods.
Our solution approach combines concepts from coding theory as well as math-
ematical optimization.

The mathematical modeling cycle in general is depicted in Figure 1.1. For
a practical problem, first, a mathematical model is built. Second, solution ap-
proaches are developed. At this step, it is explored if the results found can
be generalized to other optimization problems. Mathematical innovation and
discovery is motivated in this way. The cycle is completed with the evalu-
ation and interpretation of results. The mathematical modeling cycle can be
repeated until satisfactory results are acquired.

Problems

Interpreting and
evaluating
the results

Building a
mathematical model

Solving the ?
mathematical model New questions
arise

Figure 1.1: Mathematical modeling cycle
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1.1 Contributions of this thesis

Based on the mathematical modeling cycle, in this thesis, we aim at finding ap-
propriate integer programming models and associated solution approaches for
the MLD problem of several binary linear code classes. Studying the polyhe-
dral properties of the problem is a crucial step of tackling IP problems. Many
interesting properties of the codeword polytope, i.e., the convex hull of the
codewords of a binary linear code, are known from matroid theory. In par-
ticular, polyhedral properties of the cycle polytope, i.e., the convex hull of the
incidence vectors of the cycles of a binary matroid, directly applies to code-
word polytope of a binary linear code. For example, in this thesis we show the
relationship between the codeword polytope of simplex codes and the cycle
polytope of the complete binary matroids. We also present some results on
decomposition of Hamming codes and simplex codes.

For binary linear codes with short and medium block length, MLD can
be achieved by solving the associated IP problem with a general purpose IP
solver. IP also offers algorithms for computing the minimum distance of a
binary linear code. We present several IP formulations and computationally
compare them on various binary linear codes for MLD and minimum distance
computation. Moreover, we explore some strategies to facilitate the computa-
tion of minimum distance and ML curves.

We review and categorize decoding methods based on mathematical pro-
gramming approaches for binary linear codes over any binary input memory-
less channel. Concepts from mathematical programming used in the context of
decoding include linear, integer, and non-linear programming, network flows,
notions of duality as well as matroid and polyhedral theory.

As a mathematical programming decoding approach, we propose a new
separation algorithm to improve the error-correcting performance of LPD for
binary linear block codes. We use an IP formulation with indicator variables
that help in detecting the violated parity checks. Gomory cuts from the IP are
derived and used in the separation algorithm. An efficient method of finding
cuts induced by redundant parity checks (RPCs) is also proposed. Under cer-
tain circumstances we can guarantee that these RPC cuts are valid and cut off
the fractional optimal solutions of LPD. It is demonstrated on several binary
linear codes that our separation algorithm performs significantly better than
LPD and SPD in terms of error-correcting performance. Using the minimum
distance of a code, a new class of valid inequalities is also introduced.

We focus on developing combinatorial algorithms which use the special
structure of the code at hand. Combinatorial algorithms may perform better
than algorithms based on solving an LP relaxation in terms of computational
complexity and error-correcting performance. Based on a novel IP formulation
we propose a two-step algorithm for decoding of LTE turbo codes. Under cer-
tain assumptions it can be guaranteed that our two-step algorithm outputs the
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ML codeword. We also show that the proposed algorithm outperforms LPD
on LTE turbo codes with short block length. For the (132,40) LTE turbo code
our algorithm has better error-correcting performance than standard iterative
turbo decoding.

The mathematical model and the solution approach developed for decod-
ing of LTE turbo codes initiated our study on equality constraint shortest path
problems (ECSPPs). In ECSPP, a shortest path of a directed acyclic graph
which satisfy some equality side constraints is explored. ECSPP is NP-hard
and it can be considered as a special case of knapsack or subset-sum problems.
We develop multiple objective optimization based solution algorithms to find
an optimal solution of the LP relaxation of ECSPP with one or two equality
side constraints.

1.2 Overview and related publications

Preliminaries on coding theory and polyhedral theory are briefly summarized
in Chapter 2.

Chapter 3 is a collobaration with Sebastian Heupel. Our own results and
proofs presented in this chapter can partly be found in the Master’s thesis:
Cycle polytopes and their application in coding theory, S. Heupel, July 2009.

Chapter 4 has partly appeared in: Numerical Comparison of IP Formu-
lations as ML decoders, A. Tanatmis, S. Ruzika, M. Punekar, F. Kienle., In
Proceedings of IEEE International Conference on Communications (ICC), May,
2010, Cape Town, South Africa.

Chapter 5 has partly appeared in: Optimization based methods in coding
theory, A. Tanatmis and S. Ruzika, submitted to IEEE Transactions on Infor-
mation Theory.

Chapter 6 has partly appeared in: A Separation Algorithm for Improved
LP-Decoding of Linear Block Codes, A. Tanatmis, S. Ruzika, H. W. Hamacher
, M. Punekar, F. Kienle and N. Wehn. IEEE Transactions on Information
Theory, Vol. 56, Nr. 7, pages 3277 - 3289, July, 2010 and Valid Inequalities for
Binary Linear Codes, A. Tanatmis, S. Ruzika, H. W. Hamacher , M. Punekar,
F. Kienle, N. Wehn. In Proceedings of IEEE International Symposium on
Information Theory (ISIT), pages 2216 - 2220, July, 2009, Seoul, Korea.

Chapter 7 has partly appeared in: A Lagrangian relaxation based decoding
algorithm for LTE turbo codes, A. Tanatmis, S. Ruzika, F. Kienle. In Proceed-
ings of 6th International Symposium on Turbo Codes and Iterative Information
Processing, September, 2010, Brest, France.

Chapter 8 is a collaboration with Michael Helmling.

The author of this thesis is the main author of all the papers listed above.
This research has been carried on between 2006 - 2010 in the optimization re-
search group, department of mathematics, University of Kaiserslautern.
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Chapter 2

Preliminaries

2.1 Introduction

In this chapter, notation is fixed and well-known but relevant results from cod-
ing theory and polyhedral theory are recalled. With coding theory we refer to
the theory of error-control coding. Elementary results on coding theory, binary
linear block codes, maximum likelihood decoding and performance measures
of codes are covered in Section 2.2. A comprehensive review can be found in
[50]. The code families considered in the subsequent chapters are described in
Section 2.3. An important aspect of this thesis is the analysis of integer pro-
gramming (IP) and linear programming (LP) based decoding approaches for
binary linear codes. Thus, basics of polyhedral theory are repeated in Section
24.

2.2 Coding theory

Error-control coding is concerned with the reliable transmission of informa-
tion over an unreliable channel. Telephone lines, video broadcasting, etc. are
such channels subject to disturbance. For example, on a telephone line thermal
noise or interference by others may cause the disturbance.

A simplified abstraction of a communication system is depicted in Figure
2.1. Symbols are used to transfer information. They may belong to any al-
phabet but in this thesis we consider bits {0,1}. An information word u is a
k-tuple of binary variables, i.e., u € {0,1}*. To be robust against the noise in
the channel, the sender encodes the information word by adding redundant
bits according to an encoding function E : {0,1}* — {0, 1}" which is usually
injective. The positive integer n > k is called the block length. A codeword z is
given by z = E(u) and the set of all codewords C' = {z : x = E(u), u € {0,1}*}
forms a code C. The cardinality of C is determined by k, |C| = 2*. The rate of a
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8 CHAPTER 2. PRELIMINARIES

code is given by R = £. Codes with high rates are desirable since they contain
less redundancy.

ue {0,1}* x € {0, 1}"l

v = E(u) M noise p
y=r+p

e {0,1}* yeR"

u=D(y)

Figure 2.1: Encoding and decoding information.

A channel is a communication medium where the transmission takes place.
It is modeled by an input alphabet, output alphabet and the probability of
transition. The channels considered in this thesis are the binary symmetric
channel (BSC) described in Example 2.1 and the binary input additive white
Gaussian noise channel (BIAWGNC) described in Example 2.2. These are bi-
nary input memoryless symmetric channels. In a binary input channel only
symbols from the alphabet {0,1} are transmitted. The memoryless property
implies that bits are affected by the channel independently. Finally the word
symmetric is used in the sense that the error probability is not dependent on
input, i.e, P(0|1) = P(1/0).

Example 2.1. In the BSC, due to the noise, bits from the channel input are flipped
with a crossover probability p. The channel output is a corrupt word y € {0, 1}™.

0

Figure 2.2: Binary symmetric channel.
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Example 2.2. In the BIAWGNC, bits 0 and 1 are first mapped to +1 and —1, respec-
tively, i.e., v € {—1,4+1}". During the transmission, a Gaussian random variable
w; € N(0,6%), 5 € {1,...,n}, is added independently to each code bit x;, such that
y € R", y; = x; + p;, is returned as channel output.

rescale:
re{0,1}" —»ze{l,-1}"
probability
A
{ : 1
N orror value
Yi =T My

u; € N(0,0?): Gaussian random variable.

Figure 2.3: Binary input additive white Gaussian noise channel.

The conditional probability density function is given by

1 (yj==))*

P(yjla;) = == 2

V2mo?

Given a channel output (received word) y € {0,1}" in the BSC or y € R
in the BIAWGNC, the decoder function D : R" — {0, 1}* makes an estimate
of the codeword, i.e., € {0,1}". The estimated information word is given by
@ = D(y). Decoding is successful if u = 4. If u # 4, then a decoding error
occurs.

The goal in coding theory is to design an encoder/decoder pair such that
[50]:

(1) information can be transmitted in a noisy environment as fast as possible,

(2) information can be reliably reproduced at the output of the channel de-
coder,

(3) cost of implementing the encoder and the decoder falls within acceptable
limits.

The difficult part of decoding is the estimation of the transmitted codeword
from the received word. The translation of a codeword into an information
word is straightforward since there is a one-to-one correspondence between
information words and codewords.
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2.21 Binary linear block codes

In this thesis, we concentrate solely on binary linear block codes.

Definition 2.3. An (n, k) binary linear block code C with cardinality 2% and block
length n is a k dimensional subspace of the vector space {0, 1}" defined over the field
GF(2).

A code C C {0, 1}" can be defined by & basis vectors of length n which are
represented by a (k x n) matrix G called the generator matrix. An example
(4 x 7) generator matrix is given below:

Example 2.4.
1000110
o — 0100101
0010011
0001111

Given a generator matrix G, it holds that
C ={rec{0,1}": 2z =uG mod 2,u € {0,1}"}.
A binary linear block code can be put into systematic (standard) form.

Definition 2.5. The generator matrix G is in systematic form if it is written as G =
(1| A] where I}, is the (k x k) identity matrix and A is a (k x (n — k)) zero-one matrix.

The G matrix in systematic form indicates that the first k bits of x are the
information bits and that the remaining n — k bits are the parity-check bits
which are linear sums (mod 2) of the information bits.

Example 2.6. Let u = (uy, ug, us, us) and G be the example matrix given in Example
2.4, then the bits of the codeword x are found by

1 0001160
r = uG mod 2 = (uq, ug, us, uy) 8 (1) (1) 8 é ? 1 mod 2,
0001111

1 = ug mod 2, x9 = ug mod 2, x3 = uz mod 2, r, = uy mod 2,
Ty = Uy + Uy + ug mod 2,
Te = Uy + ug + ug mod 2,

x7zu2+u3+u4m0d2,
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Definition 2.7. Every linear subspace of dimension k has an orthogonal subspace of
dimension n — k. The orthogonal subspace of binary linear code C, denoted by C*, is
defined as

Ct = {ye {0,1}": ijyj =0mod 2 forall z € C}.

j=1

The subspace C* can also be interpreted as a binary linear code of dimen-
sion n — k which is referred to as the dual code of C'. A set of basis vectors of
C* constitutes a parity-check matrix H € {0, 1}(("=%)*")_Since every codeword
x € C'is orthogonal to each row of H, it holds that Hx = 0 mod 2. In fact, C'is
the null space of H and a vector = € {0,1}" is in C' if and only if Hx = 0 mod
2. If the generator matrix G is in the systematic form, i.e., G = [I|A] then an
associated parity-check matrix H may be written as H = [A”|[,_].

Example 2.8. A possible parity-check matrix for the code in Example 2.6 is

1101
H = 1 011
0111

OO =
O = O
_ O O

A parity-check matrix H is often represented by a Tanner graph G = (V, £).
The vertex set V' of G consists of the two disjoint node sets I and J. The nodes
in [ are referred to as check nodes and correspond to the rows of H whereas
the nodes in J are referred to as variable nodes and correspond to columns of
H. An edge [i,j] € E connects node i and j if and only if the entry in the "
row and ;" column of H is 1. Figure 2.4 is the Tanner graph associated to the
H matrix given in Example 2.8. The degree of a check node ¢ is the number of

1

J

Figure 2.4: Tanner graph.

edges incident to node i in the Tanner graph, or, equivalently, d.(i) = Z;‘:l H;;.
The maximum check node degree d*** is the degree of the check node i € I
with the largest number of incident edges. The degree of a variable node j,
d,(j), and the maximum variable node degree d;** are defined analogously.
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It should be pointed out that some LPD approaches (see Section 5.5) utilize
parity-check matrices being extended by redundant rows, i.e., H € {0, 1}(mx")
with m > n — kand rank(H) = n — k.

Before giving the definition of the minimum distance of a code, the Ham-
ming weight of a binary vector and the Hamming distance between two binary
vectors are defined in Definitions 2.9 and 2.10. The definitions below can be
generalized to all linear codes.

Definition 2.9. Let x € {0,1}". The Hamming weight w(z) is given as: w(x) =
{je{1,...,n}:x; #0}.

Definition 2.10. Let 2!, 2? € {0,1}". d(z',2%) = |{j € {1,...,n}: 2} #22}|.
The measure d(z", x%) is known as the Hamming distance between x' and z*.

The minimum weight of a binary linear code C is denoted by w(C) =
min{w(z) : € C,z # 0} whereas the minimum distance of a binary linear
code d(C) is given by d(C') = min{d(z,2’) : z,2’ € C,x # x'}. The proof of the
following result can be found, e.g., in [54, Chapter 3].

Lemma 2.11. For a binary linear code C, the minimum distance d(C') is equal to
minimum weight w(C).

For the binary symmetric channel, the minimum Hamming distance (min-
imum distance) between any two distinct codewords is the classical measure
for the error-correcting performance of a code. Also for this channel, Ham-
ming spheres are useful to understand the connection between the distance
and error-correcting performance of a code. Let x € {0,1}" and r € Z*. A
sphere with center » and radius r is defined as

Sp(x) :={y € {0, 1}"|d(z,y) <r}.

Example 2.12. Figure 2.5 is an illustration of pairwise disjoint Hamming spheres
(with radius t) of two distinct codewords x and x'. Suppose that during the transmis-
sion of a codeword x, less than t bits are flipped in the BSC. Then the received word
y € {0, 1}" lies in the sphere S,(x) and thus, it can be decoded correctly to x.

Definition 2.13. Let C' C {0,1}", t € N, and the transmission channel be the BSC.
Then the largest t such that for any distinct x, ' € C, d(x,z") > 2t + 1 (or equiva-
lently d(C') > 2t + 1), is called the random error correction capability of C.

Remark 2.14. Similar results and figures can be derived for the binary input additive
white Gaussian noise channel.

By Lemma 2.11, the minimum distance of a binary linear code is the weight
of a minimum weight non-zero codeword. Berlekamp et al. [6] conjectured
that computing the minimum distance of a binary linear code is NP-hard. This
conjecture was first proved by Vardy [68] about two decades later.
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Figure 2.5: Hamming spheres of codewords x, 2’ with radius r. The received
word y can be correctly decoded to codeword z.

2.2.2 Maximum a posteriori and maximum likelihood decod-
ing problem

To regenerate a codeword from a corrupt channel output, decoding rules are
applied. In this section we present the decoding rule which is going to be used
in the following chapters. First we give the definition of maximum a posteriori
decoding. The maximum likelihood decoding (MLD) rule is derived from the
maximum a posteriori decoding rule.

Definition 2.15. The decoding rule which can be explained as: given a received word
y, choose the most likely codeword x* € C maximizing the conditional probability
P(z|y), ie., * = argmax, - P(z|y), is called block-wise maximum a posteriori
(MAP) decoding.

Using Bayes’ theorem the probability P(z|y) can equivalently be written as

P(aly) = % 1)
and it holds that

- P(y|z)P(x)
¥ = argmax —————=.
zeC P(y)

In (2.2), P(y) is a constant since only x is maximized. Furthermore it is
assumed that all codewords are equally likely thus P(z) is the same for all
x € C. It follows that maximizing (2.1) on z € C'is equivalent to maximizing
P(y|z) onx € C. The latter is called block-wise maximum likelihood decoding.

In a memoryless channel, bits are affected by the channel independently so
it holds that

(2.2)

P(ylz) = HP(yjlﬂsj). (2.3)

Taking the logarithm on both sides of (2.3), we obtain

logP(ylz) = > logP(yj|z;). (24)

j=1
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Maximizing P(y|z) is equivalent to maximizing logP(y|z) since logP(y|x)
is a monotone increasing function of P(y|x). A block-wise maximum likeli-
hood (ML) decoder, chooses the codeword maximizing the expression in (2.4)
as the estimated codeword.

Example 2.16. We consider MLD in the BSC with crossover probability p, i.e., P(0|1) =
P(1|0) = p.

argmax P(y|r) = argmax Z logP(y;|z;) (2.5)
zeC zeC =1
= argmax{d(z, y)logp + [n — d(z, y)| log(1 — p)} (2.6)
zcC
= argmax{d(z,y)log L nlog(1 —p)}. (2.7)
xzeC - p

The second term of (2.7) is constant. Moreover, we assume that the probability of
correct transmission is larger than the probability of error thus logt% < 0. Conse-
quently, the maximum of (2.7) is obtained for the codeword x € C' for which d(x,y)
is minimum. It follows that for the BSC, MLD decides for the codeword which has the
minimum Hamming distance to the received word.

MLD was shown to be NP-hard by Berlekamp et al. [6]. Let us briefly dis-
cuss the proof by Berlekamp et al. The proof was based on the reduction of
the decision problem of three-dimensional matching to the decision problem
of the MLD problem in polynomial time. Berlekamp et al. [6] first described
the decision problem Coset Weights.

Definition 2.17. The decision problem Coset Weights is defined as:
Given H € {0,1}(™™, s ¢ {0,1}™, and k € Z . Does there exist a vector e €
{0,1}" such that He = s mod 2, w(e) < k?

The Coset Weights problem is related to the MLD problem. To show this
we use the BSC. In the BSC, the received word y is the modulo 2 sum of a
codeword z € C and a binary error vector e € {0,1}",i.e.,, y = (v + ¢) mod 2.
If MLD is performed over the BSC, then a codeword which has the minimum
Hamming distance to the received word y is searched. In other words, the ML
codeword z* is the codeword such that y = z*+e mod 2 and w(e) is minimum.
If we replace z with (y +¢) in Hx = 0 mod 2, He = Hy mod 2 is obtained. Let
s = Hy mod 2. Now, it can be concluded that the ML codeword is given by
the modulo 2 sum of y and e such that He = s mod 2 and w(e) is minimum.
Setting k = 1,2, ... and solving the Coset Weights problem, the ML decoding
problem can be solved in polynomial time if there exists a polynomial time
algorithm for the Coset Weights problem.
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121 132 214 223 311 444
111 1 0 0 0 0
210 0 1 1 0 0
31 0 0 0 0 1 0
41 0 0 0 0 0 1
11 0 0 1 0 1 0
2] 1 0 0 1 0 0
31 0 1 0 0 0 0
41 0 0 0 0 0 1
111 0 0 0 1 0
21 0 1 0 0 0 0
31 0 0 0 1 0 0
41 0 0 1 0 0 1

Table 2.1: Binary matrix representation of example set U.

Definition 2.18. Let T be a finite set. The decision problem Three Dimensional
Matching is defined as:

Given a subset U C T x T x T, such that the elements of U are ordered triples from
T. Does there exist W C U such that |W| = |T'|, and no two elements of W agree in
any coordinate?

Example 2.19. An example set given in [6] for T = {1,2,3,4} is
U=1{(1,21),(1,3,2),(2,1,4),(2,2,3),(3,1,1), (4,4,4)}. (2.8)

It can be verified that U D W = {(1,3,2),(2,2,3),(3,1,1), (4,4,4)} is a matching.
A key observation used in the reduction of Three Dimensional Matching problem to
Coset Weights problem is that the set U can be encoded to a 3 |T| x |U| binary matrix.
An example is illustrated in Table 2.1.

Obviously, a matching in U exists if and only if there are |T'| columns in the
binary matrix whose mod 2 sum is the all-ones vector.

Theorem 2.20. The three-dimensional matching problem can be reduced to Coset
Weights problem.

Proof. Given a Three Dimensional Matching instance U, 7, and W, U is en-
coded to a binary matrix H, s is set to all-ones vector and k is set to |T'|. The
fact that three-dimensional matching is NP-complete [44] implies that Coset
Weights problem is NP-complete and thus ML decoding is NP-hard. O
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Interestingly, ML decoding is closely related to the minimum weight cycle
problem in matroid theory (see Chapter 3). More specifically, there is a one-
to-one correspondence between binary matroids and binary linear codes. The
cycle problem contains as a special case the max-cut problem which is known
to be NP-hard [44]. Therefore, the cycle problem is NP-hard and, thus, matroid
theory provides an alternative proof for NP-hardness of ML decoding.

2.2.3 ML decoding as integer programming problem

In [23] Feldman shows that P(y|z) can be replaced by a linear cost function.
Recall that we denote the maximum likelihood codeword by z*. From (2.3),
(2.4) it holds that

r* = argmax P(y|r) = argmaleogp Yil 7).
zeC eC 7j=1

Equivalently,

x* = argmin (— ZlogP(yj|xj)> . (2.9)

zeC =1

If a constant term )7, logP(y;|z; = 0) is added to the right-hand side of
(2.9), the optimum does not change and the following holds.

x* =argmin (Z logP(y;|z; =0) — logP(yj|xj))

zeC ey
. P(y;|xz; = 0)
= argmin log——————=
zeC (jEsz:l P y]"%] - 1)
= argmin Az -
o (Z )

The value \; = logPLIJ) is called the ;' log-likelihood ratio (LLR). Con-

sequently the integer programming formulation of ML decoding is given as

min{\"z : 2 € C}. (2.10)

2.2.4 Performance measures

The main performance measures of an error-correcting code are its rate, en-
coding/decoding complexity, and its capability of correcting errors caused by
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the channel. Higher rate codes are desirable to minimize redundancy. The
complexity of the encoder/decoder pair as well as the block length n affect
the latency of transmission. Therefore high complexity encoders, decoders are
avoided. The error-correcting capability of a code is directly proportional with
the minimum distance.

It is common in coding theory to measure the error-correcting performance
of a code or decoding method in terms of frame error or bit error rate versus
signal-to-noise ratio. Frame error rate (FER) is the rate of decoding errors in
a predetermined number of transmissions whereas signal-to-noise ratio (SNR)
is given by SNR= E” such that £, is the energy per transmitted bit and N,
is the one-sided power spectral density of the channel noise. N, is usually
expressed in decibels (dBs) (see [50]). Graphically, this is depicted by a plot
showing the frame error rate in the vertical axis and the signal-to-noise ratio in
the horizontal axis. In the subsequent chapters, these curves will be presented
as the main performance measure.

Example 2.21. An example curve for the ML decoding of a linear block code with
n = 132 and r ~ 5 ((132,40)- LTE turbo code) is given in Figure 2.6. This curve is
obtained by solving the IP formulation of ML decoding problem by a commercial IP
solver (see Chapter 4). Frame error rates are determined by counting 100 decoding
errors. Obviously, as the SNR value increases the rate of decoding errors decreases.

10" T T T

—afe— Maximum likelihood decoding‘ ]

Frame Error Rate (FER)

107 I I I I I 1 I
1
SNR [dB]

Figure 2.6: ML decoding curve of an irregular (132,40) LTE turbo code.

For a given SNR value, FER should be minimized. Alternatively for a spe-
cific FER, the SNR value should be as low as possible. Given a code rate R, the
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SNR value for which error free (or an arbitrarily small error probability) com-
munication is achievable, is the Shannon limit (see [50]). The Shannon limit
is defined independently of the code structure and relies on an infinite block
length.

2.3 Relevant code families

Some binary linear code families considered in this work are turbo codes, low
density parity-check (LDPC) codes, expander codes, Hamming codes, and
Bose-Chaudhuri-Hocquenghem (BCH) codes. Giving detailed information on
the structure of these codes is out of the scope of this thesis. We refer to [50]
for a detailed description.

Definition 2.22. Turbo codes are based on parallel or serial concatenation of at least
two convolutional codes (see for example [50]) with interleavers inbetween.

An interleaver is a device that performs the permutation of input data. The
component convolutional codes have individual encoders. Moreover, MLD in
polynomial time is possible for convolutional codes. By combining convolu-
tional encoders with interleavers, codes which have very high error-correcting
performance can be achieved. This comes at the price that turbo codes are
much more complex to decode. There are many different encoding schemes
for turbo codes. The standard turbo encoder is explained in Example 2.23

Example 2.23. In the standard turbo encoder, the first convolutional encoder works
directly on the k information bits passed to the encoder and generates k many parity
bits we denote by p, whereas, the second convolutional encoder receives an interleaved
sequence and outputs k many parity bits we denote by p,. The first k bits, i.e., v, at
the output of this standard turbo encoder are the same as k input bits.

U - U=1U
trellis L = P1
encoder 1
INT trellis | . Do
encoder 2

Figure 2.7: Encoder scheme of LTE turbo codes.
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The interleaver length used in a turbo code is fixed. Due to this reason,
the turbo encoder always generates a fixed number of bits at the output. This
fixed block length property makes turbo codes a class of block codes.

Next, we give formal definitions of LDPC codes and expander codes.

Definition 2.24. [29] A linear code C'is a low density parity-check (LDPC) code if
it can be described by a Tanner graph whose maximum check node degree d;*** and
maximum variable node degree d)** stay constant as n grows.

There exist regular and irregular LDPC codes. Let d,,d. € N. In a (d,, d.)-
regular LDPC code d.(i) = d. foralli € [ and d,(j) = d, forall j € J. In an
irregular LDPC code d,.(i) and d,(j) vary withi € [ and j € J.

Definition 2.25. Let G be a (d,, d.)-reqular bipartite graph where d,,, d. are variable
node and check node degrees respectively. The graph G is called an («, §) expander, «,
d € (0,1), if for any subset |S| < an it holds that |Ng| > dd,, |S|.

Next we discuss Hamming codes.

Definition 2.26. Let m > 3 be a positive integer. A Hamming code is a binary linear
code with an (m x 2™ —1) parity-check matrix such that the 2™ — 1 non-zero binary
vectors of length m constitute the columns.

Hamming codes can correct 1 error. BCH codes are generalizations of Ham-
ming codes and they can correct multiple errors depending on the type of the
code. Given two positive integers m > 3, t < 2m=1 a BCH code with block
length n = 2™ — 1, number of parity-checks less than or equal to mt, and
minimum Hamming distance greater than 2¢ 4 1 can be constructed. A com-
prehensive description on BCH codes can be found in [50].

2.4 Polyhedral theory

In this section, some relevant results from polyhedral theory are recalled. For a
comprehensive review on polyhedral theory the reader is referred to [46] and
[55]. We start with the definitions of affine independence and linear indepen-
dence.

Definition 2.27. A set of points v*,... v € R™ are called affinely independent if
the unique solution ofz:f:1 ppv® = 0 and Zszl pr =018 py = po ... = ug = 0.

Definition 2.28. A set of points V', ... v* € R™ are called linearly independent if
the unique solution onle vt =01is iy = po ... = pg = 0.
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Let A € R™™ denote an m x n matrix with entries in R, and let I =
{1,...,m} and J = {1,...,n} be the row and column index sets of A, respec-
tively. The entry in row i € [ and column j € J of A is given by 4, ;. The i*"
row and j* column of A are denoted by A; and A_;, respectively. A vector
e € R™ is called the i*"* unit column vector if e; = 1,7 € I, and e;, = 0 for all

hel\({i}.

Definition 2.29. A subset P(A,b) C R" such that P(A,b) = {v € R* : Av < b}
where A € R™ " and b € R™ is called a polyhedron. A bounded polyhedron is called
a polytope.

In this work, we assume rational polyhedra, i.e., the entries of A and b are
in Q. The i"* row vector of A, A; with the i"" entry of b, b;, defines a closed
halfspace {v|A; v < b;}. In other words, a polyhedron is the intersection of a
tinite set of closed halfspaces.

Definition 2.30. Let S C R™ and v € R" be given. If there exists a finite non-empty
set of points {v',... V'Y in S such that v = S0 | pt*, > 0 fork e {1,..., K}
and S8 . = 1, then v is called a convex combination of points in S. The set of all
convex combinations of the points in S is called the convex hull of S and denoted by
conv(S).

It is known from polyhedral theory that the convex hull of a finite set of
points is a polytope.

Remark 2.31. We assume C' C {0, 1}" to be canonically embedded in R™ and refer to
conv(C') as the codeword polytope.

Some characteristics of a polyhedron are its dimension, faces, and facets.
To define them, the definition of a valid inequality is needed.

Definition 2.32. An inequality r"v < t where r € R™ and t € R is called valid for a
set P(A,b) CR"if P(A,b) C{v:rTv <t}

The notion of an active inequality is used in several LPD algorithms. There-
fore, a formal definition is given below.

Definition 2.33. An inequality r"v < t where r™, v € R™ and t € R is active at
vt e RifrTvr =t

Valid inequalities which contain points of P(A, b) are of special interest.

Definition 2.34. Let P(A,b) C R" be a polyhedron, let r"v < t be a valid inequality
for P(A,b) and define F = {v € P(A,b) : r"v = t}. Then F is called a face of
P(A,b). Fis a proper face if F' # () and F # P (A, D).
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The dimension dim(P(A,b)) of P(A,b) C R™ is given by the maximum
number of affinely independent points in P(A, b) minus one. If dim(P(A4,b)) =
n, then the polyhedron is full dimensional. It is shown in [55] that if P(A,b)
is not full dimensional then there exists at least one inequality A; v < b; such
that A; v = b; holds for all v € P(A,b). Furthermore it holds that dim(F') <
dim(P(A,b)) —1 for any proper face of P(A,b).

Definition 2.35. A face ' # () of P(A,b), is called a facet of P(A,b) if dim(F) =
dim(P(A,b)) —1.

In the set of inequalities defined by (A, b), some inequalities A; v < b; may
be redundant, i.e, dropping these inequalities does not change the solution set
defined by Av < b. In [55], it is shown that a complete and non-redundant de-
scription of a polyhedron P(A, b) can be obtained from the inequalities which
are facets.

A point v € P(A,b) is called an extreme point of P(A,b) if there exists no
other two points v!,v? € P(A,b) such that v = pv' + pr? and 0 < py < 1,
0 < pe <1,and py+p2 = 1. Alternatively, extreme points are zero dimensional
faces of P(A,b). In an LP problem, a linear cost function is minimized on a
polyhedron, i.e.,, min{c’v : v € P(A,b)}, ¢ € R". If the LP is not unbounded
then the minimum is attained on one of the extreme points (vertices). Below is
the formal definition of an optimization problem.

Definition 2.36. Given a bounded rational polyhedron P(A,b) C R™ and a rational
vector ¢ € R™ either find v* = argmin{c’v : Av < b} or conclude that P(A,b) is

empty.

Sometimes an optimization problem, may have exponentially many con-
straints. In this case, towards finding the minimum, it may be favorable to
solve the corresponding separation problem. The separation problem over an
implicitly given polyhedron is defined as follows.

Definition 2.37. Given a bounded rational polyhedron P(A,b) C R™ and a rational
vector v* € R", either conclude that v* € P(A,b) or, if not, find a rational vector
(r,t) € R" x R such that r"v < t and r"v < rTv* forall v € P(A,b). In the latter
case (r,t) is called a valid cut.

The following theorem is a famous result of Grotschel, Lovasz, Schrijver
[34] which applies to proper polyhedra (see [55]).

Theorem 2.38. Let P be a proper class of polyhedra. The optimization problem for
P is polynomial time solvable if and only if the separation problem is polynomial time
solvable.
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For the rest of this thesis, besides the definitions and results presented in
this chapter, we assume that the reader is somewhat familiar with linear pro-
gramming and linear programming duality (see, e.g., [60]), integer program-
ming (see, e.g., [55]), matroid theory (see, e.g., [57]), multiple objective opti-
mization (see, e.g., [22]), as well as error-correcting codes (see, e.g., [50]).



Chapter 3

Matroid theory applications in
coding theory

3.1 Introduction

Given an m x n binary matrix H, Barahona and Grotschel studied the poly-
tope P(H) = conv{z € {0,1}" : Hx = Omod 2} in [5]. They gave three
interpretations of P(H). First, P(H) can be considered as the convex hull of
the zero-one solutions of Hz = 0 mod 2. Second, a binary matrix A can be the
representation matrix of a binary matroid M [H]. In this case, a binary vector
z € {0,1}" for which Hz = 0 mod 2 holds, is the incidence vector of a cycle of
M [H]. Thus P(H) can be considered as the convex hull of the incidence vec-
tors associated with the cycles of a binary matroid. In matroid theory, P(H)
is known as the cycle polytope. A third interpretation of P(H) is from linear
algebra. The set of solutions such that Hx = 0 in (GF'(2))" is a linear subspace
of (GF'(2))". This set is the kernel of the linear mapping defined by H. Con-
sequently, for a binary linear code C with parity check matrix H, P(H) is the
convex hull of the codewords i.e., P(H) = conv(C') (see Remark 2.31). Thus,
from the third point of view P(H) is the codeword polytope. Barahona and
Grotschel followed the matroid theoretic point of view in [5] and studied the
cycle polytope. The transfer of the polyhedral properties of the cycle polytope
to the codeword polytope is straightforward.

As described in [45], there is a one-to-one correspondence between binary
matroids and binary linear codes. Kashyap’s article [45] is mainly concen-
trated on transferring matroid decomposition applications explained in [35]
to binary linear codes. In this chapter, we supplement this transfer of results
by concentrating on the relation between the codeword polytope and the cy-
cle polytope [5], [36]. We first give some basic definitions and theorems from
matroid theory to obtain the building blocks. Then we present some results
on binary matroids from Seymour [61], Barahona and Grotschel [5] as well

23
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as Grotschel and Truemper [35], [36]. Many of the results from the above
mentioned books and articles have very involved proofs, therefore they are
not repeated in this work. In the last part we focus on binary linear codes
and make some translations from binary matroids to binary linear codes. We
briefly summarize the contributions of Kashyap [45] in this area. The exam-
ples presented in this chapter are our own work. We also point out our own
results and proofs.

This chapter is organized as follows. Some relevant and well-known results
from matroid theory are presented in Section 3.2. In Section 3.3, the polyhedral
properties of the cycle polytope of a binary matroid are reviewed. Section
3.4 is about decomposition of binary matroids. The relations between binary
matroids and binary linear codes are discussed in Section 3.5. The chapter is
concluded with some further research ideas in Section 3.6.

3.2 Matroid theory

In order to keep this work self-contained, in this section we present some well-
known results from matroid theory. Definitions and theorems are from [39],
[57] and [73]. Missing proofs can be found in these references.

A matroid is a mathematical structure which generalizes the concept of
independence. The definition of a matroid in general is given below.

Definition 3.1. A matroid M is an ordered pair M = (J,U) where J is a finite
ground set and U is a subset of the power set (set of subsets) of J, denoted by 27, such
that (1) — (3) hold.

(DDl

(2)IfueUandv C u, thenv € U.

(3) If uy,us € U and |uy| < |ug| then there exists a j € us \ uy such that u, U{j} € U.

A set u € U is called an independent set and the sets in 27 \ U are called
dependent sets. The rank function, r : 2/ — N, for a set s € 27 is defined by
r(s) =max {|b| : b C s,b € U} . The rank of J gives the rank of the matroid M,
r(M). Letb € U be a subset of J such that bU{j} ¢ U forany j € J\b. Thenbis
a maximal independent set and it is called a basis of M. A minimal dependent
set, i.e., a set v € 27 \ U such that all proper subsets of v are in U, is called a
circuit. A one element subset {;j} C J is called a loop if {j} is a dependent set,
i.e.,, {j}isacircuit. Let ji, jo € J. If {j1, j2} is a circuit then j; and j, are called
parallel. If a subset of J is a disjoint union of circuits then it is called a cycle.
Isomorphism of matroids is defined as follows.

Definition 3.2. Two matroids M, = (Jy,U,) and My = (Jo,Us) are isomorphic if
there exists a one-to-one correspondence between the elements of the ground sets .J,
and Jy such that independence is preserved.
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Let B be the set of bases of a matroid M = (J,U). Then B* := {J\b: b € B}
is the set of bases of another matroid M* called the dual matroid. For the
matroid M* it holds that (M*)* = M and r(M*) = |J| — r(M). Usually
the matroid related terms are dualized with the prefix “co”. For example the
circuits, cycles and loops of a dual matroid are called cocircuits, cocycles and
coloops respectively. A cocircuit with three elements is called a triad.

Matroid minors play an important role in this chapter. Before we give the
definition of a minor we introduce the restriction and contraction operations of
a matroid. Restriction and contraction are graph theory based concepts which
are extended to matroids. Both operations yield submatroids from a given
matroid. Deletion and contraction of a loop yields the same submatroid. Be-
low we give the definitions of restriction and contraction as they apply to any
matroid. Later on we interpret these two operations for binary matroids.

Definition 3.3. Let M = (J,U) be a matroid with ground set J and let j € J. The
matroid on J \ {j}, where the independent sets are given by U(M|j) = {u : u C
J\A{Jj},u € U} is called a restriction of the matroid M and denoted by M|j.

Example 3.4. Let M = (J,U) be a binary matroid with J = {1,2,3,4,5} and
U ={0,{1},{2},{3},{4},{5}}. Suppose j = {5}. Then M|5 is the sub-matroid
with J = {1,2,3,4} and Ul = {0, {1}, {2}, {3}, {4}}.

Definition 3.5. Let M = (J,U) be a matroid with ground set .J and let j € J. The
matroid on J \ {j}, where the independent sets are given by U(M/j) = {u : u C
J\A{j},uU{j} € U} is called a contraction of the matroid M and denoted by M/ ;.

Example 3.6. Let M = (J,U) and j € J be defined as in Example 3.4. It follows from
the definition that M/ j is the sub-matroid given by the ground set J = {1,2,3,4}
whose single independent set is the empty set.

Given a subset K C J, it is stated in Theorem 3.7 that contraction is the
dual operation of restriction and vice versa. The proof can be found in [39].

Theorem 3.7. Let M = (J,U) be a matroid with ground set J and let K be a subset
of J. Then the following statements hold.

1 M/ = (M)
2. M#|j = (M)

Matroid minors are defined based on restriction and contraction opera-
tions.

Definition 3.8. A minor of a matroid M = (J,U) is a sub-matroid obtained from M
by any combination of restriction and contraction operations.

Minors play an important role in the classification of matroid families.
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Definition 3.9. A familly T of matroids is called minor closed if for any M € T
every matroid isomorphic to a minor of M is also in T .

An excluded minor of a matroid is defined as follows.

Definition 3.10. Given a minor closed family of matroids T, a matroid M is defined
to be an excluded minor of T if M ¢ T but every proper minor of M isin T.

Excluded minors are used to determine minor closed matroid families.

Theorem 3.11. Let K be a finite set of matroids. Tk is defined as a family of matroids
such that K is the set of excluded minors of T. Then Ty is minor closed.

Next, we consider a special class of matroids. An (m x n) matrix H in the
field F defines a matroid M [H]. The ground set J = {1,...,n} is set to the
index set of the columns of . A subset K C J is independent if and only if
the column vectors H ;, k € K are linearly independent in the vector space
defined over the field F. A matroid constructed from a matrix as explained
above is called a matrix matroid. We denote a matrix matroid by M [H]. The
matrix H is called the representation matrix.

Definition 3.12. A matroid M is called F-representable if it is isomorphic to a matrix
matroid M [H| defined over the field F.

In the next theorem it is stated that the dual of an F-representable matroid
is also F-representable.

Theorem 3.13. [57] Let M be an F-representable matroid with the representation
matrix H € F™*". Then the dual matroid M* is also an F-representable matroid with
a representation matrix G € F("="™)*" where the rows of G span the null space of H.

The class of matroids which is of interest in this work is the class of F,-
representable (binary) matroids. The definition of a binary matroid is given
below.

Definition 3.14. A matroid M is called binary if it is isomorphic to a matrix matroid
M [H] for some binary matrix H € Fy™™.

Example 3.15. Let H be a binary matrix having all seven non-zero vectors in s as
columns, e.g.,

1110100
H = 1101010
0111001

We remark that a binary matroid isomorphic to M [H| is called a Fano matroid and
denoted by F7.
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Let X be a basis of M [H] and Y denote the index set of non-basic elements.
For a given X, H can be brought into the form

X 'Y

I A

where [ is the m x m identity matrix and A € Fy*"~™) This form is called the
standard form.

The relation between a binary matroid M and its dual M* follows from
Theorem 3.13.

Corollary 3.16. Let M be a binary matroid of rank m where H = [I|A] is an (m x n)
representation matrix in standard form. Then the dual matroid M* can be represented
by an ((n —m) x n) matrix of the form G = [AT|I].

Binary matroids have some important properties stated in Theorem 3.18.
First we give the definition of symmetric difference between two finite sets.

Definition 3.17. Let vy, v, be two finite sets. The symmetric difference of v, and v, is
given by v1Avy := (vy \ v2) U (vg \ v1).

Theorem 3.18. [57] The following statements about a matroid M are equivalent.
1. M is binary.
2. For every circuit C and every cocircuit D, |C N D] is even.
3. If Cy and C, are distinct circuits then Cy ACy contains a circuit.

Another property of binary matroids is that restriction and contraction can
be performed easily. M [H] |K is obtained by deleting the columns indexed by
the set K from the representation matrix /. Concerning the contraction oper-
ation in a binary matroid, the representation matrix of M [H]| /K is obtained
from the original representation matrix // by applying a procedure resulting
from Theorem 3.7. This procedure is presented as the binary matroid contrac-
tion algorithm in the next page.

Some examples of binary matroid families used later in this chapter are reg-
ular matroids, graphic matroids, and cographic matroids. A regular matroid
can be defined in several ways. First, a matroid is regular if it is representable
over every field. Second, the concept of total unimodularity is used to define
a regular matroid. In a totally unimodular matrix, the determinant of every
square submatrix is in {—1,0,1}. A matroid is called regular if the associated
representation matrix is totally unimodular. The third way of defining a regu-
lar matroid is deduced from Theorem 3.19. The proof is given in [57].



28 CHAPTER 3. MATROID THEORY AND CODING THEORY

Binary matroid contraction algorithm

1: forall j € K do

2:  Transfer H ; into a unit vector by elementary row operations in GF(2).
3: forallie ] do

4. if Hij =1 then

5: Delete row i, column j from H.

6: end if

7:  end for

8: end for

9: Delete all zero columns from the new representation matrix.

Theorem 3.19. A binary matroid is regular if and only if it does not contain as a
minor any matroid isomorphic to Fr or F7.

Two important subclasses of regular matroids are graphic and cographic
matroids. Let G = (V, E) be a graph where V' is the set of vertices and F is
the set of edges. The incidence matrix of G is a binary matrix which contains
a row for every vertex and a column for each edge. The entry in row v € V
and column e € E is 1 if edge e is incident to vertex v and 0 if it is not. A
regular matroid is called graphic if the associated representation matrix is the
incidence matrix of a graph G. An alternative definition of a graphic matroid
is given below.

Definition 3.20. A reqular matroid is graphic if and only if it does not contain as a
minor any matroid isomorphic to the matroids (M [K5))* or (M [K33])*.

A matroid M [H] is called cographic if (M [H])* is isomorphic to a graphic
matroid, or, alternatively:

Definition 3.21. A reqular matroid is cographic if and only if it does not contain as a
minor any matroid isomorphic to the matroids M [K5] or M [K3 3].

If M[H] is a cographic matroid, then all cycles of M [H] correspond to
the cuts in the graph associated with the graphic matroid (M [H])*. M [Kj]
and M [Kj 3] are graphic matroids where the associated vertex edge incidence
matrices can be written as

1000111000
0100100110
0010010101
0001O001O0T1]1
1111000000
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and
111 0000O0O0
00011 10O0O0
00 0O0O0O0OT1TT11
100100100
01 001O0O0T10
001 0O0T1TO0TUO01

, respectively. The associated graphs are given in Figure 3.1 and Figure 3.2.
Note that the standard representation matrices of M [K5] and M [Kj 3] can be
obtained from the vertex edge incidence matrices by elementary row opera-
tions. The representation matrices of (M [Kj;])* and (M [Kj33])* are derived
from Corollary 3.16.

Figure 3.1: The graph K5 associated with the matroid M [Kj5].

Finally we present a representation matrix /1 of another important matroid
denoted by R;y. This matroid is used in subsequent sections.

1100110000
1110001000
H=|0111000100
00111000120
1001100001

3.3 Cycle polytope

The polytope associated to the set of cycles of a binary matroid is known as
the cycle polytope. We first define the incidence vectors corresponding to the
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Figure 3.2: The graph K 5 associated with the matroid M [Kj 3.

cycles. In general, an incidence vector corresponding to a subset C C J is
constructed as

T

c 1, ifjecC
i 0, ifje¢cC

for all j € J. The cycle polytope is the convex hull of all incidence vectors
corresponding to all cycles of a binary matroid. Polyhedral properties of the
cycle polytope are studied by Barahona and Groétschel in [5]. We denote the
cycle polytope given by the binary matroid M [H] by P(M [H]).

P(M[H]) := conv({z® € R" : C C Jis a cycle}).

The dimension of P(M [H]) can be calculated using the notion of coparallel
classes given in [5].

Definition 3.22. A coparallel class of a binary matroid M [H] is a maximal subset
K C J such that K contains no coloops and every two distinct members of K are
coparallel.

Coparallel classes with one element are called trivial. If M [H] has no
coloops and coparallel elements then it has only trivial coparallel classes.

Theorem 3.23. Let M [H]| be a binary matroid and P(M [H]) be the associated cycle
polytope. The dimension of the cycle polytope P(M [H]) is given by the number of the
coparallel classes of M [H].

If there exists no coloops and coparallel elements of M [H] then the number
of coparallel classes of M [H] is | J|.
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Corollary 3.24. If M [H] does not contain any coloop or coparallel elements, then
P(M [H]) is full-dimensional, i.e., dim(P (M [H]))=|J|.

In the polyhedral analysis of P(M [H]), the symmetry property stated in
Theorem 3.25 plays an important role.

Theorem 3.25. [5] If a”x < « defines a face of P(M [H]) of dimension d, and C is
a cycle, then the inequality a” x < & also defines a face of P(M [H]) of dimension d,
where

s —Qj, lf] eC
and & :== o — a’'2¢,

Using this theorem, Barahona and Grotschel [5] showed that if all facets
containing a given cycle are known then the complete description of P(M [H])
can be obtained.

Some valid inequalities for the cycle polytope P (M [H]) are the trivial in-
equalities

0<ax;<1Vj€J, (3.1)

and the so-called cocircuit inequalities (forbidden set inequalities, see Chapter
4),

> ;= > a;<|F|-1forall F C Dand |F| odd, (3.2)

JEF JED\F

where D is a cocircuit. To show that cocircuit inequalities are valid, we propose
our own proof.

Proof. Let C and D be any cycle, cocycle pair of a binary matroid M [H]. We
show that the left-hand side of Inequality (3.2) is less than or equal to |F| — 1
for all cycles.

Case 1:

If CN'D ¢ F, then there exists at least one variable z;, j € D\ F such that
z; = 1. It follows that the left-hand side of Inequality (3.2) can be maximally
|F| — 1.

Case 2:
IfCND C F, then [CND| < |F|— 1since |C N D| is even due to the second
property of Theorem 3.18. O

Some conditions for which a trivial inequality or a cocircuit inequality de-
fines a facet of P(M [H]) are given in [5]. For the proofs of Theorem 3.26 and
Theorem 3.28 we refer to [5].
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Theorem 3.26. Let M [H] be a binary matroid such that:

(1) M [H] has no coloops and coparallel elements. If j € J is not contained in a
triad, then x; > 0, x; < 1 are facets of P(M [H]).

(2) M [H] has no F¥ minor. If there exists a triad {j, j', "} C J then the following
inequalities are facets of P(M [H])

ZL‘j — {L‘j/ — {L‘j// S O
—Zj + Xjr — Xjn < 0

—.I'j — 33]'/ + .I'j// § 0

To identity if a cocircuit inequality is facet defining it should be checked if
the associated cocircuit has a chord.

Definition 3.27. Let C be a cocircuit. If there exists two cocircuits C', C" such that
C'NC"=yj,7€ J\CandC'AC" =C, then j is called a chord of C.

Theorem 3.28. Let M [H] be a binary matroid without an F; minor and D be a
cocircuit with at least 3 elements and no chord. Then the inequalities

 aj— Y x4, <|F|-1,F CD,I|F| odd

JEF JED\F
are facets of P(M [H]).

Example 3.29. Let M [H] be a binary matroid with the representation matrix

1
H = 0
0

O = O
_ o O

110
1 01
011

There are 7 cocircuits of M [H|: { {1,4,5}, {2,4,6}, {3,5,6},{1,2,5,6},{1,3,4,6},
{2,3,4,5},{1,2,3} }. It can easily be verified that 4, 5, 6 are chords. In particular, for
the cocircuit {1,2,5,6} there exists cocircuits C' = {1,4,5}, C" = {2,4,6} such that
C'NC" ={4},4€{1,2,3,4,5,6}\ {1,2,5,6} and {1,4,5}A{2,4,6} = {1,2,5,6}.
Since the cocircuits {1,2,5,6}, {1,3,4,6}, {2,3,4,5} contain a chord the cocircuit
inequalities that can be derived from these cocircuits do not define facets of P(M [H)).

An interesting question answered in [5] is: Are the trivial and cocircuit
inequalities sufficient to describe P(M [H]) in general? Let Q(M [H]) be the
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polytope which is described by the trivial inequalities and the cocircuit in-
equalities, i.e.,

Q(M [H]) := {x € R" : x satisfies (3.1), (3.2) for all cocircuits }. (3.3)

It is stated in Theorem 3.30 that for some special binary matroids, the cycle
polytope can be described completely by the trivial inequalities and the cocir-
cuit inequalities. These matroids have the so called sum of circuits property.

Theorem 3.30. [5] P(M [H]) = Q(M [H]) if and only if M has none of the follow-
ing minors: F, Ry, (M [Kj5))*.

3.3.1 Complete binary matroids

In [36], Grotschel and Truemper introduce a family of binary matroids called
complete binary matroids. Complete binary matroids are denoted by L,, for
m > 1. Ly contains a single loop. For m > 2, L,, is represented by a matrix
[I|A™] where A™ is an (2™ — m — 1) x m zero-one matrix and [ is the (2" —
m — 1) x (2™ —m — 1) identity matrix. The (2™ — m — 1) rows of A™ are all
possible distinct 0 — 1 row vectors with the exception of the 0 vector and the m
unit vectors.

Example 3.31.

A? =[11] and A® =

= = = O

1
1
0
1

O R = =

A™*1 is obtained from A™ by the following scheme where I is the m x m
identity matrix and 0 and 1 are column vectors of appropriate size.

A™ 0
AP =A™ |
I 1

For the ease of notation, before stating the main theorem on complete binary
matroids, the notion of representative inequalities has to be introduced. Let
the inequality a”z < « be a face of a cycle polytope. All inequalities a’z < &
which can be derived from o’z < o and any cycle C by using Theorem 3.25 are
represented by o’z < a.

Grotschel and Truemper [36] collected the results on complete binary ma-
troids in Theorem 3.33. However, a proof of Theorem 3.33 was not included
in [36]. We summarize in Proposition 3.32 the partial results which help in
the understanding of Theorem 3.33. We also propose our own proofs. Note
that a full understanding of complete binary matroids, helps in identifying the
polyhedral properties of simplex codes.
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Proposition 3.32. Let m be an integer larger than 2.

(1) For m > 3, a circuit C of Ly, cannot consist only of elements from the index set

of the columns of A™.

(2) For m > 2, in every column of A™ there are 2m=1 _ m zeros and 21 — 1 ones.

(3) Every circuit C of L, has cardinality 2™ 1.

(4) Every non-empty cycle of L, is actually a circuit.

(5) For m > 2, any L., has 2™ cycles.

Proof. In the first part of the proof it is assumed that m > 3. In the remaining
parts it is assumed that m > 2.

(1) C is a circuit of L,, if and only if the elements of C are the indices of the

columns of a minimal Eulerian column submatrix of [ 1 \ A™ ], ie., a
minimal column submatrix where each row has an even number of ones.
By the definition of A™, no column submatrix of A™ can be Eulerian.
Hence, a circuit cannot consist only of elements from the index set of the
columns of A™.

(2) By construction A™ contains all possible distinct 0 — 1 row vectors with

the exception of the 0 vector and the m unit vectors. For a fixed column
A™, i € {1,...,m}, there are (" ') rows of A™ which have a zero at
position i a}nd have exactly k ones for k = 2,3,...,m — 1. Hence, column
ihas Y17, (mj_l) =21 — (m—1)—1=2""1—m zeros. Since A™ has
2™ —m —1 rows, each column contains 2" —m—1— (2™ —m) = 2m"1 -1
ones.

(3) The proof is done by induction on m. For m = 2 the statement is obvious.

Consider the case m = 3:

The complete binary matroid is Ly = [ I | A% |. The index sets of the
columns of I and A? are {1,2, 3,4} and {5, 6, 7}, respectively. Due to (1),
any circuit C of L3 can be written as C = X UY, where X C {1,2,3,4}
and Y C {5,6, 7}. Three cases have to be distinguished:

Case 1: |Y| = 1.

Since every column of A® has 3 ones, X must contain 3 elements of
{1,2,3,4} such that there are two ones in every row of the column sub-
matrix built by the columns whose indices are in C. Hence, |C| = 4 = 231,
Case2: |Y|=2.

No two columns of A? have all their ones at the same positions and there
is a single zero in every column. Hence, a two column submatrix of A?
has two rows that have a single one. A circuit C containing the indices of
these two columns must also contain the indices of two unit vectors of /
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such that the column submatrix indexed by C has two ones in each row.
Again, |C| =4 = 2371,

Case 3: |Y| = 3.

Only one of the rows of A® has an odd number of ones. Hence, a cir-
cuit of L? containing the indices of all 3 columns of A* must also contain
the index of one unit vector from I such that the mentioned row has an
even number of ones in the column submatrix of [ I | A* | indexed by C.
Thus, |C| = 4 = 23~L.

Assume that the statement is true for all m = 2,3,4, .. ..

Inductive Step:

Let C,, = X,, UY,, be a circuit of L,, with X,,, C {1,2,...,]2" —m — 1|}
and Yy, C {|2™ —m|,...,|2™ — 1|}. Then |C,,| = | X\n| + [Yin| = 2771

A circuit C,,41 of L,,4+1 can be distinguished from the circuits of L,, in
three ways.

Case 1:

Choose the columns of A™*! that contain the |Y;,| columns of A™ whose
indices are in C,,. Then a circuit C,,4; of L,,;; containing the indices
of these columns must also contain the indices of 2 |X,,| + |Y,,| distinct

columns from {1,2,...,[2™ —m — 1|} by the structure of A™*!. Hence,
Crna| = (Y| + 2| Xon| + [Vin| = 2[Cpn| = 27,
Case 2:

Choose last column of A™*!, In order to have a Eulerian column subma-
trix of [ 1 ‘ Amtl ] .

e the columns of A™! that contain the |Y,,| columns of A™, whose
indices are in C,,,,

e |X,,| columns from I for the first 2™ — m — 1 rows,

e 2™ —m —1—]X,,| further columns from [ for the second 2™ —m — 1
rows,

e m — |Y,,,| further columns from I for the remaining rows

have to be chosen. Hence [C,, 11| = 2™ 1 +142" —m—1—| X, |[+m—|Y,,| =
gm—1 4y gm _ gm—1 _ om,

Case 3:

Choose only the last column of A™*!. Then 2™ — 1 appropriate columns
from I should also be chosen. The indices of these columns form a circuit
Cof Ly and |Cppyq| =2m — 1+ 1 =2™.

(4) Let C be a circuit of L,,. Then 2|C| = 2™ > 2™ — 1, i.e, no disjoint union of
circuits is possible.

(5) For any subset () # @ C {|2" —m]|,...,|2™ — 1|} there exists a circuit C of
L,, that contains (). Since {) is a cycle by definition and every non-empty
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cycle of L,, is actually a circuit, L,, has 1+ (7) + () + ... + () = 2™

cycles. The cycles of Ly are 0, {1,2},{1,3},{2,3}. Thus, the statement
also holds for m = 2.

]

Now we state the theorem of Grotschel and Truemper [36]. It is followed
by an example.

Theorem 3.33. [36] For any m > 1, the complete binary matroid L,, has 2™ — 1
elements and 2™ — 1 non-empty cycles. Each such cycle C is a circuit, and |C| = 2™,
The cycle polytope P(L,,) is a full-dimensional simplex with 2™ vertices. The facet
defining inequalities of P(L,,) are represented by the inequality

Z.Tj S 2m71‘

jed

Example 3.34. Consider L3 (This binary matroid is associated with the [7, 3, 4] sim-
plex code.) with the representation matrix below.

1000110
0100111
"= 0010101
0001O0T11

It can easily be verified that Ls consists of the cycles {0, {1,2,3,5},{1,2,4,6},{2,3,4,7},{3,4,5,6},{
The representative inequality is

$1+$2+$3+I4+$5+I6+$7§4. (34)
It follows from Theorem 3.33 that the system of inequalities

I +x9 +x3 +x4 +x5 +Tg +x7 S 4
—r1 —T2 —x3 +x4 —x5 +we +w7 <0
—xr1 —Ty +w3 —T4 +x5 —x6 +x7 <0
r1 —Xy —x3 —x4 +x5 +x5 —27<0
T +x9 —x3 —x4 —x5 —Tg +x7<0
—Tr1 +x9 —x3 +Ty +x5 —Tg —T7 < 0
—r1 +r2 +x3 —x4 —x5 +wg —w7 <0
—xr1 —Ty —x3 +r4 +T5 +x6 —27 <0

describe P(Ls) (the codeword polytope of the [7,3,4] simplex code) completely and
non-redundantly.
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Let J be the ground set of L,, and P(L,,) denote the cycle polytope of L,,.
Grotschel and Truemper [36] call P(L,,) the master polytope. The motivation
for the name "master” follows from the observation that for a binary matroid
M [H] without coloops and coparallel elements, there exists a relation between
the facets of P(L,,) and the facets of P(M [H]).

In the rest of this section it is assumed that a given binary matroid M [H]
has no coloops and coparallel elements. Grotschel and Truemper [36] show
that M [H] with the representation matrix H = [/|A] can be obtained by con-
traction operations from a complete binary matroid L,,. If the complete binary
matroid L,, = [/|A™] is chosen such that A is a row sub-matrix of A™, then
MIH] = L,,/N for some N C J. Consequently P(M [H]) is obtained by pro-
jecting out the components z., e € N from P(L,,).

Although it is theoretically possible, in general deriving P(M [H]) from
P(L,,) is computationally inefficient. Two reasons for that are:

(1) exponentially many projections may be needed,
(2) no computationally efficient procedure for projection is known.

A special case for which P(M [H]) can be derived from P(L,,) is given in
Theorem 3.35.

Theorem 3.35. Let e € J. For m > 2 the system of facet defining inequalities for
P(L,,/e) is represented by 2™~ inequalities of the type

> a2
jgc
where each set of inequalities corresponds to a circuit C of L,, with e € C.

Example 3.36. Let m = 3 and e = 4. The representation matrix of Ls is already
given in Example 3.34 and the representation matrix for L., /e is

110
H = 1 11
1 01

where the column index set is J = {1,2,3,5,6,7}. Four cycles of L3 which con-
tain index 4 are {{1,2,4,6},{2,3,4,7},{3,4,5,6},{1,4,5,7}}. The system of facet
defining inequalities of P(Ls/4) are represented by the inequalities

OO =
O = O
_ o O

T3+ T5 + a7 <2
T1+ x5 + 26 < 2
T1+ 2o+ a7 <2
To+ T3+ x5 < 2.
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Grotschel and Truemper [36] also propose a lifting procedure to deduce the
facets of an arbitrary cycle polytope P(M [H]) from a certain master polytope
P(L,,), m > 1. In this procedure it is checked if M [H] contains contraction
minors (see Definition 3.38). The inequalities associated with the maximum
of these minors (see Definition 3.38) are lifted to define facets of P(M [H]).
Concerning the complexity! of the lifting procedure, the dominating operation
is the determination of the maximal complete contraction minor of M [H]. It
was shown that such a minor can be found in polynomial time. By employing
the lifting procedure only a subset of the facets of P(M [H]) can be found.

Let H = [I|A] be the representation matrix in standard form with basis X.
Then J = X UY where Y is the set of non-basic elements. For the ease of
notation Grotschel and Truemper [35] introduce a short representation matrix
R. In R only the sub-matroid A is written. The rows and columns of R are
indexed by X and Y respectively.

Y

X| A

Example 3.37. We consider again Ls with the representation matrix given in Exam-
ple 3.34. Let X = {1,2, 3,4} the basis of the matroid. Then

1 2 3 45 6 7

1 0 0 O 1 1 0
H=| 01 00 1 1 1
0010 1 0 1
00 01 01 1
and
5.6 7
1 | 1 10
R= 2 1 1 1
3] 1 01
4 | 011

'Here and in the following chapters the term complexity means time complexity unless
stated otherwise.
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In their lifting procedure Grotschel and Truemper [36] first search for max-
imal complete contraction minors in the binary matroid M [H].

Definition 3.38. A minor M of a binary matroid M [H] is a complete contraction
minor if

1. M is obtainable from M [H| by using only contraction operations,
2. M is isomorphic to a complete binary matroid L,,, m > 1.

M isomorphic to L,, for some m is called a maximal complete contraction minor if
M [H] does not contain L,, 1 as a complete contraction minor.

Any element of M [H]| forms a complete contraction minor L;. The exis-
tence of L, in M [H] is checked by searching a triad. A binary matroid has L,
as a complete contraction minor if and only if it contains a triad. In general,
suppose L,, where m > 2 is a complete contraction minor of M [H]. If Lemma
3.39 is satisfied, L., is also a complete contraction minor of M [H].

Lemma 3.39. Let L,,, where m > 2, be a contraction minor of a binary matroid
M [H]. Additionally, let J, be the ground set of L,, which can be partitioned into X
and Yy, Jo = Xo U Y. Extend X to an arbitrary basis X of M [H]. Then M [H] has
Lyn+1 as a contraction minor if and only if the short representation matrix R with
basis X is equal to R, (see Figure 3.3) or Ry (see Figure 3.4).

The rows of the short representation matrix R; given in Figure 3.3 is parti-
tioned into X, X, and X so that X is a basis of L,,, XoU X} is a basis of L,, 1
and Xy U X; U X, is a basis of M [H]. The columns of R; are also partitioned
into Yy, ¢, and Y,. The non-basic elements of L,, are collected in Yy. Yy U {e} is
the set of non-basic elements of L,,.;. Finally Y, U {e} U Y5 contains the non-
basic elements of M [H]. Grotschel and Truemper [36] show that any other
short representation matrix of M [H| has either the structure of R; except that
the index sets X, and Y5 are different or it has the structure of R».

For a given element j € .J, a polynomial time procedure which finds the
maximal complete contraction minor containing j is described in [36]. We
rewrite this procedure as an algorithm and refer to it as maximal complete
contraction minor algorithm (MCCMA). Repeating MCCMA for all j € J, the
maximal complete contraction minor of M [H| can be found.

Having found a maximal complete contraction minor, the main result used
in the lifting procedure of Grétschel and Truemper [36] is stated in Theorem
3.40.

Theorem 3.40. Let M [H| be a binary matroid without coloops and coparallel el-
ements. Suppose a complete binary matroid L., with ground set J, is a complete
contraction minor of M [H|. Then the following statements are equivalent.
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Yo e, Y2
PR S— k | —]
x,| 4 0
B
Ri= Xi : 1 0
X, 0-1

Figure 3.3: Short representation matrix 1.

Yo Yy |
Ak 0
Xo
Ak:
RQ = Xl 1. dT
L |
f 0
X} 0-1

Figure 3.4: Short representation matrix 2.
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Maximal complete contraction minor algorithm
Input: A binary matroid M [H], j € J.

Output: A maximal complete contraction minor
Ly,.

1: m=1.

2: if x; is contained in a triad then

3:  repeat

4: m=m+ 1.

5: Select an arbitrary basis X of M [H] such that:

6: X contains a basis X of L,,,

7: X does not contain any other element of L,,.

8:

until RX 7é Rl and RX 7& RQ.
9: end if
10: Output L,,.

1. L., is a maximal complete contraction minor of M [H|.
2. Any facet defining inequality of P(L,,) also defines a facet of P(M [H]).
3. At least one facet defining inequality of P(L,,) defines a facet of P(M [H]).

4. The facet defining inequality

Z x; < 2m71

Jj€Jo

of P(Ly,) also defines a facet of P(M [H]).

3.4 Decomposition of binary matroids

An essential research direction within the theory of matroids is the decompo-
sition of matroids. Based on Seymour’s work [61] it can be shown that some
matroids can be composed from smaller matroids by performing some suitable
operations. The resulting matroid is referred to as the k-sum, k € Z, k > 1, of
smaller matroids. Conversely, it is possible to decompose some matroids into
smaller matroids under certain assumptions.The simplest k-sum is for k& = 1,
known as the direct sum. The following theorem from [57] describes the direct
sum operatian denoted by @.

Theorem 3.41. Let M' = (J',U') and M" = (J",U") be two matroids and J'NJ" =
(). Then there exists a matroid M = (J,U) such that J = J'UJ" and U = {U'UU" :
U eU' U" eU"} called the direct sum of M’ and M" and denoted by M’ & M".
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Example 3.42. Let M [H;| and M [H,] be two binary matroids with representation
matrix Hy and H, respectively. The representation matrix H of M [H,| & M [H,] is:

[ H o0
|

where 0 denotes a matrix of zeros with appropriate dimensions.

Definitions 3.43 and 3.45 formulated by Tutte [67] play an important role in
the composition and decomposition of matroids.

Definition 3.43. Given a positive integer k and a matroid M = (J,U). A partition
(T, TC) of the ground set J is called a Tutte k-separation of M if

min{|T, |T°|} > k, (3.5)
and
r(M|TC) +r(M|T) = r(M) < k — 1. (3.6)

Note that M|T¢ and M|T are the restrictions of M on the sets T, T¢ C J.
If (3.5) is satisfied with equality, then the separation is called a minimal k-
separation. If (3.6) is satisfied with equality, then the separation is called an
exact k-separation. There is a trivial relationship between the Tutte 1-separated
matroids and the matroids constructed by direct sum operatin. We prove this
in Theorem 3.44.

Theorem 3.44. A matroid M is Tutte 1-separated if and only if it can be constructed
from two non-empty matroids via direct sum.

Proof: Let J be the ground set of the matroid M. For any partition (7', 7¢) of
J it holds that r(T) + r(T%) > r(J). It follows that (T, T) is a 1-separation of
M if and only if T and T are not empty and 7(T) + r(T°) = r(J). The latter
is equivalent to C' = C|T¢ & C|T. O

Definition 3.45. Let | € ZT and k € Z*, k > 2. A matroid M is called Tutte
k-connected if it has no Tutte l-separation for | < k.

In the following we concentrate on composition and decomposition of bi-
nary matroids via k-sums, k = 2, 3. Definitions below are from Seymour [61].

Definition 3.46. Given two binary matroids My [H,] = (J1,U,) and My [Hy| =
(Ja,Us) such that min{|.J1|, |.J2|} > 3. Suppose J, N J, = {e} and e is not a loop or
coloop of My [Hi], My [Hs|. Then the binary matroid M [H] = (J,U), J = J1AJy,
with the property that all cycles C of M [H| are of the form C = CiACy where C;
and Cy are the cycles of My [Hy] and My [H,), respectively, is a 2-sum of My [H,],
MQ [Hg]
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Definition 3.47. Given two binary matroids M, [H,| = (J1,U,) and My [Hy| =
(Ja,Us) such that min{|.J1|,|Jo|} > 7. Suppose J, N Jo = {e, f, g} where the set
{e, f,g} is a circuit of M, [H,| and My [Hs] but contains no cocircuit of My [H]
and My [Hs). Then the matroid M [H] = (J,U), J = J1AJs, with the property that
all cycles C of M [H] are of the form C = C1AC, where Cy and C, are the cycles of
M, [Hy] and My [Hs] respectively, is a 3-sum of My [H;], My [Hs].

Combining Definitions 3.46 and 3.47 with the properties of Tutte k-separation,
k = 2,3, the following existence statements given in Theorem 3.48 and 3.49 can
be made. These theorems have involved proofs which can be found in [61].

Theorem 3.48. Let (T, T€) be an exact 2-separation of a binary matroid M [H| =
(J,U), J = TUTC and {e} a new element. Then there exists two binary matroids
M1 {Hl] = (Jl,ul) and M2 [HQ] = (JQ,Z/{Q) such that Jl =TU {6}, J2 = TC U {6}
and M [H] is a 2-sum of M, [Hy] and My [Hs]. Conversely if M [H] is a 2-sum of
two binary matroids My [H,| and My [Hs) then M, [H;] and My [Hs) are isomorphic
to proper minors of M [H| and (T, TC) where T = Jy\ {e}, T® = Jy\ {e} is an exact
Tutte 2-separation of M [H]|.

Theorem 3.49. Let (T, TC) be an exact 3-separation of a binary matroid M [H] =
(JU), J = T UTC such that min{|T|, |T°|} > 4 and {e, f, g} be a set of new
elements. Then there exists two binary matroids M, [H,| = (J1,U,) and My [Hs] =
(Jo,Us) such that J, = T U{e, f, g}, Jo = TC U{e, f,g} and M [H] is a 3-sum
of My [H;]| and My [H,|. Conversely if M [H]| is a 3-sum of two binary matroids
M, [Hy] and My [Hy) then My [Hy] and Mo [H,| are isomorphic to proper minors
of M and (T, TC) where T = J, \ {e, f,g}, T = Jo \ {e, f, g} is an exact Tutte
3-separation of M [H| with min{|T|, |T¢|} > 4.

Although Seymour presented the necessary and sufficient conditions for 2
and 3-sums to exist, a composition scheme for obtaining M [H] from M [H,],
M, [Hs), or a decomposition scheme of M [H] into M, [H,] and M, [H,] is not
given in [61].

Grotschel and Truemper observe that the decomposition theory of Sey-
mour has some important implications on the problem of minimizing a lin-
ear cost function over the cycles of a binary matroid which is called the cycle
problem. Specifically, if a binary matroid M [H] is a k-sum, k = 1,2,3, of
two binary matroids M, [H;] and M, [H,] then each circuit of M [H] can be
composed from the circuits of M; [H;] and M, [H;]. For some binary matroid
classes, the decomposition theory results in a polynomial time algorithm for
the cycle problem.

If £ = 1 then a circuit C of M [H] is either a circuit in one of the matroids
M, [H;],i = 1,2, or there exists two circuits C, C; in My [H;]|, My [H,] such that
C = C; UC,y. In order to make statements for £ = 2,3, some (de)composition
schemes are introduced in [35]. Next we summarize the (de)composition re-
sults from [35].
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Theorem 3.50. Given an exact Tutte k-separation (T, T¢) of M [H], k > 1, there
exists a basis Xy of M [H]|T and an independent set X, of M|TC such that X :=
X1 U Xy is a basis of M and the short representation matrix R corresponding to the
basis X is of the form

R (R T
X1 | A 0

R= (3.7)
X, | D Ay

whereT = X, UY,, T = Xo UYsand r(D) = k — 1.

Conversely, a matrix of the form given in (3.7) defines a Tutte k-separation
(X7 UY, Xo UYs) if min{|X; UYi|, | XoUYs|} > k. The proof of this theorem
can be found in [39].

Let M [H] be a binary matroid and there exists an exact Tutte 2-separation
(T, T¢) of M [H]. In the decomposition scheme of Grotschel and Truemper, the
short representation matrix of the matroid to be decomposed is brought in the
form given in (3.7). Then M [H] is decomposed into binary matroids M; [H;]
and M, [H,| with short representation matrices R{ and Rj respectively.

o Y1 777‘6' Y,
RE= Xi| A Bi= v lul a | (3.8)
<l

For k = 2, r(D) = 1 according to Theorem 3.50. It follows that all non-zero
rows of D or all non-zero columns of D are identical. Let a and u denote the
non-zero row and column of D respectively. The short representation matrix
RS of M, [H,] is obtained from A; in (3.7) and the non-zero row of D. The
non-zero row of D is indexed by e in RS. The short representation matrix RS of
M [Hs] is constructed by A; of (3.7) and the non-zero column of D. The index
of the non-zero column of D is also set to e.

Example 3.51. Let M [H| be a binary matroid with the standard representation ma-
trix

=
Il
o O =
O = O
— O O
L)
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It can easily be verified that (T,T), T := {1,4} and T¢ := {2, 3} is an exact Tutte
2-separation of M [H]. Let X, Y1, Xs, and Y, of Theorem 3.50 are set to {1}, {4},
{2, 3} and O respectively. Then the short representation matrix R is

I I I
IO NI
— = O

Using the decomposition scheme in (3.8) for 2-sums, the short representation matrices
R and RS are given as

e

e
R= 110 RS= 21}
el IR

It follows that the standard representation matrices Hy, Hy of My [H;] and My [H,)|
with J, = {1,e,4}, Jo = {2,3, ¢} are

100 101
Hl:(Oll) H2:<011)'

Conversely if the assumptions of Definition 3.46 hold then M [H] can be
composed from M, [H,] and M, [H,] by reversing the decomposition scheme.
The submatrices A; and A, are identified in R{ and Rj respectively. The sub-
matrix D is given by D = a - u. Grotschel and Truemper use the notation
M[H] = M, [H] &. M [H,] to denote a 2-sum decomposition where the in-
dex e indicates that 2-sum is performed over the element e. It is stated that if
M [H] = M, [Hy] ®. My [H,] then a circuit C of M [H] is either a circuit C; of
M, [H;], i = 1,2, or there exists circuits C;, Co of M; [H;], M [Hs] such that
C = (ClACQ) and e € Cl,CQ.

Composition and decomposition schemes for 3-sums are more involved.
Furthermore there exists alternative schemes. Two schemes given in [35] are
referred to as A-sum and Y-sum. Under the assumptions of Theorem 3.49
there exists X; C T and X, C T such that (3.7) in Theorem 3.50 is of the form

o Y) Y,
X A 0
R=-- 1170 . (3.9)

o]
N
=4
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Note that
al1]10
b 101 D
Dl|ulv

The first 3-sum decomposition scheme is the A-sum. Let M [H] be a binary
matroid with the short representation matrix R given in (3.9). Then M [H]
can be decomposed into binary matroids M, [H;] and M, [H;] with the short
representation matrices R and R5 respectively.

i g

- - e flg Y
1]0][1
RA = X 4 0 RM= X, [0[1[1]| A, (3.10)
e |la]l]0]1 u ol w
flo]ol1]1

According to Theorem 3.50 for £ = 3, r(D) = 2. It follows that the sub-
matrix D has two linearly independent rows and two linearly independent
columns. Considering (3.9), the two linearly independent rows of D are the
rows containing a, b and the two linearly independent columns of D are the
columns containing u and v. To obtain the short representation matrix R% of
M, [H,], first the two rows of D containing a and b are added to A;. The added
rows are indexed with e and f. Second a new column is added to the extended
Aj matrix. The index of the new column is set to g. The column with index g
has zero entries except the rows e and f. In these two rows, column g has 1 as
entries. In order to obtain the short representation matrix R5 of M, [H,] the
two columns of the submatrix D containing u, v are added to A,. The two new
columns are indexed by e and f. Finally, a third new column, indexed by g, is
found by adding the columns e and f.

Example 3.52. Let M [H] be a binary matroid with the standard representation ma-
trix

SO = OO O
O =R OO oo
_ o O O o o

0
0
1
1
1
1

OO OO O
e NeNoNoll ol
(NN e N
(el elNeleall -
— === O
OO O = O
OO R~ OO
O~ R = OO

It can be verified that (T, TC) is an exact Tutte 3-separation of M [H|, where T =
{1,7,8,9} and T = {2,3,4,5,6,10,11,12}. Let Xy, Y1, Xy, and Yy of Theorem
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3.50 be set to {1}, {7,8,9}, {2,3,4,5,6} and {10,11,12}, respectively. Then the
short representation matrix of M [H] is

7 8 9 101112
110 1 1 000
2101710 100

R= 3|10 1 111

41101 o011
501101 001
6101 (000

Using the decomposition scheme (3.10) the short representation matrices R and RS
of My [H;] and My [H,] are given as

—_
(@)
—_
—_
—_
(]

RY =-

»—tOO\IA
O| | |00
or—\
HHOQ-

I~ O | =1

f
0
1
1
1
1

IS O = W NI
O O OO
— = e
O OO = =
OO R RO
ORr Rk R~k O

Conversely, if the assumptions of Definition 3.47 hold then M [H] can be
composed from M, [H;] and M, [H,] by reversing the A-sum decomposition
scheme. The submatrices A;, a, b and A,, u, v are identified in RlA and RQA re-
spectively. The submatrix D is given by

p=[ulv]

An alternative 3-sum decomposition scheme given in [35] is the Y-sum. A
Definition similar to Definition 3.47 for Y-sum can be written.

Definition 3.53. Given two binary matroids My [H,| = (J1,U,) and My [Hy| =
(Jo,Us) such that min{|Jy|,|J2|} > 7. Suppose J, N Jo = {r,s,t} where the set
{r,s,t} is a cocircuit of My [H;| and My [H,| but contains no circuit of My [H]
and My [H,|. Then the matroid M [H] = (J,U), J = J1AJy with the property that
all cycles C of M [H,] are of the form C = CiAC, where C, and C, are the cycles of
M [Hy] and My [Hs] respectively, is a 3-sum of My [Hy], Ms [Hs].

Let M [H] be a binary matroid for which the assumptions in Theorem 3.49
hold. Then M [H] can be decomposed into M, [H;] and M, [H,] with the short
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representation matrices R} and R} respectively.

o -le 777‘7,'8' }/2
¥ y t T1]1] 0
1 1 -
1[0
Y _ ) G
R = — B = ¢ Tt 4, (3.11)
s [0 [0t o
e 1] -

In the Y-sum decomposition of a suitable M [H], first the short representa-
tion matrix of the form (3.9) is written. To obtain RY of M, [H,], the two rows
of the submatrix D which contain ¢ and b are added to A;. The added rows are
indexed with r and s. Then a third row which is the sum of the rows indexed
with r» and s is added to the extended A; matrix. The third row is indexed
with t. RY of M, [H,] is constructed by first adding two columns to A, and
then adding a row to the extended matrix. The new added columns are the
two linearly independent columns of the submatrix D of (3.9) which contain u
and v. The indices of these columns are set to r and s. The new added row has
all 0 entries except in columns 7, s. The index of the row is set to .

Example 3.54. Let M [H] be the binary matroid with the representation matrix H
given in Example 3.52. Moreover the exact Tutte 3-separation (T, T) as well as the
sets X1, Y1, Xy, and Y5 are chosen as before. Then the short representation matrices
RY, RY of the binary matroids M, [H,| and M [Ho] are

r s 1011120
'7 8 9 t]111] 000
1{1 1 o0 2010 100
R=rl0[1] 0 RYy=3[0|1] 111
sl1lo] 1 410]1] o011
tl1l1] 1 5/0|1] o001
B 6l0[1]| 000

Let M [H] be a binary matroid for which the assumptions of Theorem 3.49
are valid. Then there exists M [H,], M5 [Hy] (MY [H,], MY [Hy)) such that
M[H] = MP [H] ©a M5 [Hp] (M[H] = MY [H] @y M} [H]). One of the
main results in [35] is that every circuit C of M [H] can be obtained from
circuits Cf*, C5* of M% [H,], M [Hy| or equivalently from circuits C;, CJ of
MY [Hy], MY [H,]. The details of the composition of C from C#, C$ or CY, CY
are given in Proposition 3.55 and 3.56.

Proposition 3.55. Let M [H| = (J,U) be a binary matroid obtained by the A-sum of
binary matroids M, [Hy| = (J1,Ur), My [Hy| = (Jo,Us), 1.6, M [H] = My [Hy] ®a
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Moy [Hs) and Jy N Jy = {e, f,g}. If C is a circuit of M [H] then C is either a circuit
Ciof M, [H;],i = 1,2 0r C = C;ACy such that there exists a unique z € {e, f, g} and
Ci:=(Cn(Ji\A{e f,g9})) U{z} isa circuit of M; [H;] for i = 1,2.

Proposition 3.56. Let M [H| = (J,U) be a binary matroid obtained by the Y -sum of
binary matroids My [Hq| = (J1,Uy), Ms [Ho| = (Jo,Us), 1.6, M [H] = M, [Hy] @y
My [Ho) and Jy N Jy = {r,s,t}. If C is a circuit of M [H| then C is either a circuit C;
of M; [H;],i = 1,2 0r C = C;AC, such that there exists a unique two element subset
QC{rs,tyand C; .= (CN(J;\ {r,s,t})) UQisa circuit of M; [H;] for i = 1, 2.

The cycle problem can be solved in polynomial time for the graphic ma-
troids and the cographic matroids without (M [K;])* minor. The former result
is shown by Edmonds and Johnson [21] using a matching algorithm and the
latter result is proved by Barahona [4]. (De)composition techniques used in
[35] extend the matroid classes for which the cycle problem is polynomially
solvable. Explaining these techniques in detail is out of the scope of our work.
Instead we briefly mention the main results.

First of all, it should be shown that there exists a polynomial time algorithm
which performs 2 and 3-sum decompositions. Grétschel and Truemper show
that for any connected binary matroid M [H] without F; or F7 minor 2 and
3-sum decompositions can be performed in polynomial time.

One solution approach to the NP hard cycle problem is to maximize the lin-
ear cost function over a relaxation of P(M [H]). If the solution is non-integral,
the relaxed polytope is iteratively tightened via valid inequalities until the op-
timum is integer or no valid cut can be found. A relaxation Q(M [H]) which
contains exponentially many constraints is known from Section 3.3. Due to the
result of Groetschel, Lovasz, Schrijver [34] which we introduced as Theorem
2.38 in Chapter 2, the cycle problem on Q(M [H]) is polynomial time solvable
if and only if the separation problem for Q(M [H]) is polynomial time solvable.
In [35] it is shown that the separation problem for Q(M [H]) can be solved in
polynomial time if M [H] is

e graphic,
e cographic,
e a matroid without F7 or ¥ minor.

The last matroid class is obtained by applying a decomposition approach. A
polynomial time separation algorithm for the matroids listed above implies
that the corresponding optimization problem can be solved for the matroid
classes given in the following corollary.

Corollary 3.57. Let A\ € R" and M [H| be a matroid with n elements. Then the linear
program max{\"z : x € Q(M [H])} can be solved in polynomial time if M [H]|
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e has no F; or F; minor,

e has the sum of circuits property,
e is cographic

e is graphic.

From Theorem 3.30 it is known that P(M [H]) = Q(M [H]) if and only if
the underlying matroid has the sum of circuits property. Consequently for the
matroids with the sum of circuits property, the cycle problem can be solved
in polynomial time. (De)composition techniques enable to make more gen-
eral statements about the separation problem for Q(M [H]). Grotschel and
Truemper state that there exists a polynomial time separation algorithm for
Q(M [H]) for all matroids M [H] which can be decomposed recursively via 2-
sums, A-sums into graphic, cographic matroids or to a matroid from a prespec-
ified finite list provided that 2 and A-sum decompositions can be performed
in polynomial time.

In the theoretical statements which eventually lead to Corollary 3.57, it is
assumed that the ellipsoid algorithm is used to solve LP problems. The reason
for that is the runtime of the ellipsoid algorithm is provably polynomial. How-
ever in practice the ellipsoid algorithm is slower than the simplex method or
the interior-point methods (or its variants) and thus it has less practical use.

For the cycle problem of some binary matroids, a polynomial time combi-
natorial algorithm is proposed in [35]. This algorithm can be found in [35],
[45], [39]*. We do not repeat the algorithm here but give the main result on this
combinatorial algorithm and its implications.

Theorem 3.58. [35] Let N be a matroid family which contains the graphic matroids
and a finite number of matroids which are not graphic. Moreover let M be a matroid
family such that for each M € M\ N one can determine in polynomial time a 2-sum
M= M ®. MyoraY-sum M = M, &y My where My € N and My € M.
Then there is a polynomial time combinatorial algorithm that solves the cycle problem
for all matroids in M.

Corollary 3.59. Let A\ € R™ and M [H] is a matroid with n elements. Then the linear
program max{\Tz : x € P(M [H])} can be solved in polynomial time if M [H|

e has no Fr and (M [Ks))* minor,
e has no F; and (M [K5))* minor,
e has the sum of circuits property,
e is cographic and has no (M [K5])* minor,

e is graphic.

2An example can also be found in this master thesis.
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3.5 Matroid theory applications in coding theory

There exists a unique binary matroid corresponding to each binary linear code
and the converse is also true (see also [45]). A binary linear code C' is the null
space of a binary matrix H € {0,1}"*". This null space is equal to the circuit
space of a binary matroid M [H]| where H is a representation matrix. Note
that elementary row operations on H alters neither the binary linear code C'
nor the binary matroid M [H]. Two binary linear codes are equivalent, i.e.,one
code can be obtained from the other by a permutation of the bit positions, if
and only if the corresponding binary matroids are isomorphic. The next two
definitions facilitate the translations between the coding theoretic terminology
and the matroid theoretic terminology.

Definition 3.60. Let C' be a binary linear code with parity check matrix H and x &
C C {0,1}". The index set supp(x) = {j € J : x; = 1} is called the support of the
codeword .

Definition 3.61. A codeword z, 0 # x € C, is called a minimal codeword if there is
no codeword 0 # y € C such that supp(y) C supp(x).

Obviously, x is a minimal codeword if and only if supp(z) is a circuit of
M [H] and the support of a non-zero codeword of C' corresponds to a cycle
of M [H]. The equivalence between binary matroids and binary linear codes
implies the equivalence between the dual matroid and the dual of a binary
linear code. Let C* denote the dual code of C. A possible parity check matrix
of C* is G which is a generator matrix of C. Using the results from coding
theory and matroid theory, it can be shown that C* is equivalent to M [G] =
(M [H])". Translations between binary matroids and binary linear codes are
listed in Table 3.1. All theoretical results on binary matroids given so far apply
to binary linear codes. Instead of repeating the results under the coding theory
context we suggest the reader to use the translation table.

In coding theory, the notions of restriction and contraction are known as
shortening and puncturing, respectively. In a binary linear code shortening is
performed via deletion of one or more columns from the given parity check
matrix. Puncturing on the other hand is performed via deletion of one or more
columns from the generator matrix of the code. Shorter codes which can be ob-
tained from a parent code via shortening and puncturing operations are called
subcodes. Subcodes correspond to matroid minors.

Some special binary matroids are introduced in Sections 3.2, 3.3, and 3.4.
These matroids can directly be transferred to binary linear codes. Interest-
ingly, the famous Fano matroid F; of the matroid theory corresponds to the
7, 4] Hamming code that we denote by H;. The dual of the Fano matroid, F7,
corresponds to [7, 3] simplex code. Some other special matroids we use in what
follows are (M [K5])*, (M [K33])*, and Ryo. We denote the associated binary
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Table 3.1: A translation table from matroid theory to coding theory.

| Matroid theory | Coding theory
binary Matroid, M [H] binary Linear Code, C
cardinality of the ground set, | J| block length, n

representation matrix, 1

parity check matrix, H

standard form of H

systematic structure of H

isomorphism on matroids

equivalence on codes

representation matrix of (M [H])*,

M[G]

generator matrix, G

dual matroid, M [G]

dual code, C+

a cycle C of M [H]

supp(x), x € C

a circuit C of M [H]

supp(z), & € C minimal codeword

r(M[H])

dim(C')

r(M[G])

dim(C+) = n — dim(C)

cardinality of a minimal circuit of

M [H]

minimal distance of C

a cocycle D of M [H]

codeword of C'*+

triad

codeword of C*+ with weight 3

relaxation Q(M [H])

fundamental polytope (see 5.2) on
CL

cycle polytope P(M [H])

codeword polytope conv(C)

minor

subcode

fano matroid, F;

[7,4] Hamming code, H;

complete binary matroids

simplex codes

regular matroids

regular codes

graphic matroids

graphic codes

cographic matroids

cographic codes

matroids with sum of circuits prop-
erty

geometrically perfect codes

cocircuit inequalities

FS inequalities (see Section 4.2) de-
rived from a minimal dual code-
word
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linear codes by C(Ky ), C(Kj3), and C(Ry). Kashyap [45] derived classifica-
tions for codes similar to classification of matroids.

Definition 3.62. A binary linear code is called regular if and only if it has no minor
equivalent to Hy or H3.

Definition 3.63. A regular code is called graphic if and only if it has no minor equiv-
alent to C(K7") or C(K33).

Definition 3.64. A reqular code is called cographic if and only if it has no minor
equivalent to C(K5) or C(K33).

The dimension and the facets are the essentials of the polyhedral analysis of
the codeword polytope. Corollary 3.24 on the dimension of the cycle polytope
applies to the codeword polytope, i.e., conv(C).

Corollary 3.65. If d(Ct) > 3 then conv(C') is full-dimensional, i.e., dim(conv(C'))=

n.

It is known from polyhedral theory that if conv(C') is a full-dimensional
polytope then every inequality of a non-redundant system of inequalities de-
scribing the codeword polytope defines a facet. The results of Barahona and
Grotschel [5] on the cycle polytope (see Section 3.3) apply to binary linear
codes. Especially, Theorem 3.30 implies that in general the forbidden set (FS)
inequalities (see Section 4.2) derived from all codewords do not necessarily
describe conv(C') completely.

It follows from the definition of complete binary matroids that the repre-
sentation matrix of a complete binary matroid L,,, m > 3, corresponds to the
generator matrix of a 2™ — 1,2™ — 1 — m| Hamming code (see Definition 2.26).
Alternatively a representation matrix of a complete binary matroid L,,,, m > 3,
corresponds to a parity check matrix of a [2” — 1,m] dual Hamming code
(simplex code). Hence, the codeword polytopes of simplex codes are com-
pletely described by Theorem 3.33. By this theorem a non-zero codeword of
a [2™ — 1, m] dual Hamming code is a minimum codeword with weight 2"~1.
Since m > 3, there is no non-zero codeword in any simplex code with weight
less than or equal to 3. In other words any matroid corresponding to a Ham-
ming code has no coloop, no coparallel elements and no triad. For m = 3 a
Hamming code has no F?, C(K3), C(Ry) subcode thus any [7,4] Hamming
code can be completely described by the FS inequalities derived from all dual
codewords and the box inequalities. For m > 4 however it can be shown that
a Hamming code has F7 as subcode. We state that as a theorem and propose
our own proof.

Theorem 3.66. Any Hamming code of length n = 2™ — 1, m > 4 has a subcode
equivalent to Hi.
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Proof. To prove the statement, we show that the matroid associated with any
Hamming code for m > 4 has a minor which is isomorphic to F. Let J,,
be the ground set of some L,,. Since a representation matrix of any matroid
isomorphic to L} has all distinct binary vectors of length 4 except for the zero
vector as its columns, a minor isomorphic to F7 can be obtained from L} by
restrictions only. Equivalently, there exists a subset S C .J, such that F; = L}|S.

Any L,, is a contraction minor of some L,,.; for m > 1. Thus, for all m > 4
there exists a subset I' C J,,11 such that L,, = L,,,.1/T. By Theorem 3.7 L,,, =
Lyy11/T is equivalent to L, = L¥ . ,|T. It follows that for m > 4 there exists a
subset S C J, and a subset V' C J,, such that F¥ = L};|S = L} |V. Hence, for
m > 4, any matroid associated with a corresponding Hamming code has H+
as a subcode. O

From the observations given above, we deduce the following and present
the proofs.

Theorem 3.67. Let C be a 2™ — 1,2™ — 1 — m] Hamming code such that m > 4.
Then

(1) The codeword polytope, conv(C), is full-dimensional,
(2) The inequalities 0 < xz; < 1 define facets of conv(C),

(3) The FS inequalities derived from minimal dual codewords (cocircuit inequalities)
do not describe conv(C') completely,

(4) Ly is a maximal complete contraction minor of a matroid associated with C.
Proof. The proofs below follow from the previous results given in this chapter.

(1) For Hamming codes with m > 3, d(C*) > 3 since a binary matroid asso-
ciated with a Hamming code has no coloop, no coparallel elements. The
result follows from Corollary 3.65.

(2) A Hamming code with m > 3 has no dual codeword d € C*, w(d) = 3,
(no triad). The result follows from Theorem 3.26.

(3) It is shown in Theorem 3.66 that a Hamming code with m > 4, has a
subcode equivalent to H7. The result follows from Theorem 3.28.

(4) Let M [H| be the binary matroid corresponding to C. From the lifting pro-
cedure explained in Section 3.3.1 it is known that any element of M [H] is
contained in L,. Furthermore L, is a contraction minor of M [H]| if M [H]
has no coloop and no coparallel elements. If some L; is contained in a
triad then L, is also a contraction minor of M [H] and L, is not maximal.
Since M [H] has no triad, L; is a maximal complete contraction minor of

M [H].
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]

It is to be expected that many codes have dual codes with minimum dis-
tance greater than three. Thus Theorem 3.67 can be extended to other code
families.

Feldman et al. show in [27] that the maximum likelihood decoding prob-
lem can be formulated as an IP problem in which a linear cost function is min-
imized over the codeword polytope. Thus, solving the ML decoding prob-
lem on a binary linear code is equivalent to solving the cycle problem of a bi-
nary matroid. This observation enables to use matroid theoretic results known
from the cycle problem in the context of coding theory. Kashyap [45] is trans-
fers the decomposition results of Seymour [61] and Grotschel and Truemper
[35] (see Section 3.4) to binary linear codes. The theoretical background re-
quired to understand these transfers are explained in detail in [39, Chapter
6]. Different from the decomposition schemes given in [35] where the repre-
sentation matrices of binary matroids are used for (de)composition, Kashyap
introduces (de)composition schemes based on the generator matrices of binary
linear codes.

Code composition is accomplished as follows. Let G' = [¢4,...,G' ],
G" = [G"),...,G",] be the generator matrices of the binary linear codes C’
and C” respectively. The block length of C” is n’ and the block length of C” is
n”. A composition over an integer m, 0 < 2m < min{n’,n"}, is obtained by
constructing G from G’ and G” by

|9 - Yvm Yvm o Gw O 0

= 0o ... 0 " 9 . Gm G - Gow (312)
and contracting the m elements in G where G and G” overlap. The block
length of the resulting code, denoted by Sy, (C’, C”), is n’+n” —2m. In particular
m values 0, 1, and 3 are considered. For m= 0, Sy(C’, C") is equivalent to the
direct sum of binary linear codes (binary matroids). Direct sum operation is
denoted by @ in [45]. For m= 1, S;(C’,C") is equivalent to Kashyap’s 2-sum
which is denoted by @, and defined next.

Definition 3.68. Let C', C" be binary linear codes with block length n’ > 3 and

n” > 3, respectively. Furthermore (0...01) is not a codeword of C' or (C")* and
(10...0) is not a codeword of C" or (C")*. Then, S1(C",C") = C' @5 C".

The e-sum &, introduced in [35] and the 2-sum @, introduced in [45] are
closely related. Let C" and C” be binary linear codes, i.e., binary matroids. The
2-sum (C’ @2 C") can be defined if and only if (C’ &. C”) can be defined and
(C" @&y C") is equivalent to (C” &, C"). Both sums yield equivalent codes but
via @y-sum, the resulting code is defined by a generator matrix and via ®.-sum
the resulting code is defined by a parity check matrix. Conversely a binary lin-
ear code C' can be decomposed via @,-sum if and only if Theorem 3.48 holds.



56 CHAPTER 3. MATROID THEORY AND CODING THEORY

Based on similar arguments used for the e-sum, Kashyap introduces a decom-
position scheme for @,;-sum. We refer to Kashyap [45] or [39] for the details
of the decomposition procedure. One remark we make here is that it may be
necessary to permute the elements of C' in Kashyap’s decomposition proce-
dures. Let C be a binary linear code defined by a k£ x n generator matrix G
and (T, T°) is an exact 2-separation, C' can be decomposed in polynomial time
into two binary linear codes C’ and C” such that C' = II(C" &, C”) where Il is
a permutation of the elements.
For m = 3, S3(C’, C") is equivalent to Kashyap’s 3-sum denoted by @;.

Definition 3.69. Let C',C" be binary linear codes with block length n' > 7 and
n'” > T respectively.

(1) (0...0111) is a minimal codeword of C" and (C')*, i.e., there exists no codeword
whose support is entirely contained in the last three coordinates.

(2) (1110...0) is a minimal codeword of C" and (C"')*, i.e., there exists no codeword
whose support is entirely contained in the first three coordinates.

Then, S5(C',C") := C" &3 C".

Analogous to the relation between @, and &,, (C’ @3 C”) can be defined if
and only if (C' @ C”) can be defined. Moreover, (C’ @3 C”) is equivalent to
(C" ®a C"). Conversely C' can be decomposed via @3-sum if and only if The-
orem 3.49 holds. Kashyap explains how to decompose a code via @3-sum and
@®3-sum which corresponds to Y-sum of [35]. We refer again [45] or [39] for the
details of the decomposition procedures. Let C' be a binary linear code defined
by a k x n generator matrix G and let (T, T°) be an exact 3-separation with
min |7,7¢ > 4. C can be decomposed in polynomial time into two binary
linear codes C’ and C” such that C' = II(C" &3 C") or C' = [I(C"®3C").

Decomposition of codes lead to equivalent results stated in Theorem 3.58
and Corollary 3.59. Below we repeat these results in coding theory terminol-

ogy.
Theorem 3.70. [35] Let N be a code class which contains the graphic codes and a
finite number of codes which are not graphic. Moreover, let Ml be a code class such that
for each M € M\ N one can determine in polynomial time a 2-sum C = C' &, C”
(C = II(C" &y C")) or a special 3-sum C = C' &y C" (C = I(C'®3C")) where
C" € N and C" € M. Then there is a polynomial time combinatorial algorithm that
solves the ML decoding problem for all codes in M.

Kashyap calls code families M polynomially almost graphic codes. An im-
portant example of polynomially almost graphic codes are geometrically per-
fect codes. Geometrically perfect codes are the codes for which the codeword
polytope can be described completely by the trivial inequalties and the FS in-
equalities derived from all dual codewords, i.e., conv(C) = Q(C*). In other
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words geometrically perfect codes are the codes for which the associated bi-
nary matroids have the sum of circuits property. Thus geometrically perfect
codes can also be defined using excluded minors.

Definition 3.71. A binary linear code is called geometrically perfect if it has no sub-
code equivalent to H=, C(Kyz) or C(Ryp).

Other examples of polynomially almost graphic codes are summarized in
Corollary 3.72. These are the code families for which the maximum likeli-
hood decoding problem can be solved in polynomial time using decomposi-
tion techniques. The solution algorithm can be found in [45] (¢, and @3 is
used) or in [35](®. and @y is used).

Corollary 3.72. ML decoding can be achieved for all codes C' € M if M is a code
family such that any code in M

e has no H, and C(Kz") minor,
e has no Hz and C (K3 ) minor,

e is cographic and has no C(K3) minor,

is graphic.

From a coding theoretic point of view, a family of error-correcting codes is
not asymptotically good if the dimension or minimum distance of the codes
in this family grow sublinearly with the code length. Kashyap proved that for
the family of polynomially almost graphic codes either the dimension or the
minimum distance grows sublinearly with the code length.

Previously we showed some structural results on Hamming codes (see
Theorem 3.66, 3.67). Next we present a decomposition result on Hamming
codes.

Theorem 3.73. No Hamming Code can be decomposed via direct sum, 2-sums or
3-sums.

Proof: Let C'bea [2" — 1,2™ — 1 — m] Hamming code such that m > 3. By the
definition of a Hamming code, a parity check matrix  of C' has m rows and all
the non-zero m-tuples as its columns. Let M be the binary matroid represented
by H and let J be its ground set. To prove that M cannot be decomposed
via direct sums, it suffices to show that M is connected, i.e., for every pair
of distinct elements of J, there exists a circuit containing both elements, see
Theorem 3.44. Let e, f be two distinct elements of M. Then the column vectors
of H indexed by {e, f}, call them z, y, are linearly independent by the structure
of H. Again by the structure of H the vector z = x + y is a column of H. Let g
by the index of this column. Then the set {e, f, g} is a circuit of M. Thus, M is
connected.
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By the above argument every subset of J with cardinality two has rank two
and a maximal subset of J with rank two has cardinality three. By an induction
argument and the structure of H it follows that any subset of J with rank [ has
at most cardinality 2! — 1.

Let (T,T°) be a partition of the ground set J. To prove that M cannot be
decomposed via 2-sums one has to show that the assumption

min{|T|,|T¢|} >2 and r(T)+r(T)=m+1 (3.13)

implies |T'| + |T°| < n. Namely, from (3.13) it follows that r(T),7(T¢) < m—1.
Thus,

7]+ |T¢) <27 —1 42779 1
<oml_p49mt_
=" _2<2m_1=n

The proof M can not be decomposed via 3-sums is analogous to that for the
2-sums. ]

3.6 Conclusion and further research

In this chapter we reviewed some polyhedral properties of the cycle polytope
of a binary matroid, e.g., dimension, valid inequalities, characterization of
facets. Due to the one-to-one correspondence between binary matroids and
binary linear codes, these results are also valid for the codeword polytope.
Decomposition of binary matroids has also interesting implications on MLD
of binary linear codes, e.g., MLD in polynomial time is possible for certain
code classes. Main results to understand decomposition of binary matroids,
are also discussed in this chapter.

An interesting and ambitious further research direction is to find more
structural results on decomposition of binary matroids, e.g., decomposition
rules, existence of certain minors. Motivated by the decomposition of binary
matroids, heuristic approaches which complete somehow the following steps

e decompose a possible parity-check matrix into smaller pieces according
to some rule,

e find components of a codeword,
e compose the components into a codeword

can be studied.



Chapter 4

Mathematical modeling for ML
decoding and minimum distance
calculation

4.1 Introduction

Integer programming (IP) provides powerful means for modeling several real-
world problems. The maximum likelihood decoding (MLD) problem for bi-
nary linear codes has been first modeled as an integer programming problem
in [9], [23], and [27]. In this chapter, we study several integer programming for-
mulations modeling the MLD and minimum distance problems. Most of these
formulations are derived from linear programming (LP) formulations which
have been proposed in the LP decoding literature. Some of them are applica-
ble to general binary linear codes while others are designed for some specific
subclasses. Integer programming models are usually solved by commercial
solver packages. Figure 4.1, illustrates the mathematical modeling approach
we use in this chapter. It can be summarized as, model the MLD and mini-
mum distance problems with a cost function and constraints which are linear
in R”. Then solve the formulation with a general purpose IP solver.

Mathematical Model
min ¢cx General purpose IP
Ax =b solver
x20

IP Problem IP solution

find the most suitable find the most suitable set of
model parameters: branching rule,
cuts, preprocessing etc.

Figure 4.1: Mathematical modeling
Together with general purpose solvers, IP models allow practitioners to

59
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study codes closely. For codes with short and medium block lengths, infor-
mation about ML decoding curves or about code features like the minimum
distance can be obtained without the need of implementing a code depen-
dent algorithm. Moreover, LP decoding is improved by branch and bound
approaches (see [19], [20], [76]) and cut generation algorithms (see [27], [63],
[64]). In this context, the results presented in this chapter may also provide
benchmarks for the approaches going from LP decoding to ML decoding.

Problem sizes that can be solved with a general purpose solver depend
on the efficiency of the mathematical model and the efforts put in choosing
the right parameters for the solver, e.g., branching rule, cuts. Since several
different models have been formulated in the literature, the question of the
capabilities of these different models arises. In this chapter, we use the IP
solver of CPLEX [1] to compare the existing models numerically.

This chapter is organized as follows. In Section 4.2, we recall the differ-
ent models by explaining their objective functions and sets of constraints. An
analysis of the performance of these models with respect to number of vari-
ables, number of constraints, average number of simplex iterations, nodes in
the branch and bound tree, cuts, and decoding time is given in Section 4.3. ML
curves and minimum distances of selected LDPC, BCH, and turbo codes are
also presented in this Section. In Section 4.4 we elaborate on some heursitic ap-
proaches which may be used to find initial solutions for the IP solver. Finally,
we give some concluding remarks and suggest further research directions in
Section 4.5.

4.2 Integer programming models
We group the integer programming formulations into 5 categories.

e Modulo operator model,

Convex hull model,

Forbidden sets model ,

Parity polytope model,

Turbo-like codes model.

In the formulations, the vector of log-likelihood ratios is denoted by A € R"
and a possible parity-check matrix is denoted by H € {0, 1}"*™ (see Chapter 2
for notation).
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4.2.1 Modulo operator model

Parity-check equations in GF'(2) can be modeled in R" by introducing an auxil-
iary variable for each row of the parity-check matrix. The auxiliary z variables
are positive integers and it can easily be verified that z € {0,1}" is a codeword
if and only if Hx = 2z, z € Z™. This approach is independently introduced in
Breitbach et al. [9] and Tanatmis et al. [64]. Formally, IPD1 can be written as

minimize Az (IPD1)

subject to Hx —22 =10
z; €{0,1} forall j € {1,...,n}
z; > 0, integer foralli € {1,...,m}.

In an alternative formulation, the minimum weight error vector is found.
First, the received hard decision vector is calculated, i.e., for all j € {1,...,n},
y; = 1if \; < 0 and y; = 0 otherwise. The value z = A"y is a lower bound for
the MLD problem, i.e., 2 < min{\'z : z € C}.

Second, s = Hy is calculated. If s; = 0 for all i € I then 3 is an ML code-
word. Otherwise ¢ is not a valid codeword, and it holds that § = (z + e)
mod 2 where z € C' and e € {0,1}" is an error vector. Consequently, we have
s = H(x + e¢) mod 2 and since x is a codeword it holds that s = He mod 2.

The error vector which causes the minimum deviation from Z is the mini-
mum weight error vector. The problem of finding the minimum weight error
vector can be formulated as [9]

minimize Z |\
j:ej#0

subject to He = s mod 2.

The constraints which are in GF'(2) in the above formulation can also be mod-
eled in R" by introducing auxiliary integer variables for each row of the parity-
check matrix. The vector of integers is again denoted by z. Let |A”| be the
vector that contains the absolute values of ), the optimal solution of /PD2
given below is a minimum weight error vector. A maximum likelihood (ML)
codeword is given by the modulo 2 sum of the hard decision vector y and an
optimal solution of IPD2.

minimize |\"|e (IPD2)
subjectto He — 2z = s
e; €{0,1} forall j € {1,...,n}

z; > 0, integer foralli e {1,...,m}.
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4.2.2 Convex hull model

Another way to model parity check equations in GF(2) is to use an auxiliary
variable for each local codeword. Each row (check node) i € I of a parity-
check matrix defines a local code C; and local codewords are the bit sequences
which satisfy the ith parity-check constraint. For a valid codeword, there is
one local codeword satisfying the parity-check equation for each parity-check.
In an IP formulation introduced in [27], each local codeword is modeled by a
help variable w; g.

minimize Az (IPD3)
subject to Z w;s =1 forallie {1,...,m} 4.1)
SeFE;
T; = wa forallj GNi,iE {1,,m} (42)
SEE,;
j€S
z; € {0,1} forallj € {1,...,n} (4.3)
w; s € {0,1} forall S € E;,i € {1,...,m}. (4.4)

The constraints in the above formulation describe C; for each ¢ € I. The vari-
ables z;, j € {1,...,n} model the code bits. Each row of a possible parity
check matrix is a check node of an associated Tanner graph whereas each col-
umn corresponds to a variable node (see Chapter 2). The index set of variable
nodes which are incident to check node i is defined as N; = {j € J : H;; = 1}.

Let S C N, be the index set of variable nodes which are set to 1. If x; = 1 for
allj € S,and z; = 0forall j € N;\ S, then these value assignments are feasible
for the local code C; if |S| is even. For j ¢ N;, the value of x; can be chosen
arbitrarily. The set of all subsets S C N; with even cardinality is denoted by
E; ={S C N; : |9] even}. Auxiliary variables w; ¢ indicate that the check node
i is satisfied by the value assignment implied by S.

The idea of assigning a variable to each local codeword is also used in an LP
formulation proposed in [71]. Vontobel and Kétter [71] propose an LP which
leads to an efficient, message passing like decoding algorithm. Here we con-
sider the IP version of this LP. To transform an LP to IP the boxing constraints,
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e.g., 0 < x; <1, are replaced by integrality constraints z; € {0, 1}.

minimize Az (IPD4)
subject to x; = u; forallj € {1,...,n} (4.5)
Uji = Vi forall (i,j) e IxJ:H;; =1 (4.6)
Uj; = Qs foralli € N;U{0},j € {1,...,n} (4.7)
SEA]‘
jes
> ajs=1 forallj € {1,...,n} (4.8)
S€EA;
Vi = Z W8 forallj € N;,i € {1,...,m} 4.9)
SEE;
jes
> wis=1 foralli e {1,...,m} (4.10)
SEE;
a;s €4{0,1} forall Se A,,j €{1,...,n} (4.11)
w; s €40,1} forall S € E;,i{l,...,m} (4.12)
z; € {0,1} forall j € {1,...,n} (4.13)
u;i,v; 5 € {0,1} forall (¢,j) € I x J: H;; = 1. (4.14)

IPD4 models a Forney-style factor graph (FFG) [28] representation of C'. In
an FFG, function nodes represent constraints and edges represent variables.
This FFG has two groups of nodes, one group represents equality constraints
and the other represents parity-check constraints. An illustration is given in
Figure 4.2.2. IPD4 is very similar to IPD3 of [27]. The main difference is that
variable nodes j € J define repetition codes A;. Codewords of A; are all-zero
or all-one codewords of length |N;| + 1. As in IPD3 of [27], E; is the set of
supports of all local codewords in C;. The variables =, u, and v model the
edges of this FFG.

4.2.3 Forbidden sets model

A second integer programming formulation proposed in [27] is obtained by
employing the so called forbidden set (FS) inequalities (4.15) [19]. The FS in-
equalities are motivated by the observation that one can forbid those value
assignments to variables where |S| is odd. Note that these inequalities are
equivalent to cocircuit inequlities described in Chapter 3. For all local code-
words in C} it holds that

doay— Y 3 <8 -1VS ey, (4.15)

jes JEN;\S
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Figure 4.2: Forney-style factor graph

where ¥; = {S C N, : |S| odd}. The integer programming formulation, IPD5,
is given below.

minimize A’z (IPD5)

subject to ij— Z z; <|S]—1 forall S € ;i € {1,...,m}
JjeS JEN\S
z; € {0,1} forallj € {1,...,n}.

In IPD5, a constraint has to be written for each odd cardinality subset of an
index set N;. Thus, the number of constraints increases exponentially in the
check node degree.

The FS inequalities used in IPD5 can also be written after decomposing the
Tanner graph representation of C' as shown by Yang et al. [77] and Chertkov
and Stepanov [15]. Although Yang et al. [77] used the decomposition tech-
nique for their LP formulation, it can be extended to the IP version. After de-
composition, an IP formulation which has size linear in the length and check
node degrees can be obtained. In the approach of [77] a high degree check node
is decomposed into several low degree check nodes. Thus, the resulting Tan-
ner graph contains auxiliary check and variable nodes. Figure 4.3 illustrates
this decomposition technique: a check node with degree 4 is decomposed into
3 parity checks each with degree at most 3. The parity-check nodes are illus-
trated by squares. In the example, original variables are denoted by v,,..., 14
while the auxiliary variable node is named v5. In general, this decomposition
technique is iteratively applied until every check node has degree less than 4.
For the details of the decomposition we refer to [77] and [15].
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* @ *

Figure 4.3: Check node decomposition.

For the ease of notation, suppose K is the set of parity-check nodes af-
ter decomposition. If d.(k) = 3, k € K, then the parity-check constraint &
is of the form v§ + v§ + v¥ = 0mod 2. Note that with our notation, some
of these variables might represent the same variable node, e.g., in Figure 4.3,
vs is adjacent to two parity checks. Yang et al. show that the parity-check
constraint v + v5 + v§ = 0 mod 2 can be replaced by the linear constraints
Uy Uk <2 vk — vk — vk <00k — b -k <00E b —uh <0 T d (k) =2
then ¥ = v} models the parity-check. The constraint set of the resulting IP
formulation, IPD6, is the union of all constraints modeling | K| parity checks
and the integrality constraints.

minimize \'v (IPD6)

subjectto Y vF— > vF<[S|—1 forall S €Ny ke {l,... |K|}
jes JENL\S
vh e {0,1} forall j € Ny, k € K.

In the objective function only the v variables corresponding to the original x
variables have non-zero coefficients. Thus, the objective function of IPD6 is
the same as the objective function of IPD5. The constraints in IPD6 are the FS
inequalities used in IPD5 with the property that the degree of the check node
is less than 4.

4.2.4 Parity polytope model

As the maximum check node degree increases, the sizes of IPD3, IPD4, and
IPD5 become prohibitively large. The size of the third formulation proposed
in [27] increases polynomially in block length. It is based on the parity poly-

tope of Yannakakis [78]. An index set K; = {0,2,..., {@J} is defined for

2
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i = 1,...,m. There are two types of auxiliary variables in IPD7. The vari-
able p; ;; is set to one if k many variable nodes, £ € K;, are set to one in the
neighborhood of parity check i. Furthermore, the variable g;; ;. is set to one if
k many variable nodes are set to one in the neighborhood of check node i and
the variable node j is one of the variable nodes which are set to one.

minimize A’z (IPD7)
subject to z; = Z @ik forallj € {1,...,n},i € N;
keK;
mezl foralli € {1,...m}
keK;
> ik = kpi foralli e {1,...m},k € K;
JEN;
Qj,LkSka fOI'aHjG{1,...,”},i€Nj,k’€Ki
z; € {0,1} forallj € {1,...,n}
pir €4{0,1} forallie {1,...,m}, k€ K;
¢k € {0,1} forallj e {1,...,n},i € N;,k € K.

4.2.5 Turbo-like codes model

An LP formulation for those codes which can be defined by a finite state ma-
chine is given by Feldman [23]. The last IP formulation we study in this chap-
ter, which we refer to as IPDS, is the IP version of this LP. Particularly, IPD8
is applied to turbo codes. Any turbo code can be represented by a directed
tree T = (V, E) such that the nodes v € V model trellis graphs (see for ex-
ample [50]). A parallel concatenated turbo code encoder and the representing
directed tree is illustrated in Figures 4.4(a) and 4.4(b), respectively. It is as-
sumed that from a root node, information word z" is conveyed to trellises v*,
v?. Trellis graph v® receives a permutation of 2" constructed along the edge
(r,3) € E and denoted by II(r, 3).

In a trellis graph edge labels are binary bit strings which are the outputs
of the encoder for information bits. Paths from the starting node to the end
node correspond to codewords. The cost of a codeword is derived from the
received word and the edge labels on the path associated with this codeword.
Note that in v', the output bits 2! are simply set to the input bits. Trellises v?
and v* output parity bits z? and z*, respectively.

For each v € V, the trellis graph is modeled by flow conservation, capacity
constraints [2], and side constraints connecting the flow variables f* to aux-
iliary variables u” and z”, respectively. The information bits entering trellis
v are modeled by variables u” whereas the code bits obtained in trellis v are
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trellis
encoder 1

trellis

INT ——
encoder 2

(a) A parallel concatenated turbo code (b) A directed tree representing the en-
encoder. coder.

Figure 4.4: Encoder scheme of a parallel concatenated turbo code.

modeled by variables z”. (see Section 7.3 for an example)

For any v € V, we assume that G" is a terminated trellis with start state
startv and end state s, GV = (SY, E¥) where S is the index set of nodes
(states) and £V is the set of edges e in G*. The set of edges entering and leaving
state s € SV are denoted by in(s) and out(s) respectively. In the trellis G,
teasible f* variables satisfy flow conservation constraints

Z f: =1, (416)
e€ out(sstartv)
Z fev — 17 (417)
ec in(send,v)
Z f: _ Z f: fOI‘ all s € Sv \ {Sstart,v’ Send,u}' (418)
e€ out(s) e€in(s)

Some additional notation is given in [23] to connect u” and z" variables
to flow variables fv. In trellis layer ¢t € {1,...,|u"|}, the set of edges which
correspond to information bit 1 is denoted by ;. For a given code bit j €
{1,...,]2"|}, O; denotes the set of edges where a 1 is output for the ;" code
bit. For the formal definitions of I; and O; we refer to [23]. Information bits
and code bits are written in terms of flows in the trellis as shown in (4.19) and
(4.20)

up = Y forallt € {1,...,[u"[}, (4.19)
ecl;

w) =Y f forallje{1,... [a"]}. (4.20)
6€Oj

The interleavers are modeled on the edges (v,7) € E of T' which connect
trellises (nodes v in V). Given a permutation I [v, 0] between adjacent trellises
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vand v, i.e., v, 0 € V such that (v,0) € E. The constraints
.ZU;] = U’%[U,@](t) fOI' allt - {1, ey |..'EU|}

ensures that the information bits passed to trellis © are the same as the code
bits output by trellis v. Thus, the interleaver consistency is guaranteed. Let
C" denote the set of (f”,u", ") tuples which satisfy the constraints given in
(4.16)-(4.20) and L C V be the leaves of T'. IPD8 can then be stated as

minimize Z()\“)T$” (IPDS)
veL
subject to (f",u",z") € C" forallv e V (4.21)
SC;} :uﬁn[v’m(t) fOI‘ allt c {1,...’|.Tv|},('l),'{)) < FE
(4.22)
(f°,u’,z¥) € {0, 1} F el forallv € V (4.23)

where )\ is the vector of log likelihood ratios corresponding to code bits ob-
tained from trellis v € L.

The general scheme of IPDS can easily be tailored to codes which can be
defined by a finite state machine. We apply it to 3GPP Long Term Evolution
(LTE) codes! with the encoder illustrated in Figure 4.4(a). A detailed descrip-
tion of the formulation can be found in Chapter 7.

4.2.6 Complexities of formulations

Sizes of different IP formulations in terms of memory complexity are given
in Table 4.1. Note that integrality constraints are not included. In IPDS, the
formulation size depends on the number of states in component trellises. We
denote the number of states in the trellis containing the maximum number of
states by ®. In the formulation IPD4 the number of constraints is in O(x) where
k = max{nd** md*}.

Proposition 4.1. The number of variables in IPD3, IPD4, and the number of con-
straints in IPD5 grow exponentially in d***.

4.2.7 1P formulation for minimum distance computation

Slightly modified versions of the formulations above can be used to compute
the minimum distances of codes. Setting A to the all-ones row vector 1 and
adding the constraint ) _._; z; > 1 to the set of constraints, it is ensured that a
non-zero codeword with minimum weight is found. To demonstrate this we
choose the formulation IPD1. We denote the resulting IP model by IPMD.

13rd generation partnership project, http:/ /www.3gpp.org
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Table 4.1: A comparison of the sizes (number of variables, number of con-
straints) of different IP formulations in O notation.

Formulation variables constraints
IPD1 (Breitbach et al. [9]) | O(n) O(m)
IPD2 (Breitbach et al. [9]) | O(n) O(m)
IPD3 (Feldman et al. [27]) | O(m2%™ O(mdme)
IPD4 (Vontobel et al. [71]) | O(m2%™") O (k)
IPD5 (Feldman et al. [27]) | O(n) O(m2%™")
IPD6 (Yang et al. [77]) o2md>!** —3m) | O(4md>** — 8m)
IPD7 (Feldman et al. [27]) | O(n?) O(n?)
IPDS8 (Feldman [23]) O(n®) O(nd)
minimize lx (IPMD)
subjectto Hx — 2z =0
ij 2 1
jeJ
z; € {0,1} forallj e {1,...,n}
z; > 0, integer foralli e {1,...,m}.

Proposition 4.2. IPMD finds the minimum distance of a binary linear code.

Proof. The minimum distance of a binary linear code is d(C) = min{w(z) : x €
C,z # 0}. Note that w(z) = >, ;¥; = 1z. The constraints z € C' and = # 0

can be modeled with Hx = 22, (z,2) € Z""™ and ) ,_; ; > 1 respectively. [J

4.3 Numerical results

4.3.1 Comparison of IP formulations

In this section we compare the aforementioned formulations numerically us-
ing CPLEX [1] version 12. CPLEX IP solver employs an LP based branch and
cut procedure to solve IP problems. In the following we briefly describe a
generic branch and cut algorithm. For details [55] is referred. Initially, i.e., in
the root node of the branch and bound tree, the integrality constraints of the
given IP problem are relaxed and the resulting LP is solved, e.g., by a variant
of the simplex method [55]. If an integer solution is found, then the solver
outputs the LP optimum as the solution since it is the IP optimum as well.
If the optimal solution is non-integral, then the solver tightens the polytope
of feasible solutions by generic cut generation techniques, e.g., mixed integer
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rounding cuts or Gomory fractional cuts (see [1]). Cuts found are added to the
LP formulation and the resulting LP problem is solved again. If the LP opti-
mum remains non-integral and no further cuts can be found, then the solver
branches on a variable, say z;, having a non-integral value, say v, in the cur-
rent solution. Branching is achieved by adding constraints on this variable,
thus producing two new subproblems referred to as child nodes of the current
node in the branch and bound tree. For example, one subproblem is obtained
by adding the constraint z; < [v] to the original formulation while the second
is obtained by adding x; > [v]. By this technique, the search space is implic-
itly enumerated. Several fathoming rules based on lower and upper bounds
of subproblems are established for pruning branches in the search tree, thus
speeding up the computation. Repeating this procedure iteratively to all child
nodes of the search tree yields the IP optimum eventually.

Branch & cut

IP problem

_— Preprocessing

improved by cuts uB
\ Root node
LB
found by heuristics branching

\UB

LB I

Figure 4.5: The branch and cut approach.

We compare the performances of IPD formulations as ML decoders on:

e (3,6)-regular LDPC codes with n € {100, 200};
e (63,24), (127,28) BCH codes;
e (132,40), (180,56) LTE turbo codes;

in our numerical experiments. The BIAWGNC is assumed to be the transmis-
sion channel and the zero codeword is transmitted. Computations are exe-
cuted on a compute server equipped with a Dual AMD Opteron 242 1.60GHz
and 2 GB RAM, running under Linux Kernel 2.6.16 SMP x86_64.

IPD1 and IPD2 presented in Section 4.2.1 perform computationally very
similar in terms of average CPU times and IP performance measures like av-
erage number of cuts, etc. Hence we only report statistics collected for IPD1.
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Likewise the performance of IPD3 and IPD4 presented in Section 4.2.2 is very
similar in the test instances. It should be noted that the formulation IPD4 con-
tain some auxiliary variables and constraints which facilitate the LP approx-
imation approach used in [71]. If the ML decoding problem is modeled via
IPD4, the presolver and aggregator [1] functions of the CPLEX IP solver re-
duces the size of the initial problem to the size of the initial problem of IPD3.
Therefore we only report statistics collected for IPD3.

For LDPC codes, formulations IPD1, IPD3, IPD5, IPD6, and IPD7 are com-
pared. IPDS8 is applied specially to LTE turbo codes. For BCH codes the formu-
lations IPD1, IPD6, and IPD7 are compared since for codes with dense parity-
check matrices, building models IPD3, IPD4, and IPD5 is computationally in-
efficient. For decoding of LTE turbo codes IPD1, IPD6, IPD7, and IPDS8 are
considered. This is because the parity check matrices we used for these codes
have a dense structure. IPD1, IPD6, and IPD7 are models derived from a parity
check matrix.

In the tables where statistics are presented, the sign — is used to indi-
cate that the corresponding formulation is not considered for the given code.
For each SNR value, 100 received words are simulated. IPD formulations are
tested under these received words, i.e., for each test SNR, the same set of re-
ceived words are used in each formulation. An experimental study showed
that increasing the number of instances to 1000 or 10000 does not lead to more
accurate statistics.

Running time is measured after building the model and therefore only the
computation time consumed by the solver is considered. Depending on the
density of the given parity check matrix, block length, and SNR value running
times of the IP solver for some formulations become prohibitively large. In
those cases we consider only formulations where 100 instances can be solved
in 14400 seconds (4 hours) of CPU time. The * sign in the subsequent report
tables means that 100 instances could not be solved in the predefined time limit
for the corresponding formulation.

The performance of the IP solver under high, medium, and low SNR val-
ues is investigated. In the high SNR regime we are able to collect statistics for
different IP formulations since decoding times are relatively small. It should
be noted that at high SNR, ML decoding of codes with block lengths larger
than the codes used in this chapter can be achieved. As the SNR values are de-
creased, the decoding times increase and often the time limit is reached before
100 instances are decoded. Initially, the SNR= f,—g is set to a value for which
the frame error rate (FER) is about 0.1%. It is then decreased twice in steps of
0.8 dB.

The performance measures we use for the comparison of IP formulations
are the number of variables, number of constraints, average number of simplex
iterations, average number of cuts found by the IP solver, average number of
nodes in the branch and bound tree, and the average CPU time measured in
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seconds.

4.3.2 The number of variables and constraints

To demonstrate the sizes of the IP formulations described in Section 4.2 numer-
ically, we report the number of variables and constraints used in IPD1-IPD8 in
Table 4.2. As it can be concluded from Proposition 4.1 the number of variables
in IPD3, IPD4 and the number of constraints in IPD5 are comparatively large.
In IPD7, the number of variables and constraints grow polynomially but in
O(n®) which also results in a fairly large number especially when block length
increases.

For LDPC codes, IPD3 has many variables but the number of constraints
is not large. Conversely, based on the idea of forbidding odd cardinality sub-
sets of N; with inequalities (see Section 4.2), IPD5 has many constraints and
only few variables. On the other hand, formulation IPD7 has large number of
variables and constraints.

Generally, it is observed that the running time of the IP solver increases
with the number of variables and constraints of IPD formulations for ML de-
coding of LDPC and BCH codes. This is due to the increasing size of the search
space and the increasing computational effort required to solve LP problems.
A large number of variables and constraints leads to a complicated polytope
and increases the size of the simplex tableau.

For LTE turbo codes however, IPD8 performed the best in terms of run-
ning time although it has more variables and constraints than IPD1 and IPD2.
This is due to the fact that IPD8 has a tighter LP relaxation than the formula-
tions based on the parity check representation of the code (see [23, Chapter 6]).
Moreover, the CPLEX IP solver can detect and handle the network flow type of
constraints in IPD8 efficiently. This also has a positive effect on the decoding
time.

The sizes of the formulations IPD3, IPD4, and IPD5 become prohibitively
large for dense parity-check matrices. In contrast, CPLEX was able to build
models for IPD1, IPD2, IPD6, and IPD7 in all codes we tested. Moreover, the
number of constraints and variables grow linearly in block length in IPD1,
IPD2, and IPDé6.

4.3.3 The average number of nodes

The average number of nodes which occurred in the search tree are listed in Ta-
ble 4.3. This number corresponds to the number of subproblems which have
been generated in the branch and cut procedure and affects the memory re-
quirement. A low average number of nodes indicates that branching occurs
only a few times. This is observed for codes with short block lengths or for
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Table 4.2: The number of variables and constraints for selected codes.
(100,50) LDPC code

Formulation | IPD1 | IPD3 | IPD5 | IPD6 | IPD7 | IPD8
Variables 150 | 1700 | 100 | 250 | 1500 -
Constraints 50 350 | 1600 | 800 | 1750 -
(200,100) LDPC code
Formulation | IPD1 | IPD3 | IPD5 | IPD6 | IPD7 | IPD8

Variables 300 | 3400 | 200 500 | 3000 -

Constraints 100 700 | 3200 | 1600 | 3500 -
(63,39) BCH code

Formulation | IPD1 | IPD3 | IPD5 | IPD6 | IPD7 | IPD8

Variables 87 - - 552 | 6761 -

Constraints 24 - - 1941 | 7246 -

(127,28) BCH code
Formulation | IPD1 | IPD3 | IPD5 | IPD6 | IPD7 | IPD8
Variables 155 - - 1445 | 35823 -
Constraints 28 - - 5282 | 37092 -
(132,40) LTE turbo code
Formulation | IPD1 | IPD3 | IPD5 | IPD6 | IPD7 | IPD8
Variables 224 - - 1394 | 14690 | 1372
Constraints 92 - - 4966 | 16038 | 808
(180,56) LTE turbo code
Formulation | IPD1 | IPD3 | IPD5 | IPD6 | IPD7 | IPD8
Variables 304 - - 2524 | 33197 | 1932
Constraints 124 - - 9056 | 35584 | 1128
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high SNR. Increasing the block length leads to larger IP problems which have
to be divided into smaller, manageable problems in the branch and bound tree,
i.e., the number of nodes increases. For low SNR values, the objective function
coefficients become less reliable and, thus, the IP problem becomes harder to
solve which leads to an increased number of nodes.

For the LDPC code with block length 100, the average number of nodes
are close to each other in IPD formulations. If the block length is doubled, the
increase in the average number of nodes in IPD1 and IPD2 exceeds the increase
in formulations IPD3 to IPD7. For the BCH codes, the average number of
nodes in IPD6 and IPD? is larger than the same number in IPD1 and IPD2 by a
factor of more than 10. For the LTE turbo codes, the average number of nodes
needed for IPD8 is far less than the average number of nodes needed for IPD1,
IPD2, IPD6, and IPD7. The reason for that is, the network flow constraints in
IPD8 provide a tighter relaxation compared to IPD6 and IPD7 as well as IPD1
and IPD2. Hence, less branching constraints are added to IPD8 during branch
and cut.

4.3.4 The average number of cuts

Table 4.4 shows the average number of cuts found by CPLEX. The IP solver
tightens the LP relaxation by cut generation algorithms if necessary. As a con-
sequence, non-integral optimal vertices of the relaxed polytope are cut off and
the chance that an integral optimum is found in the subsequent iterations in-
creases. For all codes and SNR values, formulations IPD1 and IPD2 have the
largest average number of cuts. The IP solver adds significantly (by one, two,
or three orders of magnitude - depending on the SNR value, block length, and
the density of the given parity check matrix) less cuts in formulations IPD3 to
IPD8 than in IPD1 or IPD2. This is reasonable since formulations IPD3 to IPD8
have tighter LP relaxations.

4.3.5 The average number of simplex iteartions

The simplex algorithm moves from vertex to vertex on the underlying poly-
tope until the vertex corresponding to the optimal solution is reached. If there
exists a vertex for which the objective function can be improved in the current
step, the simplex algorithm moves to this vertex and otherwise the algorithm
stops. The procedure of moving from one vertex to another is one simplex it-
eration. The average number of simplex iterations are reported in Table 4.5. A
large number of variables or constraints seem to lead to polytopes with a large
number of vertices and facets in our experiments. As a result, more simplex
iterations are done.

In the formulations IPD3, IPD4, IPD6, IPD7, and IPD8 the number of vari-
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Table 4.3: The average number of nodes.

(100,50) LDPC code

Formulation | IPD1 1PD3 IPD5 IPD6 IPD7 | IPD8
SNR: 2.8dB 1.48 0.41 0.65 0.64 0.59 -
SNR: 2dB 26.92 19.82 27.17 32.71 27.63 -
SNR: 1.2dB 167.56 | 96.99 79.66 113.62 | 153.24 -
(200,100) LDPC code
Formulation | IPD1 IPD3 IPD5 IPD6 IPD7 | IPDS8
SNR: 2.8dB 2.55 0.3 0.49 0.5 0.61 -
SNR: 2dB 1191.42 | 677.21 | 731.24 782.76 620.3 -
SNR: 1.2dB | 8129.26 | 2575.19 | 2153.41 | 3881.64 * -
(63,39) BCH code
Formulation | IPD1 IPD3 IPD5 IPD6 IPD7 | IPDS8
SNR: 3.8dB 29.6 - - 213.25 | 125.47 -
SNR: 3.0dB 55.05 - - 562.09 * -
SNR: 2.2dB 92.57 - - 31336.13 * -
(127,28) BCH code
Formulation | IPD1 IPD3 IPD5 IPD6 IPD7 | IPD8
SNR: 3.8dB 132.36 - - * * -
SNR: 3.0dB | 2672.07 - - * * -
SNR: 2.2dB | 19667.8 - - * * -
(132,40) LTE turbo code
Formulation | IPD1 1PD3 IPD5 IPD6 IPD7 | IPD8
SNR: 2.6dB 13 - - * * 0.22
SNR: 1.8dB 622.83 - - * * 14.16
SNR: 1.0dB 25489 - - * * 89.46
(180,56) LTE turbo code

Formulation | IPD1 IPD3 IPD5 IPD6 IPD7 | IPDS8
SNR: 2.6dB 10.41 - - * * 0
SNR: 1.8dB 387.75 - - * * 5.56
SNR: 1.0dB * - - * * 307.66
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Table 4.4: The average number of cuts.

(100,50) LDPC code

Formulation | IPD1 | IPD3 | IPD5 | IPD6 | IPD7 | IPDS8

SNR: 2.8dB | 39.76 0 0.13 | 0.29 | 0.04 -

SNR: 2dB 60.81 | 0.09 | 0.69 | 1.27 | 0.55 -

SNR:1.2dB | 88.21 | 042 | 1.61 | 3.04 | 1.14 -

(200,100) LDPC code

Formulation | IPD1 | IPD3 | IPD5 | IPD6 | IPD7 | IPD8

SNR:2.8dB | 84.15 0 0.03 | 0.14 | 0.02 -

SNR: 2dB 126.71 | 0.16 | 041 | 0.7 | 0.13 -

SNR:1.2dB | 266.39 | 1.53 | 2.65 | 3.45 * -

(63,39) BCH code
Formulation | IPD1 | IPD3 | IPD5 | IPDe6 | IPD7 | IPD8
SNR: 3.8dB 7.82 - - 5.15 | 0.66 -
SNR: 3.0dB 13.42 - - 6.58 * -
SNR: 2.2dB 25.34 - - 8.73 * -

(127,28) BCH code

Formulation | IPD1 | IPD3 | IPD5 | IPD6 | IPD7 | IPDS8

SNR: 3.8dB 6.06 - - * * -
SNR:3.0dB | 16.77 - - * * -
SNR:2.2dB | 26.83 - - * * -

(132,40) LTE turbo code

Formulation | IPD1 | IPD3 | IPD5 | IPD6 | IPD7 | IPDS8

SNR: 2.6dB 77.28 - - * * 0.09
SNR: 1.8dB 111.4 - - * * 0.48
SNR: 1.0dB 171.5 - - * * 1.26

(180,56) LTE turbo code

Formulation | IPD1 | IPD3 | IPD5 | IPD6 | IPD7 | IPD8
* *

SNR: 2.6dB 95.8 - - 0

SNR: 1.8dB | 169.26 - - * * 0.45

SNR: 1.0dB * - - * * 1.7
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ables is larger than in formulations IPD1 and IPD2. Similarly, the number of
constraints is larger in IPD5 than it is in IPD1 and IPD2. On the other hand,
the relaxed polytopes of IPD1 and IPD2 have either a lower dimension or less
number of constraints. Less simplex iterations are needed on the initial LP.
However, as the block length increases, the number of cuts and branching
constraints added in IPD1 and IPD2 increases as well. During the process
of generating cuts and resolving LPs, a larger number of LPs are solved and,
consequently, the number of simplex iterations also increases. For the LDPC
codes at low SNR, IPD5 has the smallest average number of iterations. An ex-
planation for that is, IPD5 has the smallest number of variables. For the BCH
codes, far less (two or three orders of magnitude) iterations are needed in IPD1
and IPD2 than IPD6 and IPD7. It can be seen in Tables 4.3 and 4.4 that much
less cuts and branching constraints are added to IPD8 than to IPD1 or IPD2.
Consequently, less simplex iterations are performed in IPDS.

4.3.6 The average running times

Finally, we analyze the average running times of the IP solver for each for-
mulation. The CPU times in seconds are listed in Table 4.6. For the LDPC
codes, average decoding times are close to each other at high SNR or short
block lengths. Especially at low SNR values IPD1 performs best in terms of
average decoding time. For the BCH codes, the running times of IPD1 and
IPD2 are significantly lower (two or three orders of magnitude) than those of
IPD6 and IPD7. As the block length increases, the running times of IPD6 and
IPD7 becomes prohibitively large. For the LTE turbo codes, IPD8 has the best
avergae decoding times. For n = 228, SNR= 1.0dB, it is the only formulation
where 100 instances can be decoded within the time limit.

4.3.7 Summary
To sum it up, the IP formulations can be grouped into the following categories.

1. The formulations IPD1 and IPD2 are constructed with less variables and
less constraints. Their LP relaxations are not tight. Hence, more cuts and
branching constraints are generated when traversing the search tree.

2. The formulations IPD3 to IPD7 have tight LP relaxations with relatively
large numbers of variables and constraints. This leads to more compli-
cated polytopes and larger simplex tableaus. Simplex iterations need
considerable effort. On the other hand, less number of cuts have to be
added to tighten the LP relaxation.

3. For codes which can be defined by a finite state machine, IPD8 performs
best in terms of decoding time. IPD8 has a tighter LP relaxation than
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Table 4.5: The average number of simplex iterations.
(100,50) LDPC code
Formulation | IPD1 IPD3 IPD5 IPD6 IPD7 IPD8
SNR: 2.8dB 33.33 129.99 | 43.89 141.28 | 110.65 -
SNR: 2dB 788.89 | 1039.68 | 736.5 | 1595.42 | 1678.31 -
SNR:1.2dB | 4828.01 | 4726.1 | 3287.82 | 7569.2 | 7782.69 -
(200,100) LDPC code
Formulation | IPD1 IPD3 IPD5 IPD6 IPD7 | IPD8
SNR: 2.8dB 120.2 | 24183 | 7339 | 260.29 | 223.66 -
SNR: 2dB 423549 | 58145.7 | 40203.7 | 64727.3 | 63733.5 -
SNR:1.2dB | 312908 | 221514 | 110660 | 249259 * -
(63,39) BCH code
Formulation | IPD1 IPD3 IPD5 IPD6 IPD7 | IPD8
SNR: 3.8dB 86.13 - - 19508.9 | 57764 -
SNR:3.0dB | 206.47 - - 50788.3 * -
SNR:2.2dB | 417.78 - - 274295 * -
(127,28) BCH code
Formulation | IPD1 IPD3 IPD5 IPD6 IPD7 IPD8
SNR: 3.8dB 629.43 - - * * -
SNR:3.0dB | 14661 - - * * -
SNR:2.2dB | 117074 - - * * -
(132,40) LTE turbo code
Formulation | IPD1 IPD3 IPD5 IPD6 IPD7 IPD8
SNR:2.6dB | 1483.73 - - * * 862.68
SNR:1.8dB | 29679.2 - - * * 2725.8
SNR:1.0dB | 533959 - - * * 11349.4
(180,56) LTE turbo code

Formulation | IPD1 IPD3 IPD5 IPD6 IPD7 | IPD8
SNR:2.6dB | 2723.88 - - * * 1071.39
SNR: 1.8dB | 24399.3 - - * * 2758.77
SNR: 1.0dB * - - * * 48911.3
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Table 4.6: The average decoding times in CPU seconds.

(100,50) LDPC code
Formulation | IPD1 | IPD3 | IPD5 | IPDé6 | IPD7 | IPDS8
SNR: 2.8dB 0.02 | 0.03 | 0.04 0.02 0.06 -
SNR: 2dB 0.13 | 0.23 | 0.36 0.36 0.58 -
SNR: 1.2dB 073 | 1.16 | 1.34 1.80 2.74 -
(200,100) LDPC code
Formulation | IPD1 | IPD3 | IPD5 | IPD6 | IPD7 | IPDS8
SNR: 2.8dB 0.04 | 0.06 | 0.08 0.05 0.13 -
SNR: 2dB 10.6 | 21.79 | 29.92 | 25.17 | 34.08 -
SNR:1.2dB | 76.25 | 93.70 | 85.99 | 125.55 * -
(63,39) BCH code
Formulation | IPD1 | IPD3 | IPD5 | IPD6 | IPD7 | IPDS8
SNR:3.8dB | 0.03 - - 499 | 40.58 -
SNR: 3.0dB 0.05 - - 12.58 * -
SNR: 2.2dB 0.08 - - 65.98 * -
(127,28) BCH code
Formulation | IPD1 | IPD3 | IPD5 | IPDé6 | IPD7 | IPDS8
SNR:3.8dB | 0.13 - - * * -
SNR:3.0dB | 1.54 - - * * -
SNR:2.2dB | 14.25 - - * * -
(132,40) LTE turbo code
Formulation | IPD1 | IPD3 | IPD5 | IPD6 | IPD7 | IPDS8
SNR: 2.6dB 0.47 - - * * 0.12
SNR: 1.8dB 8.33 - - * * 0.9
SNR: 1.0dB | 103.7 - - * * 3.82
(180,56) LTE turbo code

Formulation | IPD1 | IPD3 | IPD5 | IPD6 | IPD7 | IPDS8
SNR: 2.6dB 1.18 - - * * 0.17
SNR: 1.8dB | 10.95 - - * * 1.00
SNR: 1.0dB * - - * * 23.84
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the formulations based on the parity check representation of the code.
Moreover, the CPLEX IP solver can detect and handle the network flow
type of constraints in IPD8 efficiently. This also has a positive effect on
the decoding time.

Based on our tests we conjecture that for LDPC and BCH codes, it is fa-
vorable to start with a formulation with few variables and constraints and
iteratively generate cuts in regions of the relaxed polytope lying in the min-
imization direction. For codes which can be defined by a finite state machine,
IPD8 can be preferred.

4.3.8 Maximum likelihood decoding via integer programming

The ML curves of the selected LDPC, BCH, and LTE turbo codes are presented
below. These curves are obtained by solving IPD1 for LDPC, BCH codes and
IPDS8 for LTE turbo codes, with the CPLEX IP solver. The formulations IPD1
and IPD8 are selected since they performed best in terms of decoding time in
the tests reported in Section 4.3. Signal to noise ratio (SNR) is measured as
Ey/Ny. The frame error rates (FER) are calculated by counting 100 erroneous
blocks. The ML curves are shown in Figures 4.6, 4.7, and 4.8.
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Figure 4.6: ML curves for (3, 6)-regular LDPC codes with n = 100, 200.

Under ML decoding, the error correcting performance of a code can be in-
creased by increasing the block length or decreasing the code rate, i.e., more
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Figure 4.7: ML curves for (63,39) BCH, (127,99) BCH codes.
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parity bits are added. The LDPC codes and turbo codes discussed in this
section have rate 1 and j(approximately), respectively. Increasing the block
length improves the error correcting performance of codes. This is demon-
strated in Figures 4.6 and 4.8. The selected BCH codes have different block
lengths as well as rates given by £. The error correcting performances are
shown in Figure 4.7.

4.3.9 Computing the minimum distance via integer program-
ming

The exact minimum distances (or upper bounds thereof) of some LDPC codes
and turbo codes are computed by solving an appropriate formulation with the
CPLEX IP solver. If the CPLEX IP solver returns the optimal solution then
it is provably the minimum distance of the given code. If the IP solver can’t
tind an optimal solution because of time and memory restrictions, it returns
the best feasible solution found which is an upper bound on the minimum
distance. The minimum distances (upper bounds) of some LDPC codes are
listed in Table 4.7. For LDPC codes, the formulation IPMD is used.

Table 4.7: Minimum distances (upper bounds) of selected LDPC Codes.

Code Minimum distance | Upper bound
(204,102) LDPC [51] 8

(576,288) WiMax LDPC [41] 13

(1152,576) WiMax LDPC [41] 30
(648,324) WiFi LDPC [40] 15
(1200,600) WiMedia LDPC? 33

Various approaches have been proposed in the literature to compute the
exact minimum distances (upper bounds thereof) in the literature (see [30] and
references therein). In [56], Nimbalker et al. reported estimates on minimum
distances of LTE turbo codes. These results are upper bounds obtained by the
combination of single and double error impulse method [7], [17]. We model the
minimum distance problem as an IP and solve it with CPLEX IP solver. Instead
of using IPMD which can be used for any binary linear code, we modify IPD8
(applied to LTE turbo codes see Figure 7.1) by setting the vector of objective
function coefficients to all-ones vectors and adding the constraint } _,_; z; > 1
to the constraint set. We were able to compute the exact minimum distances
of LTE turbo codes up to block length approximately 1500. For larger block
lengths we present upper bounds. In Table 4.8, the exact minimum distances
or upper bounds (found by CPLEX IP solver) for some selected LTE turbo
codes are compared with the upper bounds reported in [56]. It is observed that
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in general our mathematical modeling method improves the bounds given in
[56].

Table 4.8: Minimum distances (upper bounds) for selected LTE turbo codes.

Block length | Minimum distance| Upper bound |Upper bound from [56]
132 11 17
876 23 36
2124 23 48
3468 31 49
9612 29 50
12684 33 50
16524 41 58

The importance of choosing an appropriate formulation for a given code
family is demonstrated in Table 4.9. The computation times required to solve
the modified IPD8 is compared with the computation times required to solve
IPMD for several LTE turbo codes. It is observed that as the block length
increases the difference between the computation times (in CPU seconds) of
modified IPD8 and IPMD increase. Observe that for n = 276 the computation
time of modified IPDS is less than the computation time of IPMD by a factor of
10. Hence, modified IPD8 can tackle the minimum distance problem for LTE
turbo codes more efficiently than the formulation IPMD.

Table 4.9: A comparison of solution times (in CPU seconds) of modified IPD8
and IPMD for several LTE turbo codes.

Block length | Minimum distance| Modified IPD8 (CPU sec) [IPMD (CPU sec)
180 13 38.1 70.75

228 15 132.56 842.17

276 15 143.23 1283.23

4.4 Finding initial solutions for the IP solver

In this section we describe some polynomial time heuristics to find estimates
of a maximum likelihood codeword or a codeword with minimum weight.
Passing such estimates to the CPLEX IP solver as initial solutions may reduce
the total computation time. Heuristic 1 and heuristic 2 proposed in this section
are used to estimate an ML codeword whereas heuristic 3 finds an estimate of
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a minimum weight codeword. In all heuristics, it is assumed that the given
parity-check matrix H has full row rank.

The basic idea of heuristic 1 is to reset the values of least reliable bits so that
the parity check equations are satisfied. To this aim we propose a procedure
by which the original parity check matrix H is transformed into an equivalent
alternative parity check matrix H by elementary row operations in GF'(2). Our
aim is to obtain m unit vectors in columns of H corresponding to the least reli-
able bits. Given the log-likelihood ratio vector A € R”, let Il be a permutation
of J = {1,...,n} such that [Ayu)| > [Aue)| > ... > |Anw| and Q C J. For
II(n) € J a unit vector can be obtained in column H ). At the first step of
the algorithm, 2 has one element II(n). At the following steps the index set (2
is extended with columns j € J \ 2 such that:

e [ ; and columns with indices in (2 are linearly independent,
e |)\;| is minimum.

Such a column j exists if |Q2] < m since H has full row rank. This procedure is
presented as an algorithm below. It is referred to as the find alternative parity-
check matrix algorithm.

Find alternative parity-check matrix algorithm
Input: H € {0,1}™*" and {II(1),...,TI(n)}.
Output: An alternative parity check matrix H.

1: Q={II(n)}.

2: Obtain first unit vector in column H ).

3: Set k= 1.

4: while [Q] < m do

5. if H p(n—r) and H , are linearly independent for all w € €2 then
6: Q=QUII(n—k)

7: Obtain next unit vector in column H_ ¢,

8: endif

9. k=k+1
10: end while

For the codes C' where the minimum distance, d(C'), is known, 2 can be set
to {II(n),...,II(n — d(C) + 1)} at the beginning. If {II(n —m +1),...,II(n)} =
{n —m +1,...,n} then no change has to be done on the original parity check
matrix H.

Assuming \; # 0for j € J, we construct the output of heuristic 1 as follows.
For j € J\ Qif \; < 0 we set x; = 1 otherwise z; = 0. Note that in each row
i there exists exactly one w € () such that H;, = 1. We denote this index
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Heuristic 1
Input: LLR vector A € R*, H € {0,1}™*", and {II(1),...,II(n)}.
Output: A feasible solution, z € C.

1: Call find alternative parity check matrix algorithm with # and II(n).
2: forallj € J\ Qdo
3: if A\; < 0 then

4 Setz; = 1.
5 else

6 Set I‘j =0.
7:  end if

8: end for

9: foralli € I do

10:  Find indexw(i).
11: Set K,L = ZjeNi\w(i) H@jﬂl‘j.
12:  if K, is even then

13: Set Tw(i) = 0.
14:  else

15: Set Tw(i) = 1.
16: end if

17: end for

with w(i), i.e,, w(i) = N; N Q. Then for each row i € I we calculate K; =
ZjeNi\w(i) H; ;. It K is even then z,,(;) is set to zero. Otherwise z,,;) = 1.

Proposition 4.3. Heuristic 1 outputs a codeword.

Proof. If K;, i € I computed in Step 11 of heurisic 1 is an even number, then
the i-th parity check is satisfied. Thus z,,(;) is set to 0. If K; is an odd number,
then z,; is set to 1. Setting z,,;) to 1 has no effect on other parity checks since
H i = 0foralli € I\ w(i). In this way it is ensured that Hz = 0 mod 2
holds. O

In heuristic 2, we search for a minimum weight error vector (see Section
4.2.1). The hard decision vector y and the vector s are found as in the descrip-
tion of IPD2 in Section 4.2.1. The original parity check matrix is modified so
that unit vectors are obtained in columns with indicies in 2 C J. The index
set Q) = {w(1),...,w(m)}is found with the find alternative parity-check matrix
algorithm. Note that while modifying a parity check matrix H, the vector s has
to be modified also. We denote the modified s vector by 5. As a result we have
§ = Hy mod 2. Finally, we go through the columns of H_; for all j € J.

Proposition 4.4. For each column of an alternative parity check matrix H, an error
vector e such that y + e = x mod 2, x € C can be constructed.
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Proof. The error vector found for column j € J is constructed by setting e; = 1
and e,;) = 1, such that H;; # 5;, 7 € I. In this way it is ensured that 5 = He
mod 2. For such an e vector it holds that x = § + e mod 2. n

Heuristic 2
Input: LLR vector A € R”, H € {0,1}"™*", and {II(1),...,II(n)}.
Output: A feasible solution = = y + € mod 2.

1: forall j € J do

2 Sety; = 3 [1—sign(y);].

3: end for

4: Set s = Hy mod 2.

5. if s; = 0 for all 7 € I then

6: Setx =y, output z.

7: else

8:  Call find alternative parity check matrix algorithm with # and II(n).
9:  Set IncreaseInObjective=oc €, = 0 forall h € J.
10:  Set TempSum= 0, e, = 0 forall h € J.

11: forall j € J do
12: Set TempSum= |\, e; =1
13: foralli € I do
14: if S; = Hi,j then
15: Get next i.

16: else
17: Find index w(7).
18: TempSum=TempSum+| A, ;)|
19: Cw(i) = 1
20: end if
21: end for
22: if TempSum < IncreaseInObjective then
23: IncreaseInObjective = TempSum
24: e, =epforallh e J
25: end if
26: Set TempSum= 0, ¢, = 0 forall k € J

27:  end for
28: end if

For short block lengths, heuristic 2 outputs good estimates. Heuristic 1 on
the other hand is inferior to heuristic 2. This is demonstrated on a (3, 6)-regular
LDPC code with n = 40 in Figure 4.9. Heuristic 2 approximates the MLD
curve. In our numerical experiments it is observed that as the block length
increases the accuracy of the estimates of heuristic 2 decrease. Thus, passing
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the estimates obtained from heuristic 2 to the CPLEX IP solver as an initial

solution does not lead to a significant improvement in terms of decoding time
of MLD.

100 1 T

—sk— (40,20): Heuristic 1 |
—8— (40,20): Heuristic 2 | |
= @ = (40,20): MLD

10 r

Frame Error Rate (FER)

1072

Figure 4.9: Error correcting performances of MLD, heuristic 1, heuristic 2.

For the computation of the minimum distance of a code the corresponding
integer programming problem has to be solved only once. It may be worth-
while to put more computational effort in finding minimum weight codeword
estimates for the minimum distance problem. An intuitive procedure to find
initial solutions for the minimum distance problem is proposed in heuristic 3.
In heuristic 3, a given parity check matrix H is first brought into systematic
form H°. The last m columns of H*® form an identity matrix.

Proposition 4.5. Let w(H?;) denote the weight (number of ones) of column j €
{1,...,n—m} and Q = {n—m+z:HS =1,i € {1,...,m}}. Then a codeword
x € C can be constructed from {2 U {j}} by setting x;, = 1for allh € {QU{j}}
and x, = 0 forall h € J\ {QU {j}}. Moreover, w(H_ ;) + 1 is an upper bound on
the minimum distance.

Proof. The proof follows from the fact that columns in Q2 U {j} are linearly
dependent. For an z € {0,1}",if z;, = 1, forall h € {QU{j}} and z;, = 0 for all
he J\{QU{j}} then it holds that Hx = 0 mod 2. O

Heuristic 3 can be extended at the cost of increasing computation time. For
example, all two element subsets of {1,...,n —m} can be considered. In this
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Heuristic 3

Input: H € {0,1}™*".

Output: Initial solution z™*.
1: Set UB to oo, ™ to all-zeros.
2: Transform H to H*.
3: forj=1ton—mdo

4:  Compute w(H_;), find €.
5. forall h € J do
6: if he {QU{j}} then
7: Set Thp — 1.
8: else
9: Set z;, = 0.

10: end if

11:  end for
122 ifw(H?;) +1 < UB then
13: Set UB =w(H?;) + 1.

14: Set '™t = .
15:  end if
16: end for

17: Terminate with UB and z"*.

case, a set I' can be constructed as: I' = {j,k} U{n —m +i : H; + H}, =
1mod 2,i € {1,...,m}} where {j,k} C {1,...,n—m}.

In our numerical experiments it is observed that for some codes, finding an
initial solution reduces the computation time insignificantly. This statement
can not be generalized since especially for codes with short block length pass-
ing an initial solution to CPLEX has a negative effect on the total computation
time.

4.5 Conclusion and further research

In this chapter we modeled the ML decoding problem as a mathematical pro-
gramming problem. We studied 8 different formulations for modeling the par-
ity check equations in GF'(2) by linear equalities or linear inequalities in R™.
Some of these formulations are efficient for every binary parity-check matrix
whereas others are only efficient for binary matrices with some special struc-
ture. A comparison of the sizes of different formulations in O notation is given
in Table 4.1. Formulations also differ in memory requirements and computa-
tion time when solved with the CPLEX IP solver.

For LDPC and BCH codes starting with few constraints and variables in
the initial formulation and iteratively adding cuts seems to be favorable. On
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the other hand, for turbo codes the network flow based formulation performs
computationally better than formulations with less variables and constraints.
It can be concluded that it is worthwhile to make an analysis of different for-
mulations for different code classes. Choosing the appropriate formulation for
an IP problem is of crucial importance since it affects the computation time
and the sizes of the solvable instances. This is demonstrated for BCH codes in
Table 4.6 and for LTE turbo codes in Table 4.9.

The computational results in Section 4.3 imply that for binary linear codes
with short and medium block length, ML curves, minimum distances can be
computed by the mathematical modeling approach without the need of de-
veloping a specially designed, code-dependent algorithm. Moreover, the IP
formulations can easily be modified to model puncturing or to compute the
codeword weight distribution (see [58]).

Finally we report two more numerical experiments on MLD which may
initiate further research. The selected code is the (80,40) LDPC code and MLD
is performed by solving IPD1 with the CPLEX IP solver. 1000 instances are
solved. The SNR value is fixed to 1.4 where the FER for the selected code is
approximately 10%.

First, in Figures 4.10(a), 4.10(b), 4.10(c), and 4.10(d) the average computa-
tion times in CPU seconds, the average number of cuts, nodes and iterations
for the instances detected as decoding success and decoding error are com-
pared. It can be concluded that more computational effort is put in the in-
stances detected as decoding error. Thus, it is reasonable to set limits to these
parameters to obtain approximations of ML curves in less time.

Second, the distribution of the average number of cuts from different cut
tamilies employed by the CPLEX IP solver is presented. The IP solver gener-
ates cuts from more than 10 different cut families (see [1]). For MLD the most
frequently used cuts are Gomory fractional cuts, implied bound cuts, mixed
integer rounding cuts, and zero-half cuts. Considering the special structure of
the MLD problem theoretical research can be done on these cut families.
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Figure 4.10: Average CPU time, average number of cuts, nodes, iterations for
the instances detected as decoding success and decoding error, (80,40) LDPC
code, SNR=1 4.
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Chapter 5

Linear programming based methods
for decoding of binary linear codes

5.1 Introduction

Typically, turbo codes and LDPC codes are decoded in an iterative manner
where probabilistic information is exchanged between corresponding compo-
nent decoders. This is known as iterative message passing decoding (IMPD).
Recently, linear programming decoding (LPD) which was introduced by Feld-
man et al. [23], [27] has become an interesting alternative for decoding of bi-
nary linear block codes. LPD is a polynomial time decoding approach with
some desirable properties such as the maximum likelihood (ML) certificate
property: if LPD outputs a codeword, then it is the ML codeword. Moreover,
this approach allows finite length analysis due to the geometry of linear pro-
gramming and it is not limited to sparse matrices. In this chapter we review
several LP-based decoding approaches for binary linear codes.

The rest of this chapter is organized as follows. In Section 5.2 a general
description of LPD is given. The linear programming (LP) relaxations of the
integer programming (IP) formulations presented in Section 4.2 are mostly dis-
cussed in Section 5.3. Based on the various LP formulations, different streams
of research on LPD have evolved: in Section 5.4, methods focusing on ef-
ticient realization of LPD are summarized, while approaches improving the
error-correcting performance of LPD at the cost of increasing complexity are
reviewed in Section 5.5. Some concluding comments are made in Section 5.6.

5.2 Basics of linear programming decoding

Although several structural properties of conv(C') are known (see Chapter 3), a
concise description of conv(C') by means of linear inequalities cannot be stated
in general. In LPD, the linear cost function of the IP formulation for maximum

91
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likelihood decoding (MLD) (see Chapter 4) is minimized on a relaxed polytope
P where conv(C) C P C R™. Such a relaxed polytope P should have the
following desirable properties: it should be easy to describe and codewords
should correspond to vertices of P.

A local code C;, i € {1,...,m} is defined as C; = {z € {0,1}" : H; x =
0 mod 2}. It holds that C = Cy N ... N C,,. The description complexity of the
convex hull of any local code conv(C;) is is smaller than the description com-
plexity of the codeword polytope. Thus, a particularly interesting relaxation of
conv(C')is P = conv(Cy)N...Nconv(C,,) known as the fundamental polytope
[70]. Set of vertices of the fundamental polytope, the so-called pseudocode-
words, is a super set of C'. Consequently, an integral LP optimum is an ML
codeword. These observations are formally stated in the following lemma.

Lemma 5.1. [70] Let P = conv(Cy) N ... Nconv(Cy,). If C = CyN...NC,y, then
conv(C) C P.

LPD can be written as optimizing the linear objective function on the fun-
damental polytope P, i.e.,

min{\'z : z € P}. (5.1)

Based on (5.1), the LPD algorithm [27] which we refer to as bare linear
programming decoding (BLPD) is derived.

Bare LP decoding (BLPD)

Input: A € R", P C [0, 1]".

Output: ML codeword or error.

: Solve the LP given in (5.1).

if LP solution z* is integral then
Output z*.

else

Output error.
end if

AN e S o

If BLPD outputs a codeword, then it is the ML codeword (this is known as
the ML certificate property). BLPD succeeds if the transmitted codeword is the
unique optimum of the LP given in (5.1). BLPD fails if the optimal solution is
non-integral or the ML codeword is not the same as the transmitted codeword.
Note that the difference between the performance of BLPD and MLD is caused
by the decoding failures for which BLPD finds a non-integral optimal solution.
It should be emphasized that in case of multiple optima it is assumed that
BLPD fails.

For some cases, the fundamental polytope P is equivalent to conv(C'), e.g.,
if the underlying Tanner graph is a tree or forest [70]. In these cases MLD can
be achieved by BLPD.
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To motivate the definition of fractional distance, we first rewrite the mini-
mum distance of a code as

d(C):min{i\xj—Ej] cx,7 € C, x#a‘;} (5.2)

Jj=1

where |-| denotes the [; norm.
For a given fundamental polytope P, the notion of fractional distance was
introduced in [27].

Definition 5.2. Let V (P) be the set of vertices of P, i.e., the set of pseudocodewords.
The fractional distance dg,. of a polytope P is the minimum [, distance between a
codeword and any other vertex v € V(P).

dfrac(P) = min {Z lz; — vl :x e C,veV(P), x# v} :

J=1

The fractional distance is a lower bound for the minimum distance of a
code, i.e., d(C) > dgrac(P). For binary linear codes, it is shown in [23] that the
fractional distance is equal to the minimum /; weight of a non-zero vertex of a
C-symmetric polytope (see [23, Chapter 4]) P. Given a C-symmetric polytope
P, the fractional distance of a binary linear code can be found by the fractional
distance algorithm (FDA). Let 2° denote the all-zero codeword, let M denote
the set of inequalities describing P, and let / C M denote the set of inequal-
ities which are not active at 2°, i.e., not satisfied with equality by 2°. In FDA,
the weight function } _,_; x; is minimized on P N f for all f € 7. In this way,
the minimum weight non-zero vertex of P is found.

Fractional distance algorithm (FDA)
Input: P C [0,1]".
Output: Minimum weight non-zero vertex of P.

1: forall f € F do

2. SetP' =Pnf.

3 Solvemin{}_;_;z;:z € P}

4: end for

5: Choose the minimum value obtained over all P’.

5.3 Methods based on solving an LP relaxation

In Step 1 of BLPD the LP problem is solved by a general purpose LP solver.
These solvers usually employ the simplex method since it performs well in
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practice. The simplex method iteratively examines vertices of the underlying
polytope until the vertex corresponding to the optimal solution is reached. If
there exists a vertex for which the objective function can be improved in the
current step, the simplex method moves to this vertex. Otherwise it stops.
The procedure of moving from one vertex to another is a simplex iteration.
Details on the simplex algorithm can be found in classical books about linear
programming, e.g., [60].

The efficiency of the simplex method depends on the constraint set describ-
ing the underlying polytope. Several constraint sets which describe the funda-
mental polytope P explicitly have been proposed in the LPD literature. Some
of these constraint sets can be written for any binary linear code whereas oth-
ers are specialized for certain subclasses of codes. Using alternative descrip-
tions of P C [0, 1]", alternative LP decoders are obtained. In the following, we
are going to discuss different LP formulations obtained by relaxing the inte-
grality constraints in the IP formulations presented in Section 4.2.

In order to describe P explicitly, three alternative constraint sets are sug-
gested in [27]. The constraint sets are obtained by relaxing the integrality
constraints in the IP formulations IPD3, IPD5, IPD7. We use the abbrevia-
tions LPD3, LPD5, LPD7 to denote the associated LP formulations. Note that
some abbreviations are used to denote both the formulation and the associated
solution (decoding) algorithm, e.g., solving an LD, subgradient optimization,
neighborhood search. The meaning will be clear from the context.

In LPD3, for each i € I, the constraints describe conv(C;). In LPD5, the for-
bidden set (FS) inequalities are used. If the rows of H are considered as dual
codewords, the set of FS inequalities is a reinvention of cocircuit inequalities
explained in Section 3.3. The number of variables, constraints in LPD3 and
the number of constraints in LPD5 increase exponentially in the check node
degree. Thus, for codes with high-density parity-check matrices, LPD3 and
LPD5 are computationally inefficient. LPD7 is suggested as a suitable formu-
lation for codes with high-density parity-check matrices.

Feldman et al. [27] show that LPD3, LPD5, and LPD7 are equivalent in the
sense that the x variables of the optimal solutions in all three formulations take
the same values. Moreover, it is shown that conv(C;) can be described com-
pletely and non-redundantly by the FS inequalities and the boxing inequalities
0 <=z; <1, € J. Inamore general setting Grotschel [33] proved this result
for the cardinality homogeneous set systems.

In particular, Feldman et al. [27] apply BLPD using formulations LPD3 or
LPD5 to LDPC codes. Under the binary symmetric channel (BSC), the error-
correcting performance of BLPD is compared in [27] with the min-sum decod-
ing (MSD) of the random rate-% LDPC code with n = 200, d, = 3, d. = 6; with
the MSD, sum-product decoding (SPD) on the random rate—}l LDPC code with
n = 200, d, = 3, d. = 4; with the MSD, SPD, MLD on the random ra’te—}L LDPC
code with n = 60, d, = 3, d. = 4. On these codes, BLPD performs better than
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MSD but worse than SPD. Using LPD5, the FDA is applied to random rate-;
LDPC codes with n = 100, 200, 300, 400 d, = 3, d. = 4 from an ensemble of
Gallager [29]; Reed-Muller (n — 1,n) codes [28] with n changing between 4 to
1024 to calculate fractional distance.

The number of variables and constraints in LPD7 are in O(n?*). By apply-
ing a decomposition approach, Yang, Wang, and Feldman [77] show that an
alternative LP formulation which has size linear in the block length and maxi-
mum check node degree can be obtained (see Section 4.2 for the associated IP
formulation, IPD6). In LPD6, the LP relaxation of IPD6, the boxing inequali-
ties can be dropped since the convex hull of a single check node of degree 3 is
described by the FS inequalities.

Yang et al. [77] and Chertkov and Stapanov [15] prove that the formulations
introduced in [27] and LPD6 are equivalent. Again, equivalence is used in the
sense that in an optimal solution, the = variables of LPD3, LPD5, LPD7 and
the variables LPD6, which correspond to original z variables, take the same
values. Moreover, it is shown that LPD6 can be used in FDA. As a result,
the computation of the fractional distance for codes with high-density parity-
check matrices is also facilitated. Note that using LPD5, FDA is applicable
only for LDPC codes. If P is described by the constraint set of LPD6, then in
the first step of FDA, it is sufficient to choose the set 7 from the facets formed
by cutting planes of type v¥ + v§ + v§ = 2 where v}, 15, and v/} are variables of
the LPD6 formulation. Additionally, an adaptive branch & bound method as
in [76] is suggested to find better bounds for minimum distance of a code. This
is demonstrated in [77] on a random rate-z—lL LDPC code with n = 60, d, = 3,
d. = 4.

The LP relaxation of IPD8, LPD8, models a minimum cost flow problem
with additional side constraints and it can be solved by a general purpose LP
solver. Specifically, LPDS is applied to repeat accumulate (RA(()) codes (see
Feldman and Karger [25]). The encoder of an RA(() repeats the information
bits [ times, and then sends them to an interleaver followed by an accumulator.
The authors derive bounds on the error rate of LPD8 for RA codes which are
later improved and extended by Halabi and Even [37] as well as Goldenberg
and Burshtein [32].

5.4 Efficient LP solvers for BLPD

A successful realization of BLPD requires an efficient LP solver. To this end,
several ideas have been suggested in the literature. LPD6 introduced in [77]
can be considered as an efficient LPD approach since the number of variables
and constraints are significantly reduced. We review several others in this
section.
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5.4.1 Solving the separation problem

The approach of Taghavi and Siegel [63] tackles the large number of constraints
in LPD5. In their separation approach called adaptive linear programming de-
coding (ALPD), not all FS inequalities are included in the LP formulation as
in LPD5. Instead, they are iteratively added when needed. In the initializa-
tion step, the LP min{\"z : 0 < z < 1} is solved. Let (z*)* be the optimal
solution in iteration k. Taghavi and Siegel [63] show that it can be checked
in O(md™® + nlogn) time if (z*)* violates any FS inequality derived from
H; v = 0 mod 2 for all i € I. This check can be considered as a special case
of the greedy separation algorithm (GSA) introduced in [33]. If some of the FS
inequalities are violated then these inequalities are added to the formulation
and the modified LP is solved again with the new inequalities. ALPD stops
if the current optimal solution (z*)* satisfies all FS inequalities. If (z*)" is in-
tegral then it is the ML codeword, otherwise an error is output. ALPD does
not yield an improvement in terms of frame error rate since the same solu-
tions are found as in the formulations in the previous section. However, the
computational complexity is reduced.

An important algorithmic result of [63] is that ALPD converges to the same
optimal solution as LPD5 with significantly less constraints. It is shown em-
pirically that in the last iteration of ALPD, less constraints than in the formula-
tions LPD5, LPD6, and LPD7 are used. Taghavi and Siegel [63] prove that their
algorithm converges to the optimal solution on the fundamental polytope after
at most n iterations with at most n(m + 2) constraints.

Using binary-input additive white Gaussian noise channel (BIAWGNC),
Taghavi and Siegel [63] use various random (d,, d.)-regular codes to test the
effect of changing the check node degree, the block length, and the code rate
on the number of FS inequalities generated and the convergence of their al-
gorithm. Setting n = 360 and rate R = 1, the authors vary the check node
degree in the range of 4 to 40 in their computational testing. It is observed
that the average and the maximum number of FS inequalities remain below
270. The effect of changing block length n between 30 and 1920 under R = 1 is
demonstrated on a (3, 6)-regular LDPC code. For these codes, it is shown that
the number of FS inequalities used in the final iteration is generally between
0.6n and 0.7n. Moreover, it is reported that the number of iterations remains
below 16. The authors also investigate the effect of the rate on the number of
FS inequalities created. Simulations are performed on a code with n = 120 and
d, = 3 where the number of parity checks m vary between 15 and 90. For most
values of m it is observed that the average number of FS inequalities ranges
between 1.1m and 1.2m. For ALPD, LPD5, and SPD (50 iterations), the av-
erage decoding time versus various block lengths are tested on (3, 6)-regular,
(4, 8)-regular LDPC codes. It is shown that the computation time needed for
ALPD is between the computation time of BLPD and the computation time
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of SPD. Furthermore increasing the check node degree does not increase the
computation time of ALPD as much as the computation time of BLPD. The be-
havior of ALPD, in terms of the number of iterations and the parity inequalities
used, under increasing signal to noise ratio (SNR) is tested on the (3, 6)-regular
LDPC code with n = 240. It is concluded that ALPD performs more iterations
and uses more FS inequalities for the instances it fails. Thus, decoding time
decreases with increasing SNR.

In [62] ALPD is improved further in terms of complexity. Taghavi, Shokrol-
lahi, and Siegel [62] use some structural properties of the fundamental poly-
tope. Let (z*)* be an optimal solution in iteration k. In [63] it is shown that
if (z*)F does not satisfy an FS inequality derived from check node i, then
(z*)* satisfies all other FS inequalities derived from i with strict inequality.
Based on this result Taghavi et al. [62] modify ALPD and propose the decod-
ing approach we refer to as modified adaptive linear programming decoding
(MALPD). In the (k + 1)™ iteration of MALPD, it is checked in O(md™®) time
if (z*)* violates any FS inequality derived from H; z = 0 mod 2 for some i € I.
This check is only performed for the parity checks i € I which do not induce
any active FS inequality at (z*)*. Moreover, it is proved that inactive FS in-
equalities at iteration k can be dropped. In any iteration of MALPD, there are
at most m many FS inequalities. Under the BIAWGNC, the average number of
iterations performed by ALPD and MALPD are compared on various regular
LDPC codes. It is concluded that MALPD converges in slightly more iterations
than ALPD.

5.4.2 Message passing-like algorithms

An approach towards low complexity LPD of LDPC codes is proposed by Von-
tobel and Kotter in [71]. They first formulate an LP, based on the Forney-style
factor graph (FFG) representation of C. The LP relaxation of IPD4, LPD4, is
motivated by the usage of the structure of the LP to derive a special, mes-
sage passing like LP solver. Instead of solving LPD4 with a general purpose
LP solver, Vontobel and Kotter [71] derive the dual of the above formulation.
The authors manipulate the constraints of the dual problem to obtain a closely
related, "softened” dual linear programming decoding (SDLPD). SDLPD can
then be treated efficiently: The authors propose a coordinate-ascent-type algo-
rithm resembling the min-sum algorithm and show convergence under certain
assumptions. In this algorithm, all the edges of FFG are updated according to
some schedule. It is shown that the update calculations required during each
iteration can be efficiently performed by SPD. The coordinate-ascent-type al-
gorithm for SDLPD is guaranteed to converge if all the edges of FFG are up-
dated cyclically.

Under the BIAWGNC, the authors compare the error-correcting perfor-
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mance of the coordinate-ascent-type algorithm (max iterations: 64, 256) against
the performance of MSD (max iterations: 64, 256) on the (3, 6)-regular LDPC
code with n = 1000 and rate R = ;. MSD performs slightly better than the
coordinate-ascent-type algorithm. To sum it up, Vontobel and Kétter [71] show
that it is possible to develop LP-based algorithms with complexities similar to
IMPD.

The convergence and the complexity of the coordinate-ascent-type algo-
rithm proposed in [71] is studied further in [10] by Burshtein. His algorithm
has a new scheduling scheme and its convergence rate and computational
complexity is analyzed under this scheduling. Using the new scheme, the de-
coding algorithm of Vontobel and Koétter [71] yields an iterative approximate
LPD algorithm for LDPC codes with complexity in O(n). The main difference
between Burshtein’s algorithm [10] and the algorithm of Vontobel and Kétter
[71] is the selection and update of edges of the FFG. In [71] all edges are up-
dated cyclically during one iteration, whereas in [10], only few selected edges
are updated during one particular iteration. The edges are chosen according
to the variable values obtained during previous iterations.

5.4.3 Non-linear programming approach

As an approximation of BLPD for LDPC codes, Yang, Feldman, and Wang
[76] introduce the box constraint quadratic programming decoding (BCQPD)
which is a linear time decoding algorithm. BCQPD is a non-linear program-
ming approach derived from the Lagrangian relaxation (see [55] for an intro-
duction to Lagrangian relaxation) of LPD3. To achieve BCQPD, a subset of the
set of the constraints are incorporated into the objective function. To simplify
the notation Yang et al. rewrite the constraint blocks (4.1), (4.2) as Ay = b where
the matrix A and the vector b are defined appropriately. Likewise, the variables
in LPD3 are grouped into a new variable vector y of length K. Finally, the ob-
jective function coefficients are rewritten in a vector c also of length K. The
resulting formulation is min{c’y : Ay = b,y € {0,1}*}. Using a multiplier
a > 0, the Lagrangian of this problem is

minimize ¢’y + a(Ay — b)) (Ay — b)
subjectto 0 <y, <1 forallk € {1,...,K}.

If Ay = b is violated then a positive value is added to the original objective
function ¢y, i.e., the solution y is penalized. Setting Q := 2aATA and r :=
¢ — 2aA"b the BCQPD problem is obtained.

minimize y"Qy + 2rTy (BCQPD)
subjectto 0 <y, <1 forallk € {1,...,K}.
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Since () is a positive semi-definite matrix, i.e., the objective function is con-
vex, and since the set of constraints constitute a box, each y; can be minimized
separately. This leads to efficient serial and parallel decoding algorithms. Two
methods are proposed in [76] to solve the BCQPD problem, the projected suc-
cessive overrelaxation method (PSORM) and the parallel gradient projection
method (PGPM). These methods are generalizations of Gaussian-Seidel and
Jacobi methods [8] with the benefit of faster convergence if proper weight fac-
tors are chosen. PSORM and PGPM benefit from the low density structure of
the underlying parity-check matrix.

One of the disadvantages of IMPD is the difficulty of analyzing the con-
vergence behavior of such algorithms. Yang et al. showed both theoretically
and empirically that BCQPD converges under some assumptions if PSORM or
PGPM is used to solve the quadratic programming problem. Moreover, the
complexity of BCQPD is smaller than the complexity of SPD. For numerical
tests, the authors use a product code with block length 4° = 1024 and rate
(3)> = 0.237. The BIAWGNC is used. It is observed that the PSORM method
converges faster than PGPM. The error-correcting performance of SPD is poor
for product codes due to their regular structure. For the chosen product code,
Yang et al. demonstrate that PSORM outperforms SPD in computational com-
plexity as well as in error-correcting performance.

5.4.4 Efficient LPD of SPC product codes

A code class of special interest in [77] is single parity-check (SPC) product
codes built from SPC codes. The authors prove that for the class of SPC prod-
uct codes the fractional distance is equal to the minimum Hamming distance.
Due to this observation, the minimum distance of SPC product codes can be
computed in polynomial time using FDA. Furthermore, Yang et al. [77] pro-
pose a low complexity algorithm which approximately computes the optimum
of LPD6 for SPC product codes. This approach is based on the observation that
a possible parity-check matrix of an SPC product code can be decomposed
into component SPC codes. A Lagrangian relaxation of LPD6 is obtained by
keeping the constraints from only one component code in the formulation and
moving all other constraints to the objective function with a penalty vector.
The resulting Lagrangian dual problem is solved by subgradient algorithms
(see [65]). Two alternatives, subgradient decoding (SD) and joint subgradi-
ent decoding (JSD) are proposed. It can be proved that subgradient decoders
converge under certain assumptions.

The number of iterations performed against the convergence behavior of
SD is tested on the (4,4) SPC product code. All variants tested (obtained by
keeping the constraints from component code j = 1,2, 3,4 in the formulation)
converge in less than 20 iterations. For demonstrating the error-correcting per-
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formance of SD if the number of iterations are set to 5, 10, 20, 100, a (5,2) SPC

42
5

correcting performance is improved by increasing the number of iterations.
Under the BIAWGNC, this code and a (4,4) SPC product code with n = 256 and

rate R = <§2> ~ 0.32 are used to compare the error-correcting performance

product code with n = 25 and rate R = ( = 0.64 is used. The error-

1
of SD, JSD with the performance of BLPD and MLD. It should be noted that
BLPD and MLD have the same error-correcting performance for SPC prod-
uct codes. JSD and SD approach the BLPD curve for the code with n = 25.
For the SPC product code with n = 256 the subgradient algorithms perform
worse than BLPD. For both codes, the error-correcting performance of JSD is
superior to SD. Finally, a (10,3) SPC product code with n = 1000 and rate
R = (35)* ~ 0.729 is used to compare the error-correcting performance of SD
and JSD with the SPD. Again the BIAWGNC is used. It is observed that SD
performs slightly better than the SPD with a similar computational complex-
ity. JSD improves the error-correcting performance of the SD at the cost of

increased complexity.

5.4.5 Interior point algorithms

Efficient LPD approaches based on interior point algorithms are studied by
Vontobel [69], Wadayama [72], and Taghavi et al. [62]. The use of interior point
algorithms to solve LP problems as an alternative to the simplex method was
initiated by Karmarkar [43]. In these algorithms, a starting point in the interior
of the feasible set is chosen. This starting point is iteratively improved by
moving through the interior of the polyhedron in some descent direction until
the optimal solution or an approximation is found. There are various interior
point algorithms and for some, polynomial time convergence can be proved.
This is an advantage against the simplex method which has exponential worst
case complexity.

The proposed interior point algorithms aim at using the special code struc-
ture. The resulting running time is a low-degree polynomial function on the
block length. Thus, fast decoding algorithms based on interior point algo-
rithms may be developed for codes with large block lengths. In particular
affine scaling algorithms [69], primal-dual interior point algorithms [62], [69]
and primal path following interior point algorithm [72] are considered. The
bottleneck operation in interior point methods is to solve a system of linear
equations depending on the current iteration of the algorithm. Efficient ap-
proaches to solve this system of equations are proposed in [69], [62]. Under
the BIAWGNC, Wadayama [72] and Taghavi et al. [62] demonstrate the con-
vergence behaviors of their algorithms on the nearly (3, 6)-regular LDPC code
with n = 1008, R = 1 and a randomly-generated (3, 6)-regular LDPC code
with n = 2000, respectively.
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5.5 Improving the error-correcting performance of
BLPD

The error-correcting performance of BLPD can be improved by techniques
from integer programming. Most of these techniques can be grouped into
cutting plane or branch & bound approaches. In this section, we review the
improved LPD approaches mainly with respect to this categorization.

5.5.1 Cutting plane approaches

The fundamental polytope P can be tightened by cutting plane approaches.
In the following, we refer to valid inequalities as inequalities satisfied by all
points in conv(C'). Valid cuts are valid inequalities which are violated by some
non-integral vertex of the LP relaxation. Feldman et al. [27] obtain valid in-
equalities either by using the lift and project technique [48] or deriving FS in-
equalities from redundant parity checks. We refer to the latter inequalities
as redundant parity-check (RPC) inequalities. RPC inequalities may include
valid cuts which increase the possibility that BLPD outputs a codeword. An
interesting question relates to the types of inequalities required to describe the
codeword polytope conv(C') exactly. In general, conv(C) cannot be described
completely by using only FS inequalities and boxing inequalities. The (7, 3, 4)
Simplex code (dual of the (7,4, 3) Hamming code) is given as a counter exam-
ple in [27]. In general, it can be concluded from [36] that the FS inequalities do
not define the facets of a simplex code.

RPCs can also be interpreted as dual codewords. Obviously, there exist
exponentially many RPC inequalities. The RPC inequalities cutting off the
non-integral optimal solutions are called RPC cuts [63]. There are several ap-
proaches in the LPD literature (cf. [27], [53], [63], [64]) to find those RPCs for
which the associated RPC inequalities include an RPC cut. In [27] RPCs which
result from adding any two rows of H are appended to the original parity-
check matrix. In [63] the RPCs are found from fractional cycles in the Tanner
graph. In [53] the column index set corresponding to an optimal LP solution is
sorted. By re-arranging H and bringing it to row echelon form, RPC cuts are
searched. In [64], a possible parity-check matrix is reformulated such that unit
vectors are obtained in the columns which correspond to fractional valued bits
in the optimal solution of the current LP. RPC cuts are derived from the rows
of the modified parity-check matrix.

Feldman et al. [27] test the lift and project technique (see [48]) on the ran-
dom rate-i LDPC code with n = 36, d, = 3 and d, = 4 under the BIAWGNC.
The random rate-}l LDPC code with n = 40, d, = 3 and d. = 4 is used
to demonstrate the error-correcting performance of BLPD when the original
parity-check matrix is modified to include all RPCs obtained by adding any
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two rows. Both tightening techniques improve the error-correcting perfor-
mance of BLPD.

The idea of tightening the fundamental polytope is usually implemented as
a cutting plane algorithm (the separation problem is solved). In cutting plane
algorithms, an LP problem which contains only a subset of the constraints from
the corresponding optimization problem, is solved. If the optimal LP solution
is a codeword then the cutting plane algorithm terminates and outputs the ML
codeword. If the optimal LP solution is not a codeword then valid cuts from a
predetermined family of valid inequalities are searched. If some valid cuts are
found, they are added to the LP formulation and the LP problem is resolved.
In [53], [64], [63] the family of valid cuts is FS inequalities derived from RPCs.

In [53] the main motivation for the greedy cutting plane algorithm is to
improve the fractional distance. This is demonstrated for (7,4,3) Hamming
code, (24,12,8) Golay code and (204, 102) LDPC code. As a by product under
the BSC it is shown on the (24, 12, 8) Golay code and (204, 102) LDPC code that
the RPC based approach of [53] improves the error-correcting performance of
BLPD.

In the improved LPD approach of [63], first the ALPD (see Section 5.4) is ap-
plied. If the solution is non-integral, an RPC cut search algorithm is employed.
This algorithm can be briefly outlined as follows: 1) Given a non-integral op-
timal LP solution z*, remove all variable nodes j from the Tanner graph for
which z7 is integral. 2) Find a cycle by randomly walking through the pruned
Tanner graph. 3) Add the rows of the H matrix in GF(2) which correspond to
the check nodes in the cycle. 4) Check if the found RPC introduces a cut. The
improved decoder of [63] performs better than BLPD and SPD. This is shown
under the BIAWGNC, on the (3, 4)-regular LDPC codes with n = 32,100, 240.

The cutting plane approach of [64] is based on the IP formulation IPD1 (see
Section 4.2). The formulation is referred to as IPD and it was also mentioned
in [9]. In [64] the initial LP problem is the LP relaxation of IPD1 and it is solved
by a cutting plane algorithm. Note that the LP relaxation of IPD1 is not equiv-
alent to the LP relaxations given in Section 5.3. In almost all improved (in the
error-correcting performance sense) LPD approaches reviewed in this chapter
tirst the BLPD is run. If BLPD fails, some technique to improve BLPD is used
with the goal of finding the ML codeword at the cost of increased complexity.
In [64] it is not elaborated on the solution of BLPD. It is immediately searched
for cuts which can be derived from arbitrary dual codewords. To this end a
possible parity-check matrix is modified and the conditions are checked un-
der which certain RPCs define cuts. The average number of iterations per-
formed and the average number of cuts generated in the separation algo-
rithm decoding (SAD) of [64] are presented for the (3, 6) random regular codes
with n = 40,80, 160,200,400 and for the (31,10), (63,39), (127,99), (255, 223)
(Bose-Chaudhuri-Hocquenghem) BCH codes. These two performance mea-
sures are directly proportional with the block length. The error-correcting per-
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formance of SAD is measured on the random (3, 4)-regular LDPC codes with
block length 100, 200, and Tanner’s (155, 64) group structured LDPC code [65].
It is demonstrated that the improved LPD approach of [64] performs better
than BLPD applied in the adaptive setting [63] and the SPD. One significant
numerical result is that SAD proposed in [64] performs much better than BLPD
for the (63,39) and (127,99) BCH codes. In all numerical simulations the BI-
AWGNC is used.

Yufit, Lifshitz and Be’ery [79] improve SAD of Tanatmis et al. [64] and
ALPD of Taghavi et al. [63] by employing several techniques. The authors
propose to improve the error-correcting performance of these decoding meth-
ods by using RPC cuts derived from alternative parity-check matrices selected
from the automorphism group of C, Aut(C). In the alternative parity-check
matrices, the columns of the original parity-check matrix are permuted accord-
ing to some scheme. At the first stage of Algorithm 1 [79], SAD is used to solve
the MLD problem. If the ML codeword is found then Algorithm 1 terminates,
otherwise an alternative parity-check matrix from Aut(C') is randomly chosen
and the SAD is applied again. In the worst case this procedure is repeated N
times where N denotes a predetermined constant. A similar approach is also
used to improve ALPD in Algorithm 2 of [79]. Yufit et al. enhance Algorithm
1 with two techniques to improve the error-correcting performance and com-
plexity. The first technique, called parity-check matrix adaptation, is to alter a
possible parity-check matrix prior to decoding such that at the columns which
correspond to least reliable bits, i.e., bits with the smallest absolute LLR val-
ues, unit vectors are obtained. The second technique which is motivated by
MALPD of [62] is to drop the inactive inequalities at each iteration of SAD. In
this way itis avoided that the problem size increases from iteration to iteration.
Under the BILAWGNC, it is demonstrated on the (63,36, 11) BCH code and the
(63,39,9) BCH code that SAD can be improved in terms of error-correcting
performance and computational complexity.

5.5.2 Facet guessing approach

Based on LPD5, Dimakis, Gohari, and Wainwright [19] improve the error-
correcting performance of BLPD with an approach similar to FDA (see Sec-
tion 5.2). They introduce facet guessing algorithms which iteratively solve a
sequence of related LP problems. Let 2* be a non-integral optimal solution of
BLPD, 2™ be the ML codeword and F be a set of faces of P which do not
contain z*. This set F is given by the set of inequalities which are not active at
x*.

The set of active inequalities of a pseudocodeword v is denoted by A(v). In
facet guessing algorithms, the objective function A”z is minimized over f NP
for all f € K C F where K is an arbitrary subset of . The optimal solutions
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are stored in a list. In random facet guessing decoding (RFGD), |K| many of
the faces f € F are chosen randomly. If £ = F then exhaustive facet guess-
ing decoding (EFGD) is obtained. From the list of optimal solutions, the facet
guessing algorithms output the integer solution with minimum objective func-
tion value. It is shown that EFGD fails if there exists a pseudocodeword v € f
such that ATv < ATzML for all f € A(2ML). For suitable expander codes this
result is combined with the following structural property of expander codes
also proven by the authors. The number of active inequalities of a codeword
is much more than the number of active inequalities in a non-integral pseu-
docodeword. Consequently, theoretical bounds on the decoding success con-
ditions of the polynomial time algorithms EFGD, RFGD for expander codes
are derived. The numerical experiments are performed under the BIAWGNC,
on Tanner’s (155, 64) group structured LDPC code and a random LDPC code
with n = 200, d, = 3, and d. = 4. For these codes the RFGD performs better
than SPD.

It should be noted that an important structural property of the fundamen-
tal polytope is used in [19], [63], and [64]. Let (z*) € R™ be a point in the
fundamental polytope. It can be shown that no check node of the associated
Tanner graph can be adjacent to only one non-integral valued variable node.
This result can be extended to the case where a possible parity-check matrix
contains all dual codewords and the fundamental polytope is formed by all FS
inequalities derived from all dual codewords.

5.5.3 Branch & bound approaches

Linear programming based branch & bound is an implicit enumeration tech-
nique in which a difficult optimization problem is divided into multiple, but
easier subproblems by fixing (for binary variables) the values of certain vari-
ables. We refer to [55] for a detailed description. Several authors improved
LPD using branch & bound approach.

Breitbach, Bossert, Lucas, and Kempter [9] solve IPD1 by a branch & bound
approach. Depth-first and breadth-first search techniques are suggested for
exploring the search tree. The authors point out the necessity of finding good
bounds in the branch & bound algorithm and suggest a neighborhood search
heuristic as a means of computing upper bounds. We note that in [9], the
heuristic approach is rather considered as a stand alone decoding algorithm.
In the heuristic, IPD2 is used.

In the neighborhood search heuristic of [9], first a feasible starting solution
¢’ is calculated by setting n —m most reliable bits, i.e., those j € J such that |y;|
are largest, to 0. These are the non-basic variables while the m basic variables
are found from the vector s € {0,1}™. Starting from this solution a neighbor-
hood search is performed by exchanging basic and non-basic variables. The
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tuple of variables yielding a locally best improvement in the objective func-
tion is selected for iterating to the next feasible solution.

In [9], numerical experiments are performed under the BIAWGNC, on:
(31,21,5) BCH code, (64,42, 8) Reed-Muller code, (127,85, 13) BCH code, and
(255,173,23) BCH code. The neighborhood search with single position ex-
changes performs very similar to MLD for the (31,21,5) BCH code. As the
block length increases the error-correcting performance of neighborhood search
with single position exchanges gets worse. An extension of this heuristic al-
lowing two position exchanges is applied to (64, 42, 8) Reed-Muller code, (127,85, 13)
BCH code, and (255, 173,23) BCH code. At the cost of an increased complex-
ity, the extended neighborhood search heuristic improves the error-correcting
performance. A branch & bound algorithm is simulated on the (31, 21,5) BCH
code and different search tree exploration schemes are investigated. Breitbach
et al. [9] suggest a combination of depth-first and breadth-first search.

In [20], Draper, Yedidia and Wang improve the ALPD approach of [63] with
a branch & bound technique. Branching is done on the least certain variable,
i.e., z; such that |#] — 0.5| is smallest for j € J. Under the BSC, it is observed
on the Tanner’s (155, 64,20) code that the ML codeword is found after few
iterations in many cases.

In [76] two branch & bound approaches for LDPC codes are introduced. In
ordered constant depth decoding (OCDD) and ordered variable depth decod-
ing (OVDD), first LPD3 is solved. If the optimal solution z* is non-integral,
a subset 7 C & of the set of all non-integral bits £ is chosen. Let g = |T].
The subset T is constituted from the least certain bits. The term ordered is
motivated by this construction. It is experimentally shown in [76] that choos-
ing the least certain bits is advantageous in comparison to a random choice
of bits. OVDD is a breadth first branch & bound algorithm where the depth
of the search tree is restricted to g. Since this approach is common in integer
programming, we do not give the details of OVDD and refer to [55] instead.
For OVDD, the number of LPs solved in the worst case is 2971 — 1.

In OCDD the m-element subsets of 7, i.e., M C T and m = | M|, are
chosen. Let b € {0,1}™. For any M C T, 2™ LPs are solved each time adding
a constraint block

xp = b forall k € M (5.3)

to LPD3, thus fixing m bits. Let 2 be the solution with the minimum objective
function value among the 2™ LPs solved. If # is an integral solution, OCDD
outputs z. Otherwise another subset M C T is chosen. OCDD exhausts all
m-element subsets of 7. Thus, in the worst case (%) 2" + 1 LPs are solved.
The branch & bound based improved LPD of Yang et al. [76] can be applied
to LDPC codes with short block length. For the following numerical tests, the
BIAWGNC is used. Under various settings of m and g it is shown on a ran-
dom LDPC code with n = 60, R = }1, d. = 4 and d, = 3 that OCDD has a a
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better error-correcting performance than BLPD and SPD. Several simulations
are done to analyze the trade-off between complexity and error-correcting per-
formance of OCDD and OVDD. For the test instances and parameter settings’
used in [76] it has been observed on the above mentioned code that OVDD
outperforms OCDD. This behavior is explained by the observation that OVDD
applies the branch & bound approach on the most unreliable bits [76]. On a
longer code, a random LDPC code with n = 1024, R = }L, d.=4and d, = 3, it
is demonstrated that the OVDD performs better than BLPD and SPD.

Another improved LPD technique which can be interpreted as a branch &
bound approach is randomized bit guessing decoding (RBGD) of Dimakis et
al. [19]. RBGD is inspired from the special case that all facets chosen by RFGD
(see Section 5.5.2) correspond to constraints of type x; > 0 or z; < 1. In RBGD
k = clogn variables where ¢ > 0 is a constant, are chosen randomly. There
are 2* different possibilities of assigning bit values to these k variables. LPD5
is run 2* times with associated constraints for each of these assignments. The
best integer valued solution in terms of the objective function A is the out-
put of RBGD. Note that by setting £ to c-logn, a complexity being polynomial
in n is ensured. Under the assumption that there exists a unique ML code-
word, exactly one of the 2" bit settings matches the bit configuration in the ML
codeword. Thus, RBGD fails if a non-integral pseudocodeword with a better
objective function value coincides with the ML codeword in all £ components.
For some expander codes, the probablilty that the RBGD finds the ML code-
word is given in [19]. To find this probability expression the authors first prove
that for some expander codes, the number of non-integral components in any
pseudocodeword scales linearly in block length.

Chertkov and Chernyak [12] applied the loop calculus approach [13], [14]
to improve BLPD. Loop calculus is an approach from statistical physics and
related to cycles in the Tanner graph representation of a code. In the context of
improved LPD, it is used to either modify objective function coefficients (see
[12]) or to find branching rules for branch and bound (cf. [11]). Given parity-
check matrix and channel output, in linear programming erasure decoding
(LPED) of Chertkov and Chernyak [12] first BLPD is solved. If a codeword
is found then the algorithm terminates. If a non-integral pseudocodeword is
the optimum of LP then a so-called critical loop is found by employing loop
calculus. The indices of the variable nodes along the critical loop form an index
set M C J. LPED lowers the objective function coefficients \; of the variables
xj, j € M by multiplying A\; with ¢ where 0 < e < 1. After updating the
objective function coefficients, BLPD is solved again. If BLPD does not find a
codeword then the selection criterion for the critical loop is improved. LPED
is tested on the list of pseudocodewords found in [15] for Tanner’s (155, 64, 20)
code. It is demonstrated that LPED corrects the decoding errors of BLPD for

'm, g are set such that OVDD and OCDD have similar worst case complexity.
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this code.

In [11] Chertkov combines the loop calculus approach used in LPED [12]
with RFGD of Dimakis et al. [19]. We refer to the combined algorithm as loop
guided guessing decoding (LGGD). LGGD differs from RFGD in the sense that
the constraints chosen are of type z; > 0 or z; < 1 where j is in the index set
M, the index set of the variable nodes in the critical loop. LGGD starts with
solving BLPD. If the optimal solution is non-integral then the critical loop is
found with the loop calculus approach. Next, a variable z;, j € M, is selected
randomly and two sub LPD problems are deduced. The sub LPD problems dif-
fer from the original problem by only one equality constraint z; = 0 or z; = 1.
LGGD chooses the minimum of the objective values of the two subproblems. If
the corresponding pseudocodeword is integral then the algorithm terminates.
Otherwise the equality constraints are dropped, a new j € M along the crit-
ical loop is chosen, and two new subproblems are constructed. If the set A/
is exhausted, the selection criterion of the critical loop is improved. LGGD is
very similar to OCDD of [76] for the case that g = |[M| and m = 1. In LGGD
branching is done on the bits in the critical loop whereas in OCDD branching
is done on the least reliable bits. Asin [12], Chertkov tested LGGD on the list of
pseudocodewords generated in [15] for Tanner’s (155,64, 20) code. Chertkov
showed under the BIAWGNC that LGGD improves BLPD.

SAD of [64] is improved in terms of error-correcting performance by a
branch & bound approach in [79]. In Algorithm 3 of [79], first SAD is em-
ployed. If the solution is non-integral then a depth-first branch & bound is
applied. The non-integral valued variable with smallest absolute LLR value is
chosen as the branching variable. Algorithm 3 terminates as soon as the search
tree reaches the maximal allowed depth D,. Under the BIAWGNC, on the
(63,36, 11) BCH code and the (63, 39,9) BCH code Yufit et al. [79] demonstrate
that the decoding performance of Algorithm 3 (enhanced with parity-check
matrix adaptation) approaches MLD.

5.6 Conclusion and further research

Since the introduction of linear programming decoding of Feldman, Wain-
wright, and Karger [27], several concepts of mathematical programming have
been applied in coding theory. This chapter aims at reviewing different LP
formulations, polyhedral properties of the fundamental polytope, efficient so-
lution strategies for LPD, and techniques for improving error-correcting per-
formance. Other lines of research not covered in this chapter relate among
others to LPD of non-binary codes, performance analysis, or relationship to
IMPD.






Chapter 6

A separation algorithm for
improved LP-decoding of binary
linear block codes

6.1 Introduction

In this chapter, we concentrate on improving the error-correcting performance
of linear programming decoding (LPD) using a separation algorithm. We base
our discussion on a compact, non-binary integer programming (IP) formula-
tion for the decoding problem. We attempt to find the maximum likelihood
(ML) codeword by an iterative separation approach. First, we relax the IP for-
mulation and solve the resulting linear program (LP). In case of a non-integral
optimal solution, we derive inequalities which cut off this non-integral solu-
tion, add these inequalities to the LP formulation, and resolve the LP problem.
This process continues until an optimal integer solution is found or further
cuts cannot be generated.

It should be noted that this general IP approach known as the separation
problem was first applied to LPD by Taghavi and Siegel [63]. They intended
to lower the complexity of LPD by a separation approach. Furthermore, they
improved the error-correcting performance of LPD by using redundant parity-
checks (RPCs). Improving LPD, is also considered in the papers [12], [11],
[19], [20], [63]. It is common to these approaches that first the LP decoding
problem is solved. If the LP decoder fails, each of these approaches is equipped
with some technique of manipulating the LP with the goal of finding the ML
codeword at the cost of increased complexity.

In contrast our approach does not work in this two-phase fashion. In partic-
ular we do not elaborate on the solution of the LPD problem. Our motivation is
to search immediately for cuts which can be derived from arbitrary dual code-
words. To this end we change a possible parity-check matrix systematically

109
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and check conditions under which certain inequalities define cuts. Specifi-
cally, our approach offers the following advantages which facilitate LP based
decoding. Under some assumptions, we can prove that we detect violated
inequalities in O(d"**) where d"** is the maximum check node degree. We
formally show that particular type of inequalities introduced in [27] - referred
to as forbidden set (FS) inequalities - are a subset of the set of Gomory cuts (see
[55]) which can be deduced from the IP formulation we use. We provide em-
pirical evidence that our separation algorithm performs better than LPD and
sum-product decoding (SPD). This is mainly due to generating strong cuts ef-
ticiently using alternative representations of the codes at hand. We applied
our algorithm, separation algorithm decoding (SAD), to decode (3, 4)-regular
LDPC codes with block length 100, 200, Tanner’s (155,64) group structured
LDPC code, the (63,39) BCH code, and the (127, 99) BCH code.

The rest of this chapter is organized as follows. The relevant literature is
shortly reviewed in Section 6.2. In Section 6.3, we explain the IP formulation,
its LP relaxation, and SAD. In Section 6.4, we present our numerical results
and compare them with SPD, LPD, and the lower bound resulting from MLD.
Some extensions of SAD and a new family of valid inequalities are studied in
Section 6.5. The chapter is concluded with some remarks and further research
ideas in Section 6.6.

6.2 Relevant literature
Each row i € I of a possible parity-check matrix defines a local code C;, i.e.,
local codewords z € C; are the bit sequences which satisfy the i parity-check

constraint. In [27], a description of conv(C;) is given.

Proposition 6.1. The FS inequalities

dwi— > x4 <8 -1VS ey, 6.1)
jes JENI\S
derived from row i, i € {1,...,m}, of a parity-check matrix H and the inequalities

0 <z < 1, completely describe the convex hull conv(C;) of the local codeword polytope
C;.

Proof. This is shown in [27, Theorem 4]. O

The fundamental polytope P is the intersection of the convex hulls of local
codeword polytopes conv(C;). Feldman et al. [27] introduced the LP decoder
which minimizes A"z over P where ) is the vector of log likelihood ratios.
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In the LPD approach, the problem below is solved.

minimize Az (LPD)

subject to ij— Z z; <|S]—1 forall S € ¥;,i € {1,...,m}
JeS JEN;\S
0<z; <1 forall j € {1,...,n}.

If LPD has an integral optimal solution, then the ML codeword is found.
If LPD has a non-integral optimal solution then the output is an error. The
number of FS inequalities induced by check node i is 2%()~! where d.(i) =
;-1 Hij is the check node degree, i.e., the number of edges incident to node
i. LPD can thus be applied successfully to low density codes. As the check
node degrees increase, the computational load of building and solving the LP
model is however in general prohibitively large. This makes the explicit de-
scription of the fundamental polytope via FS inequalities inapplicable for high
density codes. Another approach applicable to high density codes is to solve
the corresponding separation problem of LPD.

In separation algorithms (see [55]) one iteratively computes families A of
valid cuts until no further cuts can be found. In the separation algorithm of
[63], which is called adaptive linear programing decoding (ALPD) by the au-
thors, FS inequalities are not added all at once in the beginning as in [27] but
iteratively. In other words, the separation problem for the fundamental poly-
tope is solved by searching violated FS inequalities. In the initialization step of
the LP, min{\"z : 0 < z < 1} is computed. Let 2* be an optimal solution. It can
be checked in O(md]*** + nlogn) time, if 2* violates any FS inequality where
d"** denotes the maximum check node degree. Recently, it was shown in [62]
that the complexity of this check can be reduced to O(md***). If some of the FS
inequalities are violated then these inequalities are added to the formulation
and the LP is resolved including the new inequalities.

ALPD stops when the current optimal solution z* satisfies all FS inequali-
ties. If 2™ is integral then it is the ML codeword, otherwise an error is returned.
Note that putting LPD in an adaptive setting does not yield an improvement
in terms of frame error rate since the same solutions are found. On the other
hand, ALPD converges with fewer constraints than the LP decoder which has
a positive effect on the computation time.

The advantages of LPD motivated researchers to find better approxima-
tions of the codeword polytope as part of MLD. One way is to tighten the fun-
damental polytope with new valid inequalities. Among some other generic
techniques of cut generation, in [27] it is proposed to use FS inequalities de-
rived from RPCs as potential cuts. We refer to these inequalities as RPC in-
equalities. Redundant parity-checks are obtained by adding a subset of rows
of a possible parity-check matrix in GF(2). These checks are redundant in
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the sense that they do not alter the code (they may even degrade the perfor-
mance of belief propagation [27]). However they induce RPC inequalities in
the LP formulation which may cut off a particular non-integral optimal solu-
tion thus tightening the fundamental polytope. The RPC inequalities cutting
off the non-integral optimal solutions are called RPC cuts [63]. Note that re-
dundant parity-checks are dual codewords and there exist exponentially many
redundant parity-checks as well as RPC inequalities. An open problem is to
find redundant parity-checks efficiently such that the associated RPC inequal-
ities include an RPC cut. This issue will be addressed in the next section.

To the best of the authors” knowledge three approaches for searching RPC
cuts have been studied so far. First, using redundant parity-checks which re-
sult from adding any two rows of H (see [27]). Second, the approach in [63]
where the redundant parity-checks are found from the fractional cycles in the
Tanner graph. In the third approach, introduced in [53], the column index
set corresponding to an optimal LP solution is sorted. By re-arranging I/ and
bringing it to row echelon form, RPC cuts are searched for.

6.3 Separation algorithm decoding

Our separation algorithm is based on the following formulation which we re-
ferred to as IPD1 in Chapter 4.

minimize Az (IPD1)

subjectto Hzr — 2z =0
z; € {0,1} forall j € {1,...,n}
z; > 0,integer foralli e {1,...,m}.

IPD1 is an integer programming problem modeling an ML decoder. The aux-
iliary variable vector z € Z™ ensures that the binary constraint Hz = 0 mod
2 turns into a constraint over the real number field R which is much easier
to handle. The number of constraints in this formulation is the same as the
number of rows of a possible parity-check matrix.

Our approach is to solve the separation problem by iteratively adding new
cuts [Tz < 1, according to Definition 2.37 and solving the LP relaxation of
IPD we refer to as relaxed integer programming decoding (RIPD).

minimize Az (RIPD)

subjectto Hx — 2z =0
N7z <M, (II,I) € A
0<z; <1 forall j € {1,...,n}
2z >0 foralli € {1,...,m}.
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Note that in the initialization step there are no cuts of type Iz < I,
i.e, A = (. If RIPD has an integral solution (z*,z*) € Z"*t™ then z* is the
ML codeword. Otherwise we generate cuts of the type II"z < Il in order
to exclude the non-integral solution found in the current iteration. We add
these inequalities to the formulation and solve RIPD again. In a non-integral
solution of RIPD z or z (or both) is non-integral. If z € Z" and z € R™ \ Z™
then we add Gomory cuts (see [55]) which is a generic cut generation technique
used in integer programming. Surprisingly, in this case Gomory cuts can be
shown to correspond to FS inequalities.

Theorem 6.2. Let (z*,2*) € Z" x R™ be the optimal solution of RIPD such that
zf € R\ Z for some i € 1. Then a Gomory cut which is violated by (x*, z*) is the FS
inequality

Yo=Y oz < -1 (6.2)

jes JEN:\S
where S is an odd cardinality subset of N; such that S = {j € N; | x; = 1}.

Proof. We apply the general method known as Gomory’s cutting plane algo-
rithm (see e.g. [55]) to our special case. Gomory cuts are derived from the rows
of the simplex tableau' in order to cut off non-integral LP solutions and find
the optimal solution to the integer linear programming problems. Consider
RIPD at any step:

minimize A’z (RIPD)
subjectto Hx — 22 =0

Az <b

0<x<1

z > 0.

where A,z € R", H € {0,1}™", 2 € R™, A € {-1,0,1}7" for some n € N
and b € Nj. Note that 7 is the number of constraints added iteratively until
the current step, i.e,, n = |A|. The n x n matrix A is the coefficient matrix
of the iteratively added constraints, i.e., [I"x < I, (I, 1)) € A. (Note that
A € {—1,0,1}"" holds in each iteration since the iteratively added constraints
turn out to be forbidden set type of inequalities.)

We denote the right hand sides of these constraints with the vector b. RIPD

!Details on the simplex algorithm can be found in classical books about linear program-
ming, e.g., [60].
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in standard form can be written as follows:

minimize Az (RIPD) (6.3)
subjectto z — Hx =0 (6.4)
r+st=1 (6.5)
Ar+s*=b (6.6)
z>0, x>0, s>0. (6.7)

where H := $H, s = (s',s%) € R"". For ease of notation we rewrite (6.3)-(6.7)
as

minimize Ay (6.8)
subject to Py = ¢ (6.9)
y > 0. (6.10)
Note that
ET - (5\17 ceey 5‘m7 5\m+17 ceey 5\m+n7 5\m—i-n—i-h ey 5\m+2n+)\)
= (0,...,0, M1, -, A\, 0,...,0),
yT = (yla o YUms Ymas - - o Ymtns Ymdntls - - 7ym+2n+n>
= (21,...,zm,xl,...,xn,s%,...,5727) and
qT = (qla <5 Qmy GmA41s - - -5 Amtns Amtn+1, - - - 7qm+n+7’1)
= (0,...,0,1,...,1,by,....by).

The constraint matrix P has m+n+n rows and m+ 2n+7 columns. We denote
the o' row of P with P, where a € {1,...,m + n + n} and 8" column of P
with P g where g € {1,...,m+2n+n}. The component in row « and column
is denoted by P, 5. Additionally, we define the o' unit vector ase_, € R™"" 7.
Thus, we rewrite P as

P = [6"1 <€ om, _P.7m+1 Ce P,m—l—n; €.om+1--- 6_7m+n+7]] .

The first m columns of the constraint matrix P are the unit vectors correspond-
ing to the variables {z1,..., 2, }. Likewise, the last n + 7 columns are the unit
vectors corresponding to the slack variables {s1, ..., s.}.

The first m linear equations of Py = ¢ are of the form:

1 :
zi—i-ij:Oforallze{l,...,m}.
JEN;

Let y* = (2*,2%,s*) € R™""" be the optimal solution to (6.3)-(6.7). By as-
sumption we have z* € {0,1}". Fori € {1,...,m}, 27 = +k;, where

ki=|{jeN;:a;=1}.
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Obviously, k; € Ny. If k; is even, i.e., an even number of variable nodes are set
to 1 in the neighborhood of the check node i, then 27 € N holds. Otherwise,
=} is an odd multiple of ;. We then consider the Gomory cut for this row 1.

For the optimal solution y* we can partition P into a basis submatrix Pp
and a non-basis submatrix Py, i.e., P = [Pp Py]. Let B and N denote the
index sets of the columns of P belonging to P and Py, respectively. An (m +
n+ A) x (m + n + \) basis matrix, Pp, corresponding to the optimal solution
y* can be constructed as follows. First we take the columnse i,...,e , which
are the identity vectors corresponding to the variables {z1,...,2,} into Pg.
Second for j = 1,...,n, we include the column P ,,; if ;= 10r P ying
if s7 = 1in Pp. There exists n such columns due to (6.5) and the fact that z
is integral. Finally we take the columns €, ni1,...,€ mintr corresponding
to the slack variables which are written for the iteratively added constraints.
The variables corresponding to the columns in the basis matrix are called basic
variables. The remaining columns of P form the non-basis submatrix Py. The
columns of Py are the columns P ,,.j, 7 = 1,...,n, for which z; = 0 and the
unit vectors e_,,,4; ,j = 1,...,n, for which sj = 0. The variables corresponding
to the columns in Py are called non-basic variables.

The Gomory cut for row i of P is given by the inequality

Z (Din — |Din)) yn > (@ — |Gi)) (6.11)

heN

where py, = (Pg')i. - (Py).n, and ¢ = (P5');. - g. Note that in this special
case ¢ < m since only z* has non-integral components. In the following, we
investigate the structure of (Pg 1)1-,,, (PN) . h, Din, and G;.

For a fixed i, it can easily be verified that the entries (P5');;, [ =1,...,m +
n +n of (P5');. are given as

Cifl=
) ifPi,l:_%ax;:lv
l=m+j,je{l,...,n}

0 otherwise

N [—= =

(Pgl)ia =

(This can be verified by observing the changes on row ¢ when we append an
(m+mn+X) x (m+n-+ ) identity matrix to P and perform the Gauss-Jordan
elimination on the appended matrix in order to get P;'. Alternatively this can
be verified by checking that Pp - P;' = I.)
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Having found (P5');., ¢; is then computed by

4= (Pg')i.-q (612)
1
=Gts D dm (6:13)
{j€N;:z=1}
1
=0+3 Z L. (6.14)

{j€N;i:zi=1}

Thus, we showed that ¢; is % times the number of basic x variables in row i.
Since z; is not an integer, the number of basic x variables in row ¢ is odd. It
follows that in this special case the right hand side of the Gomory cut, ¢, — |,
is always 3.

Next, we compute p;;, = (P3');. - (Py)., for h € N. The columns of Py
are the columns of P corresponding to non-basic x components, i.e., ¥j = 0,
and non-basic s components, i.e., s} = 0, j € {1,...,n}. If (Pn).p = Ponyy
such that 7 = 0, then for a fixed value of h, the entries of (Py) n, (Pn)en,
¢=1,...,m+n+ \are given as

—3, if Py =—3and ¢ <m
1, ifop=m+j=h
0 otherwise.

(PN)on =

If (Pn) » = P stntj such that s; = 0, then (Pn).p is the unit vector e _,,4; €
Rm—i—n—l—)\.

For the case that (Py)., = P ;,+; Where z; =0, the only position where
both (P5');. and (Py). 1 may have non-zero entries is position i. For all other
positionsl =1,...,m +n+ Xand [ # ¢ either (P51)iy = 0 or (Py)., = 0. This
implies

_ _ —L1 WP, =1
Pin = (PgY)i - (Py)n = { 6 ifPZ-’::O?

For the case that (Py)., = e.m+; where s} = 0, position m + j is the only po-
sition where both (P5'); and (Py)., may have a non-zero entry. This means,
pin = (P5")i. - (Py).n = 3 for all non-basic s variables corresponding to the
basic x variables in row i. The index set S is the set of indices of the basic =
variables in row i. Let N* and N* be a partition of the index set of the columns
of Py,i.e., N = N* U N¥, such that N* is the index set of non-basic x variables
in row i whereas N* is the index set of non-basic s variables corresponding to
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the basic x variables in row i. We can write the Gomory cut as

(6.15)

It can be verified that N* is equal to the set V; \ S and N* is equal to the set
S. Thus

& Y mit+ Yy s>1 (6.16)

JEN;\S jes
& Y mi+ Yy (T—a)>1. (6.17)
JEN;\S JjES

Since inequality (6.17) is the FS inequality obtained from the configuration
S ={j € N; | 2} = 1}, the proof is concluded. O

Given an optimal solution of RIPD, (z*, z*) with 25 € {0,1} for all j € J
and z; € R\ Z for at least one ¢ € I we can efficiently derive Gomory cuts with
the cut generation algorithm 1 (CGA1).

Cut generation algorithm 1 (CGA1)
Input: (z*, 2*) such that z* integral, z* non-integral.
Output: Gomory cut(s).

1: fori =1tomdo

2:  if k; = 22 is odd then

3: Set configuration S := {j € NV, | xh = 1},
4: Construct constraint (6.2).

5. end if

6: end for

7. Terminate.

This algorithm has a computational complexity of O(md[***) because at
most m values have to be checked until a violated parity-check constraint
is identified and O(d***) is the complexity of constructing (6.2). We deter-
mine the violated parity-checks using the indicator variables z, i.e., a parity
check i is violated if the 2 value is non-integral. Having identified a violated
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parity-check constraint ¢ (if there exists any) we construct (6.2) easily by set-
ting the coefficient of z; for {j € N; : 2} = 1} to +1, the coefficient of x; for
{j € Ni:aj=0}to—1and [S]| = k.

Next we consider the situation that 0 < z} < 1 for some j € J. Although
it is still possible to derive a Gomory cut, CGA1 is not applicable since The-
orem 6.2 holds only for integral z*. For non-integral z* we propose the cut
generation algorithm 2 (CGA2). The idea of this algorithm is motivated by
Proposition 6.1 and Proposition 6.3.

Proposition 6.3. Let x* be a non-integral optimal solution of relaxed integer pro-
gramming decoding (RIPD) and x* € conv(C;). Then there are at least two indices
J.k € Nysuchthat 0 < z; < 1and 0 < x, < 1. In other words check node i cannot
be adjacent to only one non-integral valued variable node.

Proof. 1If * € conv(C;) then it can be written as a convex combination of two or
more extreme points of conv(C;). Next we make use of an observation given
in the proof of Proposition 1 in [19]. Assume that check node i is adjacent
to exactly one non-integral variable node. This implies that there are two or
more extreme points of conv(C;) which differ in only one bit. Extreme points of
conv(C;) differ however, in at least two bits since they all satisfy parity-check
i which contradicts the assumption. O

A given binary linear code C' can be represented with some alternative,
equivalent parity-check matrix which we denote by H. Any such alternative
parity-check matrix for C' is obtained by performing elementary row opera-
tions on H. Proposition 6.1 is valid for any H. Likewise Proposition 6.3 holds
as well for the parity-check nodes i € {1, ..., m} of the Tanner graph represent-
ing H. Note that the rows of H may also be interpreted as redundant parity-
checks with respect to parity-check matrix H. Hence, FS inequalities derived
from the rows of an alternative parity-check matrix are RPC inequalities.

Our algorithm uses the following two ideas based on the cardinality of
A={jeJ: H,;=10< z; < 1)}. In other words, A; is the index set of
non-integral valued x components of the optimal solution (z*, z*) € R"™ in
H;... We distinguish the cases where | A;| = 1 and |A;] > 1.

Consider the case where |A4;| = 1. Given a non-integral optimum z* of
RIPD, in CGA2 we search for a parity-check which is adjacent to exactly one
non-integral valued variable node. If we find such a parity-check we know
due to Proposition 6.3 that z* cannot be in the convex hull of this particular
parity-check. Furthermore due to Proposition 6.1 there exists an RPC inequal-
ity which cuts off z*. This observation is elaborated in the following theorem.

Theorem 6.4. Let (x*,2*) € R™ x R™ be the optimal solution of the current RIPD
formulation such that x* is non-integral. Let H be a parity-check matrix representing
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code C. Suppose there exists i € I such that x7 is non-integral for exactly one j € N;.
Let k; = |{h € Ni|zt = 1}‘. Then, if k; is odd, the inequality

oo m—a— Y wm <k (6.18)
heN;: zf=1 heN;:a} =0
or, if k; is even, the inequality
Yo mta— > an <k (6.19)
heN;: zf=1 heN;:a} =0
is a valid inequality which is violated by x*.
Proof. We have to show that:
1. For k; odd [even] the inequality (6.18) [(6.19)] is violated by z*.
2. For k; odd [even] the inequality (6.18) [(6.19)] is satisfied for all z € C.

The i row of the reconstructed matrix H is obtained by performing ele-
mentary row operations in GF'(2) on the rows of the original H matrix. There-
fore it holds that ]:sz = 0mod 2 for all z € C. We show the proof for k; odd.
If k; is even the proof is analogous.

1) Let k; be an odd number. For z*, since 0 < z} < 1 the left hand side of
(6.18) is larger than the right hand side, thus z* violates (6.18).

2) Suppose k; is odd and z € C. Our aim is to show that (6.18) is satisfied
by x. First we define

JEN;
We define a; € {—1,+1} such that we can rewrite (6.18) as follows.
Z ;T < kz — 1 where 7] S {—1, 1} (620)
JEN;
We also define the index sets
S+ = {j - Nz La; = ]_} with }S+| = k?z and,

Caseld;(z) < k; — 1:

Z ;T < kz — 1 is fulfilled.

JEN;
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Case 2 §;(xz) > k; + 1: At most k; of indices j € N, where z; = 1 can be in
S*. Thus there is at least one index j € N; with z; = 1in S~. Consequently

Z ;T S k’z — 1.
jGNi
Case 3 6;(z) = k;: If there is at least one index j € S~ with z; = 1 then
Z ;T S ]{7@ — 1.
JEN;

Otherwise all j € N; with z; = 1 are in ST. Then for row i, If[lx = 1 mod 2
since k; is odd. This yields x ¢ C, a contradiction. O

If |A;| = 1, (6.18) or (6.19) cuts off the non-integral optimum. However, it
is possible that each row i € I of H has at least two j € N; such that r; is
non-integral. Next we consider some special cases where |A;| > 1. These cases
are specified in Proposition 6.5 and Proposition 6.6. Let 2* be non-integral and
Jj™* denote the index of the maximum non-integral component of z* in A;,
i.e., T 1= max{z} : j € A;}.

Proposition 6.5. Let k; = ‘{h € Njjz} = 1}‘. If kiis odd and ., «; < 1, then
the inequality

S>oa=Y = > an<k-1, (6.21)
heN;: zp=1 JEA; hENi:x;*LZO
is a valid cut which cuts off z*.

Proof. Fori = 1,...,m, ]:[, is a dual codeword, or redundant parity-check.
Thus H; x = 0mod 2 for all z € C and inequality (6.21) is valid for C' (see
proof of Theorem 6.4, part 2). It is assumed that the term ), , 7 is less than
1. Thus the sum of the terms on the left hand side of inequality (6.21) is greater
than k; — 1 and z* violates inequality (6.21). O

Proposition 6.6. Let k; = ‘{h € Njjz} = 1}’ If k;is even and Timae > 37 5c 4 fjmasy Tjs
then the inequality

Z Tp, + Tjmaz — Z xj — Z ry < k;, (6.22)

heN;: z}=1 jeAN{F™ "} heN;: z}=0

is a valid cut which cuts off z*.



6.3. SEPARATION ALGORITHM DECODING 121

Proof. The proof of the validity of inequality (6.22) is analogous to the proof of
Proposition 6.5. Note that the cardinality of the set {h € N; : z} = 1} U {j™**}
is an odd number. It remains to show that z* violates (6.22). Since ¥jm.. >
> jeap (jmasy T; the sum of the terms on the left hand side of inequality (6.22) is
greater than £; and z* violates inequality (6.22). O

Searching for all RPC cuts is intractable in general. Hence, we propose the
construct-H algorithm which facilitates the search for RPC cuts. We transform
matrix H into an equivalent matrix / by elementary row operations (addition
is performed in GF( )). Our aim is to represent code C' with an alternative
parity-check matrix H, so that in row H;_ there exists exactly one j € N; where

7} is non-integral. Construct- H algorlthm attempts to convert columns j of H
with 25 ¢ Z into unit vectors. Note that at most m columns of H are converted.

Construct-H algorithm
Input: (2%, z*) such that 2* non-integral
Output: H.

1: Setl=1.

2: forj =1tondo

3. ifzj € (0,1) then

4: if [ < m then

5: Do elementary row operations until H;; = 1 and H,; = 0 for all
ie{l,...,m}\ {l}.

6: Setl=1+1.

7: end if

8: end if

9: if [ > m then

10: Terminate.

11:  end if

12: end for

13: Terminate.

H can be obtained with a complexity of O(m?n). Construct-H algorithm
is useful in the following sense. Suppose i € I is a check node adjacent to
exactly one variable node j € J such that x is non-integral. If H has such a
row ¢ then due to Theorem 6.4 an RPC cut which cuts off the fractional optimal
solution can be derived. If no such row exists, then we use Propositions 6.5
and 6.6 to generate RPC cuts. These theoretical findings are implemented in
cut generation algorithm 2.

The complexity of CGA2 is O(mn) since in the worst case each entry of H
has to be visited once.
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Cut generation algorithm 2 (CGA2)
Input: (z*, 2*) € R**™ such that 2* non-integral, H.
Output: New FS inequality or error.

1: fori =1tom do

Calculate k;, A;, 7.

if |A4;| = 1 then
Construct (6.18) [(6.19)] for k; odd [even], terminate.

else if | A;| > 2, k; odd, ZjeAi ri <1 then
Construct (6.21), terminate.

else if | A;| > 2, k; even, Zjma: > ZjeAi\{jmaz} ¥ then
Construct (6.22), terminate.

9: end if

10: end for

11: If no cuts are found, output error.

Proposition 6.7. The complexity of CGA2 is O(mn).

We are now able to formulate our separation algorithm called separation
algorithm decoding (SAD). In the first iteration, 2* can be found by applying
hard decision decoding, e.g., set z; to 1 for all j € J such that ¢; < 0. In all
of the following iterations RIPD does not necessarily have an optimal solution
with integral x*. If the vector (z*, z*) is integral then the optimal solution to
IPD is found. If z* is integral but z* is non-integral we apply CGA1 to construct
FS inequalities. Although adding any FS inequality suffices to cut off the non-
integral solution (z*, 2*), we add all FS inequalities induced by all non-integral
z; based on the argument that they may be useful in future iterations. If z* is
non-integral first Construct- algorithm is employed. Then we check in CGA2
if there exists a row H;_such that Theorem 6.4, Proposition 6.5, or Proposition
6.6 holds. In this case there exists an RPC cut which cuts off z*. If such a row
does not exist, then CGA2 outputs an error. In H there may exist several rows
from which we can derive new RPC cuts. If this is true, we add all new RPC
cuts to the formulation RIPD with the same reasoning as before. SAD stops if
either (z*, 2*) is integral, which leads to an ML codeword, or CGA2 returns an
error, which means no further cuts can be found.

Two strategies which may be used in the implementation of SAD are:

1. Add all valid cuts which can be obtained in one iteration.
2. Add only one of the valid cuts which can be obtained in one iteration.

There is a trade-off between strategies 1 and 2, since strategy 1 means fewer
iterations with large LP problems and strategy 2 means more iterations with
smaller LP problems. We empirically tested strategies 1 and 2 on various



6.3. SEPARATION ALGORITHM DECODING 123

Separation algorithm decoding (SAD)
Input: Vector of log-likelihood ratios )\, matrix H.
Output: Current optimal solution z*.

1: Solve RIPD.

2: if (2%, 2*) is integral then

3:  Terminate.

4: else
5:  if 2* is integral then
6: Call CGAL.
7: Add the constraints to formulation, go to 1.
8: else
9: Call construct-H algorithm.
10 Call CGA2.
11: if a cut is found then
12: Add the constraints to formulation, go to 1.
13: else
14: Terminate.
15: end if
16:  end if
17: end if

LDPC and BCH codes. For all codes we tested, strategy 1 outperformed strat-
egy 2 in terms of running time and error-correcting performance.

The relationship between our approach and other approaches based on
RPC cuts (e.g. [27], [63]) can be described as follows. The latter approaches
improve LPD by first investigating the set of FS inequalities derived from the
original parity-check matrix. Because the polytope which can be obtained from
the dual code is tighter than the fundamental polytope in a second step, these
approaches try to find candidates for cuts resulting from other dual codewords
by some strategies.

In SAD, we do not elaborate on the satisfaction of all FS inequalities of the
original parity-check matrix. This has a positive effect on the overall complex-
ity of our improved LP decoding approach. Nevertheless, CGA1 takes into
account a subset of these inequalities. With CGA2 we try to derive cuts from
dual codewords which are not necessarily limited to the rows of the original
parity-check matrix. Therefore, we alter a possible parity-check matrix by the
construct-H algorithm and check for fulfillment of the conditions explained
above. If some of these conditions are satisfied for some rows of the alterna-
tive parity-check matrix, then the corresponding inequality is proved to be a
cut. Still, there are some similarities between these approaches such as the uti-
lization of the same family of cuts (forbidden set type of inequalities) or the
efficient generation of RPC cuts.
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6.4 Numerical results

The purpose of this section is twofold: first, we compare the error-correcting
performance of our separation algorithm with LPD [27], sum-product decod-
ing, and the reference curve resulting from MLD. MLD curve is obtained by
modeling and solving IPD using CPLEX 12.0 [1] as an IP solver. To enable
the comparison of SAD with other improved LPD approaches, e.g., [11], [19],
[63], the same or similar codes as considered in the literature are used in our
experiments. Second, we analyze the complexity and the behavior of our al-
gorithm by collecting statistics of the average number of cuts inserted and
iterations performed for increasing block length. The codes considered are
(3,6)-regular LDPC codes with n = 40, 80, 160, 200,400 and (31, 10), (63, 39),
(127,99), (255, 223) BCH codes. For all tests, transmission over the BLAWGNC
is assumed. The frame error rates are calculated by counting 100 erroneous
blocks. LPD via FS inequalities introduced in [27] cannot be used for high
density codes since the number of constraints is exponential in the check node
degree. This causes a prohibitive usage of memory in the phase of building
the LP model. The adaptive approach of [63] overcomes this shortcoming and
yet performs as LPD. Therefore, we used this method in the comparison of
algorithms.

The performance of the four methods mentioned above was measured on
the (3, 4)-regular LDPC codes with block length 100, 200, and Tanner’s (155, 64)
group structured LDPC code [65]. The Frame Error Rate (FER) against sig-
nal to noise ratio (SNR) measured as E}/N is shown in Figures 6.1, 6.2, and
6.3. We used 100 iterations for SPD of (3, 4)-regular LDPC codes and Tanner’s
(155,64) LDPC code. For the (3,4)-regular LDPC code of length 100 and Tan-
ner’s (155,64) LDPC code our algorithm approaches MLD performance up to
0.5dB. For the (3,4)-regular LDPC code of length 200, we were not able to
compute the ML curve in reasonable time. The performance of SPD and LPD
is very similar. For all three codes, the error-correcting performance of SAD is
superior to SPD.

To demonstrate that our algorithm also performs well for dense codes, we
selected the (63,39) BCH code and the (127,99) BCH code for our tests. The
results for these codes are shown in Figure 6.4 and Figure 6.5. SPD does not
work well for this type of codes due to the dense structure of their parity-
check matrix. Our approach is one of the first attempts (see [20]) to decode
dense codes using mathematical programming. The results obtained by our
algorithm are substantially better than the results obtained by LPD and are
only slightly worse than MLD.

The improvement of error-correcting performance comes at the cost of in-
creased complexity, i.e., more cuts are inserted and more and larger LPs have
to be solved. To study this trade-off between performance gain and increased
complexity of SAD and to relate it to LPD, Table 6.1 shows a comparison of
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these two methods with respect to the average number of iterations (i.e., num-
ber of linear programs solved) and the average number of cuts. These aver-
age values are found by solving 500 instances generated for the SNR value of
1.5dB. This low SNR value is chosen, since finding the ML codeword is more
challenging for low SNR values due to the fact that the objective function co-
efficients become less reliable.

Compared to LPD, SAD needs more iterations and cuts to converge to an
optimal solution. Observe that for codes with shorter block length, only the
average number of cuts differs significantly. This can be explained by the
construct-f algorithm which tries to modify a possible parity-check matrix
such that a cut can be introduced for each row. As the block length increases
(cf. (200,100) LDPC and (127,99) BCH in Table 6.1) the search space gets larger.
Hence, the average number of cuts inserted and LPs solved increases to ten
times that of LPD. The decoding performance of our approach is not affected
by the check node degree. In fact, the application of the Construct-H algorithm
to LDPC codes might lead to dense matrices.

An interesting question relates to the generation of cuts of a certain type
in various phases of the decoding process. The distribution of cuts generated
by CGA1 (employed when z* values are non-integral) and CGA2 (employed
when z* values are non-integral), respectively, at different stages of SAD is
presented in Figure 6.6. To collect the number of cuts generated by each of
the two cut generation algorithms for the (63,39) BCH code, 1000 instances
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Codes LP decoding |Separation algorithm decoding
Cuts |Iterations|Cuts |Iterations

(40,20) LDPC |14.8 (4.2 259 |44

(80,40) LDPC [33.8 |5.7 103.4 |7.6

(160,80) LDPC |74.9 |7.2 397.0 (16.3
(200,100) LDPC|98.1 |7.7 612.1 |21.4
(400,200) LDPC|210.4/9.1 3023.0|72.7
(31,100 BCH (8.7 |34 205 |54

(63,39) BCH  |25.2 (4.3 143.2 {139
(127,99) BCH |28.8 (4.3 323.7 (29.6
(255,223) BCH [32.2 (4.2 416.2 (34.6

Table 6.1: Average number of cuts and iterations in the adaptive implementa-
tion of LPD and SAD.

are solved. Figure 6.6 illustrates the distribution at a lower SNR of 1.5dB and
a higher SNR of 4.0dB. The black and gray boxes represent the cumulative
number of cuts generated by CGA1 and CGA2, respectively. The total number
of iterations needed to solve an instance is divided into 3 phases: a starting
phase, a middle phase, and an ending phase. For each of the 3 phases, the cuts
generated by CGA1 and CGA2 are shown. To illustrate this, suppose that an
instance is solved in 37 iterations. Then, the distribution of cuts in iterations 1
to T are shown under “Phase 1” in the figure. For both SNR, CGA1 is applied
in the early iterations of SAD. At the end of the algorithm while converging
to the optimal solution CGA2 is applied most of the time. Thus, it can be

concluded that the complexity of SAD is dominated by construct-H algorithm.

6.5 Extensions of separation algorithm decoding

Given a non-integral optimal solution (z*, 2*) € R"*™ such that 0 < z} < 1 for
some j € J, if CGA2 is unsuccessful, i.e., no cuts are found, then the attempt
to generate the ML codeword fails. The rate of decoding failures determines
the performance of the decoding algorithm. In this section we extend SAD to
improve its performance by some further valid cut search procedures.

Let (z*, z*) be a non-integral optimal solution of RIPD for which CGA2 re-
turns an error. In this case we suggest the cut generation algorithm 3 (CGA3)
where FS inequalities are searched after a sort operation. In CGA3 we trans-
form the matrix H into an equivalent matrix H again by performing elemen-
tary row operations in GF(2). Let II be a permutation of J = {1,...,n} such
that Il*m) > x*H(Q) > > xl"i[(n). The motivation for constructing H is to ob-
tain an alternative parity-check matrix in which the columns II(1), ..., II(m)
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Figure 6.6: Distribution of cuts created by CGA1 and CGAZ2 for the (63,39) BCH
code, SNR=1.5dB, 4.0dB.

of H correspond to unit vectors. Note that the columns II(1),...,II(m) are
not necessarily linearly independent. Nevertheless we first concentrate on the
case that these columns are linearly independent. Then H;; = 1 for j = II(3),
i = 1,...,m. Moreover, if H;; = 1 for j # II(i) then j € B; where B; C
{II(m + 1),...,II(n)}, i.e., B; is the index set of variable nodes other than II(¢)
in the neighborhood of check node i. The interpretation is that 7 is relatively
small if j € B; and a7 ;) is relatively large. Therefore it may be the case that

They > YT, (6.23)
JEB;
It follows that the forbidden set inequality
T — Y2 <0 (6.24)
JEB;

cuts off 2*. Note that inequalities of type (6.24) are also used in the algorithm
proposed in [53] to improve the fractional distance.

Proposition 6.8. Let (z*,2*) € R"*™ be a non-integral optimal solution of RIPD.
If condition (6.23) is satisfied, then inequality (6.24) cuts off (x*, 2*) and it is a valid
cut.

Proof. The proof of the validity of Inequality (6.24) is analogous to the proof
of Proposition 6.5. It remains to show that 2* violates (6.24). Condition (6.23)
implies that z* violates inequality (6.24). O
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Cut generation algorithm 3 (CGA3)
Input: Non-integral z*, H.
Output: New FS inequality or error.
. Transform H to .
: fori =1tomdo
if H;1i;) = 1 and Tl > Yjes, ¥ then
Construct (6.24), terminate.
end if
end for
: Output error.

N TN

Remark 6.9. If columns 11(1), ..., II(m) are linearly dependent, then CGA3 is still
applicable. However it is less likely that inequality (6.23) is fulfilled.

The dominating computational operation in CGA3 is to transform matrix
H into H. This operation is accomplished in O(m?n) which is same as Step 9
of SAD. Thus the worst case complexity of CGA3 does not exceed the worst
case complexity of SAD. We refer to SAD enhanced with CGA3 as extended
separation algorithm (ESA). This algorithm is given below.

6.5.1 The minimum distance inequalities

In this section we introduce a new type of valid inequalities, called minimum
distance inequalities. These inequalities have the advantage that they can be
quickly generated from the columns of a parity-check matrix. Minimum dis-
tance inequalities employ the minimum distance d(C') of a binary linear code
C. Although the problem of finding the minimum distance of a code is in gen-
eral intractable, for several codes this measure is known, e.g., some codes in
the BCH code class. For some codes the minimum distance can be computed
by solving the integer programming formulation suggested in Section 4.2. The
minimum distance inequalities follow from Theorem 6.10.

Theorem 6.10. Let ¥ € C and J = {1,...,n}. Partition J into two sets K and Q
suchthat j € Kifz; = land j € Q ifz; = 0. Let k € K be an arbitrary index and
w(Z) denotes the weight of z. Then

L—w@)a,+ > z— Yz, <w(@) —d(C) (6.25)
ke K\{k} q€Q
is a valid inequality.

Proof. We show that inequalities of type (6.25) are satisfied by all codewords.
We consider all possible codeword configurations and show that the maxi-
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Extended separation algorithm (ESA)
Input: Vector of log-likelihood ratios )\, matrix H.
Output: Current optimal solution z*.

1: Solve RIPD.
2: if (2%, z*) integral then
3:  Terminate.

4: else
5. if 2* integral then
6: Call CGA1.
7: Add the constraints to formulation, go to 1.
8: else
9: Call construct-H algorithm.
10: Call CGA2.
11: if output is error then
12: Call CGA3.
13: if a cut is found then
14: Add the constraints to formulation, go to 1.
15: else
16: Terminate.
17: end if
18: else
19: Add the constraints to formulation, go to 1.
20: end if
21:  endif

22: end if
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mum value which can be obtained on the left hand side of inequality (6.25) is
w(z) —d(C).

1

2.
3.

Example: For (7,4, 3) Hamming code wit

we arbitrarily choose the codewor

For = = 0, the inequality (6.25) is satisfied since w(z) — d(C') > 0.
For z = 7, the inequality (6.25) is satisfied due to our construction.

For any = € C such that z; = 1 inequality (6.25) is satisfied. Note that the
maximum value we can obtain on the left hand side of (6.25) is w(z) — 1.
If the k' bit in a codeword z is 1, i.e., x;, = 1, then the sum of the terms
on the left hand side cannot be positive.

In the rest of the cases we consider + € C' such that z;, = 0. Forany z € C
with z;, = 1, for all k € K \ {k}, at least (d(C) — 1) (1 bit differs already
since z7; = 1 and z;) bits of z differs from z due to the definition of the
minimum distance of a code. The indices of these different bits should be

in Q. It follows that the maximum value we can obtain on the left hand
side of (6.25) can be (w(z) — 1) — (d(C) — 1) = w(z) — d(C).

.Foranyz € C, x # 0, withz;, = 0, forall k € K \ {/%}, the sum of the

terms on the left hand side of (6.25) is strictly negative.

Forany x € C witha; =1foralll e L, L C K\ {lAc}, L # (), the left hand
side of (6.25) is at most |L|. This implies x, = 0 forallo € K \ {k U L}.
Thus, = differs from 7 in a total of (w(z) — 1 — |L|) bit positions.

e Case I: If w(z) — 1 —|L| > d(C) — 1, then w(z) — d(C) > |L| and
(6.25) is satisfied.

o Case2: Ifw(z)—1—|L| < d(C)—1, thenatleast (d(C)—1)— (w(z) —
1 — |L|) bits in the set ) have to be 1 due to the definition of the
minimum distance of a code. Thus we have to subtract (d(C) — 1) —
(w(z) — 1 —|L]) from |L|. It follows that inequality (6.25) is satisfied
since the maximum value we can obtain on the left hand side of
(6.25) can only be w(z) — d(C).

]

=y

a parity-check matrix H

)

[1,1,0,0,1,1,0], and k = 2. We derive the

S O =
O = =
_ o O

1
0
1

— = O
—_ =

|

QO oo

inequality

—3T9+ X1+ x5+ Tg — X3 — Tq4 — 27 < 1. (6.26)
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Consider the cost vector AT = (2,2, 5,2, —3, —1, 4) and suppose the 0 codeword
is sent. The RIPD optimum is (z*) = (0.5,0,0,0,1,0.5,0.5). Obviously, the
minimum distance inequality (6.26) cuts off the non-integral optimal solution.
Indeed, it is observed by straightforward checking that the minimum distance
type inequalities define facets of the (8,4,4) extended Hamming code. Thus,
this set of inequalities may be utilized to improve the current version of SAD.

It is important to develop efficient methods to search for minimum distance
inequalities which are likely to cut off non-integral optimal solutions of RIPD.
The cut generation algorithm 4 (CGA4) introduced below makes use of the
observation that linearly dependent columns of a parity-check matrix build a
codeword. A minimum distance inequality is likely to cut off the non-integral
optimal solution z* if the positive terms on the left hand side of (6.25) are large
and the negative terms are small. Therefore we aim to choose an index & for
which 27 = 0 and collect the largest valued components of z* in the set K.

Let (2%, 2*) be a non-integral optimal solution of RIPD. In CGA4 we first
transform a possible parity-check matrix H into H as we have done in CGA3.
We again try to obtain unit vectors in the columns corresponding to the in-
dices of maximal z* components. Let 2 C J be the index set of = variables
with 27 = 0 for j € Q. We fix k € Q and iteratively vary i between 1 and m in
the following: if the entry H, ; equals 1, then we try to find a column of H cor-
responding to the i unit vector. If the columns of II(1), ..., II(m) are linearly
independent, then the i unit vector is given by the column II(i) of H due to
our construction. If this is the case, then the index I1(¢) is assigned to set K.

The remaining indices form the set (). Using K and () we construct a code-
word = with z;, = 1 for k£ € K (note that ke K)and z, = 0 for ¢ € Q. The
weight of 7 is given by w(z) = >_.; Hi,l% + 1. If

> > w(@) —d(e)+ Y, (6.27)

keK q€Q

then the minimum distance inequality cuts off 2*. We add the constraint to
the formulation and resolve RIPD. CGA4 continues until a minimum distance
inequality is found or the set 2 is exhausted.

6.6 Conclusion and further research

In this chapter, we proposed an improved LPD method for binary linear block
codes. Instead of solving the optimization problem, we solved the separation
problem.

The indicator z variables in IPD1 yield an immediate recognition of parity
violations and efficient generation of cuts for the case where the current LP
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Cut generation algorithm 4 (CGA4)

Input: non-integral z*, H.

Output: Minimum distance inequality or er-
IOof.

Transform H to H.
Find the set Q) C J.
while Q # () do
Choose k € €, construct z.
if (6.27) is satisfied then
Construct (6.25), terminate.
else
Delete w from ).
end if
end while
: Output error.

[ —
_= O

solution is integral in = variables. We used on the one hand the FS inequali-
ties of [27] which are a subset of all possible Gomory cuts. On the other hand
we showed how to generate new cuts based on redundant parity-checks effi-
ciently. It is known that RPC cuts improve LPD via tightening the fundamental
polytope. In our approach, once we ensure that Theorem 6.4, Proposition 6.5,
or Proposition 6.6 hold for some row ﬁiy_, i € I, we can immediately find the
configuration S and thus the RPC cut.

These theoretical improvements are supported with empirical evidence.
Compared to LPD and SPD our algorithm is superior in terms of frame er-
ror rate for all the codes we have tested. In contrast to SPD, our approach is
applicable to codes with dense parity-check matrices and offers a possibility
to decode such codes.

We presented several algorithms to search for violated FS inequalities or
RPC cuts in Section 6.3 and Section 6.5. Further algorithms can be found in
[63], [62], [79]. More research has to be done on efficient algorithms dedicated
to finding FS type inequalities from the dual code. Another important question
is the trade-off between the computational effort required to find new valid
cuts and the decoding performance.

In general, it is not possible to describe the codeword polytope completely
by using only FS type of inequalities. Therefore, valid inequalities and cuts
other than FS type inequalities are of great interest. We made a first attempt
towards a new class of inequalities, so called minimum distance inequalities,
which can be derived from the columns of a parity-check matrix. The mini-
mum distance inequalities are valid cuts and an algorithm to derive minimum
distance cuts from alternative code representations is developed. The polyhe-
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dral analysis of the codeword polytope should be continued. It is interesting
to identify the inequality classes defining the facets of the codeword polytope.
The minimum distance inequalities may offer new perspective in this direc-
tion.

The worst case complexities of CGA1, CGA2, and Construct-H algorithm
are stated in Section 6.3. However, the number of calls to CGA1l and CGA2
cannot be estimated hence we were not able to present an analytical overall
evaluation of SAD. This remains as an open issue.

In all improved (in terms of error-correcting performance) LP decoding ap-
proaches known to us, a general purpose LP solver is used to solve LP sub-
problems. A special variant of the simplex method developed for the LP de-
coding problem or interior-point type algorithms may lower the overall com-
plexity of the LP based decoding approaches. The structural properties of the
FS inequalities identified in [62] can be used for this purpose.






Chapter 7
Decoding of LTE turbo codes

7.1 Introduction

Typically, turbo codes and LDPC codes are decoded in an iterative manner
where probabilistic information is exchanged between corresponding compo-
nent decoders. This is known as iterative message passing decoding (IMPD).
In the last 10 years, linear programming decoding (LPD) introduced by Feld-
man et al. [27] has become an interesting alternative for decoding of binary
linear block codes. LPD is a polynomial time decoding approach with some
desirable properties such as the maximum likelihood (ML) certificate prop-
erty: if LPD outputs a codeword, then it is the ML codeword. Moreover, this
approach allows finite length analysis due to the geometry of linear program-
ming (LP).

LPD is first formulated for repeat accumulate (RA) codes in [25]. Then it is
applied to low density parity-check (LDPC) codes in [27]. After the introduc-
tion of LPD for LDPC codes, most of the research on LPD has focused on LDPC
codes. The error correcting performance of LPD is inferior to sum-product de-
coding (SPD). For turbo-like codes, LPD is typically used for calculating error
bounds especially for RA(2) codes (see [32] and references therein). A subgra-
dient algorithm for LPD of RA(2) was proposed in [23].

In this chapter, we propose a new decoding method for linear program-
ming based decoding of LTE turbo codes . From the general scheme IPD8
given in Section 4.2 we derive an integer programming (IP) formulation for
LTE turbo codes. Then we study the linear programming (LP) relaxation of
the IP formulation. Motivated from constrained shortest path (CSP) problems
[38] and equal flow problems [49] we develop a two-step algorithm called best
agreeable path decoding (BAPD) which relies on the combinatorial structure
of the decoding problem. Relaxing the side constraints by Lagrangian relax-
ation, yields a shortest path problem which can be efficiently solved. We solve

13rd generation partnership project, http:/ /www.3gpp.org
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the related Lagrangian dual problem and close the duality gap (if it exists) by
a k-th shortest path algorithm. Under some assumptions, we can guarantee to
output the ML codeword.

This chapter is organized as follows. The graphical representation of LTE
turbo codes is explained in Section 7.2. In Section 7.3 we derive the formulation
LTEIP from IPDS8. The BAPD algorithm is described in Section 7.4. In Section
7.5 the error correcting performance of BAPD is compared to LPD, Log-MAP
component decoding, and maximum likelihood decoding (MLD). The chapter
is concluded with some further research ideas in Section 7.6.

7.2 Graphical representation of LTE turbo codes

LTE turbo codes are binary linear block codes with block length n = 3k + 12
including tail bits where k denotes the number of information bits. LTE turbo
codes are constructed from two component convolutional codes, each having 8
states and rate R = 1. The codewords are obtained by combining information
bits and parity bits returned by two identical trellis encoders. However, one
of the trellises encodes a permuted (interleaved), 7 : {1,... .k} — {1,... &k},
version of the information bits. This is illustrated in Figure 7.1. The bit vector
u € {0,1}* denotes the information bits. The encoder outputs y° = u, and
parity bits y! € {0,1}%5, 42 € {0,1}**® returned by encoder trellis 1 and 2.
The overall code rate is approximately? z.

U - Y =u
trellis .y
encoder 1
1 2
INT trellis L .y
encoder 2

Figure 7.1: Encoder scheme of LTE turbo codes.

Next, the structure of the trellis graph used in encoding/decoding of LTE
turbo codes is explained. This trellis graph is an acyclic, directed graph. One

212 tail bits become negligible as the block length increases.
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From state | Information bit|To state|Parity bit
0 0 0 0
0 1 4 1
1 0 1 0
1 1 0 1
2 0 5 1
2 1 1 0
3 0 1 1
3 1 5 0
4 0 2 1
4 1 6 0
5 0 6 1
5 1 2 0
6 0 7 0
6 1 3 1
7 0 3 0
7 1 7 1

Table 7.1: State transition table

segment of the trellis is denoted by ¢. Each trellis segment corresponds to an
information bit. There are two vertex layers in the segments. The vertices
model different states. At each vertex of the trellis graph there are at most 2
incoming edges and at most 2 outgoing edges. An edge starts from a state
which was left and ends in a state which is entered next. Encoding is done
according to some state transition table. For LTE turbo codes discussed in this
chapter Table 7.1 is used®. Depending on the current state and the value of the
information bit, the next state and the related parity bit are read from the state
transition table. The starting and ending state is 0. In order to ensure that the
trellis terminates (ends in state 0) 3 tail information bits and 3 tail parity bits
are used. The edges are labeled by the parity bits returned by the encoder.

Example 7.1. An example component trellis encoder which takes 4 information bits
as input and returns a bit sequence of length 14 is shown in Figure 7.2. Note that the
last 3 information bits are tail information bits. At any state, if the information bit is 0
then the trellis encoder follows an input-0 edge (solid line), otherwise an input-1 edge
(dashed line) is followed. In other words, if in segment t € {1,..., k} an input-1 edge
is used then u; =y = 1.

Using Table 7.1 and Figure 7.2, it can be verified that an information word 1010
is encoded to 10100111100101 (the path shown in bold) in this component trellis. Bits

3Related polynoms are: gy = 15 (forward polynom in octal representation) and g; = 13
(backward polynom in octal representation) see [66].
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Figure 7.2: Trellis graph (trellis 1) with 8 states. To ensure that the encoder
trellis terminates, 3 tail information bits are used. The number of tail parity
bits which are produced by 3 tail information bits is also 3.

are distributed as follows: 1010 are information bits, 011 are information tail bits,
1100 are parity bits, and 101 are parity tail bits.

The second trellis encoder has the exact same structure as the first one.
However it encodes a permuted (interleaved), IT : {1,...,k} — {1,...,k},
version of the information bits.

Example 7.2. To complete the encoding example given in Example 7.1 we use the
same information bits 1010 and assume a permutation II : {1,2,3,4} — {4,3,2,1}.
Thus the second trellis encoder encodes the information word 0101. It can again be
verified that 101001111001011000110100 is the resulting codeword.

The distribution of bits in general is illustrated in Figure 7.3.

k info. bits 3 tail info. bits | x parity bits | 3 tail parity bit§ 3 tail info. bit3 x parity bits 3 tail parity bi

Trellis 1 Trellis 1 Trellis 1 Trellis 2 Trellis 2 Trellis 2

Figure 7.3: Codeword of length 3k + 12.
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7.3 An IP formulation for LTE turbo codes

Feldman [23] intoduced a general scheme which can be applied to derive IP
formulations for turbo-like codes. In Section 4.2 we described IPD8 based on
this scheme. The IP formulation, LTEIP, is the application of IPD8 on LTE
turbo codes. We refer to Section 4.2.5 for the notation used in the following IP
formulation.

We set |£| = 3 in IPD8. From the first leaf, £ information bits are output.
These bits are denoted by the vector y° € {0, 1}*. From each of the component
trellises, 3 tail bits and k + 3 parity bits are returned, i.e., y', 4> € {0, 1}**5. The
permutation used in interleaver is denoted by II. To keep the notation uniform
in this chapter, we denote the trellis graph 1 by G' = (V!, E') and the trellis
graph 2 by G? = (V2 E?) where Vand F are the index sets of vertices and
edges, respectively. In this chapter, the binary input additive white Gaussian
noise channel (BIAWGNC) is assumed and the vector of log likelihood ratios
(LLR) is denoted by A € R" as before.
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minimize (A\)Ty" + ATyt + (A)Ty?  (LTEIP)
subjectto Y fl=1

e€ out(vstart1)

dooof=1

e€ in(vend.1)

Y. f=) 1

forallv € V1 \ {pstart! yenddy

e€ out(v) e€in(v)

y?:Zfel forallt € {1,... k}
ecly

=S forallt € {k+1,...,k+3}
ecly

=3 7 forallt € {k+4,...,2k+6}
e€0¢—k—3

o =1

e€ out(vstart2)

dooof=1

e€ in(vend2)

=Y f

forallv € V2 \ {Ustart,Z’ ,Uend,Z}

e€ out(v) e€in(v)

Y0 = Z f2 forallt € {1,...,k}
€l

yf:fo forallt € {k+1,...,k+ 3}
ecly

Y2 = Z f2 forallt € {k+4,...,2k +6}.
e€O0y_r_3

Choosing the appropriate formulation for an IP problem is of crucial im-
portance since it affects the computation time and the sizes of the solvable
instances. In our numerical experiments we observed that LTEIP performs
significantly better than the IP formulations derived from the parity-check ma-
trices of the codes (such formulations were given in Chapter 4). The reason for
this is that the network flow constraints provide a tighter relaxation of the
convex hull of the codewords than the relaxation resulting from a parity-check
matrix [23]. Due to this reason, also LPD of LTE turbo codes is performed
using the LP relaxation of LTEIP.

In what follows, we concentrate on the Lagrangian relaxation of LTEIP. For
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the ease of notation, LTEIP is rewritten first. Suppose that the second compo-
nent trellis graph is concatenated to the first one as shown in Figure 7.4. Let
G°¢ = (V¢ E°) denote the concatenated graph where the set of vertices and
edges are denoted by V¢ and E°, respectively. The edge connecting trellis 1
and trellis 2, i.e., (v v*t2) € F¢, has 0 cost (see Figure 7.4). The consis-
tency constraints induced by the interleaver can be interpreted as: in G¢ if a
path follows an input-1 edge in segment ¢ it has to follow an input-1 edge in
segment (k+ 4 +11(¢))*, t € {1,...,k}.

Definition 7.3. A v¥! — o2 path of G which satisfy the interleaver consistency
constraints is called an agreeable path.

There is a one-to-one correspondence between codewords and agreeable
paths. In our approach, we search for the agreeable path with minimum cost.
The cost of an edge e € E¢is given by the sum of the LLR of related information
and parity bits.

Example 7.4. For example in the first segment of the trellis shown in Figure 7.2,
the first input-1 edge (dashed line) has cost Ay = M + Ata). The addition of
an interleaver and a second trellis encoder complicates the MILD of LTE turbo codes.

The resulting problem can be interpreted as a side constrained shortest path problem
(SCSPP).

trellis 1 trellis 2
L
\ \\\ . |
t I1(2)

Figure 7.4: Constrained shortest path problem

“Segments k + 1, k + 2, k + 3 correspond to information bits used to terminate the encoder
trellis 1. Segment k + 4 corresponds to the 0 cost edge connecting trellis 1 and 2.
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An integer programming formulation of this SCSPP is given below. Again,
we refer to the formulation as LTEIP. A shortest path problem is a special case
of a network flow problem (see for example [2]) where one unit of flow is sent
from the start vertex v52"%1 € V¢ to an end vertex v*"4? € V¢. The variables z.,
e € E° model the flows. If . = 1 then 1 unit of flow is passed on e. The con-
straints (7.2), (7.3), and (7.4) are conservation of flow constraints, i.e., one unit
of flow is sent from start vertex, in all intermediate vertices the sum of flows
on incoming edges is equal to the sum of flows on outgoing edges, and finally
one unit of flow is received at the end vertex. The interleaver consistency is
ensured by the set of constraints (7.5). For ¢t € {1,...,k}, I; is the index set of
flow variables on the input-1 edges in segment ¢.

z = minimize ) A.z. (LTEIP)
ecE*¢

subject to z. € {0,1} foralle € E° (7.1)

Yo me=1 (7.2)
ec Out(vstart,l)

Z T, = Z z. forall ve Ve {vot d21  (73)

e€ out(v) e€in(v)

Yoo oae=1 (7.4)

e€ in(vend2)

we= > w foralltefl,... k}. (7.5)

eGIt €€Ik+4+H(t)

Without the constraints (7.5), LTEIP models a shortest path problem on G,
i.e., the edges e € E° for which 2. = 1 form the shortest path from vs@rt!
to v"42. We use z to denote the vector of flow variables and corresponding
paths. The meaning will be clear from the context.

Constraints (7.2) - (7.4) with the relaxation of integrality constraints in (7.1),
ie, z. €[0,1] for all e € £, describe an integral polytope which we refer to as
the path polytope and denote by X. Thus, the LP-relaxation of LTEIP without
the set of constraints (7.5) is equivalent to an LP which has integral optimal
solutions. Shortest path problems are usually not solved by general linear pro-
gramming methods but by combinatorial algorithms (see [2]). Including the
interleaver consistency constraints in LTEIP, turns the shortest path problem
into an SCSPP problem. Only paths satisfying the interleaver consistency con-
straints are eligible. These constraints also disturb the structure of the integral
polytope described by network flow constraints. The resulting relaxed poly-
tope has in general integral and non-integral vertices.



74. A LAGRANGIAN RELAXATION BASED ALGORITHM 145

7.4 A Lagrangian relaxation based algorithm

A solution approach for SCSPP is based on Lagrangian relaxation (LR) by in-
corporating the side constraints into the objective function and then to solve
the Lagrangian dual (LD) problem with a subgradient algorithm. In this sec-
tion we apply well-known results from integer programming to SCSPP. For
theoretical background on Lagrangian relaxation, Lagrangian dual, and sub-
gradient optimization, [55] is referred. This approach is reasonable since the
Lagrangian relaxation yields a shortest path problem which can be solved ef-
ticiently by combinatorial algorithms. In the LPD literature, relaxing the in-
terleaver consistency constraints by Lagrangian relaxation and solving the La-
grangian dual is considered in [23] for repeat accumulate (RA) codes with rate
R = 1. Below we present a Lagrangian relaxation of LTEIP, LR(f), where
6 € RF is the vector of Lagrangian multipliers, X is the path polytope, and
zrr(0) is the objective function value.

k
zrr(0) zgréi)rchexe—i-Zlﬁt er— Z Te

ecEc¢ t= ecl; 66[k+4+1'[(t)

For every 0 ¢ R¥, LR(9) is a relaxation of LTEIP. Thus, for every fixed 0,
21r(0) < z,1i.e., LR(0) yields a lower bound. In the Lagrangian dual (LD) prob-
lem for the LTEIP the 6 value maximizing the lower bound (LB) is searched.
Thus, we solve

zrp = max zpg(6).
OcRk

An iterative solution approach for LD problems is the subgradient algo-
rithm. In this approach, subgradients are iteratively computed and according
to the formula

6 = 0" + wys'. (7.6)

Lagrangian multipliers for the next iteration are calculated, where wj is a step
length and s' is a subgradient in iteration /. Then, LR(f) is solved with the up-
dated ¢ values. With an appropriate choice of the step length w;, i.e., w; > 0,
limy soow; = 0, Yoo, wp = 00, Yoo, wi < 0o, the subgradient algorithm con-
verges.

We compute the subgradient s' € {—1,0, 1}* by

si=> ab— Y alforallte{l,... k} (7.7)
66]{ 66]k+4+n(t)
where 2! denotes the shortest path in iteration / and we choose w' = ;2 as the

step length where a,c > 0 and b > 0 are constants.
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Proposition 7.5. If some path z' is an agreeable path then s' = 0 and the path z!
corresponds to the ML codeword.

Proof. Follows from standard results on Lagrangian duality. O

In practice, subgradient algorithms converge slowly. Thus, we set the max-
imum number of iterations allowed to [™**. Note that the path z' is not nec-
essarily an agreeable path but it implies a lower bound and we can use it to
compute upper bounds (UB) in each iteration as follows. Following the short-
est path in trellis 1, an estimation for u can be made. This estimation is found
by (7.8) below. If the shortest path follows an input-1 edge in segment ¢, then
(a}); = 1, otherwise (4}), = 0. Analogously, a second estimate can be calcu-
lated from trellis 2 by (7.9). We denote this estimation by ). A third estimate
denoted by 4} in iteration [ is found by averaging the @} estimates found in
the preceding iterations. This is shown in (7.10). The fourth estimate @) is
computed analogous to @} but based on trellis 2 (see Equation (7.11)).

Forallt € {1,... k}:

(@) = al. (7.8)
EGIt
(@)= > b (7.9)
e€lay1(e)
i | =D (al-1 1(nl
(@) = l’ﬁ[l W3”+l@ﬁ]>0& (7.10)
0 otherwise.

(ah) = 1vﬁ[%ﬂ@f%+§@@4>oa
0 otherwise.

Proposition 7.6. Let x%9(%), i = 1,... 4, denote four agreeable paths found by encod-

NS Y
Ing uy, Uy, Uz, Uy.

(7.11)

UB' = '_Hllin4 { Z Aexgg(i)} > Z A ME

""" e€Ee e€Ee
where M1 is the path corresponding to the ML codeword.

Proof. Follows since each x990, = 1,....4, corresponds to a feasible code-
word. [

The subgradient algorithm referred to as LDD is given below. While calcu-
lating the step length, the values a = 1, b = 0, and ¢ = 0.25 are used. These
values were determined by performing numerical experiments.

The complexity of LDD is in O(|V¢|). The dominating operation is com-
puting a shortest path which can be performed generally in O(|V| + |E|) in a
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Lagrangian Dual Decoder (LDD)

Input: G° = (V°, E°), A, [,

Output: UB, best feasible solution x
1: Set UB=0,LB= —00,[ =1, 0! =0, z%*** = 0.
2: while ! < [ do

best

3:  Solve LR(#"), find 2, r(#"), 2!, s'.
4. if s'=0 then
5: Construct the ML codeword using z'.
6: else
7: LB = max{LB, z.r(6")}.
8: Compute i}, @b, 4f, al.
9: if UB' < UB then
10: Set UB=UB'.
11: Find 2! using the agreeable path which yields UB.
12: end if
13: Setf =0+ 1.
14: Setl=1+1.
15:  end if

16: end while

directed acyclic graph G = (V, E) [16]. If LDD terminates with [ = {"™%", there
is a duality gap which we attempt to close by a k-th shortest path algorithm
(kSPA) (see [42] and references therein for computing k-th shortest path). We
search for the k-th shortest path separately in trellis 1 and 2 with the RECUR-
SIVE ENUMERATION ALGORITHM (REA) given in [42]. In a graph G = (V, E),
if the shortest paths from the start vertex to all other vertices are known, REA
finds the k-th shortest path in O(|E| + k |V|log(|E| / |V])) [42].

Next, we briefly explain REA. In the first step of the algorithm, a counter
k is set to 1 and the shortest paths from v to all other vertices v € V are
computed. For any vertex v € V, 7%(v) denotes the k-th shortest path from the
start vertex v to v. In the second step, k is incremented by 1 and 7" (vend)
is found by recursively calling a procedure called next path algorithm (NPA)
which is given below. REA calls NPA with the parameters v and k. The
second step of REA is repeated by setting k¥ = k + 1 until 7(v*"4) does not
exist or a particular stopping condition is fulfilled.

NPA takes a vertex v € V and an integer k as input parameters. In this
procedure, the set of vertices u € V for which an edge from u to v exists, is
defined asT'(v),i.e., 7' (v) = {u € V : (u,v) € E}. The” - ” operator denotes
the concatenation of a path 7*(u) with an edge (u,v) € E, e.g., 7' (u) - (u, v*4)
denotes the path formed by the shortest path from v**" to u and the edge
(u,v*) € E. Bvery vertex v € V is reached from a vertex u € I'"!(v). A k-th
shortest path to vertex v is chosen from a candidate set of paths C'(v) which is
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initialized and updated as in the next path algorithm given below.

NEXT PATH ALGORITHM [42]
Input: v €V, k.
Output: 7F(v) or a  message: 7*(v) does not ex-
ist.
1: if k=2 then
2:  Initialize a set of candidates C'(v) = {7'(u) - (u,v) : v € T (v), 7' (v) #
) - (u,0)},
if v = v°?" then
Go to 14.
end if
end if
Let u € I'"!(v), k’ be the vertex and index such that 7%~ (v) = 7* () - v.
if 7¢+1(u) has not already been computed then
Call NEXTPATH ALGORITHM with input parameters u € V, k' + 1.
10:  if 7F+!(u) exists then

11: Insert 7+ (u) - v in C(v).
12:  end if
13: end if

14: if C'(v) # (0 then

15:  Select and delete the shortest path in C'(v), output it as 7% (v).
16: else

17: 7% (v) does not exist, output message: 7% (v) does not exist.

18: end if

The edge costs we use in REA are the modified costs updated in iteration
[™e* of LDD. In our numerical experiments, we observed that using these mod-
ified costs lowers the termination value of the counter £.

For the ease of notation, we partition a path z € {0,1}/*l in G¢ as z =
(21,1, z2) where x;, xo denote subpaths in trellis 1 and trellis 2 respectively.
Note that the flow value on the edge (v*"¥!, v**2) is 1. For a k-th shortest path
o¥ in trellis 1, there is a subpath z, in trellis 2 such that the set of constraints
(7.5) are satisfied. This subpath can be derived from the values in x%. The
same also holds for a k-th shortest path z5 in trellis 2. Let (z},1,z) denote
the agreeable path in G¢ derived from z} and (A(x}) + A(z2)) be the associated
cost. The agreeable path derived from z} and the associated cost are defined
analogously.

There are exponentially many paths in trellis 1 and 2. In the worst case,
finding the agreeable path in G° which corresponds to the ML codeword can
be intractable. The k-th shortest path algorithm (kSPA) proposed in this chap-
ter, terminates with the k-th shortest path in trellis 1 and 2 if the condition
in Step 4 is satisfied or the termination value £ is larger than the maximum
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number of iterations allowed £™**. In each iteration, upper bounds for z are
calculated. If kSPA terminates in iteration & < £™** then the ML codeword is
found. Otherwise z%***, which is checked or updated in iterations, is output as
an ML codeword estimate.

k-th shortest path algorithm (kSPA)
Input: Trellis 1 and 2, k™%, UB, 2! found in LDD.
Output: Best feasible solution z¢t.

1: Set k =1, UB and z"**' to the values output by LDD.
2: while k < k" do

3. Compute z¥, 5 by REA [42].

4 if A(z}) + A(2%) > UB then

5: terminate, 2%** is the ML codeword.

6: end if

7. Compute (A(x}) + A(z2)), (A(z1) + A(zh)).

8: if UB < min{(A(z}) + A(x2)), (A(x1) + A(z%))} then
9 Set UB=min{(A(z}) + A(x2)), (A(z1) + A(z5))}.

10: Set 2! using the agreeable path which yields the new UB.
11:  endif
122 k=k+1

13: end while

Theorem 7.7. If k™% = oo, then kSPA outputs the ML codeword in termination
iteration k.

Proof. For each path z in the concatenated graph G¢, there is a subpath z; in
trellis 1 and a subpath x5 in trellis 2 such that © = (21,1, 22). We denote by
oML = (xML 1, 20T the path which corresponds to the ML codeword. Let
z{'F be the kith shortest path in trellis 1. Analogously, let z}'" be the koth
shortest path in trellis 2. The termination iteration k is the iteration for which
the condition A(z}) + A(x%) > UB is satisfied.

Suppose min{k;, k2} > k. Let k' < k be the iteration such that UB =
min{(A(z¥) 4+ A(22)), (A(z;) + A(25))}. kSPA terminates in iteration k. It fol-
lows that A(z%) + A(x%) > UB and

A1) + A(zk2) > A(2b) + A(=h) > UB. (7.12)

This is however a contradiction to the assumption that "% is formed by the
kith shortest path in trellis 1 and k,th shortest path in trellis 2. Consequently,
there should exist at least one pair &y, k» such that min{k;, k2} < k. Let k* =
min{ki, ko} < k. In step 8 of kSPA an upper bound from k*-th shortest path in
trellis 1 and trellis 2 is computed. Thus the ML codeword is computed. O
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Best Agreeable Path decoding (BAPD)
Input: Trellis 1 and 2, A € R".
Output: Best feasible solution x
1: Call LDD.
2: if LDD terminates at [ then
3:  Call kSPA.
4: end if

best

BAPD which is a combination of LDD and kSPA can be summarized as
follows.

Theorem 7.8. BAPD outputs the ML codeword if | < I or k < k™.

Proof. Follows from Proposition 7.5 and Theorem 7.7. O

7.5 Numerical results

We compare the error correcting performance of BAPD on (n, k) LTE turbo
codes with short block length (cf. (132,40) LTE turbo code, (228,72) LTE turbo
code). The decoding algorithms we use are: Log-MAP component decoding,
LPD, and MLD. LPD curve is obtained by solving the LP relaxation of LTEIP
by CPLEX LP solver [1] whereas MLD curve is obtained by solving LTEIP
by CPLEX IP solver. The signal to noise ratio (SNR) is measured as E;,/Nj.
The frame error rates (FERs) are calculated by counting 100 erroneous blocks.
Randomly generated codewords are sent through the BIAWGNC.

For the (132,40) LTE turbo code, if the maximum number of iterations al-
lowed in LDD is I"™** = 100 and the maximum number of iterations allowed in
kSPA is k™** = 500, BAPD performs better (in FER) than LPD by more than 1
dB. Compared to Log-MAP component decoding, the error correcting perfor-
mance of BAPD is superior to the error correcting performance of Log-MAP
component decoding by approximately 0.4 dB. Moreover, the average compu-
tation time (measured in CPU time) of BAPD is lower than LPD up to a factor
10. These observations are illustrated in Figures 7.5 and 7.6.

Without changing the I"** and k™" values used for the (132,40) LTE turbo
code, BAPD is also applied to (228,72) LTE turbo code. In comparison to LPD,
the error correcting performance of BAPD remains superior up to 0.4 dB. How-
ever, BAPD performs worse than Log-MAP component decoding by 0.2 dB for
the (228,72) LTE turbo code. This is due to the reason that increasing the block
length improves the error correcting performance of message passing algo-
rithms but worsens the performance of optimization based algorithms since
the search space gets larger. At the cost of increasing decoding times, the er-
ror correcting performance of BAPD can provably be improved by increasing
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Figure 7.5: LPD, Log-MAP component decoding, MLD, BAPD for (132, 40)
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Figure 7.6: Decoding times of LPD and BAPD in CPU seconds.
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k™e*. To demonstrate this point we increased the k™" value and set it to 5000.
The resulting curve is shown in Figure 7.7. It should be noted that at high
SNR the error correcting performance of BAPD is superior to Log-MAP com-
ponent decoding. The decoding times of LPD, BAPD k™" = 500, and BAPD
kmer = 5000 are given in Figure 7.8. Note that even for k™ = 5000 the aver-
age decoding times of BAPD are less than the average decoding times obtained
from LPD. Especially for high SNR values, BAPD with k™ = 5000 is faster
than LPD by a factor of 10. To conclude, it may be a good strategy to increase
E™e* at high SNR.

Frame Error Rate (FER)

107°}| =—B—LPD
[| = # = BAPD 500 iterations

| —A— Log-MAP component decoding (8 iterations)
: = + =BAPD 5000 iterations

—{— MLD
10_4 | | |
0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

SNR [dB]

Figure 7.7: LPD, Log-MAP component decoding, MLD, BAPD for (228,72)
LTE turbo code.

BAPD outputs the best agreeable path found during the iterations limited
by (™" and £™*. If Theorem 7.8 is satisfied for some best agreeable path then
itis also the ML codeword. Figure 7.9 demonstrates the ratio of ML codewords
in all BAPD outputs. (132,40) LTE turbo code and (228, 72) LTE turbo code are
used again where k™% is set to 500 and 5000, respectively. At high SNR, it is
observed that more than 98% of BAPD outputs are ML codewords.
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7.6 Conclusion and further research

In this chapter we applied a two-step algorithm, BAPD, to solve the SCSPP
defined on the concatenated graph G°. In the first step, the Lagrangian dual
of LTEIP is solved. To close the duality gap in the second step we apply a k-th
shortest path algorithm. Under some assumptions it can be guaranteed that
BAPD outputs the ML codeword. Promising numerical results are presented
in Section 7.5.

The subgradient algorithm used in LDD will be studied further. Better step
length parameters may be calculated using the underlying graph structure.
Other efficient approaches to solve the LP relaxation of LTEIP, especially when
the block length gets larger, will be investigated. Using appropriate data struc-
tures, efficiency of kSPA implementation can be improved. Combining stan-
dard turbo decoding with the approaches proposed in this chapter is another
further research direction.



Chapter 8

Equality constraint shortest path
problems

8.1 Introduction

In Chapter 7, we used a subgradient algorithm to solve the linear program-
ming (LP) relaxation of a side constrained shortest path problem (SCSPP) with
k equality constraints for k € Z*. The underlying graph, G = (V, E) with the
set of vertices V' and the set of edges F, was assumed to be an acyclic directed
graph with positive or negative edge costs. Moreover, the equality constraints
had a special structure modeling the interleaver consistency. A major draw-
back of the subgradient algorithm is its slow convergence in practice.

In this chapter, we study several special classes of side constrained short-
est path problems (SCSPP) whose LP relaxation can be solved exactly by the
combinatorial algorithms we propose. It is further assumed that the under-
lying graph is directed, has no cycles, and may contain edges with negative
costs. The side constraints are assumed to be equality constraints with integral
coefficients and zero right hand side. We refer to such problems as equality
constraint shortest path problems (ECSPP(k)) where k € Z* specifies the num-
ber of side constraints.

Our study on ECSPP(k) may have implications for some other interest-
ing problems, e.g., equality constraint knapsack problems can be transformed
to equality constraint shortest path problems [52]. Although the algorithms
we propose have exponential worst case complexity, in our numerical experi-
ments we demonstrate that they are faster than the CPLEX LP solver up to a
factor of more than 100.

In the formulation below, the path polytope (see Section 8.2) is denoted by
XPath where c € RPl, x € {0,1}/¥l,and g, € ZIF, t = 1,.. . k.

155
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minimize ¢’z ECSPP(k)

subject to z € X"
glr =0 forallt € {1,...,k}
z € {0,1}/F1.

This chapter is organized as follows. The ECSPP problem with one side
constraint is described in Section 8.2. In Section 8.3 we review some well-
known and relevant results for multiple objective optimization (MOP). Then
we propose a multiple objective linear optimization (MOLP) based solution al-
gorithm to find an optimal solution of the LP relaxation of ECSPP(1) in Section
8.4. A special case of ECSPP(1) and the solution approaches to find an optimal
solution of the LP relaxation of ECSPP(1) are also discussed in this section.
Another MOLP based solution approach is used to solve the LP relaxation of
ECSPP(2). The details of this approach are given in Section 8.5. Finally, the
chapter is concluded with some further research ideas given in Section 8.6.

8.2 Solving the LP relaxation of ECSPP(1)

ECSPP(1) is the problem of finding a shortest path on a directed acyclic graph
satisfying an equality constraint with right hand side equal to 0. Given a di-
rected, acyclic graph G = (V, E), a linear programming formulation of the
shortest path problem on G can be written as [2] :

minimize Zcexe (8.1)
cEE
subject to Z ze =1 (8.2)
e€ out(vsart)
Z Te = Z Te forallv € V' \ {v* v} (8.3)
e€ out(v) e€in(v)
Z T =1 (8.4)
e€ in(vend)
ze >0 foralle € F. (8.5)

This formulation models the situation that one unit flow is sent from a
source vertex v* to a target vertex v, The sets of incoming edges and out-
going edges of vertex v € V' are denoted by in(v) and out(v), respectively. The
variable z, models the amount of flow on e € E whereas c. is the cost of using
this edge. Constraints (8.2)-(8.5) describe an integral polytope which we refer
to as the path polytope and denote by X7,
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Having introduced the path polytope, the integer programming formula-
tion of ECSPP(1) is given as:

minimize ¢’z ECSPP(1)

subject to z € X"

g’ =0
x € {0,117

where ¢ € RI¥l, g € ZIFI. Typically, the components g., ¢ € E of a vector g
reflect the delay or resource consumption on e.

Theorem 8.1. ECSPP(1) is NP hard.

Sketch of proof. The decision problem of ECSPP(1) is: given k € R, does there
exist a v*-y°d path modeled by = € {0, 1}!¥! such that ¢’z < k and g%z = 0?
This problem is clearly in NP. To show that ECSPP(1) is NP hard, the decision
problem of the subset sum problem [31] is reduced to the decision problem of
ECSPP(1) analogous to the reduction of the decision problem of 0-1 knapsack
problem to bicriterion shortest path problem in acyclic directed graphs (See
[22, Theorem 9.2]). O

The LP relaxation of ECSPP(1) which is denoted by R-ECSPP(1) is:

minimize ¢’z R-ECSPP(1) (8.6)
subject to x € X" (8.7)
g'x=0. (8.8)

In the literature, there exists several approaches, e.g., [59], [75], and [80] to
solve the LP relaxation of a shortest path problem with one side constraint.
This side constraint is of type g”z < G where g, e € E and G are non-negative
integers. The solution algorithm introduced in [59] is a multiple objective op-
timization based, efficient solution approach. We extend this approach so that
it can also be used for R-ECSPP(1).

An alternative formulation for ECSPP(1), its LP relaxation, and the associ-
ated dual problem help for a better understanding of the proofs given in this
chapter. Let P denote the set of all v*"-y°d paths. The cost of a path p € P

is ¢(p) = D e, Ce- The function g(p) is defined as g(p) = > .., g.. An equality
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constraint shortest path problem can also be formulated as follows.

minimize »  c(p)p (ECSPP(1))
peP
subject to Z p=1
peP
> glp)p=0
peEP
pe{0,1} forallp € P.

The IP formulation above may have exponentially many variables since there
is one variable for each v*"-y* path in the graph. The LP relaxation is ob-
tained by dropping the integrality constraints on the p variables.

minimize Y c(p)p (R-ECSPP(1)) (8.9)
peP

subject to Zp =1 (8.10)
peP
> gp)p=0 8.11)
peEP
p>0 forallp € P. (8.12)

Our focus will be on the dual of the LP relaxation.

maximize u (D-ECSPP(1))
subject to u + vg(p) < ¢(p) forallp € P.

In the dual formulation, there are only two variables. On the other hand, the
number of constraints may be exponential. Nevertheless, for a fixed v € R, the
value of u can be found by computing a shortest path problem on G = (V, E)
where edge costs are modified.

u(v) = min{c(p) — vg(p)}- (8.13)

peEP

The dual problem can also be stated as

Tgﬂi{“@)' (8.14)
Definition 8.2. A solution of Problem 8.14 is called an optimal multiplier v* €
argmax, cp u(v).

The exact solution algorithm we propose for R-ECSPP(1) utilizes concepts
from multiple objective optimization. In the next section, we recall some well-
known, relevant results from this field of mathematical programming.
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8.3 Multiple objective linear programming

An optimization problem with multiple objectives is called multiple objective
optimization (MOP) problem. Usually the objective functions are conflicting
and a single solution optimizing all objective functions simultaneously does
not exist. Thus, the concept of Pareto optimality is used in MOP. A solution
of a MOP problem is Pareto optimal if one objective function can not be im-
proved without worsening another objective function. For a comprehensive
review on MOP, [22] is referred. We concentrate on multiple objective linear
programming (MOLP) problems.

Definition 8.3. If the objective functions of a MOP are linear and the feasible set is a
polyhedron, X, then the MOP problem is called a multiple objective linear program-
ming (MOLP) problem.

minimize f(z) = (fi(x), fo(z),..., fo(x)) (MOLP)
subject to v € X.

In the context of MOP, X C RI®l is referred to as the decision space, whereas
YV ={y € R? : y = (fi(z), fo(),..., fo(x)),z € X} is called the objective
space. Since no canonical ordering is defined in RY, Q> 2, a componentwise
ordering in the objective space is defined as follows.

Definition 8.4. Let y',y? € R?. Then

y' Sytieyl Sy foralli € {1,2,...,Q})
y' <yt ey SyPand y' #£ P

Next, we give some definitions necessary for a better understanding of op-
timality in the presence of more than one objective function.

Definition 8.5. The Pareto cone Rg is defined as ]Rig ={yeRY:y =0}

Definition 8.6. A decision vector x € X is called efficient (Pareto optimal) if there
does not exist another decision vector T such that f(z) < f(x). The set of all efficient
vectors is called the efficient set.

Xp={zeX:dzecX:f(z)<f(2)}
The image set of X is called the non-dominated set Y = f(Xg).

Equivalently, the non-dominated set Yy is the set of all non-dominated
points.

Definition 8.7. A vector y € R in the objective space is non-dominated if Y N (y —
RY) = {y}.
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Figure 8.1: Dominated and non-dominated points of the objective space Y C
R2.

Example 8.8. Definition 8.7 is illustrated in Figure 8.1. Y C R? is an example
objective space. According to Definition 8.7, y' is a dominated point whereas y is
a non-dominated point. Using Definition 8.7, it can be verified that non-dominated
points in'Y are located on the bold line.

It is well-known for MOLP problems that the set of non-dominated points
is identical to the non-dominated frontier which is defined as Yyr = {y €
conv(Yy) : conv(Yy) N (y — Rg) = {y}}. The objective space Y C R?is a
convex set for MOLP problems and if Q = 2, the non-dominated frontier can
be regarded as the graph of a piecewise linear and convex function.

Example 8.9. A non-dominated frontier is illustrated in Figure 8.2. The squares
represent the breakpoints. These points are non-dominated extreme points of Y which
are the images of the efficient extreme points in the decision space.

Definition 8.10. Let 0 < w; < 1foralli € {1,...,Q} and >.2  w; = 1. The single
objective optimization problem

minimize wy fi(z) + wafa(x) + ... +wofo(z) (WSSP(w))
subject to x € X.

is called the weighted sum scalarization problem (WSSP(w)).

The following results on the weighted sum scalarization of MOLP prob-
lems were stated in [22].

Theorem 8.11. Let =** be the optimal solution of a WSSP(w) with w; > 0, i €
{1,...,Q}. Then z** is efficient, and f(x**) is non-dominated.

Proposition 8.12. Each efficient solution x € Xg of a MOLP problem can be found
by solving a WSSP(w) with w; > 0,i € {1,...,Q}.
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fa(7)

fi()

Figure 8.2: Non-dominated frontier of a MOLP problem where Y C R”.

8.4 Multiple objective linear programming approach
to R-ECSPP(1)

In the approach introduced in this section we derive a multiple objective lin-
ear optimization problem which has an efficient solution being optimal for
R-ECSPP(1). Before explaining the MOLP approach to R-ECSPP(1), we make
some assumptions to exclude some trivial special cases.

Assumption 1: R-ECSPP(1) is feasible,
Assumption 2: Let 2¢ = argmin{c’z : x € XP%"} Then g”2¢ # 0.

In the MOLP based approach, we consider X ”*" as the decision space. The
image of XP*" in the objective space is denoted by Y %", We derive the first
objective function and the horizontal axis from g’z according to the value of
gT2Y, 2% = argmin{cTx : z € XP9"} (see Proposition 8.20). The horizontal axis
is denoted by fi(z). The vertical axis in the objective space is fa(z) = 'z,
Observation 8.13. Let x* denote the optimal solution of R-ECSPP(1). From a geo-
metrical point of view, f(x*) must be on the fo(x)-axis such that ¢'z* = min{c’z :
x € XPath f(x) = 0}. It also holds that f(x*) is located on some face of Y 74",

It can also be concluded that there are two paths ' and 22 such that f;(z') <
0, fi(z?) > 0, and f(z*) € conv({f(z'), f(2?)}). The convex hull of f(z') and
f(2?) has either positive or negative slope.

Example 8.14. In Figure 8.3 two objective spaces, Y and Y* are illustrated. In both
objective spaces the endpoints of the facet conv({f(x'), f(2*)}) are labeled by y' and
y% By y* = f(x*), we denote the images of optimal solutions in the objective spaces.
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Figure 8.3: The non-dominated facet containing the image of the optimal solu-
tion of R-ECSPP(1).

The position of f(z*) can be specified using the notion of optimality from
MOP. We first describe how to derive a second objective function from the
constraint g’z = 0. Problem 8.15, which can be solved in O(|V| + |E|) [16]
(since G is directed, acyclic) with a shortest path algorithm is considered first.

min{c’z : € X} 8.15)

We denote the optimal solution of Problem 8.15 by z0. Then the value ¢g”z? is
computed.

Case 1:
If g72% > 0, then the points of intersection of Y 7" and f,(z)-axis are on the

left of f(x7). To find an efficient solution, «) such that f,(z)) < 0, Problem

8.16 is solved. A small constant ¢ > 0 is chosen such that =) approximates the
lexicographic optimum (see [22]) of min{f(z) = (¢" x,c"x) : x € X P4},

min{g’z + ec’x : x € XY, (8.16)

The objective value g’z has to be non-positive according to Assumption 1.
Due to convexity of Y7 the image of the optimal solution of R-ECSPP(1) is
located in the triangle defined by the points f(z)), f(x?), and (g"z), ¢"z?).

Example 8.15. An illustration of Case 1 is given in Figure 8.4.
Proposition 8.16, relates Problem 8.17 to R-ECSPP(1).
Proposition 8.16. Given the MOLP problem
min f(z) = (¢" v, ' x) s.t. x € XT, (8.17)

All non-dominated points in Y "**" for Problem 8.17 are located in the triangle defined
by the points f(x9), f(x2), (g7 x), c"x?).
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fa(7)
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Figure 8.4: An illustration of the non-dominated frontier of Y 7" (bold line)
for Case 1.

Proof. The proof follows from convexity of Y 7" and Definition 8.7. O

We argue that 2* can be found by investigating the non-dominated points
of Y74 for Problem 8.17 since f(z*) is a non-dominated point.

Proposition 8.17. Let x* be an optimal solution of R-ECSPP(1). The point f(z*) €
Y Fath is g non-dominated point for Problem 8.17.

Proof. The proof follows from the convexity of Y% and the notion of domi-
nance. [

Case 2:
If gT2% < 0, then the points of intersection of Y 7" and f,(z)-axis are on the
right of f(22). Consequently, we solve Problem 8.18.

max{g’x — ec’x : 2 € XPUY, (8.18)

Let =) denote the optimal solution of Problem 8.18. Again due to the con-
vexity of Y the image of the optimal solution f(z*) is located in the triangle
defined by the points f(x9), f(22), (9729, c"z?). However in this case, the ob-
jective value g” ) is non-negative according to Assumption 1 and f(z*) is on
a facet which has positive slope.

Example 8.18. An illustration of Case 2 is given in Figure 8.5.

There is a relation between f(z*) and the non-dominated points of the biob-
jective problem where the objective function ¢’z is minimized and the objec-
tive function ¢’z is maximized. Hence, Proposition 8.16 has to be slightly
modified. Proposition 8.19 holds for Problem 8.19.
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fi()

Figure 8.5: An illustration of the non-dominated frontier of Y 7" (bold line)
for Case 2.

Proposition 8.19. Given the MOLP problem,
min f(z) = (—g'z,c'x) s.t. x € X, (8.19)
All non-dominated points in Y P%" for Problem 8.19 are located in the triangle defined
by the points f(x?), f(x]), (9" x, " x).
From the case distinction, it follows that Case 2 can be reduced to Case 1.

Proposition 8.20. Case 2 can be reduced to Case 1 if both sides of the side constraint
g"x = 0in R-ECSPP(1) are multiplied by —1. It is sufficient to investigate the non-
dominated points of Problem 8.20

min f(z) = (fi(x), fo(z)) s.t. z € XFth (8.20)
where f1(z) = g xif g*2% > 0and f1(z) = —gTz if g720 < 0, and fo(x) = Tz,

The main theorem of this section states that given R-ECSPP(1), an optimal
solution z* of R-ECSPP(1) is an efficient solution of Problem 8.20 where f(z*)
is on the non-dominated facet conv({f(x}), f(«£)}) € Y{#" which intersects
the f,(x)-axis. The extreme points defining this facet are denoted by f(z}) and

fag).

Theorem 8.21. Let x* be an optimal solution of R-ECSPP(1), it holds that f(x*) €
cono({f(xy), f(zf)}).

Proof. Let conv({f(z%), f(«})}) denote a non-dominated facet of Problem 8.20
which intersects the f»(z)-axis. The extreme points of this facet, f(z}) and
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f(z¥) are breakpoints of the non-dominated frontier. Hence, they are the im-
ages of two extreme points z¥ and z} of X"*". Let (0, ¢"z*) denote the inter-
section point of conv({f(z}), f(z£)}) and f»(x)-axis. Due to the definition of
convex hull, there exists k;, ko such that

ki, ke >0, (8.21)
ky +ky=1, (8.22)
kufi(ah) + ko fi(2f) =0, (8.23)
k:lchl; + kocTak = T, (8.24)

The values of path variables in the Formulation (8.9)-(8.12) of R-ECSPP(1) are
set so that the value of path p; modeled by x’;, is set to k; and the value of
path p, modeled by z¥, is set to k. The values of all paths p € P\ {py, p2} are
set to 0. Obviously (ki, k2,0, ...,0)T € [0, 1]|P | is a feasible solution of Problem
(8.9)-(8.12).

Next, we consider the weighted sum scalarization of Problem 8.20.

min{w1f1 (x) + ’U)Qfg(l’) s.t.z € XPath}. (825)

This problem can equivalently be written as
min{% Fi(@) + folz) s.t. w € XY, (8.26)
2

Suppose that the weight vector w* = (w}, w;) where 0 < wi < 1,0 < wj <
1, wi + w3 = 1is chosen such that x’g“ (p1) and z¥ (p,) are two optimal solutions
of Problem 8.26.

Now we consider the dual of Formulation (8.9)-(8.12), D-ECSPP(1). If we
set v* = _%f then the paths p; and p, are the minimizers of Problem 8.27

u(v") = min{c(p) — v+ g(p)}
and (u(—Z—;), —Z—;) € R? is dual feasible.
If we can show that (k;, k5,0, ...,0)7 and (u(—%), —%)T € R? satisfy the
complementary slackness conditions, then (k1, k2,0, ..., 0)” is an optimal solu-
tion of R-ECSPP(1). The variable v is set to —Z—; Since p;, po are two shortest

paths of Problem 8.27 with this particular value of v, forall p € P\ {p1,p-} it
holds that

u < ¢(p) — vg(p). (8.27)

It follows that the complementary slackness conditions are satisfied for all p €
P\ {p1, p2} since their values are set to zero in the primal solution. The values
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of paths p; and p, are greater than or equal to zero in the primal solution and
the dual constraint satisfies

u—c(p) +vg(p) =0, if p=py or p = pa. (8.28)

So the complementary slackness conditions are also fulfilled for p; and p,.
Thus the solution considered above is an optimal solution of R-ECSPP(1). [

In the following, we describe a method, which we call non-dominated facet
algorithm (NFA), to find conv({ f(z}), f(z¥)}) for R-ECSPP(1). NFA is a variant
of Algorithm 6 proposed in [59]. At the beginning of the algorithm, two points
f(2) and f(z?) are computed as described above in distinction of cases. If
conv({f(z]), f(x2)}) is a non-dominated facet intersecting the f,(x)-axis, NFA
stops. Otherwise there exists another non- dominated point located inside the
triangle defined by the points f(x)), f(z?), (fi(z)), c"x?) according to Proposi-
tion 8.16.

As stated in Section 8.3, non-dominated points in Y”*" can be found by
solving the weighted sum scalarization of Problem 8.20. For any 0 < w; < 1,
0 < wy < 1,and wy +wy = 1 the optimal solution of Problem 8.25 is an efficient
solution and its image is a non-dominated point. An optimal solution of the
weighted sum problem is denoted by ¥ .

According to the value fi(z),,), either f(z}) or f(z?) is replaced by f(0,,).

If f1(22,) = 0 then 2! _ is the optimal solution of R-ECSPP(1), NFA terminates,
else if f1(2?.) > 0 then f(2?) is replaced by f(z9,).
else f(z]) is replaced by f(z3,).

The new pair of points is denoted by f(z;) and f(z}). In NFA, the above pro-
cedure is performed iteratively (! denotes the iteration counter) until the non-
dominated facet intersecting f(z)-axis, conv({ f(z}), f(x)}) is found. In each
iteration, f(z!) is located on the left of f,(x)-axis whereas f(x!) is located on
the right. The weights for the weighted sum problem are chosen according to
Proposition 8.22.

Proposition 8.22. The minimization direction is orthogonal to conv({ f(x}), f(xL)}),
1=0,1,2,..., and pomts in the interior of the triangle defined by the pomts f(al),
f(a!), and (fl( L), " xl) if weights are set as

Tl — Tl and ws = (fi(a) — fi(ad). (3.29)

Proof. From elementary geometry, the equation w, f1(z) + wa fo(x) = b defines
a line orthogonal to vector (wy,ws). If wyfi(x) + wafs(z) corresponds to an
objective function, then in a minimization problem the line w, f1(x) 4w fo(z) =
b is shifted in the opposite (w;, w,) direction until an optimal solution is found.

wlz(c
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Let wy = (c"2! — c"zl) and wy = (fi(al) — fi(2!)). Then the line wy f1(x) +
wy fo(x) = b is parallel to conv({ f(«}), f(z})}). Moreover, by shifting the line
wy f1(x) + wafo(x) = b in the opposite (wy, w) direction, an optimal solution
of WSSP(w), which is in the triangle defined by the points f(z}), f(z.), and
(fu(z), c"al) is found. O

Theorem 8.23. In iteration [, if f(xl,,) € conv(f(x}), f(xL)), then the convex hull of
{f(x}), f(«l)} is a non-dominated facet intersecting the f,(x)-axis.

Proof. By construction, there is an intersection point of conv({f(z}), f(z.)})
and the f5(x)-axis in each iteration/ = 0, 1, 2, ... For some [ and a given weight
vector w, if f(xl,,) € conv({f(«}), f(%)}) then all points in conv({ f(z), f(z%)})
are the images of alternative optimal solutions of Problem 8.25. Thus, they are
efficient solutions of Problem 8.20. It follows that conv({ f(«}), f(«%)}) is a non-

[

dominated facet. O

Theorem 8.24. NFA finds the non-dominated facet conv({ f(xf), f(xF)}) in finitely
many steps.

Proof. In Step 12 of NFA, a shortest path problem with modified edge costs is
solved. Therefore !, is a path. If f(x!,) € conv({f(z}), f(«L)}) or fi(al,) =0
then NFA terminates. Otherwise f(z!,) is a non-dominated point such that
fil@h) < fi(zl,) < fi(al) and "2l < "2l < ¢zl Since the values of 2!, zl,,

z!, and g are integers, NFA terminates after a finite number of iterations. O

8.4.1 R-ECSPP(1) problems, a special case

In this section we concentrate on a special case of R-ECSPP(1) problems. We
assume that the side constraint ¢’ = = 0 is in the form of an interleaver consis-
tency constrains mentioned in Chapter 7. Although our study in this section
has no immediate practical use in terms of decoding of binary linear codes
due to the limitation of a single side constraint, a theoretical understanding
may help in developing efficient solution approaches for the side constrained
shortest path problem considered in Chapter 7.

Given a directed, acyclic graph G = (V, £), let £, E; denote two edge sets.

Definition 8.25. A path is called agreeable if it contains an edge from the sets E and
E, both or it contains no edge from the sets Ey and E.

In Problem (8.30) - (8.32), the minimum cost agreeable path is searched.

minimize ¢’ (8.30)
subject to Z Te = Z Te (8.31)
eckEn ecFo

z € XPath (o, 1}/F! (8.32)
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Non-dominated facet algorithm (NFA)

Input: An equality constraint shortest path problem.
Output: Two paths =%, 2.

NN N NN R 2R e e e

N
(o))

27:
28:

N

Set! = 0.
Compute 2!, = argmin{cTx : x € XFoih},
if gT2! > 0 then

Set fi(x) = g"x.

else

Set fi(z) = —g” .

end if

Compute 2!, = argmin{(1 — €) f1(z) + efo(z) : £ € X "},
Set terminate = false.

repeat

Set (w1, ws)=((c"a, — Tal), (fi(aL) — fi(a1))).
Compute z!,, = argmin{w, fi(x) + wa fo(x) : © € XPuh},
if fi(z!,) = 0 then
Set terminate = true.
else if fi(z!,) > 0 then
if f(2l,,) € conv({f(z!), f(a)}) then
Set terminate =true.
else
Set f(al)=f(x1,,)-
end if
else
if f(al,,) € conv({f(x}), f(z1)}) then
Set terminate = true.
else
Set f(a!)=f(a,,).
end if
end if
Setl=1+1.

29: until terminate = true
30: Output z}, and ..
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Note that in this problem, g € {—1,0,1}/#l. The set of all paths which
contain an edge from F; is denoted by P, whereas the set of all paths which
contain an edge from FE, is denoted by P. The set of agreeable paths is PA¢ =
(PANP)U((P\ P)N(P\ P)). Furthermore, the set of paths where an edge
in F; is followed but no edge from FEj is used, is defined as P’ = P, N P\ P.
P" = P\ P, U P, is defined analogously.

Lemma 8.26. For all paths p € P' it holds that g" P = 1 and for all paths p € P" it
holds that g*«? = —1. Similarly, for all agreeable paths, p € PAC, gTx? = 0.

As a result, in the objective space, non-dominated points corresponding to
paths are located on lines f;(z) = —1, fi(z) =0, or fi(z) = 1.

Example 8.27. Figure 8.6 illustrates an objective space where the image of the optimal
solution of the shortest path problem (without constraint 8.31), f(x?), is on the line
f1(z) = 1. Two other possibilities are f(z°) is on fo(x)-axis or f(x0) is on fi(z) =
—1.

fa()

Figure 8.6: A special case of R-ECSPP(1) problems.

Given the special case of R-ECSPP(1). The non-dominated facet containing
the image of an optimal solution of R-ECSPP(1) can be computed easily by
NFA.

Theorem 8.28. NFA finds the non-dominated facet for Problem (8.30) - (8.32) in the
first iteration.
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Proof. Let z* be an optimal solution of R-ECSPP(1). If 720 # 0, then f(z*) €
conv({f(z}), f(«F)}). After applying Steps 3 - 7 of NFA, it holds that f (a:g)
is the image of the minimum cost path on the left of the f,(z)-axis and f(x¢)
is the image of the minimum cost path on the right of the f;(x)-axis. Thus

f(ag) = f(a2) and f(zg) = f(a0,)- N

An alternative solution approach is a k-th shortest path algorithm based
approach. To find a k-th shortest path, the algorithm proposed by Jimenez
and Marzal [42] (see Chapter 7) can be used. In the following we first state an
auxiliary lemma. Then prove that the special case of R-ECSPP(1) problem con-
sidered in this section, can be solved by a k-th shortest path algorithm based
approach. This approach is also presented as an algorithm. R-ECSPP(1) is for-
mulated as in (8.9)-(8.12). It is assumed that it has at least one feasible solution.

Lemma 8.29. Let P(v) denote the set of shortest paths p € P for a fixed multiplier v
in Problem 8.13. If P(v) C P’ or P(v) C P” then v is not an optimal multiplier.

Proof. We show the proof for the case where P(v) C P'. For the case where
P(v) C P”, the proof is analogous. For a fixed v, u = min,ep{c(p) — vg(p)}
and (u,v)” are dual feasible due to construction. If there is a primal feasi-
ble solution such that complementary slackness conditions are satisfied, then
(u,v)T is an optimal solution of D-ECSPP(1) and v is an optimal multiplier.
Without loss of generality, let P(v) = {p1,ps,...,ppw)}. Foralli € {|P(v)| +
L,|P(v)| + 2,...,|P|} it holds that v + vg(p;) — ¢(p;) < 0. The complemen-
tary slackness conditions imply that if (u,v)” is optimal, then there is a fea-
sible solution (py, ps,...)T € [0,1]F of R-ECSPP(1) such that p; = 0 for all
i€ {|P(v)|+1,|P(v)|+2,...,|P|}. However in a primal feasible solution there
should exist some p; > 0,7 € {|P(v)| + 1, |P(v)| + 2,...,|P|} so that (8.11) is
satisfied. This is a contradiction. O

An optimal multiplier v* of Problem 8.14 can be found by the algorithm
below. We refer to it as the find optimal multiplier algorithm (FOMA). The
details of the algorithm are explained in the proof of Theorem 8.30. An LP
optimum is constructed as described in Case 1 and Case 2 of the proof.

Theorem 8.30. Find optimal multiplier algorithm terminates with an optimal multi-
plier v* € R of Problem 8.14.

Proof. Let v = 0, then the set of shortest paths P(0) can be found by applying
a k-th shortest path algorithm. At the beginning the counter £ is set to 0 and
a shortest path p is computed. The set P(0) is initialized with py, i.e., P(0) =
{p°}. Then k is incremented to 1 and the next shortest path p; is computed. If
c(p1) = c(po) then P(0) = {po,p1}. This procedure is continued until ¢(p;) >
c(po). If P(0) is not a subset of P’ or P”, then the following case distinction can
be made. In both cases 0 is an optimal multiplier.



8.4. MOLP APPROACH TO R-ECSPP(1) 171

Find optimal multiplier algorithm (FOMA)

Input: The special case of R-ECSPP(1) problem described above.
Output: The optimal multiplier v* for D-ECSPP(1).

| S S S S i G Sy
@ 9 X NN 2D

Setv = 0.
Compute the set P(0) by a k-th shortest path algorithm.
2 =c(p®), p° € P(0).
if P(0) C P’ then
Compute p = argmin,c p\ p{c(p) + vg(p)} and 2 = c(p).
if p € PAC then
Setv =0 — (2 — Z), terminate.
else if p € P” then
Set v = 0 — (£5%), terminate.
end if

: elseif P(0) C P” then

Compute p = argmin,c p\ pr{c(p) + vg(p)} and 2 = c(p).
if p € PAC then
Setv = (£ — 2’) — 0, terminate.
else if p € P” then
Setv = (Z_TZ/) — 0, terminate.
end if

. else

Terminate.

. end if
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Case 1: there is an agreeable path p; € PAY in P(0). In this case 0 is an
optimal multiplier since a primal feasible solution and a dual feasible solution
which satisfy the complementary slackness conditions can be constructed as
follows. In the primal problem set p; = 1 and all other path variables p; € P\p;
to 0. In the dual problem set v = 0 and u = ¢(p;). Then p;(u — ¢(p;)) = 0 and
pj(u—c(p;)) =0forall p; € P\ pi.

Case 2: There are at least two paths p/, p” € P(0) such that p’ € P’ and p” €
P". In this case 0 is an optimal multiplier since a primal feasible solution and
a dual feasible solution which satisfy the complementary slackness conditions
can be constructed as follows. In the primal problem set p’ = 0.5, p” = 0.5, and
all other path variables p; € P\ {p/,p"} to 0. In the dual problem set v = 0
and u = ¢(p') = ¢(p”). For this pair of solutions the complementary slackness
conditions are satisfied.

Conversely if P(0) C P’ or P(0) C P” then the following computations are
performed. At this point, we assume that P(0) C P'. If P(0) C P” the proof is
analogous. Since P(0) C F’, it holds that

pg};\r}g,{dp) +vg(p)} > minte(p) — v} =w. (8.33)
Let p = argmin ¢ p\ p{c(p) +vg(p)}, 2 = c(p) and 2’ = minyep{c(p)}. If p € PAG
then by setting v = 0 — (2 — 2/), else if p € P then by setting v = 0 — (35 ) the
value of u can be increased. Solving Problem 8.13 with the updated multiplier
v, either Case 1 or Case 2 holds for P(v). O

8.4.2 Numerical results

We evaluate the performance of the MOLP based approach NFA, versus the so-
lution approach based on the solution of R-ECSPP(1) (8.6)-(8.8) by the CPLEX
LP solver. The performance measure considered for comparison of both ap-
proaches is computation time (in CPU seconds). We report the average num-
ber of iterations performed in NFA, the average computation times of NFA,
and the average computation times of the CPLEX LP solver in CPU seconds.
The experimental settings are described below.

e The directed acyclic graphs G = (V, E) used in the numerical tests are
the component trellis graphs introduced in Section 7.2 (see Example 7.1).

e The sizes of the instances are determined by the number of vertices. The
number of edges in G = (V, E) is approximately 2 times the number of
vertices.

e The objective function coefficients ¢, e € E, and the coefficients of the
equality side constraints g., e € E, are randomly chosen from a uniform
distribution on the interval [—M, M| where M is a positive integer.
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o In the test scenarios, we either fix the value of M and vary the number of
vertices or fix the number of vertices and vary the value of M.

e The number of instances solved for each setting (fixed number of ver-
tices, fixed M value) is 100.

In the first test scenario, we fix the interval of coefficients to [—50, 50] and
vary the number of vertices from 8000 to 40000 by steps of 8000. The average
number of iterations performed by NFA, the average computation times of
NFA, and the average computation times of the CPLEX LP solver versus the
number of vertices are reported in Table 8.1 and plotted in Figure 8.7.

Vertices | NFA (iterations) [ NFA (time) CPLEX LP solver (time)
8000 8.18 0.1154 4.2357

16000 |9.14 0.206 14.0048

24000 (9.91 0.3323 29.8796

32000 |10.28 0.4491 51.2751

40000 |10.61 0.7313 91.0647

Table 8.1: The average number of iterations performed in NFA, the average
computation times of NFA, and the average computation times of the CPLEX
LP solver versus number of vertices.

Our observations regarding the first test scenario are as follows:

o If the number of vertices increases, the average computation time of the
CPLEX LP solver increases significantly.

e Increasing the number of vertices from 8000 to 40000 does not cause a
substantial increase in the average number of iterations performed in
NFA. The average number of iterations is around 10 for different num-
bers of vertices.

e If the number of vertices increases, there is also a small increase in the
average computation time of NFA. In comparison to the increase in the
average solution times of the LP solver, this increase is very small.

e NFA is faster than the CPLEX LP solver up to a factor of more than 100.

In the second test scenario, we fix the number of vertices to 40000 and
vary M between the values {1, 5, 20, 50, 100}. The average number of iterations
performed by NFA, the average computation times of NFA, and the average
computation times of the CPLEX LP solver versus coefficient intervals [—1, 1],
[—5, 5], [—20, 20], [-50, 50], and [—100, 100] are reported in Table 8.2 and plotted
in Figure 8.8.
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Figure 8.7: The average number of iterations performed in NFA, the average
computation times of NFA, and the average computation times of the CPLEX
LP solver versus number of vertices.

Intervals |NFA(iterations) NFA (time) CPLEX LP solver (time)
[—1,1] 9.82 0.6544 69.7854
[—5, 5] 10.41 0.5844 77.5005
[—20,20] [10.59 0.6806 86.6181
[—50,50] |10.61 0.7313 91.0647
[—100, 100]|10.55 0.7369 90.7957

Table 8.2: The average number of iterations performed by NFA, the average
computation times of NFA, and the average computation times of the CPLEX
LP solver versus varying coefficient intervals.
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Figure 8.8: The average number of iterations performed by NFA, the average
computation times of NFA, and the average computation times of the CPLEX
LP solver versus varying coefficient intervals.
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Our observations regarding the second test scenario are as follows:

o If the size of the coefficient interval increases, the average computation
time of the CPLEX LP solver increases.

e The average computation times and the average number of iterations
performed by NFA are not significantly affected by the change in the
coefficient interval.

e NFA is faster than the CPLEX LP solver up to a factor of more than 100
for all chosen sizes of the coefficient interval.

In the third test scenario, we assume that the constraint g’z = 0 is an in-
terleaver consistency type of constraint. This special case of R-ECSPP(1) was
discussed in Section 8.4.1. Let E; and E, be two disjoint edge sets in a com-
ponent trellis graph explained in Chapter 7. In particular, they are the sets of
input-1 edges from randomly chosen segments of the component trellis graph
(see Example 7.1). Then we consider a side constraint of type

g = Z Te — Z ze = 0. (8.34)

eck, ecFEo

The objective function coefficients are randomly chosen from a uniform distri-
bution on the interval [—10, 10].

The average computation times of NFA and the average computation times
of the CPLEX LP solver versus the number of vertices are reported in Table
8.3 and plotted in Figure 8.9. Although the find optimal multiplier algorithm
(FOMA) (see Section 8.4.1) is applicable to the special case of R-ECSPP(1),
with our test settings this algorithm was impractical. Since FOMA applies
a path enumerating approach, if the number of vertices increases, the number
of paths enumerated rapidly gets very large and FOMA does not terminate in
reasonable time. For this reason, the average computation times of FOMA are
not reported here.

Our observations regarding the third test scenario are as follows:

o If the number of vertices increases, the average computation time of the
CPLEX LP solver increases significantly.

e The average computation times of NFA are near to 0 for all different num-
ber of vertices tested.
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Vertices |[NFA (time) | CPLEX LP solver (time)
8000 0.0388 69.7854
16000 |0.0765 77.5005
24000 10.1207 86.6181
32000 ]0.1357 91.0647
40000 |0.1921 90.7957

Table 8.3: The average computation times of NFA, and the average computa-
tion times of the CPLEX LP solver versus number of vertices.
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Figure 8.9: The average computation times of NFA, and the average computa-
tion times of the CPLEX LP solver versus number of vertices.
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e NFA is faster than the CPLEX LP solver up to a factor of more than 100.

e The average computation times of the CPLEX LP solver and NFA with
interleaver consistency type of constraint is lower than the average com-
putation times of the CPLEX LP solver and NFA with arbitrary con-
straints considered in the first test scenario.

8.5 Multiple objective linear programming approach
to R-ECSPP(2)

In this section, the MOLP based solution approach is extended to find an opti-
mal solution of the LP relaxation of ECSPP(2). Given an acyclic directed graph
G=(V,E),cecRIFl,xc {01}, and g, € ZI¥l, t = 1,2, the LP relaxation of an
equality constraint shortest path problem with two side constraints is

minimize ¢’z R-ECSPP(2) (8.35)
subject to x € XT" (8.36)
glez =0 (8.37)
gix =0, (8.38)

As in Section 8.4, the complicating side constraints are rewritten in terms
of objective functions. The original objective function of R-ECSPP(2) remains
as the third objective function f;(x) whereas the linear functions g{ = and g1 =
are considered as the first and the second objective functions fi(x) and f»(z),
respectively. Consequently, the following MOLP is derived

minimize f(z) = (f1(z), f2(2), f3(z)) (8.39)
subject to x € X7, (8.40)

Our study in this section is based on the geometric interpretation of Problem
(8.39)-(8.40). The linear functions f;(z), f2(x), and f3(x) are introduced for the
ease of notation.

The decision space is denoted by X" and the objective space is denoted
by YFath C R3. At various steps of the solution approach, we work with the
projection of the objective space Y% on the f1(z)-f2(z) plane. We denote the
projection by Y4, Similar assumptions as in Section 8.4 are also made in this
section. Assumption 1 and Assumption 2 exclude some trivial cases. Assump-
tion 3 excludes the case that all points in Y74 are on the same plane. This
case is unlikely to occur and will not be considered in this chapter. Neverthe-
less we note that if all points in Y 7", are on the same plane, then the solution
approach would be to take a particular linear combination of g{z = 0, g3z = 0
and solve an R-ECSPP(1).
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Assumption 1: R-ECSPP(2) is feasible,

Assumption 2: Let z¢ = argmin{c’z : z € XP""}. Then ¢{ 2° and g2 z° are not
both equal to zero.

Assumption 3: Y ig full-dimensional.

Let z* € XP*" denote an optimal solution of R-ECSPP(2). In the MOLP
based approach proposed in this section, we search for the facet of Y 7" which
contains f(z*).

Observation 8.31. Every optimal solution z* satisfies ¢'z* = min{fs3(z) : = €
XFPath £ (z) = 0, fo(x) = 0}, i.e., f(z*) is located on the f3(x)-axis with minimal
value among all feasible points in Y N f(x).

Example 8.32. The geometrical interpretation stated in Observation 8.31 is illus-
trated exemplarily in Figure 8.10.

A

f3(z)

*****************************

N

fo(z)
Figure 8.10: The image of the optimal solution of R-ECSPP(2), f(z*).

Definition 8.33. A facet of Y'" which contains f(z*) is called an optimal facet of
YPath.

In order to find f(z*) we propose a two stage solution approach. An opti-
mal facet of Y7*" which contains f(x*) can be defined by three points p!, p?,
and p? such that (0,0) € conv({p},, 34, P3;}), where p},, p3,, and p3, denote the
projections of p', p?, and p® on the fi(x)-f2(z) plane. In the first stage of the
solution approach, three initial points p!, p?, p* € Y7*" are found such that
(0,0) € conv({p3,, Pay, Pas}) is satisfied. The first stage of the solution approach
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is given in Section 8.5.1. As long as the points p', p?, and p® are not contained in
the optimal facet, a new point p* satisfying certain conditions substitutes one
of the old points. This constitutes the second stage of the solution approach
given in Section 8.5.2. It will be shown that this iterative procedure terminates
with the f(z*) value after a finite number of iterations.

8.5.1 A procedure to find initial points

To find the initial points, we first find a longest path according to weight vector
g1, i.e, 2t = argmin{—glz : x € XF"}, Let p! = (¢!, gl 2!, cTxl) € R? be the
image of ! in the objective space Y. The projection of p' onto the f;(z)-
f2(z) plane is denoted by p3, = (97 «', g2 =1).

In order to find p? € R?, a shortest path 2 according to weight vector g,
is found, i.e., 22 = argmin{g{z : x € X"} Let p* = (g 2?, g3 22, cT2?) be
the image of z” in the objective space Y 7*". Projection of p* on the fi(z)-f2(z)
plane is denoted by p3, = (g7 22, g2 2?). Since we assumed R-ECSPP(2) to be
feasible, the values g{ z' and ¢{ 2* cannot be both positive or both negative.

A third point is found as follows. We first define a line r f;(z) + sfa(z) = ¢
in f1(x)-f2(x) plane, passing through the points p},; and p3,.

Lemma 8.34. If the parameters r, t, s € R are set as
r=gie — gia®
§= ngxz - g’{xla

t=rgiz +sga’,
then equation r f1(z) + s fo(x) = t defines a line passing through points p3, and p3,.
Proof. The proof follows from the definition of a line by two points. O

The line rf;(z) + sf2(x) = t is shifted in the halfspace which is defined
by 7 fi(x) + sfa(x) = ¢ and contains (0, 0), until a boundary point of Y 7" is
reached. The reason for doing this is that we want to compute a third point
p* € R3 such that (0,0) € conv({pd,, P34, Pss})-

If t > 0, then (0,0) is located in the halfspace 7 fi(z) + sfa(x) < t. Oth-
erwise it is located in the halfspace rfi(x) + sfa(x) > t. Given two points
p' = (¢1a',g52") and p! = (g7a?, g3 27), a procedure for finding an halfspace
which contains points p’, p/, and (0, 0), is described in the construct-halfspace
algorithm.

From a MOP point of view, shifting the line r fi () + s fo(x) = tin ho(pl,, P3g)
until a point on the boundary of Y/ is reached means: solve a shortest path
problem in which the objective functions f;(z) and f(z) are linearly combined
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Construct-halfspace algorithm
Input: Two points p’ = (g{ 2, g3 2%), p = (g7 27, g3 27) on the f,(x)-f2(x) plane.
Output: The halfspace ho(p', p’).

1: Compute r = gl 2" — gd'27.

2: Compute s = g{ 27 — g{ 2"

3. Compute t = rg{ z' + sg3 2.

4. if t > 0 then

5 ho(p',p") = rfi(x) + sfax) < L.
6: else if t < 0 then

7o ho(p',p7) = rfi(x) + sfa(x) >t
8: end if

in the weighted sum scalarization. The weight vector (ws,ws) (see 8.10) is
given by

= { D s

A shortest path 2® € X" and a third point p? are found as follows.

# = argmin{w, g = + waga v : v € XU}, (8.42)

T
p*=(g]a° g3 2°,c"2?). (8.43)
Theorem 8.35. Given two points p, and p3,. If weights (w1, ws) of the weighted sum
scalarization problem given in (8.42) are chosen as in (8.41), then p3, = (g 23, g3 x%)
is a boundary point of Y5 and p3, € ho(plg, pag)-

Proof. Due to Theorem 8.11, an optimal solution z* of the weighted sum scalar-
ization problem given in (8.42) is an efficient solution and its image in Y., is
a non-dominated point. It follows that p3, = (¢ 2%, g 2*) is on the boundary
of Y'z];ath.

Next we show that p3; € ho(psy, pag)- Let 7 fi(z) + sfa(x) = t denote the line
passing through p}, and p3, where r, s and ¢ are defined as in Lemma 8.34. We
make the following case distinction.

Case 1:
Suppose t > 0. Then w; = r and w, = s. It follows that

rgla® 4+ sgla® <10+ 50 < t, (8.44)

since z? is an optimal solution of the weighted sum scalarization problem and
point (0,0) € Y 9" is the image of some feasible solution in X ",
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Case 2:
Suppose t < 0. Then wy; = —r and wy = —s. It follows that

7? = argmax{rg| z + sga v : v € X"} =

rgi a® 4 sgsx® > 10+ 50 > t,
since z* is an optimal solution of the weighted sum scalarization problem
above and point (0,0) € Y,;*" is the image of some feasible solution in X"

O

Example 8.36. An illustration of the procedure to find points p*, p?, p* is shown in
Figures 8.11(a) to 8.11(d).

Example 8.37. Note that conv({p3,, p5,, Pas}) does not necessarily contain the point
(0,0). Such a case is illustrated in Figure 8.12.

If (0,0) ¢ conv({ps,, P34, Pss}), then two points p3,, ps, are chosen and the
halfspace hg(pa,, P3,) is constructed. If p3, € ho(pay, Psy), then points p3,; and p3,
are selected and it is checked if p},; € ho(p3,, p3,). Note that p3, € ho(p3s P3g)
by construction. If p2; & ho(py,, p3,) then the line rfi(z) + sfo(z) = t passing
through pl, and p3, is shifted in ho(pl,, p3;) until a boundary point of Y
is reached. A new convex hull is constructed by keeping points p},, p3, and
setting p3, to the new boundary point. An analogous procedure is applied
if p3; & ho(p3g, ps,). The exact case distinction is given in find initial points
algorithm (FIPA). The procedure above is repeated until (0,0) € {pl,, p3;, p3.}-
It is shown in Theorem 8.39 that FIPA finds three points p', p?, and p? such that
(0,0) € conv({pl;, p3; P3,}) in finitely many steps.

Example 8.38. In the example illustrated in Figure 8.13, the points p3, and (0, 0) lie
in different halfspaces defined by the line passing through pl, and p3,. Thus, the line
defined by the points pl, and p3, is shifted in the direction of (0,0) until point p3, on
the boundary of Y;5*" is reached. After that p, is set to p3,. With the new extreme
points it holds that (0,0) € {p3s, Pags Poq}-

Theorem 8.39. At the termination step of find convex hull algorithm (FIPA), it holds
that (07 0) € Conv({p%cbpgdapgd})'

Proof. Let K denote the set of images of feasible paths on the boundary of
Y heth. Since it is assumed that R-ECSPP(2) is feasible, (0,0) € conv(K). The
following observations can be made on K.

Observation 1: |K| < oo since there is a finite number of paths in G = (V, E).

Observation 2: There exists three points p},, p3,, and p3, € K such that (0,0) €
COl’lV({p%d, p%d7pgd})'
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g7 weights.

fa()

g1 weights.

(b) Find a shortest path with respect to

L fa(z)

\ > >
/ hie) .<\/ -
; s
DPaq 2 —
Daq - [
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2
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contains (0, 0).

Figure 8.11: A procedure to find initial points p', p?, p®.
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fa()

1
Paq

hi()

3
Paq

2
Paq

Figure 8.12: Initial triangle for R-ECSPP(2) problems.

Find initial points algorithm (FIPA)

Input: R-ECSPP(2) problem.
Output: Three points p', p?, p® such that (0,0) € conv({pl,, p3;, P5;})-

Jut
e

1 .
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:

—_

Find 2! = argmin{—g¢7x : z € XPuh},
Find p! = (g7 2!, g7 2!, cT'at).
Find 22 = argmin{g z : x € XPuh}.
Find p? = (g7 22, g1 22, cT'2?).
Call construct-halfspace algorithm with p3, and p3,.
Compute (w;, ws) according to (8.41).
Find 2° = argmin{w, g7 = + wygl x : 2 € XPath},
Find p? = (g7 23, gL a3, cTa?).
while (070) gé COHV({p%dap%wp%d}) do
Call construct-halfspace algorithm with p}, and p3,.
if p3y ¢ ho(pq, P34) then
Compute (w, wy) according to (8.41).
Find 2! = argmin{w, gl z + wygl v : x € XTath},
Set p? = (gl x*, gTxt, cT'xt).
else
Call construct-halfspace algorithm with p3, and p3,.
if pyy ¢ ho(p3q: p3q) then
Compute (w;, w) according to (8.41).
Find 2! = argmin{w, ¢! = + wygl x : x € X T},
Set p' = (gl 2%, gTat, T'xt).
end if
end if
end while
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Figure 8.13: A procedure for finding a triangle which contains point (0, 0).

Observation 3: FIPA computes feasible paths whose images are in K when
computing z*, i € {1,2,3,4} at steps 1, 3, 7, 13, and 19 (due to Theorem
8.11).

This proof relies on the idea that the set of images of paths on the boundary
which need to be considered in any subsequent iteration is reduced in each
iteration. Given {pl,, p2;, p3;} € K. If (0,0) € conv({pl,, p2;, p5;}), then FIPA
terminates. Assume therefore the opposite and that we enter the while loop
for the first time. It holds that p3;, & ho(p,, pa;) or py; & ho(psy, p,) since
ps; € ho(pyy, p3y) by construction (see Theorem 8.35).

We consider the case that p2, ¢ ho(pl,,p5;) (the other case works analo-
gously). Then a feasible path z* and p* such that p3, € ho(p3,, p3;) N K is found
at steps 13 and 14. This follows from Observation 3 and Theorem 8.35.

Let K' = K N ho(piy, p3y)- Then, it holds that

(0,0) € conv(K") N ho(phy, P3a) (8.45)
K < |K| (8.46)

since at least one boundary point p3, is an element of K but not an element of
K. Moreover Observation 2 applies to X' as well.

This reasoning can be applied iteratively. Since cardinality of the convex set
K is decreased by at least 1 in each iteration i and since Observation 2 holds
for set K, three points p*, p?, p* such that (0,0) € conv({p3,, p34, P3,}) must be
found in less than || < o iterations. O

8.5.2 A procedure to find an optimal facet

The second stage of the MOLP based approach follows from Observation 8.31,
ie., f(z*) is located on the f;(z)-axis with minimal value among all points in
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YFPath  f3(x). To find an optimal facet, we propose an iterative procedure in
which a sequence of shortest path problems are solved.

Given the points output by FIPA, first the plane passing through points p',
p?, and p® is constructed. In elementary plane geometry, a plane is defined in
several ways. We use the definition by a point and a normal vector.

Definition 8.40. [18] Given a point p' = (gl x', gt ', cT'x') and a normal vector
n = (r,s,t), the equation

r(fil) = giz") + s(folz) — g3 a') + t(fa(z) = T2') =0 =

rfi(x) + sfo(z) + tfs(z) = u,

where u = rgl ' + sgl x' + tcTx!, defines a plane which has normal 1 and contains

p.

The following two lemmas follow from the equation of a plane [18].
Lemma 8.41. A normal vector ) € R® of a plane which contains three points p', p?,
and p?® in R? is given by

n=(p’ p Dx (@’ —-p') =
(1 [a? — ) (QQ'T$2 - 92 )7 (CT952 — CTxl))x
T T

((T3 Tl) (92$ —92 ),(c

where the x operator denotes the cross product.

2® —clal)).

Lemma 8.42. According to the basic cross product relationships, the components of
the normal vector n = (r, s, t) € R are given as

r=(gya’ 92 ') (2 = cTat) — (T = T 1)(92917 —ngwl),
2=l (gl 2 — gl ) — (g{ 2 — gl a")(T :
h -

11’
2 —gaat)(gl® —girfﬂl)-

s=(c"x*—
w? —gla) (g —gsat) — (g 2% — g

T
t=(gf

The plane rfi(z) + sfa(z) + tfs(x) = u divides R? into two halfspaces.
We denote the halfspace which contains the point (0,0, —00) by h,.,(p', p?, p*).
Due to Observation 8.31, f(z*) is located on the f;(z)-axis with minimal value
among all points in Y"1 f;(z). In an attempt to find f(z*) we shift the plane
rfi(x) + sfo(x) + tf3(x) = win haey(pt, p?, p?) (negative f3(z) direction) until a
boundary point of Y 7*" is reached. This is done by setting weights (w;, ws, ws)
as in (8.47)

f (rys,t)ift >0,
(wn, ws, ws) = { (=1, —s,—1) if t < 0 (8.47)

and solving Problem 8.48

min{wy gl © + wygd x + wyc’x 1 x € XY (8.48)
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Theorem 8.43. Given three points p', p?, and p* € R3. If weights (wy, ws, w3) are
chosen as in (8.47), then for the weighted sum scalarization problem in (8.49)

ot = argmin{w; f1(x) + wa fo(x) + wsfa(x) : x € X7} (8.49)

p* = f(z?) is a boundary point of Y2 and p* € hye,(p', p?, p*).

Proof. Due to Theorem 8.11, an optimal solution z? of the weighted sum scalar-
ization problem given in (8.49) is an efficient solution and its image in Y 7" is
a non-dominated point. It follows that p* = f(z*) is on the boundary of Y%,

If t > 0, then the normal vector n = (r, s,t) points at positive f;(z) direc-
tion. It follows that p* € h,.,(p', p?, p*) since the minimization direction is the
opposite direction of the direction that 7 points at.

If t < 0, then the normal vector n = (—r, —s, —t) points at positive f5(x)
direction. It follows that p* € h,,(p*, p?, p?) since the minimization direction
is the opposite direction of the direction that n points at. O

Example 8.44. In Figure 8.14 the points p*, p* and p* are assumed to be those points
returned by FIPA. After finding the components of the normal vector n, the plane
which contains these points is shifted in negative fs(x) direction until the boundary
point p* is reached.

v f3(2)

Figure 8.14: Finding a boundary point.
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Let 2 = argmin{wg{ = + wogd = + w3cTx : x € X4} and p* = f(2?). If p*
is on the plane 7 f1(x) + s fo(z) + ¢ f3(x) = u, then the objective function value of
R-ECSPP(2) is the f5(x) coordinate of the intersection point of 7 f1 (x) + s fo(z) +
tfs(x) = u with the f3(x)-axis. Below, this claim is stated as a Theorem 8.45
and proved.

Theorem 8.45. Let z* be an optimal solution of R-ECSPP(2). If p* is located on
the plane rfi(x) + sfa(x) + tfs(x) = u defined by points p', p?, and p°, then
f(z7)=(0,0, %).

Proof. The plane rf;(z) + sfo(x) + t f3(x) = u contains the points

p=(gia" g3t cah),
P’ = (g1 2% g3 2%, "2,
P’ = (912" g3 2%, "2,
pt = (g2, g3 2t c"x?)

Furthermore, (0,0) € conv({p},, p3;, P3,})- It follows from the definition of
convex hull that there exists k;, ks, k3 € R such that

k1, ko, k3 > 0, (8.50)
Fi ko4 ks = 1, (8.51)
kufi(@h) + ko fi(2®) + ks fi(2®) = 0, (8.52)
ki fo(ah) + ko fo(2®) + ks fo(2®) = 0. (8.53)

Next we extend Formulation (8.9)-(8.12) to include a second side constraint.

minimize »  c(p)p (ECSPP(2)) (8.54)
peP

subject to Z p=1 (8.55)
peP
> alpp=0 (8.56)
peEP
> a(p)p=0 (8.57)
peP
p>0 forall p € P. (8.58)

We set the values of path variables in the new formulation (8.54)-(8.58) so that
the value of the path p; modeled by 2! is set to k;, the value of the path p,
modeled by z? is set to k, and the value of path p; modeled by 2 is set
to k;. The values of all paths p € P\ {p1,p2,ps} are set to 0. Obviously
(ky, ks, k3,0,...,0)T €0, 1]|P| is a feasible solution of Problem (8.54)-(8.58).
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Next, we consider the weighted sum scalarization of Problem (8.39)-(8.40).
The weights are determined according to the value of ¢ as in Equation (8.47).

min{w1f1 (l’) + wgfg(l’) + w3f3(x) s.t.xz € XPath}. (859)

If the image of the optimal solution of Problem 8.59, p*, is on the plane  f;(z) +
sfa(x) + tf3(x) = u which also contains points p', p?, and p?, then p', p?, and p?
are also images of alternative optimal solutions of Problem 8.59. This problem
can equivalently be written as

min{i—; fi(x) + ffi—i Fa2) + fol) stz € XPathY, (8.60)

Suppose that the weight vector w* = (w], w3, w}) where 0 < wi < 1,0 < w} <
1,0 < w} < 1, and wi + wj + wj = 1 is chosen such that z' (p;), 2? (p2), and z*
(p3) are three optimal solutions of Problem 8.60.

Now we consider the dual of R-ECSPP(2) (Formulation (8.54)-(8.58)), D-
ECSPP(2).

maximize u (D-ECSPP(2))
subject to u + v191(p) + v2g2(p) < c(p) forallp € P.

For fixed v; and vy values, it holds that

u(vy,v2) = IIPEi}}{C(m —v191(p) — v2g2(p) }- (8.61)
If we set v; = —g—; and vy, = —ﬁ—g then the paths p;, ps, and p; are optimal
solutions of Problem 8.61 and the vector (u(—t, —32), =t —12) € R3 is dual

feasible.
Analogously to the proof of Theorem 8.21, (ky, ks, k3,0,...,0) € |0, 1]|P|
and (u(—%,—2) —w _22) ¢ R3 satisfy complementary slackness condi-

w3’ w3 wz’ w3
tions. Consequently, (k1, ko, k3,0,...,0)" € [0, 1]|P| is an optimal solution of
R-ECSPP(2). 0

If p* is not located on the plane r f,(x) + s fa(z) + t f3(x) = u, then point p* is
projected onto the f;(z)-fs(x) plane. The projection of p* may be located inside
or outside convi({pl,, 1. pi, }):

Example 8.46. An illustration of the location of p3, w. . t. conv({pa,, Pag: Pog})-

In Observation 8.47, it is stated that the projection of p* is in one of the
convex hulls which can be defined with 3 points from the set {p3;, P34, Pass Pa}-

Observation 8.47. Let {p},, D34, Dag, Pag} be 4 points on the fi(x)-fo(x) plane, such
that point (0, 0) € conv({pl,, P24, Pogs Pag})- Then (0,0) is located in one of the convex

hulls: CO”U({p%d»pgmpgd})r CO”U({Péda pgda p%d})/ or CO”U({pgda p%dvpgd})'
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fa(z) fa(z)

4
1 1
Pag P24 Paq
4
P2q

TN, TN

p%d P%d pgd T’%d
(@) Point p* is  located in (b) Point p* is not located in
conv({p3q; P3a> Paa})- conv({p34: P34> P34 })-

If (0,0) € conv({ps;, P34 P3s}) then p* is set to p?, else if point (0,0) €
conv({piz, P34 P34}) then point p? is set to p*, else point p' is set to p*. With
the new points, the procedure described above is repeated. Termination con-
dition is stated in Theorem 8.45. The iterative procedure applied to find the
optimal objective function value of R-ECSPP(2) is given in the find optimal
facet algorithm (FOFA) below.

Remark 8.48. Steps 20-22 of FOFA are necessary to avoid cycling which is discussed
in the proof of Theorem 8.50.

Remark 8.49. The value of t computed as in Lemma 8.42 cannot be 0 because

in Assumption 3 we assumed that YT is full dimensional,

FIPA outputs three non-collinear points,

between steps 23 - 29 3 non-collinear points are selected.
Theorem 8.50. Let x* denote the optimal solution of R-ECSPP(2). The find optimal
facet algorithm (FOFA) outputs f(z*) after a finite number of iterations.

Proof. Let K denote the set of images of feasible paths on the boundary of
Y Path The proof uses the idea that there exist finitely many triples (p!, p?, p*) €
KC such that (0,0) € conv({p3,, P34, Ps;}) and FOFA works through these triples
without choosing the same triple twice until the optimal facet is found. Let [
be the iteration counter of FOFA. The triple (p', p?, p*) used to define the plane
rfi(x) + sfa(x) + tf3(z) = v in iteration [ is denoted by (p', p?, p®)".

Observation 1: |K| < oo since there is a finite number of paths in G = (V, E).

Observation 2: In each iteration [, the plane defined by (p', p?, p®)! contains
a point (0,0,v') € (YT N f3(z)), i.e., the plane defined by (p', p?, p?)
intersects the f3(x) axis at the point (0,0, v).
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Find optimal facet algorithm (FOFA)

Input: R-ECSPP(2) problem.
Output: The optimal objective function value of R-ECSPP(2).

1: Call FIPA.
2: Set terminate=false.
3. while terminate=false do

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22:
23:
24:
25:

26:
27:

28:
29:

Construct plane r f1(z) + sfa(x) + tf3(z) = u.

ift > 0 then

Set (wq, wa, w3) = (1, 8,1).
else

Set (wy, wy, w3) = (—r, —s, —t).
end if

Find 2! = argmin{w, g7 = + wegs v + wsc’'z : x € XFath},
Find p* = (g7 2%, gt 24, cT'a?).
if g72* = 0and gl 2* = 0 then
Optimal objective function value is ¢’ z*.
Set terminate=true.
end if
if p* is on the plane r f1(z) + sfo(x) + t f3(x) = u then
Optimal objective function value is 7.
Set terminate=true.
end if '
if (0,0) € conv({pL,, pbs}), 1,7 € {1,2,3},i # j then
Reset indices such that ¢ = 1, j = 2 and the index of the third point is
3.
end if
if (0,0) € conv({p5,, P3g, Py}) and {p5,, P34, P54} are non-collinear then
Set p! = p*.
else if (0,0) € conv({p3, pis, P5s}) and {p3,, ps P34} are non-collinear
then
Set p? = p*.
else if (0,0) € conv({p3, Psy, P34}) and {p3,, P34 P54} are non-collinear
then
Set p3 = p*.
end if

30: end while
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Observation 3: For increasing number of iterations /, the values of v' are non-
increasing. This is due to the fact that the new point p* found in iteration
| is obtained by shifting the plane defined by (p', p?, p*)! in the negative
f3(x) direction.

At Step 10 of any iteration /, the algorithm computes a feasible path z* such
that f(z*) € K N hyey(p*, p?, p*)!, e, f(z*) is a boundary point of Y and it
is in the halfspace h,..,(p', p*, p*)! which contains p', p?, p?, and (0,0, —o0). For
a given z*, the following cases can occur.

Case 1: If g/ 2* = 0 and ¢ 2* = 0 then 2* is an optimal solution of R-ECSPP(2)
and ECSPP(2). The algorithm terminates.

Case 2: If p* = (g{ 2%, gia*, ¢'2*) is on the plane rfi(x) + sfa(z) + tf3(x) =
u which is defined by (p!,p?, p*)!, then according to Theorem 8.45 f(z*) =
(0,0, %) and 2* can be found by solving the equation system (8.50)-(8.53). The
algorithm terminates.

Case 3: If Case 1 and Case 2 do not hold, then the boundary point p* = f(z*)
is not on the plane defined by (p', p?, p®)!. According to the case distinctions
between Step 20 and Step 29, one of the points p', p?, or p? is set to p*. A new
plane defined by (p',p?, p*)!™! is constructed in iteration [ + 1. To show that
a triple (p*,p? p?®)! € K such that (0,0) € conv({pl,, p3;, p3;}) is considered at
most once in FOFA, we make the following case distinction.

Case 3a: If v!™! < o' then v'*! < v™ forall m € {1,...,1} due to Observation 3.
It follows that the triple from iteration [ + 1 is considered for the first time in
FOFA and the triples (p', p?, p*)™ for all m € {1,...,1} won’t be considered in
the following iterations.

Case 3b: If v'*! = ¢/, then this corresponds to the following special case. Let
i and j be two distinct elements of the set {1,2,3} such that (0,0) is in the
convex hull of {pi,, p},}. Depending on the position of p* the following case
distinction can be made.

Case 3b-1: The third point of the triple denoted by pk, and p3, are on the
same side of the line passing through p},, (0,0), and pj,. This implies v'** = o/
because p* can only replace the third point of the triple between steps 23 - 29.
Since the third point of the triple in iteration /, is not in h,,.,(p', p*, p*)"*!, triple
(p', p?, p*)! will not be considered by FOFA a second time. Due to the fact that
there exists finitely many points which satisfy the conditions described in Case
3b-1, after finitely many iterations all these triples are exhausted.

Case 3b-2: The third point of the triple denoted by p}, and pj, are on the
opposite sides of the line passing through pi,,, (0,0), and p),. If FOFA replaces
pk, with p3, in iteration (I+1) and pj3, with p%, in iteration (I+2), cycling occurs.
To avoid cycling FOFA tries to first replace one of the points pj, or p},. This is
done at Steps between 20 - 22. Setting indices new, i.e., ¢ = 1, j = 2 and the
index of the third point to 3, it is guaranteed that first p’ or p’ is replaced by p*
between steps 23 - 29. O
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8.5.3 Numerical results

Using the same experimental settings as described in Section 8.4.2 we eval-
uate the performance of MOLP based approach FOFA, versus the solution
approach where R-ECSPP(2) (8.35)-(8.38) is solved by the CPLEX LP solver.
The performance measure considered for the comparison of both approaches
is the computation time (measured in CPU seconds). We report the average
number of iterations performed in FOFA, the average computation times of
FOFA, and the average computation times of the CPLEX LP solver. At the be-
ginning, FOFA calls the find initial points algorithm (FIPA). FIPA is an iterative
algorithm but in our numerical experiments the average number of iterations
performed in FIPA was always approximately 0. This means FIPA finds 3 ini-
tial points without performing significantly many iterations. Therefore, the
iterations performed in FIPA are not reported here.

In the first test scenario, we fix the interval of coefficients to [—50, 50] and
vary the number of vertices from 8000 to 40000 by steps of 8000. The average
number of iterations performed by FOFA, the average computation times of
FOFA and the average computation times of the CPLEX LP solver versus the
number of vertices are reported in Table 8.4 and plotted in Figure 8.15.

Vertices |[FOFA (iterations) | FOFA (time) | CPLEX LP solver (time)
8000 21.95 0.1984 3.7671

16000 |24.65 0.4401 13.1875

24000 |25.95 0.7282 28.1804

32000 |27.44 1.0442 48.9683

40000 |27.53 1.2667 72.3677

Table 8.4: The average number of iterations performed in FOFA, the average
computation times of FOFA and the average computation times of the CPLEX
LP solver versus number of vertices.

Our observations regarding the first test scenario are as follows:

o If the number of vertices increases, the average computation time of the
CPLEX LP solver increases significantly.

e If the number of vertices increases, there is also a small increase in the
average computation time of FOFA. However, compared to the increase
in the average computation time of the LP solver, this increase is very
small.



194 CHAPTER 8. EQUALITY CONSTRAINT SHORTEST PATH PROBLEMS

80 T T T T T T 28
CPLEX LP Solver (time) IR
= A = Find optimal facet algorithm (time) \\\. "
'@ Find optimal facet algorithm (iterations) \\\\\

601 126 0
) c
£ o
= =
C S
o g
s S
3 S
g 4of 124 2
o 1S
© =
) c
g 2
o ©
= o
< >

20 422 <

N YT T TV ST TR R TV LR LR LD W

0.5 1 15 2 25 3 35 4
Number of vertices x 10"

Figure 8.15: The average number of iterations performed in FOFA, the average
computation times of FOFA and the average computation times of the CPLEX
LP solver versus number of vertices.
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Increasing the number of vertices from 8000 to 40000 does not cause a
substantial increase in the average number of iterations performed by
FOFA. The average number of iterations performed by FOFA varies be-
tween 20 and 30.

FOFA is faster than the CPLEX LP solver up to a factor of 70.

In the second test scenario, we fix the number of vertices to 40000 and vary
M between the values {1, 5,20, 50,100}. The average number of iterations of
FOFA, the average computation times of FOFA, and the average computa-
tion times of the CPLEX LP solver versus coefficient intervals [—1, 1], [-5, 5],
[—20, 20], [-50, 50], and [—100, 100] are reported in Table 8.5 and plotted in Fig-
ure 8.16.

Intervals |FOFA (iterations) FOFA (time) CPLEX LP solver (time)
—1,1] [1142 0.6198 56.6427
[—5, 5] 17.62 0.832 93.6618
[—20,20] |26.61 1.2401 83.2267
[—50,50] |27.53 1.2667 72.3677
[—100, 100] | 28.38 1.2919 69.8042

Table 8.5: The average number of iterations performed in FOFA, the average
computation times of FOFA, and the average computation times of the CPLEX
LP solver versus varying coefficient intervals.

Our observations regarding the second test scenario are as follows:

If the size of the coefficient interval increases, the average computation
time of FOFA and the average number of iterations performed by FOFA
increase. The reason for this is probably that for a large coefficient inter-
val, Y P*" has more vertices.

We observed also in our numerical experiments which are not reported
in this section that CPLEX LP solver has the largest average computation
time for M = 5 when M is chosen from the set {1,5,20,50,100}. An
explanation for this may be that there exist a lot of feasible solutions for
the interval [—5,5]. If the size of the coefficient interval increases, the
number of solutions satisfying the equality side constraints decreases.

FOFA is faster than the CPLEX LP solver up to a factor of more than 100.
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In the third test scenario, we assume that the constraints ¢!z = 0 and
gix = 0 are interleaver consistency type of constraints mentioned in Chap-
ter 7). Let E,, E,, E3, and Ey4 be four disjoint edge sets in a component trellis
graph explained in Chapter 7). In particular, they are the sets of input-1 edges
from randomly chosen segments of the component trellis graph (see Example
7.1). Then we consider side constraints of type

Ho=Y z.— Y =0, (8.62)

ecEq eckEs>
Gr=Y ze—» x.=0. (8.63)
ecFs eclky

The objective function coefficients are randomly chosen from a uniform dis-
tribution on the interval [—10, 10]. The average number of iterations of FOFA,
the average computation times of FOFA, and the average computation times
of the CPLEX LP solver versus the number of vertices are reported in Table 8.6
and plotted in Figure 8.17.

Vertices |[FOFA (iterations) | FOFA (time) | CPLEX LP solver (time)
8000 4.37 0.049 1.7956

16000 |4.37 0.112 7.4917

24000 |(4.16 0.1778 17.5222

32000 |44 0.2439 31.6284

40000 |4.25 0.3003 47.6228

Table 8.6: The average number of iterations performed in FOFA, the average
computation times of FOFA, and the average computation times of the CPLEX
LP solver versus number of vertices.

Our observations regarding the third test scenario are as follows:

e If the number of vertices increases, the average computation time of the
CPLEX LP solver increases significantly.

o If the number of vertices increases, there is also a small increase in the
average computation time of FOFA.

e If the number of vertices increases, there is no significant change in the
average number of iterations performed by FOFA.

e FOFA is faster than the CPLEX LP solver up to a factor of more than 100.
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e The average computation times of the CPLEX LP solver and FOFA with
interleaver consistency type of constraints is lower than the average com-
putation times of the CPLEX LP solver and FOFA with arbitrary con-
straints considered in the first test scenario.

8.6 Conclusion and further research

In this chapter, we discussed shortest path problems with 1 or 2 equality side
constraints. We proposed a MOLP based solution algorithm to solve the LP
relaxation of ECSPP(1). Then we concentrated on a special case of R-ECSPP(1)
where the equality constraint was interleaver consistency type of constraint
introduced in Chapter 7. We showed that for this special case, NFA finds the
non-dominated facet containing the image of an optimal solution in the first it-
eration. An extension of the MOLP approach to R-ECSPP(2) was also studied.
Our numerical experiments showed that NFA finds the optimal objective func-
tion value of R-ECSPP(1) up to a factor of more than 100 times faster than the
CPLEX LP solver. Similarly, FOFA finds the optimal objective function value
of R-ECSPP(2) up to a factor of more than 100 times faster than the CPLEX LP
solver.

We have already begun the work of developing a branch and bound type
of algorithm to close the duality gap (if it exists) and find an optimal solu-
tion to ECSPP(1) and ECSPP(2). An essential further research direction is to
generalize the solution approach that was developed for R-ECSPP(2) so that it
applies to R-ECSPP(k) problems. Alternatively, approaches which decompose
or transform a R-ECSPP(k) to several R-ECSPP(2) or R-ECSPP(1) problems can
be investigated. Such a research would facilitate the use of MOLP based ap-
proaches introduced in this chapter in LP based decoding methods for LTE
turbo codes proposed in Chapter 7.






Chapter 9

Conclusion and further research

A major part of this thesis covers mathematical programming based decoding
approaches for binary linear codes. In the literature, these approaches are stud-
ied by researchers working in the field of information theory where applied
mathematics and electrical engineering overlap. To the best of our knowledge,
the problem of maximum likelihood decoding (MLD) of binary linear codes
was first studied as an optimization problem in [9] by Breitbach et al. Later,
articles from Feldman, Wainwrigth and Karger, e.g., [24], [26] aroused interest
on linear programming decoding. This interest has grown rapidly over the
years. Figure 9.1 illustrates the trend in the number of publications on linear
programming decoding from 2002 to 2009.

Number of publications

2002 2003 2004 2005 2006 2007 2008 2009
Years

Figure 9.1: Publications on linear programming decoding between years 2002
and 2009 (to the best of authors knowledge).
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Many of these publications are categorized and summarized in this thesis.
Concepts from linear programming, linear programming duality, polyhedral
theory, integer programming, network flows, non-linear programming, and
matroid theory have been used to develop decoding algorithms that are effi-
cient in terms of computational complexity and error-correcting performance.

From a mathematical programming point of view, maximum likelihood de-
coding (MLD) problem of binary linear codes is the problem of minimizing a
linear cost function over the convex hull of all codewords, the so-called code-
word polytope. Studying polyhedral properties of the codeword polytope is
of crucial importance to develop efficient integer programming based solution
approaches. There is a one-to-one correspondence between binary linear codes
and binary matroids and the same polytope as the codeword polytope is de-
fined as the cycle polytope of a binary matroid in matroid theory. The cycle
polytope is the convex hull of the incidence vectors of all cycles of a binary
matroid. Polyhedral properties of cycle polytope are studied by Barahona and
Grotschel [5] as well as Grotschel and Truemper [35], [36]. These properties
directly apply to codeword polytope. We translated some results from binary
matroids to binary linear codes. An interesting observation we made is that
polyhedral properties of complete binary matroids introduced in [36] directly
apply to the codeword polytope of simplex codes. This means a complete and
non-redundant description of the codeword polytope of any simplex code can
be attained. Matroid decomposition techniques are useful to determine code
classes for which MLD can be performed in polynomial time. We showed that
binary matroids associated to Hamming codes can not be decomposed into
smaller matroids via 2 and 3 sumes.

MLD and minimum distance problems are NP-hard integer programming
(IP) problems and in general they can not be solved in polynomial time. How-
ever for some instances, a reasonable solution approach is to model the prob-
lem with a cost function and constraints which are linear in the n dimensional
real space and then to solve the formulation with a general purpose IP solver.
We applied this approach to MLD and minimum distance problems. We were
able to compute frame error rates for MLD and minimum distances for some
interesting code classes. A key success factor here is to model the MLD and
minimum distance problems such that existing all purpose solvers can deal ef-
ficiently with them. To this aim, we numerically compared several alternative
IP formulations. For LDPC and BCH codes, starting with few constraints and
variables then iteratively adding cuts seems to be favorable. For LTE turbo
codes, a network flows based formulation performs best in terms of computa-
tion time. We conclude that it is worthwhile to make an analysis of different
formulations for different code classes since the selected formulation effects
the sizes of solvable instances.

A first step toward the solution of an IP problem is solving its LP relaxation.
In linear programming decoding (LPD), the linear cost function of the IP for-
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mulation for MLD is minimized on a relaxed polytope. If an LPD algorithm
outputs a codeword, then it is the maximum likelihood (ML) codeword. Oth-
erwise an error is output. We proposed a new IP formulation of the MLD prob-
lem which has some advantages compared to other formulations proposed in
the literature. We developed a novel cutting plane method, called separation
algorithm decoding (SAD), to solve the IP problem. Our simulations demon-
strate that SAD outperforms existing LP based decoding algorithms in terms
of error-correcting performance. SAD is not limited to the LDPC codes, since
it can, for instance, be used for decoding algebraic codes like BCH codes. Fur-
thermore, we introduced a new class of valid inequalities and showed that
they define facets of the codeword polytope of the (8,4, 4) Hamming code.

If the code classes at hand provide more structure, e.g., for turbo-like codes
the MLD problem turns into a side constrained shortest path problem, com-
binatorial algorithms based on Lagrangian duality theory, network theory etc.
can be used to develop efficient decoding algorithms. We presented a novel IP
formulation for MLD of LTE turbo codes. This IP has a tighter LP relaxation
than the conventional LP relaxation. As a new decoding method for LTE turbo
codes we proposed solving the dual problem of a Lagrangian relaxation, in
conjunction with a k-th shortest path algorithm to close the duality gap. Sim-
ulation results show that our algorithm gives superior FER performance than
that of LPD.

Motivated by the problem of decoding of LTE turbo codes we defined a
new class of side constrained shortest path problem (SCSPP) on a directed
acyclic graph. Various articles addressing SCSPP where the side constraint is
a less than or equal to constraint exist in the literature. Different from these ar-
ticles, we considered an equality constraint with integral coefficients and zero
right hand side. We referred to the new class of SCSPP by equality constraint
shortest path problem ECSPP(1). It can be shown that ECSPP(1) is NP-hard.
We concentrated on solving the LP relaxation of ECSPP(1). The approach we
used is a variant of an approach introduced in [59] to solve the LP relaxation of
SCSPP with less than or equal to constraint. The side constraint is interpreted
as an objective function and ECSPP(1) is reformulated as a multiple objective
linear programming (MOLP) problem. The basic idea is to work in the ob-
jective space and solve a sequence of shortest path problems to identify the
non-dominated facet subsuming the optimal solution and interpolating. This
yields the LP-optimum. We then extended the MOLP approach to solve the
LP relaxation of ECSPP with two equality side constraints ECSPP(2).

The content of this thesis has an interdisciplinary nature. To continue the
research on mathematical programming decoding, apart from familiarity with
results from different fields of mathematical programming, it is important to
have a solid knowledge of code classes, channel models, state-of-the-art de-
coding methods etc. There are numerous new questions originated by our
observations. We mention some of them in the following.
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Compared to iterative message passing decoding (IMPD), a major draw-
back of LPD is its complexity. Lately, it has been shown that LPD can be ap-
proximated in linear time complexity (see [10]) for LDPC codes. Some research
on special purpose solvers employing interior point algorithms have also been
made by Vontobel [69], Wadayama [72], and Taghavi et al. [62]. Further re-
search can be focused on lowering the time complexity of improved (in terms
of error correcting performance) LPD.

Coding theory is closely related to linear algebra. Mathematical optimiza-
tion approaches can be combined with algebraic approaches. In particular,
BCH codes have some special algebraic structure which might be of use. Let x
be a codeword of a BCH code. Shifting the bits of = one position left or right
yields again a codeword. Such properties can be used in polyhedral analysis
and in solution algorithms.

Forbidden set inequalities are facets of a codeword polytope if the associ-
ated binary matroid has the sum of circuits property. If the associated binary
matroid does not have the sum of circuits property then the codeword poly-
tope does not have only facets in the form of forbidden set inequalities. We
made some observations on facet defining inequalities by employing a collec-
tion of routines' for analyzing polytopes and polyhedra. It might be worth-
while investigating special structures of facets. Given a code class, an interest-
ing research direction is to analyze facet defining inequalities of the codeword
polytope.

The mathematical models and solution approaches we used to solve the
MLD problem for various classes of binary linear codes have aroused many
fundamental research questions in integer programming. One such research
question which was discussed in Chapter 8 is the problem of finding efficient
combinatorial algorithms to solve the LP relaxation of ECSPP(1) and ECSPP(2).
Some other research areas motivated by MLD of binary linear codes are:

e Finding suitable IP formulations for the problem of minimizing a real
valued linear objective function over a constraint set defined in IF, where
q is a positive integer.

e Multiple objective optimization on a polytope which is completely de-
scribed by forbidden set type inequalities.

e Given a problem min{c’z : Az = b,z > 0,z € Z"} where c € R", b € R™,
and A € {0,1}™*". Identify special cases based on the distribution of
ones and zeros in A such that this problem can be solved easily.

'PORTA, http:/ /www.iwr.uni-heidelberg.de/groups/comopt/software/ PORTA /
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