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Abstract. This paper outlines an implemented system named PROVERB
that transforms and abstracts machine-found proofs to natural deduc-
tion style proofs at an adequate level of abstraction and then verbalizes
them in natural language. The abstracted proofs, originally employed
only as an intermediate representation, also prove to be useful for proof
planning and proving by analogy.

1 Introduction

This paper outlines an implemented system named PROVERB that presents and
verbalizes machine-found natural deduction proofs in natural language. Apart
from its practical use, we hope PROVERB will also address some cognitive
aspects of proof representation and proof presentation.

Efforts have been made to transform proofs from machine-oriented formalisms
into a more natural formalism [And80, Pfe87, Lin90]. As the target formalism,
usually a variation of the natural deduction (ND) proof proposed by Gentzen
[Gen35] is chosen. The resulting ND proofs are then used as inputs by natural
language generators [Che76, EP93]. In general, the presentation of ND proofs
has been performed through ordering, pruning, and augmentation.

All of these verbalizations suffer from the same problem: The derivations they
convey are exclusively at the level of the inference rules of the ND calculus. In
contrast to the informal proofs found in standard mathematical textbooks, such
proofs are composed of derivations familiar from elementary logic, where the
focus of attention is on syntactic manipulations rather than on the underlying
semantic ideas. The main problem, we believe, lies in the absence of intermediate
structures in ND proofs, that allow atomic justifications at a higher level of
abstraction.

To incorporate the more abstract justifications given in mathematical text-
books, we have defined the concept of assertion level inference rules [Hua94b].
Derivations justified by these rules can be understood intuitively as the applica-
tion of definitions or a theorems (collectively called assertions). In this paper, we
illustrate how PROVERB transforms machine-found proofs into this intermedi-
ate representation, and how up-to-date techniques of natural language processing
can be used to produce coherent text.



2 Overview of PROVERB

The entire architecture of PROVERB when used as a stand-alone system is
sketched out below.

Input | ND Proof | | Resol ution Proof |
Abstraction Transformation
Intermediate Representation | ND Proof at Assertion Level |
Verbalization

Output NL Proof

The input to the first version of PROVERB was restricted to ND proofs.
Within the proof development system 2-MKRP [HKK*94], such input is pre-
pared by other components that translate proofs in machine-oriented formalisms
like resolution into ND proofs. The ND proofs are first raised to a more adequate
level of abstraction by the Abstraction module, before techniques of natural lan-
guage generation are used by the Verbalization module to produce the final proof
in natural language (NL).

The output of those transformation components in 2-MKRP is often not
satisfactory. Moreover, we have established a correspondence between resolution
proofs and ND proofs at a more abstract level (see [Hua96]), namely in terms
of the application of assertions. We are incorporating a new Transformation
component into PROVERB. Currently, we have integrated a preliminary version
of our algorithm which transforms resolution proofs directly into ND proofs at
the assertion level.

3 The Assertion Level as an Intermediate Representation

3.1 Abstraction to the Assertion Level

If we examine a mathematical textbook carefully, it is not difficult to see that
most inference steps are justified in terms of the application of an assertion (i.e.,
a definition, an axiom, or a theorem). For instance, a; € Fy can be inferred from
Uy C Fi and a; € U; by the application of the definition of subset. This atomic
step, however, is often given in the input as a compound ND proof segment like
following one:

V51,5251 CSe & (Voaz € S1=> 2 €85
UrCFi & VouzelU =z €F)

Ui CFi = Vouzx €Uy =z € F1)

Ve.x eEUr =€ R

a1 €U =>a1€FH

a1 € F1

)VE

& E,

U, CF1=>E

VE
’ a € UléE

In [Hua94b], the intuitive notion of the application of an assertion was formal-
ized. Using this formalization, PROVERB usually substantially shortens input



ND proofs by abstracting them to the assertion level. This is achieved by replac-

ing compound proof segments like the above one by atomic derivations that are
justified by assertion level rules like the following one.
UChyam et Def-Subset

a € Fi :

3.2 From Resolution Directly to ND Proof at the Assertion Level

The quality of proofs produced by the Abstraction component depends heavily
on the ND proofs transformed from other proof formalisms. Unfortunately, the
quality of these proofs not always satisfactory. In [Hua96], we showed that a
resolution proof of a certain structure (SSPU-resolution, which stands for unit
resoultion for a simple structured problem) is basically a sequence of applica-
tions of assertions.

The set of initial clauses:
Cl={+(axat=¢)} C2={+(exat =a™1)}
C3= {—(.’E € S), _(y € S), —(3&' *y71 = Z),+(Z € S)}
C4={+(a€ )} Cs={-(a"t €9)}
The resolution steps:
C3,1 & C4,1: add R1: {
R1,1 & C4,1: add R2: {
R2,1& C1,1: add R3: {+
{
{
{

_Ey € S)a _(a*y_l = Z),+(Z € S)}

(

C32& C4,1: add Rd: {—(z € S),—(zxa"t =2),+(z € )}
(

(

axa~l'=2),+(z€9)}

R4,2 & C2,1 : add Rb5:
R3,1 & R5,1 : add R6:
R6,1 & C5,1: add R7:

For instance, the SSPU-resolution above contains two applications of C3,
which is one of the group criteria. First the sequence R1, R2, R3 derives e € S
from the premises a € S and a * a~! = e. Second the sequence R4, R5, R6
derives a~! € S using as premises a € S and exa~! = a~!. The Transformation
component of PROVERB produces the following ND proof at the assertion level,
where line 6 and line 7 correspond to the application steps above. Note that C3
is the CNF of line 1 below.

No Hyps Formula Reason

1. ;1 F Ve,y,zez€SAyeSAzsy =2=2¢€8 (GrpCrit)

2. ;2 F axa'=e (Hyp)

3. ;3 F oexa '=a" (Hyp)

4. 4; F a€eS (Hyp)

5. 214; F e€S (GrpCrit 4 4 2)
6. 2314, F aleS (GrpCrit 5 4 3)

Since resolution proofs are not always a SSPU-resolution, the Transforma-
tion component often has to split an arbitrary input resolution proof into SSPU-
refutable subproofs, and then reorder them into SSPU-resolution proofs [Hua96].
Note that the splitting will always produce a collection of SSPU-resolution
proofs, since resolution proofs consisting of only unit clauses are degenerate
forms of SSPU-resolution.



4 From ND Proof to NL Proof

This section aims to illustrate, to the automated reasoning community, why
state-of-the-art techniques of natural language processing are necessary to pro-
duce coherent texts that resemble those found in typical mathematical textbooks.
Readers are referred to [Hua94a, HF96] for technical details. The Verbalization
module consists of a content planner and a sentence planner. Intuitively speak-
ing, the content planner first decides the order in which proof steps should be
conveyed. It also produces proof communicative acts (PCAs), which highlight
global proof structures. Subsequently, the sentence planner combines and rear-
ranges linguistic resources associated with subsequent PCAs in order to produce
more connected text.

4.1 Content Planning

Mainly two kinds of knowledge are incorporated into the content planner in
the form of presentation operators. The top-down presentation operators split
the task of presenting a particular proof into subtasks of presenting subproofs.
Bottom-up presentation operators, on the other hand, are devised to simulate
the unplanned aspect, where the next intermediate conclusion to be presented
is chosen under the guidance of the local focus mechanism. In this paper, we
will look at only one top-down presentation operator, which embodies a com-
municative norm concerning proofs in terms of case analysis. The corresponding
schema of such a proof tree is shown below,
F G

Y ’

Ly :FVG 7Ly:Q 7?7L3:Q
L AFQ

CASE

where the subproof rooted at 7L, leads to F'V G, while the subproofs rooted at
?Lo and ?L3 are the two cases that prove () by assuming F' and G, respectively.
In PROVERB, there is a presentation operator that essentially suggests that the
system present first the part leading to F'V G and then to proceed with the two
cases. This operator also requires that certain PCAs be used to mediate between
parts of a proof. The concrete operator is omitted because of space restrictions.
The user may define a global style that will choose among competing operators.

4.2 Sentence Planning

The task of sentence planning comprises, among other subtasks, those of combin-
ing and reorganizing of linguistic resources associated with functions and predi-
cates, and various types of derivations [HF96]. The first version of PROVERB,
for example, generates one sentence for every step of a derivation. The below
corresponds to two inference steps:

“We can derive o C o* by the definition of transitive closure. Since (z,y) € o
and o C 0%, (z,y) € o* by the definition of subset.”



From the same input, the present version of PROVERB now produces a more
connected text:

“We can derive o C ¢* by the definition of transitive closure, which gives us
(z,y) € o* by the definition of subset, since (z,y) € ¢.”

Another combination concerns conjunctive formulae. Instead of

“F is a set. F' is a subset of G.”

PROVERB now produces the following sentence:

“The set F' is a subset of G.”

The current version of PROVERB produces the following natural language
proof from the resolution proof given in section 3.2:

Proof:
Letaxa™' =e,exa”! =a~! and a € S. Then e € S by the group criterion.
Similarly, a ! € S. [

5 Current State and Future Work

The components described in this paper are implemented within the proof de-
velopment environment 2-MKRP. The system runs fully automatically. On the
linguistic side, however, we are still working on a more comfortable interface that
will help the user with the edition of linguistic resources.
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