
A Workgroup Model for Smart Pushing and Pulling file:///U:/chime/inprogress/wetice99/paper.html

Page 1 of 8 Monday, April 05, 1999 14:18:33

A Workgroup Model for
Smart Pushing and Pulling

Gail Kaiser, Christopher Vaill and Stephen Dossick

Columbia University
Department of Computer Science

New York, NY 10027
212-939-7000/fax:212-939-7084

marvelus@cs.columbia.edu
http://www.psl.cs.columbia.edu

CUCS-012-99, 4 April 1999

Introduction

Caching has long been used to reduce average access latency, from registers and memory pages
cached by hardware, to the application level such as a web browser retaining retrieved
documents. We focus here on the high-level caching of potentially shared networked documents
and define two terms in relation to this type of caching: Zero latency refers to the condition where
access to a document produces a cache hit on the local machine, that is, there is little or no latency
due to the network (we assume that latency due to local disk and memory access is insignificant in
comparison to network latency). A document with zero latency usually has been placed in the
cache after a previous access, or has been pulled there through some prefetching mechanism.
Negative latency refers to automatic presentation, or push, of a document to a user based on a
prediction that the user will want that document. With an ideal system, a user would be presented
with documents either that she was about to request, or that she would not know to request but
that would be immediately useful to her.

We also distinguish between individual and shared caching. An individual cache, such as built
into a web browser, stores documents for one user for use by that same user. A shared cache,
such as a web proxy cache, stores documents accessed by many users, and can provide a
document to a user with relatively small latency even if that particular user has never accessed the
document before. If that shared cache had pushed the document to appropriate individual caches,
then those users can enjoy zero latency if they happen to later access that document.

The central problem in caching normally lies in the cache replacement algorithm, typically LRU,
where the trivial cache fill algorithm is to add every newly accessed document to the cache.
Simple algorithms like these are routinely used when nothing is known about the semantic content
of the accesses or the tasks to be performed by the user utilizing those accesses, so predictions
about the future must necessarily be rather generic. However, in order to achieve zero latency in a
shared cache system, we must take a broader view - and devise more sophisticated algorithms for
both cache fill (pull) and replacement (save). And for negative latency we also need a compatible
algorithm for cache-based recommendation (push).

Our Workgroup Cache system can (in principle) leverage any knowledge available about the
semantic content and pragmatic usage of documents as a basis for prediction of future accesses.
We focus the potential semantics and pragmatics with respect to a "workgroup", here a set of
users working on the same task or related tasks. Workgroup membership can be determined in a
number of ways: the users can be explicitly specified statically in advance, such as a software
development team working closely together (although they might be physically dispersed); or



A Workgroup Model for Smart Pushing and Pulling file:///U:/chime/inprogress/wetice99/paper.html

Page 2 of 8 Monday, April 05, 1999 14:18:36

determined dynamically by including users whose document accesses match patterns associated in
some manner with the workgroup, such as amateur programmers actively working on the same
subsystem of an open-source project like Linux. Or any other method that groups users according
to the task(s) they are working on or likely to work on in the near future.

Various cache fill and replacement criteria, as well as recommendation criteria (to serve
documents with negative latency), may be defined separately and then associated on the fly with a
given workgroup. Although obviously any run-time realization of this Workgroup Cache model
might be limited in what criteria can be applied, the criteria are intended to be fully configurable
and our proof-of-concept implementation supports dynamic "plug-in" of criteria objects. Criteria
might be based on software process or workflow routing among workgroup members, document
access patterns of workgroup members (e.g., if my supervisor keeps returning to such and such
technical report then I want to read it too), and/or XML metadata associated with or embedded in
accessed documents. Crtieria might be defined via simple filter rules, like Cisco firewalls or Web
search engine queries, or via a very elaborate event/data pattern notation.

Many large software development projects, particularly in the growing open-source software
community [Man98], rely on the coordination of multiple developers distributed over a
world-wide geographic area. Numerous project coordination difficulties can arise due to the
relatively little contact the developers may have with each other, they might never even have met!
A system for recommending documents (such as source files) to these developers based on the
nature of their present tasks and the document content might help ease some of these difficulties.

For example, say a primary developer is making major changes to one file in a module, and a
secondary developer attempts to start adding a small feature to another file in the same module. If
both developers are already or automatically become (due to their apparently shared interests)
members of the same workgroup, and are using our Workgroup Cache system powered by
semantics drawn from software configuration management, the cache system would "know"
about the dependencies between the two files, and could push (recommend) the changing source
file to the secondary developer. Then she could check if the code she was adding will be
incompatible with the likely new version of the module. Or pull criteria might continuously
update the feature self-assignments records, so she could also be informed that another secondary
developer had already started adding a similar feature, preventing duplication of effort.

Related Work

Cache prefetching as a means of performance improvement is a familiar subject in the fields of
computer architecture, operating systems and compilers. McIntosh [McI98] describes methods for
a compiler to insert instructions to prefetch data that will be needed later in the code. Of course, all
the code to be executed in the future can be seen when the prefetches are inserted, so the
prediction can be based on a concrete analysis of what data will be needed. In this way the
prediction is similar to the workflow analysis used (optionally) by Workgroup Cache. Unlike our
Workgroup Cache, however, a compiler inserting prefetching instructions has no notion of
configurable prefetch criteria based on functional groups, i.e., prefetch criteria that change
depending on the type of program being compiled (or in the Workgroup Cache case, the tasks to
be performed).

Prefetching of data for performance enhancement has been applied to streaming multimedia
applications, but this is often limited to special-purpose buffering. For example, the Nemesis
system [KR94] must only predict how much data will be needed from a single source, depending
on current frame rates. There is one data source, and one recipient.



A Workgroup Model for Smart Pushing and Pulling file:///U:/chime/inprogress/wetice99/paper.html

Page 3 of 8 Monday, April 05, 1999 14:18:39

Speculative cache prefetching has also been explored for improving access times in low and
intermittent bandwidth networks. Tuah et al. [TKV98] conduct a quantitative investigation into
access time improvements gained by a prefetching model. They classify multiple prefetches as
either mainline prefetches, which are prefetches of documents that are most likely to follow one
another, or branch prefetches, which are prefetches of a number of alternative documents, any
one of which may be accessed in the future. Branch prefetching can be expected to produce better
access time than mainline prefetching, but at a higher retrieval cost, i.e., greater bandwidth
devoted to retrieving documents that may never be accessed. Tuah et al. concludes that an ideal
prefetcher would adapt its strategy depending on available resources and target performance.

Caubweb [LVM98] prefetches subsets of the WWW document space, called ``weblets'', while the
user is still connected, for the user to browse after network disconnection. Prefetching is
configured and executed explicitly by the user - document parameters and starting document are
set, and Caubweb follows hyperlinks and caches all linked information conforming to the given
parameters. The document parameters include pattern matching on the URL or hyperlink text,
depth from the start document, and file properties such as size and MIME type. This system
basically requires a user to know and specify precisely which documents she will need after
disconnection; no "knowledge" of access patterns or tasks is employed.

The Coda filesystem [KS91] includes extensive provisions for caching files on a client for use
when disconnected from the server; indeed one of the main features of the Coda system is
improved accessibility via caching, or "hoarding" as it is called in Coda. A Coda client caches
files periodically or at user request, using recent file accesses in concert with a hoard profile,
which is a configuration created by the user to specify which files are to be cached, and what the
hoard priorities of those files are. This approach is more advanced than Caubweb's, but still
requires the user to specify what is to be cached, using a simple decaying priority algorithm to
cache files that are accessed but not specified in a hoard profile, and cannot take into account the
file accesses of other same-workgroup users when determining hoard priority.

In our previous work on Laputa [SK93], prefetching was also used to support network
disconnection. We identified three types of criteria for determining what documents to prefetch:
manual, heuristic and process-based. While manual and heuristic methods are seen in Coda's
"hoarding", the process-based method was new. Since Laputa was meant for disconnected
software development, information about software processes would be used to determine what
documents to fetch. Laputa might fetch all documents necessary for the completion of a selected
task, plus documents necessary for tasks expected to soon follow the current task in the process.
Workgroup Cache similarly considers workflow semantics to predict future data need, but extends
beyond Laputa by including the work processes of multiple users, i.e., multiple participants in the
workflow, in its document prefetch criteria.

Recommender systems are familiar to anyone who makes purchases via the World Wide Web.
Retailers such as Amazon.com and CDNow.com use such tools to suggest future purchases to
customers based on their history of previous purchases. Of course, the algorithms used in these
two cases are proprietary, so we can only guess at how they actually work, but Amazon states
that buying patterns of other customers are used in the determination of recommendations. The
criteria for recommendation, then, are based on data from a functional group, but that group is
universal; apparently it contains all Amazon customers. One result of this "universal
group'"strategy is that specialized recommendations can be given only based on per-customer
data; recommendations arising from other customers' buying patterns may not be very useful.

CDnow's system recommends albums bought by other customers with buying patterns similar to
the current user's. This allows for some specialization based on the automatic clustering of users



A Workgroup Model for Smart Pushing and Pulling file:///U:/chime/inprogress/wetice99/paper.html

Page 4 of 8 Monday, April 05, 1999 14:18:42

by music preferences. The criteria for recommendation in this case are attached to an implicit
group of sorts, the group of customers with "similar buying patterns". This group is defined only
vaguely, however, and again in practice does not seem very useful (try it, you'll see).

The Alexa package (http://www.alexa.com) is a kind of recommender system for the Web, in the
form of "related sites". In newer versions (4.06 or later) of Netscape Communicator, Alexa's
recommendations are presented through the "What's Related" control in the location toolbar.
Again, the system is proprietary, but Alexa makes several statements hinting at how the system
works. The Internet Explorer version watches its users' browsing behavior, such as links followed
and time spent at a site, and uses this information, collected from all Alexa users, to infer relations
between sites. These related sites are then recommended. Alexa's recommendations are similar to
those of Amazon in that they are based on data collected from an effectively universal set of users,
although the universal group for Alexa is apparently much larger, including statistics mined from
browsing patterns of all Web users. As far as we know, Alexa has no notion of groups to which
users belong, in order to further specialize recommendations.

Fab [Bal97] also recommends Web sites, but bases its recommendations on a personal profile that
becomes adapted to the individual user over time. The user's recommendations are initially
random, but the user can manually rate the pages recommended to her. These ratings then are
used to alter the user's profile, so that the next group of sites recommended to that user are more
personalized. There is also a provision for "parasitic" users: users that do not create profiles of
their own but use the profiles of others to get recommendations. The group model lies at the
opposite extreme from the ones we have seen so far. Instead of a universal set of users, the set
contains only one user, and recommendations are based on the profile of that one user. This
allows for very specialized recommendations, but is not applicable to recommendations as needed
in a collaborative environment of shared media.

Ant World [KMB98] uses what it calls "digital information pheromones" to produce website
recommendations. The Ant World system appears at the top of the user's browser while the user
performs a search on the Web. After each link is traversed, the user must rate the link's usefulness
to her search. This intrusive interaction enables the server to build up a database of weighted
graphs representing the paths taken by users during their searches. These paths are meant to be
analogous to the pheromone trail left by ants searching for food. If a user happens upon a path
that was previously rated strongly by another user, the next recommended link in this strong path
is marked. Thus, information from other users is used to recommend Web search paths, but again,
the set of users from which this information is obtained is universal -- there is no way to specify
what other users' paths are likely to be more relevant to one's own search.

The ReferralWeb [KSS97] recommender system explores and maps the user's "social network",
and an expert in a requested subject can potentially be found and recommended (referred). The
social network is used to find experts socially "near" to the user, since a closer node in the
network is more likely to share common interests and is therefore more likely to respond usefully
to questions about the requested subject. This project focuses mainly on the construction of the
social network, which is another type of implicitly defined workgroup. In the ReferralWeb study,
co-authorship on a paper was considered an association between users, so the large bibliography
databases already in existence could be used to construct the network. Central to the project's
viability is the idea that information from those in a group with whom a user associates is more
likely than otherwise to be relevant to that user.

Design and Architecture

The Workgroup Cache design is based on a model of small distributed components interacting



A Workgroup Model for Smart Pushing and Pulling file:///U:/chime/inprogress/wetice99/paper.html

Page 5 of 8 Monday, April 05, 1999 14:18:45

with each other over a network. There are three main components:
Client: This includes the user-client program itself, plus a Workgroup Cache interface to
provide the user with controls. The client typically includes facilities for pulling (requesting)
documents directly from the network, and may also support direct pushing
(recommendation), but neither is mandatory. Legacy clients are supported on a necesra: Hy
ad hoc basis through wrapping, applets, etc.
Personal Cache Module (PCM): This component is associated with a single client, and
automatically saves all documents received by the client (until the cache is full, when
prioritization criteria are invoked to determine replacement). PCM handles criteria for
pushing documents to the shared cache and receives documents pushed to it by the shared
cache. It also decides whether to present such pushed documents immediately to the user,
and optionally also supports pull criteria. Each PCM may be connected to any number of
shared cache modules.
Shared Cache Module (SCM): This component is associated with a workgroup and contains
criteria for sending and receiving documents to and from the personal caches of users in that
workgroup. This module provides the major caching functionality of the system, and is the
main center for task-based document pull (e.g., to retrieve documents likely to be needed
"soon" for the in-progress workflow or otherwise predefined task).

The client, PCM and SCM components interact as shown in the figure. The client can push
documents to its PCM, and pull documents from its PCM or from an outside source (for example,
the World Wide Web). The central facet of the client component is its cache control interface to
the PCM. The criteria for the client to execute any of its interactions with PCM are completely
under the user's control. This is meant in part to protect the security and privacy of the user,
regarding accessed documents, as well as to permit avoidance of potentially annoying popup
pushes if that user prefers. The user cache controls allow the user to specify to which workgroups
any documents accessed by that client are relevant, if any, and to accept or decline inclusion in
automatically configured workgroups (e.g., based on invitations or clustering of "similar" access
patterns). The user can also turn off caching entirely or temporarily, if, for example, sensitive
documents that should not be cached publicly are being accessed. The user controls could also
provide configuration options for handling this automatically, by, for instance, turning off caching
automatically for any document accessed via SSL. The client controls can also be used for manual
recommendation of documents: if a user has accessed a document that she thinks might be
interesting to others in her workgroup, she can have it pushed to her PCM, which could then
forward it to the SCM, where everyone in the workgroup could then access it.

Actions taken by the SCM are not based on direct per-user controls, but rather on configurable
criteria, represented essentially as rules consisting of condition-action pairs. The conditions must



A Workgroup Model for Smart Pushing and Pulling file:///U:/chime/inprogress/wetice99/paper.html

Page 6 of 8 Monday, April 05, 1999 14:18:47

be highly flexible, to allow as much freedom as possible in customizing the behavior of the
system to fit the behavior of the workgroup. Possible conditions (that might lead to smart push,
pull or save actions) could include frequent accesses to a document by several members of the
workgroup, as determined by analyzing access history logs, explicit recommendations from more
than one user or from one high-priority user, or any other detectable condition that may indicate a
document's importance (or non-importance - e.g., a condition may, if satisfied, cause a document
to, say, be discarded from the cache). If a workflow system is attached to an SCM component, a
condition-action pair could specify that if the first document in a workflow is accessed by a user,
the next document or documents in the flow should be pushed to that user's PCM - or to another
user's PCM if the workflow specifies routing to another user in the workgroup. In this way
workflow information, which is specific to the workgroup and is based on the semantic content of
the shared documents, can be used to control caching. (The workflow system must supply an API
suitable for implementing a conduit from the workflow engine to the SCM.)

The PCM component's actions include pushing and pulling documents to and from the client and
to and from any SCM with whose workgroup it is associated. It can also save documents in its
own cache, if it has one. (If the PCM does not have its own cache, it exists solely for its pushing
and pulling abilities, in contrast to the SCM, which must always have its own cache to be shared
among clients in the workgroup.) The purpose of the PCM is to allow for some criteria to be
configured on a per-user basis. A user who is working especially closely with another user in the
workgroup may wish to be informed of all document accessed by that second user. That user's
PCM would then be configured to pull from the SCM and push to the client any document
accessed by the other user. (In principle, any pair of PCM's with their own caches could interact
directly, forming their own mini-workgroup and by-passing the SCM's criteria and its cache, but
we do not intend to support this initially due to the relatively higher complexity.)

The normal flow of document access generally works as follows:
#. The user requests a document via the client program.
#. The client component tries to pull the document from its PCM.
#. The PCM looks for the document in its cache. If it exists there, that copy is returned to the

client, and a record of the access is passed to the SCM. If not, the PCM tries to pull the
document from the SCM. In any case, all the criteria rules are checked, and actions are
performed for any conditions that are satisfied by the new access.

#. The SCM looks for the document in its cache. If it exists there, that copy is returned, and the
access is recorded in the history. If not, either the client or the SCM (determined by the
client's controls) retrieves the document from its outside source; when SCM performs the
outside pull, its criteria rules are then checked and any applicable actions are performed.

Because each client is associated with exactly one PCM and vice versa, it would be possible to
collapse the two components into one. The PCM is separated from the client component in the
Workgroup Cache design, however, in order to create as little disturbance as possible to the
normal operation of the client. It can run on a separate machine (presumably on the same fast local
network as the client) while the client needs only a small amount of user interface and
PCM-interface code, ideally as unobtrusive as a Java applet.

Realization

Our proof-of-concept implementation of Workgroup Cache is a collection of Java applications,
based largely around a middleware framework called the Groupspace Controller ([KD98]
describes a predecessor but most aspects still apply). The Groupspace Controller provides a
flexible and robust environment that ties together various parts of a Workgroup Cache
component, and includes built-in support for event publish/subscribe, including "request" as well



A Workgroup Model for Smart Pushing and Pulling file:///U:/chime/inprogress/wetice99/paper.html

Page 7 of 8 Monday, April 05, 1999 14:18:50

as conventional "notfication" style events, and for communication between Groupspace
Controllers on different machines.

The client we have chosen to focus on initially is the University of California at Irvine's Chimera
open hypermedia system [KTW94]. Chimera includes a linkbase that represents external (to the
media) N-ary hyperlinks among diverse types of documents, such as GIF images and
FrameMaker files, whose "viewers" interface to Chimera through its API. We plan to employ
Workgroup Cache ourselves for our own software development, where Chimera will store links
between source code files and other types of media such as design documents and email archives,
as well as among source code files (e.g., identifier definitions and uses). Thus Chimera, or
actually its viewers, makes for ideal end-user clients for applying Workgroup Cache to distributed
software development projects (although our own development is admittedly not distributed any
further than the various participants' homes in addition to the Columbia campus).

The implementation of the the client component required small alterations to the Chimera code to
interface with a Groupspace Controller (GC), and hence with the PCM. When the user follows a
link in Chimera, the code inserted into Chimera's native event handling mechanism intercepts that
Chimera event and translates it into a GC event, and fires the event in the controller. The PCM
interface picks up that event, and requests the document from the PCM. The added Chimera
interface code also provides the user with the cache controls.

The PCM component is implemented as another GC with a personal cache controller service and
a cache interface service. The personal cache controller handles all the local cache criteria, and
does the sending and receiving of access requests. The cache interface is a simple implementation
of ICP [WC97], so any external web proxy cache that speaks ICP (we're using Squid, see
http://squid.nlanr.net) can be used to handle the actual storing and retrieval of files.

SCM also utilizes GC to enable its core service, which we call a Workgroup object, to interact
with the cache and (optional) workflow system interface(s). The criteria is managed by the
Workgroup object. Multiple Workgroup objects (effectively multiple SCMs for distinct
workgroups) can be connected to a single GC, if desired, to share the same cache and workflow
system interfaces. The cache interface is an ICP interface as above. The workflow interface, still
in the design stages, is planned to work with IBM's MQSeries Workflow product. Alternately, we
may implement a SWAP [Swe98] interface, if that standard stabilizes and we are able to obtain a
reasonable workflow product that uses it.

We anticipate that our Workgroup Cache model and architecture, if not necessarily our early
prototype, will prove useful for intelligently sharing information among distributed software
developers. However, this work is in progress, as befitting a workshop submission, and empirical
data on practical usage of the system is still to come.

Acknowledgements

We thank John Salasin, Scott Gross, Janak Parekh, Dan Port, Adam Stone and Jack Yang for
useful technical discussions and feedback. The Programming Systems Lab is sponsored in part by
the Defense Advanced Research Projects Agency, and Rome Laboratory, Air Force Materiel
Command, USAF, under agreement number F30602-97-2-0022, and in part by an IBM
University Partnership Program Award. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright annotation thereon. The views
and conclusions contained in this document are those of the authors and should not be interpreted
as representing the official policies or endorsements, either expressed or implied, of the Defense



A Workgroup Model for Smart Pushing and Pulling file:///U:/chime/inprogress/wetice99/paper.html

Page 8 of 8 Monday, April 05, 1999 14:18:53

Advanced Research Projects Agency, the Air Force, the U.S. Government or IBM.

References

[ATW94] Anderson, Kenneth M., Taylor, Richard N. and Whitehead, E. James Jr. Chimera:
Hypertext for Heterogeneous Software Environments. European Conference on Hypermedia
Technology, September 1994, pp. 94-107.

[Bal97] Balabanovic, Marko. An Adaptive Web Page Recommendation Service. First
International Conference on Autonomous Agents, February 1997, pp. 378-385.

[WC97] Wessels, D. and Claffy, K. Internet Cache Protocol (ICP), version 2. RFC 2186,
September 1997.

[KD98] Kaiser, Gail E. and Dossick, Stephen E. Workgroup Middleware for Distributed
Projects. IEEE Seventh International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, June 1998, pp. 63-68.

[KMB98] Kantor, P.B., Melamed, B. and Boros, E. A Novel Approach to Information Finding
in Networked Environments. Rutgers University, 1998.

[KR98] Katseff, Howard P. and Robinson, Bethany S. Predictive Prefetch in the Nemesis
Multimedia Information Service. Second ACM International Conference on Multimedia, 1994.

[KS91] Kistler, James J. and Satyanarayan, M. Disconnected Operation in the Coda File
System. Symposium on Operating Systems Principles, October 1991, pp. 213-225.

[KSS97] Kautz, H., Selman, B. and Shah, M. The Hidden Web. AI Magazine, 8(2):27-36,
Summer 1997.

[LVM97] Lo Verso, John R. and Mazer, Murray S. Caubweb: Detaching the Web with Tcl.
Fifth Annual USENIX Tcl/Tk Workshop, July 1997.

[Man99] Mann, Charles C. Programs to the People. Technology Review, January/February
1999.

[McI98] McIntosh, Nathaniel. Compiler Support for Software Prefetching. Rice University,
PhD Thesis, TR98-303, May 1998.

[SK93] Skopp, Peter D. and Kaiser, Gail E. Disconnected Operation in a Multi-User Software
Development Environment. IEEE Workshop on Advances in Parallel and Distributed Systems,
October 1993, pp. 146-151.

[Swe98] Swenson, K. Simple Workflow Access Protocol (SWAP). Internet Draft, August 1998.

[TKV98] Tuah, N. J., Kumar, M. and Venkatesh, S. Investigation of a Prefetch Model for
Low Bandwidth Networks. First ACM International Workshop on Wireless Mobile Multimedia,
October 1998, pp. 38-47.


