
An Adaptable Quality of Service for Multimedia on the Internet

Gerard Parr, Kevin Curran
Telecommunications & Distributed Systems Research Group

Northern Ireland Knowledge Engineering Laboratory
University of Ulster, Coleraine Campus, Northern Ireland, UK

Email:  kj.curran@ulst.ac.uk

There are two general approaches to providing for
isochronous streams in the current Internet. The first
approach is the resource reservation approach through
protocols such as RSVP, or ATM technology. This
provides bandwidth guarantees, however, it also requires
significant upgrading of resources in the underlying
network.  The other common approach is adaptive rate
control where the end-system has control of its rate
according to feedback from the client population. This
approach cannot guarantee timely delivery and raises
some scaling questions, however a properly implemented
scheme does improve quality and it requires no changes to
the underlying IP network. Hence, there exists a
dichotomy of requirements; 1. To cater for reservation
protocols or ‘hooks’ for future reservation components,
and 2. To provide an architecture which provides an
application controlled QoS  scheme, which scales to the
size of the current Internet in a best-effort architecture.

We have built a pure Java architecture named Chameleon
which  caters for  the requirements above. We cater for the
resource reservation camp by providing an adaptive
framework with hooks for interchanging QoS modules at
run-time. We provide this service through the use of the
Reflection API of Java. With reflection, the QoS modules
may be developed from the outset as meta objects thus
allowing the systems functional requirements to be
separated from the non-functional (QoS) requirements
thus allowing future QoS modules to be incorporated in a
safer and more cost efficient manner.

We cater for the rate adaptive group by distinguishing
between the various media components (e.g. video, audio)
providing separately composed protocol stacks for each of
the media which deliver the media to separate quality
(high, medium and low) multicast group addresses
allowing heterogeneous clients to connect according to
their resources. Multicast groups overcome the scaling
problem and clients subscribe to each group in
accordance with resource availabilit y and move between
groups according to bandwidth availabilit y.

Our goal is to provide an architecture that is appropriate
for the environment of the Internet (long latencies, high
message loss rates, relatively frequent network
partitioning) with scalabilit y to both large numbers of
nodes and distances.

1 Introduction

The use of audio-visual media on the Internet continues to
grow. Products such as Real Audio 1 and IPCast2 Video
viewer are becoming increasingly common.   However,
multimedia due to its timely nature requires guarantees
different in nature with regards to delivery of data from
TCP traff ic for ordinary HTTP requests.

In this paper we present a multimedia middleware
enabling architecture, called Chameleon (so named
because it changes in harmony with the environment), that
delivers audio and video on a best-effort network. It
supports the heterogeneous client population of the
Internet by providing various qualiti es of media and
sending these media to separate multicast groups so that
clients can ‘pick and choose’ media groups in accordance
with available resources.

Resource reservation protocols, pricing schemes etc. are
just some of the capabiliti es that are required by clients. To
cater for this, we provide future clients with the necessary
‘plug-points’ f or them to ‘plug’ in their components at run-
time. Reflection allows us to separate the functional
requirements from the non-functional requirements such as
resource reservation protocol modules through use of
metaobject protocols.

Chameleon is guided by a desire to create an architecture
that can evolve and adapt to an ever-changing environment
similar to living things in their struggle for survival. We
wish to impart this quali ty into our middleware, as we
believe good software architectures are all about being
adaptable and resili ent to change.

2 Approaches to QoS on the Internet

QoS control in distributed systems is a current research
area due to the emerging new types of multimedia
streaming applications requiring real time delivery of
information and an Internet integrated services architecture

                                                          
1 www.realaudio.com
2 www.ipcast.com



enabling the sharing of the network between data streams
with different QoS requirements (real-time or best effort).
QoS management allows the real time delivery of
information as it encompasses both the control and
delivery of QoS in an integrated services architecture.

Networking technologies such as ATM have various
categories of guarantees ranging from best-effort (attempts
to reach destination – not guaranteed) to guaranteed
(system has failed if it fails to deliver all data). However,
the Internet is composed of a heterogeneity of networking
architectures offering varying services, therefore, we find
that the guarantee of multimedia applications such as
video conferencing is an impractical on a network such as
the Internet at present.

Another proposal for applying QoS control on the Internet
is the emerging QoS control protocol being defined by the
Internet Engineering Task Force (IETF): the Resource
reSerVation Protocol (RSVP) [1]. RSVP is being defined
as part of a new effort for enabling integrated service on
the Internet: the ISA (Integrated Service Architecture).
RSVP is based on flow control and receiver initiated
reservation by setting priorities in modified routers along
the data path on the Internet. It uses a set of messages to
establish, maintain and release reservations.  It is still in an
experimental phase at the time of this project.

In general, these mechanisms have focussed on regulating
competition for network resources among traffic sources at
the network level. They involve various aspects in
resource reservation and allocation, as well as flow
control, admission control and negotiation protocols used
by cell , packet and transport layers.

2.1 Application Controlled QoS

The research direction that we have followed is in the area
of introducing adaptation behaviour into the application at
the end-system, (and throughout the middleware). This is
general referred to as Application Controlled QoS, beyond
the control mechanisms of the transport layer. This
perspective is different from the resource reservation
approach in that it mainly deals with protocols and
techniques located and operated in the middleware
architecture and end-systems, rather than intermediate
network switches. The advantage of this approach over the
previous one is that it does not need to radically modify
the existing protocols already implemented and running in
current networks, so that the QoS delivery could be
implemented with least modifications.

2.2 A Centrally Allocated Mechanism

With application controlled QoS, the adaptation behaviour
that is currently designed for the applications is usuall y in
built i nto the application such as the video player or an
audio player  and the multimedia playout control algorithm
is implemented inside each application, so that the
application can maintain a certain expected playout level
for the client when adapting to fluctuations in the delivery
of media.

There is an obvious disadvantage to this approach in that
various systems are working individually on their various
adaptive algorithms, yet, they are incapable of
collaborating to provide an overall i ntegrated service to the
user. Each application may respond differently to network
bottlenecks. Some may consume a greater share of
resources at a critical stage in another applications
computation, while other applications may choose to
ignore system perturbations.

Hence, a design consideration of our architecture is to
provide a central resource allocation/synchronisation unit
which controls the adaptation behaviour of each
application and balance the resources required during the
adaptation.

3 CHAMELEON

Chameleon is a programming abstraction, which supports
dissemination oriented communication. The abstraction is
analogous to that of the various broadcast media in
everyday use such as newspaper, radio and TV
corresponding to text, audio and video components
contained in multimedia applications. People, like the
various qualiti es of both and may listen to the radio while
reading a newspaper etc. Likewise, Chameleon fragments
the various media elements of a multimedia application
and ‘broadcasts’ them over separate channels to be
subscribed to at the receiver’s own choice. We do not
force the full range of media on any subscriber, a source
simply transmits onto a specific channel, and receivers,
which have subscribed to that channel, receive media
streams (e.g. audio, text and video) without explicit
interactions with the source.

Chameleon builds upon the Java middleware software
iBus [2], which allows the stacks to be created
dynamically and provides a group communications
paradigm which enables us to deal with clients according
to developer specified ‘ relatedness’ such as IP domains for
bandwidth allocation decisions in a principled manner.

The Chameleon communication paradigm is a major



departure from more traditional approaches, in that a
source and a set of receivers are very loosely coupled in
their control and data exchange interactions. In general,
the source’s main concern is to push various media
streams onto a channel, without emphasis on where they
end up (i.e. who the actual receivers are), and how they are
used (i.e. what specific receivers will extract from any or
all of the streams). A receiver’s main concern is what to
extract from a channel, which is viewed as offering
multiple streams, some or all of which are of interest.  We
believe this communication paradigm is appropriate for
multimedia distribution services required by a large class
of multimedia multipoint applications. A prime example is
‘video distribution’ [3] as in cable television systems
where a single source generates video (and associated
audio) distributed to a large set of receivers who generally
have little or no interaction with the source.

Chameleon differs from the current distributed multimedia
frameworks  in that we separate the media into text, audio
and video and distribute these to multicast groups. We also
create multiple groups within each category e.g. high,
medium and low audio quali ty thereby allowing receivers
to subscribe to groups such as high audio with medium
video and text or simply low audio. This is where our
work is unique. No work that we are aware of has being
conducted in this area where the various components of
multimedia are separated and transported across the
network according to their characteristics.  We address the
network congestion and heterogeneity problem by taking
into account the differing nature and requirements of
multimedia elements such as text, audio and video thereby
creating tailored protocol stacks which distribute the
information to different multicast groups allowing the
receivers to decide which multicast group(s) to subscribe
to according to processing power and network bandwidth
availabili ty.

The primary goal of Chameleon is to provide an
infrastructure for building multimedia computing
platforms that support interactive multimedia applications
dealing with synchronised time-based media in a
heterogeneous distributed environment. Systems exist
which support interactive applications, which deal with
synchronised time-based media. Most existing systems
however, have not been written with reuse in mind, thus,
the major focus of Chameleon in this paper is the abili ty to
support insertion/removal of modules concerned with the
applications non-functional QoS requirements.

3.1 Dynamically Composable Stacks

Chameleon is motivated by the need for a responsive
robust middleware and the desire to provide optimal
quali ty of service for multimedia to a heterogeneous client
population on a large-scale network such as the Internet.

Chameleon achieves this by recognising that multimedia is
composed of audio/video and text components. These
components can have different qualities and can require
different qualities of service. Text, for example, may need
to be received by each client without loss, therefore the
text component is sent through a reliable (non-loss)
channel whereas video may be sent through a best-effort
(lossy) streaming channel. Multicast groups provide for a
large-scale client population without the single server
bottleneck.

A protocol stack consists of a linear list of protocol objects
and represents a quali ty of service such as reliable
delivery, virtual synchrony, or encrypted communication.
The framework provides the services necessary for
supporting new communication protocols and qualiti es of
service. Chameleon consists of a set of Java classes for
representing Uniform Resource Locators, protocol stacks,
the framework API and posting objects. Dynamically
composable protocol stacks overcome the limitations
imposed by generic protocol stacks allowing optimisation
for particular traffic.

IPMCAST

IP

FRAG

CRYPT

NAK

IPMCASTIPMCAST

Network

A udio

V ideo

V ideo

Figure 1: Dynamically composable stacks

The Chameleon paradigm is configured as follows. Media
files (audio/video/text and synchronisation parameters) are
stored on a server as high, medium or low QoS stacks.
These are transported through separately optimall y
configured stacks via multiple multicast groups to
heterogeneous receivers. A receiver may upgrade or
downgrade within each stack, according to fluctuating
conditions in the network. A component called a Session
Director sits at a well know address and has full
knowledge of the various QoS stacks each server util ises
to ship the media to various multicast groups. Clients
connect to the Session Director to find the multicast group
locations and the quali ty of service parameters for the
particular media stacks. Chameleon monitors each
receivers quali ty and the system continually aims for the
optimal throughput in accordance with client resource
capabiliti es. There is an obvious trade-off decision to be



made between opting for reconfiguration and the benefits
to be gained from each new QoS. We believe that
framework must be adaptable so as to evolve with the
organisation.

3.2 Reflection

Reflection allows us to separate the functional
requirements of an application (what it does) from the non-
functional ones (how it does it). It is based on the Meta-
object Protocol (MOP) defined in 1987 by Maes in [4].
The Java Reflection API puts particular emphasis on the
use of Reflection in distributed systems by taking
advantage of the network-centric capabiliti es of Java.
Reflection is the base of our model and is evaluated in this
project.

Reflection in Java 1.1 refers to the abili ty of Java classes
to reflect upon themselves, or to "look inside themselves".
The java.lang.Class class has been greatly enhanced in
Java 1.1. It now includes methods that return the fields,
methods, and constructors defined by a class. These items
are returned as objects of type Field, Method, and
Constructor, respectively. These new classes are part of
the new java.lang.reflect package, and they each provide
methods to obtain complete information about the field,
method, or constructor they represent, however, it still falls
short of providing the abili ty to incorporate run-time
behavioural reflection necessary for inserting modules at
run-time.

Dalang [5] is an extension for Java that introduces
behavioural runtime reflection. It uses class wrappers to
implement a simple metaobject protocol where a
metaobject (in the form of a wrapper) controls the
behaviour of a base level object. The metaobject can
redefine the handling of method calls in order to add
desirable properties such as fault tolerance or security.
Standard introspection can be achieved by using the
standard java.lang.reflect package. These wrappers can be
added dynamically or statically. We used this class library
to enable us to insert modules for increased performance at
run-time with no change necessary to the Java Virtual
Machine.

For example, we may use the Method object which has
methods to query the name, the parameter types, and the
return type of the method it represents to  allow us to
inspect the members of each protocol stack class to check
if it supports a relevant protocol profile that is optimal for
the current network conditions.  Our reflective
implementation also allows us to form the meta-circular
tower of components. Hence, we may have replication
objects calli ng QoS objects calli ng logging objects. It is a
goal of our system to be monitoring routes from to
different multicast groups for each of the media and

choose the route most efficient over a period of time. We
hope to apply reflection in this area. The insertion of a
RSVP module or pricing module or security module (such
as described in [6]) could be achieved in this manner.

Access to
reflective objects

Communication
Class

Application
Reflection Class  
Changemeta()

Network

MetaObject  
MetaBefore()
MetaAfter()

Access to original
objectsInherit

Meta
calls

 e.g. RSVP

Figure 2: Redirecting a call to a metaobject

The insertion of modules is transparent to the application.
Figure 2 ill ustrates this in the fact that when the
application sends data to the communication class, it is
reflected to the metaobject protocol which calls the RSVP
module, thus performing resource reservation management
functions and then onto the network as if no redirection
had occurred.

Text

IPMCAST

IP

FRAG

CRYPT

NAK

IPMCASTIPMCAST

RSVP

Network

Audio

V ideo
Priori tised

packets Reflective
module

Audio

V ideo

Figure 3: Run-time insertion of Reservation module

Prioritisation of packets among other functions can be
performed by the insertion of ‘ filter’ modules in the
pipeline at run-time as illustrated in Figure 3. It is through
the reflection API that Chameleon achieves the dynamic



reconfigurable faciliti es to cater for varying network
conditions.

3.3 Central Resource Synchronisation Unit

As mentioned earlier, it is desirable to provide a central
resource allocation unit which controls the adaptation of
each application so that the sum of the parts work as a
cohesive whole in providing QoS to the user.

As Chameleon, is concerned with the transport of media
elements to the end-user  which may differ over time in
that a user may choose to retrieve audio only, or sound and
vision or sound, audio and sub-titles, therefore, some
synchronisation facili ty which adapts to the users choices
must be in place.

 The upper  layer that we currently implement in the
layered framework is the Java Media Framework API.
This is the media API developed by the creators of Java to
handle multimedia.

To enable us to create an architecture which would allow
the user to drop media and add media during playout
required particular rules to be implemented to enable this.
One rule we decided upon was to make the audio, the
master player so that video and sub-titles were
synchronised to the audio playout. This we felt was the
most natural means of keeping the media in synchrony.

4 Insertion of Authentication and

Tariff Policies Example

Chameleon is primarily concerned with shipping various
media quali ty text, audio and video files to heterogeneous
clients through various multicast groups. The standard
system allows a client to connect to the Session Director,
specify the various media qualities it requires and begin
retrieval. There is no authentication and no tariffs. This is
ill ustrated in Figure 4.

However, consider the case where a media server might
wish to ensure that only subscribed members may retrieve
media files and that these media files are subject to various
pricing tariffs.

Media Multicast Group

Client

2. Send Media

1. Retrieve Media

Figure 4: Standard Media Retrieval Policy

The technique employed by Chameleon is as follows. The
user establishes a connection to a security service sitting at
a well-known address port broadcast by the Session
Director. The client specifies the address of the media
server it wishes to connect to. The authentication service
then consults pricing policies and access policies. It then
grants privileges according to rights and sets charges. The
user may then proceed. The protocol described in Figure 5
follows these steps.

Media Server

Pricing
Policy

Media Server
Security

Security
Server

Client

1
2

3

4

78
5

6

Figure 5: Upgrade of service - security with pricing

1. The remote client connects to the security server.
2. The security server authenticates the remote user (by

verifying user name, password and destination domain
and checks pricing policy).

3. The security server connects to the desired media
server.

4. The media server confirms acceptance of the call .
5. The security server logs acceptance.
6. The media server authenticates the remote user and

accepts or rejects the tunnel.
7. The media server exchanges information with the

client for the duration of the session.



8. The client exchanges data with the server using the
session id for the duration of the session.

9. Upon termination by one party or other, the cost of the
session is forwarded to the pricing policy server and
logged.

The architecture also allows a pricing only (no security)
policy to be configured or a security only  policy such as
described in [9]. All this is achievable at run-time through
the reflective hooks provided by Chameleon’s reflective
API.

5 Conclusion

There exists no existing guaranteed means of transporting
multimedia end-to-end in the Internet at present. There are
a host of technologies offering to fill this gap including the
next IP version (IPV6) to RSVP. These services require
upgrade of routers throughout the global network and thus
seem unlikely to come to fruition in the near future.
Chameleon has sought to provide a principled means of
allowing a system to be adapted throughout its lifetime
with the minimum of effort.

Reflective programming provides a principled means of
planning for and coping with change in a computing
system. The Internet at present with its multiple standards
and the interconnection of components such as decoders,
middleware, synchronisation scripts, databases, QoS
modules requires more than a plug, try and play mentality
[8].

Chameleon is basically a pure Java layered-framework
incorporating a multimedia synchronisation framework
(JMF) with a multicast group communication framework
(iBus) with a reflective architecture (Dalang) to cater for
change in transporting multimedia on a best-effort
network. We used the scenario of a security and pricing
policy being incorporated into Chameleon at run-time. The
system may never have seen either that particular security
or pricing component before. There is no overhead for
ordinary method calls in our system except when the call
is routed to a meta-object or a tower of meta-objects. We
expect to apply reflective methods in many areas of our
middleware in coping with dynamic adaptation.

References

1.  Zhange, L., Deering, S., Estrin, D., Shenker, S. RSVP:
a new resource reservation protocol. IEEE Network, Vol.
7, No. 5, pp. 8-18, September 19

2. Maffeis, Silvano. The iBus software bus.
http://www.softwired.ch. Online Documentation, 1999

3. Sincoskie, W.D. System architecture for a large-scale
video-on-demand service. Computer Networks and ISDN
Systems. North Holland, Vol. 22, No. 2, 1991

4. Maes, P. Concepts and experiments in computational
reflection. OOPSLA’97, 1997

5.  Welch, Ian and Stroud, R. Using metaobject protocols
to adapt third party components. Middleware ’98,
Lancaster, 1998

6. Kumar, V.P. Beyond Best Effort: Router architectures
for differentiated services of tomorrows Internet. IEEE
Communications magazine. Vol. 36, No 5, May 1998

7. Java Media Framework Specification. Sun
Microsystems, 1997. . www.javasoft.com

8. Clark, D.D, Tennenhouse, D.L. Architectural
considerations for a new generation of protocols. Proc.
ACM SIGCOMM’90, pp. 200-208, September 1990

9. Parr, Gerard and Curran, Kevin. Optimal multimedia
transport on the Internet. Journal of Network and
Computer Applications, Vol. 21, pp. 149-61, 1998.


