MILOS: A Model of Interleaved Planning,
Scheduling, and Enactment

Sigrid Goldmann, Jigen Minch, Harald Holz

Universitat Kaiserslautern, Paath 3049, 67653 Kaiserslautern, Gergnan
{sigig, muench, holz}@informatik.uni-kl.de

1 Intr oduction

Software development processes are highly creative, and subject to frequent changes - making it hard to plan and
schedule these processes in advance. The recent trend towards distributed software development and virtual soft-
ware corporations adds another aspect to this problem: Distributed projects cannot be planned centrally, especially
if the involved parties are individual companies with their own areas of responsibility. On the other hand, certain
aspects of the overall plan and schedule (e.g. will the project milestones be met? when will Company X finish a
product needed as an input for Company Y'’s tasks?) need to be available to all concerned parties.

In this paper, we present an approach to support distributed planning and scheduling, as well as the subsequent
(also distributed) plan execution, in one system. The system will support the distributed planners and schedulers
by providing task agendas for them, stating who needs to plan which tasks, and sending change notifications and
warnings, if a planning or scheduling decision needs to be updated. The plan built using these mechanisms is then
enacted by a workflow engine in the same system. This approach enables us to support interleaved planning and
plan enactment, allowing the user to change the plan and schedule while the project is already under way. Devia-
tions of the actual project enactment from the plan and schedule can automatically be detected, and necessary no-
tifications will be sent to the concerned planner(s). This again facilitates the task of keeping the plan up to date,
avoiding the complete invalidation of the plan as is often the case in conventional projects soon after enactment
has started.

Section 2 introduces thBlILOS model of interleaved planning, scheduling, and enactment support, and sum-
marizes the ontology of terms used in this model. Section 3 describes an algorithm of how planning, scheduling,
and plan enactment can be interleaved, and gives an example scenario to clarify the problem and our proposed
solution. Section 4 gives a short overview over the techniques MILOS uses to support distributed project enact-
ment, and shows how these same techniques can be used to facilitate planning and scheduling, as well as inter-
leaved planning and enactment. Section 5 gives an overview over the current state of implementation, section 6
describes related research, and section 7 summarizes the paper and names the areas in which further research is
necessary in order to make the approach feasible for virtual corporations.

2 The MILOS Ontology

In this section, we briefly describe our use of the terms modeling, planning, scheduling and enactment in this pa-
per, and introduce our concept of meta tasks.

2.1 The Process Model and Ryject Plan

A MILOS process model contains general information about how software processes are done. For each kind of
software development process (requirements analysis, system design, etc.) that can occur in a certain kind of de-
velopment project (e.g. accounting software development, regulation software development), a general descrip-
tion is given, and its input and outgartoducts, pre- and posbnditions, and generadttributes (e.g. estimated

process duration, effort spent on the process) are defined.

For each process, differemethods can be specified, describing alternative refinements:

* An atomic method defines a &y to sole the process directlifor example, code inspection can be done in an



ad-hoc vay, or using a formal reading technique.

« Complex methods refine a process into a number of sub-processes, e.g. a compaeéoprment process is

composed of a component design, a design inspection and a component implementation process.

In complex methods, the data flobetween the subprocesses can be specified by mapping the subprocesses’

inputs to outputs of other subprocesses in the same method. The subprocesses introduced by a comple

method can further be refined by theimocomple methods, resulting in an and/or tree with a process as
root-node.
For each method, a set of skill requirements is defined, which describe the qualifications necessary to use that
method to work on a process. For example, if the method “use Java” is selected for a component implementation
process, the programmer assigned to that process should have general knowledge about object-oriented program-
ming, as well as skills in the programming language Java.

Resource models describe types of project resources or agents (i.e. people or tools), with the resources’ skills
and roles. These models can be used during process modeling to describe the type of resource that is needed to
work on a process or apply a method.

The general process information described above is stored in a company-specific “experience base”, to be re-
used in specific projects. Other information, like quality mddeat have proved accurate in past projects, are
also stored in this experience base, and can be used to plan a project.

A MILOS project plan or schedul€? is built by

» selecting appropriate processes from ttieeence base, and inserting them into the plan,

* mapping certain processes’ inputs and outputs onto each other (i.e. defining a prafiuct flo

« selecting applicable gelopment methods according to the characteristics of gamiaations (e.g.amiliar-
ity with specific methods) and the goals of the project (eidgét limitations),

« instantiating @riables in pre- and postconditions (e.g. using a quality model about theerefatits of differ-
ent deelopment actiities® to calculate the absolutefaft as desiredalues for the project agtties, which
should not bexxeeded. Theseales are assigned to the corresponding processist"eattributes),

« allocating resources to the processes according to the resource properties specified in tive mrsgess

models, and
« time scheduling with these resource allocations in mind.

The first four of the above activities (selection of processes and methods, defining the data flow and control flow)

we summarize under the teptanning. The latter two activities (time and resource assignment) wecbatiul-

ing.

The resulting plan contains instantiated processes, their subprocesses, and the data flow and control flow be-
tween them. It also contains scheduling information like the processes’ assigned agents and scheduled start and end
times. Certairdependencies (e.g. between a process and its subprocesses, between a process and its predecessors)
can be extracted from the plan, and be used to track the necessity of change notifications during plan enactment.
A more detailed description can be found in [5].

2.2 The Meta Plan

While a project plan contains thotesks that lead to the creation or modification of (software) products, i.e. the
processes, theeta plan contains tasks who's goal is the construction or modification of the project plan. Those
tasks that modify the plan we calkta tasks, while we refer to processes alsadagel opment tasks.

The two meta tasks that we will deal with in this papepkaening tasks andscheduling tasks. Planning tasks
occur on user agendas when a process needs to be refined, its data flow needs to be specified (i.e. its input and
output parameters need to be matched to the inputs and outputs of other processes in the plan), or its control flow
needs to be refined (i.e. values need to be assigned to open variables in a process’ precondition or postcondition).
A scheduling task is generated when resources are to be assigned to a process, and its scheduled start and end times
have to be defined.

Similar to the project plan, the meta plan can be modeled as a hierarchy of tasks, in correspondence to the hi-
erarchy of processes in the plan. Like the plan, the meta plan can be used to automatically identify dependencies
between the different tasks in the meta plan (e.g., when a task is removed from the plan, its subtasks do not need
to be done any more). Additionally, there are dependencies between the meta plan and the plan: Whenever a new
process is inserted in the project plan, it needs to be planned (i.e. further planning activities are required; see above)
and scheduled, therefore necessitating the insertion of certain planning and scheduling tasks into the meta plan. On

1. Quality models map measurable influence factors to quality factors of interest.
2. In this paperwe use the termgan andschedule synorymously
3. For example, the quality model might state that 40% of the totaiteshould go into requirements engineering, 20% into system design, etc.



the other hand, planning a process can result in the insertion of (sub-)processes in the plan. By updating the plan
and meta plan according to the rules we identified, and sending notifications whenever replanning becomes neces-
sary, the MILOS system will be able to facilitate keeping the plan and schedule up to date, and checking the project
progress against defined milestones and deadlines.

3 An Algorithm f or Interleaved Planning, Scheduling, and Enactment

In this section we outline an algorithm for the simultaneous enactment of plan and meta plan, i. e. for interleaved

planning, scheduling, and plan enactment. A short example scenario is given which demonstrates the interaction
between plan and meta plan. The following algorithm abstracts from details and sketches the principle procedures.
Especially the collaboration among planners at different development sites is not included in the description, al-

though necessary if project plan changes concern external product and control flow.

1. Perform meta tasks before project start
Goal create initial project plan

Role planner

We assume that at the start of a project a initial project plan is created which is tailored to the

specific needs and characteristics of the development organization. Existing experience (e. g. process
fragments, quality models) should be used and adapted if applicable and valid in the context of the project.
The initial project plan may be instrumented with measures. Furthermore, in the case of distributed
planning, the interfaces among different development sites (especially concerning product and control flow)
have to be defined.

The initial plan is usually not described in all details and may be refined, modified or extended during
project enactment.

2. Perform meta tasks during plan enactment
Goat plan and schedule the next level of the project plan
Roles planner, modeler
2.1 Plan next level
2.1.1 Select appropriate methods for the next level due to the exit criteria (i. e. the goal
specification) of the process to be performed.
2.1.2 If no methods exist which are suited to fulfil the process specification the
missing method can be modeled
2.1.3 Adjust variables in the pre- and postconditions according to the process specification
2.1.4 Inform planner of the parent process if
a) it is not possible to select or model an appropriate method
b) the process specification must be adjusted
2.2 Schedule next level
2.2.1 Assign personnel to the selected methods
a) assign planners to subprocesses (in case of complex methods)
b) assign developers to atomic methods
2.2.2 Determine start- and end dates according to the process specification and
negotiate them with the planners/developers

3. Perform development tasks during project enactment
Goal create/modify output products

Role developer (e. g., requirements engineer, designer)
3.1 Start method execution.
If the method is in statger f or med and the exit criteria is met)
then assign value to output product
If ((method is in statper f or med) and (exit criteria is not met)) or (invariant does not hold)
then inform the responsible planner for this method
[an invariant is a condition which should be true during the method enactment]

A short scenario is given to illustrate this algorithm (see Fig. 1). Let us assume that Alissa is the responsible planner
for all subprocesses of the complex method “component development”. Her task is to plan this subprocesses ac-
cording to the exit criteria (e. g., effort should be less that 50 hours). She selects appropriate methods for the proc-
esses “create component”, “component validation” and “integrate component”. These methods are selected in a



way that it is possible to fulfil the exit criteria of the process “component development”. As an example, Alissa
selects the complex method “white box test”, instantiates the variables in the criteria for this method and assigns
Susan as the responsible planner for the processes “generate test cases” and “perform tests”. Additionally, Susan
receives planned start- and end times for this process. It is Susan’s task for further planning. She assigns due to the
qualifications of the available personnel Margret and Paul as developers to the subprocesses and negotiates with
them the planned start- and end times. During the method execution Margret recognizes that it is not possible for
her to complete her process before the planned end date. The reason might be that the complexity of the component
to be tested is too high. Consequently, she informs Susan. Susan’s task is now to change the start- and end times
and to inform Paul that he will receive the input product later. If this rescheduling is not possible, Susan can model
new methods for the processes “generate test cases” and/or “perform tests” and assign them to appropriate devel-
opers. If Susan doesn’t have a possibility to reach the exit criteria of the process “component validation” she in-
forms Alissa. Alissa might then select another method (e. g. statistic test) for execution and assign a new planner
to this method.

component
developme oo\ _Alissa_\
create o component integrate
component validation component
— — I —_
e white
box statistic code
test test reading
tgeesr%erate -] perform Legend
cases test /\  Method

A |:| Process
/" Margret /- - - equivalence class : Planning
m test generation simulator D Agent

- test ] Developmen
Agent

Fig. 1. Example plan (poduct flow omitted)

4 Dependency Management in the MILOS Poject Plan and Meta Plan

In this section, we describe the techniques the existing MILOS system uses to facilitate the enactment of an existing
plan, and show how these same techniques can be used to facilitate planning and scheduling, i.e. the enactment of
the meta plan.

4.1 Enactment of the Poject plan

Execution support in the existing MILOS system has two important tasks:
» Provide to-do lists for agents, and generate notifications to the concerned agentsgewhagecess can be
started (or needs to be restarted), or when something of interest (e.g. an input product, a scheduled time, or a
process definition) has changed.
« Provide feedback to the planner about plan violations duriegwgion, and alle the model and plan to be
changed during processegution, triggering change notifications to the concerned agents.
The first point provides guidance to the agents, and thereby helps ensure that the “real world” process conforms
with the plan. The second, on the other hand, allows the plan to be adjusted when necessary, and therefore prevents
the plan to become obsolete when execution does not follow the plan in spite of the guidance our system provides.
Concerning agent notifications, our system supports different kinds of naotification techniques. On the one hand,
we provide standard notifications like escalation mechanisms (e.g. user notification on approaching deadlines). On
the other hand, we generate notification dependencies from the project plan, and allow project participants to ex-
press interest in specific information. To implement these notification dependencies, we use Event-Condition-Ac-



tion (ECA) rules that can be based on product and process-specific events. For example, if the precondition of the
component testing process demands that the component requirements document should be complete, our system
would automatically generate the following rule:

Event documentomponent requirements completed

Condition thecomponent test process has been assigneddgent x

Action: Notify Agent x
(See [5] for more details concerning our use of ECA rules.)

Feedback to planners is provided by keeping a project trace, and checking the trace data (like actual start and
end times) against the plan. If a process’ execution data deviates from its planned values, the assigned agent as well
as the responsible planner are notified, so that necessary replanning can be performed. These notifications are also
triggered by corresponding ECA rules.

4.2 Enactment of the Meta Plan

Not only do modeling and planning depend on enactment data, but there are also dependencies between different
modeling and planning activities that concern the same process or subplan. Once these activities are performed in
a decentralized way, support is needed to coordinate modeling and planning activities as well as execution activi-
ties. For example, the removal of an output parameter in a process model might necessitate replanning in case the
output is needed somewhere else in the plan. If these different modeling and planning activities have been distrib-
uted between different people, notifications have to be triggered in order to inform all concerned people of the ne-
cessity of replanning or re-modeling their processes.

Other examples for model or plan changes that necessitate notifications are:

» A new process is inserted in the plan, which needs an input that no other process in the plan produces. All
planners responsible for parts of the plan that might be modified to produce the product need to be notified.
The same holds when an additional input is added to a process already in the plan.

« Aninputis deleted from a process in the plan, making it possible to stditg on the process at an earlier
time than gpected (and scheduled). The concerned planner should be notified of the arising opportunity

» Conflicting methods are selected forfelient processes, e.g. the methimglement in Cobol is selected for a
component which is to be designed using the me®gect-oriented design.

« Aresource with a rare skill becomes#able, opening an opportunity to reschedule.

As mentioned in [12], modeling and planning can be seen as a different kind of (meta) process, and can be handled

as such. If modeling and planning (and re-modeling and replanning) are seen as tasks in the meta process of “man-

aging a software project”, thes®ta tasks can be assigned to agents (i.e. modelers and planners), just like devel-
opment processes are assigned to resources with the appropriate skills. The meta process can be modeled, and ECA
rules can be extracted from that meta process. For example, when the output of the system design process is
changed from an OMT document to a UML document, the following ECA rule will be triggered (among other
rules):

Event output type for procesystem design has changed

Condition processomponent design needOMT design document as an input

AND planning task for proces®mponent design has been assignedAgent y

Action: Notify Agenty

In other words, the same mechanisms can be used to coordinate modeling and planning that we already apply to

execution: from the notification mechanisms and ECA rules to agendas for meta tasks, all coordination concepts

developed for enacting the software process itself can also be utilized in order to facilitate the meta process of mod-
eling and planning the software process.

5 State of Implementation

Currently, the MILOS environment consists of several components: a resource pool, a process modeling com-
ponent, a project plan management component, and a workflow engine. These components are responsible for
maintaining the information concerning a company’s resources, process models, a project’s plan as well as its cur-
rent state and products, respectively, and are linked via a change management mechanism. A detailed description
of the architecture is given in [9].

The workflow engine enacts the current plan stored in the project plan management component. The individual
planning activities that were necessary to construct the plan are of no concern to the engine; it is solely responsible
for the coordination of development tasks. Thus, the current implementation of MILOS does not yet provide sup-
port to explicitly model the meta process of modeling and planning the project, and therefore the different meta



tasks cannot be assigned to the appropriate planners. With respect to the above scenario, this means that while the
development agents are notified individually of the changes that concern them, MILOS cannot yet identify which

of the two planners needs to be notified of the replanning necessity. The current system version handles this prob-
lem by notifyingall involved planners whenever the necessity of replanning occurs.

However, the chosen architecture allows us add a “plan engine” as a new component. As the workflow engine
provides to-do lists of development tasks to each development agent, this plan engine will provide to-do lists of
meta tasks to planners. Performing one of these meta tasks will result in a change of the project plan. Besides sup-
porting immediate execution of a task, the user interface for planning agents will also allow delegation of meta
tasks to other (planning) agents, thereby facilitating distributed planning.

The “meta plan” to be enacted by the plan engine will be induced from the current project plan via the MILOS
model of planning, e.g. for each development tabkre will be a corresponding taskhedul e(t), for each
unmapped process inpiw planning taskr eat e_nmappi ng_f or (i) etc.

Likewise, default dependencies between meta tasks can be induced from the project plan: a change in a task’s
scheduling will result in the creation béschedul e(t) meta tasks for certain successor tagkdepending on
the particular scheduling change). As for development tasks, these dependencies will be managed in the form of
ECA rules.

The MILOS system so far has been implemented in Java, using the object-oriented database GemStone/J 2.0
as an Enterprise Java Bean (EJB) server that provides transaction management and persistency services. This serv-
er manages the process model and project plan, and provides support for project enactment. Clients are responsible
for modeling, planning and executing software development processes. They are stand-alone applications or Java
applets which access the server via HTTP or using a Java Remote Method Invocation (Java RMI) interface. We
provide tool support for applet clients by using the built-in capabilities of Web-Browsers to download files and
start the correct tool at the client’s host. In other words, products that have to be edited in order to complete a proc-
ess are specified by a URL. The Web-Browser executing the client applet accesses this URL, downloads the file,
and starts the associated tool to edit the file. The edited file can then be saved on the client computer, or uploaded
back to the server.

The data exchange with MS-Project has been implemented using the MS-Project API, which allows import and
export of MS-Project plans in a predefined exchange format. Our system is able to import and export plans in the
same format, and to identify similarities and differences between imported plans. This makes it possible for us to
model a project in MILOS, import it into MS-Project, change it in MS-Project, and import it back into MILOS, and
vice versa.

6 Related Reseath

Our work bears similarities to several areas of research, particularly project management tools, workflow manage-
ment approaches, and process modeling and enactment research. Commercially available project management
tools like MS-Project and Autoplan support project planning and scheduling, but provide little or no enactment
support. A project management system that does provide both planning and execution support is the Mesa/Vista
Enterprise tool, an environment for collaborative project execution and management. It provides distributed access
to project data, as well as version and configuration management, but it does not include any change notification
services.

Workflow management tools like Staffware, FlowMark, or TeamWARE concentrate on project execution and
provide little or no support for process modeling and project planning. In particular, plan changes during enactment
require a complete restart of the project in most workflow management tools.

The approaches most similar to our work can be found in the area of process modeling and enactment research.
Most approaches in that area provide (web-based) modeling and enactment functionality, as well as some support
for dynamic plan changes and change notifications. However, most of these approaches do not provide project
planning and management support, like resource allocation and time scheduling for tasks in the project. Below, we
briefly describe a number of approaches in the area of process modeling and enactment research.

Endeavors [2] is a support system for distributed execution of (workflow) processes. Endeavors provides sup-
port for dynamic process changes, and is currently being extended to support WWW protocols.

Serendipity [7] is a process modeling and enactment environment that supports collaborative modeling as well
as execution of software processes. Change notifications are sent, using an event-handling concept similar to our
approach. Several external tools have been integrated in the Serendipity system.

1. We use signed applets as specified in tha 1&2 security model.



OzWeb [8] is a web-based system that supports multiple users who are grouped together into collaborative
teams. OzWeb provides a framework that supports the storage of retrieval of information in a “referential hyper-
base”, and provides some notifications based on dependencies extracted from a process model.

EPOS [11] is a Software Engineering Environment with emphasis on process modeling, software configuration
management and cooperative work support. The EPOS system is based on an underlying database, which provides
versioning functionality and transaction management, controlled by an application-specific process model.

The SPADE [1] project aims at defining and developing a software engineering environment for software proc-
ess modeling and enactment. Its process modeling language is based on a high-level Petri net formalism. The
SPADE research also includes techniques to deal with process evolution during enactment.

Like the MILOS model, the Procura [12] approach assumes that the same mechanisms that are used to coordi-
nate the enactment of design projects can be used to support planning and scheduling. The Procura approach builds
on the Redux model of flexible design [13], which can be used to track dependencies between design decisions,
and send change notifications to the concerned agents when necessary.

Multi-view approaches in the area of process modeling allow the distributed modeling of objects in different
styles and representations (e.g. control-flow view, abstraction hierarchy view, role-oriented view). These ap-
proaches can be classified according to their integration mechanisms. One class is characterized by separate mod-
eling of different views and subsequent integration. A representative of this class is the MVM approach (multi-
view modeling) [16]. This approach is based on role-specific views, which are modelled independently using the
formal process modeling language MVP-L [3]. Finally, the integration of views is performed with similarity and
consistency analyses and the creation of a comprehensive software process model.

The other class of approaches is characterized by the distributed modeling of a common model. This implies
the permanent application of consistency checks and updating operations. A typical approach of this class is the
MUVIE approach [14]. Here, each view defines a focus on an underlying graph structure model. The modeller only
handles those parts that pertain to a specific view. The underlying semantics which guide incremental changes are
expressed by a graph model and graph replacements.

7 Conclusions and Futue Work

MILOS is a process modeling and enactment system which not only supports modeling and enactment in the same
system, but also provides project management functionality in the form of planning and scheduling support. This
allows us to guide project execution according to the project plan and process model, as well as to keep the plan
up-to-date by feeding back enactment information into the plan. MILOS’ flexible workflow engine allows the
model and plan to be changed during project enactment, and provides support for process restarts whenever nec-
essary. It provides task agendas for the agents enacting the plan, and notifies the agents when a process assigned
to him/her becomes executable. Moreover, the MILOS model uses ECA rules to model dependencies between the
processes in the plan. Whenever changes occur, these rules are evaluated, and change notifications are sent to those
agents who are concerned by the change. These same mechanisms can be used to coordinate planning and sched-
uling as well as plan execution, and allow to track dependencies between thiasketaf planning and schedul-

ing on the one hand, and the enactment of the plan on the other hand. In this paper, we presented a flexible model
of how these dependencies can be specified and tracked. A default (meta) model describes standard dependencies
between planning, scheduling, and plan enactment. This model can be modified and extended to state project spe-
cific dependencies, for example the fact that a certain planning decision depends on a product produced during
project enactment.

In the future, we will investigate the possibilities of extending our meta model by additional meta tasks. For
example, quality assurance, and the related task of planning and executing appropriate measurements in order to
ascertain the quality of process and product, are tasks that will be included in a future version of the MILOS model
and system.

In order to satisfactorily supporting software development in virtual corporations, the MILOS system will have
to be extended by security concepts. Also, decentralization of data storage, and the distribution of our workflow
and planning engines will be central topics in our future research.

Acknowledgments

The current MILOS system was developed and implemented in cooperation with Prof. Dr. Frank Maurer’ research
group at University of Calgary. Barbara Dellen, Boris Kétting, and Fawsy Bendeck were involved in the concep-
tual work as well as the implementation of the MILOS system. The work was supported by NSERC, Nortel, the
University of Calgary, and the DFG with several research grants.



Literature

1. S. Bandinelli, A. Fuggetta, S. GrigolRProcess Modeling-in-the-large with SLANG. In IEEE Proceedings of
the 2nd International Conference on the Software Process, Berlin (Germany).

2. G.A. Bolcer and R. N. Taylor: EndeavofsProcess System Integration Infrastructure. in Proceedings of the
Fourth International Conference on the Software Process, Brighton, England, December 1996.

3. A. Brockers, C. Lott, H. Rombach, M. VerladéVP-L language report version 2. Technical Report 265/95,
Department of Computer Science, University of Kaiserslautern, Germany, 1995.

4. Bill Curtis and Marc I. Kellner and Jim Oveérrocess Modeling. Communications of the ACM, Vol. 35, No.

9, September 1992.

5. B. Dellen, F. MaurerChange impact analysis support for software devel opment processes. Journal of
Applied Software Technology, International Academic Publishing, 1998.

6. B. Dellen, F. Maurer, J. Miinch, and M. Verlag@riching Software Process Support by Knowledge-based
Techniques. In Int. Journal of Software Engineering and Knowledge Engineering, Volume 7, No. 2, pp. 185-
215, 1997.

7. J.C. Grundy and J.G. Hoskin@erendipity: integrated environment support for process modeling, enactment
and work coordination. Automated Software Engineering: Special Issue on Process Technology 5(1), January
1998, Kluwer Academic Publishers, pp. 27-60.

8. G.E. Kaiser, St.E. Dossick, W. Jiang, J. Jingshuang Yang and S.X\M#&V-based Collaboration Environ-
ments with Distributed Tool Services. World Wide Web, Baltzer Science Publishers (to appear).

9. F. Maurer, B. DellenA Concept for an Internet-based Process-Oriented Knowledge Management Environ-
ment. Proceedings of the KAW’98, Banff, Canada, 1998

10.F. Maurer, G. Succi, H. Holz, B. Kétting, S. Goldmann, B. Delfftware Process Support over the Inter-
net. submitted to ICSE99, Formal Demonstration Track.

11.M.N. Nguyen, A.l. Wang, R. Conradiotal Software Process Model Evolution In EPOS. Submitted paper for
4th ICSP, 1996, Brigthon, UK.

12.Ch. Petrie, S. Goldmann, A. Raquagient-Based Project Management. to appear in Springer LNAI 1500
special volume on Artificial Intelligence Today.

13.Ch. Petrie, Th. Webster, M. Cutkoskysing Pareto Optimality to Coordinate Distributed Agents. AIEDAM
special issue on conflict management, Vol. 9, pp 269-281, 1995.

14.Peter ROsch, “User Interaction In A Multi-view Design Environment”. IEEE Symposium On Visual Lan-
guages (VI'96), Proceedings, Pp. 316-323, Boulder, Colorado, Sept. 3-6, 1996. Usa, leee Computer Society
Press, ISBN 0-8186-7508-x.

15.S. Sutton, L. Osterweil, D. Heimbignéppl/a: A Language For Software Process Programming. leee Trans-
actions On Se And Methodology, Vol. 4, No. 3, P. 221-286, 1995.

16.Martin Verlage, “An Approach For Capturing Large Software Development Processes By Integration Of
Views Modeled Independently”. 10th International Conference On Software Engineering And Knowledge
Engineering (Seke98), June 1998.



