WETICE99 Murer VanDeVanter.html Page 1

Replacing Copies With Connections: Managing Software across the
Virtual Organization

Tobias Murer Michael L. Van De Vanter
TIK (Computer Engineering and Networks Laboratory) Sun Microsystems Laboratories
ETH Zirich, 8092 Ziirich, Switzerland 901 San Antonio Road, UMTV29-112
murer@acm.org Palo Alto, CA 94303 USA

Michael.VanDeVanter@sun.com

Abstract

Emerging technologies such as the Internet, the World Wide WebT,Nhaeahnology, and software components, are changing the
software business. Activities that have in the past been constrained by the need for intense information managemeny increasing|
involve cooperating organizations. Information management tools and techniques do not scale well in the face of this
organizational complexity. An informal approach to information sharing, based largely on manual copying of information, cannot
meet the demands of the task as size and complexity increase. Formal approaches to sharing information are based on groupware
tools, but cooperating organizations do not always enjoy the trust or commonality of sophisticated infrastructure, methods, and
skills that this approach requires. Bridging the gap requires a simple, loosely coupled, highly flexible strategy foranformati
sharing. Extensive information relevant to different parts of the software life cycle should be interconnected in a silyple, eas
described way; such connections should permit selective information sharing by a variety of tools and in a variety ofignllabora
modes that vary in the amount of organizational coupling they require.

1. Introduction

The software business is clgimg, much as manother businesses have chad. Theproduct life g/cle increasigly takesplace within so-
calledvirtual organizationghat require close cooperation across a variety of organizational bounBéii@g] | In the software business this

trend is spported and accelerateg¢t Bmeging technolgies: the World Wide Web, software cpaments, and Ja\T/g technolgy [GJS96.

Essential to the workanof virtual oilganizations is the magament and sharinof information, a task for which the increagliyn connected
world of the Internet is well suited. How the new techgige are actuatl used ly organizations, however, is a different matter. Current
approaches fall into two general categories: informal techniques bas&haal copyingf information across organizational boundaries, and
formal arrangements based on shared tools that can be broadlgoalipdare Neither approach is well adapted to the world of virtual
software oganizations, and neither address the whole softwareyiifie.c

Manual ceying, for exanple manualy installing software from the Internet, from CD-ROMSs, or via other media, failysterss scale in
conplexity. It is unreliable, and it disconnects software from information thatpertant throghout the software lifeycle. In contrast,
highly evolvedgroupware tools have been devpedml to mange conplex information reliabj. Software confjuration mangement gstems
permit concurrent non-interferirwork, sypport gecification of conplex aggregations ofparts, enforcerocess rules, and keeroject histoy.
Software manged ty such gstems resides in a c@ex web of information, without which it would be of little use to thgamization.
Although often difficult to use, no lge softwareoroject can succeed without such tools.

Grouwpware tools are clearimportant for virtual software ganizations; efforts to date have focused golating the new infrastructure to
suwpport distributedgroupware tools KD98]. This follows a commopattern where a new, engang technola@y is initially used to extend
existing mechanisms in process that remains otherwise unajeh But the new technal@s and oganizationalpatterns chage the wg
peaole work. Grogpware degined for tghtly cowled oiganizations fails to addressganizational and cultural issues such as autgnom
divergent toolpreferences, and variations in methods and skills.

This suggests that a coplementay stratgy might fills the gap between the informaiitof cgoying and the tjht cowpling of groupware tools.
Such a strategy, called thpplication welis being investigated jointly by the Forest project at Sun Microsystems Laboratories and the
Virtual Software Houseroject at ETH Zirich. An irportant characteristic of such a statés the notion, to whiclpele are increasigly
accustomed, that information (including software) should be interconnected. Useful and appropriate infabmatmitware, captured during
its construction Y develgment tools, should be continuoyslvailable throghout its life g/cle. Finall, tools must be able to communicate
across boundaries in a wthat strikes a useful balance betweernpeoation and autonoyn

This paper discusses such a sttebeginning with an assessment of the current situation and the forces at work. This is foljowed b

Tue, Apr 6, 1999 0:00 Uhr

WETICE99 Murer VanDeVanter.html Page 2

observation of how these same forces pwado limit thegrowth of virtual oganizations and thguality of theproducts thg canproduce.
The concet of the gplication web is then discussedneral terms, followed ggestive scenarios based on current work with the JP and VSH
prototypes.

2. Forces Changing the Software Business
The motivation for th@roposed stratgy arises from forces, both techngical and oganizational, that are regtiag the software business.

Technological Forces: the Connected World of Dynamic

Most conpelling is the connectivjt that accomanies widegread adption of Internet technolyy, in particular the technical infrastructure
provided ly the World Wide Webglobal namimg system, simple protocols, and means to exclgarandpresent information. The weglermits
creation of new technadfies, gives leverge to others, and has erged as the universal infrastructure for the kindlobal cogeration
required by virtual oganizations.

A phenomenon of the Internet has been the widesl adption of Java technolyy, a softwareplatform whose gnamic behaviopermits new
kinds of flexibility and coperation. The laguage is based on classes that can beposed into pplications based on interfaces (APIs);
interfaces, combined withlatform neutraliy and HTML-based documentation extracted from source code, have gecbageeat deal of code
sharirg. The common conduit for such shayis downloadig collections of classes over the Internet, for eglendava librarielug-ins,
tools, and pplets.

The runtime behavior of a Javpgication is d/namic and flexible. Java classes are loadedylaad needed at runtime from a varief
sources: file gstems, local andlobal networks. Each user of a Japglaation effectivey defines agstem corposition by specifying a class
searchpath: an ordered list of fileystempaths and URLSs that are to be searched fquired named class. This allows users to pose
systems from classes that ynaot have been capiled and built tgether, as log as interface guirements and bingrconpatibility rules
amory are fulfilled. Users can extend and mgdifie behavior of gplications ty manajing the runtime claspath.

Java technolgy is predated b the conponent-basedmoroach to gstem constructiongdzy98], but the two now goy considerableynemy.
Emeging conponent models such akig-ins, Java Beans, and Emgse Java Beans add more features to be usegdians corposition.
The Java reflection facilitiggermit conponents to ngotiate gynamically whether their interfaces match and whethguired services are

supported.

Organizational Forces: Rise of the Virtual Organization

A virtual organization is a yghamic network of granizations that cqeerate for mutual benefibM92], a business model thatesents new
challerges. Gegraphic digpersion ma increase, but even moreportant is the added autongmepresented Y organizational boundaries. In
this repect, one also sees virtualanizations within lager oganizations whosparts often exercise similar autonpn®ignificantly for the
software business, ganizational autonognis typically reflected ly heightened differences of infrastructure, methods, poeflerences, and
skills when compared with sigle software develiment oganizations.

Members of virtual software ganizations coperate more or lesgtitly at allphases of the softwaproduct life g/cle: construction,
deployment, runtime margement, as well as services such as consuléin goplication might consists of software develed by several
organizations. It mght be deloyed and marged by two other oganizations and gorted ty consultants from a third. For tiparpose of
discussion we define a Jasanfigurationto be a collection of Java software that can move across organizational boundaries to support
collaboration within a virtual software ganization. A confjuration mght be a Java class libyaraplug-in for some framework, a Java Bean,

or a stand-alonepglication: ary collection of software intended to be used, via a known interface, aslaAlmhiough such units of code ma
be used in yhamic settigs, for exarple plug-ins, it is understood that the units have statiperties of interest (for exgote, who wrote
them, and what level @uality assurance igiven). The central issue atganizational boundaries is coordination and slgaofninformation
aboutthese properties, information without which configurations would be useless.

3. Limits Faced by the New Model

The vey factors that egender gnergy amorg emeping forces described in th@evious section also create limits on the scale to which the
new model cagrow. The dimension of scale described here ipadtof familiarproblems: the size of aystem'sparts or the comlexity of

its assemlyl. This scale is characteristic of the virtuajamization, where increasedganizational corplexity adds newroblems to the old
ones.

This section describes how current techgis fail in thepresence of this challga. Three inherent weaknesses in Java techpdttescribed
below) demonstrate how the whole software lifele is affected: software construction (interfapecification), dgloyment (confguration
management), and management (runtime support). The common theme underlying these issues is that iafmmatifiware must cross
organizational boundaries, but that current approaches to sharing information alisgaliynecsoftware from essential information.

Tue, Apr 6, 1999 0:00 Uhr

WETICE99 Murer VanDeVanter.html Page 3

Java Interface Specification

Using classes created lothers rguires information about how th@vork. At one extreme (and the most heauised) are siple syntactic
descrptions of the sort resented Y Java interfaces and their embedded comments yBtabsis too weak (and comments seldongadée) to
assure intengeration. If Java interfaceystax and comments were adate then the avalanche of books desagiavaplatform classes would
not be needed. At theposite extreme, coptete semantic desgtions of class behavior are wiglainderstood to be infeasibledgeneral, let
alone scalable.

Intermediate mechanisms to addresshidlem have beeproposed WCOP97, but none have become wiglelsed. A more ganizational
approach, suitable for the context discussed heiggesis that the keis to conplement gntactic information with other information
normally available on} in the orginating organization MSW96. Such "orginator level" information gecifies exactt and comletely the
context in whichparticular versions of a comfiiration have been constructed and are intended to be used, information essergfadthtbe
life cycle. For all but the most widelised software, however, such information has been tradigiamtimunicated informal| throwgh
informal documentgersonal communication, and folklore. Unfortungtehis isprecisey the kind of information from which software
becomes disconnected when it crossganizational boundaries.

Defining Java Configurations

Connectig pieces of software tgether is on} part of thejob of constructig software gstems; thg must be built, run, and testedyether.
For situations where trguality of delivered software is ipprtant, deloyment takeglace in @gregations (what we call corgurations)
acconpanied ly some kind of assurance from thegarating organization. Unfortunatg| Java technolyy offers no concrete notion of
configuration and no tools for dagrthis reliaby. Configurations areytpically bundled simly as collections of Java classegically in file
system hierarchies, and gleyed in containers (JAR files) that mimic filgstems. Installation involves pging such files into local stoge.
When a Javapplication requires more than one such capfiation, the user is rpsnsible for ensurig correctplacement in local stoge, and
for constructiig a correct claspath.

The Java ddoyment model effectivgl delegates gstem corposition to end users, who have no Gorator level" information about
configurations bgond what igoresent in a weak (and mutable) filestem. There is no assurance, essential inymantexts, that
configurations beig used actuaji correpond to what is desired, to what wagchased, to what is assumed to have been built and tested.
Furthermore it obscures mmsibility when software does npgérform as egected.

A simple hedje is to deloy Java aplications as self-contained bundles, but this does not address thggngnecenponent models such as
beans anglug-ins that rguire such end-user cogfiration. Furthermore, thigpproach does not scale ggphcations and the Jayaatform
grow in size. Some kind of shagns essential.

Scalable solutions nglon confguration mangement tools, which varigtof services to helwith the construction of lge software gstems.
However these tools are majrdesgned for inter-oganization coordination; such tooigically export the same kinds of class collections as
in the manual scenario. Onogain, the delivered corduration is disconnected from essential information.

Managing Applications

The information deficit worsens when a Japgligation is launched. Other thapezification of the name for a main class, Java teclgyolo
offers no runtime notion of what it means to bepgiaation, nor does it offer anway to start them, sfpthem, and invediate their runtime
state. The runtime comfiration of an pplication is createdyhamically by the automatic, on-demand loagliof classes via searclgithrowgh
multiple sources. This makes it ngaitnpossible to answer sucjuestions such as which versions of the classes are loaded, which
configurations thg were loaded from, where are documents thplyato them, does thepglication need aypmore classes, and if so where can
they be found, and so on.

The runtime state of arpgication has essentiglbeen disconnected from its @iri, makirg it very difficult to analyze behavior and dimose
problems without more contextual information thary@dally available when @anizational boundaries have been crossed.

Summary: Losing Context at Organizational Boundaries

Virtual organizations collaborate because it is to their adgentdnfortunatet organizational boundaries tend topade the flow of
information important to that collaboration, as shownthree exarples in the context of Java software depetent. As with allproblems of
conplexity, this can be magad in the small, but it effectivelimits how lage virtual oganizations can become and how reliable their
products can be.

Tools such as comuration mangement gstems are seldopractical in virtual oganizations for varigtof reasons. First, the dgsiof such
tools usual} presume trustegarticipants, which is not the case in a context wher@exatirg organizationgguard intellectuaproperty and
share information oglas needed. Second, autonomoygoizations differ in g®cts such as culturprocesses, methods, cpetences, and
skills; the same tools will not be effective for all of them. Finalich tools have lyrin overhead that is not alws gppropriate to the
dynamic nature of virtual ganizations.

Tue, Apr 6, 1999 0:00 Uhr

WETICE99 Murer VanDeVanter.html Page 4

Information flow across ganizational boundaries continues to be dominayeidformal, manual coying, acconpanied ly two serious
drawbacks alreadmentioned. First, it is an unreliableyw® cache informatioproduced elsewhere. Secondyjtitally lacks the rich
information available in the @inal context where software is constructed. Cqusatly software interperation is be based @ublished
interfaces alone; there jgecious little information about cougfirations bgond sinple aggregation; and issues arigjrat runtime cannot be
resolved iy tracing backward reliable from runnipsoftware to additional information.

4. The Application Web: Connecting Virtual Software Organizations

A strate@y for addressig these issues is bgjexploredjointly by theForest Prgectat Sun Microgstems Laboratories and the Virtual
Software House (VSH)roject at ETH Zirich. This section discusses this sisategeneral terms.

The JP, GIPSY, and VSH Projects

The Foresproject's JP software develment environment addresgesblems of scale in Java software depalent with fundamentall
reliable and scalable Java software construction tectipslfVV97]. These include a pesitoly based on ortlgpnally persistent Java ¢écts
[Atk96], a confguration mangement gstem for all human-created information, a reliable builder based on fungifogedmmirg, and Java-
implemented tools that run in thepasitory. JP keps a complete histoy of human workperformed (each build is based on a closed-world,
immutable prescription that can be rebuilt reliably at any time), automates managedenterfinformation computed by builds (whicheth
develger never sees unless needed), and connects tools such as editorpdsititsyrfv/an9g. JP is intended to pport a federated software
develgpment model amapmultiple JP sites.

The VSHproject conplements the JP environment with focus on both the traditional scale ofw@tidn conplexity, as well as the

emeging conplexity of organizations. It is inveggating new businesspportunities made availableylihe emeging technolagy and the trend
toward virtual oganizations, based on earlier waaoject on software coponent develpment and cross-ganization dployment investjated

in the GIPSYproject Mur97,MS97]. A goal of the VSHproject is a service architecture for electronic ponent-based software construction,
deployment, marketig and consultig services in wgs that will scale into the enging develgpment models.

From this collaboration has enged a rethinkig of the JP devefament model and its relevance to the entire softwareyitecas well as the
addition of distributed services that woulgport the collaborative modefgoposed ly the VSHproject.

Connectivity Throughout the Life Cycle

Central to the pplication web stratgy is rich interconnectivit amory information that pans the life gcle of softwargroducts: construction,
deployment, and margement. This is based on the now familigpenience in other domains on the World Wide Web, a fundamgstaible
model, but with the addition of restrictions and new servipgkcable to the realm of software. Thpgication web miht in some instances
approximate "extranet" technadly, where oganizations selectivglprovide access to internal information, but it must be mgrauhic and
flexible than most current gjfe-focus extranets.

This proposed notion of connectiyithas two ggects. First, it is desirable to kiea confguration connected to all its informationptared on
the web durig its whole life gcle. This makes possible toquely the gplication web for corplete,precise, relevant information at all
times. Second, it connectgyanizations with a set of useful services that strike theimed balance between autonpand coperation on the
part of participating organizations.

For this to succeed, apgication web must be almost as gilmto qoerate as the World Wide Web for baspemations such as geyment
and mangement. At the same time it must bepasverful as JP, for exaple, in order to spport conplex operations such as shared
develgment, configuration mangement, and buildigp

Autonomy

Organizations, even when collaboragiwithin a virtual oganization, ty to retain as much autongraspossible. The pplication web must
find the right balance betweeagranting autonony andproviding sufficient sgpport for information sharig and coperations. The @plication
web gproach addresses this chatjerwith two features. First, the shared model of data needed to ggdhfarmation is kpt as sinple as
possible, followiny the lead of the World Wide Web. Second, information sbaram takelace on more than one architecturgela each
appropriate to the task anghrticular oganizational boundgr

Service Layers
The sinplicity of the gplication web, throgh which collaboratig organizations connect, is magessible ly a layered pproach thapermit
different dgrees of copling between ayanizations, dgendirg on thephase of the lifeycle involved and the kind of collaboration needed.

Closey collaboratig develgment oganizations nght connect § a more corplex shared pplication builder service such as JP federated
building. In this model, build saots (analgous to makefiles) in one JPpasitoly can build gainst and ggregate software that nyaoriginate
in another JP mository without requiring manual cpying.

Tue, Apr 6, 1999 0:00 Uhr

WETICE99 Murer VanDeVanter.html Page 5

More loosey collaboratim organizations nght provide less access, for expl@the abiliy to run confguration directy out of its orginal
repository, but with access to the rich contextual information available in fiusitery. Even more limited, and wesimple, browsimg
services could be available, magiavailable on} a carefuly controlled subset of pesitory information to suiparticular relationsius, for
exanple a consultant siply browsirg documentation related to a rungigpplication somewhere.

5. Application Web Services

The pplication web stratgy is based on ayared @proach in which a number of basic services are availablepmsLa variey of
collaboration models.

Naming and Versioning
A fundamental service of the web is a simple, globally scatabiging systerfor versioned configurations distributed across organizations
The degjn of such a naminsystem, an extension of the JP nagnéastem, is discussed in more detail elsewheidq9].

The JP pproach is based on versiongackayes of software, sources and related documentation, thgivarsglobally unigue names in an
extension of Java nampace. Even thagh there is no concrete notion gidtkage" in the Java laguage, one igrovided ly the tools so that
software can be reliapbundled intagylobally agreed-ypon names. It is intended that a versiopadkage name, &-
com.sun.labs.forest.jp.util.7 , have the same meagieveywhere. Not all JP versiongihckayes contain sources and
documentation diregtl Somepackajes serve onlto aygregate othepackage versions, a mechanigmarmitting the recursive desgtions of
systems of of ap size. These kinds glackayesplay the role of "confjurations” in the JPystem.

Persistence, Immutability, and Cachiny

A requirement of ap connected, shampbased pproach is strog guarantees about the lifetimes ofgontant information. Partipating
organizations that gort information must ensure that information be be durable, immutable, and accessible fgraastiisneededyhits
collaborators. With suitable restrictions of this sputlished information can be mayeal by reliable, automatic cache maeanent for
ensurirg timely access Ypall concerned. Reliable automatic cachiherefore rplaces unreliable manual cachjras lomy as basiguarantees
can be made.

Repositories thaprovide persistent bindigs between versiongghckayje names and their contentgport, amorg other services, WWW
browsirg andquetying throughout the gplication web's namepace.

Configurations

As defined earlier, a "corfuration” in the pplication web is simly the unit of software shaignpossibly containirg a collection of sources
and related documentation. But, as in the JP modelghtritself be comosed recursivglof other confjurations, not all of which nyahave
originated in the same geinization.

Globally unique names, combined wigersistent stoige, allow confgurations to be efficienglimplemented without qaying, carrying
instead onf references to included sub-capffations. In buildig, as for other services, pying is then doneyautomatic cachip

Reliable Building
Versionedpackayes contain sources from which derived information, for et@dava class files, are cpuated. Just as the name giackae
always refers to the same tigieveywhere, so should the derived form; this demands that bgit@inocation indgendent, guarantee

provided by the JBuild systerr% At the same time, the result of each build should be arranged to contain enough information for tools to
trace back to the ajinating context in cases where more information tured.

This mechanisnpermits a wide varigtof collaboration models at ganizational boundaries where builgsgems can communicate. For
exanple, a client oganization mght contract to use software from angimating organization with full source access, in which case build
scripts in the client agyanization mght sinply import software as if it were local, yghg on the build gstem to cache and build the souraes i
the local context. In other cases, the clieghaization mght purchase onl the right to request built-to-ordepackayes, in which caspart of
each gstem build mght takeplace in the rpositoty of the orginating organization, based on a call between the two builders peatfies the
parameters of the build ¢e.conpiler flags).

An Abstraction for Applications

Configurations mg be libraries, but themay also be intended to code with mopedaific structure, for exapte plug-ins, Java Beans, and
runnable pplications. The pplication web spports abstractions for such casgsimitting interactions amanmary tools such aspgplication
loaders, inpectors, and delggers.

Application Deployment and Management
Applications can be located on web, usbrowsirg services, and launcheg bimply pressimg a button without goying or installirg

Tue, Apr 6, 1999 0:00 Uhr

WETICE99 Murer VanDeVanter.html Page 6

anything. Adeployment servicgrecisely collects the relevant executable application parts directly from their source at the originating
organization. Arapplication management servisapervises running applications, and manages links to the precise origins of all involved
application parts. By following these links, a client can religidlbcate additional information about thepication directy from the source.

Application Inspection

An inspection servicallows to remotely investigate the class and object structure of running applications. For every loaded class, a link |
back to the corrg@nding source at thproviding organizations. An pplication provides hooks to nagate throgh the olpect structure of the
application. Again, for evey object, a link leads back to the comesding sourcepublished on the web.

Managing Access to Information

Although the current edoration of this stratgy has focused oproviding more information to morparties throghout moreparts of the
software life gcle, the reverse igjgally important. It must b@ossible taguarantee that shared information be reliabbnaed with repect
to whichparties can see which information at what times. The lgas®bled gproachproposed here is good start on thigoint, since it
presumes that eachgamization autonomougsmanayes a reository of information that rgresents its intellectuaroperty.

6. Application Scenarios

A prototype has been used toptare theproposed conaat of an gplication web. Scenarios from thatototype, described in this section,
involve a web of four ganizations and demonstrate howanmizations egloit precise knowlede about pplications and the connectiyit
provided ly the web.

A Web Setting

This web spans four organizatiottealthPrq a health care organization, uses a graphical business process support appicatessEdit
provided byProcessProa business process tool vendor. To implement this applicRliooessPraises a graph layout package provided by
GraphPrqg an organization specialized in graph model and layout softidasdthProcontracts an external consulting organization,
ConsultPrg which provides assistance as needed to operate the application. The scenarios in this connected world of organizations inclu
activities such as devedmg, deploying, locatirg, runnirg, manging and inpecting an gplication. A participating organization uses different
services to accesses the web witlpeesto its interest into particularphase of the gplication life gycle.

GraphProoffers two versions of a graph layout package (nacoedgraphpro.graph.layout.1 and
com.graphpro.graph.layout.2). ProcessPraoffers four versions of a business process support applicRtiooessEdi{version 4
is namecdcom.processpro.tool.processedit.4 and usesom.graphpro.graph.layout.2 . GraphProandProcessPro

provide federated browsing, development and deployment services on thdealtbProprovides browsing, application management and
inspection services, whereas organizaG@msultProoffers online consulting services.

Scenario 1. Simple application management

A manager aHealthProconnects to the application web using the browsing service to locate versimote$sEdipublished at
ProcessPro'sveb server. The manager launches the application by pressing a button without any copying or prior installation. The
deployment service collects the relevant executable application parts directRrisoessPro

(com.processpro.tool.processedit.4) andGraphPro(com.graphpro.graph.layout.2). The application management
service aHealthProlists the running application including hyperlinks to the web locations of all involved application parts. By following
these links, the manager can locate precise additional information about the application proRicee&sPraandGraphPrq such as
documentation, sources or license information.

The scenario illustrates sihe cogerations based on cgnehensible and reliable services that take adgardhthe shared knowlgd and
connectiviy in the web. The shared, versioned napaes allows for siple gplication location. The da#oyment and margement service
support goplication launchig without ary prior installation. Links fronparts of a runnig application to their onjins in the web allows to
reliably access useful additional information about thdieation.

Scenario 2: Development and deployment of a customer special version

HealthProis not satisfied with version 4 &rocessEditaind asks for additional functions. A developePraicessPraeceives the request
(which names the comfiiration currentt used) and builds a variant of that cgnfiation usiig the JP federated devploent services of
ProcessPraandGraphPra The new versioncom.processpro.tool.processedit.4.healthpro.1) is immediately availablero
the web and the mager can launch the new version immediatglon notification.

The scenario illustrates how the shared ngrapstem allows foprecisey name aplication parts includimg version and conduration
information which is essential for cperations across ganizations. The JP federated depabent service is a more [@usticated service
allowing for cogerative software devagbmnent across ganizations. The web conaencluding autonomous evolution allows to make new

Tue, Apr 6, 1999 0:00 Uhr

WETICE99 Murer VanDeVanter.html Page 7

application versions immediatglavailable and to launch them without installations.

Scenario 3: Remote online consultig

The manager dflealthProcontacts a consultant @onsultantPran order to learn more about the new versioRfcessEdithat is
currently running. The consultant remotely connectddalthPro'sapplication management and inspections services. Every part of the
running application contains links to original information published directlptogessPraandGraphPra This allows the consultant to find
precise information about the rungiepplication such as sources, documentation,gieartifacts, debgitraces and more. Additiongllthe
object structure of thepglication can be invegiated usig the inpection service. fain, for evey visited olject, a lyperlink reliabl leads to
the source of its iplementation.

The scenario illustrates how a consultant has remote access to extensive information abguapplimaitions at the customer site. This also
includes links and access to thegoriof the gplication. Applications can also be invegdited at ofectgranulariyy. Theprecise information is
fundamental for effective consulgn

7. Related Work

The Vestaroject [LM93]), from which some of JP's techngles are derivedyursued reliabily in the face of scale, but gnin the
traditional dimensions ofpglication size and copositional conplexity

Goals for the Jiproject include those of Vesta, but added, aghaihers, the abilit to perform conplex builds across mujile distributed
sitespV97,Van99. However, this was understood t@uée that all sites be runrardP software, and pport did not extend thragh the full
software life gcle.

Bischofbeger et. al. make a relatecgament about gaturing information available in the context where softwareinélly gets created
[BKMS95]. Their enphasis is on informal communication, notynhore formal information such as sources and documents, and how it is
very important when aganizational boundaries are crossed.

Severalprojects have eplored how to take software cogéiration mangementglobal. For exarple Noll and Scacchpropose an intgration
layer between autonomougpositories servers and their clients that wqurtivide the ppearance of a centralpesitory [NS97; this presumes
much more infrastructure shagiandprocess-copling than does thepglication web @proach.

8. Conclusions and Outlook

We have been @loring a new stratgy, called the pplication web, that willbermit collaboratig but autonomous ganizations to relialyl
share information thraghout the life gcle of softwargroducts. The degn of the @plication web address the need for a balance between
autonony and cogeration, all in the context of reliable services.

Theproblem of information imedance at ganizational boundaries, which arises wheghbtttool-based cquling is impractical, is addressed
with a sinple, but flexible aproach to shariginformation thapermits a variet of collaboration models, includitightly-coupled tools, for
exanple for federated buildignandpossibl distributed confjuration mangement, but also sipter relationshps such asglication
downloadirg and WWW browsig. The unreliable drugkry of manual cpying of information, an pproach that does not scale well, iplezed
with links thatpermit automatic cachm

Prototpe versions of these services have begilemented in the context of the JP software dgretnt environment, whosepasitories
rely on an eperimental gstem forpersistent Java gbcts Atk96]. The effect is to create a web of knowdedibout each software artifact,
quite a different view of the software lifg@e than is customgr It adds kind of connectiwitbecomig common on the WWW, but it is still
implemented on o of the kind of reliable services thatdarscale software devglment demands.

It is expected that such a strgiewill open yp new businesspportunities for software devgbment of the sort envisioneq the Virtual
Software House: software services available on the Web; consigi¢otdate, connected software catples; reliable software bundijrand
deployment; conponent seekig and matchig; conponent interperability checkirg; online consultig; pay per use; and manothersyet to k&
imagined..

Footnotes

Footnote 1 The term "confjuration" carries great mag meanimgs. Usirg it to mean "unit of software shaghis somewhat non-standard,
but it cgtures the intended notion that it is more thast a collection of Java classes. A cgafation is assumed to have been constructed
carefully by some oganization for someurpose; it is vey likely one of a famif of versions, each peesenting successive refinement; it ma
be one of mayvariants, each peesentig special needs from its consumerspiiesumab) has associated documentation descgiiuse as
well as interperability restrictions; and it hgwresumaby} been sujected to some form @juality control.

Tue, Apr 6, 1999 0:00 Uhr

WETICE99 Murer VanDeVanter.html Page 8

Footnote 2 A corollary of the rguirement that @ackage build be location ingendent is that it also be time im#adent: it alwgs gives
the same results. JP makes thiarantee ¥ requiring that ony immutablepackaje version can be built, and that their build jstcoie a
conpletely closed functiongbrogram.

Acknowledgments

This work benefitgreatly from the vision of Mick Jordan, Pringl Investgator of the Forest Pject at Sun Microgstems Laboratories and
coauthor of the Jprototype develpment environment. The VSptoject is spported by Prof. Albert Kiindgy at ETH Zlirich and fundedyb
the Swiss Priont Pragram of the Swiss National Science Foundation. Yuval Peduel maafalltoeeimments on earldrafts of thispaper.

Trademarks

Sun, Sun Microgstems, and Java are trademarks gistered trademarks of Sun Micgatems, Inc. in the United States and other countries.

References

[Atk96] Malcolm Atkinson, Laurent Daynes, Mick Jordan, Tony Printezis and Susan Spence. An Orthogonally PersistatiMava.
SIGMOD RecordVolume 25 Number 4 December 1996.

[BKMS] W.R. Bischofberger, T. Kofler, K.-U. Méatzel, and B. Schéffer. Computer Supported Cooperative Software Engineering with Beyonc
Sniff. Proc. 7th Cof Sdtware Em. Environment$SEB, Noordwikerhout The NetherlanddEEE CS Pressl995 135-143.

[DM92] W. Davidow and M. MaloneThe Virtual Organization: Structuring and Revitalizing the Corporation For the 21st Century
Burlinaame Books. 1992.

[KD98] Gail E. Kaiser and Stephen E. Dossick. Workgroup Middleware for Distributed PréfefeEs Seventh International Workshops on

Enabling Technologies: Infrastructure for Collaborative Enterprisbsne 1998, pp. 63-68.

[GJIS96] James Goslim, Bill Joy, and Gy Steele.The Jang Language Secification, Addison Weslg, 1996.

[Ivor] Mick Jordan and Michael L. Van De Vanter. Modular system building WithTyamckagesProceedingthh Conference on
Softwae Endineeina Environments. IEEE Compute Sodetv Press.1997.ppn.155-63. Los Alamitos. CA. USA.

[LM93] Roy Levin and Paul R. McJoneBhe Vesta Approach to Precise Configuration of Large Software SyS&@GsResearch Report
105. June 14. 1993. Didital Eauioment Corporation.

[Mur97] Tobias Murer. The Challenge of The Global Software Prod&eseedings of the Second International Workshop on Component-
Oriented ProgrammingW/COP-9%, TUCS General Publication No, September, 1997 af®lCOOP'97 Workshop Readépringer
LNCS Vol. 1357.1998

[MS97] Tobias Murer and Daniel Scherer. Structural unity of product, process and organization form in the GIPSY process support

framework.Proceedings8th Conference on Software Engineering EnvironmetEEE Computer Society Press. 1997, pp.93-100.
Los Alamitos. CA. USA.

[MSW96] Tobias Murer, Daniel Scherer and Andy Wuiftaproving Component Interoperability Informatiolorkshop on Component-
Oriented Pr@rammirg at ECOOP'9@WCOP-96, June 1996

[NS97] J. Noll and W. Scacchi. Supporting Distributed Configuration Management in Virtual Enterpriees7th Int'l Workshop Software
Corfiguration Manailement(ICSE 97 SCM-) Springer LNCS 12351997 142-160.

[Szy98] Clemens S. Sperski. Conponent Séiware: Bejond Obect-Oriented Prgrammirg. Addison Weslg, 1998

[Van98] Michael Van De Vanter. Coordinated editing of versioned packages in the JP programming envir8gsient. Configuration

ManaaementECOQOP'98 SOVI-8 Svmporim. Proceednas Sorinaer. 1998. nn.158-73. Berlin. Germanv.

[VM99] Michael L. Van De Vanter and Tobias Murer. Global Configuration Names: How Reliable Java Software Development and
Deployment can cross Organizational Boundariede submitted to Ninth International Symposium on System Configuration

Management(SCM-9, September 1999Toulouse

[wWCOoP97] Selected workshop papeRroceedings of the Second International Workshop on Component-Oriented Programf@iidP{97,
TUCS General Publication No, September 1997 andECOOP'97 Workshw Readey Springer LNCS Vol. 13571998

Tue, Apr 6, 1999 0:00 Uhr

