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Abstract

This paper describes a declarative approach for
encoding the plan operators in proof planning,
the so-called methods. The notion of method
evolves from the much studied concept of a tac-
tic and was first used by A. Bundy. Signific-
ant deductive power has been achieved with
the planning approach towards automated de-
duction; however, the procedural character of
the tactic part of methods hinders mechanical
modification. Although the strength of a proof
planning system largely depends on powerful
general procedures which solve a large class of
problems, mechanical or even automated modi-
fication of methods is necessary, since methods
designed for a specific type of problems will
never be general enough. After introducing the
general framework, we exemplify the mechan-
ical modification of methods via a particular
meta-method which modifies methods by trans-
forming connectives to quantifiers.

1 Introduction

Mathematicians learn during their academic training not
only facts like definitions or theorems, but also problem-
solving know-how for proving mathematical theorems.
An important part of this know-how can be described in
terms of reasoning methods like the diagonalization pro-
cedure, the application of a definition, or the application
of the homomorphy property.

A similar organization of problem solving knowledge
is adopted in the planning paradigm towards automated
reasoning [Bundy, 1988]. In such a framework, the meth-
ods play the role of plan operators and their executions
fill gaps in a partial proof. Bundy views methods essen-
tially as a triple consisting of a tactic, a precondition,
and a postcondition. There the tactic is a piece of pro-
gram code that can manipulate the actual proof in a
controlled way. The precondition and the postcondition
form a specification of the deductive ability of the tac-
tic, formulating declaratively the applicability condition
of the tactic and a description of the proof status after
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its application. This has been an essential progress com-
pared with a mere tactic language because within this
framework it is now possible to develop proof plans with
the help of the declarative knowledge in the precondi-
tions and postconditions.

Another main feature contributing to the problem
solving competence of mathematicians is their ability to
extend the current problem solving repertoire by adapt-
ing existing methods to suit novel situations (see [Pélya,
1945] for mathematical reasoning and [VanLehn, 1989]
for general problem solving). However, following a one-
sided approach relying on procedural knowledge only,
the OYSTER-CIAM system [Bundy et al., 1990] developed
by Bundy’s group still has a severe drawback: the adap-
tion of methods to other problems is almost impossible,
because that would require the transformation of pro-
grams — tactics are just programs — which is known to
be a very hard problem in practice.

To remedy this shortcoming, in previous work we have
extended Bundy’s notion of a method by separating the
procedural and the declarative knowledge in the tactic
part of the method [Huang et al., 1994a]. The generaliz-
ation from Bundy’s procedural framework to ours allows
to define meta-methods adapting this declarative content
in order to create new methods, while the procedural
content remains unchanged. Our representation of tac-
tics is simple and intuitive since tactics essentially consist
of natural deduction proof schemata possibly contain-
ing meta-variables. This direct representation makes a
mechanical adaption to new situations feasible in many
cases.

The intention of our work can be compared to Ire-
land’s approach of proof critiques [Ireland, 1992]. For
a comparison of the two approaches see [Bundy, 1994].
The work of Giunchiglia and Traverso [Giunchiglia and
Traverso, 1993] to represent tactics in a logical meta-
language has a similar motivation as our work, namely
to represent tactics in a declarative manner. In their ap-
proach the whole tactic is represented on a logical meta-
level, what enables a full declarative representation. In
our approach only parts of the tactic are represented de-
claratively, what should enable easier transformations in
some cases.

In the following we shortly introduce our framework
for defining methods and exemplify the modification of
methods by reformulating proofs where the connectives



/A anda v oare mapped to the quantiners v and 3, respect-
ively.

2 A Declarative Approach to the
Representation of Methods

The work in this paper should be understood in the set-
ting of a computational model that casts the entire pro-
cess of theorem proving, from the analysis of a problem
up to the completion of a proof, as an interleaving process
of proof planning, method application and verification.
In particular, this model ascribes a reasoner’s reasoning
competence to the existence of methods together with a
planning mechanism that uses these methods for proof
planning.

To understand the proof planning process, please re-
member that the goal of proof planning is to fill gaps in
a given partial proof tree by forward and backward reas-
oning. Thus from an abstract point of view the planning
process is the process of exploring the search space of
planning states that is generated by the plan operators
in order to find a complete plan (that is a sequence of
instantiated plan operators) from a given initial state to
a terminal state.

Concretely a planning state contains a subset of lines
in the current partial proof that correspond to the
boundaries of a gap in the proof. This subset can be
divided into open lines (that must be proved to bridge
the gap) and support lines (that can be used as premises
to bridge it). The initial planning state consists of all
lines in the initial problem; the assumptions are the sup-
port lines and the conclusion is the only open line. The
terminal planning state is reached when there is no more
open line in the planning state.

Aimed at modeling a human-oriented reasoning, we
want our proof planning mechanism to be able to per-
form both forward reasoning and backward reasoning.
New open lines enter the planning state as subgoals by
backward reasoning from existing open lines and new
support lines by forward reasoning from existing sup-
port lines. In backward reasoning the methods are ap-
plied from their conclusions to their premises, that is,
some premises become new open lines in the planning
state and the open lines matched with the conclusions
of the method are deleted in the planning state because
they are proved by the method. In forward reasoning
the methods are applied from their premises to their
conclusions, that is, some conclusions become new sup-
port lines in the planning state. In order to achieve this
bi-directional reasoning direction with a uni-directional
planning mechanism, the planning direction must be in-
dependent from the reasoning direction. For this reason
we included labels in the premises and conclusions slot
of a method [Huang et al., 1994a] by specifying if the
method is applied from its premises to its conclusions or
vice versa.

In Q-MKRP, there are mainly two ways of constructing
initial methods. Firstly a human users can write them
directly. Many typical methods in our framework are
written this way, such as the application of a definition
or a theorem or the application of a certain property
like homomorphy. Secondly initial methods are often

e€xXtracted Irom successiul prools as well. 1n1s can be
easily done since in our approach methods essentially
consist of a specification and a declaratively represented
tactic. Such initial methods are then modified by meta-
methods to suit analogous situations.

Formally, in our approach a method is a 6-tuple with
the components (for details see [Huang et al., 1994a]):

Method
Declarations
Speci- Premises
fi pt. Declar-
cation Constraints ative
Part
Conclusions
Declarative
Content
Tactic
Procedural Proce-
«— dural
Content P
art

Declarations: A signature that declares the meta-

variables used in the method,

Premises: Schemata of proof lines which are used by this
method to prove the conclusion,

Constraints: Additional restrictions on the premises and
the conclusions, which can not be formulated in
terms of proof line schemata,

Conclusions: Schemata of proof lines which this method
is designed to prove,

Declarative Content: A piece of declarative knowledge
interpreted by the procedural content. This slot is
currently restricted to schemata of partial proofs,

Procedural Content: Either a standard procedure inter-
preting the declarative content, or a special purpose
inference procedure.

Methods can be very general, for instance consist es-
sentially of one rule application at the calculus level.
More specific methods comprise proof ideas, for instance,
to use a homomorphy property, to apply mathematical
induction or to use diagonalization. Such methods are
typically formulated in terms of proof schemata. The
most specific methods consist of full proofs for specific
problems. In the rest of the paper we want to illustrate
our approach with the help of an example, namely a
transformation of a proof (a most specific method) by
a meta-method which uses the correspondence between
the connectives A and V and the quantifiers ¥ and 3. Of
course this transformation can be done for more general
methods too.



Method : subsemigroup-conjunction
Declarations | —
Premises N-Def,SubSGrpDef,NonemptyDef
Constraint -
Conclusions T
2 subsemigrp(Uy, Gy, -) A subsemigrp(Vp, Go, -) A
nonempty (U N Vg) Hyp
3 IQE(UQQVQ)/\yQE(UQQVQ) Hyp
5 wxg€UgNxzg €V ﬁ—Def(4)
6 xg€ Up And—E(5)
7 xzo €Wy And—E(5)
9 yo€eUgAyo e Vp O—Def(ll)
Declarative 10 yo €Uy And-E(9)
Content 11 yo e Vp Al’ld—E(g)
14 VauVywuz eUgANyelUy—z-yel SubSGrpDef(13)
17 VeVywwz eVoAyelWg—z-yeVp SubSGrpDef(16)
20 zo-yo € Ug 14(6,10)
21 zo-yo € Vo 17(7,11)
22 xo-yo €UgANzo-yo € Vo Al’ld—I(?O,?l)
T VG, -, U, Va(subsemigrp(U, G, ) Asubsemigrp(V,G, ") A
nonempty(U NV)) — subsemigrp(U NV, G, ) Forall-1(32)
Procedural schema-interpreter
Content

Figure 1: Method subsemigroup-conjunction

3 The Reuse of Proofs by
Meta-Methods

After setting up our declarative framework, in the rest
of the paper we concentrate on the mechanical modifica-
tion of methods by meta-methods. A meta-method is es-
sentially a procedure which takes as input a method and
some additional parameters and produces a new method.
We have already identified a variety of meta-methods:
Generalization of methods in order to apply methods in
less specific proof states, syntactic adaption of methods
to bridge syntactic gaps, for instance, arities of predic-
ates [Huang et al., 1994a; Melis, 1993].

We illustrate a concrete modification, which translates
connectives into quantifiers. The initial method has been
extracted from a proof showing that the intersection of
two subsemi-groups remains a subsemi-group:

Let U and V' be subsemi-groups of a semi-group F', then
the intersection U NV is also a subsemi-group of F, if
the intersection is not empty.

The informal proof goes as follows:

uvelNV—ouvelUAuveV
—u-veEUANu-vevV
—u-velnvV

In a previous work [Kerber, 1989], we have presen-
ted informally how this proof can be transformed into
a corresponding proof concerning an arbitrary number
of subsemi-groups. The proof of the first problem is
formalized in the method in figure 1, which consists of

a proof generated within the proof development envir-
onment Q-MKRP [Huang et al., 1994b] (to abstract away
from details we only show the key steps). In the follow-
ing we illustrate how this method can be transformed
by a meta-method to a method for the case of arbitrar-
ily many subsemi-groups. The new theorem is in some
sense a generalization of the previous one:

Let {U; : i € I} be a family of subsemi-groups of a semi-
group F', then the intersection () U; is also a subsemi-

i€l

group of F', if the intersection is not empty.

Actually, the proof of this theorem is analogous to
the one above. The analogy can be derived from the
correspondence between “A” and “N” on the one hand
and “¥” and “)” on the other hand.

The proof can be sketched as:

u,v € (U;—=Vie Lhuvel
iel
—=VYielhu-velU
—u-veE U
i€l

The corresponding method for this proof is given in
figure 2 and can be constructed out of the method
subsemigroup-conjunctionin figure 1 by applying the
meta-method connective-to-quantifier, which con-
tains the following parts!:

e parameters: a (possibly empty) list of pairs of re-
lated formula patterns

! Meta-variables are indicated by overlining.



Method : subsemigroup-univ-quantification
Declarations | —
Premises (-Def,SubSGrpDef,NonemptyDef
Constraint —
Conclusions T
1 Vnasubsemigrp(Up(n), G, -) A nonempty([ Uo) Hyp
2 zoeNUoAyw €NUo Hyp
5 Yn.zg € Ug(n) (" Def(3)
6 a0 € Up(ng) Forall-E(5)
Declarative T Vn.yo € Up(n) [ Def(4)
Content 8 o € Uo(no) Forall-E(7)
13 Vaz,y(x € Us(no) Ay € Up(no)) — & -y € Up(no) SubSGrpDef(12)
20 zo-yo € Uo(no) 13(6,8)
21 Ynazg-yo € Up(n) Forall-1(20)
T VG, -, U.(Ynasubsemigrp(U(n), G, ) A nonempty((\U))
— subsemigrp(( U, G, -) Forall-1(32)
Procedural schema — interpreter
Content

Figure 2: Method subsemigroup-univ-quantification

e transformation rules:

1. Merge two proof lines with formulae which are
different only for one single constant or vari-
able, that is, with formulae [U] and [V],
where ¢[U] = subst(¢[V],U, V). ¥[U] denotes

that U occurs in 1:

Ly y[U] } T

— — L U(n

2. Transform certain conjunctions into universal
quantifications and certain disjunctions into ex-
istential quantifications in formulae:

L1 @[T Ag[V]] = Lz @Y U(n)]]
O[p[Fn. U(n)]]

L1 ®[p[U]V ¢[V]] = Lo
3. Execute the transformation according to the
formula patterns in the parameter slot.
The last transformation rule gives the user the possibility

to specify additional problem-specific transformations,
here (U NV +— (U), which results in the transition

Ly @UnV]—Ly @)Ul

In other cases this optional transformation is not ne-
cessary, e.g. in different formulations of the pigeon-hole
principle [Kerber and Pracklein, 1995].

The adaption of the justification is not included in the
transformation rules above. In general the elimination
rules of logical connectives are transformed into the cor-
responding rules for the instantiation of quantifications.
The justification And-E(5) in the first method becomes
Forall-E(5) in the second, for instance.

The transformation above does not formulate an un-
ambiguous characterization of the mappings to be car-
ried out, since the first rule may be applied to the wrong

candidate, lines 6 & 10, as well as to right one, lines 6
& 7. Which lines should be merged by this rule, can
be determined by traversing the proof tree backwards
from the theorem: a line can only be merged with its
dual line with respect to the recursive branching of the
connectives (A or V) in concern.

The result of applying this meta-method with the
additional transformation pattern as argument is the
method in figure 2. The four pairs of lines (6,7), (10,11),
(14,17), and (20,21) are merged by rule one to the new
lines 6, 8, 13, and 20. For instance

e 1 N ———

Rule three is applied to lines 2, 3, and T, thereby we
get from line 3 in the source proof line 2 in the target
proof (the other two lines are also manipulated by rule
two). By rule two, lines 2, 5, 9, 22, and T are mapped
to lines 1, 5, 7, 21, and T, respectively.

This method has been actually used in Q-MKRP to
solve the second problem.

Meta-methods can be incorporated into a planning al-
gorithm. To do this, first it must be decided when to
interrupt the planning with methods, in order to create
a new method with meta-methods. Second for the cur-
rent proof situation an adequate pair of a method and
a meta-method have to be chosen from the knowledge
base. We believe that there can hardly be any general
answer to this problem and we have to rely on heur-
istics. In an interactive proof development environment
like Q-MKRP [Huang et al., 1994b] the user might want to
make this choice himself. Therefore our main emphasis
lies in the task of providing the user with heuristic sup-
port for this choice. Even more challenging would be
an automation, of course. A trivial answer would be to
apply all existing meta-methods on all existing methods



and then cnoose neuristically the best. dSuch a proced-
ure can be fairly expensive with a large knowledge base.
The first heuristics for choosing a method to adapt we
will investigate are listed below:

e Organize methods in a hierarchy of mathematical
theories and prefer methods that belong to the same
theory as the current problem or whose theory is
close to that of the problem in the hierarchy.

e Use general conflict solving strategies like those of
oPsH, for instance, favor the methods and meta-
methods with the most specific specification.

Of course only successful methods generated in a
short-term memory are integrated into the permanent
base of methods. Another way to reduce the cost of the
operation would be to create only the specification of the
methods to be generated, select one for application and
create the tactic part by need.

As can be seen from the example above, fur-
ther automatization is possible by comparing the
two theorems: The correspondence of the subformula
subsemigrp(U, G, -) Asubsemigrp(V, G, -) in the first the-
orem and the subformula ¥n.subsemigrp(U(n),G, ") in
the second theorem suggests the application of the meta-
method connective-to-quantifier. In the same man-
ner the parameter can be constructed from the remain-
ing differences of the two theorems by mapping the term

UnVito NU.

4 Conclusion

We have proposed an approach to declaratively represent
methods. The representation in form of proof schemata
is intuitive and supports mechanical adaptions of meth-
ods to not directly fitting situations. In this paper, we
have examplified our approach by presenting the meta-
method conncective-to-quantifier. The application
of this meta-method is illustrated with the help of a full
proof as method, but of course it can also be applied to
methods containing proof schemata in a similar way.

Some topics for future investigations will concern the
incorporation of meta-methods in the general planning
framework of 2-MKRP. In particular, experience must be
accumulated in order to automatically interleave plan-
ning with methods with the extension of the method base
by meta-methods. Another unsolved problem concerns
the robustness of the approach with respect to syntactic
variants like Yau ¢ and —3za .
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