KZ«E((=)
(Y

A Test for Evaluating the
Practical Usefulness of
Deduction Systems

Xiaorong Huang Manfred Kerber
Michael Kohlhase Daniel Nesmith
Jorn Richts

Published as: In Geoff Sutcliffe, Christian B. Suttner, eds., Pro-
ceedings of the CADE-Workshop on FEvaluation
of Automated Theorem Proving Systems, Nancy,
France, p.33-36, 1994.

A Test for Evaluating the Practical Usefulness
of Deduction Systems

Xiaorong Huang, Manfred Kerber, Michael Kohlhase,
Daniel Nesmith, Jorn Richts
FB Informatik, Universitat des Saarlandes
66041 Saarbricken, Germany

{huang,kerber,kohlhase,nesmith,richts}@cs.uni-sb.de

The discussion on the evaluation of theorem provers, especially in the community
concentrating on fully automatic systems has in the past primarily been concerned
with evaluating only two parameters:

e The success on sets of classical benchmark examples (like the sets of Pelletier,

Wos, or the TPTP library[SSY94])

e and the minimal time used for the proof of these examples.

While these parameters certainly are of great interest to the community of deduction
system engineers, they do not give a complete or meaningful account of a given
deduction system for practical applications. For this purpose the evaluation should
be centered more around the needs of the user of a deduction system. It seems that
the field of deduction systems is now mature enough (systems like NQTHM, HOL,
VSE (INKA/KIV) are migrating into commercial applications) that other evaluation
criteria should be discussed and tried.

We propose a comprehensive test PyTEST (Test of Practical Usefulness) for the
practical usefulness of deduction systems. This test is modeled after tests for com-
mercial software, such as word processors, desktop publishing systems and database
programs commonly found in computer periodicals. These tests[Die93] give a typical
application problem to a team consisting of a typical user and the software product
and then evaluate the performance of the team in terms of elapsed time until a
solution is found, and the quality of the result.

We will now briefly discuss the application of this test plan to deduction systems
and discuss the merits and shortcomings of this approach.

For a concrete P(fI'EST situation we would give a deduction problem formalized
in natural language (e.g. think of a problem from a typical mathematics textbook
or a riddle from today’s newspaper) to a team consisting of a user and a deduction
system. Then we would ask the user to come up with a proof of the problem in some

33

proof formalism. Note that we do not insist that the proof necessarily is in the proof
formalism provided by the deduction system.

e Our deduction problems are stated in a human-oriented way (natural language,
or mathematical vernacular), which is the way most practical problems occur
in the world. The need to formalize the problem in the specific input language
of a deduction system includes a test of adequacy of the language for the task
at hand. In contrast to tests that only rely on the search time our test is fair
to deduction systems that invest on adequate input languages at the cost of
a reduced efficiency (in terms of time) of the proof search. It seems that our
test will find systems that have found a good trade-off between the expressive
power of the working language and the speed of proof search.

e In our view the key merit of the proposed test is that it evaluates a deduction
system from the point of view of a potential user by giving an assessment of
user productivity by measuring the time of the whole problem solving cycle.
The test addresses the questions, “If I want to use the system, how long will
it take me to get results?” and “what will the quality of the results be?”.
User productivity is the measure which in the long run will determine the
propagation of deduction systems and ensure the future of the community.

o Last but not least, PfTEST allows the comparison of interactive systems with
fully automatic ones. A comparison on terms of search speed or the set of
provable theorems cannot be meaningful for this task, since it does not apply
to interactive systems. Even for fully automated systems, a ranking by search
time alone sometimes gives a misleading picture, since very fast search times
can often only be reached by investing a great amount of time into fine-tuning a
system interactively for the special example at hand. Incidently these times are
not published, but would be measured by PUTESTOn the other hand the rate
of success on standardized sets of benchmark examples cannot be a measure for
interactive systems, since with the help of the complete user, they can prove all
theorems (if the underlying calculus is complete). Here the PfTEST situation
allows the user of an automatic system to break up the theorems into pieces
manageable for the automatic system and prove them separately.

As we have stated in the introduction, P(fT'EST is only a test schema, which has to
be instantiated to get meaningful results. Therefore we want to mention some of the
problems that have to be overcome in practical test situations.

e In recent times there has been some awareness of the problems of different input
languages for deduction systems and has lead to attempts to standardize the
input languages. However the much more difficult problem of different proof
formalisms (which clearly contains the language problem) has to be solved for
an evaluation of the results in PfT'EST.

34

e The evaluation of the (proof) results is a central component of PyTEST. This
paradigm is not feasible in some application areas of deduction systems like for
instance program verification, where great numbers of “junk-theorems” have
to be proven fast and fully automatically. Here other tests may give more
meaningful results.

e There must be some criterion which specifies which teams of user/system may
enter PyTEST in order to prevent the team consisting of a good typist and emacs
from competing. We believe that the purpose of the use of deduction systems
is to obtain a level of formalization and of machine support that makes the
resulting problem solving session with a deduction system more credible than
traditional proofs on paper. Thus we need some minimal criteria for systems
to be called deduction systems.

o The test does not yield a linear scale by which to give a ranking of theorem
provers. However, the multidimensional result of a P(/I'EST evaluation is also
an asset, since it allows one to quantify relative strengths and weaknesses of
very heterogenous sets of deduction systems. Furthermore it is not surprising
that comprehensive tests of a class of software systems that is as complex and
heterogenous as that of deduction systems can only result in a multidimensional
result.

e A jury is needed to judge the quality of the results. This fact makes evaluation
of deduction systems with P{jTEST a social process with all its problems and
advantages. One of the problems here will be to find competent juries to judge
the results delivered by the deduction system. Furthermore the choice of test
users of the deduction systems is critical for the test. We think that tests
should be conducted both with gurus (to see what is possible in principle) as
well as with beginners (in order to be able to judge the time need to become
productive with the systems).

References

[Die93] Stanford Diehl. Acrobat vs. Common Ground. BYTE, pages 133-136,
October 1993.

[SSY94] Geoff Stucliffe, Christian Suttner, and Theodor Yemenis. The TPTP prob-
lem library. In Proceedings of the 12th Conference on Automated Deduction,
LNCS, Nancy, France, 1994.

35

