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Die Mathematik ist nicht nach ihrem Gegenstand (etwa: Raum und Zeit, For-
men der inneren Anschauung, Lehre vom Zahlen und Messen u. dergl.) zu
charakterisieren, sondern, wenn man ihren ganzen Umfang erschopfen will, al-
lein durch ihr eigentumliches Verfahren, den Beweis. Ernst Zermelo

1 The Notion of Proof and Correctness

Mathematics generally enjoys the prestige of being the correct scientific discipline
par excellence. This reputation comes from the requirement that every claim must
be justified by a rigorous proof. Looked at a bit more closely, however, the general
notion of proof is by no means simple and fixed but is used to cover diverse concepts
and plays different roles. In traditional mathematical practice, proofs are not given
in terms of single calculus rules but at a level of abstraction that conveys the main
ideas. This procedure is based on the conviction that a detailed logic-level proof could
be generated if necessary, which, however, would be too boring. In addition, most
mathematicians have no interest in “formal” (logical-level) proofs. The correctness
of such relatively informal proofs is usually guaranteed by a social process of critical
reviewing. It turns out nevertheless that this social process often fails to reach its
goal: in most cases this is only caused by minor and reparable errors, but from time
to time a false theorem is assumed to have been proven. The history of Euler’s
polyhedron theorem is a well-known story of such repeated falsification and patching
[4].

The development of mathematical logic and in particular of automated reasoning
systems is an attempt to achieve a new quality of correctness [1]. The philosophy
behind this enterprise lies in the belief that the machine guarantees the correctness

*This position paper reflects an ongoing discussion in our group.
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by carrying out only correct deduction steps on a calculus level. As pointed out in [5]
two different positions are taken towards the notion proof, namely the realist and the
nominalist position. A realist accepts abstract properties of proofs, in particular he
is satisfied with the evidence of the existence of a proof in order to accept the truth
of a theorem. A proof for a nominalist, on the other hand, makes only sense with
respect to a particular calculus, hence he only accepts concrete proofs formulated
in this calculus. The advantage of adopting the realist position is that reasoning
systems can be built (and meta-theoretically extended) without bothering about the
concrete construction of proofs. The advantage of the nominalist position is that
it preserves the tradition that proofs can be communicated. Only the nominalist
position guarantees the correctness of machine generated proofs without violating an
essential of the traditional notion of proof, namely their communicability. Further-
more explicit proofs can be checked by simple proof checkers and this seems to be the
only way to ensure the correctness of proofs generated by large computing systems,
which are inevitably error-prone.

2 Correctness in Deduction Systems

In accordance with the two philosophical positions there are two ways to use auto-
mated reasoning systems: as trustworthy black box or as a system that produces
communicable proofs. Based on the discussion in the previous section we follow the
latter approach in Q-MKRP [3]. In order to achieve both machine checked correctness
and the readability of proofs we have chosen the following architecture:
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Different external components incorporated within our proof development en-
vironment can manipulate the partial proof tree representing the current natural
deduction proof. Since we cannot rely on the correctness of all of them, the final
proof is checked by a simple verifier equipped with a fixed set of natural deduction
rules. Our approach requires that each component protocols its results in the format
of natural deduction. The final natural deduction proof together with plan-level in-
formation provides an adequate starting point for presenting the proof in a way that
is familiar to mathematicians [2]. We view this transformation and checking proced-
ure as complementary to the meta-theoretical guarantee of correctness and not as a
substitute. The former guarantees the ultimate correctness of proofs generated with
the help of complex systems, while the latter raises the reliability of such systems.
In practice, our approach is only feasible if the incorporated components are highly
trustworthy.

In the automated reasoning community powerful deduction systems have been
built and will continue to be built. In order to ensure the correctness of proofs
generated by these systems in a social process it is an urgent need to set up a
standard format of proofs such that the proofs can be easily checked by different
independently developed proof checkers.
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