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Abstract. Most automated theorem provers suffer from the problem that
they can produce proofs only in formalisms difficult to understand even for
experienced mathematicians. Effort has been made to reconstruct natural
deduction (ND) proofs from such machine generated proofs. Although the
single steps in ND proofs are easy to understand, the entire proof is usually
at a low level of abstraction, containing too many tedious steps. To obtain
proofs similar to those found in mathematical textbooks, we propose a new
formalism, called ND style proofs at the assertion level, where derivations
are mostly justified by the application of a definition or a theorem. After
characterizing the structure of compound ND proof segments allowing asser-
tion level justification, we show that the same derivations can be achieved by
domain-specific inference rules as well. Furthermore, these rules can be rep-
resented compactly in a tree structure. Finally, we describe a system called
PROVERB, which substantially shortens ND proofs by abstracting them to
the assertion level and then transforms them into natural language.

1 Introduction

This paper concerns the presentation of machine generated proofs. Viewing auto-
mated theorem provers as a special sort of expert systems, this problem is very
similar to that of the explanation component of an expert system. In order to aid
the understanding of an end-user, methods are devised to augment, to prune, or even
to transform the trace of reasoning left behind by an expert system [Sho76, WS89].
Explanations produced in this way are in general tightly bound with the authentic
movement of an expert system from the initial data to the conclusion. Although
such explanations are apparently appropriate for system developers or knowledge
engineers, they do not meet the requirement of a typical end-user. To solve this
problem, a new, so called reconstructive paradigm for explanation has emerged in
recent years [WT92]. The central idea of this approach is that a distinct knowledge
base should be used to reconstruct a new solution based on the original one found
by the expert system.

The reconstructive approach for explanation has been pursued in the field of
automated reasoning as well, because not only the line of reasoning can be unnatural
and obscure, the formalism in which the proofs are encoded is usually extremely
machine oriented. Procedures have been developed to transform proofs from machine
oriented formalisms into more natural formalisms [And80, Mil83, Pfe87, Lin90]. As
the target formalism, usually a variation of the natural deduction (ND) proof first
proposed by G. Gentzen [Gen35] is chosen. Heuristics of various kinds are developed



to improve the quality of the target ND proof. For instance, C. Lingenfelder utilizes
the topological structures of the refutation graph both to produce more direct proofs
as well as to avoid redundancy by inserting lemmas [Lin90]. Another technique for
inserting lemmas is reported in [PN90].

Until now the reconstruction stops here and ND proofs are used as inputs by
systems producing proofs in natural language. The first such attempt was made by
D. Chester [Che76]. His system EXPOUND is usually characterized as an example
of direct translation. Although a sophisticated linearization is applied on the input
ND proofs, the steps are translated locally in a template driven way. Equipped with
more advanced techniques developed in the field of natural language generation, a
more coherent translation was obtained by the MUMBLE system of D. McDon-
ald [McD83], where emphasis was laid on the generation of utterances highlighting
important global structures of the proofs; as well as utterances mediating between
subproofs. A more recent attempt can be found in THINKER [EP93], where dif-
ferent styles for explaining ND proofs are exploited. In short, it was believed that
ND proofs can be adequately presented by resorting solely to ordering, pruning, and
augmentation.

All these systems suffer from the same problem: The derivations they convey
are exclusively at the level of the inference rules of the ND calculus. In contrast to
informal proofs found in standard mathematical textbooks, such proofs are composed
of derivations familiar from elementary logic, where the focus of attention is on
syntactic manipulations rather than on the underlying semantic ideas. The main
problem, we believe, lies on the lack of intermediate structures of ND proofs, which
allow atomic justifications at a higher level of abstraction.

To gain more reliable experience with the levels of justifications, we have analyzed
proofs in mathematical textbooks like [Deu71]. Based on our preliminary empirical
study, justifications are provided at three levels.

— Logic level justifications are simply verbalizations of the ND inference rules, such
as the rule of Modus Ponens.

— Assertion level justifications account for a derivations in terms of the application
of an axiom, a definition or a theorem (collectively called an assertion). The
following is an example:

“since a is an element of the set S7, and S7 is a subset of Sy, according
to the definition of subset, a is an element of S»”.

— Proof level justifications are at a still higher level and are comparatively rare.
One example is justifying a proof segment as a whole by resorting to its similarity
to a previous proof segment.

Among the three levels mentioned above, the assertion level plays a dual role in
presentation. On the one hand assertion level justifications are logically compound,
that is, mathematicians can explain such steps by providing a logic level proof seg-
ment. On the other hand, assertion level justifications are primitive with respect
to presentation, since proof segments justifiable atomically at the assertion level is
practically never expanded to a logic level proof segment. On account of this, while
proof level structures are also very useful, the reconstruction of assertion level units
in ND proofs is of paramount importance and is indispensable for the purpose of
presenting proofs in a natural way.



Section 2 first defines the structure of the logic level proof segments which can be
justified atomically at the assertion level. Section 3 accounts for the acquisition of
domain-specific assertion level inference rules and shows how they can be organized
in a tree structure. Then in section 4, we illustrate how this tree structure can be
used to abstract ND proofs to the assertion level and report our experience with
them in the subsequent translation into natural language. Finally, a look into the
future work concludes this paper.

2 Compound Proof Segment at the Assertion Level

The existence of a hierarchy of proof units in proofs constructed by mathematicians
can be accounted for by a computational model of human deductive reasoning
[Hua93]. Following A. Bundy [Bun88], this theory cast theorem proving as a plan-
ing process, where a planner constructs a proof by applying methods (called tactics
in some earlier systems [GMW79, CAB*86]) on open goals. The proof under con-
struction is represented as a hierarchical and partially elaborated plan called a proof
tree. The execution of each method results in the integration of a subtree constitut-
ing a proof unit with internal structure. In the light of this, the intuitive notion of
the application of an assertion is technically realized either by a compound proof
unit composed of applications of ND rules, or by a atomic proof unit justified by a
domain-specific inference rule.

Fig. 1 is an example of a compound proof unit inferring a; € Fy from U; C F
and a; € Uy by applying the definition of subset encoded as

V5175251 CSyeVezeS =>z2€85, (1)

The leaf with the label A contains the assertion being applied.

A: Vs, 5,5 C52<:>(Vz$651:>z652)
UyCh & (Voo el =5 € F)
U1CF1:>(Vx-T€U1:>CE€F1)
VE$EU1:>IEF1
ar €U = a1 €F
a1 € I

vD

<:>D, Ui C Fi
=D

VD, a1 € Uy
=D

Fig. 1. Natural Expansion 1 for Subset Definition

Actually, the procedure applying assertions by constructing a compound proof
segment is specified in terms of a so called decomposition-composition constraint im-
posed on such proof segments identified in our preliminary empirical study [Hua92].
The following two definitions are necessary for the discussion of this constraint.

Definition: An inference rule of the form A'_F’A'_AIT_I"“’A'_P" is a decomposition

rule with respect to the formula schema F', if all applications of it, written as

ARF AFP!. AFP) . . .. )
A5 = gatisfy the following condition: each Py, ..., P! and @’ is




— a proper subformula of F’, or
— a specialization of F’ or of one of its proper subformula, or
— a negation of one of the first two cases.

Under this definition, AD, = D,VD are the only elementary decomposition rules
in the natural deduction calculus A'K. Compare Fig. 1 for the meaning of the rules.

Definition: An inference rule of the form %”QAH‘D" is called a composition rule
if all applications of it, written as %, satisfy the following condition: each
P/,...Plis

— a proper subformula of Q’, or
— a specialization of @’ or of one of its proper subformula, or
— a negation of one of the first two cases.

As illustrated in Fig. 1, the decomposition-composition constraint requires that a
logic level proof segment applying an assertion A consists of a linear decomposition
of A along the branch from A to the root. Other premises needed in the series
of decompositions (the leaves U; C Fy and a3 € U; in Fig. 1) can be obtained
by compositions. For an example of such composition, see Fig. 2. For a precise
definition of this constraint, the readers are referred to [Hua92]. In the sequel, proof
segments satisfying this constraint will be referred to as the natural ezpansion of
corresponding assertion level justification. This constraint is closely related to one
of Johnson-Laird’s effective procedures [JL83], aimed at accounting for spontaneous
daily reasoning. Unfortunately, the psychological explanations provided by him can
not be extended to predicate logic straightforwardly.

3 Assertion Level Inference Rules

In this section, we show that deductions justifiable by the application of a particular
assertion A can be covered by a finite set of domain-specific inference rules at the
assertion level. In the sequel, we denote this set of rules applying an assertion .4
by Rules(A). It is this finiteness that makes this concept useful both for proof
presentation, as well as for interactive proof development environments [HKK*93].

3.1 Acquisition of Assertion Level Inference Rules
There are two ways for acquiring new assertion level rules:

— learning by chunking-and-variablization,
— learning by contraposition.

Chunking-and-Variablization First, since there is evidence that input-output
patterns of repeated actions will be remembered as new operators, we believe that
patterns of repeated applications of an assertion may be remembered as new rules.
Similar phenomena is called in other systems the learning of macro-operators [FHNT2],



or chunking [New90]. On account of this, domain-specific rules are also referred to as
compound rules or macro-rules. We continue with our subset example to illustrate
this.

Example 1 (Continued): Suppose that a reasoner has just derived a; € F; from the
premises a; € Uy and U; C Fy by applying the definition of subset (1). Our assump-
tion is that apart from merely drawing a concrete conclusion from the premises,
possibly he learns the following macro-rule as well:

AtracUANAFUCF )
AracF

where a, U and F' are metavariables standing for object variables. More generally,
hand in hand with deductive steps corresponding to the natural expansions with

P{, ..., P! asthe leaves and P’ as the root, the inference rule below may be acquired:
AFP,...,AFP

bl ) m 3

AP (3)

where Py,..., P, are formula schemata generalized from Pj, ..., P/ and P is the

formula schema generalized from P’. This generalization replaces constant symbols
not originally occurring in .4, the assertion being applied, by new metavariables. A
similar variablization is a standard technique employed in the context of explanation
based generalization [M0090]. Obviously, the replaced constant symbols must occur
in formulas serving as premises, such as a;, U; and Fy in a; € U; and U; C F} in
our example.

Contraposition The second way of acquiring assertion level rules can be viewed
as a generalized contraposition, described by the following schema: if 7 is an existing
rule of the form:

T_Al—pl,...,Al—pn
AFg

then r’ below can be acquired by contraposition:

oo Abrpr,... . Arpi1, AFpiga,..., A py, A g
AN

For instance, after the acquisition of

ArFacUUCF
AracF

two other rules

AtracUag¢lF d Arag¢ FUCF
an
AFUGF AragU

can be derived as contrapositions (see [Hua92] for more details).



3.2 The Complete Set of Assertion Level Rules

Now let us turn to our main concern, namely the set of inference rules Rule(.A), asso-
ciated with a particular assertion .A. As we have argued, rules in Rule(A) are either
generated in a chunking-and-variablization manner, or by contraposition. Therefore:

Rules(A) = R(A,NK U Contra(NK)) U Contra(R(A, NK U Contra(NK))) (4)

where R(A,B) denotes the set of rules applying A, which can be acquired in a
chunking-and-variablization manner with respect to B, denoting the set of logic level
rules at the disposal of the reasoner for constructing logic level proof segment. In our
theory, we assume the ND calculus N'K [Gen35], together with their contrapositions,
as the available rules at the logic level. Contra(S) denotes the set of rules which are
contrapositions of rules in the set of rules S. There are redundancies in R(A, NK U
Contra(NK)) and Contra(R(A, NK U Contra(NK))), because many rules in the

latter may have a direct derivation as well.

Example 1 (continued):
With a rule % already acquired from the subset definition, supported
by the ND proof segment illustrated in Fig. 1, it is only natural for a human to

be able to apply the following contraposition: %& This, however, has a
corresponding compound proof segment of its own, given in Fig. 2.

a1 € Ur,a1 ¢ Fu
Vor,5.51 C S2 & (Voz €51 =z €85) (a1 €Ui = a1 € )
UCh &VzelUy >z el —(Vez €Uy = z € F1)

Ur g I
Fig. 2. Natural Expansion 2 for Subset Definition

In general, if Fig. 3(a) is the corresponding tree schema for a rule d%;bl, ac-

b1,4b2,cl
S

quired, the corresponding tree schema for its contraposition can be con-

structed, using the corresponding contrapositions of the logic level rules, as depicted
in Fig. 3(b).

The following property makes a more succinct representation of equation (4)
possible [Hua91]:

R(A, Contra(B)U B) = R(A, B) U Contra(R(A, B))
where B is an arbitrary set of logic level inference rules. A natural corollary is:
Contra(R(A, Contra(B)U B)) C R(A, Contra(B) U B)

Intuitively, this means contraposition of compound rules will bring forth no more
new rules if contraposition is already applied to elementary rules. Thus

Rules(A) = R(A, NK) U Contra(R(A, NK)) (5)



cl,c2,... b1, —b2,...

é Cn é —-Bm
E’.“’T I,T,
B1 -C1
Bm, 51, .. =Cn el
b2 —c2
(a) (b)

Fig. 3. Expansion for Contrapositions

3.3 Tree Schemata for Assertion Level Inference Rules

As stated in (5), the application of an assertion .A can be covered by the union of
R(A,NK) and its contraposition. According to the definition of R(A, NK), each of
its rules corresponds to a tree schema generalized from a natural expansion. There-
fore R(A,NK) can be represented by a set of tree schemata covering all natural
expansions, denoted by Tree(.A, NK). Since some members in Tree(.A, N'K) are sub-
trees of others and can therefore be omitted, we show in this section that this set
can be represented in a very compact way. For almost all examples, Tree(A, N'K)
consists usually of only one or two trees.

Example 1. (continued)

If we apply the variablization described in section 3 on the proof segment in Fig.
1 by replacing a;, U; and F} by metavariables a, U and F', respectively, the tree
schema in Fig. 4 can be obtained.

A Vs 5,51 CS & V8 €51 = €Sy
UCFoeVyeelU=zel
UCF=>VyaeU=szeF

Ve €U =z €EF
a€elU=a€F ’
a € F

, UCF

aclU

Fig.4. Tree Schema for Subset Definition

Because every subtree (with the subset definition as one of its leaves) of the tree
schema in Fig. 4 is a schema of natural expansion, this tree contains a whole set
of assertion level inference rules. Apart from the one listed in (2), VMEUU%%F is
another rule contained in this tree, for instance.

Now we are ready to examine the set of proof tree schemata designated by
Tree(A, NK). We do this by defining Tree(A, B) as a restricted deductive closure of
the composition and decomposition rules in B, an arbitrary set of logic level infer-
ence rules. Technically, for all r € R(A, B), there is a tree schema t € Tree(A, B),

such that r can be accounted for by a subtree of ¢.



Below is a constructive definition:

i Start with the tree in Fig. 5(a), which corresponds to the rule x5,

ii If there is a tree ¢ in the form of Fig. 5(b), r = AA'_G’AQ'X}:@"’AAFM € Bisa

decomposition rule with respect to a, and if there exists a substitution o, such
that A’ = ao, then extend t to a tree ¢’ in form of Fig. 5(c).

iii If there is a tree ¢ in the form of Fig. 5(b), and r = %W € Bisa

composition rule with respect to ), now if there exists a substitution o, such
that p = Qo, then extend ¢ to a tree ¢ in form of Fig. 5(d).

pl, ... ,pn'a
A, P, "4’ - D, A’ P ’
A ) } }
A’ A’ plo, ... pno A
(a) (b) (c) (d)

Fig. 5. Construction of Tree Schemata

Some explanations: i) initializes a tree with only one node, corresponding to the
initial inference rule <, ii) and iii) extend existing trees by decomposing the root
or the leaves. The informations contained in this set can be redundant, since some
rules accounted for by one tree schema are contrapositions of rules accounted for by
another tree schema.

Example 1. (Continued): We illustrate the structure of the tree schemata intro-
duced above by continuing with the example used throughout this paper. Two trees
are needed as shown in Fig. 6 and Fig. 7, since the equivalence “&” is understood
as the shorthand of the conjunction of two implications and therefore can be decom-
posed in two different ways. Table 1 is a list of some of the rules in Rule(.A), with
their corresponding tree schemata indicated.

A Vs, 5,51 CS: &V €81 =5 €S5;
] :UCF & Voo €Uz €F
Bl:UCF=>VozeU=z€F ’

[c]: Yoz eU=>zel
d:a€U=>a€F ’
[e]:a € F

UcCF

aeclU

Fig. 6. Tree Schema 1 for Subset Definition

Notice, as we argued above, every subtree containing the subset definition as a
leaf corresponds to a rule of inference, if we take the other leaves as preconditions



‘No.‘lnference Rule Derivation(Tree or Contraposition) ‘

FaceUAFUCFE

1 Tree in Fig. 6
AFa€F 8

(2) ok ai E’LLA¢'_UU cr Contraposition of (1)

(3) Ak aAEl_U[,]AgZI—Fa gr Contraposition of (1)

4 FUCF

(4) ArVoreU=sac P
P FaeU=acl
(5) AFUCF

where a does not occur in A Tree in Fig. 7.

(6) " VXEFEUUC:}% €r Subtree of Fig. 7 rooted at node [c]
FUZF ..

(7) AFVzeUSzEF Contraposition of (5)

Subtree of Fig. 6, rooted at node [c]

Table 1. Some Inference Rules for Subset Definition

A :V5175251 CSy & Vez €51 =>z€S5,

[a : UCF&VooeU=zeF aclU=acF
B]: (Voaz €Uz F)=>UCF 'VezelU=zel
[c]:UCF

Fig.7. Tree Schema 2 for Subset Definition

and the root as the conclusion. In other words, only subtrees rooted along the path
from the leave which is the assertion being applied to the root, called the main
branch, are of interest. Fig. 6 has five such subtrees and Fig. 7 has three, namely,
the length of the main branch. Nodes along the main branch are numbered in Fig. 6
and Fig. 7 for convenience. Each such subtree represents a rule of inference, directly,
and its contraposition, indirectly.

For instance, rule (1) is directly represented by Fig. 6 itself and (2), (3) are
contrapositions of (1). Rule (4) is represented by a subtree rooted at node [c] in Fig.
6. Rule (5) is represented by one of the subtrees rooted at [¢] in Fig. 7, which has
no associated rules because of its variable condition.

4 Abstracting ND-Proofs to Assertion Level Proofs

As describe above, assertion level justifications are used both for compound logic
level proof segments satisfying the composition-decomposition constraint and atomic
derivations justified by an assertion level inference rule. Logically, the two kinds of
derivations are equivalent. In this section an algorithm is devised which replaces
as many compound proof segments in machine found ND proofs as possible, by
atomic derivations justified by assertion level rules. Most importantly, the replace-
ment is not restricted to natural expansions, but includes other logically equivalent
compound segments. This procedure is the preprocessor of PROVERB, a system
transforming natural deduction proofs into natural language [Hua94]. PROVERB is



the explanation component for £2-MKRP, an interactive proof development envir-
onment [HKK193].

As argued above, in order to produce natural language proofs comparable with
proofs found in typical mathematical textbooks, we should first try to replace as
many complex proof units as possible by atomic assertion level steps. One straightfor-
ward solution is a strict abstraction of the input ND proof by replacing all subproofs
satisfying the decomposition-composition constraint by an atomic step justified by
the corresponding assertion level inference rule. This approach, however, has a severe
drawback: Since automated theorem provers usually work in a manner fundament-
ally different to that of human beings, the input ND proofs are often quite twisted
so that not many units satisfying this constraint can be found. Another approach
based on the assertion level rules rather than on the constraint avoids this problem.
One way to do so is to go through the entire input proof, and test for every proof
node N, if N can also be justified by the application of an assertion. As candidates
for such assertions all proof nodes that depends on less assumptions than N could
be considered. Apparently, such a procedure nearly reproves the problem based on
the input proof. Although this exhaustive procedure may find optimal proofs and its
complexity is theoretically still polynomial, it is quite search intensive in the prac-
tice. A more restrictive variation is employed in our system that mainly abstracts an
existing proof as it is proved, but utilizes the assertion level inference rules instead
of the decomposition-composition constraint.

Algorithm: Go through the entire proof tree starting from the root, for each proof
node N,

1. Choose as the set of assertions AS the definitions and theorems contributed
to the proof of NV, namely the leaves of the subtree rooted by N, which are
definitions or theorems used.

2. Among the nodes in the subtree rooted by N, test if there exist nodes p1, ..., pn,
from that NV can be derived by applying an assertion .4 in AS. In this case, reduce
the proof so that NV has pi1,...,p, as its only direct children and the assertion
A as its new justification.

The applicability of a particular assertion A can be tested by finding a subtree
in Tree(A, NK) (or one of its contrapositions), and a subtree in the input proof tree
rooted by the conclusion N to be justified, so that the leaves match. To maximize
the factor of abstraction, we proceed in a top-down manner and gradually search
for maximal subtrees satisfying the condition above. For example, suppose we are at
the proof node [¢'] in a segment of an input proof as shown in Fig. 8 (the ND rules
used as justifications are omitted). The label Subset indicate this hypothesis is the
definition of subset.

Since it is recorded that the definition of subset is used as one of its hypothesis,
it is tested if any assertion level rule associated with this definition can be applied.
For this purpose, we search for a node in the tree schemata in Fig. 6 and Fig. 7 for a
node which matches the node [¢'] in Fig. 8. [¢] in Fig. 6 is found. Now we try to find
two maximal subtrees rooted by [e] and [¢’] respectively which match. In this case,
they are the two trees themselves. [p1] and [p2] are used as new premises of [¢'] in

10



Subset Vs, 5,51 CS2 & Vzz €51 =22 €5,
W:UhCFh &VozelUi >z € R
Bl: Ui CFhi=>VYeelUi >z e R

[]:Yez €U =z € R
[dl]lb€U1$b€F1
AR

, [p1]: Ur C Fy

, b¢ Py

y [p2]:beln

L
[e:be R

Fig.8. A Segment of the Input Proof

the abstracted proof, and the definition of subset as the new justification. Thereby
the proof segment in Fig. 8 is abstracted to the proof segment in Fig. 9 below:

[p1] : U1 C Fy, [p2] : b€ Uh
[e:be R

Subset
Fig.9. The abstracted proof segment

Note that the leaf b ¢ Fy in Fig. 8 need not be matched, since it is a temporary
assumption for the indirect proof step. The search for maximal matching subtrees
is carried out in a breath-first manner, upwards from both of the roots. Note also,
that not every intermediate node in the input proof segment needs to be matched
and only the leaves count. The indirect proof step in the input proof segment in Fig.
8, which is apparently a detour made by the machine, is absorbed.

Searching for maximal subtrees in a breath-first manner may lose the optimal ab-
straction, since all intermediate nodes of the maximally matched subtree in Tree(.A, N'K)
must be matched by a node in the input proof. However, this restriction significantly
accelerates the process. The worst case of our abstraction algorithm is now only of
the order O(n?), including the cost of generating tree schemata. This happens when
no abstraction can be performed. For neatly written input proofs containing seg-
ments which structurally resemble tree schemata representing assertion level rules,
it can even be nearly linear.

The quality of the resulting proofs depends on the input proofs in the following
way:

— The algorithm works well on neatly structured ND proofs. In these cases, the
reduction factor depends on the average depth of the terms in the definitions
and theorems. Since mathematicians usually avoid using both too trivial and
too complicated definitions and theorems, a quite stable reduction factor (about
two thirds in terms of the number of the proof lines) is normally achieved.

— Most significant reduction is observed with input proofs which are essentially
direct proofs, but containing machine generated detours and redundancies. At
the end of this section, we show an example where a machine generated ND
proof of 134 lines is shortened to a proof of 15 lines.

— The complete proof transformation procedures described in [And80, Mil83, Pfe87,
Lin90] work fairly similar to a tableau prover. They tend to produce proofs which
are mainly indirect, if not properly guided by heuristics. Our algorithm performs

11



poorly on such indirect proofs, where in most of the node only L is derived. Al-
though such proofs are also often shortened to the half in length, the resulting
proofs are still largely at the level of calculus rules and therefore still too te-
dious. This problem can be overcome by incorporating techniques that help to
avoid indirect proofs (see [Lin90, PN90]) into the process transforming proofs in
machine oriented formalisms to ND proofs. Techniques described in [Lin90] can
also be adapted to be applied on ND proofs after the transformation.

Let us look at the example below, abstracted from an input proof of 134 lines,
generated in the proof development environment 2-MKRP. It is given in a linear-
ized format, where the last column contains the justification as well as the premises.
Eleven of the remaining fifteen steps are at the assertion level. The rest are justified
by ND rules of more structural import: They introduce new temporary hypothesis
and then discharge them (the Hyp and the Choice rule in this example). These steps
are usually presented explicitly. Groups of trivial steps instantiating quantifiers or
manipulating logical connectives are largely abstracted to assertion level steps. Line
7 corresponds to the proof step in Fig. 9, abstracted from the proof segment in Fig.
8. The definitions of semigroup, group, and unit are obvious and therefore omitted
in the proof below. “solution(a,b,c, F,*)” should be read as “c is a solution of the
equation a*x = b in F.” Notice, the proof segments replaced by assertion level steps
are not necessarily a natural expansion of the latter. In contrast, they are usually
proof segments produced by a automated theorem prover, which are logically equi-
valent to a natural expansion, but contain unnecessary detours. If we replace the
assertion level steps in the proof below by their natural expansions, the result is a
logic level proof of 43 lines, in contrast to the input proof of 134 lines.

Theorem: Let F' be a group and U a subgroup of F, if 1y is a unit element of U,
then 1 = 1gp.

Abstracted Proof about Unit Element of Subgroups

Formula Reason
1. 1; F  group(F, ) A subgroup(U, F,*) Aunit(F,1,*) A (Hyp)
unit(U, 1y, *)

2. 1, v UCF (Def-subgroup 1)

3. 1, b 1ypeU (Def-unit 1)

4. 1, F FyzeU (33)

5. 5 F welU (Hyp)

6. 1;5F wuxlp=u (Def-unit 1 5)

7. 1;55F uweF (Def-subset 2 5)

8. 1,5+ 1lypekF (Def-subset 2 3)

9. 1;5F semigroup(F, ) (Def-group 1)

10. 1;5+  solution(u,u, 1y, F,*) (Def-solution 6 7 8 9)
11. 1;5F wu*xl=wu (Def-unit 1 7)

12. 1;5F 1€ F (Def-unit 1)

13. 1,5+  solution(u,u, 1, F, *) (Def-solution 7 11 12 9)
14. 1;5F 1=1y (Th-solution 11 10 13)
15. 1; v 1=1yp (Choice 4 14)

12



The appropriateness of the assertion level is supported by our experience in the
verbalization of abstracted proofs using the system PROVERB [Hua94]. Taking as
input ND style proofs at assertion level, the resulting texts are at an acceptable level
of abstraction. Below is the natural language proof generated by PROVERB:

The Natural Language Proof

(I)Let F" be a group, U be a subgroup of F, 1 be a unit element of F and
1y be a unit element of U. (2)According to the definition of unit element,
ly € U. (3)Therefore there is an X, X € U. (4)Now suppose that u is such
an X. (5)According to the definition of unit element, u * 1y = u. (6)Since U
is a subgroup of F', U C F. (7)Therefore 1y € F. (8)Similarly u € F', since
u € U. (9)Since F' is a group, F' is a semigroup. (10)Since u* ly = u, 1y is a
solution of the equation u* X = u. (11)Since 1 is a unit element of ', u*x1 = u.
(12)Since 1 is a unit element of F', 1 € F'. (13)Since u € F', 1 is a solution of|
the equation u * X = u. (14)Since F'is a group, ly = 1 by the uniqueness of]
solution. (15)This conclusion is independent of the choice of the element u.

5 Conclusion and Future Work

This paper proposes a reconstructive approach toward the presentation of machine
found proofs. It is argued that after machine found proofs are transformed into ND
proofs, a reconstruction should be started anew, to obtain proofs containing justi-
fications at a higher level of abstraction, which are intuitively understood as the
application of a definition or of a theorem, collectively called an assertion. We have
illustrated that compound proof segments which can be justified as the applica-
tion of a certain assertion fulfill the so called decomposition-composition constraint.
Furthermore, they are logically equivalent to atomic derivations justified by rules
of inference at the assertion level. The complete set of such assertion level rules
associated to a particular assertion can be represented in a very compact way in
form of tree schemata. With the help of these tree schemata, we devised an ef-
ficient algorithm abstracting machine generated ND proofs to the assertion level.
This algorithm works even better, if adequate heuristics are employed to generate
well structured ND proofs.

The significance becomes more evident when it is viewed within the entire spec-
trum of transforming machine generated proofs into natural language. With natural
deduction style proofs composed of mostly assertion level steps as an additional in-
termediate representation, the proofs passed to the text planner already resemble
proofs produced by human mathematician, and therefore lend themselves to a nat-
ural specification of presentation strategies. Using the abstraction as a preprocessor
which substantially shortens input proofs, we are able to tackle a broad class of
proofs containing more than one hundred lines, and the final proofs generated are
at a level of abstraction comparable with proofs found in typical mathematical text
books, where authors choose a detailed style.

There is no doubt that proofs are often presented by mathematician at a even
higher level of abstraction, since a loss factor of 10 to 20 is reported when using
systems like AUTOMATH [dB80]. Even more radical expansion factors (about 5,000
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to 10,000) are conjectured by experts for harder mathematical problems. To achieve

a similar factor of reduction in the proof presentation, a much deeper understanding
of the cognitive process of theorem proving is necessary. This work is only a first
step toward this direction.
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