
An Approach to Transparent Fault Tolerance for
Client-Server Models

Thomas Becker

October 1992

Technical Report
University of Kaiserslautern,
P.O. Box 3049, D-6750 Kaiserslautern, FRG
email: tbecker@informatik.uni-kl.de

Abstract

We describe a technique to make application programs fault tolerant. This tech-

nique is based on the concept of checkpointing from an active program to one or

more passive backup copies which serve as an abstraction of stable memory. If

the primary copy fails, one of the backup copies takes over and resumes process-

ing service requests. After each failure a new backup copy is created in order to

restore the replication degree of the service. All mechanisms necessary to achieve

and maintain fault tolerance can be added automatically to the code of a non-fault

tolerant server, thus making fault tolerance completely transparent for the applica-

tion programmer.

1. Introduction

One of the most desirable properties of a distributed computing system is its poten-

tial capability of tolerating system component failures. In an idealistic view, if a

component of a fault-tolerant system fails, another one takes over and resumes

processing. This system reconfiguration would ideally be completely invisible from

outside the system, and hence possible without additional interaction of a human

operator.

A distributed, client-server structured system commonly comprises services which

must be highly available. A complete breakdown of such a service causes other

services to fail in consequence (or at least substantially reduces the quality of the

provided service). A good example for a service with such availability requirements

is the name service which maps logical service names to physical addresses to



- 2 -

which service requests can be sent. If the name service fails, other services whose

logical names are known become inaccessible because their physical addresses

cannot be obtained.

Several basic techniques to achieve a fault-tolerant system behaviour are well

known. In one of these techniques, the state of a program is transferred to non-

volatile storage periodically. If the program (or the computer node on which it exe-

cutes) fails, a new copy of the program is started and initialized with the last

recorded state of the failed program. The new copy can then continue processing

with a valid intermediate state without having to re-execute the complete statement

sequence from the very beginning of the program. This method is commonly

known as checkpointing or cold stand-by technique; the transfer of a program state

is called a checkpoint. Depending on the granularity of the checkpoints (i.e. the

time between two successive checkpoints) and the cost of creating and initializing

a new program copy, the time which is necessary to recover from a failure and con-

tinue processing may be considerable. The service provided by this program

appears to be unavailable during this recovery phase.

If unavailability of a service during recovery and reconfiguration of the system can-

not be accepted, a different technique for tolerating failures must be used which is

often termed active replication or replicated execution of a program [1]. In this

approach, several identical replicas of a program execute in parallel on different

computer nodes. If one of the replicas fails, the service will still be provided by the

remaining replicas without notable recovery delay. However, to ensure that all rep-

licas behave in a consistent way (i.e. produce the same results), specific

synchronization measures have to be taken. In addition, while a program using a

checkpointing strategy only requires a single processor, replication of a program is

only reasonable if all replicas are located on distinct processors to prevent several

of them from being lost after a single computer node failure.

In our warm stand-by approach we adopt advantages from both basic techniques.

Our technique is based on the idea that a service is provided by several identical

servers (i.e. replicas of an application program) from which only one (the primary)

actually processes service requests from clients while the others (the backups)

serve as an abstraction of stable memory. According to the cold stand-by

approach, the primary periodically sends checkpoints to the backup servers. In

case the primary fails, one of the backups takes over as the new primary using the

state represented by the last successful checkpoint. Since there is no need to cre-

ate a new server copy and initialize it with a state to be read from the disk before



- 3 -

the service can be continued, the time during which the service appears unavaila-

ble for a client is reduced substantially.

An important concern of our approach is to make the fault tolerance concepts

transparent, both for the designer of a service and for clients using the service. This

allows an application program to be developed without having fault tolerance in

mind. The mechanisms needed to achieve and maintain fault tolerance will be

added automatically to the non-fault tolerant program code.

In Section 2 of this paper we describe the computational model for which our

method has been developed. Section 3 gives an overview of a fault tolerant service

architecture. In Section 4 we show how existing server code can be augmented

with fault tolerance mechanisms automatically. Section 5 deals with implicit check-

points. Failure handling and recovery actions are discussed in Section 6. Finally,

we compare our technique with other systems in Section 7 and subsequently con-

clude the paper.

2. Computational Model and Fault Hypothesis

2.1. The MOSKITO kernel as a construction base

Our approach s described in terms of a client-server model [2] in which computa-

tional entities exchange messages to invoke the processing of tasks by other

entities and to return results. The experimental operating system kernel MOSKITO

[3] implements this model and has served as a construction base for a prototype

of our method.

The computational entities managed by the MOSKITO kernel are teams. A team

is a collection of processes which share a common address space. Each process

can be viewed as an autonomous thread of control. Teams and processes can be

created and destroyed dynamically.

Due to the common address space processes within a team are able to communi-

cate with each other using shared variables. The communication between

processes of different teams is solely done by message passing. A process can

send a message to a port which, like teams and processes, may be created and

destroyed during run time. Each port has a system-wide unique identifier. A port is

associated with the team from which it was created. Only processes of this team

may receive messages from the port.

The MOSKITO kernel provides a multicast communication facility by the concept

of port groups. A port group comprises an arbitrary number of ports which may join



- 4 -

and leave the port group at system run time. A port can only be member in one port

group. Messages with a port group as destination address will be sent to all ports

which currently are member in the port group.

The send primitive provided by MOSKITO offers two different communication

semantics. A datagram message is an asynchronous, notification-oriented mes-

sage. The sender of a datagram message resumes processing immediately and is

not informed about the success of the send operation (i.e. a datagram message is

unreliable). When using the synchronous order-oriented message transmission

scheme, the sender is blocked until the message was received at its destination

and a process of the receiver team has sent a reply message. This communication

scheme implements a remote procedure call (rpc). In case the message is multi-

cast, the first reply message will deblock the sender process.

Our method requires a homogenous distributed system in which the nodes are

interconnected by a local area network. It is assumed that MOSKITO runs on each

of these nodes.

2.2. Fault Hypothesis

When implementing a fault tolerance mechanism, a careful consideration of the

failure classes which are supposed to be handled by the mechanism is necessary.

Cristian [4] has proposed a failure classification scheme which reflects the effects

of failures as seen by the application software (which is typically structured accord-

ing to the client-server paradigm). In this classification, a server is said to be correct

if it behaves according to all its specifications.

A server which omits to respond to an input suffers from an omission failure. A

crash failure has occurred if a server does not process subsequent requests any

more. If the processing of service requests is not performed in a timely manner (i.e.

the server response arrives at the client either too late or too early), this is called a

timing failure. Finally, an arbitrary failure (response failure) is a failure which is not

included in one of the failure classes described above. Examples for arbitrary fail-

ures are server responses containing wrong information, or incorrect server state

transitions. These failures are commonly known as “Byzantine failures” [5].

In general, failures of type arbitrary are very difficult to handle [6]. Since in our com-

munication subsystem message transmission time is unpredictable, we restrict our

failure model on the class of timing failures (which includes crash and omission fail-

ures). Messages may be lost, but no message delivered at its destination will be



- 5 -

corrupted. FIFO ordering of messages is guaranteed between two communicating

processes.

Teams may fail at any instance of time (e.g. due to a crash of the node on which

they have been executing). A fail-silent behaviour is assumed, which means that

every process in the team stops processing immediately after a failure, and no

more messages will be sent.

3. Service Architecture

In our approach, a distributed fault-tolerant service consists of k identical servers

running on distinct nodes of the computing system. The number k of replicas is a

configuration parameter of the service which allows to balance the degree of fault

tolerance with the overhead induced by the replication according to service specific

needs.

One of these k server replicas is responsible for processing service requests and

returning results to the calling clients. This server is called the primary server. The

other k-1 backup replicas are passive in the sense that they do not process service

requests.

As long as the primary server is alive, it sends checkpoints to all backups. A check-

point contains only those parts of the primary state which have changed since the

last checkpoint. Upon reception of a checkpoint, each backup server updates its

local state, thus adopting the state of the primary when the checkpoint was issued.

An important concern of our method is that all aspects of the service architecture

are hidden from the clients. Clients need not know about the replication degree of

a service, or which of the servers currently is the active one. In particular, a client

is not even aware of the fact that it communicates with a fault-tolerant service if the

interface structure (i.e. the number of ports and the message protocols defined for

these ports) of the fault-tolerant service is the same as the one of a single server.

In case of a server failure the service performs recovery actions and reconfigures

itself. It is essential that this reconfiguration is completely invisible for clients.

Therefore, the service interface and the addresses to which service request mes-

sages are to be sent may not change. However, if a backup server takes over as

the new primary, its port identifiers will be different from the ones of the failed

server. To avoid this change in the service interface we use the port group concept

of MOSKTIO (Figure 1). For each service port created by the primary server a new



- 6 -

port group is created with the service port as the first member. All backups create

a new service port, too, and add their new port to the port group.

Client request messages are sent to the service port groups instead of ports. In

case of a service reconfiguration, the identifiers of the port groups do not change,

and the service reconfiguration is completely hidden from the client. Since the

identifiers of MOSKITO ports and port groups have the same structure, clients

need not distinguish between single and replicated servers.

4. Server Code Augmentation

With our method the development of fault tolerant service applications is substan-

tially simplified because all fault tolerance components are encapsulated in a

library package which is independent of the application code. Therefore, a service

can be made fault tolerant by automatically augmenting the non-fault tolerant

server code with functions from the library package. As illustrated in Figure 2, a

Code Augmentation Tool performs the necessary changes of the server code to

produce code for a distributed, fault tolerant service with equivalent functional

behaviour, comprising k identical server replicas.

Each server replica is provided with a set of library functions which are necessary

to achieve and maintain the fault tolerance properties of the service. One of these

functions configures the service during its initialization phase. The primary creates

k-1 backup servers on distinct computer nodes and assigns each of them a unique

ranking number according to their creation order (i.e. the first backup server is

assigned ranking number 1, the second backup gets ranking number 2, etc.).

These ranking numbers define an order on the k server replicas which is used to

server

P1

P2

P3

non-

fault

tolerant

client

fault-tolerant

client

service

P1

P2

P3

se
rv

er
 1

se
rv

er
 2

se
rv

er
 3

(p
ri

m
ar

y)
(b

ac
ku

p)
(b

ac
ku

p)

Figure 1: Interface structure of single and replicated servers



- 7 -

arrange them to a logical ring. In addition, they will be used to determine the

backup server which takes over if the primary fails, so that dynamic election of the

new primary [7] is avoided.

Once the service is configured and initialized, client requests are processed by the

primary. In order to preserve the availability of the service during its life time, server

failures must be detected and the service must be reconfigured to recover from the

failure. Server failure detection is done by a neighbourhood surveillance protocol

proposed by Cristian [4]. In this protocol, alive messages are sent along the logical

ring periodically. If these messages cease to arrive at a server a failure of its pred-

ecessor in the ring is concluded.

In Figure 3, the implementation of these concepts is sketched. For ease of presen-

tation it is assumed that all service functions are available at a single service port

Ps. The fault tolerance concepts within each server are implemented by three addi-

tional processes and two ports. The trigger and watcher processes execute the

neighbourhood surveillance protocol. Each trigger process periodically sends an

alive message to the surveillance port Pa of its logical successor. The watcher

process controls the arrival of these messages and initiates recovery actions if the

messages cease to arrive.

The update process and the port Pc are used for checkpointing. The primary issues

a checkpoint by multicasting a message to the checkpoint ports Pc of all backup

servers (a port group comprising all checkpoint ports is created during the initiali-

zation phase of the service). The message contains those parts of the primary

augmented

fault tolerance

non-fault-tolerant
service

fault-tolerant
service

server code

primary

mechanisms

Code
Augmentation

Tool

host

server

host

server
code

backup

host

backup

host

Figure 2: Automatic server code augmentation



- 8 -

server state which have changed since the last checkpoint. Upon reception of a

checkpoint message the update processes change the local states of the backup

servers according to the message contents. Note that in the primary server the

update process and the checkpoint port are obsolete since the primary will never

receive any checkpoints.

5. Implicit Checkpoints

Above we have described how checkpoints are received and processed in the

backup servers. We now focus on the question when and how checkpoints are

issued. Since with our method all fault tolerance mechanisms are transparent for

the application program, the decision when to issue a checkpoint must be taken

within the fault tolerance package, independent of the current server state.

The most obvious approach to issue checkpoints periodically is not feasible in our

model because MOSKITO teams are potentially nondeterministic. This may lead

to the following situation.

Assume that after a checkpoint was issued, the primary server executes a nonde-

terministic function and sends a message containing the result to its environment

(e.g. to a client team). Before the next checkpoint is taken, the primary fails. After

Ps

watcher triggerwatcher trigger

Ps worker
(active)

worker
(active)

worker
(active)

worker
(active)

watcher

Pa

trigger

update Pc

worker
(active)

worker
(active)

worker
(active)

worker
(passive)

surveillance
messages

checkpoint
messages

backup server

Ps

watcher

Pa

trigger

update Pc

worker
(active)

worker
(active)

worker
(active)

worker
(passive)

backup server

primary server

Pa

Figure 3: Architecture of a fault-tolerant service

encapsulated fault tolerance mechanisms

application-specific server part



- 9 -

a recovery phase, the new primary takes over from the last checkpoint. The non-

deterministic function is executed again, but now produces a different result.

The key problem in this scenario is that the client team knows about the result of

the nondeterministic function executed by the failed primary, and hence about its

state. However, the state of the new primary actually differs from the state of the

failed one.

To avoid such an erroneous behaviour of a service, we introduce the notion of the

externally visible service state, which is reminiscent of Schneider’s state machine

approach [8]. From a client’s point of view, a service has an observable state. This

state changes if

• the service communicates with its environment. Each message sent by the

server contains part of the server state. Therefore, state changes become

visible to the receiver(s) of the message.

• the interface structure of the service changes, e.g. if a new service port is

created.

Whenever the externally visible service state changes, a checkpoint is issued to

guarantee that all nondeterministic decisions taken by the primary are transferred

to the backup servers as soon as they can be seen by other teams. The occasions

at which all these state changes take place can be easily identified since they are

results of operating system function calls. We therefore provide the servers with

stub procedures which automatically issue checkpoints if necessary.

Since a checkpoint is invoked after each message sent from the primary server,

re-sending of messages is avoided after the backup has taken over, and the

backup server resumes processing from a state which reflects all the visible non-

deterministic decisions taken by the failed primary. Checkpointing after service

interface changes causes the backup servers to adopt the primary’s new interface

structure immediately. If, for example, the primary has created a new service port,

an implicit checkpoint causes all backup servers to create a new port, too, and join

all ports in a new port group. Thus, messages sent to the new port group will also

arrive at the backup servers.

Message logging at the backup servers is implicitly done by message queues

associated with the ports. Messages which have been received by the primary will

be discarded by the backups. For this purpose, a message identifier list of those

messages which have been received is sent to the backups along with each check-

point.



- 10 -

6. Server Failure and Recovery

A server failure is detected by the watcher process of its ring neighbour. Since

each server exhibits a fail-stop behaviour, no more “alive” messages will be sent

to the neighbour surveillance port Pa after a server has failed. The watcher proc-

esses use a watchdog timer to control the arrival of the “alive” messages. If

unreliable communication primitives are used, a loss of a message may cause a

reconfiguration to be initiated which in fact is unnecessary. To reduce the proba-

bility of such a false alarm, a fixed number of successive message losses is

allowed before a watcher process concludes that the predecessor server has

failed. However, this comes with the price of an increased minimum time in which

a failure can be detected.

Once a server has concluded that its predecessor has failed, recovery actions

must be performed to reconfigure the service and to re-establish the logical ring

which is broken due to the failure.

Depending on which of the servers has failed, different measures for service

reconfiguration have to be taken. Let us first assume that only the primary has

failed. In this case, the backup server with the lowest ranking number (i.e. the suc-

cessor of the old primary in the ring) detects the failure and takes over immediately

from the last checkpoint. To preserve the replication degree k specified in the con-

figuration phase, a new server replica must be started on a computer node which

does not yet host a replica and initialized with the last checkpoint. This is done by

one of the backup servers so that the new primary is discharged from reconfigura-

tion management and can resume processing service requests.

If one of the backup servers fails, reconfiguration of the service is limited to starting

and initializing another server replica. In case the primary has detected the failure

of its predecessor, one of the backups is ordered to manage the reconfiguration.

Otherwise, the backup server which has detected the failure is responsible for cre-

ating the new replica.

Recovery from a single server failure does not cause a new primary to be elected

dynamically because the order imposed by the servers’ ranking numbers can be

used. However, if several servers fail at a time, service reconfiguration becomes a

bit more complex.

Consider the case where the primary and its successor backup fail. Assume that

the servers are ranked from 0 to k-1, starting with the primary server S0. The failure

of the first backup server S1will be detected by S2. However, S2 does not know that



- 11 -

the primary has failed as well. Therefore, an election protocol is executed to deter-

mine the new primary. In this protocol each backup server Si sends an rpc

message to Si-1. If no answer is obtained within some fixed time, another message

is sent to Si-2, and so on, until the primary S0 is reached. If one of the backup serv-

ers does not get any answers, it wins the election and takes over as the new

primary. Subsequently, the number of failed servers is determined, and missing

servers are replaced.

In order to restart the neighbourhood surveillance protocol, the newly created serv-

ers must be included into the logical ring. The server which manages the

reconfiguration of the service multicasts a message to all surveillance ports which

contains the ranking numbers and surveillance port identifiers of all server replicas.

7. Related Work

Several techniques for achieving fault tolerance have been described in literature

which are similar to ours. In the ISIS project [9] a toolkit for the construction of fault

tolerant applications has been developed. This toolkit comprises a set of atomic

broadcast protocols which differ in their degree of synchronization of the receivers.

A coordinator/cohort scheme [9, 10] has been proposed which is based on these

atomic broadcast protocols. In this scheme one member of a group of communi-

cating processes is selected to be the coordinator of the group which is responsible

to actually perform a computation on client request. The other processes serve as

passive cohorts which are ready to replace the coordinator in case of a failure.

Once a coordinator has been selected for a computation, it is impossible for a new

member of the process group to join the cohorts. Therefore, the degree of fault tol-

erance decreases with each failure during a computation, making this approach

feasible only for short-living applications. Unfortunately, ISIS provides only little

support for making the coordinator/cohort scheme transparent for the application

programmer who still is in charge of implementing an appropriate checkpointing

function.

In the Delta-4 project several different fault tolerance techniques have been inves-

tigated. The passive replication technique described in [11] closely resembles our

warm stand-by approach. Using this technique, the application programmer has to

specify recovery actions which are to be taken if the primary has failed while inter-

acting with its environment other than by message exchange (e.g. by input /

output). Our method of implicit checkpoints taken after each output would render

additional recovery actions unnecessary. In addition, the fault model adopted in



- 12 -

Delta-4 slightly differs from ours in that only node failures are considered while in

our model server teams may fail individually. This fact enforces surveillance and

failure recovery to be managed by the MOSKITO server teams.

For the Conic system [12] a hot standby scheme is proposed which is similar to our

technique. In this approach, several copies of an application program are distrib-

uted on distinct processors. One copy is active, processing service requests, while

the other copies are waiting to receive checkpoints from the active one. The detec-

tion of failures and the transfer of checkpoints is done by hot standby managers

which are associated with each program copy. Service reconfiguration after a fail-

ure is performed by a configuration management service consisting of a

configuration manager and a status collector. As in Delta-4, only node crashes are

detected by the hot standby managers, so that no explicit failure handling mecha-

nisms need to be included into the application program code.

8. Conclusions

With the technique presented in this paper it is possible to provide non-fault toler-

ant application programs with mechanisms which allow them to be executed in a

fault tolerant way. These mechanisms can be added automatically to the program

code of a non-fault tolerant server, thus making the fault tolerance concepts com-

pletely transparent for the application programmer. In addition, the port group

concept of MOSKITO efficiently hides the configuration of a service and its recov-

ery after a failure from client applications.

Nondeterministic decisions taken by the primary are transferred to all backups by

implicit checkpoints issued whenever the externally visible service state changes.

This prevents the service from exhibiting an inconsistent behaviour in case that the

primary fails and the backup re-executes a nondeterministic function.

References

[1] M. Chérèque, D. Powell, P. Reynier, J.L. Richier, J. Voiron: “Active Replication in Delta-4”,

Proc. 22nd Symp. on Fault-Tolerant Computing Systems, 1992.

[2] F. Cristian: “Understanding Fault-Tolerant Distributed Systems”, Communications of the

ACM, Vol. 34, No. 2, 1991, pp. 56—78.

[3] J. Nehmer, T. Gauweiler: “Design Rationale for the MOSKITO Kernel”, in: T. Härder, H. Wede-

kind, G. Zimmermann: “Entwurf und Betrieb verteilter Systeme”, Informatik Fachberichte, Vol.

264, Springer Verlag, 1990.



- 13 -

[4] F. Cristian: “Agreeing on Who is Present and Who is Absent in a Synchronous Distributed

Systems”, Proc. 18th International Symposium on Fault-Tolerant Computing, 1988, pp. 206—

211.

[5] L. Lamport, R. Shostak, M. Pease: “The Byzantine Generals Problem”, ACM Transactions on

Programming Languages and Systems, Vol. 4, No. 3,1982, pp. 382—401.

[6] F. Cristian, H. Aghili, R. Strong, D. Dolev: “Atomic Broadcast: From Simple Message Diffusion

to Byzantine Agreement”, Proc. 15th International Symposium on Fault Tolerant Computing,

1985, pp. 200—206.

[7] T. Becker: “Keeping Processes Under Surveillance”, Proc. 10th International Symposium on

Reliable Distributed Systems, 1991, pp. 198—205.

[8] F.B. Schneider: “Implementing Fault-Tolerant Services Using the State Machine Approach: A

Tutorial”, ACM Computing Surveys, Vol. 22, No. 4, 1990, pp. 299-319.

[9] K. Birman, T. Joseph: “Reliable Communication in the Presence of Failures”, ACM Transac-

tions on Computer Systems, Vol. 5, No. 1, 1987, pp. 47—76.

[10] K. Birman, R. Cooper, T. Joseph, K. Marzullo, M. Makpangou, K. Kane, F. Schmuck, M.

Wood: “The ISIS System Manual, Version 2.1”, Cornell University, Ithaca, 1990.

[11] N.A. Speirs, P.A. Barret: “Using Passive Replicates in Delta-4 to Provide Dependable Distrib-

uted Computing”, Proc. 19th International. Symposium on Fault Tolerant Computing Systems,

1989, pp. 184—190.

[12] O.G. Loques, J. Kramer, C. Eng: “Flexible Fault-Tolerance for Distributed Computer Sys-

tems”, IEE Proceedings, Vol. 133, Pt. E, No. 6, 1986, pp. 319—332.


