
Graded commutative algebra and
related structures in Singular

with applications

Oleksandr Motsak

Vom Fachbereich Mathematik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Naturwissenschaften
(Doctor rerum naturalium, Dr. rer. nat.)

genehmigte Dissertation

1. Gutachter: Prof. Dr. Dr. h.c. Gert-Martin Greuel
2. Gutachter: Prof. Dr. Roberto La Scala

Vollzug der Promotion: 02.07.2010

D 386

i

Oleksandr Motsak. “Graded commutative algebra and related structures in Singular
with applications”.

Abstract. This thesis is devoted to constructive module theory of polynomial graded
commutative algebras over a field. It treats the theory of Gröbner bases (GB), standard
bases (SB) and syzygies as well as algorithms and their implementations.

Graded commutative algebras naturally unify exterior and commutative polynomial alge-
bras. They are graded non-commutative, associative unital algebras over fields and may
contain zero-divisors. In this thesis we try to make the most use out of a priori knowl-
edge about their characteristic (super-commutative) structure in developing direct symbolic
methods, algorithms and implementations, which are intrinsic to graded commutative al-
gebras and practically efficient1.

For our symbolic treatment we represent them as polynomial algebras and redefine the
product rule in order to allow super-commutative structures and, in particular, to allow
zero-divisors. Using this representation we give a nice characterization of a GB and an
algorithm for its computation.

We can also tackle central localizations of graded commutative algebras by allowing com-
mutative variables to be “local”, generalizing Mora algorithm (in a similar fashion as G.-
M. Greuel and G. Pfister by allowing local or mixed monomial orderings) and working with
SBs.

In this general setting we prove a generalized Buchberger’s criterion, which shows that
syzygies of leading terms play the utmost important role in SB and syzygy module com-
putations. Furthermore, we develop a variation of the La Scala-Stillman free resolution
algorithm, which we can formulate particularly close to our implementation.

On the implementation side we have further developed the Singular non-commutative
subsystem Singular:Plural in order to allow polynomial arithmetic and more involved
non-commutative basic Computer Algebra computations (e.g. S-polynomial, GB) to be
easily implementable for specific algebras. At the moment graded commutative algebra-
related algorithms are implemented in this framework.

Benchmarks show that our new algorithms and implementation are practically efficient.

The developed framework has a lot of applications in various branches of mathematics
and theoretical physics. They include computation of sheaf cohomology, coordinate-free
verification of affine geometry theorems and computation of cohomology rings of p-groups,
which are partially described in this thesis.

1 Worst case complexity of a GB computation is known to be double exponential in the number of
variables. From this point of view – all GB computations are not efficient. Therefore, an implementation
may be called “practical efficient” if it can compute “interesting” examples in a “reasonable” time.

ii

Oleksandr Motsak. “Graduiert-kommutative Algebren und zugehörige Strukturen in Sin-
gular mit Anwendungen”.

Zusammenfassung. In der Arbeit wird die konstruktive Theorie von graduiert-
kommutativen Polynomalgebren über einem Körper untersucht. Wir stellen die Theorie
von Gröbner-Basen (GB), Standard-Basen (SB) und Syzygien-Moduln sowie Algorithmen
und deren Implementierungen vor.

Graduiert-kommutative Algebren vereinheitlichen Grassmann’sche und kommutative Poly-
nomalgebren. Sie sind nichtkommutative, assoziative Algebren über Körpern mit Eins und
können Nullteiler enthalten. In der Arbeit versuchen wir das a-priori -Wissen über ihre
charakteristische (superkommutative) Struktur in der Entwicklung von direkten, intrinsis-
chen, praktisch effizienten symbolischen Methoden, Algorithmen und Implementierungen
auszunutzen2.

Für unsere symbolische Behandlung stellen wir sie als Polynomalgebren dar und definieren
die Produktregel so um, dass damit die superkommutative Struktur und insbesonders Null-
Teiler zu ermöglicht wird. In dieser Darstellung geben wir unsere Charakterisierung von
GB und unseren Algorithmus für deren Berechnung.

Wir können auch die zentrale Lokalisierungen von graduiert-kommutativen Algebren be-
handeln, indem wir kommutative Variablen als “lokal” erlauben, den Mora-Algorithmus
(im Sinne von G.-M. Greuel und G. Pfister) veralgemeinern und mit SB anstatt mit GB
arbeiten.

Unter dieser allgemeinen Voraussetzung beweisen wir ein veralgemeinertes Buchberger-
Kriterium. Vor allem zeigt das Kriterium, dass Syzygien von Leittermen die wichtigste
Rolle bei den SB- und Syzygien-Modul-Berechnungen spielen. Danach entwickeln wir eine
Variation des Algorithmus nach R. La Scala und M. Stillman zur Berechnung freier Auflö-
sungen, die wir besonders nah an unsere Umsetzung formulieren können.

Um polynomiale Arithmetik und weitere grundlegende nichtkommutative Computeralge-
braberechnungen (z.B. S-Polynom, GB) für spezielle Algebren leicht implementierbar zu
machen, haben wir die Kern-Erweiterung Singular:Plural des Computeralgebrasys-
tem Singular weiterentwiekelt. Graduiert-kommutative Algebren sind genau in diesem
Framework implementiert.

Benchmarks zeigen dass unsere neuen Algorithmen und die Umsetzung praktisch effizient
sind.

Die entwickelten Methoden haben eine Vielzahl von Anwendungen in verschiedenen Bere-
ichen der Mathematik und der theoretischen Physik. Dazu gehören Berechnung der
Garbenkohomologie, koordinatenfreie Prüfung von Sätzen der affinen Geometrie und
die Berechnung der Kohomologieringe von p-Gruppen, die teilweise in dieser Arbeit
beschrieben sind.

2Da die Komplexität einer GB-Berechnung doppelt exponentiell in der Anzahl der Variablen ist, sind
alle Buchberger-ähnlichen Algorithmen komplexitätstheoretisch nicht effizient. Daher bezeichnet man eine
Umsetzung praktisch effizient wenn sie interessante Beispiele in einer angemessenen Zeit berechnen kann.

Contents

Preface v

1 Algebraic preliminaries and notations 1

1.1 Algebras over fields . 1

1.2 Modules over algebras . 2

1.3 Noetherian modules . 4

1.4 Free modules over algebras . 5

1.5 Graded structures . 6

1.6 Tensor algebra . 9

1.7 Binary relations . 12

2 Computer Algebra preliminaries 15

2.1 Standard monomials and monomial orderings . 15

2.2 G-algebras . 18

2.3 Definitions of Gröbner Bases in quotient algebras 22

2.4 Usual approach to computations in factor algebras 23

3 Gröbner bases in graded commutative algebras 25

3.1 Green’s approach . 25

3.2 Preliminaries . 31

3.3 Direct approach . 32

3.4 Characterizations of Gröbner Bases . 40

3.5 Criteria . 43

3.6 Kernel and preimage of a graded homomorphism 44

iii

iv CONTENTS

4 Localization 47

4.1 The commutative localization . 47

4.2 Non-commutative localization . 49

4.2.1 Universal construction . 50

4.2.2 Ore construction . 50

4.3 Central localization . 52

4.4 Rings Associated to Monomial Orderings . 54

5 Syzygies and free resolutions 59

5.1 Computer Algebra for modules . 59

5.2 Assumptions on orderings . 66

5.3 Schreyer ordering and syzygies of leading terms . 68

5.4 Computation of a free resolution . 75

6 Graded commutative algebras in Singular 85

6.1 High level interface - users manual . 85

6.2 Product of monomials in graded commutative algebras 95

6.3 Detection of a graded commutative structure . 96

6.4 A bit about Singular internals . 96

6.5 Implementing an induced ordering after Schreyer 97

7 Applications 103

7.1 Projective Geometry . 103

7.1.1 Introduction to sheaf cohomology . 104

7.1.2 Exterior algebra method for sheaf cohomology computation 109

7.1.3 Sheaf cohomology: benchmarks . 116

7.2 Coordinate-free verification of affine geometry theorems 124

7.3 Super-symmetry . 131

7.4 Cohomology rings of finite p-groups . 135

8 Conclusion and Future Work 137

List of Algorithms 139

Bibliography 141

Preface

Overview

The commutative polynomial algebra over a field plays the main role in Computational
Commutative Algebra. On the other hand, its Koszul dual algebra, known as exterior
algebra and Grassmann algebra describes for instance, the geometry of a Euclidean vector
space.
In the thesis we have developed a full Computer Algebra framework, naturally unifying
these both algebras in the class of polynomial graded commutative algebras.
Recall that a super-commutative algebra is a Z2-graded algebra, where the product satisfies

b · a = (−1)|a||b| a · b,
for all (Z2-graded) homogeneous elements a, b (the grading, i.e. degree, of an element a is
denoted by |a| ∈ Z2).
Algebraic structures which super-commute in the above sense are sometimes referred
to as skew-commutative associative algebras to emphasize the anti-commutation, or, to
emphasize the grading, graded commutative or, even commutative, provided the super-
commutativity is understood (e.g. in advanced physics).
Nowadays algebras with super-commutative structure are becoming more and more impor-
tant through their use in a wide range of applications, including theoretical physics and
various branches of mathematics (some examples are given below). Although one can treat
them as GR-algebras (cf. [5, 86]) or solvable polynomial rings (cf. [78, 76]), we introduce
the computer algebra notions directly for these algebras and give rigorous proofs with an
emphasis on differences occurring due to the presence of zero divisors. In particular, we
show that graded commutative algebras admit such a characterization of a Gröbner basis
(cf. Theorem 3.4.6) which leads to a particularly efficient generalization of Buchberger’s
algorithm (cf. [16, 67]).
In our treatment we try to follow, as far as possible, the Computer Algebra approach
developed in [67].
Furthermore, we show that central localizations of finitely generated non-commutative
algebras can be tackled, similarly to localizations of commutative polynomial algebras (cf.
[67]), by considering straightforward generalizations of rings associated to orderings.

v

vi CONTENTS

The central notion of Computer Algebra for polynomial rings being Groebner bases, while
nowadays the notions of syzygy and free resolution are becoming more and more important.
In fact, there is a growing body of qualitative results and conjectures relating the geometry
of a projective variety to the form of the syzygies (the minimal free resolution) of its
homogeneous coordinate ring. From a practical point of view, syzygy computations play a
fundamental role when it comes to experiments in algebraic geometry and to the testing of
conjectures. Furthermore, syzygy computations are central to many advanced algorithms
on which the experiments are based.

In principle, computing syzygies may be thought of as a byproduct of computing Gröbner
bases. The effective computation of syzygies, however, requires the choice and fine tuning
of special data structures, monomial orders, and strategies. Depending on the strategy,
free resolutions can be computed just by iterating the syzygy computation (e.g. due to
Schreyer), or by using one of the more sophisticated algorithms (e.g. due to La Scala and
Stillman).

Even more involved is the issue of minimality (for homogeneous input) of the computed
free resolution. Also here, different strategies are possible.

Singular[68] provides comprehensive and considerably fast routines for computing syzy-
gies and free resolutions over k[x0, . . . , xn], where k is a field, and localizations thereof. In
addition, it offers a basic syzygy (free resolution) algorithm which works for a large class of
non-commutative algebras. That algorithm has been automatically improved, due to our
implementation of Buchberger’s algorithm over graded commutative algebras.

The current implementation of the algorithms of Schreyer and La Scala, being implemented
in the Singular kernel more than 10 years ago, are by far not optimized yet. Moreover,
they have suffer from severe implementational issues, which, for instance, disallow us,
to extend them to the non-commutative case. That is why we provide an experimental
prototype for a variation of these algorithms, which is designed to work seamlessly over
factors of non-commutative algebras, e.g. over graded commutative algebras.

All this allows us to devise efficient algorithms for computation over graded commutative
algebras and, in particular, over super-commutative algebras. Our framework has plenty
of applications including, among others, automatic geometrical theorem (coordinate-free)
verification, investigation of properties of exterior differential systems.

The framework developed in the scope of this thesis has proved to be efficient, by partic-
ularly efficiency demanding applications, including the classification of (graded commuta-
tive) cohomology rings of finite p-groups by D. Green and S. King (cf. Section 7.4) and the
computation of sheaf cohomology due to the constructive Bernstein-Gelfand-Gelfand cor-
respondence via the algorithm of Eisenbud-Fløystad-Schreyer (standalone implementation
in Singular: [31] and in particular in via the GAP package HomAlg, cf. [9]).

CONTENTS vii

Motivation for graded commutative and super-
commutative algebras

As has been already noted above, graded commutative algebras unify the standard commu-
tative polynomial and exterior algebras. In particular, the Z2-graded commutative algebras
are also known as super-commutative algebras.

The super-commutative algebras were first introduced as symmetric algebras of super-
manifolds in theoretical physics, or more precisely, super-symmetry, which is part of the
theory of elementary particles and their interactions (cf. [92, 13]), where these algebras
enable one to join particles with Bose-Einstein statistics and Fermi-Dirac statistics into
single multiplets, and also enables one to join the internal and dynamic symmetries of
gauge theories in a single super-group (for a brief account on the super-mathematics see
Section 7.3).

The first appearance of super-symmetry is the Grassmann’s definition of an algebra that,
although non-commutative, is commutative up to a sign factor. The Grassmann algebra of
a vector space is perhaps the earliest example of a grade commutative algebras. It appears
extensively in Topology (e.g. cohomology algebras, Steenrod algebras, and Hopf algebras),
and in Geometry (e.g., the de Rham complex ; cf. also de Rham cohomology).

After being endowed with a certain differential operator graded commutative algebras
become Batalin-Vilkovisky algebras which are used in theoretical physics for determining
the ghost structure for theories, such as gravity and super-gravity, whose Hamiltonian
formalism has constraints not related to a Lie algebra action. Furthermore, together with
a specially defined Poisson bracket, they turn into Gerstenhaber algebras.

In Intersection Theory, the intersection semi-lattice of a hyperplane arrangement deter-
mines a combinatorial invariant of the arrangement, the Orlik-Solomon algebra, is a factor
of a graded commutative algebra (together with the usual boundary operator δ on anti-
commutative part) by certain ideal, defined due to the hyperplane arrangement (cf. [38]).

From the other side, works by G. C. Rota (cf. [69, 110]) showed the significant importance
of the so called letterplace super-algebra, denoted by Super(L|P), which can be constructed
as a quotient of a super-commutative algebra (sometimes in infinite number of generators).
We expect that the treatment due to [80] can be applied to these algebras as well.

Exterior differential system (EDS) (cf. [72, 71, 70]) is a graded submodule of the module
of exterior differential forms on a manifold. The following properties may be shown by
checking ideal membership, at each point on the manifold:

• An EDS S is closed if dS ⊂ 〈S〉, where d is the exterior derivative.
• A vector v is an isovector or symmetry generator of S if ıvS ⊂ 〈S〉, where ıv is the

interior product.

viii CONTENTS

Overview of previous results and related works

Good general textbooks on commutative Computer Algebra are [1, 10]. Its use for the
needs of Algebraic Geometry can be found in many textbooks, e.g. [67, 27, 126, 30]. Note
that we try to follow the CA approach due to [67] and [86] as close as possible.

Ring and ideal theory of non-commutative Noetherian domains have been studied for
example in [24, 2, 94, 59, 101, 83, 103, 104, 84]. Most proofs of GB computation termination
rely on the basic criterion provided by [33].

Since each k-algebra is a quotient of a free associative non-commutative algebra one could
do general non-commutative Computer Algebra with them in order to tackle such quotients
in a general fashion (it has been studied among others in [14, 97, 99, 98, 26, 3, 63, 89]). Free
non-commutative polynomial rings modulo some non-commutative GBs have been studied
in [5]. Furthermore, the book [89] also gives a good theoretical account on non-commutative
CA for general k-algebras with zero-divisors.

The following very popular class of non-commutative algebras (with PBW bases), has a
lot of names. It was probably invented by J. Apel under the name “G-algebras” in [5], and
studied/reinvented by many people under many different names.

They are know as algebras of solvable type in [45], A. Kandri-Rody and V. Weispfenning
(cf. [76]) were probably the first to introduce non-commutative computer algebra over
solvable polynomial rings and algebras directly.

These algebras are known as PBW rings in [19]. H. Kredel (cf. [78]) has generalized solvable
polynomial rings and algebras even further by allowing scalars to be non-commutative, so
that the resulting algebras may fail to be k-algebras. V. Levandovskyy together with
H. Schönemann have developed a framework for computations over them in Singular,
where they are known as G- and GR-algebras (cf. [86, 87]).

Polynomial graded commutative algebras (in particular, exterior algebras) as well as Clif-
ford algebras are quotients, and belong to the above class of (almost commutative) algebras.

Because of its uses in many contexts the exterior algebra is extremely popular (consider for
example the list of alternative names below) as a subject for research and thus there exists
a variety of possible approaches. The algebra was introduced by H. Grassmann for his
approach to affine geometry (cf. [60]). His approach was followed by D. Fearnley-Sander
together with T. Stockes (see Section 7.2), who were probably the first to develop computer
algebra over exterior algebras (cf. [51, 123]).

Computer algebra over Clifford algebras (and in particular over exterior algebras) was done
by Harley and Tuckey (cf. [72]) who considered them as particular GR-algebras. Similarly,
D. Green considered graded commutative algebras as quotients of his (anti-commutative
polynomial) Θ-algebras (which are simple G-algebras) by the two-sided ideal generated by
squares of odd variables (cf. [62] and our overview of his results in Section 3.1).

Somewhat different accounts on the topic give: E. Green considers non-commutative k-
algebras with zero-divisors with multiplicative bases (e.g. path algebras) and introduces

CONTENTS ix

right GBs for a class of modules (cf. [65, 64]), Th. Nuessler and H. Schoenemann tackle zero-
divisors by considering additional augmentation sets (cf. [102]) and K. Madlener together
with B. Reinert use saturating sets for the same purpose (cf. [91]).

We use the algorithmic treatment of commutative localizations given in [67] as a reference
for our treatment of non-commutative localizations, which have been also discussed in
[82, 25].

It was already noted that syzygy and free resolution computations are deeply related to
GB computation (cf. [116, 117]). Our starting point for syzygy computations is the idea
that syzygies of leading terms (w.r.t. some special ordering) give rise to syzygies of whole
elements, which leads to a syzygy-driven Buchberger’s algorithm (cf. [4, 113, 114, 96, 120,
107] and somewhat [20]).

For our Schreyer free resolution we used the results by R. La Scala and M. Stillman
(cf. [79, 81]).

The most theoretically involved applications of our methods are Projective Geometry-
related. Please refer to the classical texts [73, 115] and [57] for basic definitions. An
excellent introduction to computational methods was given by M. Stillman at the Arizona
Winter School in Tucson, March 2006, (notes [122] and videos are available online at
http://math.arizona.edu/~swc/aws/06/06Notes.html).

Traditional methods for computing with sheaves and sheaf cohomology can be found in
[115], [126] and [119].

The exterior algebra method for computing sheaf cohomology relies on a constructive
version of BGG correspondence given in [36] and [29]. Note that the BGG correspondence
(cf. [15, 11]) is a particular case of Koszul duality (cf. [53, 52, 12]).

The implementation of this method by W. Decker, D. Eisenbud and F.-O. Schreyer as
package BGG (cf. [29]) in M2 (cf. [61, 126]) was the fastest known up until now.

Generalization of this method allows one to compute higher direct images of sheaves (cf.
[39]). Apart from constructing Beilinson monad and Horrocks-Mumford bundle, this ap-
proach has been used for plenty interesting theoretical applications, e.g. computation of
resultants and Chow forms (cf. [35, 42]), cohomologies of hyperplane arrangement (cf.
[38]), and others (e.g. [43]).

This method and most of its applications, for example the investigation of the Minimal
Resolution Conjecture (cf. [37]), require complicated computations. Therefore, it is im-
portant to have a robust (practically efficient) Computer Algebra framework, which would
support this method and further experimental research (e.g. due to [40] and [41]).

Organization of the material

In this thesis we describe our computer algebra framework (implemented in Singular)
for computations with ideals and modules over central localizations of graded commutative

http://math.arizona.edu/~swc/aws/06/06Notes.html

x CONTENTS

algebras and give examples for its applications.

In Chapters 1 and 2 we recall some basic facts and introduce our notations.

Chapter 3 is devoted to “quotient” and “direct” Computer Algebra approaches to graded
commutative algebras. Our characterization of a GB (given in Theorem 3.4.6) leads to a
practically efficient algorithm for GB computation (given in Algorithm 3.4.1).

The main theoretical result of Chapter 4 is Proposition 4.3.1. It allows us to extend non-
commutative computer algebra to central localizations of GR-algebras by means of rings
associated to monomial orderings. In order to show that our twisted Mora Normal Form
Algorithm (Algorithm 4.4.1), works over these localizations, we prove that any GR-algebra
can be appropriately homogenized (Proposition 4.4.7).

Chapter 5 is devoted to computation of syzygies and free resolutions over central local-
izations of graded commutative algebras. We show that syzygies of leading terms can be
easily computed (Proposition 5.3.4, Algorithm 5.4.1) and are of the utmost importance
for GB and syzygy computations (Theorem 5.3.6, Algorithm 5.4.3). Our variation of La
Scala-Stillman’s Algorithm for computing Schreyer resolutions via the Schreyer frame is
given in Algorithm 5.4.4.

On the implementation side we have further developed the Singular non-commutative
subsystem Singular:Plural in order to allow polynomial arithmetic and more involved
non-commutative basic Computer Algebra computations (e.g. S-polynomial, GB) to be
easily implementable for specific algebras. At the moment graded commutative algebra-
related algorithms are implemented in this framework. The developed framework is briefly
described in Chapter 6.

Chapter 7 shows that our framework can be directly used for many modern interesting
applications in physics and various branches of mathematics. Projective Geometry-related
application is described in Section 7.1, where we give a brief overview of methods for
computing sheaf cohomology. We used this application in order to test/benchmark our
frameworks and further improvements. These benchmarks, listed in Section 7.1.3, show
that our new algorithms and implementation are practically efficient.

In Chapter 8 we give an overview of possible further development of our framework.

Overview of our results

In contrary to the usual approach to similar quotient algebras (cf. Section 2.4) we work,
define and compute GBs directly over graded commutativity algebras. Thus our algorithms
are intrinsic to these algebras which enables them to be much more efficient than the general
algorithms working over polynomial algebras without zero-divisors.

We also give a short account of the results by T. Stockes (cf. [123]) and prove that his
definition of a Gröbner Left Ideal Basis (GLIB) is equivalent to our definition of a GB of
an ideal.

CONTENTS xi

We are the first to be able to compute in central localizations of non-commutative algebras
(cf. Chapter 4) by allowing commutative variables to be local in general non-commutative
setting and extending the Mora normal form (in the spirit of [67])

Our implementation of induced ordering (after Schreyer) provides a framework for new effi-
cient syzygy-/free resolution- computation algorithms even in the non-commutative setting.
In this framework we intend to implement a Schreyer resolution algorithm after R. La Scala
and M. Stillman (cf. [81]) even over central localizations of graded commutative algebras
(cf. Chapter 5).

This thesis is written with the aim of developing algorithms. We have extended and further
developed the non-commutative subsystem of Singular (Singular:Plural) into a frame-
work, which makes it possible to seamlessly embed algebra specific efficient algorithms, as
we did for our central localizations of graded commutative algebras.

Our framework makes it possible to tackle many problems more naturally and directly than
it was possible before. Moreover, by implementing our approach in this framework and uti-
lizing some commutative (linear algebra) improvements to the Singular implementation
of the sheaf cohomology algorithm (cf. [31]), we have achieved a speedup of approximately
10 times compared to the general implementation in Singular:Plural, and were able
to outperform M2’s implementation, which was so far known to be the best one. On
the other side, using these improvements and some simple (Singular interpreter-related)
performance tweaks, the GAP (cf. [54]) project HomAlg (cf. [9]) for general homological
algebra computations (by using existing CASs for actual CA computations) achieved even
better performance on our tests (while using Singular as a back-end).

Similarly to HomAlg, there exists another project by D. Green and S. King, which incor-
porates a lot of software for the computation of cohomology rings of finite p-groups and
in particular, uses our framework for all computation over graded commutative algebras
(those cohomology rings are in fact graded commutative algebras). This project is briefly
described in Section 7.4.

Acknowledgments

I am very grateful to my adviser Prof. G. -M. Greuel for fruitful discussions and suggestions.

Thanks go to W. Decker for his Macaulay Classic sources, to R. La Scala for an english
preprint version of his Ph.D thesis, to H. Schönemann for his help and guidance to Sin-
gular kernel and to V. Levandovskiyy for attracting me to non-commutative CA.

Thanks go to my parents and friends for their support. I am particularly grateful to Olena
for her patience and love.

xii CONTENTS

Abbreviations and Basic Notations

CA Computer Algebra (GBs and related theory)

M2 Macaulay2

BBA Buchberger Algorithm

SCA super-commutative algebra

PBW Poincaré-Birkhoff-Witt

CAS(s) Computer Algebra System(s)

GB, GBs Gröbner Basis, Gröbner Bases

SB, SBs Standard Basis, Standard Bases

iff if and only if

w.r.t. with respect to

w.l.o.g. without loss of generality

k fixed ground field

k∗ the multiplicative group of units of a field k

A, S, R,M (non-commutative) k-algebras

Sn|m (resp. An|m) Θ-algebra (resp. graded commutative algebra) with

m anti-commuting variables (usually denoted by ξ1, . . . , ξm)

and n commuting variables (usually denoted by x1, . . . , xn)

Mon(z1, . . . , zk) standard words (i.e. power-products or monomials)

in variables z1, . . . , zk

Mon(A) PBW basis of a PBW -algebra

A〈F 〉, 〈F 〉A, 〈F 〉 left, right and two-sided ideal or A-module (resp. bimodule),

generated by F

F = (f1, . . . , fn) ordered tuple, for an indexed set F = {f1, . . . , fn}
GS the set of all finite ordered subsets of S

↪→,� injective map

� surjective map

Chapter 1

Algebraic preliminaries and notations

In this chapter we recall some basic algebraic theory and introduce our notations which
will be used in later chapters.

Throughout this thesis, let k denote a (commutative) field. All considered algebras and
rings are associative and unital, but, in general, non-commutative. Morphisms of algebras
and rings map 1 to 1.

1.1 Algebras over fields

Let us recall some notions following mostly [89] and [111, 84].

Definition 1.1.1. An algebra over k is an associative and unital ring A together with
a nonzero ring homomorphism η : k→ A, which satisfy the following conditions:

• The image of η belong to the center of A, i.e. η(k) · x = x · η(k),∀k ∈ k, x ∈ A.
• The map k×A → A : (k, x) 7→ η(k) · x turns A into a k-vector space
• The multiplication map A × A → A : (x, y) 7→ x · y bi-linear, i.e. it satisfies the

following conditions:

(x+ y) · z = x · z + y · z,
x · (y + z) = x · y + x · z,

(η(k) · x) · y = x·(η(k) · y) = η(k) · (x · y),

where k ∈ k, x, y, z ∈ A.

Definition 1.1.2. Let A be an algebra over k. A subalgebra of A is a k-vector subspace
of A which is closed under the multiplication of A and contains 1A.

1

2 CHAPTER 1. ALGEBRAIC PRELIMINARIES AND NOTATIONS

Remark 1.1.3. Note that due to our convention (at the beginning of the chapter) an algebras
over k are associative (i.e. x · (y · z) = (x · y) · z for all x, y, z ∈ A) and and unital (i.e.
there always exists a unique unity, that is, an element 1A ∈ A such that 1A ·x = x · 1A = x
for all x).

In what follows unital associative algebras over the field k are called k-algebras or simply
algebras whenever no confusion is possible.

Remark 1.1.4. Since η (from definition 1.1.1) is nonzero it follows that η is injective, i.e.
k ∼= Im(η). Thus k may be considered as a subalgebra of A and we may write kx instead
of η(k)x (the scalar multiplication of the k-vector space A).

Definition 1.1.5. The algebra (or ring) A is called commutative if x · y = y · x for all
x, y ∈ A.

Definition 1.1.6. An algebra homomorphism between two k-algebras is a k-linear ring
homomorphism.

Definition 1.1.7. An algebra over k is called finitely generated if it is finitely generated
as a ring over k, i.e. there exists a finitely dimensional k-vector space V and a surjective
k-algebra homomorphism T (V)� A, where T (V) is the free associative (tensor-) algebra
over V (cf. 1.6.1).

Definition 1.1.8. Let A be an algebra over k. A k-subspace I ⊂ A is called a left ideal
(resp., a right ideal) if for any a ∈ A and x ∈ I one has a · x ∈ I (resp., x · a ∈ I).
If I is a left ideal and a right ideal, it is called a two-sided ideal .

Remark 1.1.9. LetA be a k-algebra and I be a two-sided ideal ofA. Then the factor ring (or
quotient ring) A/I has the k-algebra structure induced by A, called the factor algebra or
quotient algebra of A. The corresponding canonical projection A → A/I is a k-algebra
homomorphism.

Definition 1.1.10. A ring (or k-algebra) is called left-Noetherian if it satisfies the
ascending chain condition on left ideals, that is, for any increasing sequence of left ideals
I1 ⊆ I2 ⊆ I3 ⊆ . . . , there exists a number n such that for all k > n holds Ik = In.
Analogously one defines a right-Noetherian ring (k-algebra).
A ring (or k-algebra) is called Noetherian if it is left- and right-Noetherian.

1.2 Modules over algebras

Throughout this section let A be a k-algebra.

Definition 1.2.1. A k-vector spaceM , endowed with scalar multiplication · : A×M →M
is called a left A-module if the following conditions are satisfied for all a, b ∈ A and

1.2. MODULES OVER ALGEBRAS 3

m,n ∈M :

1A ·m = m,

(ab) ·m = a · (b ·m),

(a+ b) ·m = (a ·m) + (b ·m),

a · (m+ n) = (a ·m) + (a · n).

Analogously to Definition 1.2.1 we can define a right module. A left module which is also
a right module is called a bimodule . From now on we will say simply “module” instead of
“left module”.
Remark 1.2.2. One-sided ideals in algebras (rings) are particular cases of modules over
these algebras (rings), e.g. any k-algebra can be considered as a module over itself.

Definition 1.2.3. Let M be an A-module. A k-subvector space N ⊂ M is called an
A-submodule or just a submodule of M if a · m ∈ N, and m + n ∈ N for all a ∈
A,m, n ∈ N .

Definition 1.2.4. If M and N are (left) A-modules, then a k-linear map ψ : M → N is
an homomorphism of A-modules if ψ(a ·x+ b · y) = a ·ψ(x) + b ·ψ(y), for all x, y ∈M
and a, b ∈ A.
A bijective module homomorphism is an isomorphism of modules , and the two modules
are called isomorphic.

The isomorphism theorems familiar from groups and vector spaces are also valid for A-
modules.

Definition 1.2.5. Let M be an A-module and N ⊆ M be a submodule. We say that
m1,m2 ∈ M are equivalent w.r.t. N if m1 − m2 ∈ N . Denote the equivalence class
of m ∈ M w.r.t. N by m + N or [m]. Each element in the class m + N is called a
representative of the class.

The factor module or quotient module is M/N := {m+N | m ∈M} , with the oper-
ations induced by operations on representatives.

Remark 1.2.6. Let ψ be an A-module homomorphism from M to N . Denote its kernel
by

Ker(ψ) := {m ∈M | ψ(m) = 0} ⊆M,

its image by
Im(ψ) := {ψ(m) | m ∈M} ⊆ N,

and its cokernel by
Coker(ψ) := N/ Im(ψ).

Trivial verification shows that Ker(ψ) and Im(ψ) are A-submodules in respectively M and
N . Hence the definition of cokernel is correct and, obviously, Coker(ψ) is an A-module.

4 CHAPTER 1. ALGEBRAIC PRELIMINARIES AND NOTATIONS

Definition 1.2.7. Let M be a left A-module, S ⊂ M . We denote by A〈S〉 the left
submodule in M generated by S over A:

A〈S〉 :=

{∑
finite

am ·m | m ∈ S, am ∈ A

}
.

We will write A〈m1, . . . ,mk〉 instead of A〈{m1, . . . ,mk}〉.

Definition 1.2.8. A left A-module M is called finitely generated if there exist finitely
many vectors m1, . . . ,mk ∈M such that M = A〈m1, . . . ,mk〉.

Remark 1.2.9. Due to remark 1.2.2 we can use the same notation for left ideals generated
by subsets in A.

Definition 1.2.10. Let M be a left A-module. The annulator of M is the following left
ideal in A:

Ann(M) := {a ∈ A | a ·m = 0∀m ∈M} .

For any A-module element m, by abuse of notation, we define:

Ann(m) := {a ∈ A | a ·m = 0} .

1.3 Noetherian modules

Definition 1.3.1. A (left) A-module M is called (left-) Noetherian whenever it satisfies
any of the following conditions.

1. Every (left) submodule of M is finitely generated.
2. It satisfies ascending chain condition on (left) submodules, i.e. every ascending se-

quence of submodules of M : M1 ⊂M2 ⊂ . . . such that Mi 6= Mi+1 is finite.
3. Every non-empty set of (left) submodules of M has a maximal element.

The proof that the three conditions from definition 1.3.1 are equivalent, and for the fol-
lowing propositions can be found in [84, Chapter VI].

Proposition 1.3.2. Let M be a (left) Noetherian A-module. Then every submodule and
every factor module of M is Noetherian.

Proposition 1.3.3. Let M be an A-module and N be a submodule. If N and M/N are
Noetherian then M is Noetherian.

Thus, an exact sequence of (left) A-modules 0 → M ′ → M → M ′′ → 0, M is Noetherian
iff both M ′,M ′′ are Noetherian.

1.4. FREE MODULES OVER ALGEBRAS 5

Corollary 1.3.4. Let M be an A-module, N and N ′ be submodules. If M = N + N ′

and if both N and N ′ are Noetherian then M is Noetherian. Thus the finite direct sum of
Noetherian modules is Noetherian.

It’s easy to see that a ring (or k-algebra) A is Noetherian iff it is Noetherian as a left
module over itself. It follows that every left ideal in A is finitely generated.

Proposition 1.3.5. Let A be a (left-)Noetherian ring (or k-algebra) and letM be a finitely
generated (left-)A-module. Then M is (left-)Noetherian.

Proposition 1.3.6. Let A be a Noetherian ring (or a k-algebra) and let ψ : A → B be a
surjective ring (or k-algebra) homomorphism. Then B is Noetherian.

1.4 Free modules over algebras

In what follows let A be a Noetherian k-algebra. We denote by Ar the free left A-module of
rank r, i.e. direct product of r copies of A, with scalar multiplication defined component-
wise. Let εi := (0, . . . , 0, 1, 0, . . . , 0)t ∈ Ar, where 1 is in the i-th component. The vectors
ε1, . . . , εr form the so-called canonical (free) basis for An. Which means, in particular,
that any v = (v1, . . . , vr)

t ∈ An can be uniquely written as v =
∑r

i=1 vi · εi.
Remark 1.4.1. Let M be a left A-module and m = (m1, . . . ,mk) ∈M × . . .×M . Consider
the associated A-module homomorphism (left A-liner map), uniquely defined by

ψm : Ak →M : εi 7→ mi.

Clearly the homomorphism is surjective iff the elements mi generate M , in which case

M ∼= Ak/Ker(ψm). (1.1)

Conversely, if N ⊂ Ak is any submodule, then Ak/N is a finitely generated A-module.
Therefore one can view finitely generated (left) A-modules (together with a finite set of
generators) as being essentially the same thing as quotients of free (left) A-modules of
finite rank.

We will sometimes use the following notation for the image of S =
∑k

i=1 siεi ∈ Ak under
the map defined by m ∈Mk:

S ∗m := ψm(S) =
k∑
i=1

si ·mi

6 CHAPTER 1. ALGEBRAIC PRELIMINARIES AND NOTATIONS

Definition 1.4.2. A syzygy or relation between k elements m1, . . . ,mk ∈M is a vector
S =

∑k
i=1 siεi ∈ Ak such that

S ∗ (m1, . . . ,mk) = 0.

The set of all syzygies between m1, . . . ,mk is a (left) submodule in Ak. Indeed, it is the
kernel of the map ψm. We denote it by Syz(m1, . . . ,mk) and call it the syzygy module
of m1, . . . ,mk.

Note that the syzygy module of any finitely generated A-module is finitely generated since
A is Noetherian.

If the elements mi generate M then there exists the exact sequence

Al Φ−→ Ak ψm−−→M → 0, (1.2)

where the exactness means that Im(Φ) = Ker(ψm) = Syz(m1, . . . ,mk). Therefore due to
equation (1.1)

M ∼= Ak/ Im(Φ) = Coker(Φ)

So that we can represent the module M as the cokernel of the following map defined by
the matrix Φ:

Al 3 (w1, . . . , wl)
t 7→

(
(w1, . . . , wl) · Φt

)t ∈ Ak. (1.3)

Definition 1.4.3. For a finitely generated A-module M , a (possibly infinite) exact se-
quence 1

· · · → Fi+1
ϕi+1−−→ Fi → · · · → F1

ϕ1−→ F0
ϕ0−→M → 0,

with finitely generated free A-modules Fi is called a free resolution of M by left A-
modules, where the maps ϕi+1 are given by some matrices as in (1.3).

Note that there always exists a free resolution. One, for instance, can be constructed by
extending the short exact sequence from (1.2).

1.5 Graded structures

Definition 1.5.1. Let Γ be a commutative additive monoid (usually an Abelian group),
whose identity element is denoted by 0. A Γ -graded ring A is a ring together with a

1 Sometimes the complex of free A-modules

F• : · · · → Fi+1
ϕi+1−−−→ Fi → · · · → F1

ϕ1−→ F0,

with Coker(ϕ1) ∼= M is called a free resolution of M .

1.5. GRADED STRUCTURES 7

direct sum decomposition into (Abelian) additive subgroups of the additive subgroup of
A:

A =
⊕
g∈Γ

Ag,

such that Ai ∗ Aj ⊆ Ai+j, for all i, j ∈ Γ . For d ∈ Γ , Ad is
called the homogeneous part of degree d of A. Elements from Ad are called
homogeneous elements of degree d and denote the degree of any such element a by
|a| := d. A k-algebra A is Γ -graded whenever it is Γ -graded as a ring and all homogeneous
parts are k-subvector spaces of the k-vector space A.

Example 1.5.2. Let us give some examples:

• Any commutative polynomial k-algebra k[x1, . . . , xn] is Z-graded by degree.
• A Z2-graded k-algebra is also called a super-algebra (see also Section 7.3).
• Clearly if there is a surjective homomorphism Γ → Γ ′ then any Γ -graded algebra can

be considered to be Γ ′-graded. In particular any (Z-)graded commutative algebra (cf.
Section 1.6) can be endowed with a Z2-grading if we take the degree modulo 2 (e.g.
|ξ1| = |ξ1ξ2ξ3| ≡ 1 (mod 2), and |x1| = |ξ1ξ2| ≡ 0 (mod 2), by putting |xj| := 0 for
commutative variables and |ξi| := 1 for anti-commutative variables). This way any
graded commutative algebra can be considered as a super-commutative algebra
(cf. Remark 1.5.11).

Remark 1.5.3. Let A be a Γ -graded ring (resp. k-algebra). Then directly from Defini-
tion 1.5.1 it follows that A0 is a subring (resp. subalgebra) of A, and 1A ∈ A0 is an
element of degree zero.

Definition 1.5.4. Let A be a Γ -graded ring. An A-module M is called Γ -graded if

M = ⊕g∈ΓMg,

where the Mg are subgroups of the additive group of M , such that Ai ∗Mj ⊂Mi+j, for all
i, j ∈ Γ . For d ∈ Γ , Md is called the homogeneous part of degree d of M . Elements
from Md are called homogeneous elements of degree d. Whenever A is a k-algebra it
is additionally required that all homogeneous parts Mg are k-subvector spaces of k-vector
space M .

Remark 1.5.5. Clearly, for any a ∈ A = ⊕g∈Γ there is a unique (finite) decomposition of a
into homogeneous parts: a =

∑
g∈Γ ag, with ag ∈ Ag.

Analogously, if M is a Γ -graded A-module, every m ∈ M has a unique (finite) decompo-
sition of m into homogeneous parts: m =

∑
g∈Γ mg, with mg ∈Mg.

Proposition 1.5.6 (Proposition 3.3 [89]). Let A be a Γ -graded ring, M be a graded A-
module and N be a submodule of M . Then the following conditions are equivalent:

(i) N = ⊕g∈Γ (Mg ∩N),

8 CHAPTER 1. ALGEBRAIC PRELIMINARIES AND NOTATIONS

(ii) for any u ∈ N its homogeneous parts ug belong to N ,
(iii) N is generated by homogeneous elements,
(iv) the factor A-module M/N =

∑
g∈Γ (Mg +N)/N is Γ -graded with the decomposition

M/N =
⊕
g∈Γ

(Mg +N)/N.

Definition 1.5.7. Let A be a Γ -graded ring and M be a graded A-module. A sub-
module N ⊂ M satisfying any of the equivalent conditions of Proposition 1.5.6 is called
graded submodule of M .

In particular, since left (two-sided) ideals of A are submodules, we get the definition of
graded left (two-sided) ideal by replacing submodules by (left or two-sided) ideals in
the above.

Remark 1.5.8. For a finitely generated graded A-module M =
⊕

i∈Z Mi, we shall denote
the twisted by degree d A-module by

M(d) :=
⊕
i∈Z

Mi+d,

and the truncated at degree d A-module by

M>d :=
⊕
i∈N

Mi+d.

Definition 1.5.9. Let A and B be two Γ -graded rings (resp. alge-
bras). A ring (resp. algebra) homomorphism ψ : A → B is called a
graded ring (resp. algebra) homomorphism (of degree 0) if ψ(Ag) ⊂ Bg for
all g ∈ Γ .
Let M and N be two graded modules over a Γ -graded ring (algebra) A. An A-
homomorphism ψ : M → N is called a graded A-homomorphism (of degree 0) if
ψ (Mg) ⊂ Ng for all g ∈ Γ .

As a simple corollary of the above definitions and Proposition 1.5.6, we get that images
and kernels of graded ring (algebra) homomorphisms (resp. graded A-homomorphisms)
are graded subrings (subalgebras) (resp, submodules).

Definition 1.5.10 (following [100]). Let Γ be an additive Abelian group endowed with
a bilinear map 〈, 〉 : Γ × Γ → Z2. A Γ -graded ring (resp. algebra) A is called
Γ -graded commutative (or Γ -commutative) if a ∗ b = (−1)〈|a|,|b|〉b ∗ a holds for all
homogeneous a, b ∈ A.

Remark 1.5.11. Note that a Γ -graded commutative k-algebra is also called
graded commutative (resp. super-commutative) in the case when Γ is Z (resp. Z2)
and the bilinear map is the multiplication.

1.6. TENSOR ALGEBRA 9

1.6 Tensor algebra

Let V be a vector space over k. The tensor algebra of V , denoted T (V), is the algebra
of tensors on V (of any rank) with multiplication being the tensor product. The tensor
algebra is, in a sense, the “most general” algebra containing V . This is formally expressed
by a certain universal property (see below).

Definition 1.6.1. The tensor algebra over V , denoted by T (V) is the Z-graded k-
algebra with the n-th graded component given by n-th tensor power of V :

Tn(V) := V ⊗n =

n times︷ ︸︸ ︷
V ⊗ · · · ⊗ V , n = 1, 2, . . . ,

and T0(V) := k. That is,

T (V) :=
∞⊕
n=0

Tn(V).

The multiplication m : T (V)×T (V)→ T (V) is determined by the canonical isomorphism
Tk(V)⊗ Tl(V)→ Tk+l(V) given by the tensor product:

m(a, b) = a⊗ b, a ∈ V ⊗k, b ∈ V ⊗l,

which is then extended by linearity to all of T (V).

Remark 1.6.2. The construction generalizes in straightforward manner to the tensor algebra
of any module M over a commutative ring R. If R is a non-commutative ring, one can
still perform the construction for any R-R bimodule M . This does not work for ordinary
R-modules because the iterated tensor products cannot be formed.

The fact that the tensor algebra is the most general algebra containing V is expressed by
the following universal property:

Any linear transformation f : V → A from V to a k-algebra A can be uniquely extended
to an algebra homomorphism from T (V) to A as indicated by the following commutative
diagram:

V A

T (V)

f
//

i
�� f̃

AA

Here i is the canonical inclusion of V into T (V), identifing it with T1(V). In fact, one can
define the tensor algebra T (V) as the unique k-algebra satisfying this universal property
(moreover, T (V) is unique up to a unique isomorphism).

The tensor algebra T (V) is also called the free associative algebra on the vector space
V .

10 CHAPTER 1. ALGEBRAIC PRELIMINARIES AND NOTATIONS

If V has finite dimension n, its tensor algebra can be regarded as the “algebra of polyno-
mials over k in n non-commuting variables”. If we take basis vectors for V , those become
non-commuting variables in T (V), subject to no constraints (beyond associativity, the dis-
tributive law and k-linearity). That is, we construct the free associative algebra of V in
the following way: choose a basis B = {xi | i ∈ I} in V , and let

T := k 〈B〉 := k 〈xi | i ∈ I〉

be the algebra of non-commutative polynomials in variables {xi} with coefficients in k. As
a vector space, it is generated by monomials in these variables which are finite sequences of
xi in arbitrary order (repetitions are allowed). The product is defined by concatenation of
the monomials. The map i : V → T is the natural embedding (xi 7→ xi). This construction
of a free k-algebra on the set B as an algebra of words is given in [89, Chapter 1].

Definition 1.6.3. The finitely generated (by ordered symbols x1, . . . , xn) free associative
k-algebra k〈x1, . . . , xn〉 is called general non-commutative polynomial ring over the
field k. Its basis consists of power products xα1

i1
xα2
i2
· · ·xαmim , called words wherem > 0, αi >

0 and 1 6 i1, i2, . . . , im 6 n.
Power products with ordered indices 1 6 i1 < i2 < . . . < im 6 n shall be called
standard words Their finite linear combinations will be called standard polynomials .
Let us denote the set of all standard words in symbols x1, . . . , xn by Mon(x1, . . . , xn).

Remark 1.6.4. Due to Definition 1.6.3, every nonzero standard polynomial f has a unique
representation, as a sum of standard words with nonzero coefficients:

f =
∑

xα∈Mon(x1,...,xn)

cαx
α.

We define the support of f by

Supp(f) := {α ∈ Nn : cα 6= 0} ⊆ Nn,

and the corresponding set of standard words by

Mon(f) := {xα : cα 6= 0} ⊆ Mon(x1, . . . , xn),

Definition 1.6.5. Let 4 be a fixed total order on Nn (cf. the coming section 2.1). The
leading exponent of a nonzero standard polynomial f is defined by

Exp(f) := max
4

Supp(f).

Definition 1.6.6. Let 4 be a fixed total order on Mon(x1, . . . , xn). The
leading monomial of a nonzero standard polynomial f is defined by

Lm(f) := max
4

Mon(f).

The corresponding (nonzero) coefficient is denoted by Lc(f) and is called the
leading coefficient . The leading term of f is defined by Lt(f) := Lc(f) · Lm(f). The
tail of f is defined by Tail(f) := f − Lt(f).

1.6. TENSOR ALGEBRA 11

Because of the generality of the tensor algebra, all other algebras are constructed by starting
with the tensor algebra and then imposing certain relations on the generators, that is, by
constructing certain factors of T (V).

Proposition 1.6.7 (cf. [89], Prop. 1.2). Any k-algebra A is isomorphic to a factor of a
free associative k-algebra by some two-sided ideal.

Definition 1.6.8. Let B = {xj} be a set of symbols. Let I be the two-sided ideal
in k〈B〉 generated by F := {fi} ⊂ k〈B〉. We say that the k-algebra A = k〈B〉/I is
generated by B subject to relations F and denoted by k〈xj | fi = 0〉. The relations
fi are called defining relations for A.

Definition 1.6.9. Let A be a k-algebra generated by a finite (ordered) set of
symbols {x1, . . . , xn} subject to some relations. The algebra A is said to be a
Poincaré-Birkhoff-Witt-algebra (or simply PBW -algebra), if the following set of
standard words is a generating system of A as a k-vector space:

{xα := xα1
1 x

α2
2 · · ·xαnn | αi > 0}

Remark 1.6.10. Due to definition 1.6.9, we can choose a suitable k-vector space basis of A
consisting of standard words. Let us consider PBW -algebras together with a such basis,
called a PBW -basis and denoted by Mon(A).

Moreover, after fixing a total order on Mon(A) we can use the notions of leading monomial,
coefficient and term as they where introduced for a free associative algebra (cf. definition
1.6.6).

Clearly, the free associative non-commutative polynomial algebra k〈x1, . . . , xn〉 does not
have a PBW basis.

Examples 1.6.11. Let us give defining relations for the most important algebras dealt
with within this thesis. Note that they all have PBW bases.

The symmetric algebra in n variables (also called commutative polynomial algebra),
denoted by k[x1, . . . , xn]), is defined as follows:

k〈x1, . . . , xn | xi · xj − xj · xi = 0〉.

Its PBW -basis shall consist of all power-products in all the variables x1, . . . , xn.

Note that every commutative algebra is a quotient of a symmetric algebra.

The exterior algebra in m variables over a commutative k-algebra A is defined
as the k-algebra generated over A by elements ξ1, . . . , ξm subject to the relations

ξ2
i = 0, ξi · ξj = −ξj · ξi, i 6= j,

12 CHAPTER 1. ALGEBRAIC PRELIMINARIES AND NOTATIONS

and in our notation above, will be denoted by

A := A
〈
ξ1, . . . , ξm | ξ2

i = ξi · ξj + ξj · ξi = 0, i 6= j
〉
.

Its PBW -basis shall consist of square-free power-products in all the variables ξ1, . . . , ξm.

It is clear that this algebra can be constructed as the tensor product of A and the usual
exterior algebra:

A ∼= A⊗k k
〈
ξ1, . . . , ξm | ξ2

i = ξi · ξj + ξj · ξi = 0, i 6= j
〉
.

An exterior algebra over the commutative polynomial algebra k[x1, . . . , xn] is one of the
most important objects for us. It may be constructed as follows:

k〈x1, . . . , xn, ξ1, . . . , ξm | xi · xj − xj · xi = xi · ξl − ξl · xi = ξk · ξl + ξl · ξk = 0〉.

In this thesis such an algebra will be called a
(polynomial) graded commutative algebra in n commuting (or commutative or
even) variables x1, . . . , xn and m anti-commuting (or anti-commutative or odd) variables
ξ1, . . . , ξm.

Its PBW -basis shall consist of those power-products, which do not contain powers of
variables ξ1, . . . , ξm.

Note that this algebra is Z-graded commutative and even super-commutative in the sense of
Remark 1.5.11, if we set odd degrees for commutative and even degrees for anti-commuting
variables.

1.7 Binary relations

Definition 1.7.1. A binary relation R on a set S is a subset R of S × S. We say that
“a is R-related to b” if (a, b) ∈ R and denote it by aRb.

A binary relation R on a set S is called

• reflexive if ∀a ∈ S : aRa. For example: “is greater than or equal to” but not “greater
than”.

• irreflexive if ∀a ∈ S : (a, a) /∈ R. For example: “greater than” but not “greater than
or equal to”.

• symmetric if ∀a, b ∈ S it holds that if aRb then bRa. For example: “is a blood
relative of”.

• antisymmetric if ∀a, b ∈ S it holds that if aRb and bRa then a = b. For example:
“is greater than or equal to”.

• asymmetric if ∀a, b ∈ S it holds that if aRb then bRa is false. For example: “is
greater than”.

1.7. BINARY RELATIONS 13

• transitive if ∀a, b, c ∈ S it holds that if aRb and bRc then aRc. For example: “is an
ancestor of”.

• total if ∀a, b ∈ S it holds that either aRb or bRa is true. Such a relation is also
called linear order For example: “is greater than or equal to” on Z.

• an equivalence relation if R is reflexive, symmetric and transitive. For example:
“equals to”.

• a quasi-order if it is irreflexive and transitive.
• a partial order if it is reflexive, antisymmetric and transitive.
• a total order if it is a partial order and total.
• a well-order if it is a total order w.r.t. which every nonempty subset B ⊂ S has a

least element, where an element c ∈ B is called the least element of B if cRb for
every b ∈ B. In such a case the set S is said to be well ordered

Let us consider some operations on binary relations:

• Reflexive closure of R is defined by R= := R ∪ {(a, a) | a ∈ S}.
• Transitive closure of R, denoted by R+, is the smallest transitive relation over S

containing R or equivalently the intersection of all transitive relations containing R.
• The reflexive transitive closure of R is defined by R∗ := (R+)

=.
• Symmetric closure of R is defined by R− := R ∪ {(b, a) | (a, b) ∈ R}.
• The reflexive symmetric transitive closure of R shell be called the equivalence relation
defined by R and denoted by

←→
R .

An element a ∈ S is a normal form w.r.t. R (or modulo R) if there is no b ∈ S : (a, b) ∈
R. Such an elements may also be called minimal element of S w.r.t. the binary relation
R.

The binary relation R is Noetherian if there is no infinite sequence {fi}i∈N ⊂ S such that
(fi, fi+1) ∈ R for all i ∈ N.

The following is due to [123] and references thereof.

Definition 1.7.2 (Definitions. 5.7 − 5.9). Let R be a binary relation on a set S. Let
closures R∗,

←→
R be as above. The binary relation R is called

• confluent if for all f, a, b ∈ S : fR∗a and fR∗b there exists g ∈ S : aR∗g and bR∗g.
• locally confluent if for all f, a, b ∈ S : fRa and fRb there exists g ∈ S : aR∗g and
bR∗g.

• Church–Rosser if for all a, b ∈ S : a
←→
R b there exists f ∈ S : aR∗f and bR∗f .

Lemma 1.7.3 (Lemma 5.10). Let R be a Noetherian binary relation on a set S. Then the
following statements are equivalent

• R is confluent.

14 CHAPTER 1. ALGEBRAIC PRELIMINARIES AND NOTATIONS

• R is locally confluent.
• R is Church–Rosser.
• For all a, b ∈ S : a

←→
R b iff there exists a normal form f ∈ S w.r.t. R such that aR∗f

and bR∗f .

Chapter 2

Computer Algebra preliminaries

In this chapter we recall CA basis for (polynomial) G-algebras and the possible approaches
to CA computations over quotient algebras (e.g. GR-algebras or graded commutative
algebras).

2.1 Standard monomials and monomial orderings

In this section we will discuss monoid and monomial orderings mainly following [19, Chap-
ter 2].

Definition 2.1.1. Let4 be a partial ordering, i.e., a reflexive, antisymmetric and transitive
relation, on a non-empty set M .

A partial ordering 4 on a setM satisfies the descending chain condition if there exists
no infinite strictly descending chain

γ1 � γ2 � . . . � γn � . . . , γi ∈M.

Proposition 2.1.2. A partial ordering 4 on a set M satisfies the descending chain con-
dition iff every non-empty subset of M has a minimal element.

Recall that a (multiplicative) monoid (M, ·) with neutral element e ∈ M is a set M
endowed with a binary operation · which is associative and the neutral element satisfies
e ·m = m · e = m for all m ∈M.

Example 2.1.3. LetX be a non-empty set, called alphabet. A word or a term overX is an
ordered finite sequence x1 · · ·xs of elements xi ∈ X. Adding the empty sequence, denoted
by 1, to the set of words over X, we obtain the free monoid on X, denoted by 〈X〉. The
multiplication in 〈X〉 is just the concatenation of words and 1 acts as neutral element. The
characteristic property of X is that it is a free object, i.e., any mapping X → M , where
M is a monoid, extends uniquely to a homomorphism of monoids 〈X〉 → M , that is, a

15

16 CHAPTER 2. COMPUTER ALGEBRA PRELIMINARIES

multiplicative map 〈X〉 → M , which maps the neutral element 1 of 〈X〉 in to the neutral
element of M .

We are especially interested in the case when X is finite, say X = {x1, . . . , xn}. In this
case we use the notation 〈X〉 = 〈x1, . . . , xn〉.

Example 2.1.4. Let n be a positive integer and let

Nn = {α = (α1, . . . , αn) : α1, . . . , αn ∈ N} .

We will consider the commutative monoid (Nn,+) with sum defined component-wise. The
neutral element is then given by 0 = (0, . . . , 0).

Definition 2.1.5. Let (M, ·) be a monoid. A total or partial ordering ≺ on M is called
monoid ordering if

∀m1,m2, a, b ∈M : (m1 ≺ m2) or (m1 = m2)⇒ (am1b ≺ am2b) or (am1b = am2b) .
(2.1)

Remark 2.1.6. If the monoid M is cancelative (i.e. when either am = bm or ma = mb
implies a = b) then condition (2.1) in definition 2.1.5 can be replaced by

∀m1,m2, a, b ∈M : m1 ≺ m2 ⇒ am1b ≺ am2b. (2.2)

Example 2.1.7. Clearly monoids 〈X〉 and (Nn,+) (cf. examples 2.1.3 and 2.1.4) are
cancelative, in particular, since (Nn,+) is a commutative monoid: monomial ordering on
(Nn,+) is a partial monoid ordering ≺ such that α + γ ≺ β + γ for all α, β, γ ∈ Nn with
α ≺ β.

Definition 2.1.8. A non-empty subset E of Nn is said to be a monoideal if E+Nn = E.

If B is a subset of Nn, then we define the monoideal generated by B to be

B + Nn =
⋃
β∈B

(β + Nn) =
{
β + γ; β ∈ B, γ ∈ Nn

}
.

If E = B + Nn, then we call the elements of B generators of E.

Definition 2.1.9. The (natural) partial ordering 4n in Nn is defined by

α 4n β ⇔ β ∈ α + Nn.

In other words, α 4n β if αi 6 βi for all 1 6 i 6 n.

This natural partial ordering may sometimes be denoted by 6nat.

Clearly, the partial ordering 4n satisfies the descending chain condition.

2.1. STANDARD MONOMIALS AND MONOMIAL ORDERINGS 17

Lemma 2.1.10 (Dickson’s Lemma, cf. [33]). For any non-empty E ⊆ Nn, there exists a
finite subset B =

{
α1, . . . , αm

}
of E (αm are called generators) such that

E ⊆
m⋃
i=1

(
αi + Nn

)
.

Observe that every monoideal has a set of generators (for example the whole monoideal).

Proposition 2.1.11. Every monoideal E of Nn possesses a unique finite minimal set of
generators B.

Definition 2.1.12. An admissible ordering on (Nn,+) is a total monoid ordering 4
such that 0 4 α for every α ∈ Nn. By remark 2.1.6 the total ordering 4 is admissible iff it
satisfies the following two conditions:

(1) 0 ≺ α for every 0 6= α ∈ Nn;
(2) α + γ ≺ β + γ for all α, β, γ ∈ Nn with α ≺ β.

The total degree of the element α ∈ Nn is

|α| = α1 + · · ·+ αn.

Example 2.1.13. The total degree ordering 4tot on Nn is defined by

β 4tot α⇔
(∣∣β∣∣ < |α|) or

(
β = α

)
.

The ordering 4tot is only a partial ordering, and hence not an admissible ordering.

For any 1 6 i 6 n we denote by εi the element (0, . . . , 1, . . . , 0) ∈ Nn whose all entries are
0 except for the value 1 in the i-th component.

Example 2.1.14. The reverse lexicographical ordering 4revlex on Nn with ε1 ≺ ε2 ≺
· · · ≺ εn is defined by

α ≺revlex β ⇔ ∃j ∈ {1, 2, . . . , n} such that αi = βi ∀i < j and αj > βj.

The ordering 4revlex is a total ordering which is compatible with the monoid structure, but
is not admissible since 0 is the biggest element w.r.t. this ordering.

Let us give now some examples of standard admissible orderings.

Example 2.1.15. The lexicographical ordering 4lex on Nn with ε1 ≺ ε2 ≺ · · · ≺ εn is
defined by

α ≺lex β ⇔ ∃j ∈ {1, 2, . . . , n} such that αi = βi ∀i > j and αj < βj.

18 CHAPTER 2. COMPUTER ALGEBRA PRELIMINARIES

Example 2.1.16. The degree lexicographical ordering 4deglex on Nn with ε1 ≺ ε2 ≺
· · · ≺ εn is defined by

α ≺deglex β iff ⇔ |α| < |β| or
(
|α| = |β| and α ≺lex β

)
.

Example 2.1.17. The degree reverse lexicographical ordering 4degrevlex on Nn with
ε1 ≺ ε2 ≺ · · · ≺ εn is defined by

α ≺degrevlex β ⇔ |α| < |β| or
(
|α| = |β| and α ≺revlex β

)
.

Example 2.1.18. Let ω = (ω1, . . . , ωn) ∈ Nn. The weighted total degree with respect
to ω of the element α ∈ Nn is

|α|ω = 〈ω, α〉 =
n∑
i=1

ωiαi.

The ω-weighted degree lexicographical ordering 4ω on Nn with ε1 ≺ ε2 ≺ · · · ≺ εn is
defined by

α ≺ω β iff ⇔ |α|ω < |β|ω or
(
|α|ω = |β|ω and α ≺lex β

)
.

Proposition 2.1.19. Any admissible ordering 4 on Nn is a refinement of the partial
ordering 4n (defined in 2.1.9), that is, α 4n β implies α 4 β.

Proposition 2.1.20. Any admissible ordering on Nn is a well-ordering, that is, every
non-empty subset of Nn has a least element.

Remark 2.1.21. Note that, the set of standard monomials Mon(x1, . . . , xn) can be identified
with (a subset of) Nn via the correspondence xα! α. The ordering on Mon(x1, . . . , xn)
induced by a monoid ordering ≺ on Nn will be called a monomial ordering.

We shall call the ordering on monomials, induced by an admissible order-
ing on exponents, a global monomial ordering , or by abuse of notation, an
admissible monomial ordering .

More general, non-admissible, local and mixed monomial orderings are considered in Chap-
ter 4.

2.2 G-algebras

Definition 2.2.1. Let T = k〈x1, . . . , xn〉 be the free associative k-algebra. Let cji be
nonzero elements from k and pji be standard polynomials from T , where 1 6 i < j 6 n.
The k-algebra generated by x1, . . . , xn over k, subject to the following relations

F := {xj · xi − cjixixj − pji = 0}16i<j6n ,

together with an admissible monomial well-ordering ≺ on Mon(x1, . . . , xn) is called a
G-algebra , if the following conditions hold:

2.2. G-ALGEBRAS 19

1. ∀xα ∈ Mon(pij) : xα ≺ xixj, for all 1 6 i < j 6 n,
2. For all 1 6 i, j, k 6 n, the following element is reduced to zero w.r.t. the relations F

in T :

ckickj · pji · xk − xk · pji + ckj · xj · pki − cji · pki · xj + pkj · xi − cjicki · xi · pkj ∈ T.

This G–algebra shall be denoted by

k〈x1, . . . , xn | xj · xi = cjixixj − pji,≺〉.

Definition 2.2.2. An algebra A shall be called a GR-algebra , if there exists a surjective
k-algebra homomorphism from A onto a G-algebra, that is, if A is a quotient of a G-algebra
by a two-sided (nonzero) ideal.

Remark 2.2.3. Algebras similar to the above, were first introduced (in a slightly different
way) by J. Apel in [5] under the name of G-algebras and were further studied in [99].
After that they were reinvented, named differently and studied by a lot of people. These
algebras are also called rings of solvable type and resp. algebras of solvable type in
[76] and PBW -algebras in [19]. H. Kredel generalized (cf. [78]) the algebras of solvable
type even further by allowing scalars to be non-commutative, although these algebras are
not k-algebras anymore.

In this thesis we adopt some notations and conventions from [86, 67].

Remark 2.2.4. Note that Condition 2 of Definition 2.2.1, which is equivalent to equal-
ities xi · (xj · xk) = (xi · xj) · xk for all 1 6 i, j, k 6 n taking place in the G-algebra,
assures the associativity of multiplication and the existence of a PBW basis in a G-
algebra. This condition is due to [87, Section 2] and [86, Section 1.2], is called the
non-degeneracy condition , also corresponds to the overlap ambiguities of Bergman for
being resolvable (cf. [14]) or the (Noetherian) rewriting system arising from F for be-
ing complete (cf. [77]). In particular, in the case of universal enveloping algebra of a
Lie algebra, the non-degeneracy condition corresponds to the Jacobi identity for the Lie
algebra.

Let, in what follows, A stand for a G-algebra in n variables x1, . . . , xn, endowed with a
(fixed) total ordering on its PBW -basis.

Proposition 2.2.5 (cf. Proposition 1.9.2 from [67]). Let A be as above. Then

1. A is a PBW -algebra, with the following PBW -basis: Mon(A) = Mon(x1, . . . , xn),
which is totally sorted w.r.t. 4. Hence the notions of leading monomial/exponent/-
coefficient/term are applicable to G-algebras.

2. A is left and right Noetherian,
3. A is an integral domain.

Definition 2.2.6. Let F be any subset of A.

20 CHAPTER 2. COMPUTER ALGEBRA PRELIMINARIES

• We denote by L(F) the monoid ideal in (Nn,+), generated by exponents of the
leading monomials of elements of F :

L(F) := 〈Exp(f) ∈ Nn | f ∈ F, f 6= 0〉Nn ⊂ Nn.

The ideal L(F) is called the monoid ideal of leading exponents .
• The set of leading monomials of F , denoted by L(F), is the k-vector space,

spanned by monomials, divisible by leading monomial of some element from F , that
is:

L(F) := 〈xα ∈ Mon(A) | ∃f ∈ F, f 6= 0 such that Lm(f)|xα〉k ⊂ A.

The ideal L(F) is finitely generated due to Dickson’s Lemma (cf. 2.1.10). Note moreover
that

L(F) = 〈xα ∈ Mon(A) | α ∈ L(F)〉k ⊂ A.

Definition 2.2.7. Let I ⊂ A be a left (resp. right, resp. two-sided) ideal in A and G ⊂ I
a finite subset. Then G is called a left (resp. right, resp. two-sided) Gröbner basis of I
if for any f ∈ I \ {0} there exists g ∈ G \ {0} such that: Lm(g)|Lm(f).

Proposition 2.2.8. Let I ⊂ A be a left ideal and G ⊂ I a finite subset. Then the following
conditions are equivalent:

1. G is a (left) Gröbner basis of I.
2. L(G) = L(I).
3. L(G) = L(I) as monoid ideals in (Nn,+).

The notion of division with remainder in the non-commutative setting can be formal-
ized via the following notion of (left) normal form.

Definition 2.2.9. Let GA denote the set of all finite ordered subsets of A. A map

NF : A× GA → A, (f,G) 7→ NF(f | G),

is called a (left) normal form on A if, for all G ∈ GA, f ∈ A,

1. NF(0 | G) = 0,
2. NF(f | G) 6= 0⇒ Lm(NF(f | G)) /∈ L(G),
3. f − NF(f | G) ∈ A〈G〉, and if G = {g1, . . . , gs} then f − NF(f | G) (or, by abuse of

notation, f) has a standard representation with respect to G, that is,

f − NF(f | G) =
s∑
i=1

aigi, ai ∈ A, s > 0, (2.3)

satisfying Lm(
∑s

i=1 aigi) > Lm(aigi) for all i such that aigi 6= 0.

2.2. G-ALGEBRAS 21

Proposition 2.2.10. Let I ⊂ A be a left ideal, G a left Gröbner basis of I and NF(· | G)
a left normal form on A with respect to G. Then

1. For any f ∈ A, we have: f ∈ I ⇔ NF(f | G) = 0.
2. If J ⊂ A is a left ideal with I ⊂ J , then L(I) = L(J) implies I = J . In particular,

G generates I as a left ideal.

Definition 2.2.11. Let f, g ∈ A \ {0}. The left S-polynomial of f and g is defined by

LeftSPoly(f, g) := a1v1 · f − a2v2 · g,

where w = lcm(Lm(f),Lm(g)), v1 = w/Lm(f), v2 = w/Lm(g), a2 = Lc(v1 · f), a1 =
Lc(v2 · g).

Remark 2.2.12. If Lm(f) divides Lm(g) then reductum of g by f is their S-polynomial
h := LeftSPoly(f, g), with even smaller leading monomial: Lm(h) ≺ Lm(g) if h 6= 0. If we
proceed further reducing g by suitable (dividing) f ∈ F we can achieve a strictly descending
sequence of leading monomials: Lm(g) � Lm(h) � . . . This procedure gives rise to the
generic (left) normal form algorithm, which always terminates if ≺ is a well-ordering.

Theorem 2.2.13 (Left Buchberger’s Criterion). Let I ⊂ A be a left ideal and G =
{g1, . . . , gk}, gi ∈ I. Let NF(· | G) be a left normal form on A with respect to G. Then the
following statements are equivalent:

1. G is a Gröbner basis of I,
2. for all f ∈ I: NF(f | G) = 0,
3. each f ∈ I has a (left) standard representation w.r.t. G,
4. for all 1 6 i, j 6 k: NF(LeftSPoly(gi, gj) | G) = 0.

We may summarize theorem 2.2.13, as follows:

Remark 2.2.14. A finite subset G ⊂ A is a Gröbner basis iff all left S-polynomials are
reducible to zero modulo G:

G is a GB ⇔ ∀f, g ∈ G : NF(LeftSPoly(f, g) | G) = 0.

Remark 2.2.15. Theorem 2.2.13 gives rise to generic Buchberger’s algorithm for computing
a (left) GB of an ideal, which always terminates (since L(G) can only ascend up to L(I)),
provided the left normal form terminates.

Remark 2.2.16. Later in this thesis (Chapter 4) we will show that in some local cases
one can compute, so called, standard bases (which are generalizations of GBs), simply by
considering weak left normal forms in homogenized settings instead of left normal forms.

Recall that f is called reduced w.r.t. F , if no monomial of f is in L(F). Given any
left normal form, it is easy to extend it to a reduced normal form algorithm (cf. Algo-
rithm 2.2.1).

22 CHAPTER 2. COMPUTER ALGEBRA PRELIMINARIES

Algorithm 2.2.1 redLeftNF(f, F)

ASSUME: A is a GR algebra s.th. either < is a well-ordering or both f and F are
homogeneous, NF(− | −) is any left normal form over A

INPUT: f ∈ A,F ∈ GA;
OUTPUT: h ∈ A, a reduced left normal form of f w.r.t. F .
1: h := 0; g := f ;
2: while g 6= 0 do
3: g := NF(g | F);
4: h := h+ Lt(g);
5: g := Tail(g);
6: end while
RETURN: h;

Proposition 2.2.17. Algorithm 2.2.1 terminates and computes a reduced left normal form
of f ∈ A with respect to F ∈ GA.

Proof. The correctness of this algorithm follows from the definition of a reduced normal
form, that is, if this algorithm terminates, the result is correct.

Assuming that the left normal form always terminates, Algorithm 2.2.1 terminates if either
< is a well-ordering or the input is homogeneous, since Tail(g) has strictly smaller leading
monomial than g, for any non-zero g. �

Remark 2.2.18. Two-sided GB of an ideal in a GR-algebra A can be computed using by
staring with the left ideal structure and completing (cf. [6]) it to the right ideal structure,
while keeping the left one, which results in both left and right GB.

Let F = {f1, . . . , fk} be a minimal set of generators of a two-sided ideal I in A such
that A〈F 〉 = A〈F 〉A = I. Then, due to [76], it follows that 〈F 〉A = M〈F 〉A = I and
A〈F 〉 = 〈F 〉A = I.

We shall say that F is a two-sided GB of a two-sided ideal I, if it satisfies one of three
conditions above.

Algorithm 3.1 from [86, Section 3.1] computes two-sided GBs.

2.3 Definitions of Gröbner Bases in quotient algebras

In Computer Algebra one usually starts by defining a reduction relation modulo a set of
elements, which gives rise to a normal form (modulo the set). Due to the nature of reduction
relations modulo a set of elements, one has a lot of freedom and often an element can have
more than one normal form.

2.4. USUAL APPROACH TO COMPUTATIONS IN FACTOR ALGEBRAS 23

Luckly in the case of (polynomial) G-algebras definitions of a GB are equivalent to saying
that reduction modulo a GB must solve an ideal membership problem, e.g. by Theo-
rem 2.2.13:

a finite set of elements G is a GB ⇐⇒ NF(f | G) = 0,∀f ∈ 〈G〉. (2.4)

Moreover, for G-algebras the following implication

NF(f | F) = 0 =⇒ NF(g · f | F) = 0,∀g ∈ A (2.5)

is a simple consequence of defining leading terms in such a way that Lm(g · f) is divisible
by both Lm(g) and Lm(f).

Note that the implication (2.5) may fail in quotient algebras with zero-divisors,
e.g. in an exterior algebra with variables ξ1 . . . ξ3, endowed with a degree ordering
Lm(ξ1 · (ξ1ξ2 + ξ3)) = Lm(ξ1ξ3) is not divisible by Lm(ξ1ξ2 + ξ3) = ξ1ξ2. This has to
be taken into account while defining a GB and characterizing it.

It was pointed out in [123] that there are at least two legitimate definition of a GB, one
being equivalent to (2.4) and the other saying that reduction relation modulo a GB must
be a confluent relation, which is equivalent to requiring a unique normal form modulo a
GB. Confluent reduction relations are discussed in [14]. Clearly the first definition of a
GB implies the second one. Moreover in all our application we actually need to solve ideal
membership problems rather than have a unique normal form.

Note that we will use the definition due to [67] in terms of leading monomial ideals, which
will be shown to be equivalent to the one given by (2.4), and later on (cf. Chapter 4)
with a slight modification of reduction relation/normal form we will be able to compute in
central localizations by using mixed monomial orderings, where it is known, that, even in
the commutative case, no unique “normal form” exists.

2.4 Usual approach to computations in factor algebras

Let A be a G-algebra with a fixed ordering ≺, NFA be a fixed normal form on A, I be a
two-sided ideal in A with P ⊂ A being its GB.

We consider the GR-algebra R = A/I, we set Mon(R) := Mon(A) \ L(I) and assume that
for each element [f] = f + I ∈ R (f ∈ A) there is a representative, denoted by f̃ , which
contains only terms with monomials being in Mon(R).

Speaking about GBs in GR-algebras usually amounts to the following recipe (cf. [78, 76,
67, 86]), which steams from the desire to solve the ideal membership problem (cf. (2.4))
in these algebras:

Using the induced admissible monomial ordering on Mon(R) we can define a reduction
relation and a notion of GB via (2.4). Moreover for a finite subset F ⊂ A, such that,

24 CHAPTER 2. COMPUTER ALGEBRA PRELIMINARIES

∀f ∈ F : Lm(f) /∈ L(I), and for any g ∈ A it can be shown (under some mild assumption,
cf. [72]) by induction on the number of reduction steps that

NFR ([g] | [F]) = 0 =⇒ NFA (g | F ∪ P) = 0, (2.6)

and furthermore
F ∪ P is a GB in A iff [F] is a GB in R. (2.7)

Remark 2.4.1. Let A and R be as above, [h] be an element in R, J be the left ideal
in R generated by G = {[g1], . . . , [gk]}. Denote by J̃ the left ideal in A generated by
{g̃1, . . . , g̃k} ∪ P and let F = {f1, . . . , fl} be its left Gröbner basis in A. Then the set
{[NFA (f | P)]|f ∈ F} \ {[0]} is a left Gröbner basis of J and the element NFR ([h] | G) :=[
NFA

(
h̃ | F

)]
is a normal form of [h] w.r.t G.

Chapter 3

Gröbner bases in graded commutative
algebras

Since graded commutative algebras can be represented as GR-algebras one can use the
general GB algorithm for GR-algebras (see [5, 78, 19, 76, 86]) as explained in Section 2.4.
This approach to graded commutative algebras has been used by D. Green in [62], whose
treatment is explained in Section 3.1.

Let us remark that all commutative algebras can also be represented as factor algebras
of free associative k-algebras but no-one uses this representation in practice by working
directly with polynomials.

Similarly for graded commutative algebras we try to avoid the general quotient algebra
approach (cf. Section 2.4). On the contrary, our approach is to make the most use of a
priori knowledge about zero-divisors in graded commutative algebras.

In what follows we try to follow [67] as close as possible and highlight the differences
occurring due to the presence of zero-divisors.

Our direct approach seems to be somewhat similar to that of [123, 102, 91]. But our
characterization of a GB is by far much more direct, explicit and efficiently implementable.

We also give a short account of the results by T. Stockes (cf. [123]) and prove that his
definition of a Gröbner Left Ideal Basis (GLIB) is equivalent to our definition of a GB of
an ideal.

3.1 Green’s approach

Throughout this section “graded” means Z-graded.
As an example of the previously discussed approach (cf. 2.4) applied to graded commutative
algebras let us interpret Chapter 4 from [62] (in the case of odd characteristic of k), using
the standard computer algebra notions from [67, 86]. Note that the author’s considerations

25

26 CHAPTER 3. GRÖBNER BASES IN GRADED COMMUTATIVE ALGEBRAS

for right ideals can be easily translated for left (one-sided) ideals by using the opposite
algebra.

A graded commutative algebra A is an associative k-algebra and can be represented as the
factor of a free associative (graded) k-algebra k〈z1, . . . , zn〉 by the two-sided (graded) ideal
in it, generated by relations {zj · zi − (−1)titjzi · zj | 1 6 i, j 6 n}, where |zi| := ti ∈ Z are
degrees (grades) of algebra generators. These degrees also define the Z-grading on A.
From the defining relations it follows that h2 = 0 for any odd homogeneous element of a
graded commutative algebra. This holds even in the free graded commutative algebra.

By taking away zero-divisors from A we arrive to the following algebra:

Definition 3.1.1. Let z1, . . . , zn be variables, each equipped with a positive integer degree
|zi| := ti ∈ N.

1. The Θ-algebra S = Θ(z1, . . . , zn) on zi over k is defined as the associative k-algebra

Θ(z1, . . . , zn) := k
〈
z1, . . . , zn | zj ∗ zi − (−1)titjzi ∗ zj = 0, 1 6 i < j 6 n

〉
,

where the ordered n-tuple (t1, . . . , tn) is part of the structure of the Θ-algebra S.
Note that S is a polynomial algebra (that is, a G-algebra) with anti-commuting (of
odd degree) and commuting (of even degree) variables but without zero-divisors.
If we moreover denote its variables of even degree by x1, . . . , xn and variables
of odd degree by ξ1, . . . , ξm we may emphasize this this structure by writing
Θ(x1, . . . , xn; ξ1, . . . , ξm) Whenever exact grading is not important we may also write
Sn|m for any Θ(x1, . . . , xn; ξ1, . . . , ξm).

2. The family Mon(S) of monomials of S is defined as follows:

Mon(S) := {zα := zα1
1 · · · zαnn | (α1, . . . , αn) ∈ Nn} .

3. for two monomials zα, zβ ∈ Mon(S) the greatest common divisor and the
least common multiple are defined (respectively) as follows:

gcd
(
zα, zβ

)
:= zMin(α,β) ∈ Mon(S), lcm

(
zα, zβ

)
:= zMax(α,β) ∈ Mon(S),

where Min
(
α, β

)
and Max

(
α, β

)
are defined as component-wise Min and respectively

Max.

Remark 3.1.2. Clearly any Θ-algebra is zero-divisors-free and the original graded commu-
tative algebra can be represented as the following quotient algebra (i.e. as a GR-algebra):

A = S/
〈
zi · zi − (−1)titizi · zi | 1 6 i 6 n

〉
.

More specifically, the free graded commutative algebra with n even-degree variables
x1, . . . , xn and m odd-degree variables ξ1, . . . , ξm is the quotient of Θ(x1, . . . , xn; ξ1, . . . , ξm)
by the relations ξ2

j = 0:

Θ(x1, . . . , xn; ξ1, . . . , ξm)/
〈
ξ2
j | 1 6 j 6 m

〉
.

3.1. GREEN’S APPROACH 27

Whenever exact grading is not important we may also write An|m for any such graded
commutative algebra.

Remark 3.1.3 (cf. Remark 4.1 from [62]). Due to David Green, computing a GB in a Θ-
algebra instead of doing that in a graded commutative algebra has the following advantages:

• As far as possible, the “structural” relations h2 = 0 are treated in exactly the same
way as the remaining relations (i.e. the original ideal), which makes it easier to list
the critical pairs.

• elements of a Θ-algebra may be represented as polynomials. The polynomial is unique
and every polynomial can occur.

• GBs for one-sided ideals in a Θ-algebra are analogous to the usual commutative GBs,
whereas GBs for two-sided ideals would be more complicated as they would share at
least some of the characteristics of non-commutative GBs.

In what follows we examine the structure of Θ-algebras closely following [62, Chapter 4].

Remark 3.1.4 (remark 4.8 from [62]). Let us consider homogeneous (of degree 1) elements
y, y + z ∈ Θ(y, z), then (y + z) · y = y2 − y · z is not equal to y · (y + z) = y2 + y · z, even
up to a sign.

In general, homogeneous elements of a Θ-algebra do not commute, even up to sign, in
contrary to them doing so in the original graded commutative algebra (e.g. since y2 = 0
holds there).

Since Θ-algebras do not have zero-divisors it makes sense to use any monomial orderings:

Definition 3.1.5 (Definition 4.9 from [62]). Let S be a Θ-algebra. A total ordering ≤ on
Mon(S) is called usable if from zα ≤ zβ follows that zα+γ ≤ zβ+γ for all α, β, γ ∈ Nn.

Each element p of the Θ-algebra S has a finite support Supp(p) ⊆ Mon(S) and as soon
as we fix a usable (monomial) ordering on Mon(S), each p 6= 0 has a leading monomial
Lm(p) ∈ Mon(S).

Definition 3.1.6. A monomial ideal in the Θ-algebra S is an ideal which is generated
by a subset of the basis Mon(S).

Note that for monomial ideals we do not need to distinguish between left, right and two-
sided ideals since the left and the right ideal generated by a set of monomials coincide.

Proposition 3.1.7. One-sided ideals in a Θ-algebra satisfy the ascending chain condition.

Proposition 3.1.8. Let S = Θ (x1, . . . , xn; ξ1, . . . , ξm) and I ⊂ S be a homogeneous one-
sided ideal. If all ξ2

j ∈ I, then I is a two-sided ideal.

28 CHAPTER 3. GRÖBNER BASES IN GRADED COMMUTATIVE ALGEBRAS

Lemma 3.1.9. Let S = Θ (x1, . . . , xn; ξ1, . . . , ξm). Let f1, . . . , fr ∈ S be homogeneous of
degree df and g1, . . . , gr ∈ S of degree dg. We denote γ := (−1)dfdg and

Φ :=
r∑
i=1

(gi · fi − γfi · gi) .

Then there exist h1, . . . , hm ∈ S such that

Φ =
m∑
j=1

hj · ξ2
j ,

where each hj is either zero or homogeneous of degree df + dg − 2 and Supp
(
hj · ξ2

j

)
⊆

Supp(Φ) for each j.

The definition of a GB for one-sided ideals in Θ-algebras coincide with it for G-algebras.

D.Green gives the following definition for normal-form reductions in a Θ-algebra:

Proposition 3.1.10 (cf. [62], Proposition-Definition 4.27). Let S be any Θ-algebra, I ⊂ S
be a homogeneous one-sided ideal, fS = (fs ∈ I | s ∈ S) a family of homogeneous non-zero
elements and a usable (monomial) ordering 4 on Mon(S). Then the following holds:

1. For each f ∈ S there is an f ′ ∈ S, an n > 0 and triples (si,mi, λi)16i6n ⊂ S ×
Mon(S)× k∗ satisfying the following conditions:

(a) f =
∑n

i=1 λimifsi + f ′.

(b) Lm(mifsi) ≺ Lm
(
mjfsj

)
for 1 6 i < j 6 n.

(c) if f ′ 6= 0 then Lm(f ′) /∈ L(fS) and if moreover n > 0 then Lm(f ′) < Lm(mnfsn).

Such an f ′ shall be called a reduced form of f over (4, fS). The following prop-
erties also hold:

(d) if n > 0 then f is nonzero and Lt(f) = Lt(λ1m1fs1)

(e) if s1, . . . , sr are known for some r 6 n then the mi and the λi are uniquely deter-
mined for i 6 r. If n and s1, . . . , sn are known then f ′ is uniquely determined.

2. For each f ∈ S there is an f ′ ∈ S, an n > 0 and triples (si,mi, λi)16i6n ⊂ S ×
Mon(S)× k∗ satisfying the above conditions 1a, 1b and also Supp(f ′) ∩ L(fS) = ∅.
Such an f ′ shall be called a completely reduced form of f over (4, fS). More-
over Property 1e also holds here.

Remark 3.1.11. Note that the reduced form (resp. completely reduced form) in proposition
3.1.10 is the usual normal form (resp. reduced normal form) from [67, 86], and it gives rise
to the usual one-sided normal form (resp. reduced normal form) algorithm.

The only difference is that Proposition 3.1.10 does not require a global monomial ordering
since it works in a homogeneous setting only: its argument for termination would be wrong

3.1. GREEN’S APPROACH 29

for non-homogeneous polynomials. Consider for instance, for the following (commutative)
example: A = k[x], f = x, fS = (x − x2), w.r.t. the monomial ordering on Mon(A) with
x ≺ 1. Clearly the sequence f0 = x, f1 = x2, . . . is infinite whereas the sequence of its
leading monomials is strictly decreasing w.r.t. the fixed local monomial ordering.

For any fs, ft ∈ fS there are unique terms τs, τt satisfying Lt(τsfs) = Lt(τtft) and
Lm(τsfs) = lcm(Lm(fs),Lm(ft)) = Lm(τtft).

Definition 3.1.12. The (left) S-polynomial of fs and ft is defined by

σst := σ (fs, ft) := τsfs − τtft.

Note that any monomial from Supp(σst) is smaller than lcm(Lm(fs),Lm(ft)) w.r.t. the
fixed monomial ordering on Mon(S).

Definition 3.1.13. 1. A homogeneous element f ∈ S is called weakly reducible if
either f = 0 or there are s1, . . . , sr ∈ S and homogeneous elements g1, . . . , gr ∈ S\{0}
satisfying the following conditions:

(a) f =
∑r

i=1 gifsi ,
(b) Lm(gifsi) 4 Lm(f) for every i.

In particular, each element having 0 as a reduced form is weakly reducible.
2. For two elements fs, ft ∈ fS, the S-polynomial σst is called weakly resolvable if

there are s1, . . . , sr ∈ S and homogeneous elements g1, . . . , gr ∈ S \{0} satisfying the
following conditions:

(a) σst =
∑r

i=1 gifsi ,
(b) Lm(gifsi) ≺ lcm(Lm(fs),Lm(ft)) for every i.

Clearly if σst is weakly reducible then it is weakly resolvable.

Remark 3.1.14. Clearly, a polynomial is weakly reducible iff it has a standard representation
w.r.t. fS.

Theorem 3.1.15 (Green’s Buchberger’s Criterion for Θ-algebras). In the previously fixed
setting we assume moreover that fS generates I as a one-sided ideal. Then the following
statements are equivalent:

1. fS is a (one-sided) GB for I.

2. every reduced form of σst is zero for all s, t ∈ S.

3. σst has zero as a reduced form for all s, t ∈ S.

4. σst is weakly resolvable for all s, t ∈ S.

If moreover ξ2 is weakly reducible over fS for every odd-dimensional generator ξ ∈ S, then
each of the following statements is equivalent to the first four statements.

30 CHAPTER 3. GRÖBNER BASES IN GRADED COMMUTATIVE ALGEBRAS

5. Statement 2 holds for all s, t with gcd(Lm(fs),Lm(ft)) 6= 1.

6. Statement 3 holds for all s, t with gcd(Lm(fs),Lm(ft)) 6= 1.

7. Statement 4 holds for all s, t with gcd(Lm(fs),Lm(ft)) 6= 1.

Remark 3.1.16. The fist four statements of theorem 3.1.15 is the usual equivalence which
is true for any G-algebra (cf. [67, 86]).

On the other hand the last three statements mean that the usual Product Criterion is
applicable in this homogeneous setting whenever squares of all odd-dimensional variables
have standard representations w.r.t. the input ideal.

Theorem 3.1.17 (Buchberger’s algorithm). Let S = Θ (x1, . . . , xn; ξ1, . . . , ξm), where each
xi is even and each ξj is odd-dimensional. Let 4 be a usable ordering on Mon(S) and I
a homogeneous one-sided ideal in S. Let fS = (fs)s∈S be a finite family of homogeneous
nonzero elements of S which generates I.

Assume further that all ξ2
j are weakly reducible over fS (and therefore contained in I).

The Algorithm would be to proceed obtaining new family fU by doing one of the following
two steps as long as possible.

1. Choose s 6= t from S and compute a reduced form h over fS of the S-polynomial σst.
Set T := S. If h = 0 then set U := S, otherwise set U := S ∪ {u} and set fu := h.
Qualification: Only use pairs which were not yet considered before. Moreover, one
may consider only pairs which satisfy gcd(Lm(fs),Lm(ft)) 6= 1

2. Choose s ∈ S, set T := S \ {s} and compute a reduced form h of fs over fT . Set
U := T if h = 0, otherwise set U := T ∪ {u} and fu := h.
Qualification: Lt(fs) must be in L(fT), that is, there should exist a term τ and
ft ∈ fT such that Lt(fs) = Lt(τft).

In this process we obtain a sequence fS(0), fS(1), . . . by setting S(0) = S and fS(n+1) to be
the fU for fS(n). This sequence has finite length and the last fS(n) is a minimal GB for I.

Remark 3.1.18. Theorem 3.1.17 gives the usual one-sided reduced Buchberger’s algorithm
(cf. [78, 19, 86]) in this homogeneous non-commutative setting. Due to Step 1 we build
S-polynomials of pairs (of relatively prime leading monomials) and reduce everything re-
ducible due to Step 2.

Thought David Green do not mention it, the assumption on the odd-dimensional generators
in the theorem are necessary only in order to make the Product Criterion applicable in the
case of graded commutative algebras, since the GB computation in a graded commutative
algebra makes sure that squares of odd-dimensional generators belong to the family fS.

3.2. PRELIMINARIES 31

3.2 Preliminaries

Remark. Since we work not necessary in a (graded) homogeneous setting, from the com-
putational point of view it is only important to distinguish between commutative odd
variables (we shall usually denote them x1, . . . , xn) and anti-commutative even variables
(denoted by ξ1, . . . , ξm).

Recall that a Θ-algebra generated by n even variables x1, . . . , xn and m odd variables
ξ1, . . . , ξm is the following PBW -algebra:

Sn|m = k〈x1, . . . , xn, ξ1, . . . , ξm | xixj − xjxi = xiξk − ξkxi = ξqξp + ξpξq = 0, p 6= q〉,

A standard monomial in n commutative variables x1, . . . , xn and m anti-commutative vari-
ables ξ1, . . . , ξm is a power product

xαξβ = xα1
1 · . . . · xαnn ξβ11 · . . . · ξβmm ∈ Sn|m,

where α = (α1, . . . , αn) ∈ Nn, β = (β1, . . . , βm) ∈ Nm.

The set of standard monomials of Sn|m is denoted by

Mon
(
Sn|m

)
:= Mon(x1, . . . , xn, ξ1, . . . , ξm) :=

{
xαξβ | (α, β) ∈ Nn × Nm

}
.

Remark 3.2.1. As usual for G-algebras one can identify Mon
(
Sn|m

)
with Nn × Nm, and

thus a monomial ordering on Mon
(
Sn|m

)
is induced by a total monoid order on Nn ×Nm.

By endowing Sn|m with a monomial ordering, Sn|m can be regarded as a G-algebra. That
is, for any non-zero standard polynomial p ∈ Sn|m one can define all leading data functions
(such as Lm(p), Lt(p), Lc(p)) in addition to the functions defined for any PBW -algebra:
set of monomials occurring in p: Mon(p) and their corresponding coefficients: Coef(p,m).

Moreover, one already can compute GBs in Sn|m due to Section 2.2.

We denote the set of squares of odd-degree variables by Q := {ξ2
1 , . . . , ξ

2
m} ⊂ Sn|m. Clearly

it is a two-sided GB of 〈Q〉 in Sn|m. Therefore, the graded commutative algebra An|m =
Sn|m/〈Q〉 generated by n even variables x1, . . . , xn and m odd variables ξ1, . . . , ξm, can be
regarded as a GR-algebra.

Proposition 3.2.2 (e.g. Theorem 3.2, [123]). Graded commutative algebras are left, right
and two-sided Noetherian. For instance, every left ideal is finitely generated.

Observe that An|m is isomorphic to the tensor product of the commutative k-algebra in n
generators and the exterior algebra with m generators over k:

An|m ∼= k[x1, . . . , xn]⊗k ∧(ξ1, . . . , ξm).

32 CHAPTER 3. GRÖBNER BASES IN GRADED COMMUTATIVE ALGEBRAS

Remark 3.2.3. In order to turn the tensor product A ⊗k B of two graded commutative
algebras A and B into a graded commutative algebra with the same degrees of variables
(i.e. |a⊗ b| := |a| + |b|) we need the following sign-twisted definition of multiplication:

(a⊗ b) · (c⊗ d) := (−1)|b||c|+|a||d|ac⊗ bd, where a, c ∈ A, b, d ∈ B.

We denote this graded tensor product by A~kB. It satisfies the proper graded commuta-
tivity relations:

(a⊗ b) · (c⊗ d) = (−1)|a⊗b||c⊗d| (c⊗ d) · (a⊗ b) , where a, c ∈ A, b, d ∈ B.

In particular
(a⊗ 1) · (1⊗ b) = (−1)|a||b| (1⊗ b) · (a⊗ 1) ,

which shows that both A and B are contained in it as subalgebras.

Similarly the Z2-graded tensor product of two super-commutative algebras is again a super-
commutative algebra.

3.3 Direct approach

In this section we are going to develop the leading-data-notions directly for graded com-
mutative algebras.

Let us consider a graded commutative algebra A := An|m. As noted before, it may be
dealt with as a GR-algebra, that is, as the quotient algebra S/〈Q〉, where S := Sn|m is
an anti-commutative G-algebra or more precisely a Θ-algebra endowed with a monomial
ordering. Let Q := {ξ2

1 , . . . , ξ
2
m} ⊂ S.

Let us denote the canonical projection of f ∈ S in A (considered as a quotient of S) by
[f]1. Since this projection is a homomorphism, the products in S and A are related by
[f] ·A [g] = [p ·S q], for any p ∈ [f], q ∈ [g].

The canonical representative for the class [f] ∈ A can be obtained by killing monomials
containing squares of anti-commutative variables in any polynomial g from [f] (which is
the same as computing the reduced normal form of g modulo Q).

LetM⊂ S be the k-vector space spanned by{
xαξβ | α ∈ Nn, β ∈ {0, 1}m

}
⊂ Mon(S).

For every residue class [q] ∈ A there exists a unique canonical representative p ∈M∩ [q].
We denote it by [̃q] or simply by q̃, that is, q̃ := [̃q] := p.

Therefore, the map A → M, [q] 7→ q̃ is an isomorphism of k-vector spaces. Using this
map we can translate the structure of k-algebra from A toM, that is, we introduce a new
product rule onM: f ·M g := ˜[f] ·A [g] ∈M, for f, g ∈M.

1Note that here and in what follows, we identify [f] ∈ A with the set f + 〈Q〉 ⊂ S

3.3. DIRECT APPROACH 33

We observe that
(M,+S , ·M) (3.1)

is a non-commutative k-algebra isomorphic to A.

Definition 3.3.1. Let

M := k
〈
xαξβ | α ∈ Nn, β ∈ {0, 1}m

〉
⊂ S.

We shall call the k-algebra (M,+S , ·M) (constructed above) the
graded commutative algebra representing A .

Now we can identify elements fromA with their (polynomial) representatives inM. Instead
of an ideal J in A we shall now talk about an ideal inM given by canonical representatives
of elements from J :

{
f̃ | [f] ∈ J

}
=: J̃ ⊂M, which is an ideal inM with respect to the

newly introduced product onM.

We choose as PBW -basis of M the set of standard monomials of S without squares of
anti-commutative variables:

Mon(M) :=
{
xαξβ | (α, β) ∈ Nn × {0, 1}m

}
⊂ Mon(S). (3.2)

Note that we will denote monomials from Mon(M) by zγ, with γ ∈ Nn × {0, 1}m, instead
of xαξβ, whenever this subdivision to odd/even variables is irrelevant.

Let us consider the product of two standard monomials xαξ(β1,...,βm), xγξ(δ1,...,δm) ∈ M.
There are two cases:

1. if there exists an index 1 6 j 6 m such that βj = δj = 1 then xαξβ ·M xγξδ = 0,
2. otherwise

xαξβ ·M xγξδ = (−1)sxα+γξβ+δ, (3.3)

where s =
∑m

j=1

∑m
i=j+1 βjδi, and the sums α+γ and β+δ are taken component-wise

respectively in Nn and Nm .

Remark 3.3.2. As in the case of G-algebra S (cf. 3.2.1) we may identify Mon(M) with
Nn × {0, 1}m ⊂ Nn × Nm. Unfortunately, in contrast to the usual case, the set of exponents
Nn × {0, 1}m is not a monoid with respect to component-wise addition in Nn × Nm.

This can illustrated by observing that product of some monomials may be zero, which is
not a monomial corresponding to the sum of exponents (e.g. ξ ·Mξ = 0M cannot correspond
to (0; 1) +Nn×N1 (0; 1) = (0; 2) /∈ Nn × {0, 1}).
Moreover, ifM contains zero-divisors (i.e. if m > 0) then there cannot exist a monomial
ordering on Mon(M). Consider for example two anti-commutative variables ξ1, ξ2, and let
ξ1 < ξ2 then 0 = ξ1ξ1 < ξ1ξ2 < ξ2ξ2 = 0, that is, 0 < 0, which is a contradiction if we
assume that a monomial ordering exists.

34 CHAPTER 3. GRÖBNER BASES IN GRADED COMMUTATIVE ALGEBRAS

Definition 3.3.3. Let < be a total-order on Nn×{0, 1}m such that α+δ < β+δ whenever
α < β, provided α + δ, β + δ ∈ Nn × {0, 1}m, where α, β, δ ∈ Nn × {0, 1}m and sums are
taken component-wise in Nn × Nm (which contains Nn × {0, 1}m).
Such a total ordering on Nn × {0, 1}m induces a total order on Mon(M), which will be
called a quasi-monomial ordering or simply (monomial) ordering on M .

Any quasi-monomial ordering on Mon(M) satisfies the following condition: for any
zα, zβ, zδ ∈ Mon(M) such that zα ·M zδ and zβ ·M zδ are non-zero (i.e. α + δ, β + δ ∈
Nn × {0, 1}m), if zα < zβ then zα+δ < zβ+δ.

Clearly, the monomial ordering on Mon(S) induces a quasi-monomial ordering on Mon(M).
Furthermore, a global monomial ordering > on Mon(S) is a well-ordering and thus the
induced quasi-monomial ordering on Mon(M) is a well-ordering as well. By abuse of
notation we will call such a quasi-monomial ordering on Mon(M) a global ordering .

From now on we will always considerM to be equipped with an induced quasi-monomial
ordering > coming from Mon(S) as above. Since M ⊂ S we can directly reuse the
previously defined (for S) notions of leading monomial/term/coefficient.

Definition 3.3.4. Let zα, zβ ∈ Mon(M). We say that zα divides zβ, and denote this by
zα|zβ, if α 6nat β.
In such a case we know that the difference of exponents is again a valid exponent: i.e.
β−α ∈ Nn × {0, 1}m and denote the corresponding quotient monomial by zβ/zα := zβ−α ∈
Mon(A), where the difference of exponents is taken component-wise (say in Nn × Nm).

We also denote lcm
(
zα, zβ

)
:= zMax(α,β) ∈ Mon(M), where Max of two exponents is defined

component-wise.

The next Remark 3.3.5 shows that a quasi-monomial ordering on Mon(M) is a well-order
if and only if its restriction to the commutative monomials xαξ0 ∈ Mon(M) is a well-order:

Remark 3.3.5. If > is a quasi-monomial ordering on Mon(M) then the following conditions
are equivalent:

1. > is a well-order.
2. xi > 1 for i = 1, . . . , n.
3. xα > 1 for all α ∈ Nn \ {(0, . . . , 0)}.
4. α >nat β and α 6= β implies xαξδ > xβξδ for any δ ∈ {0, 1}m, where α, β ∈ Nn.

Note that Conditions 2 and 3 are imposed only on commutative variables, resp. monomials,
that is, we do not require any anti-commutative variables, resp. monomials to be greater
then 1!

Proof. Implications 1 ⇒ 2 ⇒ 3 ⇒ 4 can be shown as in the commutative case.

3.3. DIRECT APPROACH 35

For 4⇒ 1 we do the following: letM be a set of monomials fromM and for any γ ∈ {0, 1}m
let Mγ := {xα | xαξγ ∈M}. Then for any γ ∈ {0, 1}m we are basically in the usual
commutative case, that is, by Dickson’s Lemma (cf. Lemma 2.1.10) there is a finite subset
Bγ ⊂ Mγ such that for any xα ∈ Mγ there exists xβ ∈ Bγ with β 6nat α. By assumption:
xβξγ < xαξγ or xβξγ = xαξγ. Since there are only finitely many γ ∈ {0, 1}m, the element
Min

(
xβξγ | xβ ∈ Bγ, γ ∈ {0, 1}m

)
is the smallest element of M , where the minimum is

taken with respect to the ordering > on Mon(M). �

Remark 3.3.6. If all xi > 1 and ξj > 1 then (as in the commutative case) > is a refinement
of the natural partial ordering given by divisibility, that is, if (α, γ1) >nat (β, γ2) and
(α, γ1) 6= (β, γ2) then xαξγ1 > xβξγ2

Proof. The conditions (α, γ1) >nat (β, γ2) and (α, γ1) 6= (β, γ2) imply that (α− β, γ1 − γ2)
is a non-zero valid exponent in Nn ×Nm (or resp. in Nn × {0, 1}m). Thus xα−βξγ1−γ2 > 1.
Hence xαξγ1 = (±xα−βξγ1−γ2)xβξγ2 > xαξγ2 . �

Definition 3.3.7. Let F be any subset of M. The leading ideal of F is the k-vector
space

L(F) := k〈m ∈ Mon(M) | ∃f ∈ F such that Lm(f) divides m〉 ⊂ M.

Note that L(F) is a finitely generated monomial ideal inM (due to Dickson’s Lemma).

Remark 3.3.8. Let F be any subset of M. The monomial ideal L(F) has the following
(almost tautological) properties:

1. ∀0 6= f ∈ F it follows that Lm(f) ∈ L(F),
2. if F ⊂ G ⊂M then L(F) ⊂ L(G), in particular, L(F) ⊂ L(M〈F 〉).
3. m ∈ L(F) if and only if ∃f ∈ F : Lm(f)|Lm(m).

In contrast to the case of G-algebras the equality

L({f}) = L(M〈f〉) (3.4)

does not hold for all f ∈M due to zero-divisors.

Consider, for example, f := ξ1ξ2 + 1 ∈ A0|2 =:M. Then g = ξ1 · f = ξ1 · (ξ1ξ2 + 1) = ξ1 ∈
A〈f〉 but Lm(g) = ξ1 is not divisible by Lm(f) = ξ1ξ2 and thus does not belong to L({f}).
Proposition 3.3.12 below shows that the equality (3.4) will be true for special sets of
generators, called Gröbner bases.

Definition 3.3.9. Let I ⊂M be a left ideal inM and G ⊂ I be a finite subset. Then G
is called a left Gröbner basis (GB) of I if M〈G〉 = I and for any f ∈ I \ {0} there exists
g ∈ G satisfying Lm(g)|Lm(f).

The right Gröbner basis is defined analogously. Two-sided GB is defined as before for
G-algebras (cf. Remark 2.2.18).

36 CHAPTER 3. GRÖBNER BASES IN GRADED COMMUTATIVE ALGEBRAS

Note that the “left Gröbner basis” constructed in Proposition 2.4.1 is a GB due to Defini-
tion 3.3.9.

Let us recall the reduction relation from [123]:

Definition 3.3.10. Let F ⊂ M be a finite subset, and f, f ′ ∈ M any elements. We
say that f left reducesf →F f ′ to f ′ modulo F (denoted by f →F f ′) if ∃p ∈ F and
∃t ∈ Mon(f) such that Lm(p)|t and f ′ = f − (a/b)s · p, where a = Coef(f, t), b = Lc(s · p),
s = t/Lm(p) ∈ Mon(M) and in particular Lm(s) · Lm(p) 6= 0.

Let→∗F be the reflexive transitive closure of→F . Furthermore, the notions of reducibility,
irreducibility and normal form modulo F can be introduced as usual. If an ordering onM
is a well-order then a straightforward check shows that →∗F is a Noetherian relation.

Remark 3.3.11. Let us figure out: what does f →∗G 0 mean? This means that there
are fi ∈ M〈{f} ∪G〉, gi ∈ G and ai ∈ M, i = 1, . . . , k such that fi →gi fi+1 (that is,
fi+1 = fi − ai · gi), where f1 = f, fk+1 = 0 and Lm(ai · gi) ∈ Mon(fi) (in particular
Lm(f) = Lm(f1) > Lm(f2) > · · · > Lm(fk), Lm(ai · gi) 6 Lm(fi) and Lm(ai) · Lm(gi) 6=
0). By collecting all these reductions and putting them together we will get that f has the
following representation with respect to G: f =

∑k
i=1 ai · gi and thus f ∈ M〈G〉. It may

be proven by induction on the number of reductions k that ∃g ∈ G : Lm(g)|Lm(f).

Proposition 3.3.12. Let I ⊂ M be a left ideal and G ⊂ I a finite subset. Then the
following conditions are equivalent:

1. G is a (left) Gröbner basis of I.
2. L(G) = L(I).
3. For all f ∈M the following holds true: (f ∈ I ⇔ f →∗G 0).

Proof. Condition 1 is equivalent to 2 as in the commutative case, since L(−) has all needed
properties due to remark 3.3.8:

(2) ⇐ (1): Clearly, L(G) ⊂ L(I) since G ⊂ I. Let m ∈ L(I) \ L(G) then ∃f ∈ I :
Lm(f) = m and ∀g ∈ G : Lm(g) - m = Lm(f), which is a contradiction with G being
a GB of I. Thus L(I) = L(G).

(2) ⇒ (1): Let f ∈ I \ {0}. Since L(I) = L(G) and Lm(f) ∈ L(I) it follows that
Lm(f) ∈ L(G). Hence there exists g ∈ G : Lm(g)|Lm(f). Thus G is a GB of I.

(3) ⇐ (1): Let G be a GB of I, we need to show both directions in 3.

⇐: If f →∗G 0 then from remark 3.3.11 it follows that f ∈ M〈G〉 ⊂ I.
⇒: Let us show that any f ∈ I (left) reduces to zero modulo G: let f1 := f , due

to 1 there exists g1 ∈ G : Lm(g1)|Lm(f1) then we can reduce f1 modulo g1 to
some f2 ∈ I: f1 →g1 f2, and if f2 6= 0 we can go on. Thus we get the descending
sequence of monomials Lm(f) = Lm(f1) > Lm(f2) > · · · > Lm(fi) > · · · which
stabilizes at some i since > is a well-ordering. If fi 6= 0 then Lm(fi) /∈ L(G) =
L(I) which is a contradiction with fi ∈ I. Thus f reduces to zero.

3.3. DIRECT APPROACH 37

(3) ⇒ (1): if f ∈ I \ {0} then (by 3) f →∗G 0 and by remark 3.3.11 it follows that there
exists g ∈ G : Lm(g)|Lm(f). Thus G is a GB of I.

�

Remark 3.3.13. Note that due to Proposition 3.3.12, our definition of a GB in a graded com-
mutative algebra is equivalent to the definition of a Gröbner Left Ideal Basis (GLIB)
from [123] (which is defined by Condition 3 of the proposition).

Definition 3.3.14. Let GM denote the set of all finite ordered subsets ofM. A map

NF :M×GM →M, (f,G) 7→ NF(f | G),

is called a left normal formnormal form onM if, for all G ∈ GM, f ∈M,

1. NF(0 | G) = 0,
2. NF(f | G) 6= 0⇒ Lm(NF(f | G)) /∈ L(G),
3. f − NF(f | G) ∈ M〈G〉, and if G = {g1, . . . , gs} then f − NF(f | G) (or, by abuse of

notation, f) has a standard representation with respect to G, that is,

f − NF(f | G) =
s∑
i=1

aigi, ai ∈M, (3.5)

satisfying Lm(
∑s

i=1 aigi) > Lm(aigi) and

Lm(ai) · Lm(gi) 6= 0 (3.6)

for all i such that both ai and gi are non-zero.

Remark 3.3.15. Note that the additional condition (3.6) for nonzero ai and gi implies that
ai · gi 6= 0 and

Lm(ai · gi) = Lm(Lm(ai) · Lm(gi))

and thus Lm(gi) divides Lm(ai ∗ gi). Thus this important addition ensures that
Lm(f − NF(f | G)) is divisible by some Lm(gi) (if not zero).

Proposition 3.3.16. Let I ⊂M be a left ideal, G a (left) Gröbner basis of I and NF(· | G)
a left normal form onM with respect to G. Then

1. For any f ∈M, we have: f ∈ I ⇔ NF(f | G) = 0⇔ f →∗G 0.
2. If J ⊂M is a left ideal with I ⊂ J , then L(I) = L(J) implies I = J . In particular,

G generates I as a left ideal.

Proof. The last part of condition 1 is due to proposition 3.3.12 ((1) implies (3)). Everything
else is analogously to the commutative case by proposition 3.3.12 and definition 3.3.14:

38 CHAPTER 3. GRÖBNER BASES IN GRADED COMMUTATIVE ALGEBRAS

(1) If p := NF(f | G) 6= 0 then Lm(p) /∈ L(G) = L(I), but since f ∈ I and G ⊂ I it
follows that p ∈ I and thus Lm(p) ∈ L(I) (contradiction). For the other direction: if
NF(f | G) = 0 then f ∈ M〈G〉 ⊂ I. Thus f ∈ I.

(2) Since G ⊂ I ⊂ J and L(J) = L(I) = L(G) it follows that G is a GB of J . Thus for
h ∈M we have that h ∈ I ⇔ NF(h | G) = 0⇔ h ∈ J , and therefore I = J .

�

Proposition 3.3.17. Let I ⊂ M be a left ideal and G = {g1, . . . , gs} ⊂ I. Let
NFM (− | G) be a left normal form on M with respect to G. Then G is a GB of I if
and only if NFM (f | G) = 0 for all f ∈ I.

Proof. One direction has been already proven in 3.3.16. Now let f ∈ I \ {0} satisfy
NFM (f | G) = 0, then due to standard representation of f w.r.t. G and our addition to it
there exist g ∈ G such that Lm(g)|Lm(f), and thus G is a GB.

�

Definition 3.3.18. Let A,B ∈ Mon(M) such that B divides A. Let us define a
signed quotient of A and B by

(A�B) := σC,

where C = A/B ∈ Mon(M), σ = Lc(C ·B) ∈ {±1}.

Remark 3.3.19. It is easy to see that (A�B) ·B = A, whereas (A/B) ·B = ±A.
Moreover, if A ·B = σC, where A,B,C ∈ Mon(M), σ ∈ {±1} then

A = σ (C�B) (3.7)

Definition 3.3.20. Let f, g ∈M \ {0}. The (left) S-polynomial of f and g is

LeftSPoly(f, g) := a1v1 · f − a2v2 · g,

where w = lcm(Lm(f),Lm(g)) ∈ Mon(M) and

v1 = w/Lm(f), v2 = w/Lm(g),

a2 = Lc(v1 · f), a1 = Lc(v2 · g).

Note that the products of monomials Lm(v1) · Lm(f) and Lm(v2) · Lm(g) are non-zero by
construction.

With the use of signed quotients the (left) S-polynomial of f, g ∈ M can be expressed as
follows:

LeftSPoly(f, g) = Lc(g) (w�Lm(f)) · f − Lc(f) (w�Lm(g)) · g.

Remark 3.3.21. The S-polynomial defined by Definition 3.3.20 has all the usual properties:

3.3. DIRECT APPROACH 39

• by construction Lm(LeftSPoly(f, g)) < w, if non-zero.
• if Lm(g) divides Lm(f) then Lm(LeftSPoly(f, g)) < Lm(f), if non-zero.

Therefore the following usual left normal form Algorithm (3.3.1) works for graded commu-
tative algebras.

Algorithm 3.3.1 LeftNF(f, F)

ASSUME: > is global or both f and F are graded homogeneous.
INPUT: f ∈M, F ∈ GM;
OUTPUT: h ∈M, a left normal form of f with respect to F .
1: h := f ;
2: while ((h 6= 0) and (Gh := {g ∈ F : Lm(g)|Lm(h)} 6= ∅)) do
3: Choose any g ∈ Gh;
4: h := LeftSPoly(h, g);
5: end while
RETURN: h;

Proposition 3.3.22. Algorithm 3.3.1 terminates and computes a left normal form of
f ∈M with respect to F ∈ GM.

Proof. Algorithm 3.3.1 terminates, as usual, since Lm(h) drops on every iteration and this
can not go on infinitely either in global case (standard argument : since the set of leading
monomials must be well-ordered and thus has a minimum) or in graded homogeneous case,
where degree of h 6= 0 would remain the same but there are only finitely many monomials
of the same degree.

For the correctness of this algorithm we need to show that LeftNF has all needed properties
of the definition 3.3.14: Property 1 is clear. Let LeftNFM (f | F) =: h 6= 0 then Gh =
{g ∈ F : Lm(g)|Lm(h)} is empty, and thus ∀g ∈ F : Lm(g) - Lm(h). It follows that
Lm(h) /∈ L(F). For the last property 3 we only need to keep track of all reductions in
S-polynomials as usual and notice that for any g ∈ Gh we know that Lm(g) divides Lm(h)
and thus the corresponding summand in standard representation (3.5) satisfy all needed
conditions.

�

Note that every specific choice of “any” g ∈ Gh in Algorithm 3.3.1 (line 2) may lead to a
different normal form.

40 CHAPTER 3. GRÖBNER BASES IN GRADED COMMUTATIVE ALGEBRAS

3.4 Characterizations of Gröbner Bases

Remark 3.4.1. Let us recall from Remark 2.2.14 that a finite subset F ⊂ S is a Gröbner
basis (in the Θ-algebra S) if and only if all left S-polynomials reduce to zero modulo G:

G is a GB ⇔ ∀f, g ∈ G : NF(LeftSPoly(f, g) | G) = 0. (3.8)

In particular the set Q = {ξ2
1 , . . . , ξ

2
m} ⊂ S is a GB since all S-polynomials are zero.

Remark 3.4.2. Unfortunately the above characterization of a GB (3.8) (in G-algebras) does
not work in the case of a graded commutative algebra (and in particular, in an exterior
algebra) because of zero-divisors .

Consider, for instance, the exterior algebra A = A0|3 endowed with an orderings satisfying
ξ1 > ξ2 > ξ3 and let g = ξ1ξ2 + ξ3 ∈ A then F := {g} ⊂ A0|3 is not a Gröbner basis since
f := ξ1 · g = ξ1ξ3 ∈ A〈F 〉 but Lm(f) = ξ1ξ3 is not divisible by Lm(g) = ξ1ξ2 and thus
cannot be reduced to 0 modulo g (the characterization (3.8) implies that any set containing
a single element is a GB).

This example illustrates that because of zero-divisors in graded commutative algebras the
following implication does not hold in contrary to a G-algebra case:

∀g ∈ A, f ∈ F ; g · f →∗F 0,

for any finite subset F ⊂ A.

In the search for the best suited constructive characterization of a GB let us list some
known ones, which may be used/reinterpreted in our setting.

Theorem 3.4.3 (Theorem 6.5 from [123]). Let F be a finite subset of M. The following
statements are equivalent:

1. F is a GLIB (cf. Remark 3.3.13),
2. if f1, f2 ∈ F , then for any t ∈ Mon(M): t · f1 →∗F 0 and t · LeftSPoly(f1, f2)→∗F 0.
3. if f1, f2 ∈ F , t1 ∈ Mon(M) satisfies t1 · Lm(f1) = 0 and t2 ∈ Mon(M) satisfies

t2 · lcm(Lm(f1),Lm(f2)) 6= 0, then t1 · f1 →∗F 0 and t2 · LeftSPoly(f1, f2)→∗F 0.

Remark 3.4.4. Condition 3 of Theorem 3.4.3 is equivalent to saying that for all f, g ∈
F,m ∈ Mon(M) the following holds{

NF(m · f | F) = 0, provided m · Lm(f) = 0,

NF(m · LeftSPoly(f, g) | F) = 0, provided m · lcm(Lm(f),Lm(g)) 6= 0.
(3.9)

The following Proposition 3.4.5 illustrates that the quotient approach (cf. Section 2.3) is
equivalent to ours.

3.4. CHARACTERIZATIONS OF GRÖBNER BASES 41

Proposition 3.4.5 (following Implication 15 and Theorem A.1 from [72]). Let F be a
finite subset fromM, G = F ∪Q ⊂ S, then:

1. ∀g ∈ S it follows that: if NFM (g̃ | F) = 0 then NFS (g | G) = 0,
2. F is a GB inM if and only if G is a GB in S.

Proof. Statement 1 can be shown by induction on the number of reduction steps.

For Statement 2 we need to show both implications:

⇐ Let f ∈ M〈F 〉 ⊂ M〈G〉 ⊂ M ⊂ S. Since G is a GB in S there exists g ∈ G :
Lm(g)|Lm(f), and since Lm(f) ∈ M it follows that Lm(g) ∈ M and thus g ∈
M∩G = F . Thus g ∈ G ∩M = F and F is a GB.

⇒ Let g ∈ M〈G〉 ⊂ S then g̃ =: f ∈ M〈F 〉, thus NFM (f | F) = 0 since F is a GB in
M. Therefore NFS (g | G) = 0 by 1. Hence G is a GB in S by Theorem 2.2.13.

�

The following Theorem 3.4.6 is our characterization of a GB over graded commutative
algebras, which seems to be the most direct and practically efficient approach. It is an easy
corollary from our results about syzygies modules (Proposition 5.3.4 and Theorem 5.3.6)
but can also be sketched by using the quotient approach (cf. [72, Theorem A.2]).

Theorem 3.4.6 (Characterization of a GB). F ∈ GM is a GB in M if and only if the
following conditions are satisfied:

1. ∀f ∈ F and for all anti-commuting variables ξi dividing Lm(f) the following holds:

NFM (ξi · f | F) = 0,

2. ∀f, g ∈ F : NFM (LeftSPoly(f, g) | F) = 0

Proof. Clearly, if F is a GB then the conditions 1 and 2 hold true.

Let us sketch the reverse implication by using the quotient approach (Proposition 3.4.5),
due to which we need to show that G = F ∪Q ∈ GS is a GB in S by Buchberger’s Criterion
(Theorem 2.2.13). We consider 3 cases:

• If f, g ∈ F then NFM (LeftSPoly(f, g) | F) = 0 due to Condition 2. Thus due to
Proposition 3.4.5:

NFS (LeftSPoly(f, g) | G) = 0

• S-polynomials of pairs of elements from Q ⊂ S are all zeroes:

LeftSPoly
(
ξ2
i , ξ

2
j

)
= 0, ∀ξ2

i , ξ
2
j ∈ Q.

42 CHAPTER 3. GRÖBNER BASES IN GRADED COMMUTATIVE ALGEBRAS

• Only the following pairs remain: (f, ξ2
i) ∈ F × Q. Depending on whether Lm(f)

contains a variable ξi or not we have one of the following cases:
– If ξi - Lm(f) then

LeftSPoly
(
f, ξ2

i

)
= Tail

(
ξ2
i ·S f

)
and it further reduces to 0 modulo {ξ2

i } in S.
– Otherwise, if ξi | Lm(f) then

LeftSPoly
(
f, ξ2

i

)
= Tail(ξi ·S f) := p.

The polynomial p ∈ S reduces to ξi ·M f modulo Q and due to Condition 1 is
reducible to 0 modulo F . Thus NFS (LeftSPoly(f, ξ2

i) | G) = 0 due to Proposi-
tion 3.4.5.

�

Proposition 3.4.7. Algorithm 3.4.1 terminates and computes a left GB of F ∈ GM with
respect a global ordering onM.

Proof. Termination can be see as usual: since M is Noetherian the increasing sequence
of leading monomial ideals L(G) ⊂ M must stabilize at some step, which means that all
needed leading monomials have been found, and thus Theorem 3.4.6 implies the correctness
of the algorithm. �

Algorithm 3.4.1 LeftGB(F)

ASSUME: NF(− | −) is a normal form onM
INPUT: F ∈ GM.
OUTPUT: A left Gröbner basis G of L(F).
1: L = {(0, 0, f) | f ∈ F}; // initial pairset
2: G = ∅; // temporary GB
3: while L 6= ∅ do
4: Choose and remove (p1, p2, h) from L;
5: h := NF(h | G);
6: if h 6= 0 then
7: L = L ∪ {(g, h,LeftSPoly(g, h)) | g ∈ G};
8: G = G ∪ {h};
9: for all alternating variables ξ dividing Lm(h) do

10: f = ξ ∗M h; // instead of LeftSPoly(ξ2, h)
11: if f 6= 0 then
12: L = L ∪ {(0, 0, f)}; // instead of (ξ2, h, f)
13: end if
14: end for
15: end if
16: end while
RETURN: G;

3.5. CRITERIA 43

3.5 Criteria

The most time consuming part of the standard BBA is the reduction of S-polynomials.
Therefore it is important to detect and throw away (without too much effort) those pairs
whose S-polynomials a priori are reducible to zero and therefore useless for constructing
a GB. Such Criteria are a part of every implementation of GB algorithm.

Bruno Buchberger gave two criteria (cf. [17, 18]) to detect pairs leading to unnecessary
reductions in the commutative case:

• The Product Criterion says that LeftSPoly(f, g) can be reduced to 0 w.r.t. {f, g},
if gcd(Lm(f),Lm(g)) = 1.

• The Chain Criterion says that given three pairs (fi, fj), (fi, fk) and (fj, fk) such
that Lm(fj) divides lcm(Lm(fi),Lm(fk)), the pair (fi, fk) is superfluous as the corre-
sponding S-polynomial LeftSPoly(fi, fk) is reducible to zero w.r.t. {fi, fj, fk}. This
criterion applies without restrictions to any module over any G- and GR-algebra
(cf. [5, 86]).

Further criteria have been investigated by many people for the commutative case (cf.
[46, 47, 56, 20, 96]). It would be interesting to generalize some of them to our non-
commutative setting.
Remark 3.5.1. It was noted previously in Section 3.1 that the Product Criterion holds
for graded homogeneous polynomials in Θ-algebras and thus can be used by Buchberger’s
algorithm in graded commutative algebras.

Let us give a simple counterexample showing that the product criterion does not hold for
Z2-inhomogeneous elements in graded commutative algebras.

Example 3.5.2. Let A := A2|2 and fi := xi − ξi ∈ A, i = 1, 2. Obviously fi are Z2-
inhomogeneous. Let > be any ordering on A such that x1 > x2 > ξ1 > ξ2 (e.g. appropriate
lexicographic ordering).

We claim that although gcd(Lm(f1),Lm(f2)) = 1, the S-polynomial LeftSPoly(f1, f2) can-
not be reduced to zero w.r.t. {f1, f2}.
Let us compute that S-polynomial: LeftSPoly(x1 − ξ1, x2 − ξ2) = x2(x1−ξ1)−x1(x2−ξ2) =
x1ξ2 − x2ξ1. Its reduction can only go as follows: x1ξ2 →x1−ξ1 x1ξ2 − ξ2(x1 − ξ1) =
ξ2ξ1 = −ξ1ξ2, x2ξ1 →x2−ξ2 x2ξ1 − ξ1(x2 − ξ2) = ξ1ξ2. Thus LeftSPoly(f1, f2) →∗{f1,f2}
(−ξ1ξ2)− (ξ1ξ2) = −2ξ1ξ2 =: p. Since Lm(fi) = xi does not divide ξ1ξ2 = Lm(p) for any i
it follows that p cannot be reduced any further. Hence LeftSPoly(f1, f2) 9∗{f1,f2} 0. �

Remark 3.5.3. It was shown in [5] that the Chain Criterion holds for GR-algebras, and
thus can be used by Buchberger’s algorithm in graded commutative and super-commutative
algebras.

We also give our generalized Chain Criterion in Lemma 5.3.7 which makes sense whenever
we compute syzygies as well.

44 CHAPTER 3. GRÖBNER BASES IN GRADED COMMUTATIVE ALGEBRAS

3.6 Kernel and preimage of a graded homomorphism

It is well known in the commutative case (e.g. cf. [67]) that the kernel and preimage of a
map A/I → B/J between any quotient algebras can be computed by lifting the map to a
map between polynomial algebras A→ B, considering the evaluation map A⊗kB → B/J
and computing its preimage by the elimination procedure. This approach can even be
extended to some GR-algebras as shown in [86].

The case of homomorphisms between quotient algebras ψ : A/I → B/J is considered in
[62], where A and B are two Θ-algebras and I, J are graded two-sided ideals. As it was
noted there, it is not in general possible to lift ψ to a map of graded algebras Ψ : A→ B.

Example 3.6.1 (Example 4.34 from [62]). Let A = B = Θ(y, z) graded by |y| := |z| := 1.
That is A and B are two anti-commutative polynomial G-algebras.

Let I = J = 〈y2, z2〉 be graded two-sided ideals in A and B respectively.

Consider the map of graded algebras φ : A/I → B/J given by [y] 7→ [y + z], [z] 7→ [z].
Recall that [a] denotes the class a+ I for an element a ∈ A/I.
The only possible lift Φ : A → B sends y to y + z and z to z, but it does not respect the
defining relation of A : z · y = −y · z as Remark 3.1.4 has already shown.

Moreover the evaluation map π : C → B/J is generally not a map of graded algebras,
where C := A⊗k B denotes the graded tensor product over k, so that C is again a graded
k-algebra with “the same” grading, which seems to be implicitly defined by David Green
for Θ-algebras as follows: Θ(yi)⊗k Θ(zj) := Θ(yi, zj).

Example 3.6.2 (Example 4.35 from [62]). Let A = Θ(y), B = Θ(z) graded by |y| := 1,
let I = J = 0 and φ : y 7→ z. Then the graded tensor product C := A⊗kB = Θ(y, z), with
the same grading: |y| := |z| := 1, has the relation yz = −zy. But it can not be preserved
under any map C → B sending both y and z to z ∈ B/J .

However, the aforementioned procedure works in the case when A/I and B/J are both
graded commutative algebras (cf. [62, Section 4.3]).

Lemma 3.6.3 (Lemma 4.35 from [62]). Let A = Θ(z1, . . . , zn) and B = Θ(w1, . . . , wm) be
Θ-algebras, let I ⊂ A, J ⊂ B be two-sided ideals and let φ : A/I → B/J be a homomor-
phism of graded algebras. Let C be the Θ-algebra Θ(w1, . . . , wm, z1, . . . , zn) which contains
both A and B as subalgebras.

If B/J is graded commutative then the map

ν : C → B/J, wj 7→ [wj], zi 7→ φ([zi])

is a map of graded algebras (i.e. relations are preserved), with the kernel

M := 〈b− a | a ∈ A, b ∈ B such that φ([a]) = [b]〉 ⊂ C.

3.6. KERNEL AND PREIMAGE OF A GRADED HOMOMORPHISM 45

Moreover the kernel of the map φ between graded commutative algebras can be found by
elimination of b ∈ B from M :

A ∩M = 〈a ∈ A | [a] ∈ Ker(φ)〉.

The intersection A∩M can be computed via Buchberger’s algorithm over the G-algebra C
with respect to special eliminating ordering as shown in [62, Corollary 4.37].

46 CHAPTER 3. GRÖBNER BASES IN GRADED COMMUTATIVE ALGEBRAS

Chapter 4

Localization

In order to be able to compute in central localizations of non-commutative algebras we
allow commutative variables to be “local”, generalize Mora algorithm (in a similar fashion
as G.-M. Greuel and G. Pfister by allowing local or mixed monomial orderings, cf. [67])
and work with SBs instead of GBs.

The main theoretical result is Proposition 4.3.1. It allows us to extend non-commutative
computer algebra to central localizations of GR-algebras by means of rings associated to
monomial orderings. In order to show that our Mora normal form algorithm 4.4.1, works
over these localizations, we prove that any GR-algebra can be appropriately homogenized
(Proposition 4.4.7).

4.1 The commutative localization

In this section we recall the definition and some properties of localization of commutative
rings and commutative rings associated to monomial orderings following [67, Sections 1.4
and 1.5].

• Let A be a commutative ring with a unit.
• Let for the set S ⊂ A the following conditions hold:

1. 1 ∈ S,
2. a ∈ S and b ∈ S implies that a · b ∈ S.

Such a set is called multiplicative or multiplicatively closed .
• Consider the equivalence relation on A× S, defined by:

(a, b) ∼ (a′, b′) iff ∃s ∈ S such that s(ab′ − a′b) = 0.

• Denote by a
b
the equivalence class of (a, b) ∈ A× S w.r.t. ∼.

47

48 CHAPTER 4. LOCALIZATION

• The (commutative) localization or the ring of fractions of A w.r.t. S, denoted
by S1A, is defined as follows:

S−1A :=
{ a
b

∣∣∣ a ∈ A, b ∈ S} ,
together with the ring operations defined by

a

b
+
a′

b′
:=

ab′ + a′b

bb′
,

a

b
· a
′

b′
:=

aa′

bb′
.

Example 4.1.1. Let P be a prime ideal in A. Clearly A \ P is multiplicatively closed.
We denote the localization of A w.r.t. A \ P by AP and call it the localization of A at the
prime ideal P .
Let S be the set of all non-zero-divisors of A, which is clearly multiplicatively closed.
For this S, we denote S−1A by Quot(A) and call it the total ring of fractions or the
total quotient ring of A.

Proposition 4.1.2 (Proposition 1.4.5). Let A, S and S−1A be as above, then:

1. The ring operations on S−1A are independent of the choice of representatives and
thus well-defined.

2. The set S−1A together with the operations · and + is a commutative ring with 1 = 1
1
.

3. The (canonical) map : A→ S−1A : a 7→ a
1
is a ring homomorphisms, satisfying the

following conditions:

(a) (s) is a unit in S−1A if s ∈ S,
(b) (a) = 0 iff as = 0 for some s ∈ S,
(c) is injective iff S has no zero-divisors,
(d) is bijective iff S consists of units.

4. S−1A = 0 iff 0 ∈ S.
5. S1 ⊂ S2 are multiplicatively closed in A and have no zero-divisors then S−1

1 A ⊂ S−1
2 A.

6. Every ideal in S−1A is generated by the image of an ideal in A under the map .
Moreover, the prime ideals in S−1A are in one-to-one correspondence with the prime
ideals in A which do not meet S.

Proposition 4.1.3 (Proposition 1.4.7). Let A and B be two commutative unital rings,
ϕ : A → B be a ring homomorphisms (which maps 1A to 1B), S ⊂ A multiplicatively
closed, and : A→ S−1A the canonical ring homomorphisms a 7→ a

1
.

1. If ϕ(s) is a unit in B for all s ∈ S then the following universal property holds:
there exists a unique ring homomorphisms ψ : S−1A→ B which makes the following
diagram commute:

A S−1A

B

ϕ

��

//

∃!ψ
��

4.2. NON-COMMUTATIVE LOCALIZATION 49

2. If moreover ϕ also satisfies the following conditions:
(a) ϕ(a) = 0 implies sa = 0 for some s ∈ S,
(b) every element of B is of the form ϕ(a)ϕ(s)−1

then ϕ is an isomorphism.

Let us now consider localizations of a commutative polynomial ring A = k[x1, . . . , xn],
endowed with monomial ordering > (which is not necessary a well-ordering) w.r.t.

S> := {u ∈ A \ {0} | Lm(u) = 1} ,
which is multiplicatively closed due to the following properties of leading monomials:
∀f, g ∈ A \ {0} : Lm(fg) = Lm(Lm(f) Lm(g)),Lm(f + g) 6 Max(Lm(f),Lm(f)).
Denote the ring associated to k[x] and > by

k[x]> := S>
−1k[x].

Lemma 4.1.4 (Lemma 1.5.2). Let k[x] = k[x1, . . . , xn], let > be a monomial ordering on
Mon(x1, . . . , xn). Then

1. k[x] ⊂ k[x]> ⊂ k[x]〈x〉.
2. The set of units in k[x]> is given by(

k[x]>
)∗

=
{u
v
| u, v ∈ k[x],Lm(u) = Lm(v) = 1

}
,

and satisfies
(
k[x]>

)∗ ∩ k[x] = S>.
3. k[x] = k[x]> iff > is a global ordering.
4. k[x]〈x〉 = k[x]> iff > is a local ordering.
5. k[x]> is a Noetherian ring.
6. k[x]> is factorial.

Lemma 4.1.4 shows that by choosing a local ordering, we can, basically, do the calculations
in the localization of a polynomial ring by choosing a mixed ordering ordering and compute
with polynomials instead of rational functions. In particularly, we can efficiently compute
in k[x1, . . . , xn]〈x1,...,xk〉 for k 6 n and in order to do that we need to extend the leading
data to k[x]> and switch from the notions of GB and NF to SB and weak NF. Later on,
in Section 4.4 we are going to do that in a bit more general (non-commutative) setting.

4.2 Non-commutative localization

Let us recall some theory about non-commutative localization (in this section we follow
[82, Chapters 9 and 10] and [25]).

Definition 4.2.1. Recall that

1. a subset S in a ring R is called a multiplicative set if S · S ⊆ S, 1 ∈ S and 0 /∈ S.
2. a homomorphism α : R→ R′ is called S-inverting if all α(s), s ∈ S are units in R′.

50 CHAPTER 4. LOCALIZATION

4.2.1 Universal construction

Proposition 4.2.2 (Proposition (9.2) in [82]). Let R be any ring with a multiplicative set
S ⊆ R. Then there exists an S-inverting homomorphism ε from R to some ring, denoted by
RS, with the following universal property: For any S-inverting homomorphism α : R→ R′,
there exists a unique ring homomorphism f : RS → R′ such that α = f ◦ ε, that is, the
following diagram commutes:

R RS

R′

α

��

ε //

∃!f
��

The universal property 4.2.2 guarantees the uniqueness of ε : R → RS and therefore
justifies the notation RS for the receiving ring of the universal S-inverting homomorphism
ε. Moreover the ring RS is also called universal S-inverting ring .

Remark 4.2.3. The universal S-inverting homomorphism is injective iff R can be embedded
into a ring in which all elements of S have inverses.

Remark 4.2.4. In contrary to the commutative case RS is difficult to work with since
generally universal S-inverting homomorphism does not have good properties known from
the commutative case (4.2.5 b and c). Thus, for instance its elements have complicated
forms (see equation (9.4) in [82]). Furthermore, the nature of RS is rather unpredictable:

• RS may be zero even if R 6= 0 (see example (9.3) in [82]).
• RS may not be a domain even if R is a domain .
• ε : R→ RS may not be injective even if R is a domain and S = R \ {0}.

4.2.2 Ore construction

The following definition is modeled on the commutative case.

Definition 4.2.5. A ring R′ is said to be a right ring of fractions (with respect to
S ⊆ R) if there is a given ring homomorphism ϕ : R→ R′ such that:

(a) ϕ is S-inverting,

(b) every element of R′ has the form ϕ(a)ϕ(s)−1 for some a ∈ R and s ∈ S,

(c) Ker(ϕ) = {r ∈ R : rs = 0 for some s ∈ S}.

Remark 4.2.6. In contrary to the general situation with RS, due to (c) from the above, we
always have R′ 6= 0 if it exists.

4.2. NON-COMMUTATIVE LOCALIZATION 51

The set S is said to be a right Ore set , or right permutable if for any a ∈ R and
s ∈ S, aS ∩ sR 6= ∅. The set S is said to be right reversible if for a ∈ R, if s′a = 0 for
some s′ ∈ S, then as = 0 for some s ∈ S. If the multiplicative set S ⊆ R is both right
permutable and right reversible, we shall say that S is a right denominator set .

There are, of course, all the corresponding “left” notions.

Theorem 4.2.7 (Theorem (10.6) in [82]). The ring R has a right ring of fractions with
respect to S (denoted by RS−1) iff S is a right denominator set.

Remark 4.2.8. In the proof of Theorem 4.2.7, the right ring of fractions of R with respect
to S is constructed as R× S modulo the following relation:

(a, s) ∼ (a′, s′) (in R×S) iff there exist b, b′ ∈ R such that sb = s′b′ ∈ S and ab = a′b′ ∈ R.
In what follows we will denote the equivalence class of (a, s) modulo ∼ by a/s.

Note that if we let b′ = 1 in above, we get that (a, s) ∼ (ab, sb) as long as sb ∈ S.
Therefore we can think of “∼” as the best equivalence relation which “identifies” (a, s) with
(ab, sb) (∀a ∈ R, s ∈ S, sb ∈ S). Indeed, this generalizes the equivalence relations in the
commutative case (cf. Section 4.1).

The binary operations onRS−1 are defined as follows: let a
s
, a
′

s′
∈ RS−1 then since s′S∩sR 6=

∅ there exist r ∈ R, r′ ∈ S such that s′r′ = sr ∈ S, so that a
s

= ar
sr

and a′

s′
= a′r′

s′r′
. Now

a

s
+
a′

s′
:=

ar + a′r′

t
, where t = sr = s′r′.

Analogously, since sR ∩ a′S 6= ∅ there exist r ∈ R, r′ ∈ S such that a′r′ = sr. Now

a

s
· a
′

s′
:=

ar

s′r′
.

The zero element in RS−1 is 0
1
and the multiplicative identity is 1

1
.

Moreover, the defining homomorphism ϕ : R → RS−1 from definition 4.2.5 is given by
a 7→ a

1
.

Corollary 4.2.9. If S is a right denominator set, then ϕ : R → RS−1 is a universal
S-inverting homomorphism. In particular, there is a unique isomorphism g : RS → RS−1

such that g ◦ ε = ϕ, where ε : R→ RS, that is, the following diagram commutes:

R RS

RS−1

ϕ

��

ε //

∃!g
��

Remark 4.2.10. Let C be the center of R. If the set S ⊆ C is a multiplicative set, then S
is clearly both left and right denominator set, and we can identify S−1R with RS−1. We
speak of RS−1 = S−1R ∼= RS as a “central localization” of R.

52 CHAPTER 4. LOCALIZATION

Moreover, in this case the construction of RS−1 can be simplified since for any a ∈ R, s ∈ S
we have that as = sa ∈ aS∩sR. Thus for any a

s
, a
′

s′
∈ RS−1 we get that a′s = sa′ ∈ sR∩a′S

and t = ss′ = s′s ∈ s′S ∩ sR so that a
s

= as′

t
and a′

s′
= a′s

t
. Therefore the operations are

actually defined as in the usual commutative case:

a

s
+
a′

s′
:=

as′ + a′s

ss′
, (4.1)

a

s
· a
′

s′
:=

aa′

ss′
. (4.2)

Remark 4.2.11. For commutative rings the above-mentioned “central localization” and the
commutative localization coincide due to their universal properties.

Remark 4.2.12. The universal S-inverting homomorphism is injective iff S contains only
non-zero-divisors.

Remark 4.2.13. We can apply localization to modules as well: let λ : R → RS be the
universal S-inverting homomorphism. Then to each left (resp. right) R-module M there
corresponds a left (resp. right) RS-module MS with an R-module homomorphism µ :
M → MS (where MS is regarded as R-module by means of λ : ax = λ(a)x, resp. by
xa = xλ(a) for x ∈MS, a ∈ R) and µ is the universal mapping with this property, i.e. for
any R−module homomorphismM into an RS-module N , there exists a unique RS−module
homomorphism g : MS → N such that the following diagram commutes:

M MS

N
��

µ
//

∃!g
��

.

Moreover there is a formula for MS in terms of tensor product (cf. e.g., [90]):

MS = M ⊗R RS,

and if S is a right denominator set in R then MS =
{
m
s
| m ∈M, s ∈ S

}
/∼, where ∼ is

the usual equivalence relation on fractions.

4.3 Central localization

Let A be a commutative k-algebra, S ⊂ A be a multiplicative set (containing no zero-
divisors) and G be any k-algebra. Due to Remark 4.2.11 there exists a unique localization
AS.

Due to 4.2.12 the S-inverting homomorphism π : A→ AS is injective.

Moreover, it follows that the map π ⊗k idG : A⊗k G→ AS ⊗k G is injective as well.

4.3. CENTRAL LOCALIZATION 53

The set S ′ := S⊗k 1G = {s⊗k 1G | s ∈ S} ⊂ A⊗kG is a multiplicative set in A⊗kG which
contains no zero-divisors, since S does so.

Since S ′ is central we may consider the “central localization” (A⊗k G)S′ .

Furthermore, due to 4.2.12 the S ′-inverting homomorphism ε : A ⊗k G → (A⊗k G)S′ is
injective.

Let us picture all related maps on the following commutative diagram:

A AS

A⊗G AS ⊗G

S

S ′

(A⊗G)S′

// π //

idA⊗1G

��

idAS ⊗1G

��
//
π⊗idG//

��

ε

��

BB BB

∃!γ
BB

// //

// //
��

where tensor products are taken over the ground field k, the maps π, ε are localization
maps and γ is a unique homomorphism due to universal property of (A⊗G)S′ , since
π ⊗ idG : A⊗G→ AS ⊗G is an S ′-inverting homomorphism.

Proposition 4.3.1. In the above diagramm the map γ is bijective.

Proof. Since γ is a homomorphism and due to the universal property:

γ

(
a⊗ h
s⊗ 1

)
= γ

(
(a⊗ h) · (s⊗ 1)−1) =

(a
1
⊗ h
)
·
(

1

s
⊗ 1

)
=
a

s
⊗ h.

The map γ is surjective since:

AS ⊗k G 3
∑
i

ai
si
⊗ gi =

∑
i

âi
s
⊗ gi = γ

(∑
i âi ⊗ gi
s⊗ 1

)
,

where s =
∏

i si, âi = ai ·
∏

j 6=i sj. Note that all these sums and products are finite.

In order to see that γ is injective let us consider any
∑
i ai⊗gi
s⊗1

∈ (A⊗k G)S′ ∩Ker(γ):

0 = γ

(∑
i ai ⊗ gi
s⊗ 1

)
=
∑
i

ai
s
⊗ gi =

(
1

s
⊗ 1

)(∑
i

ai
1
⊗ gi

)
.

Since S has no zero-divisors it follows that
(∑

i
ai
1
⊗ gi

)
= 0 in AS ⊗k G and thus(

1⊗1
s⊗1

) (∑
i ai⊗gi
1⊗1

)
= 0 in (A⊗k G)S′ .

�

54 CHAPTER 4. LOCALIZATION

Thus instead of computing in AS⊗G we will compute in (A⊗G)S′ . The later resembles (for
some localizing sets S) a ring which may be represented in Singular as a ring associated
to a monomial ordering (cf. [67]).

In the following we will check under which conditions on G we can apply this theory.

4.4 Rings Associated to Monomial Orderings: non-
commutative setting

Let us introduce the notion of rings associated to monomial orderings in our non-
commutative setting.

Let A = k [x1, . . . , xn], > be any monomial ordering on A. Let G be a Noetherian k-
algebra generated by variables y1, . . . , ym, >G a global ordering on Mon(y1, . . . , ym). We
are mainly interested in the case of an exterior algebra but we also show how to deal with
any G−algebra.
Let us consider the algebra

B := A⊗k G

as a k-algebra generated by variables y1, . . . , ym, x1, . . . , xn together with the block ordering
>′= (>G, >A) (i.e. ∀i, j : yi >

′ xj) on Mon(y1, . . . , ym, x1, . . . , xn).

The set of commutative polynomials in A with constant leading term S :=
{u ∈ A \ {0} | Lm(u) = 1} ⊂ A is multiplicative. Denote

A> = S−1A =: A.

Denote S ′ := {u ∈ B \ {0} |Lm(u) = 1} ⊂ B = A ⊗k G. Clearly S ′ is multiplicatively
closed and belongs to the center of B.

Moreover, S ′ equals to the image of S in B under the map idA⊗1G : A → B since the
ordering on B is the block ordering >′= (>G, >A) and >G is global.

Definition 4.4.1. Due to Proposition 4.3.1 we get:

A⊗k G = (S−1A)⊗k G ∼= S ′−1(A⊗k G) = B>′ =: B

and call it the localization of B w.r.t. >′ (or >).

We intend to simulate A ⊗k G by working with polynomials from B with respect to
the mixed monomial ordering >′. For this we need analogs of standard basis and weak
polynomial normal form (from [67, Section 1.6]). Let us reintroduce them in our (non-
commutative) setting. First of all we extend leading data to B:

Definition 4.4.2. For f ∈ B choose u ∈ B such that Lt(u) = 1 (i.e. u ∈ S ′) and u ·f ∈ B.
We define Lm(f) := Lm(uf),Lt(f) := Lt(uf) etc. Let B∗ denote the set of units of B.

4.4. RINGS ASSOCIATED TO MONOMIAL ORDERINGS 55

Note that the above definition is independent of the choice of u.

Definition 4.4.3. Let I ⊂ B be a left (resp. right) ideal. A finite set G ⊂ B is called a
left (resp. right) standard basis of I if G ⊂ I and for any f ∈ I \ {0} there exists a
g ∈ G satisfying Lm(g)|Lm(f) (in the usual sense).

Two-sided SBs are defined as before for G-algebras (cf. Remark 2.2.18).

Let us consider any non-zero ideal I ⊂ B. Since G is Noetherian (any GR-algebra is
Noetherian, cf. Section 3.2 [86]) it follows that B is Noetherian as well. Therefore L(I) ⊂ B
is finitely generated. Thus we can choose a finite set of monomials m1, . . . ,ms generating
L(I), by definition of the leading ideal these generators are leading monomials of suitable
elements g1, . . . , gs ∈ I. By definition, the set {g1, . . . , gs} is a standard basis for I. Hence
every non-zero ideal in B has a standard basis.

Definition 4.4.4. A map

NF : B × GB → B, (f,G) 7→ NF(f | G),

is called a left weak normal form on B if, for all G ∈ GB, f ∈ B,

1. NF(0 | G) = 0,
2. NF(f | G) 6= 0⇒ Lm(NF(f | G)) /∈ L(G),
3. there exists a unit u ∈ B∗ such that uf − NF(f | G) ∈ B〈G〉, and if G =
{g1, . . . , gs} , s > 0 then uf − NF(f | G) (or, by abuse of notation, uf) has a
standard representation with respect to NF(− | G), that is, there exists ai ∈ B
such that

uf − NF(f | G) =
s∑
i=1

aigi, (4.3)

and

Lm

(
s∑
i=1

aigi

)
> Lm(aigi), Lm(ai) ∗B Lm(gi) 6= 0

for all i such that ai 6= 0 and gi 6= 0.

Definition 4.4.5. A weak normal form NF(− | −) is called polynomial if, whenever
f ∈ B and G ⊂ B, there exists a unit u ∈ B∗∩B such that uf has a standard representation
with ai ∈ B.

Definition 4.4.6. Let f ∈ B\{0} and w = (w1, . . . , ws) be a tuple of positive real numbers
(weights), where s is the number of variables of B.

• The ecart of f is the integer Ecart(f) := Deg f −Deg Lm(f).
• The weighted ecart is defined by Ecartw(f) := w-Deg(f) − w-Deg(Lm(f)), where

the weighted degree is defined by w-Deg(yα) :=
∑s

i=1wi · αi

56 CHAPTER 4. LOCALIZATION

Proposition 4.4.7. Let G be any G−algebra in variables y1, . . . , yn. We can choose ap-
propriate positive integer weights wi for variables yi and adjoin a commutative (fake) vari-
able t with the weight wt = 1 so that the non-commutative relations of the G−algebra
Gh = G⊗k k [t] become weighted homogeneous.

Proof. Let us consider all non-trivial non-commutative relations of G:

yj ∗ yi = cij · yiyj + dij =: fij,

where dij =
∑

k a
k
ij ·mk

ij and yiyj >G mk
ij, akij ∈ k∗,mk

ij ∈ Mon(G).

LetM be the finite set of all monomials occurring in non-trivial non-commutative relations
of G:

M =
{
yiyj,m

k
ij

}
⊂ Mon(G).

Due to the Lemma 1.2.11 from [67] there exists some weights w = (w1, . . . , wn) ∈ Zn such
that m1 >G m2 if and only if w-Deg(m1) > w-Degw(m2) for all m1,m2 ∈ M . Moreover,
since >G is global w can be chosen such that all wi > 0.

Denote δkij := w-Deg(yiyj) − w-Deg(mk
ij). By construction δkij are non-negative integers.

We homogenize all non-trivial fij w.r.t. w-Deg by multiplying its non-zero terms akij ·mk
ij

with appropriate powers of t as follows:

fhij = cij · yiyj +
∑
k

akij · tδ
k
ij ·mk

ij.

Thus we have got the following (homogenized) G-algebra

Gh := G⊗k k [t] = k
〈
y1, . . . , yn, t | yj ∗ yi = fhij

〉
.

We endow Gh with the block ordering (>G, >nat).

Thus we have got a homogenization Gh of G together with the weighting wh :=
(w1, . . . , wn, 1) with positive integers such that relations of Gh become homogeneous w.r.t.
w-Degwh .

Product of two homogeneous (w.r.t. w-Degwh) polynomials from Gh remains homoge-
neous w.r.t. w-Degwh due to homogeneous relations by induction on the number of non-
commutative variables in Gh. �

Remark 4.4.8. If the original ordering on G is a degree-ordering then we don’t need any
weighting (all weights are equal to 1) but might still need a homogenization.

Examples 4.4.9. Let us consider several examples of non-commutative algebras:

1. Weyl algebra : k〈x,D | D ∗ x = xD + 1〉 endowed with any global ordering does
not need weighting.

4.4. RINGS ASSOCIATED TO MONOMIAL ORDERINGS 57

2. Heisenberg algebra : k〈x, y, h | y ∗ x = xy + hn〉 is a G-algebra with respect to
the lexicographical ordering with x > y > h if n > 2 and requires weighting for
homogenization, for instance: wh = 1, wx = n− 1, wy = 1.

Remark 4.4.10. Clearly we do not need to homogenize relations in a graded commutative
algebra. Thus a homogenization of a tensor product (as always over the field) of a G-
algebra with a graded commutative algebra is just a homogenization of that G-algebra in
the tensor product.

Algorithm 4.4.1 LeftNFMora(f, F)

ASSUME: B is a tensor product of a G-algebra with a graded commutative algebra.
INPUT: f ∈ B,F ∈ GB;
OUTPUT: h ∈ B, a polynomial left weak normal form of f w.r.t. F .
1: Choose w according to Proposition 4.4.7 and Remark 4.4.10;
2: h := f ;
3: T := F ;
4: while ((h 6= 0) and (Th := {g ∈ T : Lm(g)|Lm(h)} 6= ∅)) do
5: Choose g ∈ Th with Ecartw(g) minimal;
6: if Ecartw(g) > Ecartw(h) then
7: T := T ∪ {h};
8: end if
9: h := LeftSPoly(h, g);
10: end while
RETURN: h;

Proposition 4.4.11. Let B be a tensor product of a G-algebra with a graded commutative
algebra. Algorithm 4.4.1 terminates and computes a polynomial left weak normal form of
f ∈ B with respect to F ∈ GB.

Proof. We are only going to verify that the proof for the commutative case (see Algorithm
1.7.6 in [67]) work in our non-commutative setting.

Correctness can be easily verified due to the following observations:

1. by construction Lm(g′ν) divides Lm(hν−1) and thus Lm(Lm(g′ν) · Lm(mν)) =
Lm(hν−1).

2. commutativity of multiplication was not employed in the original proof.
3. construction of LeftSPoly(h, g) is correct in any GR-algebra. Moreover, no leading

term canceling due to zero divisors occurs since Lm(g) divides Lm(h).

For the termination we need to switch to the following homogenized version of the above
algorithm, which works in Bh:
1: h := fh;

58 CHAPTER 4. LOCALIZATION

2: T := F h :=
{
gh : g ∈ F

}
;

3: while ((h 6= 0) and (Th := {g ∈ T : Lm(g) | τα Lm(h) for some α} 6= ∅)) do
4: Choose g ∈ Th with α > 0 minimal;
5: if α > 0 then
6: T := T ∪ {h};
7: end if
8: h := LeftSPoly(ταh, g);
9: Divide out maximal possible power of homogenizing variable τ from h;
10: end while
RETURN: h|B;

The homogenizations of input data fh, gh in above are with respect to additional homoge-
nizing commutative variable τ with unit weight exactly as in proposition 4.4.7 (so that all
terms of fh, gh become of the same weighted degree).

Denote k [τ]⊗k B
h by B̃. We endow Mon

(
B̃
)

= Mon(τ, y1, . . . , ym, t, x1, . . . , xn) with the

ordering >h given by ταm1 >h τ
βm2 if w-Deg(ταm1) > w-Deg

(
τβm2

)
or if w-Deg(ταm1) =

w-Deg
(
τβm2

)
and m1 >B′ m2.

This defines a well-ordering on Mon
(
B̃
)
and we have

Lm>h

(
fh
)

= τEcartw(f) Lm>
Bh

(f) .

In particular, Ecart(f) = Degτ Lm>h

(
fh
)
.

Note that h remain weighted homogeneous (in left S-polynomial) due to our homogeniza-
tion.
Since B̃ is Noetherian, and >h is a well-ordering the algorithm terminates due to the
original argument.

�

Remark 4.4.12. We can extend to the above weak normal form algorithm 4.4.1 to work
with (homogeneous) vectors and modules, homogenized by assigning weights to canonical
(free) module generators.
Remark 4.4.13. Clearly we do not need to homogenize relations in a graded commutative
algebra and it is easy to see that the above weak polynomial normal form algorithm 4.4.1
is correct and terminates for graded commutative algebras without any homogenization.
Moreover, note that for polynomial graded homogeneous input the usual left normal form
algorithm 3.3.1 terminates as well.
Remark 4.4.14. Let A be a graded commutative algebra endowed with a mixed ordering,
such that anti-commuting variables are global. Let R be the corresponding central local-
ization A>. Then a left SB of an ideal in R, given by elements from A can be computed
(due to the above and following [67]) using the BBA 3.4.1 with the normal form defined
by Algorithm 4.4.1.

Chapter 5

Syzygies and free resolutions

Closely following [67] we generalize our theory for ideals, developed before to the case of
free modules.

Furthermore we establish relations between Gröbner bases and syzygies over central local-
izations of graded commutative algebras. A starting point for this is the idea that syzygies
of leading terms (w.r.t. some special ordering) give rise to syzygies of whole elements,
which also leads to syzygy-driven Buchberger’s algorithms (cf. [113, 114, 96]). This idea is
formalized in Theorem 5.3.6, which is one of the main results of this thesis. This theorem
may be considered as a generalization of the Buchberger’s Criterion to the case of a central
localization of a graded commutative algebra and, in particular, it also proves our charac-
terization of a GB (resp. SB) in a (resp. central localization of a) graded commutative a
algebra.

Following the approach due to [79, 81] we propose Algorithm 5.4.4 for computing free
resolutions over central localizations of graded commutative algebras. For this we have
introduced the notation of “elementary arrow”, which allows us to avoid tedious business
of keeping track of indices and ordered sets. It also makes it possible to formulate our
algorithm very close to the implementation side (see also Section 6.5).

5.1 Computer Algebra for modules

Here we will generalize the computational approach from previous chapters to submodules
of free modules over k-algebras.
Let from now on A stand for a graded commutative algebra endowed with a monomial
ordering > on the set of its monomials Mon(A). We denote its odd (resp. even) variables
by ξ1, . . . , ξm (resp. x1, . . . , xn).

Let us recall Section 1.4. Now, following [67], we extend the notion of monomial and

59

60 CHAPTER 5. SYZYGIES AND FREE RESOLUTIONS

monomial ordering to the free left A-module Ar := ⊕ri=1Aεi, where

εi = (0, . . . , 0, 1i, 0, . . . , 0)t ∈ Ar

is the i-th canonical basis vector of Ar. For any m ∈ Mon(A), we denote

mεi := (0, . . . , 0,mi, 0, . . . , 0)t ∈ Ar

and call it a module monomial (involving component i) or simply a monomial . There-
fore the set of monomials of Ar looks as follows:

Mon(Ar) := ∪ri=1 Mon(A)εi

In our adopted notations, a monomial multiplied with a coefficient is called a term. There-
fore, we shall call cmεi a module term or simply a term , where c ∈ k,m ∈ Mon(A), 1 6
i 6 r.

Definition 5.1.1. We say that monomial m1εi divides monomial m2εj iff m1 divides m2

and i = j, in such a case the quotient of such monomials is defined by: m2εi/m1εi :=
m2/m1 ∈ Mon(A). Also we may say that m1 ∈ Mon(A) divides m2εj iff m1 divides m2,
and in such a case m2εj/m1 := (m2/m1)εj ∈ Mon(Ar).
Moreover, we denote

lcm(m1εi,m2εj) :=

{
lcm(m1,m2)εi, if i = j

0, otherwise.

We extend the notion of signed quotient to module monomials as follows.

Definition 5.1.2. Let A,B ∈ Mon(Ar) such that B divides A. Let us define a
signed quotient of A and B by

(A�B) := σC,

where C = A/B ∈ Mon(A), σ = Lc(C ·B) ∈ {±1}.
Moreover, we put (0�B) := 0, for any (module) monomial B.

Remark 5.1.3. It is easy to see that (A�B) ·B = A, whereas (A/B) ·B = ±A.
Moreover, if A ·B = σC, where A ∈ Mon(A), B, C ∈ Mon(Ar), σ ∈ {±1} then

A = σ (C�B) (5.1)

Furthermore, if A,B ∈ Mon(Ar) then for any D ∈ Mon(Ar), which is divisible by B and
divides A the following equality holds:

(A�B) = (A�D) · (D�B) (5.2)

5.1. COMPUTER ALGEBRA FOR MODULES 61

Definition 5.1.4. Let > be a monomial ordering on Mon(A). A
module monomial ordering or simply a monomial ordering on Ar is a total
ordering � on Mon(Ar) satisfying the following conditions:

m1 > m2 =⇒m1εi � m2εi, (5.3)
m1εi � m2εj =⇒Lm(m ·m1)εi � Lm(m ·m2)εj, (5.4)

for all m,m1,m2 ∈ Mon(A), i, j = 1, . . . , n, whenever m ·m1 6= 0 and m ·m2 6= 0.

Note that, each component of Ar carries the ordering of A due to condition (5.3), which, in
particular, implies that, the module ordering � is a well-ordering iff the monomial ordering
> is a well-ordering. We call the module ordering � global (resp. local , resp mixed)
whenever > is global (resp. local, resp mixed).

Examples 5.1.5. Standard examples of monomial orderings of a particular interest are
the following:

term over position ordering, denoted by (>, c), is defined by:

m1εi � m2εj ⇔

{
m1 < m2 or
m1 = m2 and i < j,

position over term ordering, denoted by (c, >), is defined by:

m1εi � m2εj ⇔

{
i < j or
i = j and m1 > m2,

From now on, let us fix a module ordering � and denote it also >.

Definition 5.1.6. Since any non-zero vector f ∈ Ar can be uniquely written as f =
cmεi + f ′, with c ∈ k \ {0} and mεi > m′εj for any non-zero term c′m′εj of f ′ (where
m,m′ ∈ Mon(A)) we may denote as usual Lm(f) := mεi,Lc(f) := c,Lt(f) := cmεi, and
call them the leading monomial , leading coefficient and leading term , respectively,
of f .

As in the ideal (polynomial) case, let us denote the set of module monomials occurring in
f with non-zero coefficients by Mon(f).

For any subset F ⊂ Ar, we call

L(F) := A〈Lm(f) | f ∈ F \ {0}〉 ⊂ Ar,

the leading module of F .

Note that the leading module has all the properties of leading ideal shown in Section 3.3.

62 CHAPTER 5. SYZYGIES AND FREE RESOLUTIONS

Remark 5.1.7. Since Mon(Ar) can be identified with a subset of NN , for some N ∈ N and
using Dickson’s Lemma (cf. 2.1.10) for NN we conclude that any monomial submodule of
Ar (for any r) is finitely generated. That is why we always can choose a minimal generating
system for any leading (sub)-module.

Recall that for a fixed ordering > on Mon(A) we denoted the associated localization of A
w.r.t. > (cf. Chapter 4) by

R := A> := S−1
> A.

Our theory of SBs for ideals can be carried out to modules almost without any changes. In
what follows we are going to formulate the relevant definitions and theorems while omitting
the proofs, which are identical to the ideal case.

After fixing a module ordering on Mon(Rr), as for ideals, we define:

Definition 5.1.8. 1. Let M ⊂ Rr be a submodule. A finite set F ⊂ M is called a
standard basis of M iff L(M) = L(F), that is, for any nonzero g ∈ M there exists
an f ∈ F such that Lm(g) is divisible by Lm(f).

2. In the case of a well-ordering, a standard basis F is called a Gröbner basis . In this
case R = A and therefore, F ⊂M ⊂ Ar.

3. A set F ⊂ Rr is called interreduced (or irredundant) if 0 /∈ F and for each f ∈ F
holds Lm(f) /∈ L(F \ {f}). An interreduced standard basis is also called minimal
since in such a case the leading module L(R〈F 〉) is minimally generated by monomials
Lm(f), f ∈ F .

Definition 5.1.9. Let G denote the set of all finite ordered subsets of Rr.

1. A map
NF : Rr × G → Rr, (f,G) 7→ NF(f | G),

is called a left normal formnormal form on Rr if, for all G ∈ G, f ∈ Rr,

(a) NF(0 | G) = 0,
(b) NF(f | G) 6= 0⇒ Lm(NF(f | G)) /∈ L(G),
(c) f−NF(f | G) ∈ A〈G〉, and if G = {g1, . . . , gs} then f−NF(f | G) (or, by abuse

of notation, f) has a standard representation with respect to NF(− | G),
that is,

f − NF(f | G) =
s∑
i=1

aigi, ai ∈ R, (5.5)

satisfying Lm(
∑s

i=1 aigi) > Lm(aigi) and Lm(ai) ·Lm(gi) 6= 0 for all i such that
aigi 6= 0.

2. NF is called a weak normal form if instead of condition 1c only the following
condition holds:

(c’) for each f ∈ Rr and each G there exists a commutative unit u ∈ R such that
uf has a standard representation w.r.t. NF(− | G).

5.1. COMPUTER ALGEBRA FOR MODULES 63

3. NF is called polynomial if, for f ∈ Ar, G ⊂ Ar, then u, ai ∈ A.

Lemma 5.1.10. Let M ⊂ Rr be a submodule, F ⊂M a SB of M and NF(− | F) a weak
normal form on Rr wrt F .

1. For any f ∈ Rr we have that f ∈M iff NF(f | F) = 0.
2. If M ′ ⊂ Rr is a submodule with M ⊂ M ′, then from L(M ′) = L(M) follows that

M = M ′.
3. M = A〈F 〉, that is, F generates M as an R-module.

Definition 5.1.11. The (left) S-polynomial between vectors f, g ∈ Rr is defined by:

LeftSPoly(f, g) := Lc(g) (m�Lm(f)) · f − Lc(f) (m�Lm(g)) · g ∈ Rr,

where m := lcm(Lm(f),Lm(g)) ∈ Mon(Ar) ∪ {0}.

Clearly LeftSPoly(f, g) is zero if leading terms have different components.

Definition 5.1.12. Assuming that w-Deg(−) is a (weighted) degree function on Mon(A)
we extend it to all of Mon(Ar) by weighting module-components with the weights
e1 . . . , er ∈ R and putting:

w-Deg(mεi) := w-Deg(m) + ei,

for any monomial mεi ∈ Mon(Ar).
For f ∈ Ar \ {0}, let w-Deg(f) be the maximal degree of all monomials occurring in f .

Define the ecart of f as

Ecart(f) := w-Deg(f)− w-Deg(Lm(f)).

The Algorithms LeftNF (3.3.1), LeftNFMora (4.4.1), LeftRedNF (2.2.1) and
LeftGB (3.4.1) carry over verbatim to the module case by replacing A to Ar (and R
to Rr) due to the following theorem:

Theorem 5.1.13. LetM ⊂ Rr be a submodule and F = {f1, . . . , fs} ⊂M . Let NF(− | F)
be a weak normal form on Rr w.r.t. F . Then the following are equivalent:

1. F is a SB of M .
2. NF(g | F) = 0 for all g ∈M .
3. Each g ∈M has a standard representation w.r.t. NF(− | F).
4. F generates M and ∀g ∈ S(F)∃Fg ⊂ F : NF(g | Fg) = 0, where

S(F) := {LeftSPoly(fi, fj)}16i,j6s

⋃
{ξl · fi | ξl · Lm(fi) = 0, 1 6 l 6 m}16i6s ⊂ R

r.

64 CHAPTER 5. SYZYGIES AND FREE RESOLUTIONS

Proof. The proof of 1⇔ 2⇔ 3⇒ 4 is a similar to the ideal case, while the only remaining
implication will be shown later in Theorem 5.3.6. �

Computation of syzygy module (cf. Algorithm 5.1.1) can be considered as a byproduct of
SB computation due to the following lemma:

Lemma 5.1.14. Let >1 be a module monomial ordering on
⋃r
i=1 Mon(A)εi. Let M =

R〈f1, . . . , fs〉 ⊂ Rr =
⊕r

i=1Rεi. Consider the canonical embedding

Rr ⊂ Rr+s =
r+s⊕
i=1

Rεi,

and the canonical projection π : Rr+s → Rs. Choose any module monomial ordering >2

on
⋃r+s
i=r+1 Mon(A)εi. Construct the following “syzygy” ordering >Syz on Mon(Ar+s):

m1εi >Syz m2εj :⇔

m1εi >1 m2εj, if i 6 r and j 6 r

m1εi >2 m2εj, if i > r and j > r

i > j, otherwise

Let G be a SB of M ′ := R〈f1 + εr+1, . . . , fs + εr+s〉 w.r.t. >Syz. Suppose that
G ∩

⊕r+s
i=r+1Rεi = {g1, . . . , gl}, then

Syz(f1, . . . , fs) = 〈π(g1), . . . , π(gl)〉.

Proof. The proof goes verbatim as in the commutative polynomial case (cf. Lemma 2.5.3
from [67]).

For algebras with zero-divisors a similar statement was also shown in [102][Propositions
7.3, 7.4].

�

Algorithm 5.1.1 SYZ(F)

ASSUME: Let > be an ordering on Mon(A) and R = A>
INPUT: F = (f1, . . . , fs) ∈ GAr .
OUTPUT: S ⊂ As, such that R〈S〉 = Syz(f1, . . . , fs) ⊂ Rs.
1: F := {f1 + εr+1, . . . , fs + εr+s}, where ε1, . . . , εr+s denote the canonical generators of
Rr+s = Rr ⊕Rs such that f1, . . . , fs ∈ Rr =

⊕r
i=1Rεi;

2: compute a SB G of 〈F 〉 ⊂ Rr+s w.r.t. >Syz;
3: G0 := G ∩

⊕r+s
i=r+1 Rεi = {g1, . . . , gl}, where gi =

∑s
j=1 aijεr+j, i = 1, . . . , l;

RETURN: {(ai,1, . . . , ai,s)}li=1;

5.1. COMPUTER ALGEBRA FOR MODULES 65

Remark 5.1.15. Algorithm 5.1.1 is just a way to do bookkeeping, while computing a SB.

Both input and output of Algorithm 5.1.1 may be interpreted as single matrices:

• the output S ⊂ As – as a matrix from Mats×l(A) consisting of elements aij,
• the input {f1, . . . , fs} ⊂ Ar – as a matrix from Matr×s(A), with columns being the

component-wise representations of f1, . . . , fs.

We will usually write the Syz(f1, . . . , fs) instead of Syz(M) since due to the following
proposition (5.1.16) the notion of syzygies of a module is only defined up to an isomorphism:

Proposition 5.1.16. Let f1, . . . , fs and g1, . . . , gk are ordered sets of elements of Rr such
that 〈f1, . . . , fs〉 = 〈g1, . . . , gk〉 = M . Then there exist free R-modules L and L′ such that

Syz(f1, . . . , fs)⊕ L ∼= Syz(g1, . . . , gk)⊕ L′.

Proof. This follows from the observation that:

Syz(f1, . . . , fs, g1, . . . , gk) = N ⊕ L,N ∼= Syz(f1, . . . , fs).

This observation can be shown by considering a weak normal form NF on Rr and using
standard representations of gi w.r.t. NF(− | f1, . . . , fs). �

Successively computing syzygies of syzygies, we obtain an algorithm (5.1.2) to compute
free resolutions up to any given length.

Remark 5.1.17. Unfortunately, as soon as A have zero-divisors one cannot expect any
analogy for Hilbert’s Syzygy Theorem. For instance, consider a free resolution of any odd
variable:

0← A〈ξ〉
ξ←− A ξ←− A ξ←− · · · .

Therefore, we always need an additional termination condition for our free resolution
algorithms (such as length).

66 CHAPTER 5. SYZYGIES AND FREE RESOLUTIONS

Algorithm 5.1.2 RESOLUTION(F, l)

ASSUME: Let > be an ordering on Mon(A) and R = A>
INPUT: F = (f1, . . . , fs) ∈ GAr , l ∈ N
OUTPUT: A list of matrices A1, . . . , Al with Ai ∈ Matsi−1×si(A), 1 6 i 6 l, such that

· · · → Rsl ϕl−→ Rsl−1 → · · · → Rs1 ϕ1−→ Rr → Rr/〈f1, . . . , fs〉 → 0,

is a free resolution ofRr/〈f1, . . . , fs〉, where homomorphisms ϕi are defined by matrices
Ai due to (1.3).

1: i := 1, s0 := r, s1 := s;
2: A1 := Matrix(f1, . . . , fs) ∈ Matr×s(A);
3: while i < l do
4: i := i+ 1;
5: Ai := Syz(Ai−1); // Using Algorithm 5.1.2
6: end while
RETURN: A1, . . . , Al.

5.2 Assumptions on orderings

In the case of a G-algebra a monomial ordering on power products is uniquely induced by
a monoid total order on exponents. The requirements behind that is that power products
correspond uniquely to exponents, which is not the case for quotient algebras. Fortunately,
in our case power products correspond either to zero or to a unique exponent, such that
degrees of odd variables are in {0, 1}. Moreover a module ordering must be compatible (cf.
Definition 5.1.4).

Unfortunately, in order to introduce a Schreyer ordering on Mon(As) induced by
X1, . . . , Xs ⊂ Mon(Ar) we need to compare sums of exponents, one comming from a
power product and the other comming from a module monomial, since we cannot simply
compare the corresponding products due to zero-divisors.

Up until now we were operating without any further assumptions on the ordering on
monomials. Here we recall that the monomial ordering on Mon(A) is induced by a total
ordering on exponents.

In this section we formalize our requirements/assumptions about the total ordering on the
set of exponents .

Let the set of exponents
Υ := Nn+m × {0, 1, . . . , r}

be endowed with a total ordering, and

Exp : Mon(A)→ Υ, xα 7→ α× {0}

5.2. ASSUMPTIONS ON ORDERINGS 67

be an injective map. Denote

Exp(A) := {Exp(m) | m ∈ Mon(A)} ⊆ Nn+m × {0} ,
Υ0 := {α | α× {0} ∈ Exp(A)} ⊆ Nn+m.

Let us endow Υ with the following operation of Exp(A)

⊕ : Exp(A)×Υ→ Υ, (α× {0} , β × {i}) 7→ (α + β)× {i} ,

where α, β ∈ Nk, and α + β is the component-wise sum.

We require the following condition:

α < β =⇒ γ ⊕ α < γ ⊕ β, ∀γ ∈ Exp(A),∀α, β ∈ Υ. (5.6)

Definition 5.2.1. An ordering >1 on Mon(A), induced by Exp is defined as follows:
m1 >1 m2 by definition iff Exp(m1) > Exp(m2), where m1,m2 ∈ Mon(A).

Note that this induced ordering is total, and indeed a monomial ordering due to (5.6).

Recall that

Ar =
r⊕
i=1

Aεi, Mon(Ar) := {mεi | m ∈ Mon(A), 1 6 i 6 r}

and extend the map Exp to Mon(Ar) by putting

Exp : xαεi 7→ α× {i} ∈ Υ,

where xα ∈ Mon(A) and i ∈ Nr := {1, . . . , r}.

Definition 5.2.2. An ordering >1 on Mon(Ar), induced by Exp is defined as fol-
lows: m1εi >1 m2εj by definition iff Exp(m1εi) > Exp(m2εj), where m1εi,m2εj ∈
Mon(Ar).
Note that the induced ordering on Mon(Ar) is total.

In order to be compatible with the usual definition of a module monomial ordering, an
ordering on Υ must satisfy the following conditions:

1. α× {0} < β × {0} =⇒ α× {i} < β × {i}, for all α, β ∈ Υ0 and i ∈ Nr.
2. α×{i} < β×{j} =⇒ (α + γ)×{i} < (β + γ)×{j}, for all α, β, γ ∈ Υ0 and i, j ∈ Nr.

68 CHAPTER 5. SYZYGIES AND FREE RESOLUTIONS

5.3 Schreyer ordering and syzygies of leading terms

Using our assumptions about exponents and following Definition 3.1 from [81] we generalize
the notion of Schreyer ordering.

Recall that A denotes a graded commutative algebra endowed with an ordering > and
R = A> .

Definition 5.3.1. Given X1, . . . , Xs ∈ Mon(Ar). A module ordering >1 on Mon(As) is
called Schreyer ordering (induced by X1, . . . , Xs) if it satisfies the following condition:

Exp(m1)⊕ Exp(Xi) > Exp(m2)⊕ Exp(Xj) =⇒ m1εi >1 m2εj, (5.7)

for all 1 6 i, j 6 s,m1,m2 ∈ Mon(A) (i.e. for all m1εi,m2εj ∈ Mon(As)).

Remark 5.3.2. Clearly the condition (5.7) is not sufficient to define a total ordering on
Mon(As) but it can be refined to become one by an extra condition (say P(m1, i,m2, j))
to get a (total) monomial ordering:

m1εi <1 m2εj ⇔

{
Exp(m1)⊕ Exp(Xi) < Exp(m2)⊕ Exp(Xj) or
Exp(m1)⊕ Exp(Xi) = Exp(m2)⊕ Exp(Xj) andP(m1, i,m2, j),

(5.8)
where 1 6 i, j 6 s,m1,m2 ∈ Mon(A).

There are two orderings, which are called Schreyer ordering . Here we will call them
“classical”:

Definition 5.3.3. The classical Schreyer ordering is defined due to (5.8), where

P(m1, i,m2, j) := “i < j′′. (5.9)

The reversed classical Schreyer ordering is defined analogously with

P(m1, i,m2, j) := “i > j′′. (5.10)

Note that both classical Schreyer orderings from definition 5.3.3 are, in fact, module term
orderings, whereas the position over term and term over position are, in general, not
Schreyer orderings.

Recall that two (module) monomials Y | X we denote (X�Y) := σ · (X/Y), for σ ∈
{±1} ⊂ k∗ such that σ · (X/Y) · Y = X. Moreover, we put (0�Y) := 0 for any (module)
monomial Y .

The following result, which seems to be new, is important for our algorithm to compute
syzygies of modules over graded commutative algebras. Note that this result is ordering-
independent.

5.3. SCHREYER ORDERING AND SYZYGIES OF LEADING TERMS 69

Proposition 5.3.4. Let A be a graded commutative algebra with odd variables denoted by
ξ1, . . . , ξm. Let ci ∈ k∗, Xi ∈ Mon(Ar), Xij := lcm(Xi, Xj) ∈ Mon(Ar), 1 6 i, j 6 s. Then
the module Syz(c1X1, . . . , csXs) is generated by the following syzygies, which we shall call
elementary syzygies:

{ξlεi : ξl ·Xi = 0, 1 6 l 6 m}
⋃
{cj (Xij�Xi) εi − ci (Xij�Xj) εj : i < j} ⊆ As. (5.11)

Proof. By construction and due to defining relations of A it is clear that

{ξlεi : ξl | Xi}
⋃
{cj (Xij�Xi) εi − ci (Xij�Xj) εj : 1 6 i < j 6 s} ⊆ Syz(c1X1, . . . , csXs).

In order to prove the other inclusion let us consider nonzero S :=
∑s

i=1 hiεi ∈
Syz(c1X1, . . . , csXs), hi ∈ A, that is,

S ∗ {Xi} = h1c1X1 + . . .+ hscsXs = 0. (5.12)

It is clear that for any monomial m ∈ Mon(Ar) its coefficient in (5.12) must be zero.

Note that S is a finite sum of terms. Let

E := MaxXεj∈Mon(S) Exp(X) + Exp(Xj),

S ′ :=
∑

c′X′εjis a term of S:Exp(X)+Exp(Xj)=E

c′X ′εj.

We consider the corresponding combination:

S ′ ∗ {xiXi} =
∑

Exp(X′)+Exp(Xj)=E

c′cjX
′Xj (5.13)

It must be zero. Hence by definition S ′ ∈ Syz(c1X1, . . . , csXs). Therefore by induction on
the number or terms in S we only need to prove the statement for S ′.

There are two cases: either all products in (5.13) X ′Xj are zeroes or they all are multiples
of some monom m ∈ Mon(Ar) and cancel out all together.

For the former case, note that the product X ′Xj = 0 iff there exists a ξl dividing both X ′
and Xj. Thus c′X ′εj = c′ (X ′�ξl) ξlεj with ξl ·Xj = 0.

For the later case we need to proceed exactly as in the commutative polynomial case while
taking case about signs. That is, we consider the case S ′ =

∑s
i=1 b

′
iYiεi, where w.l.o.g.

we may assume that all b′i 6= 0 and YiXi = σim, where σi ∈ {±1}. Note that for all

70 CHAPTER 5. SYZYGIES AND FREE RESOLUTIONS

1 6 i, j 6 s: Xi and Xj divide Xij, which in turn divides m. Denote bi := b′iσi. It is clear
that

S ′ =
s∑
i=1

b′iYiεi =
s∑
i=1

bi (m�Xi) εi, (5.14)

and that (m�Xi) = (m�Xij) (Xij�Xi).

Consider two summands as from the later sum in (5.14), B,D ∈ k∗:

B (m�Xi) εi +D (m�Xj) εj =

Bcj
cj

(m�Xij) (Xij�Xi) εi ±
Bci
cj

(m�Xij) (Xij�Xj) εj +D (m�Xj) εj =

B

cj
(m�Xi) ·

cj (Xij�Xi) εi − ci (Xij�Xj) εj︸ ︷︷ ︸
needed elementary syzygy

+
ciB + cjD

cj
(m�Xj) εj (5.15)

Applying (5.15) repeatedly to (5.14) we will get
∑s

i=1 cibi
cs

(m�Xs) εs as the remainder,

which is zero since S ′ is a syzygy, i.e. since
∑s

i=1 cibi = 0. �

It is easy to see that all special syzygies ξlεj appear only once in (5.11), while others can
overlap.

Definition 5.3.5. Let ci ∈ k∗, Xi ∈ Mon(A), 1 6 i 6 s. Then we call a syzygy∑
hiεi ∈ Syz(c1X1, . . . , csXs)

homogeneous with exponent E if each hi is a term satisfying

Exp(Lm(hi))⊕ Exp(Xi) = E

for all i such that hi 6= 0.

Note that all elementary syzygy generators in Proposition 5.3.4 are homogeneous.

In order to to prepare for Theorem 5.3.6 below, let us recall some notations from Section
1.4.

Let F = {f1, . . . , fs} ⊂ Rr \ {0}, denote F := (f1, . . . fs), M := R〈f1, . . . fs〉. Consider the
module homomorphism

ψF : F1 :=
s⊕
i=1

Rεi �M ⊂ Rr =: F0, (5.16)

given by εi 7→ fi.

5.3. SCHREYER ORDERING AND SYZYGIES OF LEADING TERMS 71

We are interested in a suitable generators for the syzygy module:

Syz(F) = Ker(ψF).

Let H be a homogeneous generating set of Syz(Lt(f1), . . . ,Lt(fs)) ⊂ As ⊂ Rs. Consider
for any syzygy of leading terms S ′ =

∑
giεi ∈ H, and its image under ψF : ψF (S ′) =

S ′ ∗ F =
∑
gi · fi ∈M .

Assume to have a weak normal form on Rr w.r.t. F . If NF(S ′ ∗ F | FS′) = 0 for some
FS′ ⊆ F then there exists a standard representation

u · (S ′ ∗ F) =
∑
fj∈FS′

aj · fj, aj ∈ R, (5.17)

for some commutative unit u ∈ R. Define

S := u · S ′ −
s∑
j=1

ajεj.

Then S ∈ Syz(F) and Lm(S) = Lm(uS ′) = Lm(S ′) since S ′ ∈ H ⊂ Syz(Lt(f1), . . . ,Lt(fs))
and due to properties of standard representation (5.17).

Denote the set of syzygies S arising as above from elements S ′ ∈ H by Ĥ ⊆ Syz(F). Note
that L

(
Ĥ
)

= L(H).

Furthermore we assume that we have a weak normal form on Rs w.r.t. Ĥ.

The following theorem is one of the main results of this thesis. This theorem may be con-
sidered as a generalization of the Buchberger’s Criterion to the case of a central localization
of a graded commutative algebra.

Theorem 5.3.6. Let A be a graded commutative algebra endowed with an ordering > and
R = A>. Let F = {f1, . . . , fs} ⊂ Rr \ {0}, M be the left R-module generated by f1, . . . fs
and let H ⊂ As be a homogeneous generating set of Syz(Lt(f1), . . . ,Lt(fs)) such that:

1. ∀S ′ ∈ H : NF(S ′ ∗ F | FS′) = 0 for some FS′ ⊆ F .

Then the following statements hold:

1. L(M) ⊆ L(F), which follows that F is a SB of M w.r.t. >.
2. L(Syz(F)) ⊆ L

(
Ĥ
)
, which follows that Ĥ is a SB of Syz(F) w.r.t. any Schreyer

induced ordering. In particular, Ĥ generates Syz(F).

72 CHAPTER 5. SYZYGIES AND FREE RESOLUTIONS

Proof. Take any f ∈M and a preimage g ∈ Rs of f :

g =
s∑
i=1

aiεi, f =
s∑
i=1

aifi,

This is possible since F generates M .

We give a proof of 1 and 2 at the same time. For the former claim we assume f 6= 0, while
for the later f = 0.

Consider a standard representation w.r.t. Ĥ:

ug = h+
∑
S∈Ĥ

aSS, aS ∈ R, (5.18)

where u is a unit and h is a normal form of g w.r.t. Ĥ.

Note that if we apply ψF to (5.18) we will get

uf = ψF (h) = h ∗ F , (5.19)

If h = 0 then Claim 2 is clearly true due to properties of weak normal form but in this
case: (5.19) follows that f = 0, which contradicts with the assumption f 6= 0 for Claim 1
and thus cannot happen.

Thus we may assume that h =
∑s

j=1 hjεj 6= 0 and let Lm(h) = Lm(hν)εν for some
1 6 ν 6 s.

Due to the properties of weak normal form we get that:

Lm(h) /∈ L
(
Ĥ
)
. (5.20)

Recall that L
(
Ĥ
)

= L(H) and ξlεν ∈ Syz(Lt(f1), . . . ,Lt(fs)) for all ξl | Lm(fν). Thus
Lm(hν) Lm(fν) 6= 0 since ξl dividing Lm(hν) would contradict (5.20).

Due to (5.19) it follows that

uf =
s∑
j=1

hjfj. (5.21)

We are going to show that

Lm(f) = ±Lm(hν) Lm(fν) 6= 0 (5.22)

since this would show Claim 1 and provide a contradiction with the assumption f = 0 for
Claim 2, which means that h must be zero.

In order to show (5.22) we need to consider cancelation between possible leading terms
Lm(hifi) with the same maximal exponent.

5.3. SCHREYER ORDERING AND SYZYGIES OF LEADING TERMS 73

Note that by definition of Schreyer induced ordering on As it follows that: Exp(Lm(hν))⊕
Exp(Lm(fν)) > Exp(Lm(hi))⊕ Exp(Lm(fi)), for all 1 6 i 6 s such that hi 6= 0. Thus no
need to consider lower terms from hjfj 6= 0 with Lm(hj) Lm(fj) = 0 since in such a case
Exp(Lm(hjfj)) < Exp(Lm(hj))⊕ Exp(Lm(fj)) 6 Exp(Lm(hν))⊕ Exp(Lm(fν)).

Assume that for some j 6= ν holds:

±Lm(hj) Lm(fj) = ±Lm(hν) Lm(fν) =: M ∈ Mon(Ar).

Observe that Lm(fν) and Lm(fj) divide M and thus so also does

m := lcm(Lm(fν),Lm(fj)) ∈ Mon(Ar).

Note that all module monomials Lm(fν),Lm(fj),M and m involve the same module com-
ponent in Ar. Since m divides M it follows that M/m ∈ Mon(A). Moreover it follows
that the monomial m/Lm(fν) ∈ Mon(A) divides Lm(hν).

Consider the homogeneous elementary syzygy between Lt(fν) and Lt(fj):

S ′ = Lc(fj) (m�Lm(fν)) εν − Lc(fν) (m�Lm(fj)) εj ∈ Syz(Lt(f1), . . . ,Lt(fs)).

Note that

Lm((m�Lm(fj)) εj) = (m/Lm(fj)) εj, Lm((m�Lm(fν)) εν) = (m/Lm(fν)) εν .

If we assume that Lm(S ′) = (m/Lm(fj)) εj > (m/Lm(fν)) εν then by multiplying this in-
equality of module monomials with the monom M/m, we would get Lm(hj)εj > Lm(hν)εν
(no zero-division happens here!), which contradicts with above.

Therefore Lm(S ′) = (m/Lm(fν)) εν ∈ L(H) and it divides Lm(h), since m/Lm(fν) ∈
Mon(A) divides Lm(hν). Hence we arrive to a contradiction with (5.20). �

Clearly our previous characterization of a SB (Theorem 3.4.6) is just an easy corollary
from theorem 5.3.6.

Theorem 5.3.6 shows that in order to compute syzygies of original elements one only needs
to consider syzygies of leading terms, which due to Proposition 5.3.4, are generated by
elementary syzygies.

Moreover, one need only those elementary syzygies whose leading terms minimally generate
the L(Syz(Lt(f1), . . . ,Lt(fs))) since they would give rise to a SB of Syz(f1, . . . , fs) and
thus to a GB of F . Thus we get the following lemma (5.3.7) which may be considered as
a generalized Chain Criterion.

Lemma 5.3.7. In the setting of Theorem 5.3.6 let S1, S2 ∈ H such that Lm(S1) divides
Lm(S2), H ′ := H \ {S2} and 〈H ′〉 = 〈H〉. Then Lm(S2) ∈ L(H ′) and thus Ĥ ′ is already a
SB of Syzygies.

74 CHAPTER 5. SYZYGIES AND FREE RESOLUTIONS

Let us consider pairs of indices 1 6 i < j 6 s such that Lm(fi) and Lm(fj) involve the
same component. Denote Mij := lcm(Lm(fi),Lm(fj)) 6= 0 and mij := (Mij�Lm(fj)). Let
Sij be the syzygy between Lm(fi) and Lm(fj):

Sij = Lc(fj)mijεj − Lc(fj)mjiεi.

With respect to the classical Schreyer ordering (cf. 5.3.3) it is clear that Lm(Sij) =
Lm(mij)εj. Note that the syzygy Sij corresponds to our definition of LeftSPoly(fi, fj), i.e.

LeftSPoly(fi, fj) = Sij ∗ F

Therefore, we may say that w.r.t. the classical Schreyer ordering classical statements about
classical elementary syzygies are true: for instance, our Lemma 5.3.7 implies an analog to
lemma 2.5.10 (Chain Criterion) from [67]. Furthermore incorporating the resulting Chain
Criterion, one may arrive to the following algorithm for computing Syzygies of leading
terms, which is due to [81] and [32]:

Lemma 5.3.8. Let us denote monomial ideals

M1 := Ann(Lm(f1)) = 〈0〉 : Lm(f1), Mi := 〈Lm(f1), . . . ,Lm(fi−1)〉 : Lm(fi), 1 < i 6 s.

Then with respect to the classical Schreyer ordering on Mon(As) in-
duced by Lm(f1), . . . ,Lm(fs), the leading ideal of syzygies of leading terms,
L(Syz(Lt(f1), . . . ,Lt(fs))), is minimally generated by

s⋃
i=1

Mingens(Mi)εi, (5.23)

where Mingens(Mi) denotes the minimal set of generators of the monomial ideal Mi.

Remark 5.3.9. Moreover in the above Lemma 5.3.8 the following hold:

• Ann(Lm(fi)) = 〈ξl | ξl · Lm(fi) = 0〉 ⊆Mi for all i.
• the monomial ideal Mi is generated by the generators of Ann(Lm(fi)) together with

the following monomials: lcm(Lm(fk),Lm(fi))/Lm(fi) for all 1 6 k < i such that
lcm(Lm(fk),Lm(fi)) 6= 0.

Remark 5.3.10. Note that in contrary to zero–division–free situation we need to start with
M1 := Mingens(0 : Lt(f1)) since in our case M1 = {ξl | ξl Lt(f1) = 0}.
Note that we incorporate Chain Criterion in lemma 5.3.8 since we only consider minimal
generators of monomial ideals Mi.

The above Lemma 5.3.8 and Remark 5.3.9 heavily rely on the definition of classical Schreyer
ordering and cannot be used without adjustments in the case of a general induced Schreyer
ordering as the following examples illustrates.

5.4. COMPUTATION OF A FREE RESOLUTION 75

Example 5.3.11. Let A = k[ξ, y, z]/〈ξ2〉 endowed with any monomial ordering >0. Con-
sider the pair of monomials: X1 := ξy,X2 := ξz.

Then the syzygy module Syz(X1, X2) is generated by H := {ξε1, ξε2, zε1 − yε2} which is
also a GB w.r.t. any Schreyer induced ordering >1 on Mon(A2). Thus minimal generators
of L(H) are ξε1, ξε2 and Lm(zε1 − yε2).

If >1 is the classical Schreyer ordering then Lm(zε1 − yε2) = yε2, since 2 > 1, whereas for
the classical reversed Schreyer ordering we get Lm(zε1 − yε2) = zε1.

This example shows that Lemma 3.5 from [81] assumes the classical Schreyer induced
ordering and that 0 : t1 is zero.

Example 5.3.11 shows that for a general induced Schreyer ordering we cannot do better
than actually consider all the elementary syzygies and choose some of them, whose leading
terms minimally generate L(H). Notice that those chosen syzygies, is in fact everything
what we need to know.

Lemma 5.3.12. Let f1, . . . , fs ∈ Ar. Let us denote:

mij := lcm(Lm(fi),Lm(fj)) ∈ Mon(Ar) ∪ {0}
Sij := Lc(fj) (mij�Lm(fi)) εi − Lc(fi) (mij�Lm(fj)) εj,

Σ := Syz(Lt(f1), . . . ,Lt(fs)) ⊂ As,
H ′ := Interred({Sij | 1 6 i < j 6 s}) ⊂ Σ

H ′′ := {ξlεi | ξl · Lm(fi) = 0, 1 6 i 6 s} ⊂ Σ

H := H ′ ∪H ′′

where Interred(−) is the usual interreduction of elementary (binomial) syzygies Sij between
each other w.r.t. >1.

Then with respect to any Schreyer ordering >1on Mon(As) induced by Lm(f1), . . . ,Lm(fs),
the module of syzygies Σ is minimally generated by H and the monomial ideal L(Σ) is
minimally generated by Lm(H).

Proof. Recall that elementary syzygies from H ′′ are distinct and do not overlap with the
usual syzygies Sij. The later might be redundant, exactly as in the commutative case,
which calls for the interreduction procedure.

Note that the interreduction H ′ of S ′ = {Sij | 1 6 i < j 6 s} has the following properties:
H ′ generates 〈S ′〉, i.e. H ′ ⊂ Σ, it is interreduced and L(H ′) = L(S ′). It follows that H ′
minimally generates 〈S ′〉. �

5.4 Computation of a free resolution

Recall that A is a graded commutative algebra (with odd variables ξ1, . . . , ξm) endowed
with an ordering > and R = A> . It seems that everything holds for GR-algebras (or even

76 CHAPTER 5. SYZYGIES AND FREE RESOLUTIONS

for algebras over rings), provided one knows how to compute syzygies of leading terms
(Algorithm 5.4.1).

Consider a sequence of finitely generated free left R-modules Fi (no maps are given), which
we like to denote by

F• : · · · Fl+1 Fl · · · F1 F0. (5.24)

We assume that each Fi is endowed with a fixed basis. Moreover we will say that f ∈ Fl

has the level (or is of) level l, and denote level(f) := l.

In order to simplify algorithms let us introduce the notion of an elementary arrow associated
to the sequence of free modules (5.24):

Definition 5.4.1. Let l ∈ N. We call the tuple consisting of g ∈ Fl+1 and f ∈ Fl an
elementary arrow of level l and denote it by

ρ := (g f).

Furthermore, for an elementary arrow ρ = (g f), we denote

level(ρ) := l, target(ρ) := f ∈ Fl, source(ρ) := g ∈ Fl+1.

Moreover, for two elementary arrows (g f), (g′ f ′) of the same level, we define:

a · (g f) + b · (g′ f ′) := ((a · g + b · g′) (a · f + b · f ′)),

for any a, b ∈ R.

Definition 5.4.2. Let us denote the direct sum of all free modules occurring in F• by:

F? :=
⊕
l>0

Fl,

which is clearly graded by l. In what follows we only consider homogeneous f ∈ F?, that
is, ∃l : f ∈ Fl and thus we will omit the word “homogeneous” and extend the notion of
level to these elements by putting level(f) := l.

The union of the bases of the Fl is a basis of F?, which we denote for the future reference
by {εj, j ∈ N}.
We denote the left R-module of all elementary arrows of level l by HomR(Fl+1 → Fl). The
direct sum of all such modules shall be denoted by

HomR(F? → F?) :=
⊕
l>0

HomR(Fl+1 → Fl),

which is graded by l. In what follows we only consider homogeneous ρ ∈ HomR(F? → F?),
that is, ∃l : ρ ∈ HomR(Fl+1 → Fl) and thus we will omit the word “homogeneous” and
extend the notion of level to these elements by putting level(ρ) := l.

5.4. COMPUTATION OF A FREE RESOLUTION 77

Let Φ ⊂ HomR(F? → F?) be a finite set of elementary arrows. We extend the notions of
target and source to sets of elementary arrows by putting:

target(Φ) := {target(ρ) | ρ ∈ Φ} ⊂ F?, source(Φ) := {source(ρ) | ρ ∈ Φ} ⊂ F?.

The left submodule generated by Φ in HomR(F? → F?) shall be denoted as follows:

R〈Φ〉 :=

{∑
ρ∈Φ

aρ · ρ, aρ ∈ R

}
⊂ HomR(F? → F?).

Let us now recall that R is the central localization of a graded commutative algebra A,
to whose odd elements we will refere to as ξ1, . . . , ξm. Moreover, we assume that each free
R-module Fi is endowed with a monomial ordering compatible with it on A.

Definition 5.4.3. Let ρ = (g f) ∈ HomR(Fl+1 → Fl), Φ ⊂ HomR(F? → F?). Denote:

Lm(ρ) := Lm(f) ∈ Mon(Fl), Lt(ρ) := Lt(f) ∈ Fl, Lc(ρ) := Lc(f) ∈ k,
Lm(Φ) := {(g Lm(f)) | (g f) ∈ Φ} ⊂ HomR(F? → F?),

Lt(Φ) := {(g Lt(f)) | (g f) ∈ Φ} ⊂ HomR(F? → F?).

Let Φ,Λ ⊂ HomR(Fi+1 → Fi). We call Φ a lifting of Λ if Lm(Φ) = Λ.

Definition 5.4.4. We extend the notion of (left) S-polynomials to elementary arrows. Let
ρ = (g f) and ρ′ = (g′ f ′) be two elementary arrows of the same level and a, b ∈ R
such that LeftSPoly(f, f ′) = a · f + b · f ′, then

LeftSPoly(ρ, ρ′) := ((a · g + b · g′) LeftSPoly(f, f ′)).

Definition 5.4.5. Let Φ =
{(
εij fj

)
| ij ∈ N

}
be a finite subset of HomR(F? → F?).

It can be extended to a homomorphism from a free submodule
⊕

jRεij ⊂ F? into F?:

ψΦ :
⊕
j

Rεij → F? : εj 7→ fj. (5.25)

We denote the kernel of ψΦ as follows:

Syz(Φ) := Ker(ψΦ) ⊂ F?.

Due to Lemma 5.3.12 we can compute “leading syzygies” via Algorithm 5.4.1.

Algorithm 5.4.1 LEADING_SYZYGIES(Λ)

ASSUME: odd variables of R are denoted by ξ1, . . . , ξm
INPUT: Λ a finite subset of HomR(F? → F?): target(Λ) consists of terms
OUTPUT: a finite generating set of Syz(Λ)
1: H ′ = {source(LeftSPoly(τ, τ ′)) | τ, τ ′ ∈ Λ, level(τ) = level(τ ′)};
2: H ′′ = {ξk · g | (g f) ∈ Λ, ξk · Lm(f) = 0};
RETURN: H ′ ∪H ′′;

78 CHAPTER 5. SYZYGIES AND FREE RESOLUTIONS

Let Φ be as in Definition 5.4.5. Consider Λ = Lt(Φ) and H =
LEADING_SYZYGIES(Λ) ⊂ F? via Algorithm 5.4.1. Then for any s =

∑
j ajεij ∈ H we

can compute its image under ψΦ, and denote it by:

s ∗ Φ := ψΦ(s) =
∑
j

aj · fj.

Furthermore, all our reduction algorithms can be extended to work with elementary arrows.
For example: Algorithm 3.3.1 can be extended as in Algorithm 5.4.2

Algorithm 5.4.2 LeftNF(ρ′, Φ)

INPUT: ρ′ ∈ HomR(Fl+1 → Fl), Φ a finite subset of HomR(F? → F?);
OUTPUT: ρ ∈ HomR(Fl+1 → Fl) such that target(ρ) is a left normal form of target(ρ′)

w.r.t. {target(f) : f ∈ Φ, level(f) = l} and source(ρ) is the corresponding history of
reductions

1: ρ := ρ′;
2: while (target(ρ) 6= 0) and (Γρ := {τ ∈ Φ : level(τ) = l,Lm(τ)|Lm(ρ)} 6= ∅) do
3: Choose any τ ∈ Γρ;
4: ρ := LeftSPoly(ρ, τ);
5: end while
RETURN: ρ;

We extend the notion of ecart by putting: Ecart(ρ) := Ecart(target(ρ)).

Algorithm LeftNFMora (as well as the interreduction procedure) can be extended anal-
ogously to our extension of LeftNF (Algorithm 5.4.2).

Using our notations in the context of the sequence (5.16) we propose a variation of the
usual Buchberger’s algorithm which computes a SB and, as a byproduct, a syzygy module
of input: Algorithm 5.4.3.

5.4. COMPUTATION OF A FREE RESOLUTION 79

Algorithm 5.4.3 BBA_SYZ(Φ)

ASSUME: NF(− | −) is any normal form (e.g. LeftNF or LeftNFMora)
INPUT: Φ = {(εi fi) | 1 6 i 6 s} ⊂ HomR(F1 → F0);
OUTPUT: (G,S), where G a SB of R〈fi〉 and S ⊂ F1 generates Syz(Φ)
1: S := ∅, Γ := Φ;
2: H := Interred(LEADING_SYZYGY(Lt(Γ))) ⊂ F1; // via Algorithm 5.4.1
3: while ∃s ∈ H do
4: H := H \ {s};
5: ρ := (s s ∗ Φ); // general S-polynomial in terms of Φ
6: (g f) := NF(ρ | Γ);
7: if f 6= 0 then
8: add to H new syzygies involving new leading term Lt(f); // As in Algorithm 5.4.5
9: Γ := Γ ∪ {(g f)};
10: else
11: S := S ∪ {g};
12: end if
13: end while
RETURN: (target(Γ), S);

The termination of Algorithm 5.4.3 follows as usually from the impossibility of infinite
growth of L(G), which is bounded by L(R〈target(Φ)〉) and finitely generated by Dickson’s
Lemma. The correctness follows from Theorem 5.3.6.

Now we start to prepare for the methods analogous to Schreyer’s and La Scala’s.

For the sake of simplicity let

F0 = {f1, . . . , fr1} ⊂ F0 :=

r0⊕
i=1

Rεi

be an interreduced SB of
M := R〈F0〉

w.r.t. a given module ordering >0 on F0. We set

F1 :=

r1⊕
i=1

Rεr0+i,

Φ0 := {(εr0+i fi), 1 6 i 6 r1} ⊂ HomR(F1 → F0),

Λ0 := Lm(Φ0) ⊂ HomR(F1 → F0).

Let >1 be any Schreyer ordering on Mon(F1) = Mon(Ar1) induced by Λ0, that is, in fact
by L0 := (Lm(f1), . . . ,Lm(fr1)) ∈ (F0)r1 .

80 CHAPTER 5. SYZYGIES AND FREE RESOLUTIONS

Next we compute a minimal generating set of L
(
Syz
(
L0

))
in terms of εr0+1, . . . , εr0+r1 and

order it w.r.t. >1. The result shall be denoted by L1. We abbreviate this procedure by
writing

L1 := SortedMinbase(L(Syz(Λ0))) = (b1, . . . , br2) ∈ (F1)r2 .

We set

F2 :=

r2⊕
i=1

Rεr0+r1+i, Λ1 := {(εr0+r1+i bi), 1 6 i 6 r2} ∈ HomR(F2 → F1).

Therefore, L1 = {b1, . . . , br2} is a minimal generating set of L(Syz(Φ0)) (due to Theorem
5.3.6 and Lemma 5.3.12).

Iteratively repeating the above construction further we obtain the sequence (no maps):

F• : · · · Fl =

rl⊕
i=1

Rεsl−1+i Fl−1 · · · F1 F0, (5.26)

where Fi is a free R-module of rank ri, endowed with an induced Schreyer ordering >i on
the corresponding set of module monomials (0 < i) and s0 := 0, sl :=

∑l
j=0 rj for l > 0.

Moreover, due to our construction it follows that:

F? =
⊕
l>0

rl⊕
i=1

Rεsl−1+i.

Furthermore, the following leading data correspondence have been computed in the process:

Λi ⊂ HomR(Fi → Fi−1), Li ⊂ Mon(Fi).

Note that we can already fill in the first gap between modules: the map F1

ψΦ0−−→ F0

(recall the map ψF from (5.16)), satisfies Coker(ψΦ0) = M . Moreover, by construction
L(Ker(ψΦ0)) is minimally generated by L1.

Since F0 is a SB, the syzygies S computed by Algorithm 5.4.3 form a SB of Syz(Φ0) w.r.t.
>1 due to Theorem 5.3.6. Since L(Syz(Φ0)) = L1 by interreducing elements from S between
each other we obtain an interreduced SB of Syz(Φ0), which we now denote by F1 ⊂ F1.
Note that we also reorder these elements: F1 = (fr1+1, . . . , fr1+r2) accordingly to the order
of monomials in L1, that is, where Lm(fr1+i) is the i-th entry of L1.

Hence we have lifted Λ1 to

Φ1 := {(εr0+r1+i fr1+i), 1 6 i 6 r2} ⊂ HomR(F2 → F1),

which defines the homomorphisms F2

ψΦ1−−→ F1 for the sequence (5.26), such that target(Φ1)
is an interreduced SB of Ker(ψΦ0).

5.4. COMPUTATION OF A FREE RESOLUTION 81

By repeating the above lifting procedure we can construct a free resolution of F0/M , which
is known as Schreyer resolution (cf. [67]).

By analogy with Fi and F? we will always use the following notation for sets, graded by
level:

Λ? :=
⊕
l>0

Λl, L? :=
⊕
l>0

Ll, Φ? :=
⊕
l>0

Φl.

By construction it is clear that target(Λ?) = L?.

Definition 5.4.6. In the spirit of [81], we call Λ? a Schreyer frame of F0/M , while its
lifting Φ? (i.e. Lm(Φi) = Λi) such that Φi+1 = Syz(Φi),M = R〈target(Φ0)〉 shall be called a
Schreyer resolution of F0/M , since the sequence F• together with the homomorphisms

Fi+1

ψΦi−−→ Fi, is indeed a free resolution of F0/M .

Note that we have just shown the classical (iterative) way to construct a Schreyer resolu-
tion (i.e. iterative lifting). Following [81] we propose to consider the process of filling up
a Schreyer frame Λ? to a Schreyer resolution Φ? by starting with Φ0. This will be a gen-
eralization of Algorithm 5.4.3 in the sense that we use Φ? to compute elementary syzygies
of leading terms Π?, which are than used to compute new elements of Φ? and so on. Due
to the freedom of choice of next elementary syzygy this process in not necessarily iterative
level by level. The Schreyer frame, fixed at the beginning, serves to “place” new elements
correctly to their allotted “gaps” in the resulting Schreyer resolution.

We sketch our approach in Algorithm 5.4.4, which is a variation of Algorithm 4.1 Reso-
lution from [81]. The advantage of our variation is the consistent use of whole syzygies
of leading terms (i.e. Syz(Lt(Φ?))) together with the procedure for updating the current
set of syzygies Π? over using only their leading monomials (i.e. Lm(Syz(Lt(Φ?)))) as in
[81] (H = ∪Hi).

Algorithm 5.4.4 may be understood as a generalization of the original Resolution Algo-
rithm from [81] to work over central localizations of graded commutative algebras, which
of course include commutative polynomial algebras. In order to tackle the case of mixed
ordering we make use of polynomial weak normal forms introduced in Chapter 4.

82 CHAPTER 5. SYZYGIES AND FREE RESOLUTIONS

Algorithm 5.4.4 LASCALA_RESOLUTION(F,Λ?)

ASSUME: Let >0 be an ordering on Mon(F0) such that ξi > 1, NF(· | ·) a weak NF
INPUT: F = (f1, . . . , fs) ∈ GF0 an interreduced SB of M := R〈f1, . . . , fs〉, Λ? a Schreyer

frame of F0/M ;
OUTPUT: Φ? a Schreyer resolution of F0/M , ∆? ⊂ Φ?
1: ∆i := Φi := Πi := ∅ for all i > 0;
2: ∆0 := {(εi fi) | 1 6 i 6 s} ⊂ HomR(F1 → F0);
3: Φ0 := ∆0; // Note: Lm(Φ0) = Λ0

4: H := LEADING_SYZYGY(Lt(Φ0)) ⊂ F1; // via Algorithm 5.4.1
5: H := Interred(H) ⊂ F1; // Note: L(H) = L1

6: Π1 := {(ε s) | s ∈ H, (ε Lm(s)) ∈ Λ1}; // Note: Lm(Π1) = Λ1

7: while Π? :=
⊕

l>0Πl 6= ∅ do
8: Choose (ε s) ∈ Π? with Lm(s) minimal;
9: i := level(s); // Note: Lm(s) ∈ Li
10: Πi := Πi \ {(ε s)};
11: ρ := s ∗ Φi−1; // general S-polynomial corresponding to syzygy of leading terms s
12: (g f) := NF(ρ | Φi−1); // Note: Lm(g) = Lm(u · s) = Lm(s), Lm(u) = 1
13: if f = 0 then
14: ρ′ := (ε g);
15: ∆i := ∆i ∪ {ρ′};
16: else
17: Find ε′: (ε′ Lm(f)) ∈ Λi−1; // Possible since Lm(f) ∈ Li−1

18: Mark (ε′ Lm(f)); // it shall never occur in Lm(Πi−1)
19: τ := (ε′ f);
20: Πi := Πi ∪ NEW_SYZYGIES(Πi, (ε

′ Lt(f)),Lt(Φi−1)); // L(Πi) ⊂ Λi
21: Φi−1 := Φi−1 ∪ {τ}; // Note: Lm(Φi−1) ⊂ Λi−1

22: ρ′ := (ε g − ε′); // Note: Lm(g) >i ε
′

23: end if
24: Πi+1 := Πi+1 ∪ NEW_SYZYGIES(Πi+1, (ε Lt(g)),Lt(Φi)); // L(Πi+1) ⊂ Λi+1

25: Φi := Φi ∪ {ρ′}; // Note: Lm(Φi) ⊂ Λi,Lm(Syz(Lt(Φi))) = Lm(Πi+1) ⊂ Λi+1

26: end while
RETURN: Φ?, ∆?;

Algorithm 5.4.4 uses Algorithm 5.4.5 for updating Πi+1 in order to add new elementary
syzygies involving a newly found element, which is about to be put into the corresponding
“running SB” Φi.

5.4. COMPUTATION OF A FREE RESOLUTION 83

Algorithm 5.4.5 NEW_SYZYGIES(Π, ρ,Ξ)

ASSUME: This algorithm is called from 5.4.4 in the context of a Schreyer frame Λ?
INPUT: Π ⊂ Syz(Ξ) interreduced, ρ = (ε X) of the same level as elements from Ξ
OUTPUT: Σ ⊂ Syz(Ξ ∪ {ρ}) interreduced and reduced w.r.t. Π, Lm(Σ) ⊂ Λ?
1: S := {source(LeftSPoly(τ, ρ)) | τ ∈ Ξ}; // cf. Algorithm 5.4.1
2: S := S ∪ {ξk · ε | ξk ·X = 0}; // all elementary syzygies involving ρ
3: S := NF(Interred(S) | target(Π)); // Note: ∀s ∈ S : Lm(s) ∈ L?
4: Σ := {(ε′ s) | s ∈ S, (ε′ Lm(s)) ∈ Λ? – not marked}; // Possible by above note
RETURN: Σ;

Remark 5.4.7. Showing correctness of Algorithm 5.4.4 is analogous to Proposition 4.4 from
[81] and mainly follows from the line comments in Algorithms 5.4.4 and 5.4.5. The main
point is that for new elements τ and ρ′, Lm(τ) and Lm(ρ′) indeed belong to L?. This
can be proved by observing that the new elements are reduced w.r.t. the corresponding
Φ?, that Λ? is interreduced and the inclusion Lm(Φ?) ⊂ Λ? still holds after enriching Φ?
(induction on iterations).

Similary new elementary syzygies are interreduced and reduced w.r.t. to the old ones.
Therefore Lm(Σ) ⊂ Λ?.

Algorithm 5.4.5 only terminates if we impose some additional conditions, e.g. the length
of the resolution, that is the maximal level of choose-able syzygies of leading terms. In the
graded case one may be only interested in syzygies up to some maximal (induced) degree.

Note that by ordering the leading monomials from Ll ascending w.r.t. >l while constructing
Schreyer resolution we may assume that the next induced ordering >l+1 is in fact the
classical Schreyer ordering. Moreover, while doing this we define the inductive sum of
exponents |εi| ∈ Υ for a module component εi of level l + 1 corresponding to monomial
mεj ∈ Ll inductively by putting |εi| := |mεj| = Exp(m) ⊕ |εj| ∈ Υ, with the starting
initialization for the given canonical basis of F0: |εi| := Exp(εi) ∈ Υ, 1 6 i 6 r0 (here we
recall Section 5.2).

That is in order to be able to compare two monomials m1εi1 ,m2εi2 of the same level l+ 1
we compare sums of exponents Exp(m1)⊕ |εi1| and Exp(m2)⊕ |εi2| w.r.t. the assumed in
Section 5.2 total ordering on Υ. In the tie case the bigger module component (e.g. i1 > i2)
wins.

The selection strategy is defined by the ordering of the elements from L? =
⊕

i>0 Li,
where each Li is interreduced by construction. One such strategy was already used for
computing a Schreyer resolution iteratively level by level: it gave priority to elementary
syzygies between elements of least level.

The main advantages of such a freedom of choice is the possibility to apply the so called
improvement after La Scala : in the else branch of Algorithm 5.4.4 we get two new
syzygies in one go. In order to use these improvements we shall make the selection strategy
go to higher level as soon as computed elements from Φ? allow this.

84 CHAPTER 5. SYZYGIES AND FREE RESOLUTIONS

Remark 5.4.8. Let us consider the graded case. That is, a degree function w-Deg(−)
defined on Υ is given and extended to Mon(F?) 3 mε inductively by putting w-Deg(mε) :=
w-Deg(|mε|) and the input elements are graded: ∀f ∈ F0 : w-Deg(mε) is the same for all
mε ∈ Mon(f). Note that all our operations on elements respect the grading. This means
that all the syzygies, all the elements become (inductively) graded resulting in a graded
free resolution.

Now, following [81], we consider a selection strategy (called minimization strategy)
satisfying the following condition: if for n,m ∈ L? either

(w-Deg(m)− level(m) 6 w-Deg(n)− level(n) and level(m) < level(n))

or (w-Deg(m) < w-Deg(n) and level(m) = level(n))

or (w-Deg(m) = w-Deg(n) and level(m) > level(n))

then it must follow that m < n.

As in [81], it can be shown that a minimal Schreyer resolution of M can be computed
with the use of a minimization strategy by using the “minimal” elements from ∆? and
elimination the rest by substituting, say ε′ with corresponding g (cf. Algorithm 5.4.4 the
else branch).

Chapter 6

Graded commutative algebras in
Singular

This thesis is written with the aim of developing algorithms. We have extended and fur-
ther developed the non-commutative subsystem of Singular (Singular:Plural) into
a framework, which makes it possible to seamlessly embed algebra specific efficient algo-
rithms, as we did for our central localizations of graded commutative algebras.

On the implementation side we have further developed the Singular non-commutative
subsystem Singular:Plural in order to allow polynomial arithmetic and more involved
non-commutative basic Computer Algebra computations (e.g. S-polynomial, GB) to be
easily implementable for specific algebras. At the moment graded commutative algebra-
related algorithms are implemented in this framework. The developed framework is briefly
described in this chapter.

6.1 High level interface - users manual

Since a graded commutative algebra can be represented as a GR-algebra one defines it in
Singular just as one, that is, one has to construct a commutative ring, turn it into an
anti-commutative algebra with the nc_algebra command and use it to form a quotient
algebra with the qring command.

General Singular User’s Manual can be found online at [118]. Singular’s general non-
commutative subsystem (including G- and GR−algebras) is also described in [86]. Here
we present only the commands, which are specific to graded commutative algebras.

The detection of the graded commutative structure, which is done upon the qring com-
mand, automatically changes the internal general (GR-algebra) implementation to our
special graded commutative one, requiring no additional user commands.

Note that monomial ordering is induce by it on the original commutative polynomial ring.

85

86 CHAPTER 6. GRADED COMMUTATIVE ALGEBRAS IN SINGULAR

Let us for example construct a graded commutative Q-algebra A with 2 commuta-
tive variables, called x(1), x(2) and 2 anti-commuting variables, called y(1), y(2),
endowed with an ordering induced by a degree-reverse-lexicographical ordering on
Mon(x(1), y(1), y(2), x(2)). The corresponding Singular code looks as follows:

ring R = 0,(x(1), y(1..2), x(2)),(dp);
matrix C[4][4] = 1,1,1,1, 0,1,-1,1, 0,0,1,1, 0,0,0,1;
print(C);
7→ 1,1,1, 1,
7→ 0,1,-1,1,
7→ 0,0,1, 1,
7→ 0,0,0, 1
def S = nc_algebra(C,0); setring S;
S; // Needed anti-commutative G-algebra
7→ // characteristic : 0
7→ // number of vars : 4
7→ // block 1 : ordering dp
7→ // : names x(1) y(1) y(2) x(2)
7→ // block 2 : ordering C
7→ // noncommutative relations:
7→ // y(2)y(1)=-y(1)*y(2)
y(2)*y(1); // x(i) are commutative and y(i) anti-commute,
7→ -y(1)*y(2)
y(1)*y(1); // Observe that S have no zero-divisors yet
7→ y(1)^2
ideal Q = y(1)^2, y(2)^2; // Squares
qring A = twostd(Q);
A; // this is a graded commutative algebra with needed variables
7→ // characteristic : 0
7→ // number of vars : 4
7→ // block 1 : ordering dp
7→ // : names x(1) y(1) y(2) x(2)
7→ // block 2 : ordering C
7→ // noncommutative relations:
7→ // y(2)y(1)=-y(1)*y(2)
7→ // quotient ring from ideal
7→ _[1]=y(2)^2
7→ _[2]=y(1)^2
y(2)*y(1);
7→ -y(1)*y(2)
y(1)*y(1); // desired zero
7→ 0

Note that at the moment our Singular implementation supports only one continuous
block of “global” anti-commuting variables. For example, the graded commutative algebra
A constructed in Singular as follows – uses the general GR-algebra implementation:

ring R = 0,(y(1), z, y(2)),(dp);
matrix C[3][3] = 1,1,-1, 0,1,1, 0,0,1;
print(C);

6.1. HIGH LEVEL INTERFACE - USERS MANUAL 87

7→ 1,1,-1,
7→ 0,1,1,
7→ 0,0,1
def S = nc_algebra(C,0); setring S; S; // z is commutative
7→ // characteristic : 0
7→ // number of vars : 3
7→ // block 1 : ordering dp
7→ // : names y(1) z y(2)
7→ // block 2 : ordering C
7→ // noncommutative relations:
7→ // y(2)y(1)=-y(1)*y(2)
y(2)*y(1); // y(i) anti-commute
7→ -y(1)*y(2)
y(1)*y(1);
7→ y(1)^2
// Thus S is the correct anti-commutative algebra
ideal Q = y(1)^2, y(2)^2; // Squares
qring A = twostd(Q);
A;
7→ // characteristic : 0
7→ // number of vars : 3
7→ // block 1 : ordering dp
7→ // : names y(1) z y(2)
7→ // block 2 : ordering C
7→ // noncommutative relations:
7→ // y(2)y(1)=-y(1)*y(2)
7→ // quotient ring from ideal
7→ _[1]=y(2)^2
7→ _[2]=y(1)^2
y(2)*y(1);
7→ -y(1)*y(2)
y(1)*y(1); // not a zero, but:
7→ y(1)^2
NF(y(1)*y(1), std(0)); // zero in the quotient algebra
7→ 0

Given a commutative polynomial ring r, a super-commutative structure on it can be intro-
duced using the Singular’ procedure superCommutative from library nctools.lib
(cf. [88]).

For example, the following quotient algebra of a graded commutative algebra:

(Q[a, b]⊗Q ∧(x, y, z)⊗Q Q[Q,W]) /〈a⊗ 1⊗W + b⊗ x⊗Q+ 1⊗ z ⊗ 1〉

will be constructed in the following Singular code:

LIB "nctools.lib";
ring r = 0,(a, b, x,y,z, Q, W),(lp(2), dp(3), Dp(2));
// Let us make variables x = var(3), ..., z = var(5) to be anti-commutative
// and add additionally a quotient ideal:

88 CHAPTER 6. GRADED COMMUTATIVE ALGEBRAS IN SINGULAR

def A = superCommutative(3, 5, ideal(a*W + b*Q*x + z)); setring A; A;
7→ // characteristic : 0
7→ // number of vars : 7
7→ // block 1 : ordering lp
7→ // : names a b
7→ // block 2 : ordering dp
7→ // : names x y z
7→ // block 3 : ordering Dp
7→ // : names Q W
7→ // block 4 : ordering C
7→ // noncommutative relations:
7→ // yx=-xy
7→ // zx=-xz
7→ // zy=-yz
7→ // quotient ring from ideal
7→ _[1]=z2
7→ _[2]=xz
7→ _[3]=y2
7→ _[4]=x2
7→ _[5]=bxyQ-yz
7→ _[6]=aW+bxQ+z

Note that unlike other non-commutative algebras, only non-commuting variables are re-
quired to be global (bigger than 1). In particular, commutative variables are allowed to be
local, which means that one can deal with tensor products of any commutative rings with
exterior algebras as described in Chapter 4. In the following Singular example it would
be the following tensor product:

Q[a, b]〈b〉 ⊗Q ∧(x, y, z)⊗Q Q[Q,W]〈Q,W 〉.

LIB "nctools.lib";
ring r = 0,(a, b, x,y,z, Q, W),(dp(1), ds(1), lp(3), ds(2));
def A = superCommutative(3, 5); setring A; A;
7→ // characteristic : 0
7→ // number of vars : 7
7→ // block 1 : ordering dp
7→ // : names a
7→ // block 2 : ordering ds
7→ // : names b
7→ // block 3 : ordering lp
7→ // : names x y z
7→ // block 4 : ordering ds
7→ // : names Q W
7→ // block 5 : ordering C
7→ // noncommutative relations:
7→ // yx=-xy
7→ // zx=-xz
7→ // zy=-yz

6.1. HIGH LEVEL INTERFACE - USERS MANUAL 89

For user’s convenience we also provide several graded commutative/super-commutative
algebra-related procedures and functions in library nctools.lib (cf. [88]). Let us give
detailed help and examples for them (cf. also Singular Users Manual at [118]):

superCommutative

Usage:
superCommutative([b,[e, [Q]]]);

Return:
qring

Purpose:
create a super-commutative algebra (as a GR-algebra) over a basering,

Note:
activate this qring with the "setring" command.

Note:
if b==e then the resulting ring is commutative.
By default, b=1, e=nvars(basering), Q=0.

Theory:
given a basering, this procedure introduces the anti-commutative relations
var(j)var(i)=-var(i)var(j) for all e>=j>i>=b and creates the quotient
of the anti-commutative algebra modulo the two-sided ideal, generated by
x(b)^2, ..., x(e)^2[+ Q]

Display:
If printlevel > 1, warning debug messages will be printed

Example:

LIB "nctools.lib";
ring R = 0,(x(1..4)),dp; // global!
def ER = superCommutative(); // the same as Exterior (b = 1, e = N)
setring ER; ER;
7→ // characteristic : 0
7→ // number of vars : 4
7→ // block 1 : ordering dp
7→ // : names x(1) x(2) x(3) x(4)
7→ // block 2 : ordering C
7→ // noncommutative relations:
7→ // x(2)x(1)=-x(1)*x(2)
7→ // x(3)x(1)=-x(1)*x(3)
7→ // x(4)x(1)=-x(1)*x(4)

90 CHAPTER 6. GRADED COMMUTATIVE ALGEBRAS IN SINGULAR

7→ // x(3)x(2)=-x(2)*x(3)
7→ // x(4)x(2)=-x(2)*x(4)
7→ // x(4)x(3)=-x(3)*x(4)
7→ // quotient ring from ideal
7→ _[1]=x(4)^2
7→ _[2]=x(3)^2
7→ _[3]=x(2)^2
7→ _[4]=x(1)^2
"Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "].";
7→ Alternating variables: [1 , 4].
kill R; kill ER;
ring R = 0,(x(1..4)),(lp(1), dp(3)); // global!
def ER = superCommutative(2); // b = 2, e = N
setring ER; ER;
7→ // characteristic : 0
7→ // number of vars : 4
7→ // block 1 : ordering lp
7→ // : names x(1)
7→ // block 2 : ordering dp
7→ // : names x(2) x(3) x(4)
7→ // block 3 : ordering C
7→ // noncommutative relations:
7→ // x(3)x(2)=-x(2)*x(3)
7→ // x(4)x(2)=-x(2)*x(4)
7→ // x(4)x(3)=-x(3)*x(4)
7→ // quotient ring from ideal
7→ _[1]=x(4)^2
7→ _[2]=x(3)^2
7→ _[3]=x(2)^2
"Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "].";
7→ Alternating variables: [2 , 4].
kill R; kill ER;
ring R = 0,(x, y, z),(ds(1), dp(2)); // mixed!
def ER = superCommutative(2,3); // b = 2, e = 3
setring ER; ER;
7→ // characteristic : 0
7→ // number of vars : 3
7→ // block 1 : ordering ds
7→ // : names x
7→ // block 2 : ordering dp
7→ // : names y z
7→ // block 3 : ordering C
7→ // noncommutative relations:
7→ // zy=-yz
7→ // quotient ring from ideal
7→ _[1]=y2
7→ _[2]=z2
"Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "].";
7→ Alternating variables: [2 , 3].
x + 1 + z + y; // ordering on variables: y > z > 1 > x
7→ y+z+1+x

6.1. HIGH LEVEL INTERFACE - USERS MANUAL 91

std(x - x*x*x);
7→ _[1]=x
std(ideal(x - x*x*x, x*x*z + y, z + y*x*x));
7→ _[1]=y+x2z
7→ _[2]=z+x2y
7→ _[3]=x
kill R; kill ER;
ring R = 0,(x, y, z),(ds(1), dp(2)); // mixed!
def ER = superCommutative(2, 3, ideal(x - x*x, x*x*z + y, z + y*x*x)); // b = 2, e = 3
setring ER; ER;
7→ // characteristic : 0
7→ // number of vars : 3
7→ // block 1 : ordering ds
7→ // : names x
7→ // block 2 : ordering dp
7→ // : names y z
7→ // block 3 : ordering C
7→ // noncommutative relations:
7→ // zy=-yz
7→ // quotient ring from ideal
7→ _[1]=y+x2z
7→ _[2]=z+x2y
7→ _[3]=x
7→ _[4]=y2
7→ _[5]=z2
"Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "].";
7→ Alternating variables: [2 , 3].

IsSCA

Usage:
IsSCA();

Return:
int

Purpose:
returns 1 if basering is a super-commutative algebra and 0 otherwise

Example:

LIB "nctools.lib";
///
ring R = 0,(x(1..4)),dp; // commutative
if(IsSCA())
{ "Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; }
else
{ "Not a super-commutative algebra!!!"; }

92 CHAPTER 6. GRADED COMMUTATIVE ALGEBRAS IN SINGULAR

7→ Not a super-commutative algebra!!!
kill R;
///
ring R = 0,(x(1..4)),dp;
def S = nc_algebra(1, 0); setring S; S; // still commutative!
7→ // characteristic : 0
7→ // number of vars : 4
7→ // block 1 : ordering dp
7→ // : names x(1) x(2) x(3) x(4)
7→ // block 2 : ordering C
7→ // noncommutative relations:
if(IsSCA())
{ "Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; }
else
{ "Not a super-commutative algebra!!!"; }
7→ Not a super-commutative algebra!!!
kill R, S;
///
ring R = 0,(x(1..4)),dp;
matrix E = UpOneMatrix(nvars(R));
int i, j; int b = 2; int e = 3;
for (i = b; i < e; i++)
{

for (j = i+1; j <= e; j++)
{

E[i, j] = -1;
}

}
def S = nc_algebra(E,0); setring S; S;
7→ // characteristic : 0
7→ // number of vars : 4
7→ // block 1 : ordering dp
7→ // : names x(1) x(2) x(3) x(4)
7→ // block 2 : ordering C
7→ // noncommutative relations:
7→ // x(3)x(2)=-x(2)*x(3)
if(IsSCA())
{ "Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; }
else
{ "Not a super-commutative algebra!!!"; }
7→ Not a super-commutative algebra!!!
kill R, S;
///
ring R = 0,(x(1..4)),dp;
def ER = superCommutative(2); // (b = 2, e = N)
setring ER; ER;
7→ // characteristic : 0
7→ // number of vars : 4
7→ // block 1 : ordering dp
7→ // : names x(1) x(2) x(3) x(4)
7→ // block 2 : ordering C

6.1. HIGH LEVEL INTERFACE - USERS MANUAL 93

7→ // noncommutative relations:
7→ // x(3)x(2)=-x(2)*x(3)
7→ // x(4)x(2)=-x(2)*x(4)
7→ // x(4)x(3)=-x(3)*x(4)
7→ // quotient ring from ideal
7→ _[1]=x(4)^2
7→ _[2]=x(3)^2
7→ _[3]=x(2)^2
if(IsSCA())
{ "This is a SCA! Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "]."; }
7→ This is a SCA! Alternating variables: [2 , 4].

AltVarStart

Usage:
AltVarStart();

Return:
int

Purpose:
returns the number of the first alternating variable of basering

Note:
basering should be a super-commutative algebra constructed by
the procedure superCommutative, emits an error otherwise

Example:

LIB "nctools.lib";
ring R = 0,(x(1..4)),dp; // global!
"Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "].";
7→ ? SCA rings are factors by (at least) squares!
7→ ? leaving nctools.lib::AltVarStart
def ER = superCommutative(2); // (b = 2, e = N)
setring ER; ER;
7→ // characteristic : 0
7→ // number of vars : 4
7→ // block 1 : ordering dp
7→ // : names x(1) x(2) x(3) x(4)
7→ // block 2 : ordering C
7→ // noncommutative relations:
7→ // x(3)x(2)=-x(2)*x(3)
7→ // x(4)x(2)=-x(2)*x(4)
7→ // x(4)x(3)=-x(3)*x(4)
7→ // quotient ring from ideal
7→ _[1]=x(4)^2

94 CHAPTER 6. GRADED COMMUTATIVE ALGEBRAS IN SINGULAR

7→ _[2]=x(3)^2
7→ _[3]=x(2)^2
"Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "].";
7→ Alternating variables: [2 , 4].
setring R;

AltVarEnd

Usage:
AltVarStart();

Return:
int

Purpose:
returns the number of the last alternating variable of basering

Note:
basering should be a super-commutative algebra constructed by
the procedure superCommutative, emits an error otherwise

Example:

LIB "nctools.lib";
ring R = 0,(x(1..4)),dp; // global!
"Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "].";
7→ ? SCA rings are factors by (at least) squares!
7→ ? leaving nctools.lib::AltVarStart
def ER = superCommutative(2); // (b = 2, e = N)
setring ER; ER;
7→ // characteristic : 0
7→ // number of vars : 4
7→ // block 1 : ordering dp
7→ // : names x(1) x(2) x(3) x(4)
7→ // block 2 : ordering C
7→ // noncommutative relations:
7→ // x(3)x(2)=-x(2)*x(3)
7→ // x(4)x(2)=-x(2)*x(4)
7→ // x(4)x(3)=-x(3)*x(4)
7→ // quotient ring from ideal
7→ _[1]=x(4)^2
7→ _[2]=x(3)^2
7→ _[3]=x(2)^2
"Alternating variables: [", AltVarStart(), ",", AltVarEnd(), "].";
7→ Alternating variables: [2 , 4].

6.2. PRODUCT OF MONOMIALS IN GRADED COMMUTATIVE ALGEBRAS 95

6.2 Product of monomials in graded commutative alge-
bras

The formula for computing the sign change in a antic-commutative algebra is very simple:

(ξα1
1 · · · ξαmm) ∗ (ξβ11 · · · ξβmm) = (−1)σξα1+β1

1 · · · ξαm+βm
m ,

where σ =
∑m−1

i=1

∑m
j=i+1 βiαj (mod 2). Observe that since squares are zeroes in a graded

commutative algebra the product is nonzero only if all sums αi + βi are smaller than 2.

The following Singular-kernel C/C++ procedure shows how to compute σ in one go:
/// re turns the s i gn (+1/−1) o f lm(pMonomA) ∗ lm(pMonomB)
/// re turns 0 i f the product i s zero
/// p r e s e r v e s input po lynomia l s
int sca_Sign_mm_Mult_mm(poly pMonomA, poly pMonomB, r ing rRing)
{

unsigned int sigma = 0 ; // r e s u l t i n g power o f −1
unsigned int alphasum = 0 ; // in t e rmed ia t e power
// proces s both exponents in one go :
int j = scaLastAltVar (rRing) ;
while (j != scaF i r s tAl tVar (rRing))
{

// ge t j−th exponents o f both l e ad in g monomials :
unsigned int iA = p_GetExp(pMonomA, j , rRing) ; // A’ s ,
unsigned int iB = p_GetExp(pMonomB, j , rRing) ; // B ’ s

i f (iB != 0)
{

i f (iA != 0) // same ant i−comm. var in both exponents ?
return (0) ;

sigma ^= alphasum ; // sigma += iB ∗ alphasum (mod 2)
}

alphasum ^= iA ; // alphasum += iA (mod 2)
j = j − 1 ;

}
return (1 − 2∗ sigma) ; // 1 i s odd => −1, 0 i s even => 1

}

Due to the simplicity of computing a product of monomials (see above) there is no need in
any caching, which is always done by the general non-commutative implementation from
Singular:Plural.

96 CHAPTER 6. GRADED COMMUTATIVE ALGEBRAS IN SINGULAR

6.3 Detection of a graded commutative structure

Conceptually, graded commutative algebras are introduced and defined in Singular as
factors of anti-commutative algebras by two-sided ideals containing squares of all anti-
commuting variables, i.e. as GR-algebras.

Remark 6.3.1. Due to performance penalty we will not consider commutative algebras to
be graded commutative. Therefore our implementation awaits at least two anti-commuting
variables.

Therefore we first need to find all variables which anti-commute and verify that all other
variables are commutative. Next in order to check the factor ideal we simply verify that
squares of all anti-commuting variables reduce to zero module factor ideal, which is given
by a two-sided GB.

The first check means that the upper triangular matrix C from the definition of GR-
algebras has only ±1, and Ci,j = −1 iff both i-th and j-th variables are anti-commuting.
That is we can reorder variables so that C have the following block form:

A 1

B
,

where A and B are square upper uni-triangular matrices (entries on the main diagonal are
1) with the entries above the main diagonal being all −1 for A and respectively all 1 for
B.

Therefore our detection procedure goes as follows:

1. find topmost row in C containing at least one entry of −1,
2. find all such entries in that row, let us say they have indices i1, . . . , ik,
3. verify that all corresponding variables anti-commute, that is, Ci,j = −1 for all j, i ∈
{i1, . . . , ik} : j > i,

4. all other entries in C must be 1,
5. check whether squares of found anti-commuting variables are contained in the quo-

tient ideal.

6.4 A bit about Singular internals

Let us give a brief glance over the Singular internal structure1. The following diagram
shows some of its main “components” as well as our non-commutative subsystems: Singu-
lar – interpreter shell, kernel – mathematical kernel, Plural – non-commutative kernel

1 Some more documentation is available online at http://www.mathematik.uni-kl.de/ftp/pub/
Math/Singular/doc/, in Section 6.5

http://www.mathematik.uni-kl.de/ftp/pub/Math/Singular/doc/
http://www.mathematik.uni-kl.de/ftp/pub/Math/Singular/doc/

6.5. IMPLEMENTING AN INDUCED ORDERING AFTER SCHREYER 97

extension, SCA – subsystem of Singular:Plural which deals with graded commutative
algebras.

CAS Singular

Singular
kernel

Plural SCA
/o/o/o/o/o/o/o/o/o/o/o/o

A newbie wanting to program (or even read and understand) Singular kernel faces the
problem that there is no really strict decomposition into separated and independent com-
ponents. Moreover, some functions rely on the knowledge about implementations, data
structures and even implicitly assumed assumptions. That is from computer science point
of view the CAS Singular has high coupling and weak cohesion with all the consequences.
For instance the above diagram shows that Singular and kernel are not independent,
e.g. portions of kernel functionality are inserted directly into the interpreter but the non-
commutative kernel extension Plural is completely separated from the interpreter and has
clear a interface with the kernel. In turn Plural has a transparent interface for special
non-commutative extensions, e.g. SCA.

The main object in Singular is ring. It defines the structure of data objects called poly.

A poly corresponds to a vector (resp. polynomial) in a module (resp. ideal) over the
commutative or non-commutative polynomial or quotient algebras over a field or number
ring, described by corresponding ring. Internally (cf. Section 6.5 and references thereof)
a poly is a sorted one-directional list of terms, whereas every terms contains a coefficient
c, pointer to the next terms and (embedded) exponent array, which encodes an exponent
α and module component i of some module term: cxαεi.

While non-commutative algebras require more information than commutative ones, their
elements such as (commutative and non-commutative) polynomials and vectors are inter-
nally the same.

Each object of type ring has a table of function pointers (e.g. virtual methods) for
overloading basic arithmetic operations with vectors (i.e. poly) and coefficients.

For the non-commutative case we have extended the set of basic operation as well as some
higher level operation (S-polynomial, GB-computation).

6.5 Implementing an induced ordering after Schreyer

The existing Singular algorithms for the computation of Schreyer resolution (sres re-
quires a GB) and La Scala resolution (lres can start with homogeneous ideals only) work

98 CHAPTER 6. GRADED COMMUTATIVE ALGEBRAS IN SINGULAR

over commutative polynomial algebras only. Moreover they simulate the Schreyer ordering
by working directly with induced products of monomials needed to compare module terms
with respect to Schreyer ordering. This results in a lot of transformations whenever the
actual leading monomials are needed, which makes reductions especially expensive.

Recently there appeared some new promising improvements (cf. [47, 20] etc.) for the
computation of GBs, which deal with some kind of syzygies, typically making use of the
Schreyer ordering. In order to be able to test and compare them in Singular and imple-
ment our syzygy-driven algorithms proposed in Chapter 5, we need the Schreyer ordering
(due to Section 5.3), which would be accessible from the interpreter script language and
be transparent for the users.

In order to achieve high performance in GB-related computations Singular has a very
sophisticated mechanism for constructing monomials. The key design idea is the following:
monomial ordering defines the low-level structure of monomial exponents (cf. [8], online
documents available at http://www.mathematik.uni-kl.de/ftp/pub/Math/Singular/doc/
and http://convex-singular.googlecode.com/files/singular.pdf).

That is why any new monomial ordering has to be implemented deep in the Singular
kernel.

Note that Singular stores exponent as vectors of integers, which are interpreted via a set
of rules, as described by the corresponding ring (cf [8]).

The main design requirement is that exponent arrays must be additive, i.e. multiplication
with a monomial amounts to summing up exponents, without any additional computations.
Let’s inspect the structure of a monomial in P = Q [x, y, z] with respect to <degrevlex,C>
on a 64-bit Linux PC:

ring P = (0), (x, y, z), (dp, C); // define the ring P
system("DetailedPrint", P); // print details about P
7→ // characteristic : 0
7→ // number of vars : 3
7→ // block 1 : ordering dp
7→ // : names x y z
7→ // block 2 : ordering C
7→ ExpL_Size:3 CmpL_Size:3 VarL_Size:1
7→ bitmask=0xfffff (expbound=1048575)
7→ BitsPerExp=20 ExpPerLong=3 MinExpPerLong=3 at L[1]
7→ varoffset:
7→ v0 at e-pos 2, bit 0
7→ v1 at e-pos 1, bit 0
7→ v2 at e-pos 1, bit 20
7→ v3 at e-pos 1, bit 40
7→ divmask=1000010000100001
7→ ordsgn:
7→ ordsgn 1 at pos 0
7→ ordsgn -1 at pos 1
7→ ordsgn 1 at pos 2
7→ OrdSgn:1

http://www.mathematik.uni-kl.de/ftp/pub/Math/Singular/doc/
http://convex-singular.googlecode.com/files/singular.pdf

6.5. IMPLEMENTING AN INDUCED ORDERING AFTER SCHREYER 99

7→ ordrec:
7→ typ ro_dp place 0 start 1 end 3
7→ pOrdIndex:0 pCompIndex:2
7→ OrdSize:1
7→ --------------------
7→ L[0]: ordsgn 1 ordrec:ro_dp (start:1, end:3) pOrdIndex
7→ L[1]: ordsgn -1 v1 at e[1], bit 0; v2 at e[1], bit 20; v3 at e[1], bit 40;
7→ L[2]: ordsgn 1 v0;
7→ [...omitted...]
system("DetailedPrint", x * gen(2));
7→ x*gen(2)
7→
7→ exp[0..2]
7→ 000000001 000000001 000000002
7→ v0: 2 v1: 1 v2: 0 v3: 0

It shows that monomial exponents have the following structure: first goes the degree next
comes a single machine integer comprising all three variable powers and at last – the module
component:

deg {−z,−y,−x} c

This packed (vectorized) structure allows Singular to compare monomials via a simple
lexicographical ordering on vectors of integers.

In our implementation of Schreyer induced orderings we model an elementary arrow
(g f) by the sum f + g living in somewhat bigger free module. Moreover we have
to ensure that all terms from g are stored at the end of the sum (e.g. a monomial from g
has to be smaller than monomials from f .

Moreover, in order to achieve this and also due to Section 5.4 we add a level marker at the
beginning of the comparable part of monomial exponent and ensure that monomials from
with smaller level are bigger.

By using such an implementation for elementary arrows we also achieve that LT (g f) =
Lt(f) as needed by our definition of an elementary arrow

Now we sketch our implementation of classical Schreyer induced orderings in Singular.
Our interface consists of two functions: MakeInducedSchreyerOrdering (which creates a
ring capable of treating Schreyer induced ordering) and SetInducedReferrence (which
activates it by setting the reference information).

def S = system("MakeInducedSchreyerOrdering"); // initialization
setring S; system("DetailedPrint", S); // print details about S
7→ // characteristic : 0
7→ // number of vars : 3
7→ // block 1 : ordering IS::prefix
7→ // block 2 : ordering dp
7→ // : names x y z

100 CHAPTER 6. GRADED COMMUTATIVE ALGEBRAS IN SINGULAR

7→ // block 3 : ordering C
7→ // block 4 : ordering IS::suffix (sign: 1)
7→ ExpL_Size:6 CmpL_Size:5 VarL_Size:1
7→ bitmask=0xfffff (expbound=1048575)
7→ BitsPerExp=20 ExpPerLong=3 MinExpPerLong=3 at L[5]
7→ varoffset:
7→ v0 at e-pos 4, bit 0
7→ v1 at e-pos 5, bit 40
7→ v2 at e-pos 5, bit 20
7→ v3 at e-pos 5, bit 0
7→ divmask=1000010000100001
7→ ordsgn:
7→ ordsgn -1 at pos 0
7→ ordsgn 1 at pos 1
7→ ordsgn -1 at pos 2
7→ ordsgn 1 at pos 3
7→ ordsgn 1 at pos 4
7→ OrdSgn:1
7→ ordrec:
7→ typ ro_isTemp start (level) 0, suffixpos: 2, VO:
7→ typ ro_dp place 1 start 1 end 3
7→ typ ro_is start 0, end: 3: limit 0
7→ F: (NULL)weights: NULL == [0,...0]
7→
7→ pOrdIndex:1 pCompIndex:4
7→ OrdSize:3
7→ --------------------
7→ L[0]: ordsgn -1 ordrec:ro_isTemp (start:0, end:2) ordrec:ro_is (start:3, end:0)
7→ L[1]: ordsgn 1 ordrec:ro_dp (start:1, end:3) pOrdIndex
7→ L[2]: ordsgn -1
7→ L[3]: ordsgn 1
7→ L[4]: ordsgn 1 v0;
7→ L[5]: no comp v1 at e[5], bit 40; v2 at e[5], bit 20; v3 at e[5], bit 0;
7→ [...omitted...]

In order to setup an induced ordering we first need a set of module terms m1, . . . ,mk

of rank at most r, with respect to which we will setup the Schreyer induced ordering as
follows:

module M = m_1, ..., m_k;
system("SetInducedReferrence", M, 2); // Setup Schreyer ordering on S wrt M

By using SetInducedReferrence iteratively we can easily construct the Schreyer frame
and perform needed setup for our free resolution algorithm (cf. Algorithm 5.4.4).

In this case induced exponents will look as follows:

−level deg′ {−z′,−y′,−x′} c′ c {x, y, z}

6.5. IMPLEMENTING AN INDUCED ORDERING AFTER SCHREYER 101

First comes the level marker needed to compare module terms coming from different levels
(free modules). Next comes the “induced” part (3 integers, primed on the above figure)
which is hidden from the user and simply allows Singular to compare induced products
(saved here verbatim as in the original ring), including the original module component
on the very first level. The last comparable entry is the actual module component (or
alternatively its negative, depending on the needed Schreyer ordering). Only these first 5
integers are to be compared. The last additional “exponent” comprises the actual variable
powers for fast look-up .

Unfortunately, this nested (memory hungry) structure is the only way to avoid repeated
expensive intermediate transformations (as implemented in sres and lres), needed for
fast computation of leading information and reductions, and allow fast comparement w.r.t.
Schreyer ordering.

This way the module component εr+i to have the same induced part as mi (and bigger
level). For instance: if M = (x · ε2) then x · ε2 and ε2 have the following internal represen-
tations :

module M = x * gen(2);
system("SetInducedReferrence", M, 2); // Setup Schreyer ordering on S wrt M
system("DetailedPrint", S); // S has been changed
7→ // characteristic : 0
7→ // number of vars : 3
7→ // block 1 : ordering IS::prefix
7→ // block 2 : ordering dp
7→ // : names x y z
7→ // block 3 : ordering C
7→ // block 4 : ordering IS::suffix (sign: 1)
7→ ExpL_Size:6 CmpL_Size:5 VarL_Size:1
7→ bitmask=0xfffff (expbound=1048575)
7→ BitsPerExp=20 ExpPerLong=3 MinExpPerLong=3 at L[5]
7→ varoffset:
7→ v0 at e-pos 4, bit 0
7→ v1 at e-pos 5, bit 40
7→ v2 at e-pos 5, bit 20
7→ v3 at e-pos 5, bit 0
7→ divmask=1000010000100001
7→ ordsgn:
7→ ordsgn -1 at pos 0
7→ ordsgn 1 at pos 1
7→ ordsgn -1 at pos 2
7→ ordsgn 1 at pos 3
7→ ordsgn 1 at pos 4
7→ OrdSgn:1
7→ ordrec:
7→ typ ro_isTemp start (level) 0, suffixpos: 2, VO:
7→ typ ro_dp place 1 start 1 end 3
7→ typ ro_is start 0, end: 3: limit 2
7→ F: Module of rank 2,real rank 2 and 1 generators.
7→ generator 0: x*gen(2)

102 CHAPTER 6. GRADED COMMUTATIVE ALGEBRAS IN SINGULAR

7→
7→ exp[0..5]
7→ 000000001 000000001 000000010 000000002 000000002 10000000000
7→ v0: 2 v1: 1 v2: 0 v3: 0
7→ weights: NULL == [0,...0]
7→
7→ pOrdIndex:1 pCompIndex:4
7→ OrdSize:3
7→ --------------------
7→ L[0]: ordsgn -1 ordrec:ro_isTemp (start:0, end:2) ordrec:ro_is (start:3, end:0)
7→ L[1]: ordsgn 1 ordrec:ro_dp (start:1, end:3) pOrdIndex
7→ L[2]: ordsgn -1
7→ L[3]: ordsgn 1
7→ L[4]: ordsgn 1 v0;
7→ L[5]: no comp v1 at e[5], bit 40; v2 at e[5], bit 20; v3 at e[5], bit 0;
7→ [...omitted...]
system("DetailedPrint", gen(3) + x*gen(2)); // print details about it
7→ x*gen(2)+gen(3)
7→
7→ exp[0..5]
7→ 000000001 000000001 000000010 000000002 000000002 10000000000
7→ v0: 2 v1: 1 v2: 0 v3: 0
7→
7→ exp[0..5]
7→ 000000002 000000001 000000010 000000002 000000003 000000000
7→ v0: 3 v1: 0 v2: 0 v3: 0

Chapter 7

Applications

In this chapter we illustrate some applications of the developed framework in Projective
Geometry, Affine Geometry and Physics.

7.1 Projective Geometry

This section is devoted to the computation of sheaf cohomology of coherent sheaves over a
projective variety. Please refer to the classical texts [73, 115] and [57] for basic definitions.
An excellent introduction to computational methods was given by M. Stillman at the
Arizona Winter School in Tucson, March 2006, (notes [122] and videos are available online
at http://math.arizona.edu/~swc/aws/06/06Notes.html). Another short overview can be
found in [30].
Traditional methods for computing with sheaves and sheaf cohomology (shortly described
in Section 7.1.1) can be found in [115], [126] and [119].
The exterior algebra method for computing sheaf cohomology (described in Section 7.1.2)
relies on a constructive version of BGG correspondence given in [36] and [29]. Note that the
BGG correspondence (cf. [15, 11]) is a particular case of Koszul duality (cf. [53, 52, 12]).
The implementation of this method by W. Decker, D. Eisenbud and F.-O. Schreyer as
package BGG (cf. [29]) in M2 (cf. [61, 126]) was the fastest known up until now.
Generalization of this method allows one to compute higher direct images of sheaves (cf.
[39]). Apart from constructing Beilinson Monad and Horrocks-Mumford bundle, this ap-
proach has been used for plenty interesting theoretical applications, e.g. compution of
resultants and Chow forms (cf. [35, 42]), cohomologies of hyperplane arrangement (cf.
[38]), and others (e.g. [43]).
This method and most of its applications, for example the investigation of the Minimal
Resolution Conjecture (cf. [37]), require complicated computations. Therefore, it is im-
portant to have a robust (practically efficient) Computer Algebra framework, which would
support this method and further experimental research (e.g. due to [40] and [41]).

103

http://math.arizona.edu/~swc/aws/06/06Notes.html

104 CHAPTER 7. APPLICATIONS

7.1.1 Introduction to sheaf cohomology

?

Let S := k[x0, . . . , xn] denote a homogeneous coordinate ring of Pn over a field k (not
necessarily algebraically closed) and (Z-)graded by putting deg xi = 1. Let I be a homo-
geneous ideal in S, X = V(I) ⊂ Pn a projective variety with (homogeneous) coordinate
ring R = S/I.

Sheaves on X organize local data on X. For our “chosen” definition of a coherent sheaf on
Pn see Remark 7.1.8.

We denote O(i) := OX(i) – the twisted invertible sheaves of Serre on X (in particular,
O = OX(0) is the structure sheaf) and F(i) := F ⊗O O(i) – the i-th twist of a coherent
sheaf F on X.

Cohomology functors Hj(X,−) may be defined as right derived functors of the global
sections functor: H0(X,−) = Γ(X,−) similary to the functors Exti(M,−) being the right
derived of Hom(M,−) or the higher direct image functors Riπ∗ being the right derived
functor of π∗ for a morphism of schemes X π−→ Y .

Let us denote and the j-th cohomology group of F(i) by HjF(i) := Hj(X,F(i)). Given a
coherent sheaf F on X, computing its cohomology means computing one of the following:

• one of the dimensions hjF(i) := dimk HjF(i).
• these dimensions in a certain range of twists.
• the graded R-modules (called cohomology modules)

Hj
∗F := Hj

∗(X,F) :=
⊕
i∈Z

HjF(i)

measure how complicated the sheaf F is.
• the truncation of Hj

∗F at degree d ∈ Z:

Hj
>d(X,F) :=

⊕
i>d

HjF(i)

Remark 7.1.1. We shall usually display cohomology dimensions in the form of the following
cohomology table :

hnF(l) hnF(l + 1) . . . hnF(h)
...

...

h0F(l) h0F(l + 1) . . . h0F(h)

,

for two given bounds l, h ∈ Z such that l 6 h.

Note that the we will only consider the projective case since affine case is not interesting
due to the following remark:

7.1. PROJECTIVE GEOMETRY 105

Remark 7.1.2 (Chapter III, Theorem 3.5, Remark 3.5.1 in [73]). Let X = SpecA be an
affine variety, where A is a commutative ring, then for any quasi-coherent sheaves F on
X, and all j > 0: Hj(X,F) = 0.

An axiomatic approach (e.g. due to Čech) defines sheaf cohomology using long exact
sequences and its values on specific sheaves: let in our setting {Ui | 0 6 i 6 k} be an open
affine cover of X, the standard one is defined by the affine open sets Ui = X \V(xi) ⊂ Pn
in X (in particular k = n). Now let for λ = {λ0, . . . , λp} ⊂ {0, . . . , k} : |λ| := p, Uλ :=⋂p
i=0 Uλi .

Definition 7.1.3 (Čech complex). For any p ∈ {0, . . . , k} let Cp(F) :=
⊕
|λ|=pF(Uλ)

and the natural map σp : Cp(F) → Cp+1(F) : fi0,...,ip 7→ gj0,...,jp+1 , where gj0,...,jp+1 :=∑p+1
i=0 (−1)ifj0,...,ĵi,...jp+1

, and ĵi means that this index is omitted.

The Čech complex of F is the complex (of infinite dimensional vector spaces over k):

0→ C0(F)
σ0−→ C1(F)

σ1−→ · · · → Ck(F)→ 0 (7.1)

Let now Hj(F) = Hj(X,F) be the j-th cohomology of the Čech complex (7.1). Choosing
another affine open cover will yield isomorphic cohomology groups.

Any sheaf F defined on a projective subvariety or subscheme X ⊂ Pn with the use of the
inclusion map i : X → Pn can be thought of as a sheaf i∗F on Pn which coincides with F on
X and is the 0-sheaf outside ofX, and has the same cohomologies: Hj(X,F) ∼= Hj(Pn, i∗F).

Proposition 7.1.4 (Cohomology properties due to [115]). Let F be a coherent sheaf on
Pn. Then

• There exists d0 such that F(d) is generated by finitely many global sections for all
d > d0.

• For all 0 6 j 6 n: Hj(F) is a finite dimensional vector space over k,
• Hj(F) = 0 for all j > d, where d := dim suppF .
• Hj(F(d)) = 0 for all j > 0 and d� 0.
• Let

0→ F ′ → F → F ′′ → 0

be a short exact sequence of coherent sheaves on Pn. Then there exist connecting
homomorphisms δj : Hj(F ′′) → Hj+1(F ′) such that the following long sequence is
exact:

0→ H0(F ′)→ H0(F)→ H0(F ′′) δ0−→ H1(F ′)→ H1(F)→ · · ·

Example 7.1.5 (cf. [115]). Let S = k[x0, . . . , xn], d ∈ Z then it follows from the above:

H0(Pn,OPn(d)) = Sd,H
i(Pn,OPn(d)) = 0,Hn(Pn,OPn(d)) = S∗−n−1−d,

106 CHAPTER 7. APPLICATIONS

where 0 < i < n and the star (∗) denotes the k-vector space dual.

For example computations see the Singular procedures sheafCoh and sheafCohBGG,
described in this and the next sections.

We shall use Serre’s sheafification functor M 7→ M̃ (cf. [115]) in order to represent a
coherent sheaf F on Pn by a (Z-)graded S-module M , which is either finitely generated
itself, or “eventually finitely generated”, i.e. some truncation M>d is finitely generated.
Moreover we identify two modules N and N ′ iff there exists r: N>r ∼= N ′>r since they
correspond to isomorphic coherent sheaves on Pn.
Remark 7.1.6 (Construction of M̃). Let M be a graded S-module, which is eventually
finitely generated, we associate to it the coherent sheaf of OPn-modules on Pn denoted by
M̃ , defined (due to Ex. II.1.23 in [73]) by gluing the sheaves:

M̃(Ui) :=
(
M ⊗S S

[
x−1
i

])
0
,

via the maps(
M̃ |Ui

)
Ui∩Uj

=
(
M ⊗S S

[
x−1
i

]
⊗S S

[
x−1
j

])
0
→
(
M ⊗S S

[
x−1
j

]
⊗S S

[
x−1
i

])
0

=
(
M̃ |Uj

)
Ui∩Uj

:

m⊗ f ⊗ g 7→ m⊗ g ⊗ f,

where the 0 subindex denotes the subset of all elements of degree 0 and {Ui | 0 6 i 6 n}
is the standard open affine cover of Pn, with affine intersections.

Note that M̃(Ui) is a finitely generated O(Ui)-module due to our assumptions on M .

Remark 7.1.7. Similary we could have defined a sheaf M̃ on X, for X = V(I) ⊂ Pn and a
finitely generated graded S/I-module M .

Moreover there is also a dual functor which maps a coherent OPn module F to an eventually
finitely generated graded S-module H0

∗(Pn,F) =
⊕

d∈Z H0(Pn,F(d)), which is also a graded
S/I-module if F is the extension by zero of a sheaf on X = VI ⊂ Pn.
The above constructions have the following properties:

1. S̃(d) = OPn(d), in particular, S̃ = OPn .
2. M̃(d) = M̃(d)

3. If I is an ideal in S defining subvariety X ⊂ Pn then Ĩ = JX (the ideal sheaf on Pn,
i.e. local equations of X). In particular, if R = S/I then OX(d) = R̃(d).
If moreover D ⊂ X is a subvariety of comdim. 1 with ideal J ⊂ S/I then OX(−D) =

J̃ .
4. Let X ⊂ Pn defined by ideal I ⊂ S then the normal bundle (sheaf) NX/Pn =

˜HomS(I, S/I).
5. If M is an eventually finitely generated graded S-module such that Md = 0 for all
d� 0, then M̃ = 0.

7.1. PROJECTIVE GEOMETRY 107

6. Every coherent OPn-module is isomorphic to M̃ , for some finitely generated graded
S-module M .

7. For every coherent O-module F holds ˜H0
∗(Pn,F) = F .

8. If M is a graded S-module, then the natural map M → H0
∗M̃

9. The operation M 7→ M̃ is an exact functor from the category of eventually finitely
generated graded S-modules to the category of coherent OPn-modules (denoted by
CohPn)

10. The functors (̃−) and H0
∗(−) provide an equivalence of categories between CohPn and

the category of eventually finitely generated S-modules, but the functor H0
∗(−) is not

exact.

Remark 7.1.8. For our needs Part 6 of Remark 7.1.6 can be used as a definition of a
coherent sheaf on Pn.

From now on, we denote O(i) := OPn(i) the line bundles on Pn (in particular, O = O(0) is
the structure sheaf), a coherent sheaf F = M̃ on Pn, for some finitely generated graded S-
moduleM . The i-th twist of F is denoted by F(i) := F⊗OO(i), and the j-th cohomology
group of F by HjF = Hj(Pn,F). Then

Hj
∗F :=

⊕
i∈Z

HjF(i)

is a graded S-module.
Remark 7.1.9. Following [126, Chapter 8] one can compute sheaf cohomology due to the
local duality :

• For all j > 1:
Hj
∗M̃
∼= Extn−jS (M,S(−n− 1))∨,

• And the following exact sequence in the case j = 0:

0→ Extn+1
S (M,S(−n− 1))∨ →M → H0

∗M̃ → ExtnS(M,S(−n− 1))∨ → 0,

where the graded vector space dual
(⊕

i∈Z Mi

)∨
=
⊕

i∈Z Homk(M−i,k). is endowed
with its natural structure as a graded S-module.

It follows that
hjM̃(d) = dimk Extn−jS (M,S)−n−1−d,

and the dimension of the space of global sections of M̃(d):

h0M̃(d) = dimkMd + dimk ExtnS(M,S)−n−1−d − dimk Extn+1
S (M,S)−n−1−d.

The method for computing sheaf cohomology relies, because of the above local duality
isomorphisms, on computing free resolutions over S for computing Ext. This method has
been implemented in Singular (cf. command sheafCoh from sheafcoh.lib).

108 CHAPTER 7. APPLICATIONS

sheafCoh

Usage:
sheafCoh(M,l,h); M module, l,h int

Assume:
M is graded, and it comes assigned with an admissible degree vector as an attribute,
h>=l. The basering S has n+1 variables.

Return:
intmat, cohomology of twists of the coherent sheaf F on P^n associated to coker(M).
The range of twists is determined by l, h.

Display:
The intmat is displayed in a diagram of the following form:

l l+1 h
————————————————————————————–————————————————————————————–

n: h^n(F(l)) h^n(F(l+1)) h^n(F(h))
...

1: h^1(F(l)) h^1(F(l+1)) h^1(F(h))
0: h^0(F(l)) h^0(F(l+1)) h^0(F(h))

————————————————————————————–————————————————————————————–
chi: chi(F(l)) chi(F(l+1)) chi(F(h))

A ’-’ in the diagram refers to a zero entry.

Note:
The procedure is based on local duality as described in [Eisenbud: Computing coho-
mology. In Vasconcelos: Computational methods in commutative algebra and alge-
braic geometry. Springer (1998)].
By default, the procedure uses mres to compute the Ext modules. If called with the
additional parameter "sres", the sres command is used instead.

Example:

LIB "sheafcoh.lib";
//
// cohomology of structure sheaf on P^4:
//
ring r=0,x(1..5),dp;
module M=0; // Corresponds to the structure sheaf on Proj(r)=P^4
def A=sheafCoh(M,-7,2);

7.1. PROJECTIVE GEOMETRY 109

7→ -7 -6 -5 -4 -3 -2 -1 0 1 2
7→ --
7→ 4: 15 5 1 - - - - - - -
7→ 3: - - - - - - - - - -
7→ 2: - - - - - - - - - -
7→ 1: - - - - - - - - - -
7→ 0: - - - - - - - 1 5 15
7→ --
7→ chi: 15 5 1 0 0 0 0 1 5 15
//
// cohomology of cotangential bundle on P^3:
//
ring R=0,(x,y,z,u),dp;
resolution T1=mres(maxideal(1),0);
module M=T1[3];
intvec v=2,2,2,2,2,2;
attrib(M,"isHomog",v);
def B=sheafCoh(M,-6,2);
7→ -6 -5 -4 -3 -2 -1 0 1 2
7→ --
7→ 3: 70 36 15 4 - - - - -
7→ 2: - - - - - - - - -
7→ 1: - - - - - - 1 - -
7→ 0: - - - - - - - - 6
7→ --
7→ chi: -70 -36 -15 -4 0 0 -1 0 6

7.1.2 Exterior algebra method for sheaf cohomology computation

Let V be a k-vector space of dimension n+1 over k and a basis y0, . . . , yn. LetW := V ∗ be
a dual space to V with a dual basis x0, . . . , xn. Denote the projective space of 1-quotients
of W (i.e. of lines through origin in V) by Pn := P(W), S := Symk(W) its homogeneous
coordinate ring, i.e. isomorphic to k[x0, . . . , xn], graded by putting deg xi = 1. Let E :=∧

(V) be the exterior algebra on V , graded by putting deg yj = −1.

For a (Z-)graded k-algebra A we shall denote the category of (Z-)graded finitely generated
A-modules by gr.A-Mod, the category of and the derived category of bounded complexes
of finitely generated graded A-modules by Db(gr.A-Mod).

Theorem 7.1.10 (The BGG correspondence (cf. [15] and Corollary 2.7 from [36])). The
derived category of bounded complexes of finitely generated graded S-modules and the de-
rived category of bounded complexes of finitely generated graded E-modules are equivalent.

Remark 7.1.11 ([106, 75]). The BGG correspondence is a particular case of Koszul duality,
which says that: the derived categories Db(gr.A-Mod) and Db

(
gr.A!-Mod

)
are equivalent,

where A! is the Koszul dual of A, provided A is Gornstein. Note moreover that
(
An|m

)!
=

110 CHAPTER 7. APPLICATIONS

Am|n (cf. Remark 3.1.2) and in particular, S! = E,E! = S, that is, we may think about E
as Ext•S(k,k) and about S as Ext•E(k,k).

The BGG correspondence consists of the pair of adjoined functors R and L but for com-
puting sheaf cohomology we are mainly interested in the following explicit construction for
R(M), where R is to be considered as a functor from gr.S-Mod to the category of bounded
complexes, by regarding M ∈ gr.S-Mod as a (trivial) complex and forgetting about classes
of complexes due to the construction of derived categories.

Let M ∈ gr.S-Mod, considered as a complex concentrated in degree 0. Put

F i := Homk(E,Mi) = Mi ⊗k ωE,

where Mi is considered here as a k-vector space concentrated in degree i and

ωE := Homk(E,k) = E ⊗ ∧n+1W ∼= E(−n− 1).

Then the image R(M) ∈ Db(gr.E-Mod) is the following complex of E-modules:

R(M) : · · · ←− F i+1 φi←− F i φi−1←−− F i−1 ←− · · · ,

with the maps

φi : F i 3 α 7→

(
e 7→

∑
j

xjα(yj∧e)

)
∈ F i+1.

Proposition 7.1.12 (Propositions 2.1 and 2.3 from [36]). The functor R is an equivalence
between gr.S-Mod and the category of linear free complexes over E (those of which the d-th
free module has socle of degree d).

Moreover, if M is a graded S-module then Hj(R(M))i = TorSi−j(k,M)i.

It is important that the complex R(M) is eventually exact:

Theorem 7.1.13 (Corollary 2.4 [36]). Let M ∈ gr.S-Mod and let r be its Castelnuovo-
Mumford regularity1, then the complex R(M) is exact at F i for all i > s iff s > r.

Moreover the truncated complex R(M)>r is exact and all remaining maps are linear:

R(M)>r : · · · ←− F r+3 φr+2←−− F r+2 φr+1←−− F r+1.

Definition 7.1.14. The Tate resolution of M is the following doubly infinite free exact
complex T(M) of E-modules:

T(M) : · · · ←− F r+3 φr+2←−− F r+2 φr+1←−− F r+1 ←− Lr ←− Lr−1 ←− · · · ,
1 If M is a finitely generated S-module than for all r � 0 : M>r is generated in degree r and has a

linear free resolution. The Castelnuovo-Mumford regularity of M is the least such integer r (cf. [34,
Chapter 20])

7.1. PROJECTIVE GEOMETRY 111

which is constructed by adjoining a minimal free resolution (over E) L• of
Ker
(
F r+2 φr+1←−− F r+1

)
:

L• : 0←− Ker(φr+1)←− Lr ←− Lr−1 ←− · · ·

to the right of R(M)>r.

In fact, we can construct T(M) by starting from any truncation R(M>s), s > r. Therefore
we have the following:

Remark 7.1.15. The Tate resolutionT(M) only depends on the sheaf F = M̃ . The complex
T(F) := T(M) is called the Tate resolution of F .

Examples 7.1.16 ([29]).

If M has finite length then T(M) : · · · ←− 0←− 0←− 0←− · · ·,

If M = S then T(M) : · · · ←− W ⊗k ωE ←− ωE ←− E ←− W ∗ ⊗k E ←− · · ·.

Theorem 7.1.17 (Theorem 4.1 and Corollary 4.2 from [36]). If F ∈ CohP(W) then the
linear part of the Tate resolution T(F) is

⊕
j R
(⊕

d HjF(d)
)
. In particular, the term of

the complex T(F) with cohomological degree i is

T(F)(i) =
⊕
j

Homk
(
E,HjF(i− j)

)
=
⊕
j

HjF(i− j)⊗k ωE,

where HjF(i) is regarded as a vector space concentrated in degree i.

That is, for any j, i ∈ Z : HjF(i) = HomE

(
k,T(F)(i+j)

)
−i
.

Observing that each cohomology group of each twist of F occurs once in a term of T(F),
we can compute part of the cohomology of F by computing part of the Tate resolution.

The exterior algebra method for computing sheaf cohomology relies on computing free
resolutions over E for computing the Tate resolution T>r(M), and has been implemented
in Singular (cf. command sheafCohBGG (cf. 7.1.2) and sheafCohBGG2 (cf. 7.1.2) from
sheafcoh.lib). Let us give a part of User Manual (cf. [118]) describing these procedures:

sheafCohBGG

Usage:
sheafCohBGG(M,l,h); M module, l,h int

Assume:
M is graded, and it comes assigned with an admissible degree vector as an attribute,
h>=l, and the basering has n+1 variables.

112 CHAPTER 7. APPLICATIONS

Return:
intmat, cohomology of twists of the coherent sheaf F on P^n associated to coker(M).
The range of twists is determined by l, h.

Display:
The intmat is displayed in a diagram of the following form:

l l+1 h
————————————————————————————–————————————————————————————–

n: h^n(F(l)) h^n(F(l+1)) h^n(F(h))
...

1: h^1(F(l)) h^1(F(l+1)) h^1(F(h))
0: h^0(F(l)) h^0(F(l+1)) h^0(F(h))

————————————————————————————–————————————————————————————–
chi: chi(F(l)) chi(F(l+1)) chi(F(h))

A ’-’ in the diagram refers to a zero entry; a ’*’ refers to a negative entry (=
dimension not yet determined). refers to a not computed dimension.

Note:
This procedure is based on the Bernstein-Gel’fand-Gel’fand correspondence and on
Tate resolution (see [Eisenbud, Floystad, Schreyer: Sheaf cohomology and free reso-
lutions over exterior algebras, Trans AMS 355 (2003)]).
sheafCohBGG(M,l,h) does not compute all values in the above table. To determine
all values of h^i(F(d)), d=l..h, use sheafCohBGG(M,l-n,h+n).

Example:

LIB "sheafcoh.lib";
// cohomology of structure sheaf on P^4:
//---
ring r=0,x(1..5),dp;
module M=0;
def A=sheafCohBGG(M,-9,4);
7→ -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4
7→ --
7→ 4: 70 35 15 5 1 - - - - - * * * *
7→ 3: * - - - - - - - - - - * * *
7→ 2: * * - - - - - - - - - - * *
7→ 1: * * * - - - - - - - - - - *
7→ 0: * * * * - - - - - 1 5 15 35 70
7→ --
7→ chi: * * * * 1 0 0 0 0 1 * * * *

7.1. PROJECTIVE GEOMETRY 113

// cohomology of cotangential bundle on P^3:
//---
ring R=0,(x,y,z,u),dp;
resolution T1=mres(maxideal(1),0);
module M=T1[3];
intvec v=2,2,2,2,2,2;
attrib(M,"isHomog",v);
def B=sheafCohBGG(M,-8,4);
7→ -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4
7→ ---
7→ 3: 189 120 70 36 15 4 - - - - * * *
7→ 2: * - - - - - - - - - - * *
7→ 1: * * - - - - - - 1 - - - *
7→ 0: * * * - - - - - - - 6 20 45
7→ ---
7→ chi: * * * -36 -15 -4 0 0 -1 0 * * *

sheafCohBGG2

Usage:
sheafCohBGG2(M,l,h); M module, l,h int

Assume:
M is graded, and it comes assigned with an admissible degree vector as an attribute,
h>=l, and the basering has n+1 variables.

Return:
intmat, cohomology of twists of the coherent sheaf F on P^n associated to coker(M).
The range of twists is determined by l, h.

Display:
The intmat is displayed in a diagram of the following form:

l l+1 h
————————————————————————————–————————————————————————————–

n: h^n(F(l)) h^n(F(l+1)) h^n(F(h))
...

1: h^1(F(l)) h^1(F(l+1)) h^1(F(h))
0: h^0(F(l)) h^0(F(l+1)) h^0(F(h))

————————————————————————————–————————————————————————————–
chi: chi(F(l)) chi(F(l+1)) chi(F(h))

A ’-’ in the diagram refers to a zero entry; a ’*’ refers to a negative entry (=
dimension not yet determined). refers to a not computed dimension.

114 CHAPTER 7. APPLICATIONS

If printlevel>=1, step-by step timings will be printed. If printlevel>=2 we add
progress debug messages if printlevel>=3, even all intermediate results...

Note:
This procedure is based on the Bernstein-Gel’fand-Gel’fand correspondence and on
Tate resolution (see [Eisenbud, Floystad, Schreyer: Sheaf cohomology and free reso-
lutions over exterior algebras, Trans AMS 355 (2003)]).
sheafCohBGG(M,l,h) does not compute all values in the above table. To determine all
values of h^i(F(d)), d=l..h, use sheafCohBGG2(M,l-n,h+n). Experimental version:
require less memory and uses speedups due to Dissertation by O. Motsak (2010).

Example:

LIB "sheafcoh.lib";
int pl = printlevel;
int l = -6; int h = 6; // range of twists: l..h
//---
// Abelian surface in P^4, deg: 10, gen: 6 (B6.1)
//---
ring R = (31991),(x,y,z,u,v),dp;
ideal I=-x^3*y^2*z-7318*x^4*z^2-x^2*z^3*u-x*y^3*u^2-14636*x^2*y*z*u^2-y*z^2*u^3
-7318*y^2*u^4+y^5*v-8856*x^2*y*z^2*v+z^5*v-8856*y^2*z*u^2*v-7318*x^3*y*v^2
+5535*x*z^3*v^2+5535*y^3*u*v^2-4*x*y*z*u*v^2-7318*z*u^3*v^2-8856*x*y^2*v^3
-8856*z^2*u*v^3+5535*y*z*v^4+7318*x*u*v^4+v^6,-x*y^2*z*u^2-7318*x^2*z^2*u^2
-z^3*u^3-7318*y*z*u^4+y^4*z*v+7318*x*y^2*z^2*v-7318*z^4*u*v-8856*y*z^2*u^2*v
+x^2*y^2*v^2+5535*y^2*z*u*v^2-x*z^2*u*v^2+7318*x*y*u^2*v^2+7318*y^3*v^3+y*u*v^4,
-x*y^2*u^3-7318*x^2*z*u^3-z^2*u^4-7318*y*u^5+y^4*u*v+7318*x*y^2*z*u*v
-7318*z^3*u^2*v-8856*y*z*u^3*v-7318*x^3*u*v^2+5535*y^2*u^2*v^2-2*x*z*u^2*v^2
-y^2*z*v^3-7318*x*z^2*v^3-8856*x*y*u*v^3-x^2*v^4-7318*y*v^5,y^5*z+7318*x*y^3*z^2
-7318*y*z^4*u+x^3*y*u^2-8856*y^2*z^2*u^2+5535*x*y*z*u^3+7318*x^2*u^4+z*u^5
+x^2*y^3*v+5535*y^3*z*u*v-x*y*z^2*u*v+14636*x*y^2*u^2*v+7318*z^2*u^3*v
+7318*y^4*v^2+x*u^3*v^2+y^2*u*v^3,y^4*z^2+7318*x*y^2*z^3-7318*z^5*u+x^3*z*u^2
-8856*y*z^3*u^2+5535*x*z^2*u^3-x*y*u^4-7318*u^6+2*x^2*y^2*z*v+7318*x^3*z^2*v
+5535*y^2*z^2*u*v+y^3*u^2*v-2719*x*y*z*u^2*v-8856*z*u^4*v+x^4*v^2+7318*y^3*z*v^2
+5535*x^2*z*u*v^2+5535*y*u^3*v^2+7318*x^2*y*v^3-8856*x*u^2*v^3-7318*u*v^5,
-x*y^2*z^3-7318*x^2*z^4-z^5*u-7318*y*z^3*u^2-x^3*z^2*v-5535*x*z^3*u*v+x*y*z*u^2*v
+7318*z*u^4*v-y^3*z*v^2-14636*x*y*z^2*v^2+8856*z^2*u^2*v^2-x^2*y*v^3
-5535*y*z*u*v^3-7318*x*u^2*v^3-7318*y^2*v^4-u*v^5,y^3*z^3+7318*x*y*z^4-x^4*y*u
+7318*y^4*z*u+8856*x*y^2*z^2*u-5535*x^2*y*z*u^2-7318*x^3*u^3-x*z*u^4+x^2*y*z^2*v
-7318*x^2*y^2*u*v+y^2*z*u^2*v-7318*x*z^2*u^2*v+7318*y^2*z^2*v^2-x^2*u^2*v^2,
-y^2*z^4-7318*x*z^5+x^4*z*u-7318*y^3*z^2*u-8856*x*y*z^3*u+5535*x^2*z^2*u^2
-x^2*y*u^3-7318*x*u^5-x^2*z^3*v+7318*x^2*y*z*u*v-2*y*z^2*u^2*v-7318*y^2*u^3*v
-8856*x*z*u^3*v-7318*y*z^3*v^2-u^4*v^2-7318*z*u^2*v^3,y^6+7318*x*y^4*z
-7318*y^2*z^3*u-7318*x^4*u^2-8856*y^3*z*u^2+5535*x*y^2*u^3-x^2*z*u^3+y*u^5
-7318*x^3*y^2*v+5535*y^4*u*v-4*x*y^2*z*u*v-14636*x^2*z^2*u*v-8856*x^2*y*u^2*v
-z^3*u^2*v-8856*x*y^3*v^2-7318*z^4*v^2-x^3*u*v^2-8856*y*z^2*u*v^2+5535*y^2*z*v^3
-x*z^2*v^3+y*v^5,x^4*y^2-7318*y^5*z-8856*x*y^3*z^2-7318*z^6+5535*x^2*y^2*z*u
+x^3*z^2*u-8856*y*z^4*u+7318*x^3*y*u^2+5535*x*z^3*u^2-7318*z*u^5+7318*x^2*y^3*v
+5535*y^2*z^3*v-x*z^4*v-2719*x*y*z^2*u*v-8856*z^2*u^3*v+2*x^2*y*u*v^2

7.1. PROJECTIVE GEOMETRY 115

+5535*y*z*u^2*v^2+7318*x*u^3*v^2+y*z^2*v^3+7318*y^2*u*v^3+u^2*v^4,-x^3*y^3
-7318*x^4*y*z-x^2*y*z^2*u-7318*x^2*y^2*u^2-7318*x*y^4*v-8856*x^2*y^2*z*v+y*z^4*v
+7318*y^2*z^2*u*v+5535*x*y*z^2*v^2-x*y^2*u*v^2+7318*x^2*z*u*v^2+z^2*u^2*v^2
+7318*z^3*v^3+x*z*v^4,-x^2*y^4-7318*x^3*y^2*z-2*x*y^2*z^2*u-7318*x^2*z^3*u
-7318*x*y^3*u^2-z^4*u^2-7318*y*z^2*u^3-7318*y^5*v-8856*x*y^3*z*v-7318*z^5*v
-8856*y*z^3*u*v+5535*y^2*z^2*v^2-x*z^3*v^2-y^3*u*v^2+7318*x*y*z*u*v^2+y*z*v^4,
-x*y^5-7318*x^2*y^3*z-y^3*z^2*u-7318*y^4*u^2+7318*x^4*y*v-5535*x*y^3*u*v
+x^2*y*z*u*v-y^2*u^3*v+8856*x^2*y^2*v^2-y*z^3*v^2-14636*y^2*z*u*v^2
-5535*x*y*z*v^3-7318*x^2*u*v^3-z*u^2*v^3-7318*z^2*v^4-x*v^5,-x*y^4*u
-7318*x^2*y^2*z*u-y^2*z^2*u^2-7318*y^3*u^3+7318*x^4*u*v-5535*x*y^2*u^2*v
+x^2*z*u^2*v-y*u^4*v+x*y^2*z*v^2+7318*x^2*z^2*v^2+8856*x^2*y*u*v^2
-7318*y*z*u^2*v^2+x^3*v^3+7318*x*y*v^4,-x^2*y^2*z^2-7318*x^3*z^3-x*z^4*u
-7318*x*y*z^2*u^2-x^4*z*v-5535*x^2*z^2*u*v+x^2*y*u^2*v+7318*x*u^4*v
-7318*x^2*y*z*v^2+y*z^2*u*v^2+7318*y^2*u^2*v^2+8856*x*z*u^2*v^2+u^3*v^3
+7318*z*u*v^4,-x*y^3*z-7318*x^2*y*z^2-y*z^3*u-7318*y^2*z*u^2-x^3*y*v
-5535*x*y*z*u*v-7318*x^2*u^2*v-z*u^3*v-7318*x*y^2*v^2-7318*z^2*u*v^2-x*u*v^3,
7318*x^5+7318*y^5+8856*x*y^3*z+7318*z^5-5535*x^2*y^2*u+8856*y*z^3*u
-5535*x*z^2*u^2+7318*u^5+8856*x^3*y*v-5535*y^2*z^2*v-4599*x*y*z*u*v+8856*z*u^3*v
-5535*x^2*z*v^2-5535*y*u^2*v^2+8856*x*u*v^3+7318*v^5,-x^2*y^2*u-7318*x^3*z*u
-x*z^2*u^2-7318*x*y*u^3-y^2*z^2*v-7318*x*z^3*v-7318*y^3*u*v-8856*x*y*z*u*v
-x^2*z*v^2-y*u^2*v^2-7318*y*z*v^3,-x^5-y^5+8856*x^2*y*z^2-z^5-5535*x^3*z*u
+8856*y^2*z*u^2-5535*x*y*u^3-u^5-5535*x*z^3*v-5535*y^3*u*v+5*x*y*z*u*v
+8856*x^2*u^2*v+8856*x*y^2*v^2+8856*z^2*u*v^2-5535*y*z*v^3-v^5;
resolution FI = mres(I,2); module M=FI[2];
//
printlevel = 0;
int t = timer;
def B = sheafCoh(M, l, h); // global Ext method:
7→ -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
7→ ---
7→ 4: 5 1 - - - - - - - - - - -
7→ 3: 180 125 80 45 20 5 1 - - - - - -
7→ 2: - - - - - - 2 - - - - - -
7→ 1: - - - - - - - - 5 10 10 2 -
7→ 0: - - - - - - - - - - - 3 30
7→ ---
7→ chi: -175 -124 -80 -45 -20 -5 1 0 -5 -10 -10 1 30
"Time: ", timer - t;
7→ Time: 1544
//
t = timer;
B = sheafCohBGG(M, l, h); // BGG method (without optimization):
7→ -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
7→ ---
7→ 4: 5 1 - - - - - - - - - - -
7→ 3: * 125 80 45 20 5 1 - - - - - -
7→ 2: * * - - - - 2 - - - - - -
7→ 1: * * * - - - - - 5 10 10 2 -
7→ 0: * * * * - - - - - - - 3 30
7→ ---
7→ chi: * * * * -20 -5 1 0 -5 -10 -10 1 *

116 CHAPTER 7. APPLICATIONS

"Time: ", timer - t;
7→ Time: 10
//
t = timer;
B = sheafCohBGG2(M, l, h); // BGG method (with optimization)
7→ Cohomology table:
7→ -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
7→ ---
7→ 4: 5 1 - - - - - - - - - - -
7→ 3: * 125 80 45 20 5 1 - - - - - -
7→ 2: * * - - - - 2 - - - - - -
7→ 1: * * * - - - - - 5 10 10 2 -
7→ 0: * * * * - - - - - - - 3 30
7→ ---
7→ chi: * * * * -20 -5 1 0 -5 -10 -10 1 *
"Time: ", timer - t;
7→ Time: 4
//
printlevel = pl;

7.1.3 Sheaf cohomology: benchmarks

Starting from Singular 3 − 0 − 0, computation of Tate resolutions in sheafCohBGG and
sheafCohBGG2 is done by Algorithm 5.1.2 using the improvements to the GB-Algorithm
described in this thesis.

Moreover, the command sheafCohBGG2 (cf. 7.1.2) also incorporates all our performance
tweaks for truncation and other time consuming computations over a commutative poly-
nomial algebra.

In order to test/benchmark our improvements we computed sheaf cohomology tables for
given ranges of twists (from −7..7 up to −12..12) of the surfaces listed in [28]. The defining
ideals were computed using the Macaulay Classic code provided byW. Decker. Each surface
was tested twice. №2 uses as input the original ideal due to Macaulay Classic. №1 uses as
input a GB (w.r.t. dp) of the ideal used in №2.

We compared 64-bit Singular 3.0 (denoted by SCA) and M2 v. 1.2 (generic 64-bit built
with libc-2.7). Computations were performed on a Gentoo Linux (2.6.30) server with
AMD Opteron(tm) Processor 242×2 running at (1590.741 Mhz) and 8 Gb memory. Tim-
ings on tables 7.1 and 7.2 are given in 1

100
-th of a second. Afterwards we illustrate the

good asymptotic behavior of SCA (blue) compared to M2(red) by plotting the timings
(logarithmically in seconds) depending on the number of twists (where −r..r corresponds
to 2r). Captions name corresponding example from top to bottom and from left to right.
More details can be found online at http://www.mathematik.uni-kl.de/~motsak/tests/.

Judging from our benchmarks, M2 is more sensitive to the input data (depends on the
defining ideal), and performs better on smaller examples, while Singular seems to be

http://www.mathematik.uni-kl.de/~motsak/tests/

7.1. PROJECTIVE GEOMETRY 117

input insensitive and has a better asymptotic performance (that is, much better on harder
examples)

While the computation of the resolution over the exterior algebra is the major time-
consuming part of the computation, in some cases the computation of Castelnuovo-
Mumford (CM)regularity took the leadership.

We excluded the example k3.d10.g9.quart2 from the tables since M2 needed several days
just to compute CM-regularity.

Surface №
-7..7 -8..8 -9..9 -10..10

M2 SCA M2 SCA M2 SCA M2 SCA

bielliptic.d10.g6
1 130 115 142 142 693 502 2802 1986

2 133 116 143 140 731 521 3150 1996

bordiga
1 109 90 556 348 2535 1203 7760 3897

2 117 89 582 353 2600 1203 7942 4000

castelnuovo
1 104 86 427 280 1684 852 5226 2269

2 145 88 1103 288 5319 839 19710 2344

cubicscroll
1 79 81 265 259 855 748 2309 2055

2 89 81 280 262 878 772 2417 2055

ell.d10.g10
1 538 506 2877 1753 13289 6024 56322 21039

2 528 507 2831 1698 13569 6055 56537 21042

ell.d10.g9
1 3270 1987 4900 2462 19035 10250 74683 43656

2 3576 2077 5164 2565 21144 10257 82254 41192

ell.d11.g12
1 1333 836 5996 2686 22020 10132 93886 35778

2 1424 840 6410 2581 24264 9700 99489 38040

ell.d12.g13
1 2785 1717 3487 2560 13301 8717 54574 27241

2 2796 1641 3484 2579 13376 8638 54712 30371

ell.d12.g14.ss0
1 4195 1540 9661 2569 28718 7752 91448 25988

2 4226 1527 9710 2565 28975 7440 92416 26556

ell.d12.g14.ssue
1 3690 1610 7169 2717 25057 8510 95381 28593

2 3100 1611 6536 2829 21172 8336 81177 27901

ell.d8.g7
1 101 243 523 599 1813 1474 5396 3367

2 102 286 533 745 1841 2264 5473 5730

118 CHAPTER 7. APPLICATIONS

ell.d9.g7
1 971 555 4793 2361 19489 7779 73166 23641

2 1024 556 5022 2455 20062 7792 78401 22242

elliptic.scroll
1 580 240 3044 1115 12140 3557 40805 13347

2 569 242 3016 1116 11981 3724 40419 13364

enr.d10.g8
1 2266 1278 2836 3527 15468 17232 71424 69402

2 1327 1241 1873 3489 11380 17333 53234 69207

enr.d11.g10
1 4402 2047 5238 2413 18137 9219 76750 28802

2 3555 2037 4410 2543 18036 9928 81976 28172

enr.d13.g16
1 1523 735 2958 1176 9557 3904 35982 15435

2 1519 735 2960 1201 9541 3706 35471 11316

enr.d13.g16.two
1 1825 783 3246 1192 11085 6080 41422 26910

2 1812 767 3261 1229 11142 4643 41245 13744

enr.d9.g6
1 2753 1770 2892 1736 13753 7682 55844 24616

2 2827 1774 2960 1743 13878 7682 55599 24701

k3.d10.g9.quart1
1 3375 2229 5029 2693 18732 11836 70357 48826

2 3664 2328 5373 2813 21535 12507 85071 48631

k3.d11.g11.ss0
1 1879 1300 2977 1983 11192 7109 41789 23261

2 1882 1294 2959 1987 11382 7135 41964 24536

k3.d11.g11.ss1
1 2682 1699 3768 2436 16023 9346 67633 32445

2 2731 1558 3808 2383 16551 8440 68836 33785

k3.d11.g11.ss2
1 2881 1261 3957 1958 17756 6570 75557 20949

2 2444 1281 3524 2041 16677 6124 71101 17158

k3.d11.g11.ss3
1 3600 1884 4709 2649 16716 6029 62943 16167

2 2648 1832 3564 2563 11941 5876 48776 15438

k3.d11.g12
1 950 758 3272 1997 12248 4933 50183 15971

2 938 759 3273 1935 12274 4950 49221 15273

k3.d12.g14
1 1160 1014 2980 2510 8963 7614 29529 23519

2 1148 1018 2997 2518 9004 7662 29717 23535

7.1. PROJECTIVE GEOMETRY 119

k3.d13.g16
1 8554 3996 9756 5693 17177 11450 46059 22918

2 8831 4268 10082 5913 17672 11706 46515 22539

k3.d14.g19
1 3681 3448 5956 6338 13389 12979 36913 26709

2 3745 3652 5972 6157 13436 13195 37894 27398

k3.d7.g5
1 61 186 299 591 1801 1863 7373 5432

2 62 183 299 592 1804 1919 7352 5451

k3.d8.g6
1 441 384 2626 1899 11550 7276 43705 24967

2 467 383 3014 1899 14367 7054 53288 24280

k3.d9.g8
1 295 317 1617 1179 7491 4008 30033 12987

2 293 321 1637 1215 7560 4020 30260 13043

rat.d10.g8
1 42803 13562 44493 13205 59220 23717 119729 45103

2 2151 13523 3195 13212 12677 21542 48786 44640

rat.d10.g9.quart1
1 800 245 3881 1710 16400 9023 62317 40478

2 949 254 4608 1713 20603 9097 79992 37995

rat.d10.g9.quart2
1 2746 1029 3545 1062 12132 4809 55141 22415

2 2808 994 3601 1103 12378 4621 52226 21210

rat.d11.g11.ss0
1 1992 1062 3090 1234 11291 5657 41348 22342

2 2036 1029 3140 1227 11410 5658 41907 21116

rat.d11.g11.ss1
1 1892 934 2956 1106 11984 5043 48181 26342

2 1700 909 2797 1107 11019 5283 47188 25153

rat.d11.g11.ssue
1 3202 1128 3945 1332 19451 6880 83916 29266

2 2472 1089 3215 1291 15267 6958 66801 28416

rat.d7.g4
1 587 329 3038 1847 14162 8629 57279 32679

2 965 330 5899 1931 27531 9084 114296 30627

rat.d8.g5
1 496 284 4341 1986 16777 8716 60314 29485

2 35037 276 40253 1913 53988 8324 114703 27662

rat.d8.g6
1 347 241 1910 1228 10501 5451 44911 21129

2 371 243 2005 1230 10756 5436 50136 21201

120 CHAPTER 7. APPLICATIONS

rat.d9.g6
1 4928 2652 5076 2818 25114 12705 100531 42592

2 3817 2781 3950 2823 20711 12755 86637 42707

rat.d9.g7
1 1048 515 4596 1703 14114 6110 60867 23239

2 979 505 4242 1698 14912 6111 64330 22472

veronese
1 1336 453 5847 1595 21602 5379 68617 14039

2 1077 439 5014 1604 18244 5654 58668 13991

Table 7.1: Benchmarks for sheaf cohomology computations with M2 and Singular with
a clear advantage of Singular

Surface №
-7..7 -8..8 -9..9 -10..10 -12..12

M2 SCA M2 SCA M2 SCA M2 SCA M2 SCA

ab.d10.g6
1 496 335 498 368 504 432 2476 1224 33543 11561

2 140 333 144 382 151 448 890 1278 17135 11783

ab.d15.g21
1 1166 774 1228 844 1220 1029 1412 1653 8095 7446

2 945 762 985 862 1001 1040 1143 1649 5576 7443

ab.d15.g21.quint1
1 86 157 155 289 389 597 1197 1390 15753 11507

2 81 156 150 296 357 611 1039 1437 14493 11535

bielliptic.d15.g21
1 96 142 172 262 400 579 1261 1474 14340 12623

2 93 143 172 268 390 575 1080 1511 10063 12647

ell.d7.g6
1 57 218 146 512 454 1248 1752 2761 19702 15444

2 57 217 147 514 608 1277 4601 2687 70573 14770

Table 7.2: Benchmarks for sheaf cohomology computations with M2 and Singular

7.1. PROJECTIVE GEOMETRY 121

Figure 7.1: ab.d10.g6, ab.d15.g21.quint1, ab.d15.g21,bielliptic.d10.g6, bielliptic.d15.g21, bor-
diga,castelnuovo, cubicscroll, ell.d10.g10,ell.d10.g9, ell.d11.g12, ell.d12.g13,ell.d12.g14.ss0, ell.d12.g14.ssue,
ell.d7.g6,ell.d8.g7, ell.d9.g7, elliptic.scroll

122 CHAPTER 7. APPLICATIONS

Figure 7.2: enr.d10.g8, enr.d11.g10, enr.d13.g16.two, enr.d13.g16, enr.d9.g6, k3.d10.g9.quart1,
k3.d10.g9.quart2, k3.d11.g11.ss0, k3.d11.g11.ss1, k3.d11.g11.ss2, k3.d11.g11.ss3, k3.d11.g12, k3.d12.g14,
k3.d13.g16, k3.d14.g19, k3.d7.g5, k3.d8.g6, k3.d9.g8

7.1. PROJECTIVE GEOMETRY 123

Figure 7.3: rat.d10.g8, rat.d10.g9.quart1, rat.d10.g9.quart2, rat.d11.g11.ss0, rat.d11.g11.ss1,
rat.d11.g11.ssue, rat.d7.g4, rat.d8.g5, rat.d8.g6, rat.d9.g6, rat.d9.g7, veronese

124 CHAPTER 7. APPLICATIONS

7.2 Coordinate-free verification of affine geometry the-
orems

B

D

M1

M2

M3P

M6

M5

C

A M4

Figure 7.4: Tetrahedron

There are several coordinate-free approaches to au-
tomated reasoning in Affine Geometry: area method,
bracket algebra method, Clifford algebra methods
(cf. [22] and references thereof). The main advan-
tage of such approaches is the ability to provide geo-
metric interpretation for all intermediate identities.

In this section we try to explain why the exterior
algebra may be considered as the natural domain
in which to state and prove theorems in linear and
affine geometry.

There are two fundamentally different approaches to
affine geometry by means of an exterior algebra of
a linear space. One is due to H. Grassmann’s work:
“Die Ausdehnungslehre” [60] (which is the origin of
multilinear algebra). who considered exterior algebra
to be generated by points of linear space as the ring generated by numbers and points,
with the only condition being the anti-commutativity of points multiplication. This way
much of Affine Geometry reduces to a verification of identities. For example the identity
(in the exterior algebra generated by points A,B,C,D)

1

2

(
1

2
(B + C) +

1

2
(D + A)

)
=

1

2

(
1

2
(A+B) +

1

2
(C +D)

)
=

1

2

(
1

2
(B +D) +

1

2
(C + A)

)
implies that the three line segments joining mid-points of opposite edges of a tetrahedron
intersect at their mid-points (cf. Figure 7.4).

And the usual (modern) geometric interpretation, where elements are considered as (real)
vectors from the origin (i.e. implicitly Rd, for some implicitly fixed dimension d ∈ N), and
the product A∧B of two “points” is again a “point” from origin, defined similarly to the
cross product [A,B] for A,B ∈ Rd.

Later came ideas about using Computer Algebra over exterior and Clifford algebras for
coordinate-free verification of affine geometry theorems reformulated by means of identities
in exterior algebras,

D. Fearnley-Sander followed Grassmann’s interpretation (cf. [49, 48, 51, 50]) while others
used the other interpretation (e.g. D. Wang in [128, 127], and recently this approach was
adopted/reinvented by I. Tchoupaeva in [23, 124]).

Either way affine geometry theorems can be formally reformulated as (homogeneous) ideal
membership problems.

Using the second approach one can express the following statements:

7.2. COORDINATE-FREE VERIFICATION OF AFFINE GEOMETRY THEOREMS125

1. Three “points” A,B and C are collinear iff

(B − A)∧ (C − A) = 0.

2. Two lines, one via “points” A1, A2 and the other via B1, B2, are parallel iff

(A2 − A1)∧ (B2 −B1) = 0.

3. A “point” M divides the interval [A;B] with the ratio a : bdivision of interval
iff

b (A−M)− a (B −M) = 0.

Unfortunately, only statements about parallel and intersecting subspaces of Rd can be
written in terms of outer product of vectors. For instance, this excludes statements about
angles and circles.

C1

C B

B1

A

P

A1

(a) Centroid
A1

B1

B2

A2

A3

B3

M3

M1

M2

(b) Gauss’ line

M1

M3

M2

C1

B1

A1

C2B2A2

(c) Pappus’ line

Below we will illustrate (partly following [128]) the use of Singular on the following
geometrical statements:

Centroid Let ABC be any triangle and A1, B1, C1 be the midpoints of the three sides
BC,CA,AB. Then the three lines AA1, BB1CC1 are concurrent (cf. Figure 7.5a).

Gauss’ line theorem Let A1, A2, B1, B2 be any fixed points. Assume that A1A2 and
B1B2 intersect (denote the intersection by A3 and A1B2 and B1A2 intersect (denote
the intersection by B3. Now let M1 be the middle of A1B1, M2 be the middle of
A2B2 and M3 be the middle of A3B3.
Then the points M1,M2,M3 are collinear (cf. Figure 7.5b).

126 CHAPTER 7. APPLICATIONS

Pappus’ line theorem Let A1, A2, B1, B2 be any fixed points, Ci be point collinar with
Ai and Bi, i = 1, 2.
Assume that A1B2 and A2B1 intersect (denote the intersection by M1, A1C2 and
A2C1 intersect (denote the intersection by M2, B1C2 and B2C1 intersect (denote the
intersection by M3.
Then the points M1,M2,M3 are collinear (cf. Figure 7.5c).

In the following we show that the treatment due to [128, 127] and [23, 124] can be trivially
implemented in Singular code:

LIB "nctools.lib"; option(redSB); option(redTail);

proc getSubdivision(S, E, s, e)
{

return ((s*S+e*E)/(s+e));
};

proc getMiddle(S, E)
{

return (getSubdivision(S,E,1,1));
};

proc getReflection(C, M)
{

return (2*C - M);
};

proc areEqual(x, y)
{

return ((x-y));
};

proc isMiddle(x, S, E)
{

return (areEqual(x, getMiddle(S, E)));
}

proc areCollinear(x, S, E) // Are x S and x E collinar?
{

return ((x-S)*(x-E));
};

proc areCoplanar(P1, P2, P3, P4)
{

return ((P1 - P2) * (P1 - P2) * (P1 - P3));
}

proc isParallelogram(P1, P2, P3, P4)
{

return (P2 - P1 + P4 - P3);

7.2. COORDINATE-FREE VERIFICATION OF AFFINE GEOMETRY THEOREMS127

}

proc areParallel(S1, E1, S2, E2)
{

return ((S1 - E1)*(S2 - E2));
}

proc th(ideal conditions)
"Find all possible implications"
{

return (groebner(conditions)); // no need in twostd, due to homogenity!
}

proc verify(ideal conditions, list #)
"Tests radical ideal membership"
{

if(size(#) == 1)
{

def statement = #[1];
}
else
{

def statement = #;
}

if(typeof(statement) == "poly")
{

if(statement == 0)
{

return (list(1==1, 0));
}

def p = statement; int i = 1;

while(p != 0)
{

if(NF(p, (conditions)) == 0)
{

break;
}
i++;
p = p * statement;

};

return (list((p != 0), i));
}
else
{

int r = 1; list R, L;

for(int k = size(statement); k > 0; k--)

128 CHAPTER 7. APPLICATIONS

{
L = verify(conditions, statement[k]);
r = r and L[1];
R[k] = L[2];

}

return (list(r, R));
}

}

proc areCoplanarByMonom(poly m, int d)
"Auxiliary procedure"
{

intvec e = leadexp(m);

int k = size(e);

while (e[k] == 0)
{

k-- ;
}

def p = var(k); d--;

poly r = 1;

for (k--; (k > 0) and (d > 0); k--)
{

if(e[k] > 0)
{

r = (var(k) - p) * r;
d--;

}
}

return (r);
}

proc sp(int d)
"Auxiliary procedure"
{

ideal m = simplify(NF(maxideal(d + 2), std(0)), 2);

for(int k = size(m); k > 0; k--)
{

m[k] = areCoplanarByMonom(m[k], d + 2);
}

return (m);
}

7.2. COORDINATE-FREE VERIFICATION OF AFFINE GEOMETRY THEOREMS129

proc analyzeTheoremK(conditions)
"Get the dimension k"
{

for(int i = 0; i <= nvars(basering); i++)
{

if(verify(conditions, sp(i))[1])
{

return (i);
}

}

ERROR("Something went wrong... Bad Theorem?");
}

proc analyzeTheoremD(conditions, k, list #)
"Get the dimension d"
{

for(int i = k; i >= 0; i--)
{

if(verify(th(conditions, sp(i)), #)[1])
{

return (i);
}

}

ERROR("Something went wrong... Bad Theorem?");
}

proc analyzeTheorem(conditions, list #)
"Full analysis of the theorem given by input"
{

if(attrib(conditions, "isSB") != 1)
{

conditions = th(conditions);
}

list r = verify(conditions, #);

if(r[1])
{

int k = analyzeTheoremK(conditions);
int d = analyzeTheoremD(conditions, k, #);

return ("Theorem is generally true ("+string(r[2])+"), k: " + string(k) + ", d: " + string(d) + " (v: " + string(vdim(conditions)) + ")");
}
else
{

return ("Theorem may not be generally true ("+string(r[2])+", v: " + string(vdim(conditions)) + ")");
}

}

130 CHAPTER 7. APPLICATIONS

// Example: Centroid:

ring R = 0,(P,A,B,C),dp; def E = Exterior(); setring E;

def A1 = getMiddle(B, C); def B1 = getMiddle(A, C); def C1 = getMiddle(A, B);

ideal H = areCollinear(P, B, B1), areCollinear(P, C, C1);
def h3 = areCollinear(P, A, A1);

analyzeTheorem(th(H), h3); // H => h3?
7→ Theorem is generally true (1), k: 2, d: 2 (v: 10)

kill E, R; // Example 8: Gauss line

ring R = 0,(A(1..3), B(1..3)), dp; def E = Exterior(); setring E;

// complete quadrilateral:
ideal H =

// A(3) is the intersection of B1 B2 and A1 A2
areCollinear(A(1), A(2), A(3)), areCollinear(B(1), B(2), A(3)),
// B(3) is the intersection of B1 A2 and A1 B2
areCollinear(A(1), B(2), B(3)), areCollinear(B(1), A(2), B(3));

def M1 = getMiddle(A(1), B(1)); def M2 = getMiddle(A(2), B(2));
def M3 = getMiddle(A(3), B(3));

def h = areCollinear(M1, M2, M3);

analyzeTheorem(th(H), h); // H => h?
7→ Theorem is generally true (1), k: 2, d: 2 (v: 24)

kill E, R; // Example: Pappus’ line Theorem

ring R = 0,(A(1..2),B(1..2),C(1..2),M(1..3)),dp;def E = Exterior();setring E;

ideal H = areCollinear(A(1), B(1), C(1)),areCollinear(A(2), B(2), C(2)),
areCollinear(A(1), M(1), B(2)),areCollinear(A(1), M(2), C(2)),
areCollinear(A(2), M(1), B(1)),areCollinear(A(2), M(2), C(1)),
areCollinear(B(1), M(1), A(2)),areCollinear(B(1), M(3), C(2)),
areCollinear(B(2), M(1), A(1)),areCollinear(B(2), M(3), C(1)),
areCollinear(C(1), M(2), A(2)),areCollinear(C(1), M(3), B(2)),
areCollinear(C(2), M(2), A(1)),areCollinear(C(2), M(3), B(1));

def h = areCollinear(M(1), M(2), M(3));

analyzeTheorem(th(H), h); // H => h?
7→ Theorem may not be generally true (2, v: 74)

kill E, R; // Additional Example: Iterative Reflection

ring R = 0,(O(1..3), M), dp; def E = Exterior(); setring E;

7.3. SUPER-SYMMETRY 131

def M1 = getReflection(O(1), M); def M2 = getReflection(O(2), M1);
def M3 = getReflection(O(3), M2);def M4 = getReflection(O(1), M3);
def M5 = getReflection(O(2), M4);

def h = isMiddle(O(3), M, M5);

analyzeTheorem(th(0), h); // is M5 the reflection of M wrt O(3)?
7→ Theorem is generally true (0), k: 3, d: 3 (v: 16)

As our computation shows the Pappus’line Theorem cannot be proved using this approach.

7.3 Super-symmetry

The super-commutative algebras were first introduced as symmetric algebras of super-
manifolds in theoretical physics, or more precisely, super-symmetry, which is a part of the
theory of elementary particles and their interactions (cf. [92, 13, 93]), where these algebras
enable one to join particles with Bose-Einstein statistics and Fermi-Dirac statistics into
single multiplets, and also enables one to join the internal and dynamic symmetries of
gauge theories in a single super-group.

In particle physics, super-symmetry is a symmetry that relates elementary particles of
one spin to other particles that differ by half a unit of spin and are known as super-
partners. In a theory with unbroken super-symmetry, for every type of boson there exists
a corresponding type of fermion with the same mass and internal quantum numbers, and
vice-versa.
Remark 7.3.1. As of 2010 there is only indirect evidence (e.g. via Gauge Coupling Unifi-
cation) that super-symmetry may be a symmetry of nature.

The only unambiguous way to claim discovery of super-symmetry is to produce super-
particles in the laboratory. Because super-particles are expected to be 100 to 1000 times
heavier than the proton, it requires a huge amount of energy to make these particles that
can only be achieved at particle accelerators.

Recently physicists have become concerned about the non-discovery of the Higgs boson or
any super-partner. Many nevertheless hold out hope on account of the possibility that the
Large Hadron Collider, which began operation at CERN in 2009 will discover it.

Super-symmetry is also sometimes studied mathematically for its intrinsic properties. This
is because it describes complex fields satisfying a property known as holomorphy, which
allows holomorphic quantities to be exactly computed. This makes super-symmetric mod-
els useful toy models of more realistic theories. A prime example of this has been the
demonstration of S-duality in four dimensional gauge theories that interchanges particles
and monopoles.

132 CHAPTER 7. APPLICATIONS

Super-symmetry has an advantage that super-symmetric quantum field theory can some-
times be solved.

Super-string theory is an attempt to explain all of the particles and fundamental forces
of nature in one theory by modeling them as vibrations of tiny super-symmetric strings.
Super-string theory is a shorthand for super-symmetric string theory because unlike bosonic
string theory, it is the version of string theory that incorporates fermions and super-
symmetry.

Super-symmetry is also a feature of most versions of string theory, though it can exist in
nature even if string theory is incorrect.

Super-algebras and their representations, super-modules, provide an algebraic framework
for formulating super-symmetry. The study of such objects is sometimes called super linear
algebra. Super-algebras also play an important role in related field of super-geometry,
where they enter into the definitions of graded manifolds, super-manifolds and super-
schemes.

In theoretical physics, super-gravity theory is a field theory that combines the principles
of super-symmetry and general relativity. Together, these imply that, in super-gravity,
the super-symmetry is a local symmetry (in contrast to non-gravitational super-symmetric
theories, such as the Minimal Super-symmetric Standard Model).

Following [92, 125, 13] we will briefly recall the very basic Z2-graded mathematical super-
notions, originating from physical super-symmetry theory.

• A super vector space V is a Z2-graded2 vector space V = V0 ⊕ V1 over a field k,
where the grading is defined by putting |x| = 0 for (even) vectors x ∈ V0 and |ξ| = 1
for (odd) vectors ξ ∈ V1. If di = Dimk Vi we say that V has dimension d0 | d1.
For super vector spaces V,W , the morphisms from V toW are k-linear maps V → W
that preserve the grading. They form a linear space denoted by Hom(V,W).

• Let us take V = kp+q with its standard basis ei(1 6 i 6 p + q) and define ei to be
even (resp. odd) if i 6 p (resp., i > p), then V becomes a super vector space with

V0 =

p∑
i=1

k · ei, V1 =

p+q∑
i=p+1

k · ei,

which we denote by kp|q.
• Let us denote by Hom(V,W) the vector space of all k-linear maps from V to W ,

where even maps are the ones preserving grading while odd maps are those that
reverse it. In particular, (Hom(V,W))0 = Hom(V,W). Hom(V,W) is the so-called
internal Hom. Denote End(V) := Hom(V, V).

• A super-algebra A is a super vector space A endowed with an (even) associative
bilinear product A⊗A → A : a⊗ b 7→ a ∗ b, satisfying |a ∗ b| = |a| +Z2 |b|, which is
unital.

2where Z2 = Z/2Z =
{
0, 1
}

7.3. SUPER-SYMMETRY 133

In a super-algebra one defines the super-commutator by [b, a] := b∗a−(−1)|a||b|a∗b,
for homogeneous elements a, b.

• If V is a super vector space then End(V) is a super-algebra.
• A super-commutative algebra A is a super-algebra A, where the product satisfies
b ∗ a = (−1)|a||b|a ∗ b, for homogeneous elements a, b ∈ A. Equivalently, it is a
super-algebra where the super-commutator always vanishes.

• The super-center of any super-algebra A is the set of elements that super-commute
with all elements, denoted by ZZZ(A). It is clearly a super-commutative algebra.
Clearly ZZZ(End(V)) = k · 1.

• If V = kp|q we write M(p | q) or Mp|q for End(V). Using the standard basis we have
the usual matrix representations for elements of M(p | q) in the formA B

C D

 ,

where the letters A,B,C,D denote matrices of orders respectively p × p, p × q, q ×
p, q × q. The even elements and odd elements are, respectively, of the formA 0

0 D

 ,

0 B

C 0

 .

• Let V be a finite-dimensional super vector space and let X ∈ End(V). Then we
have

X =

X00 X01

X10 X11

 ,

where Xij is the linear map from Vj to Vi such that Xijv is the projection on Vi of
Xv for v ∈ Vj.
The super-trace of X is defined as

sTr(X) := Tr(X00)− Tr(X11) ∈ k.

The Berezinian of X is defined as

Ber(X) := Det(X00) Det
(
1−X01X

−1
11 X10

)
Det(X11)−1 ∈ k.

It has the important property that

Ber(XY) = Ber(X) Ber(Y), X, Y ∈ End(V).

• Let A be a super-commutative k-algebra. Axioms of left-, right- and bi- A-modules
coincide with Z2-graded versions of the usual axioms, e.g. there are no additional
changes in sign. Moreover, any one-sided module can be canonically considered as a
bi-module. Since the same holds for ideals in A we will only consider left ideals.

134 CHAPTER 7. APPLICATIONS

Left modules are super k-vector spaces on which A acts from the left; and the action
is a morphism of super vector spaces:

a⊗m 7→ a ·m, |a ·m| = |a|+ |m|, a ∈ A,m ∈M.

As in the classical theory, left modules may be viewed as right modules and vice
versa, but in the super case this involves sing factors; thus a left module M is viewed
as a right module for A under the action

m · a = (−1)|a||m|a ·m, a ∈ A,m ∈M.

A morphism Ψ : M → N of (super) A-modules is an even k-linear map such that
Ψ(am) = aΨ(m).
For modules M,N one has M ⊗N defined in the usual manner by dividing M ⊗kN
by the k-linear spanned by the relations ma⊗ n = m⊗ an, a ∈ A.
We denote by Hom(M,N) the space if all k-linear maps Ψ : M → N such that
Ψ(am) = (−1)|Ψ||a|aΨ(m). It is called the internal Hom.
Clearly Hom(M,N) is again an A-module if we define (aΨ)(m) := aΨ(m).
Denote the module dual toM byM∨ := Hom(M,A) and End(M) := Hom(M,M).

• A free (super) A-module is an A-module that has a free homogeneous basis. If
ei(1 6 i 6 p+q) is a basis with ei even or odd according as i 6 p or p+1 6 i 6 p+q,
we denote it by Ap|q, and define its rank as p | q. Thus

Ap|q = (Ae1 ⊕ · · · ⊕ Aep)︸ ︷︷ ︸
even

⊕ (Aep+1 ⊕ · · · ⊕ Aep+q)︸ ︷︷ ︸
odd

.

• Let T (V) be the tensor algebra of a super vector space V . Let us denote by I a two-
sided ideal in T (V) which is generated by the following elements: b⊗a−(−1)|a||b|a⊗b
for all a, b ∈ V . We define the symmetric algebra of V to be the factor algebra
Sym(V) := T (V)/I. Obviously T (V) inherits a Z2-grading and so does the factor
by the Z2-graded ideal I.
In a sense the symmetric algebra Sym(V) is a super-commutative algebra of algebraic
(polynomial) functions on an affine super vector space V .
Moreover, one has: Sym(V) = Sym(V)0⊕Sym(V)1 = T (V)0/I0⊕T (V)1/I1. Hence if
V = V0 then Sym(V) is the usual symmetric algebra on V0 (which is a commutative
polynomial algebra) and if V = V1 then Sym(V) is the exterior algebra, which is
clearly Z2-graded and thus super-commutative.

• The concept of a manifold generalizes so that the functions can take values in a
commutative super-algebra.
The structure of a super-manifold on a manifold M with a structure sheaf OM is
defined by a sheaf of commutative super-algebras F over the sheaf OM , whereby
any point p ∈ M possesses a neighborhood U such that the ringed space (U, F|U)
is isomorphic to (U, (OM |U)⊗

∧
(Am)), where

∧
(Am) is the exterior algebra with m

odd generators. The pair DimM | m is called the dimension of the super-manifold.

7.4. COHOMOLOGY RINGS OF FINITE P -GROUPS 135

Analytic super-manifolds are defined in the same way. The differentiable (or analytic)
super-manifolds form a category whose morphisms are the morphisms of ringed spaces
that are even on the structure sheaves.
A super-manifold of the form (U,OU ⊗

∧
(Am)), where (U,OU) is an open sub-

manifold in An, is called a super-domain of dimension n | m. Note that every
super-manifold is locally isomorphic to a super-domain.

7.4 Cohomology rings of finite p-groups

Let p be a prime integer and G be a finite p-group (i.e., |G| = pr). The cohomology ring
H∗(G;Fp) is graded commutative finitely presented Fp-algebra, determined by G up to an
isomorphism.

Cohomology rings of finite p-groups with coefficients in Fp can be computed by constructing
degree-wise approximations of the cohomology ring until approximation is isomorphic to the
actual cohomology ring (which can be checked using the Benson’s completeness criterion).
This basic approach (which is due to Jon Carlson) The recent implementation of the
approach by David Green and Simon King (in the DFG project GR 1585/4-1: http:
//users.minet.uni-jena.de/~king/cohomology/index.html) is based on the broad range of
free open source Computer Algebra software that is accessible with the free open-source
mathematics software system Sage (cf. [121]), which, in particular, includes GAP (cf.
[54]) and Singular.

They have successfully used Singular for all computations in graded commutative al-
gebras (i.e. the Singular kernel framework, which has been developed within and due
to this thesis): computing a Gröbner basis of the relation ideal, detecting relations, par-
tially for constructing simultaneous lifts of the subgroup Dickson invariants, for detecting
filter-regular systems of parameters and for computing their filter degree type.

For further information we refer the interested reader to [62], http://users.minet.uni-
jena.de/~king/cohomology/background.html, testing Benson’s regularity conjecture: http:
//www.math.rwth-aachen.de:8001/Nikolaus2007/abstracts/green2007.pdf, the Cohomol-
ogy of finite p-Groups: http://hamilton.nuigalway.ie/DeBrunCentre/SecondWorkshop/
simon.pdf.

http://users.minet.uni-jena.de/~king/cohomology/index.html
http://users.minet.uni-jena.de/~king/cohomology/index.html
http://users.minet.uni-jena.de/~king/cohomology/background.html
http://users.minet.uni-jena.de/~king/cohomology/background.html
http://www.math.rwth-aachen.de:8001/Nikolaus2007/abstracts/green2007.pdf
http://www.math.rwth-aachen.de:8001/Nikolaus2007/abstracts/green2007.pdf
http://hamilton.nuigalway.ie/DeBrunCentre/SecondWorkshop/simon.pdf
http://hamilton.nuigalway.ie/DeBrunCentre/SecondWorkshop/simon.pdf

136 CHAPTER 7. APPLICATIONS

Chapter 8

Conclusion and Future Work

Using our non-commutative framework it is now easy to develop further extensions, say
for Clifford algebras or remove the limitation about a single block of non-commutative
variables for SCA.

At the moment the only systems, known to have facilities for computing sheaf cohomolo-
gies via BGG are M2 (the very first system to support these computations), Singular (at
the beginning via Singular:Plural and later via our implementation of graded commu-
tative algebras) and recently Magma and the GAP package HomAlg. The later relies on
a CAS such as Singular, M2 or Magma to do the actual computations. Up until now
Macaulay2 was the leader in this special computations. Our tests/experiments with sheaf
cohomology computations revealed a number of bottlenecks in the Singular implementa-
tion by W. Decker, Ch. Lossen and G. Pfister and with our tweaks (in both commutative
and non-commutative parts) Singular has become generally faster than Macaulay2 on
our set of tests.

Magma has got exterior algebras specially implemented very recently. Unfortunately, our
experience with Magma showed that their implementation is still not usable due to seg-
mentation faults. And thus, can not provide timing for Magma at the moment.

At the beginning of our experience with HomAlg (with Singular as a backend), it was quit
a way behind both Singular and M2. But due to our cooperation with its authors, esp.
with Dr. Mohamed Barakat, it was possible to boost its performance so that it has become
the leader. It should be noted that HomAlg has somewhat more general implementation
of Tate resolution than we used to benchmark Singular and M2. Moreover, HomAlg
computes graded resolutions via iterated syzygies over graded commutative algebras.

Our short experience with HomAlg showed that while being as abstract as possible it can be
easily tweaked and obtain excellent performance. In order to implement the algorithm (cf.
[39]) for higher direct images of sheaves we need a much better concept of (multi-)gradings
in Singular. Therefore it would be better to improve the HomAlg’s Singular-related
functionality rather than implement this algorithm in Singular script language, which is
rather inconvenient for such abstract designs.

137

138 CHAPTER 8. CONCLUSION AND FUTURE WORK

Research and implement more involved algorithms for syzygies and resolutions over graded
commutative algebras using the developed framework (our generalized Schreyer ordering
in Singular).

We have developed a framework for experiments with Schreyer induced orderings in general
non-commutative setting and prototype implementation of Algorithm 5.4.3 which outper-
formed the Singular’s kernel implementation on several tests, despite being written in
Singular script language. Further we are going to experiment with the advanced free res-
olution Algorithm 5.4.4 using our framework.

We are further interested in investigating relations between our approach to syzygy and
Schreyer resolution computations and the results (specific criteria) from [47] and [20].

List of Algorithms

2.2.1 redLeftNF(f, F) . 22

3.3.1 LeftNF(f, F) . 39

3.4.1 LeftGB(F) . 42

4.4.1 LeftNFMora(f, F) . 57

5.1.1 SYZ(F) . 64

5.1.2 RESOLUTION(F, l) . 66

5.4.1 LEADING_SYZYGIES(Λ) . 77

5.4.2 LeftNF(ρ′, Φ) . 78

5.4.3 BBA_SYZ(Φ) . 79

5.4.4 LASCALA_RESOLUTION(F,Λ?) . 82

5.4.5 NEW_SYZYGIES(Π, ρ,Ξ) . 83

139

140 LIST OF ALGORITHMS

Bibliography

[1] Adams, W. W., and Loustaunau, P. An introduction to Gröbner bases. Graduate
Studies in Mathematics. 3. Providence, RI: American Mathematical Society (AMS).,
1994.

[2] Anderson, F. W., and Fuller, K. R. Rings and categories of modules, sec-
ond ed., vol. 13 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1992.

[3] Anick, D. J. Non-commutative graded algebras and their Hilbert series. J. Algebra
78 (1980), 120–140.

[4] Anick, D. J. On the homology of associative algebras. Trans. Amer. Math. Soc.
296, 2 (1986), 641–659.

[5] Apel, J. Grobnerbasen in nichtkommutativen Algebren und ihre Anwendung. Dis-
sertation, University of Leipzig, Leipzig, 1988.

[6] Apel, J. Computational ideal theory in finitely generated extension rings. Theor.
Comput. Sci. 244, 1-2 (2000), 1–33.

[7] Bachmann, O., and Gräbe, H.-G. The SymbolicData Project: Towards an
Electronic Repository of Tools and Data for Benchmarks of Computer Algebra Soft-
ware. In Reports On Computer Algebra, no. 27. Centre for Computer Algebra, Uni-
versity of Kaiserslautern, Jan 2000. http://www.mathematik.uni-kl.de/~zca.

[8] Bachmann, O., and Schönemann, H. Monomial representations of Gröbner
bases computations. Gloor, Oliver (ed.), Proceedings of the 1998 international sym-
posium on symbolic and algebraic computation, ISSAC ’98, Rostock, Germany, Au-
gust 13–15, 1998. New York, NY: ACM Press. 309-316 (1998)., 1998.

[9] Barakat, M., and Robertz, D. The homalg project – algorithmic homological
algebra. http://homalg.math.rwth-aachen.de/.

[10] Becker, T., and Weispfenning, V. Gröbner bases: a computational approach
to commutative algebra. In cooperation with Heinz Kredel. Graduate Texts in Math-
ematics. 141. New York: Springer-Verlag. xxii, 574 p. , 1993.

141

http://www.mathematik.uni-kl.de/~zca
http://homalg.math.rwth-aachen.de/

142 BIBLIOGRAPHY

[11] Beilinson, A. Coherent sheaves on P n and problems of linear algebra. Funct. Anal.
Appl. 12 (1979), 214–216.

[12] Beilinson, A., Ginzburg, V., and Soergel, W. Koszul duality patterns in
representation theory. J. Amer. Math. Soc. 9, 2 (1996), 473–527.

[13] Berezin, F. A. The mathematical basis of supersymmetric field theories. Soviet J.
Nucl. Phys. 29 (1979), 857–866.

[14] Bergman, G. M. The diamond lemma for ring theory. Adv. Math. 29 (1977),
178–218.

[15] Bernshtejn, I., Gel’fand, I., and Gel’fand, S. Algebraic bundles over P n and
problems of linear algebra. Funct. Anal. Appl. 12 (1979), 212–214.

[16] Buchberger, B. Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. Dissertation, University
of Innsbruck, Innsbruck, 1965.

[17] Buchberger, B. A criterion for detecting unnecessary reductions in the construc-
tion of Gröbner-bases. In Symbolic and algebraic computation (EUROSAM ’79, In-
ternat. Sympos., Marseille, 1979), vol. 72 of Lecture Notes in Comput. Sci. Springer,
Berlin, 1979, pp. 3–21.

[18] Buchberger, B. Gröbner-Bases: An Algorithmic Method in Polynomial Ideal The-
ory. Reidel Publishing Company, Dodrecht - Boston - Lancaster, 1985.

[19] Bueso, J., Gómez-Torrecillas, J., and Verschoren, A. Algorithmic methods
in non-commutative algebra, vol. 17 of Mathematical Modelling: Theory and Appli-
cations. Kluwer Academic Publishers, Dordrecht, 2003. Applications to quantum
groups.

[20] Caboara, M., Kreuzer, M., and Robbiano, L. Efficiently computing minimal
sets of critical pairs. J. Symb. Comput. 38, 4 (2005), 1169–1190.

[21] Capani, A., Dominicis, G. D., Niesi, G., and Robbiano, L. Computing min-
imal finite free resolutions. J. Pure Appl. Algebra 117/118 (1997), 105–117. Algo-
rithms for algebra (Eindhoven, 1996).

[22] Chou, S.-C., and Gao, X.-S. Automated reasoning in geometry. In Robinson and
Voronkov [109], pp. 707–749.

[23] Chupaeva, I. Automated proving and analysis of geometric theorems in coordinate-
free form by using the anticommutative Gröbner basis method. Fundam. Prikl. Mat.
9, 3 (2003), 213–228.

BIBLIOGRAPHY 143

[24] Cohn, P. M. Free rings and their relations. Academic Press, London, 1971. London
Mathematical Society Monographs, No. 2.

[25] Cohn, P. M. Rings of fractions. Amer. Math. Monthly 78 (1971), 596–615.

[26] Cojocaru, S., Podoplelov, A., and Ufnarovski, V. Non-commutative gröb-
ner bases and anick’s resolution. Dräxler, P. (ed.) et al., Computational methods for
representations of groups and algebras. Proceedings of the Euroconference in Essen,
Germany, April 1-5, 1997. Basel: Birkhäuser. Prog. Math. 173, 139-159 (1999)., 1999.

[27] Cox, D., Little, J., and O’Shea, D. Ideals, varieties, and algorithms. An intro-
duction to computational algebraic geometry and commutative algebra. Undergradu-
ate Texts in Mathematics. New York: Springer-Verlag. xi, 513 p. , 1992.

[28] Decker, W., Ein, L., and Schreyer, F.-O. Construction of surfaces in P 4. J.
Algebr. Geom. 2, 2 (1993), 185–237.

[29] Decker, W., and Eisenbud, D. Sheaf algorithms using the exterior algebra. In
Computations in algebraic geometry with Macaulay 2 [44], pp. 215–249.

[30] Decker, W., and Lossen, C. Computing in algebraic geometry. A quick start us-
ing SINGULAR. Algorithms and Computation in Mathematics 16. Berlin: Springer;
New Delhi: Hindustan Book Agency. xvi, 327 p., 2006.

[31] Decker, W., Lossen, C., Pfister, G., and Motsak, O. sheafcoh.lib. a
Singular library for computing sheaf cohomology.

[32] Decker, W., and Schreyer, F.-O. Varieties, groebner bases, and algebraic
curves. To appear.

[33] Dickson, L. E. Finiteness of the Odd Perfect and Primitive Abundant Numbers
with n Distinct Prime Factors. Amer. J. Math. 35, 4 (1913), 413–422.

[34] Eisenbud, D. Commutative algebra. With a view toward algebraic geometry. Grad-
uate Texts in Mathematics. 150. Berlin: Springer-Verlag. xvi, 785 p. , 1995.

[35] Eisenbud, D. An exterior view of modules and sheaves. In Advances in algebra and
geometry (Hyderabad, 2001). Hindustan Book Agency, New Delhi, 2003, pp. 209–216.

[36] Eisenbud, D., Fløystad, G., and Schreyer, F.-O. Sheaf cohomology and free
resolutions over exterior algebras. Trans. Am. Math. Soc. 355, 11 (2003), 4397–4426.

[37] Eisenbud, D., Popescu, S., Schreyer, F.-O., and Walter, C. Exterior al-
gebra methods for the minimal resolution conjecture. Duke Math. J. 112, 2 (2002),
379–395.

144 BIBLIOGRAPHY

[38] Eisenbud, D., Popescu, S., and Yuzvinsky, S. Hyperplane arrangement co-
homology and monomials in the exterior algebra. Trans. Am. Math. Soc. 355, 11
(2003), 4365–4383.

[39] Eisenbud, D., and Schreyer, F.-O. Relative Beilinson Monad and direct image
for families of coherent sheaves. Trans. Am. Math. Soc. 360, 10 (2008), 5367–5396.

[40] Eisenbud, D., and Schreyer, F.-O. Betti numbers of graded modules and co-
homology of vector bundles. J. Amer. Math. Soc. 22, 3 (2009), 859–888.

[41] Eisenbud, D., and Schreyer, F.-O. Cohomology of coherent sheaves and series of
supernatural bundles. http://www.citebase.org/abstract?id=oai:arXiv.org:0902.
1594, 2009.

[42] Eisenbud, D., Schreyer, F.-O., and Weyman, J. Resultants and Chow forms
via exterior syzygies. J. Amer. Math. Soc. 16, 3 (2003), 537–579 (electronic).

[43] Eisenbud, D., and Weyman, J. Fitting’s lemma for Z/2-graded modules. Trans.
Am. Math. Soc. 355, 11 (2003), 4451–4473.

[44] Eisenbud, D. e., Grayson, D. R. e., Stillman, M. e., and Sturmfels, B. e.
Computations in algebraic geometry with Macaulay 2. Algorithms and Computation
in Mathematics. 8. Berlin: Springer. xiii, 329 p. , 2002.

[45] El From, Y. On the algebras of solvable type. (Sur les algèbres de type résoluble.).
Afrika Mat. (3) 4 (1994), 1–10.

[46] Faugère, J.-C. A new efficient algorithm for computing Gröbner bases (F4). J.
Pure Appl. Algebra 139, 1-3 (1999), 61–88.

[47] Faugère, J.-C. A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). Mora, Teo (ed.), ISSAC 2002. Proceedings of the 2002 in-
ternational symposium on symbolic and algebraic computation, Lille, France, July
07–10, 2002. New York, NY: ACM Press. 75-83 (2002)., 2002.

[48] Fearnley-Sander, D. Affine geometry and exterior algebra. Houston J. Math. 6
(1980), 53–58.

[49] Fearnley-Sander, D. Hermann Grassmann and the prehistory of universal alge-
bra. Am. Math. Mon. 89 (1982), 161–166.

[50] Fearnley-Sander, D. Plane Euclidean reasoning. Gao, Xiao-Shan (ed.) et al.,
Automated deduction in geometry. 2nd international workshop, ADG ’98, Beijing,
China, August 1-3, 1998. Proceedings. Berlin: Springer. Lect. Notes Comput. Sci.
1669, 86-110 (1999)., 1999.

http://www.citebase.org/abstract?id=oai:arXiv.org:0902.1594
http://www.citebase.org/abstract?id=oai:arXiv.org:0902.1594

BIBLIOGRAPHY 145

[51] Fearnley-Sander, D., and Stokes, T. Area in Grassmann geometry. In Auto-
mated deduction in geometry. International workshop, Toulouse, France, September
27–29, 1996. Proceedings. [127].

[52] Floystad, G. Describing coherent sheaves on projective spaces via koszul duality.
http://www.citebase.org/abstract?id=oai:arXiv.org:math/0012263, 2000.

[53] Fløystad, G. Koszul duality and equivalences of categories. Trans. Amer. Math.
Soc. 358, 6 (2006), 2373–2398 (electronic).

[54] The GAP Group. GAP – Groups, Algorithms, and Programming, 2008.

[55] García Román, M., and García Román, S. Gröbner bases and syzygies on
bimodules over PBW algebras. J. Symb. Comput. 40, 3 (2005), 1039–1052.

[56] Gebauer, R., and Möller, H. On an installation of Buchberger’s algorithm. J.
Symb. Comput. 6, 2-3 (1988), 275–286.

[57] Gelfand, S., and Manin, Y. Methods of homological algebra. Transl. from the
Russian. 2nd ed. Springer Monographs in Mathematics. Berlin: Springer. xx, 372 p.,
2003.

[58] Gianni, P. M., Ed. Symbolic and Algebraic Computation, International Symposium
ISSAC’88, Rome, Italy, July 4-8, 1988, Proceedings (1989), vol. 358 of Lecture Notes
in Computer Science, Springer.

[59] Goodearl, K. R., and Warfield, R. An introduction to noncommutative Noethe-
rian rings. London Mathematical Society Student Texts, 16. Cambridge ect.: Cam-
bridge University Press. xvii, 303 p. , 1989.

[60] Grassmann, H. Die Ausdehnungslehre. Berlin, 1862.

[61] Grayson, D. R., and Stillman, M. E. Macaulay2, a software system for research
in algebraic geometry. Available at http://www.math.uiuc.edu/Macaulay2/.

[62] Green, D. J. Gröbner bases and the computation of group cohomology. Lecture
Notes in Mathematics 1828. Berlin: Springer. xi, 138 p. , 2003.

[63] Green, E., Mora, T., and Ufnarovski, V. The non-commutative Gröbner
freaks. In Symbolic rewriting techniques (Ascona, 1995), vol. 15 of Progr. Comput.
Sci. Appl. Logic. Birkhäuser, Basel, 1998, pp. 93–104.

[64] Green, E. L. Noncommutative gröbner bases, and projective resolutions. Dräxler,
P. (ed.) et al., Computational methods for representations of groups and alge-
bras. Proceedings of the Euroconference in Essen, Germany, April 1-5, 1997. Basel:
Birkhäuser. Prog. Math. 173, 29-60 (1999)., 1999.

http://www.citebase.org/abstract?id=oai:arXiv.org:math/0012263
http://www.math.uiuc.edu/Macaulay2/

146 BIBLIOGRAPHY

[65] Green, E. L. Multiplicative bases, gröbner bases, and right gröbner bases. J. Symb.
Comput. 29, 4-5 (2000), 601–623.

[66] Greuel, G.-M., and Pfister, G. Advances and improvements in the theory of
standard bases and syzygies. Arch. Math. 66, 2 (1996), 163–176.

[67] Greuel, G.-M., and Pfister, G. A Singular introduction to commutative alge-
bra. With contributions by Olaf Bachmann, Christoph Lossen and Hans Schönemann.
2nd extended ed. Berlin: Springer. xx, 689 p. , 2007.

[68] Greuel, G.-M., Pfister, G., and Schönemann, H. Singular 3.0. A Com-
puter Algebra System for Polynomial Computations, Centre for Computer Algebra,
University of Kaiserslautern, 2005. http://www.singular.uni-kl.de.

[69] Grosshans, F. D., Rota, G.-C., and Stein, J. A. Invariant theory and superal-
gebras, vol. 69 of CBMS Regional Conference Series in Mathematics. Published for
the Conference Board of the Mathematical Sciences, Washington, DC, 1987.

[70] Hartley, D., and Tucker, R. W. A constructive implementation of the Cartan-
Kähler theory of exterior differential systems. J. Symbolic Comput. 12, 6 (1991),
655–667.

[71] Hartley, D., and Tuckey, P. Xideal, gröbner bases for exterior algebra (reduce
library package), 1993. http://www.reduce-algebra.com/docs/xideal.pdf.

[72] Hartley, D., and Tuckey, P. Gröbner bases in clifford and grassmann algebras.
J. Symb. Comput. 20, 2 (1995), 197–205.

[73] Hartshorne, R. Algebraic geometry. Graduate Texts in Mathematics. 52. New
York-Heidelberg-Berlin: Springer-Verlag. XVI, 496 p. , 1977.

[74] Heyworth, A. One-sided noncommutative gröbner bases with applications to com-
puting green’s relations. J. Algebra 242, 2 (2001), 401–416.

[75] Jørgensen, P. Linear free resolutions over non-commutative algebras. Compos.
Math. 140, 4 (2004), 1053–1058.

[76] Kandri-Rody, A., and Weispfenning, V. Noncommutative Gröbner bases in
algebras of solvable type. J. Symbolic Comput. 9, 1 (1990), 1–26.

[77] Kobayashi, Y. Gröbner bases of associative algebras and the hochschild cohomol-
ogy. Trans. Am. Math. Soc. 357, 3 (2005), 1095–1124.

[78] Kredel, H. Solvable Polynomial Rings. Dissertation, Universität Passau, Passau,
1992.

[79] La Scala, R. A computational approach to minimal free resolutions. Ph.d, Univer-
sity of Pisa, 1994. Draft version in English, via private communication.

http://www.singular.uni-kl.de
http://www.reduce-algebra.com/docs/xideal.pdf

BIBLIOGRAPHY 147

[80] La Scala, R., and Levandovskyy, V. Letterplace ideals and non-commutative
Gröbner bases. J. Symbolic Comput. 44, 10 (2009), 1374–1393.

[81] La Scala, R., and Stillman, M. Strategies for computing minimal free resolu-
tions. J. Symb. Comput. 26, 4 (1998), 409–431.

[82] Lam, T. Lectures on modules and rings. Graduate Texts in Mathematics. 189. New
York, NY: Springer. xxiii, 557 p. , 1999.

[83] Lam, T. A first course in noncommutative rings. 2nd ed. Graduate Texts in Math-
ematics. 131. New York, NY: Springer. xix, 385 p. , 2001.

[84] Lang, S. Algebra. 3rd revised ed. Graduate Texts in Mathematics. 211. New York,
NY: Springer. xv, 914 p. , 2002.

[85] Lazard, D. Gröbner bases, Gaussian elimination and resolution of systems of
algebraic equations. Computer algebra, EUROCAL ’83, Proc. Conf., London 1983,
Lect. Notes Comput. Sci. 162, 146-156 (1983)., 1983.

[86] Levandovskyy, V. Non-commutative Computer Algebra for polynomial algebras:
Gröbner bases, applications and implementation. Dissertation, Technische Univer-
sität Kaiserslautern, Kaiserslautern, 2005.

[87] Levandovskyy, V. PBW bases, non-degeneracy conditions and applications. Buch-
weitz, Ragnar-Olaf (ed.) et al., Representations of algebras and related topics. Pro-
ceedings from the 10th international conference, ICRA X, Toronto, Canada, July
15–August 10, 2002. Dedicated to V. Dlab on the occasion of his 70th birthday.
Providence, RI: American Mathematical Society (AMS). Fields Institute Communi-
cations 45, 229-246 (2005)., 2005.

[88] Levandovskyy, V., Lobillo, F., Rabelo, C., and Motsak, O. nctools.lib.
Singular library: general tools for noncommutative algebras.

[89] Li, H. Noncommutative Gröbner bases and filtered-graded transfer. Lecture Notes
in Mathematics 1795. Berlin: Springer. ix, 197 p. , 2002.

[90] Mac Lane, S. Homology. Die Grundlehren der mathematischen Wissenschaften,
Bd. 114. Academic Press Inc., Publishers, New York, 1963.

[91] Madlener, K., and Reinert, B. Computing Gröbner bases in monoid and group
rings. Bronstein, Manuel (ed.), ISSAC ’93. Proceedings of the 1993 international
symposium on Symbolic and algebraic computation, Kiev, Ukraine, July 6–8, 1993.
Baltimore, MD: ACM Press. 254-263 (1993)., 1993.

[92] Manin, Y. I. Gauge field theory and complex geometry. Transl. from the Russian by
N. Koblitz and J. R. King. With an appendix by S. Merkulov. 2nd ed. Grundlehren
der Mathematischen Wissenschaften. 289. Berlin: Springer. xii, 346 p. , 1997.

148 BIBLIOGRAPHY

[93] Martin, S. P. A supersymmetry primer. http://www.citebase.org/abstract?id=
oai:arXiv.org:hep-ph/9709356, 1997.

[94] McConnell, J., and Robson, J. Noncommutative Noetherian rings. With the
cooperation of L. W. Small. Reprinted with corrections from the 1987 original. Grad-
uate Studies in Mathematics. 30. Providence, RI: American Mathematical Society
(AMS). xx, 636 p. , 2001.

[95] Möller, H. M. A reduction strategy for the taylor resolution. In EUROCAL ’85:
Research Contributions from the European Conference on Computer Algebra-Volume
2 (1985), Springer-Verlag, pp. 526–534.

[96] Möller, H. M., Mora, T., and Traverso, C. Gröbner bases computation using
syzygies. In ISSAC (1992), pp. 320–328.

[97] Mora, F. Gröbner bases for non-commutative polynomial rings. Algebraic algo-
rithms and error-correcting codes, Proc. 3rd Int. Conf., Grenoble/France 1985, Lect.
Notes Comput. Sci. 229, 353-362 (1986)., 1986.

[98] Mora, T. Groebner bases in non-commutative algebras. In Gianni [58], pp. 150–161.

[99] Mora, T. An introduction to commutative and noncommutative Gröbner bases.
Theor. Comput. Sci. 134, 1 (1994), 131–173.

[100] Morier-Genoud, S., and Ovsienko, V. Simple graded commutative algebras.
http://www.citebase.org/abstract?id=oai:arXiv.org:0904.2825, 2009.

[101] Noether, E., and Schmeidler, W. Moduln in nichtkommutativen Bereichen,
insbesondere aus Differential- und Differenzenausdrücken. Math. Z. 8, 1-2 (1920),
1–35.

[102] Nüßler, T., and Schönemann, H. Groebner bases in algebras with zero-divisors.
Tech. rep., Fachbereich Mathematik, Universitaet Kaiserslautern, 1993. Preprint 244.

[103] Ore, O. Linear equations in non-commutative fields. Ann. of Math. (2) 32, 3 (1931),
463–477.

[104] Ore, O. Theory of non-commutative polynomials. Ann. of Math. (2) 34, 3 (1933),
480–508.

[105] Pierce, R. S. Associative algebras, vol. 88 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1982. Studies in the History of Modern Science, 9.

[106] Priddy, S. B. Koszul resolutions. Trans. Am. Math. Soc. 152 (1970), 39–60.

[107] Richman, F. Constructive aspects of noetherian rings. Proc. Am. Math. Soc. 44
(1974), 436–441.

http://www.citebase.org/abstract?id=oai:arXiv.org:hep-ph/9709356
http://www.citebase.org/abstract?id=oai:arXiv.org:hep-ph/9709356
http://www.citebase.org/abstract?id=oai:arXiv.org:0904.2825

BIBLIOGRAPHY 149

[108] Robbiano, L. Term orderings on the polynomial ring. Computer algebra, EURO-
CAL ’85, Proc. Eur. Conf., Linz/Austria 1985, Vol. 2, Lect. Notes Comput. Sci. 204,
513-517 (1985)., 1985.

[109] Robinson, J. A., and Voronkov, A., Eds. Handbook of Automated Reasoning
(in 2 volumes). Elsevier and MIT Press, 2001.

[110] Rota, G.-C., and Sturmfels, B. Introduction to invariant theory in superalge-
bras. Invariant theory and tableaux, Proc. Workshop, Minneapolis/MN (USA) 1988,
IMA Vol. Math. Appl. 19, 1-35 (1990)., 1990.

[111] Schafer, R. An introduction to nonassociative algebras. Pure and Applied Mathe-
matics, 22. A Series of Monographs and Textbooks. New York and London: Academic
Press. X, 166 p. , 1966.

[112] Schönemann, H. Algorithms in singular. In Reports On Computer Algebra, no. 02.
Centre for Computer Algebra, University of Kaiserslautern, June 1996.

[113] Schreyer, F.-O. Die berechnung von syzygien mit dem veralgemeinerten weier-
strass’chen divisionssatz. Master’s thesis, Univ. Hamburg, 1980.

[114] Schreyer, F.-O. A standard basis approach to syzygies of canonical curves. J.
Reine Angew. Math. 421 (1991), 83–123.

[115] Serre, J.-P. Faisceaux algébriques cohérents. Ann. of Math. (2) 61 (1955), 197–
278.

[116] Siebert, T. On strategies and implementations for computations of free resolutions.
In Reports On Computer Algebra, no. 08. Centre for Computer Algebra, University
of Kaiserslautern, September 1996.

[117] Siebert, T. Recursive Computation of Free Resolutions and a Generalized Koszul
Complex. In Reports On Computer Algebra, no. 28. Centre for Computer Algebra,
University of Kaiserslautern, Jan 2000.

[118] Singular Team. Singular online manual. Available at http://www.singular.uni-
kl.de/Manual/latest/index.htm.

[119] Smith, G. G. Computing global extension modules. J. Symb. Comput. 29, 4-5
(2000), 729–746.

[120] Spear, D. A constructive approach to commutative ring theory. In Proceedings of
the 1977 MACSYMA Users’ Conference, NASA CP-2012 (1977), pp. 369–376.

[121] Stein, W., et al. Sage Mathematics Software. The Sage Development Team, 2009.

http://www.singular.uni-kl.de/Manual/latest/index.htm
http://www.singular.uni-kl.de/Manual/latest/index.htm

150 BIBLIOGRAPHY

[122] Stillman, M. Computing with sheaves and sheaf cohomology in algebraic
geometry: preliminary version. http://math.arizona.edu/~swc/aws/notes/files/
06StillmanNotes.pdf, February 2006.

[123] Stokes, T. Gröbner bases in exterior algebra. J. Automat. Reason. 6, 3 (1990),
233–250.

[124] Tchoupaeva, I. Analysis of geometrical theorems in coordinate-free form by using
anticommutative Gröbner bases method. Winkler, Franz (ed.), Automated deduction
in geometry. 4th international workshop, ADG 2002, Hagenberg Castle, Austria,
September 4–6, 2002. Revised papers. Berlin: Springer. Lecture Notes in Computer
Science 2930. Lecture Notes in Artificial Intelligence, 178-193 (2004)., 2004.

[125] Varadarajan, V. S. Supersymmetry for mathematicians: an introduction. Courant
Lecture Notes in Mathematics 11. Providence, RI: American Mathematical Society
(AMS); New York, NY: Courant Institute of Mathematical Sciences. vi, 300 p. , 2004.

[126] Vasconcelos, W. V. Computational methods of commutative algebra and algebraic
geometry. With chapters by David Eisenbud, Daniel R. Grayson, Jürgen Herzog and
Michael Stillman. 3rd printing. Algorithms and Computation in Mathematics 2.
Berlin: Springer. xiii, 408 p , 2004.

[127] Wang, D. Automated deduction in geometry. International workshop, Toulouse,
France, September 27–29, 1996. Proceedings. Lecture Notes in Computer Science.
Lecture Notes in Artificial Intelligence. 1360. Berlin: Springer. vii, 235 p. , 1998.

[128] Wang, D. Clifford algebraic calculus for geometric reasoning with application
to computer vision. In Automated deduction in geometry. International workshop,
Toulouse, France, September 27–29, 1996. Proceedings. [127].

http://math.arizona.edu/~swc/aws/notes/files/06StillmanNotes.pdf
http://math.arizona.edu/~swc/aws/notes/files/06StillmanNotes.pdf

Wissenschaftlicher Werdegang

Name: Oleksandr Motsak

Geburtstag, -ort: 07. April 1982 in Kiew, Ukraine

1999 Abitur an dem Kiewer naturwissenschaftlichen Lyzeum 145.

1999 – 2003 Studium der Mathematik an der

Kiewer Staatlichen Taras-Schewtchenko-Universität.

2003 Diplom des Bakkalaureus in Mathematik von der

Kiewer Staatlichen Taras-Schewtchenko-Universität.

2003 – 2006 Studium der Matematik mit Nebenfach Informatik

an der Technischen Universität Kaiserslautern,

im Rahmen des Programms “Mathematics International”.

Studienschwerpunkt: algebraische Geometrie und Computeralgebra.

2006 Diplom in Mathematik von der Technischen Universität Kaiserslautern.

seit 2006 Doktorand in der AG “Algebra, Geometrie und Computeralgebra”

des Fachbereiches Mathematik der Technischen Universität Kaiserslautern.

Scientific Career

Name: Oleksandr Motsak

Date/Place of Birth: 07. April 1982 in Kyiv, Ukraine

1999 Finished Kyiv Lyceum of Natural Sciences No. 145

1999 – 2003 Study of Mathematics at the

Kyiv State Taras Shevchenko University

2003 Bachelor degree in Mathematics from

Kyiv State Taras Shevchenko University

2003 – 2006 Study of Mathematics with minor in Computer Science

at the Technische Universität Kaiserslautern,

within the "Mathematics International" program.

Specialization: algebraic geometry and computer algebra.

2006 Diploma (and master’s degree) in Mathematics from

the Technische Universität Kaiserslautern.

from 2006 Ph.D. student in the group “Algebra, Geometry and Computer Algebra”

at the Technische Universität Kaiserslautern.

	Preface
	Algebraic preliminaries and notations
	Algebras over fields
	Modules over algebras
	Noetherian modules
	Free modules over algebras
	Graded structures
	Tensor algebra
	Binary relations

	Computer Algebra preliminaries
	Standard monomials and monomial orderings
	G-algebras
	Definitions of Gröbner Bases in quotient algebras
	Usual approach to computations in factor algebras

	Gröbner bases in graded commutative algebras
	Green's approach
	Preliminaries
	Direct approach
	Characterizations of Gröbner Bases
	Criteria
	Kernel and preimage of a graded homomorphism

	Localization
	The commutative localization
	Non-commutative localization
	Universal construction
	Ore construction

	Central localization
	Rings Associated to Monomial Orderings

	Syzygies and free resolutions
	Computer Algebra for modules
	Assumptions on orderings
	Schreyer ordering and syzygies of leading terms
	Computation of a free resolution

	Graded commutative algebras in Singular
	High level interface - users manual
	Product of monomials in graded commutative algebras
	Detection of a graded commutative structure
	A bit about Singular internals
	Implementing an induced ordering after Schreyer

	Applications
	Projective Geometry
	Introduction to sheaf cohomology
	Exterior algebra method for sheaf cohomology computation
	Sheaf cohomology: benchmarks

	Coordinate-free verification of affine geometry theorems
	Super-symmetry
	Cohomology rings of finite p-groups

	Conclusion and Future Work
	List of Algorithms
	Bibliography

