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Abstract

For many years real-time task models have focused the timing constraints on execu-
tion windows de�ned by earliest start times and deadlines for feasibility. However, the
utility of some application may vary among scenarios which yield correct behavior, and
maximizing this utility improves the resource utilization. For example, target sensitive
applications have a target point where execution results in maximized utility, and an
execution window for feasibility. Execution around this point and within the execution
window is allowed, albeit at lower utility. The intensity of the utility decay accounts for
the importance of the application. Examples of such applications include multimedia
and control; multimedia application are very popular nowadays and control applications
are present in every automated system.
In this thesis, we present a novel real-time task model which provides for easy abstrac-

tions to express the timing constraints of target sensitive real-time (RT) applications: the
gravitational task model. This model uses a simple gravity pendulum (or bob pendulum)
system as a visualization model for trade-o�s among target sensitive RT applications.
We consider jobs as objects in a pendulum system, and the target points as the cen-
tral point. Then, the equilibrium state of the physical problem is equivalent to the best
compromise among jobs with con�icting targets. Analogies with well-known systems are
helpful to �ll in the gap between application requirements and theoretical abstractions
used in task models. For instance, the so-called nature algorithms use key elements of
physical processes to form the basis of an optimization algorithm [Carnahan 01]. Exam-
ples include the knapsack problem, traveling salesman problem, ant colony optimization,
and simulated annealing.
We also present a few scheduling algorithms designed for the gravitational task model

which ful�ll the requirements for on-line adaptivity. The scheduling of target sensitive
RT applications must account for timing constraints, and the trade-o� among tasks
with con�icting targets. Our proposed scheduling algorithms use the equilibrium state
concept to order the execution sequence of jobs, and compute the deviation of jobs from
their target points for increased system utility. The execution sequence of jobs in the
schedule has a signi�cant impact on the equilibrium of jobs, and dominates the complex-
ity of the problem � the optimum solution is Non-deterministic Polynomial-time hard
(NP-hard) [Chen 96]. We show the e�cacy of our approach through simulations results
and 3 target sensitive RT applications enhanced with the gravitational task model.

i





�Rapadura é doce, mas não é mole não!�
English translation: Rapadura1 is sweet, but isn't soft!

� Brazilian Proverb

1Rapadura is a form of dried sugarcane juice used in some brazilian regions as sweetener or as candy.





Preface

These are one of my �rst lines of text in this thesis, and ironically, the ones that I write
last. Actually, I believe most students do the same. We students make so much e�ort
to put our work together into a thesis, that, in the end, the preface seems the least
important. Yet, I am sure that many people just open a thesis to read the preface, and
then complain �Why didn't you mention me?!�. The pressure on me as I write these
words is comparable to the pressure of writing the whole thesis. However, before the
acknowledgments, I will spend a few words telling about my experience doing my Ph.D.
at Technische Universität Kaiserslautern.
I started my Ph.D. at the age of 23, and until then, I had never lived away from my

grandparents, who raised me up and deserve all my gratitude. So, you might imagine
that the beginning was very tough, as I had to learn to clean, to cook, to do laundry,
etc. Even more importantly, I had to be responsible by myself: wake up early in the
morning, keep track of appointments, be on time to take the trains and �ights (these
are tough ones!!!), and many more. These were the very �rst things I had to learn as a
Ph.D. student, and surprisingly, when I had to struggle the most in order to succeed.
The experience of living alone and in Europe contributed a lot to my personal devel-

opment. I could enjoy traveling around, making new friends, learning a new language
(german) and improving my english and spanish (not to mention all the funny stories
that go beyond the scope of this preface). I am particularly thankful for having the
opportunity to interact with diverse cultures in the international environment that the
university o�ers.
Professionally, I had the opportunity to work in big research projects which involved

several industrial and academic partners from the whole Europe. I also had the chance to
meet renowned researchers, and to attend and present my work in premier international
conferences. Most importantly, the guidance of my supervisor Prof. Gerhard Fohler was
crucial for my professional success. I am thankful for his e�ort to explore my potential
to the limit, and turning me into a good researcher. Notably, our best paper award in
ECRTS'08 (a premier conference in real-time systems) is a priceless achievement.
Of course, my professional success also depends on the quality of my private life.

Therefore, I am thankful to all my friends who were always there to cheer me up during
hard times, like depressive winters (remember that I am a tropical being) and lonely hol-
iday. I want to thank Christoph Ruppert and his family for welcoming me in their house
for Christmas, Gerrit Kehr for helping me in my social integration in Kaiserslautern,
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and Leon Thurner for doing his best to improve my german � learning german was an
important step for me to exploit the experience of living in Germany to the fullest. I
want to thank my american circle of friends (notably Frank, Al, Lili, Nathan, Kip, and
T.J.) for the nice moments they shared with me hanging out, partying, and traveling.
Without them living in Kaiserslautern would have been unendurable.
The experience of living abroad and working in an international university also allowed

me to meet many people, which are constantly entering and leaving such a dynamic
environment. I am glad that I have met Florian Uhl, Jose Visquert and the rest of the
spanish gang, the brazilian Gaúchos with whom I shared many trips and laughs, the
couchsurfers that very kindly welcomed me in their homes during my trips, and many
other people I had the pleasure to share a short moment of my life with. This experience
also made me recognize the value of friendship that prevails over the distance. For that,
I am grateful to Kadu, Leonardo Melo, Luan Chagas, Felipe Carone, Diana, and my
family for supporting me on hard times despite of the distance.
Writing this thesis was a hard task. Besides my supervisor Prof. Gerhard Fohler,

I thank my work colleagues (Ramon Oliver, Anand Kotra, Jens Theis, Stefan Schorr,
Rodrigo Coelho, Cuong Ngo, and Alex Neundorf) and conference reviewers for their
comments and reviews. I also thank Stephanie Jung for her constant help with the
german bureaucracy, and Markus Müller for the technical support. Specially, I thank
Julius Leite and Sanjoy Baruah for being in my defense committee, their valuable input,
and assessment of my work.
Last, but not least, I want to thank my girlfriend Maria Evotschko for her support

(by not disturbing me while I was writing this thesis). And by the way, I thank you as
well for taking your time to read this preface, but only if you at least make it to the
table of contents and check the number of pages!

Raphael Guerra
Kaiserslautern, 03.05.2011

The work presented in this thesis has been partially supported by the European
Commission under the European IST-FP6 project Framework for Real-time Embedded
Systems based on COntRacts (FRESCOR, FP6/2005/IST/5-034026), and the European
ICT-FP7 project Adaptivity and Control of Resources in Embedded Systems (ACTORS,
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Chapter I

Introduction

For many years real-time task models have focused the timing constraints on execution
windows de�ned by earliest start times and deadlines to guarantee correct system be-
havior. However, the utility of some application may vary among scenarios which yield
correct behavior, and maximizing this utility ensures that resources are used in the best
way. For example, target sensitive applications have a target point where execution
results in maximized utility, and an execution window which ensures correct system be-
havior. Execution around this point and within the execution window is allowed, albeit
at lower utility. The intensity of the utility decay depends on the importance of the
application. Examples of such applications include multimedia and control; multimedia
application are very popular nowadays and control applications are present in every
automated system.
In this thesis, we present a novel real-time task model which provides for easy ab-

stractions to express the timing constraints of target sensitive real-time applications:
the gravitational task model. This model uses an analogy with pendulum systems to
ease the understanding of its temporal abstractions by application developers, who not
always have deep knowledge of real-time scheduling theory. In other words, this model
�lls in the gap between application requirements and theoretical abstractions used in
task models. We also present a few scheduling algorithms designed for the gravita-
tional task model which ful�ll the requirements for on-line adaptivity. These algorithms
also exploit the analogy with pendulum system, which provides for clarity. Finally, we
present a few applications enhanced with the gravitational task model, and highlight
the improvement in the results.
In this chapter, we brie�y describe the background of real-time scheduling and adap-

tive real-time systems in sections I.1 and I.2, respectively. Then, we informally describe
the problem that we deal with in this thesis in section I.3, followed by the related work in
this area in section I.4, and a summary of our main contributions to the state-of-the-art
of real-time scheduling theory in section I.5. Finally, we present the outline of the rest
of the thesis in section I.6.

1
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I.1 Real-time scheduling background

Basic concepts

Real-time (RT) applications have timing constraints additionally to their logical output
for functionally correct system behavior. Control applications, which act on a physical
plant to make it behave according to a prescribed reference, are the source of the RT
constraints. These systems include safety critical, mission critical, and business criti-
cal control applications, which have stringent timing constraints � the violation of a
single deadline can jeopardize the entire system behavior, and even cause catastrophic
consequences [Bouyssounouse 05].
Consider the air-bag system of a car, which works as a cushion that prevents the

body of the passengers from hitting the dashboard upon a crash. The cushion e�ect
of the air-bag lasts for a very short period of time. Therefore, early or late activation
of the air-bag does not prevent the body of the passengers from hitting the dashboard.
In order to guarantee the safety of the passengers, the air-bag activation must happen
within a precise interval of time.
Some people erroneously associate RT systems with fast systems. However, the key

concept in a RT system is predictability ; the design of these systems consider worst-
case assumptions, and execute in predictable kernel mechanisms to meet the required
performance in all anticipated scenarios. Achieving predictability results in system
design di�erent of �conventional� computing systems. For example, approaches like
Direct Memory Access (DMA), cache, and memory management provide for improved
average performance, but insert unpredictability in the system behavior.
Real-Time Systems (RTS) commonly consist of multiple tasks that concurrently com-

pete for system resources. Therefore, RT applications demand special scheduling al-
gorithms which account for timing constraints, the so-called RT scheduling algorithms.
These algorithms de�ne a set of rules to schedule the execution of tasks at system run-
time in order to preserve timing constraint. For example, some tasks have earliest start
time and deadline constraints, which de�ne the execution window of a task. This win-
dow is the interval of time where inputs become available and the logical output results
in correct system behavior. The scheduler must guarantee that all tasks entirely execute
within their respective execution windows.

Task model

The task model is an abstraction that allows applications to express their temporal
attributes to the system scheduler. As a result, schedulers can provide for feasibility
tests, i.e. analyses to guarantee the timing constraints of the applications, and runtime
execution. These tests are typically provided for a particular scheduling scheme and
task model. Many applications have temporal characteristics that can be represented by
simple generic timing constraints. The most common temporal attributes are classi�ed
by the regularity of activations, computation times, and execution windows.
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Regularity of activations. Task can be de�ned as periodic, sporadic, or aperiodic.
�Periodic tasks consist of an in�nite sequence of identical activities, called instances
or jobs, that are regularly activated at a constant rate. The activation time of the
�rst periodic instance is called phase, and the time elapsed between two consecutive
activations is the period�[Buttazzo 04]. Examples of periodic tasks include the frame
display of video applications. A video consists of a sequence of pictures displayed at a
certain rate which provides for the perception of a moving picture. Such applications
have strictly constant inter-display time for maximum user perceived quality of video
(PQV).
Sporadic tasks also consist of an in�nite sequence of identical activities, but have

an irregular inter-activation time which is bounded by a minimum value. Consider
the tracking system of an avionic system. The tracking task is only active if there is
an object on the screen, and hence, is not active all the time. Upon activation, the
inter-activation time is bounded to the refresh rate of the screen.
Finally, aperiodic tasks consist of an in�nite sequence of identical activities with an

irregular inter-activation time which is not bounded to a minimum value. Aperiodic
tasks are usually generated by external events and activated by interrupts, e.g. coming
from sensory acquisition boards, as in an alarm system [Bouyssounouse 05].

Computation times. The design of an RTS must assume worst case scenarios, and
hence, tasks must inform their worst case execution time (WCET)) to the system for
feasibility analysis. Therefore, a lot of e�ort has been spent in analyses that determine
the worst case execution time at design time [Li 95, Puschner 00].
Some RTSs, e.g. multimedia systems, have highly variable execution times where the

worst case rarely happens. Designing such systems for the worst case scenario leads to
extreme resource under-utilization, and hence, high production cost. Therefore, some
task models allow tasks also to express stochastic properties of the execution times,
e.g. average, probabilistic distribution, etc. Such models clearly demand new forms of
feasibility analysis which provide stochastic guarantees of the temporal constraints.

Execution windows. The execution window is an interval of time bounded by an
earliest start time and a deadline. Completely executing a task within this window
results in correct system behavior; a schedule is feasible if all tasks execute within their
execution windows. The execution window is a powerful abstraction that provides for the
expression of many temporal attributes. For example, the execution window can enforce
precedence constraint among tasks � task A must execute before task B, and thus, the
execution window of A is before the execution window of B. De�ning execution windows
to enforce precedence constraints at runtime demands special analysis, as proposed
in [Orozco 97], in order to provide for feasibility. The execution window bounds the
variations in inter-completion times, i.e. the length of the interval of time between the
completion of two consecutive instances of a task. These variations are also known as
completion jitter. Other kinds of jitter, e.g. start time jitter (variations in the length of
the time interval between the start of execution of two consecutive instances of a task),
can be also bounded using execution window constraints � jitters in general are a very
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important temporal constraint in control loop applications for example.

System model

RTSs are classi�ed according to a few criteria, being the most common the type of tem-
poral constraints, and of system architecture. Regarding the temporal constraints, the
classi�cation of RTSs include the distinction between Hard Real-Time Systems (HRTS)
and Soft Real-Time Systems (SRTS).

Hard. HRTSs must preserve temporal and functional feasibility in every possible sce-
nario, hence focusing on the worst case. The schedulability or feasibility test must
guarantee that a set of tasks with parameters describing their temporal behavior will
meet their temporal constraints if executed at run-time according to the rules of the
scheduling algorithm. �The result of such a test is typically a �yes� or �no� answer in-
dicating whether feasibility will be met in the worst case or not. These schemes and
tests demand precise assumptions about task properties, which hold for the entire sys-
tem lifetime. Examples of HRTSs include digital controllers for aircraft, nuclear power
plants, missiles, and high-performance production lines.�[Bouyssounouse 05]

Soft. SRTSs manages Quality of Service (QoS). Often, task parameters and constraints
are known only partially at system design time, or can change during system runtime,
or the necessary worst case assumptions may be too costly to apply. In these cases,
standard feasibility based on �yes� or �no� types of answers are not appropriate. Rather,
SRTSs need a quantitative analysis of the performance of the scheduling algorithm for
the given task set, i.e. the QoS. This performance analysis is strictly application depen-
dent and not always trivial to derive from the schedule, which increases the challenge
for QoS management. Examples of SRTSs include multimedia computing, video games,
virtual reality, and robotic systems.

Regarding the system architecture, there are 2 relevant classi�cations: uniprocessor
vs. multiprocessor architectures, and time-triggered vs. event triggered architectures.

Uniprocessor vs. multiprocessor. In uniprocessor systems tasks compete for a sin-
gle Central Processing Unit (CPU), while multiprocessor systems o�er more CPUs. This
distinction has a big impact on the scheduling algorithm. Scheduling for uniprocessor
systems is simpler, and the intensive research focus on these systems in the past decades
have led to a mature development. As physical limitations hinder the further perfor-
mance increase necessary to meet the market demand [Fuller 11], computer architectures
exploit the deployment of multiple CPUs to further increase the system performance.
However, multiprocessor systems lack scheduling algorithms that are capable of fully
exploiting the resources' potential, hence limiting the performance.

Time-triggered vs. event-triggered. �In a time-triggered architecture all appli-
cation tasks, distributed functions and system behavior are de�ned at design time,
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and dependent only on the progression of time. Such an architecture provides for the
predictability that HRTS platforms for dependable and safety-critical applications de-
mand. The system behavior becomes easier to certi�cate, upgrade and modernize at
manageable e�ort.�1 However, these features come at the expense of reduced scheduling
�exibility and adaptivity, which may lead to resource under-utilization depending on
the applications' properties. Event-triggered architecture, as opposed to time-triggered
architectures, provide for system reaction on event occurrence, hence providing for �ex-
ibility and adaptivity. However, the incapability of de�ning those events at design time
reduces the systems' predictability.

Scheduling paradigms

Most scheduling algorithms have been developed around one of three basic schemes:
table driven, �xed priority, or dynamic priority. Depending on whether a majority of
scheduling issues are resolved before or during system run-time, they are classi�ed as
o�-line, or on-line.

O�-line scheduling. These scheduling algorithms construct a table determining which
task executes at which point in time at runtime [Ramamritham 95]. Thus, feasibility is
proven constructively, i.e., in the table, and the runtime rules are very simple, i.e., table
lookup. Therefore, o�-line methods are capable of managing distributed applications
with complex constraints, such as precedence, jitter, and end-to-end deadlines with
very low run-time overhead. On the other hand, the a priori knowledge about all
system activities and events may be hard or impossible to obtain. Moreover, its rigidity
enables deterministic behavior, but limits �exibility drastically. This approach is usually
associated with time-triggered architectures.

On-line scheduling. These methods o�er the necessary �exibility to handle partially
or non-speci�ed activities. A large number of schemes have been described in the lit-
erature. These scheduling methods can e�ciently reclaim any spare time coming from
early completions and allow handling overload situations according to actual workload
conditions. On-line schedulers assign priority to tasks, and schedule the task with the
highest priority to execute from the set of ready tasks at runtime. Therefore, the main
di�erence among such schedulers is the priority assignment rule. On-line scheduling
algorithms for RTSs can be further distinguished into two main classes according to the
priority assignment rule: �xed-priority and dynamic-priority algorithms.

• Fixed priority scheduling [Liu 73] assigns static priorities to tasks, i.e the priority
of a task does not change during system runtime. The static priority assignment
demands very simple support from the system kernel, and hence imposes low over-
head. Fixed priority scheduling is at the heart of commercial operating systems
such as VxWorks or OSE.

1from: http://www.ttagroup.org/technology/tta.htm
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• Dynamic priority scheduling [Liu 73] assigns priority to tasks based on the runtime
state of the system. Thus priorities do not follow a �xed pattern, changing dynam-
ically. Dynamic priority scheduling provides for improved resource utilization with
computationally tractable feasibility analysis and low runtime overhead. However,
priority assignment rules to handle arbitrary constraints may impose high runtime
overhead, and the system kernel must provide appropriate data structures to sup-
port priority handling operations.

Scheduling algorithms can be further classi�ed into preemptive and non-preemptive.
Preemptive scheduling algorithms may interrupt a running task in order to assign the
processor to another active task according to the scheduling policy. Preemptions provide
for improved feasibility testing, but come at the expense of more complex system kernel
support. They also impose computational overhead that may compromise the system
performance if not limited. Non-preemptive scheduling algorithms guarantees that all
tasks run to completion without interruption. These algorithms demand simple kernel
support, and have lower overhead, as the scheduler takes over only upon task completion.
However, the system may not react to events at any arbitrary point in time, hence
limiting �exibility. Furthermore, non-preemptive scheduling algorithms tend to under-
utilize system resources when compared to similar preemptive approaches.
Each of the basic scheduling paradigms is selected for a set of speci�c advantages.

However, concurrent systems running applications with heterogeneous properties often
demand advantages of di�erent schemes. Therefore, researchers have proposed combined
approaches in order to exploit the bene�ts of more than one scheme, thus meeting the
individual requirements of concurrent applications. For example, the network of avionic
systems relays mixed-criticality messages, such as system control data and multimedia
streams from entertainment applications. In this context, TTEthernet [Kopetz 05] com-
bines the concepts of time and event triggered architectures to expand classical Ethernet
with services to meet time-critical, deterministic or safety-relevant conditions.
In hierarchical scheduling [Regehr 01], a meta algorithm arbitrates between a set of

diverse scheduling algorithms. Thus, individual set of applications may arbitrate for
a speci�c scheduling algorithm capable of meeting their requirements. Furthermore,
the amount of the CPU portion can be set individually for each scheduler and applica-
tion. A meta algorithm for the general case leads to resource under-utilization though.
Therefore, many work in the literature explore specialized meta algorithms to combine
particular sets of scheduling algorithms.
Slot shifting [Fohler 95] combines o�-line and on-line scheduling in order to inte-

grate event-driven workload into an existing static table-driven schedule. O�-line, the
scheduling table is analyzed for leeway of tasks, and the amount and location of un-
used resources, which are represented via intervals and associated spare capacities. At
runtime, these resources are used to schedule additional tasks according to Earliest
Deadline First (EDF), while maintaining the feasibility of the o�-line guaranteed tasks.
Slot shifting can handle complex task constraints for o�-line tasks, and include �rm and
soft aperiodic tasks at runtime, as well as o�-line and on-line handling of sporadic tasks.
Slot Shifting is a reactive method in the sense that it does not address how to produce
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a static schedule for successful integration with a speci�c event-driven workload.

I.2 Adaptive real-time systems
Some applications have highly variable and data dependent resource needs over time.
In this context, a system that can adapt its execution to changing environment is more
important than to apply pessimistic techniques based on worst case scenarios. Moreover,
many real-time systems have limited resource availability. Resource provisioning may
be limited e.g. due to production cost and physical space limitations, as for Wireless
Sensor Networks (WSN), and mobile multimedia devices.
In adaptive RTSs, applications are capable of reacting to variable resource availability

in order to deliver functionally correct behavior. This way system design may provision
resources for average cases, under which the system utility is maximized � utility is an
abstraction which relates to how well the goal of tasks are satis�ed. Under situations
of scarce resource availability, the system adequately reacts to minimize the utility
decrease. The type of adaptation and the impact on the system utility may vary among
applications.
Standard scheduling techniques for HRTS behave poorly under overload, potentially

not completing any task in time and sharply decreasing the system utility. Adaptive
and �exible scheduling techniques must handle applications with partially known prop-
erties at design time, relaxed constraints that cannot be expressed solely by execution
windows, and co-existence of activities with diverse properties and demands. Scheduling
algorithms may overcome overload situations selecting tasks for abortion, hence allow-
ing the remaining tasks to meet their constraints [Baruah 97]. Abortion must account
for functionally correct system behavior and minimum utility decrease. In a distributed
system, overload may occur only on some nodes, while others have processing reserves.
Then, overload handling may include task migration. Migration imposes time over-
head, and hence, must account for stability of adaptation in order to e�ectively result
in minimum utility decrease.
Another technique is changing task parameters at runtime based on resource avail-

ability. For example, in the elastic task model [Buttazzo 02] the system may change
the period of tasks in order to adjust the resource demand to the resource availability
under overload. This technique follows the reasoning of a spring system, which can be
stretched or compressed to a certain extent in presence of an external resistance. Appli-
cations that can tolerate some adjustment for a limited time bene�t from this technique.
The elastic task model also considers the e�ect of these changes on other tasks. Tardi-
ness based scheduling algorithms relax the timing constraints by allowing tasks to miss
deadlines at a certain degree and with bounded values [Bernat 99, Stoyenko 91].
Some applications support multiple types of adaptation, with varied impact on the

system utility. This imposes extra challenge to the adaptation technique, which must
explore a multidimensional space in order to provide for optimum adaptations.
Clearly expressing timing constraints solely with worst case execution times, activa-

tion times and execution windows restrict the system capability to adequately provide
for adaptivity. Those attributes alone limit the expression of �exibility in temporal
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constraints. As a result, scheduling algorithms must �nd a workaround in order to han-
dle the need for adaptivity. In the next section, we describe a new concept of timing
constraint which accounts for both system utility and �exibility for adaptations.

I.3 Informal description of the problem
Some RT applications have tight optimum execution windows for maximum system
utility, but accept some �exibility to enlarge those windows for the sake of feasibility.
This �exibility comes at the expense of a utility decay, though. For example, tasks of
target sensitive applications should preferably execute at a speci�c target point within
its execution window, called target point, but can execute around this point, albeit
at lower utility � the intensity of the utility decay depend on the importance of the
application to the system. In this case, the optimum execution window is extremely
tight. Ideally, all executions would be scheduled directly at the respective target points,
but it might not be feasible due to overlapping executions. Under this condition, the
execution of tasks must be scheduled so that no timing constraints are violated and the
accrued system utility is maximized. More important applications are less tolerant to
deviations from the target point.
The target point may not relate to the whole execution of a task, which cannot run

to completion instantaneously in a real computing system. Therefore, the utility of an
application to the system relates to the instants the application communicates with the
system, i.e. performs input/output operations. The system is aware of applications'
output, and not of their internal computational state. Furthermore, the internal state
of a program may only change due to some input, in which case the output may also
change.
Execution windows alone establish a direct relation between feasibility and utility,

hence failing to express that the system utility may vary among feasible scenarios. Clas-
sic task models can use tight execution windows to enforce execution at the target point,
but this approach compromises feasibility, hence leading to resource underutilization.
Large execution windows, on the other hand, do not provide for maximum system util-
ity, even though they are able to guarantee correct system behavior. The ideal approach
is to provide some �exibility in the time constraints depending on the system load and
applications' importance. However, the task model must provide for expressiveness of
such constraints, and scheduling algorithms must take those constraints into account in
order to increase utility accrual.
Multimedia applications have target sensitive constraints, for example. In high quality

media processing, frame displays are periodic at target points. Time variation in frame
display degrades the PQV, and this degradation may vary among frames. Since frame
bu�ering is limited in these applications [Isovic 03], frames have to be displayed right
after decoding. Therefore, the utility of the decoding task to the system relates to the
decoding completion and subsequent frame display (the output). Periodicity is enforced
by tight start times and deadlines of the decoding tasks; if the decoding takes too long
and cannot be completed by its deadline, the whole frame is dropped. The PQV may
be higher if the frame is displayed with a small delay in these cases, rather than not at
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all, but only when this delay is small and its utility clear � frame delay may a�ect the
timeliness of subsequent frames.
Another example is control, where sampling and actuation are ideally executed at

their target points for optimum output [Marti 02]. Shifting them a little bit for the sake
of feasibility is acceptable provided the system response remains within bounded limits.
Thus, the utility of the control task to the system depends on both input and output
operations. As can be seen, the sensitivity to deviations from the target points may
vary among applications and even among jobs within the same application. Chapter II
brings a detailed description of these applications, and a few other examples.
Besides the necessary expressiveness, task models must also provide simple abstrac-

tions for easy understanding by applications developers. Moreover, on-line adaptivity
requires scheduling algorithms with low overhead, and the compromise among tasks
with overlapping executions involves reordering the execution of jobs, shifting them and
possibly aborting some executions. One of the di�culties is to express whether two not
very important tasks are more important than a very important task. Scheduling must
also account for the execution of future jobs before shifting executions, and a complete
knowledge of jobs that will execute in the system and the exact temporal constraints
may be hard, if not impossible (e.g. aperiodic tasks). Finally, reordering the execution
sequence of jobs is a combinatorial problem. Therefore, scheduling is non-trivial, and
the need for a simple, yet e�ective, solution imposes an extra challenge.

I.4 Related work
Time Utility Function (TUF) scheduling as presented in [Chen 96, Wang 04, Li 04] and
earliness/tardiness schedulers [Bülbül 07] go beyond the execution window notion to
express tasks' temporal constraints. In TUF schedulers, tasks aggregate a given amount
of utility to the system as a function of when they execute; the goal of the scheduler
is to maximize system utility. A study on several types of time utility functions is
presented in [Jensen 92], but no scheduling algorithm. In [Prasad 03], an utility function
based approach to express the importance of tasks in order to assign resources to them
is proposed. It covers multiple resources a task needs, and investigates how utility
functions could be used to solve the resource allocation problem. This work also contains
no scheduling algorithm.
A best-e�ort algorithm for resource allocation in computing systems is proposed

in [Locke 86]. However, scheduling decisions are based only on the utility that tasks
accrue to the system at the current point in time and not on the shape of their util-
ity functions over time. As a result, potential increased utility accrual due to delayed
execution of jobs cannot be exploited. A TUF scheduler assuming any kind of utility
function is proposed in [Chen 96]. It uses a heuristic to �nd an ordering on average close
to the optimum in O(n3), under the constraint that all tasks are within the same busy
period. This constraint severely limits the application of this method in a real case. The
authors of this work assume the busy periods in a work-conserving schedule in order to
circumvent this limitations, but this approach limits the utility accrual potential.
In [Wang 04], the authors propose a TUF scheduling algorithm with O(n2) assuming
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only non-increasing TUFs. The result is used in Ethernet packet scheduling to de�ne the
ordering. As the utility of a packet decreases upon delayed arrival, packets are sent as
early as possible after being ordered. This work is extended in [Wu 05] and [Li 06] to sup-
port variable cost functions and mutual exclusion of resources, respectively. In [Wu 06]
an energy-aware TUF scheduler is proposed, but the focus is to satisfy statistical perfor-
mance requirements. In [Liu 10], the authors also propose a TUF scheduling algorithm
assuming non-increasing TUFs as in [Wang 04], but they consider that tasks may exe-
cute for a shorter time than the provided worst case execution time. This scheduling
algorithm then uses the concept of opportunistic cost to order the execution of jobs
based on their utilities and probability density function of the execution times.
Earliness/tardiness schedulers seek the minimization of the overall penalty of the

system due to tasks that complete too early or too late with respect to the deadline.
However, the penalty function is linear with the distance from the deadline and with
no bounds, which hinders the use of this scheduling paradigm by target sensitive RT
applications. The computational time and quality of such schedulers depend mainly
on the execution sequence of jobs, and the traditional approach is to formulate the
scheduling as an optimization problem. A small survey on earliness/tardiness schedulers
presented in [Bülbül 07] shows that many are based on branch and bound and most of
them can only schedule tasks in a busy period.
In classic task models, target sensitivity can be enforced by tightening the o�sets and

deadlines, at the expense of decreasing the maximum feasible utilization. For example, a
method to decrease the variation in the completion time of tasks under EDF is proposed
in [Baruah 99]. This problem is solved by decreasing the deadlines of tasks based on their
importance, provided that with the new deadline assignment the schedule is still feasible.
Although this work states the possibility of adjusting o�sets as well, this approach does
not take them into account. Therefore, target points within the execution windows
cannot be addressed. The same rationale of tightening the o�sets and deadlines has
been used for other scheduling algorithms, but the same drawbacks remain.
The elastic scheduling of [Buttazzo 02] presents a method that improves the accep-

tance of tasks under overload situations in EDF. In order to accept a task, it increases
the period of tasks to reduce the utilization of the system based on a spring system anal-
ogy. This analogy provides for intuition of the solution, but the algorithm has quadratic
complexity with the number of tasks. This work does not consider the target sensitiv-
ity when readjusting periods, which also implies in enlarging the execution windows.
The same approach is used for adaptive resource management, where the compression
algorithm shrinks the resource allocation of applications under overload.

I.5 Contributions of this work

A task model for target sensitive real-time applications
In this thesis, we present a novel task model, called gravitational task model, which is
based on a physical system: the pendulum. A pendulum is an object (or bob) that is
attached to a pivot point and can swing freely. The rest position of a single object in a
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pendulum is the projection of the pivot point (central point). An object placed in this
position will not swing, and the system is said to be in an equilibrium state. If there is
more than one object, they will push each other aside and their rest position will depend
on their relations between weight and size. The heavier an object is, the stronger the
gravity drags it to the central point.
We draw an analogy between real time systems and pendulum systems, with instances

of tasks (jobs) as objects in a pendulum and the target points as the pivot point. A
point within the execution of a job, called anchor point, relates the job to the target
point. The anchor point can be an operation of input, output, or both. The equilibrium
state of the physical problem is, then, equivalent to the best compromise among the
jobs' interests. This model assumes non-preemptive tasks running on single processor
systems.
The gravitational model allows jobs to express their target points and to provide

some resistance to shift their execution away from this point based on their importance.
Therefore, jobs can actually execute at their target points when the system is idle
without the need of tight deadlines. Moreover, the intuition from the analogy with
pendulums eases the understanding of the abstractions of temporal attributes in the
model. Most application developers lack deep knowledge of RT scheduling theory, and
hence, this intuition is very important.

Computing the trade-off among competing jobs

We propose a solution for the trade-o� among competing jobs based on the equilibrium
of pendulums. The equilibrium state in the physical problem depends on the weights
of the bobs, and can be seen as the best compromise among the jobs' importances:
This equivalence makes it possible to use the equilibrium equation from physics to
schedule jobs aiming at maximizing the utility accrual of the system for a given execution
sequence of jobs. We present both an approximation and an optimum solution to the
best compromise among jobs with con�icting interests. We call these solutions pendulum
equilibrium and generic equilibrium, respectively.
The proposed equilibriums account for the target sensitivity of tasks to take scheduling

decision, hence providing for increased utility accrual without restricting the feasibil-
ity of the schedule with tight execution windows. During underload the equilibrium
schedules all tasks at their target points, and during overload tasks can push each other
around to �nd the best compromise of their interests for maximum utility accrual. Both
equilibriums have linear complexity, which provides for on-line deployment. The pendu-
lum equilibrium implicitly assumes that all tasks have elliptical utility functions, yet it
is a good approximation even when this assumption does not hold, as evidenced in our
experiments. Therefore, there is no need for tasks to express their exact utility func-
tions; only importance as abstraction is enough. Besides, in many cases applications
cannot provide the exact utility functions, e.g. multimedia and control (see sections II.1
and II.5).
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Scheduling target sensitive real-time tasks
Not all jobs in a schedule compete with one another for their target points. Therefore, in
order to apply the equilibrium, the scheduler must know which jobs have con�icting tar-
get points. Identifying those jobs is not trivial, and requires equilibrium recomputations
that result in increased complexity. As a result, reducing the complexity to recompute
the equilibrium is crucial.
Furthermore, the equilibrium may not shift the execution of tasks freely, as it may

cause deadline misses and compromise the system utility accrual upon arrival of future
jobs. On the other hand, accounting for the arrival of all future jobs is computationally
expensive. Therefore, the scheduler must limit the amount of future jobs that the
scheduler takes into account at any point in time, and guarantee all timing constraints,
yet accounting for increased utility accrual.
We present an algorithm based on bob pendulums to identify which jobs in the sched-

ule compete for their target points � those jobs comprise a job chain. This algorithm
inserts jobs one by one in the schedule and, similar to inserting bobs one by one in
a pendulum system, recomputes the equilibrium upon collision detection. These equi-
librium recomputations lead to a complexity O(N2). Then, we present a method to
avoid recomputing the whole equilibrium upon collision, given the scheduler uses the
pendulum equilibrium. This method consists of storing intermediate values for jobs
already in equilibrium in order save computational steps in case the scheduler must
recompute the equilibrium. This new equilibrium recomputation method has linear
complexity, and does not impact on the output of the equilibrium calculation. We also
propose an equilibrium window for the computation of the equilibrium, and guarantee
that the equilibrium within this window never a�ects the schedulability of jobs outside
this window.
The scheduling algorithms that we propose account for increased utility accrual, have

low complexity (up to linear complexity), hence providing for on-line deployment, and
do not over-compromise the feasibility. Moreover, they exploit the pendulum intuition,
hence providing for clarity.

Reordering the execution sequence of jobs for increased utility accrual
The execution sequence of jobs also impacts on the trade-o�; the equilibrium itself is
limited to �nding local optimums. Ordering the execution of non-preemptive tasks is
a Non-deterministic Polynomial-time hard (NP-hard) problem [Chen 96] � check all
possible permutations. Therefore, an optimum solution has high overhead, and hence,
is unfeasible for on-line scheduling algorithms. Heuristic solutions compromise between
overhead, acceptance ratio, and utility accrual; a�ording higher overhead tends to pro-
vide for better scheduling decisions. Traditional execution windows based scheduling
algorithms aim only at feasibility, e.g. EDF, Rate Monotonic (RM), etc.
In this work, we propose a few heuristics to reorder the execution sequence of jobs for

increased utility accrual. Those heuristics are inspired by the physics of liquids: higher
density liquids come to rest closer to the bottom and, following the same rationale,
tasks with higher utility density should execute closer to their target points. The utility
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density of a job is the ratio of its importance to its WCET. Those heuristics di�er in
how timing constraints are taken into account, which a�ects the acceptance ratio.
Our ordering heuristics account for increased utility accrual, have low complexity

(up to linear complexity), and do not over-compromise the feasibility. Moreover, these
heuristics exploit the pendulum intuition, hence providing for clarity.

I.6 Outline of the thesis
The rest of this thesis is organized as follows:

Chapter II � in this chapter, entitled Examples of target sensitive real-time aplica-
tions, we describe 5 examples of target sensitive real-time applications: multi-
media, resource management, body area networks, data�ow systems, and control
systems. The descriptions that we provide cover the technological relevance of the
respective application, a brief description of its functionality, and the associated
temporal constraints. Those applications serve as evidence of the need for task
models, as well as scheduling algorithms, which are able to take into account the
temporal requirements of target sensitive real-time applications.

Chapter III � in this chapter, entitledGravitational Task Model: a bob pendulum based
approach to express trade-o�s, we present the gravitational task model, which
provides simple abstractions for the expression of timing constraints of target
sensitive RT applications based on the analogy between the target sensitive task
scheduling and bob pendulum systems.

Chapter IV � in this chapter, entitled Scheduling target sensitive real-time tasks, we
present a few scheduling algorithms for the gravitational task model. We cover
the trade-o� among tasks with con�icting targets using the equilibrium state con-
cept for increased system utility, and the execution sequence of jobs in the sched-
ule. Reordering this sequence has a signi�cant impact on the equilibrium of jobs,
and dominates the complexity of the problem � the optimum solution is NP-
hard [Chen 96].

Chapter V � in this chapter, entitled Reducing the complexity of periodic tasks' schedul-
ing, we propose an on-line scheduling algorithm for periodic tasks which is based
on EDF. This algorithm uses an equilibrium window to limit the number of future
jobs that the scheduler takes into account, while guaranteeing all timing con-
straints, and accounting for increased utility accrual. Moreover, this algorithm
achieves higher acceptance ratio due to the reordering of the execution sequence
of jobs based on EDF, yet not compromising the utility accrual.

Chapter VI � in this chapter, entitled Scheduling tasks for increased system utility
under scarce resource availability, we address the scheduling of target sensitive
tasks under scarce resource availability. Traditional approaches to handle overload
are shifting and aborting the execution of jobs. We propose a trade-o� between
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shifting and aborting the execution of jobs based on the gravitational task model
for increased system utility accrual. The abortion of a job frees resources which
other jobs may use to decrease their deviation from their target point, and yield
an extra amount of utility.

Chapter VII � in this chapter, entitled Applications of the gravitational task model,
we present 3 applications enhanced with the gravitational task model: a video
stream adaptation strategy for increased PQV under scarce resource availability,
an algorithm for adaptive resource management under scarce resource availabil-
ity, and an opportunistic packet scheduling strategy for improved reliability and
reduced energy consumption in Body Area Networks (BAN). The �nal results
evidence the bene�ts of the gravitational task model.

Chapter VIII � in this chapter, entitled Discussion, we cover preemption, multicore
scheduling, and early completion times. These topics were not the focus of the
research, but we consider that they should not be ignored. Therefore, we discuss
how can the gravitational task model address them, what are the di�culties, and
potential research directions.

Chapter IX � this chapter summarizes the contributions of this thesis and brings the
concluding remarks.



Chapter II

Examples of target sensitive real-time
applications

In this chapter, we describe 5 examples of target sensitive real-time applications: mul-
timedia, resource management, body area networks, data�ow systems, and control sys-
tems. The descriptions that we provide cover the technological relevance of the respec-
tive application, a brief description of its functionality, and the associated temporal
constraints. Those applications serve as evidence of the need for task models, as well as
scheduling algorithms, which are able to take into account the temporal requirements of
target sensitive real-time applications. Later in this thesis, we will show how the work
proposed here improves the functionality of some of these applications.

15



16 Chapter II. Examples of target sensitive real-time applications

II.1 Multimedia applications

II.1.1 Overview
The importance of multimedia systems in our daily activities has increased in the past
years. Multimedia is present in the ever growing game industry, movie industry, surveil-
lance systems, and publicity. Moreover, thanks to the increasing performance of em-
bedded devices, multimedia takes over a whole new market that spans mobile devices,
medical care, and entertainment and control systems of automobile and avionic industry.
Multimedia computing presents challenges from the perspectives of both hardware and

software. For example, multimedia standards such as MPEG-2 and MPEG-4 involve
the execution of complex media processing tasks in real-time (RT). The need for RT
processing of complex algorithms is further accentuated by the increasing interest in
3-D image and stereoscopic video processing. Each media in a multimedia environment
requires di�erent processes, techniques, algorithms and hardware. The complexity and
variety of techniques and tools, and the high computation, storage, and input/output
bandwidths associated with multimedia processing further requires features such as
scalability and maximal resource utilization.
MPEG-2 is the video standard in consumer electronics for Digital Versatile Disc

(DVD), and still widely used non-High De�nition (HD) digital TV satellite streams.
In the next sections, we brie�y describe the MPEG-2 standard, its temporal require-
ments, and the decoder design to meet these strict temporal requirements. Finally, we
discuss video playout under scarce resource availability.

II.1.2 Layer structure of MPEG-2 streams
MPEG-2 video is broken up into a hierarchy of layers (see �gure II.1) to help with error
handling, random search and editing, and synchronization. The top layer is the video
sequence layer, which contains the information about the video resolution (e.g. width,
height, display aspect ratio, framerate, and the stream Bit Rate (BR). Each sequence
consists of one or more Groups Of Pictures (GOP), which consist of a header and a
series of frames (or pictures), and allows random access into the sequence. GOPs may
comprise any arbitrary number of frames.
A GOP starts with an intra frames or I frame, which are simply frames coded as

still images, and ends before the next I frame in the stream. I frames contain absolute
picture data and are self-contained, meaning that they require no additional information
for decoding. Therefore, their data compression provides the least compression among
all frame types, and they are not transmitted more frequently than necessary.
The other frames may be of types P or B. P frames or predicted frames achieve ad-

ditional compression by referencing to data present in the most recently reconstructed
I or P frame. In order words, they contain a set of instructions to convert the previous
picture into the current one. This compression is also called temporal compression. Be-
cause P frames are not self-contained, decoding is impossible if the previous reference
frame is lost. B frames or bi-directionally predicted frames use both forward and back-
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Figure II.1: MPEG-2 stream structure.1

ward prediction, i.e., decoding a B frame requires the previous I or P frame, and next I
or P frame. B frames require resource-intensive compression techniques, but they also
exhibit the highest compression ratio. Figure II.2a summarizes the dependency relations
among frames.
Each frame consists of slices, which are important for error handling. If the bit stream

contains an error, the decoder can skip to the start of the next slice. Having more slices
in the bit stream allows better error handling, but use space that could otherwise be
used to improve picture quality. Slices are further subdivided into macroblocks, which
are subdivided into blocks, and �nally, the smallest element of a video stream, a pixel.

II.1.3 Temporal requirements of MPEG-2 playout
A video consists of the periodic display of a series of frames. The playout of MPEG-2
streams requires that the inter-display time of frames (or frame period) is constant for
maximum perceived quality of video (PQV). Variations in the inter-display time, also
called inter-display jitter, degrade the PQV, but this degradation is hard to quantify
analytically. A video which has many di�erences between frames has a high temporal
aspect, and hence, is more sensitive to inter-display jitter. The pattern of movements
are also likely to alter the impact of the inter-display jitter on the perceived quality
of video. For example, a scene with lots of objects moving in random directions is
less sensitive to inter-display jitter than a scene with objects moving in a linear steady
movement. On the other hand, a video with low temporal aspect is less sensitive to
jitter. See [Claypool 99] for a more detailed discussion on this topic.
The decoding time of frames represent a further challenge in the design of MPEG-2

decoders. Remember that the encoding of frames uses references to other frames in order
to achieve higher compression ratios by skipping the encoding of common objects among
scenes. This strategy causes the decoding time to be highly dependent on the tempo-

1Figure downloaded from www.fh-friedberg.de
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ral aspect of the scene, as temporal compression/decompression is a computationally
expensive task.
Furthermore, as mentioned above, decoding B frames requires input data from a

backward and a forward reference frame. Clearly, decoding frames in the same order
they are displayed fails for B frames, as the forward reference is not yet available. The
decoding sequence requires frames to be sent out of the display sequence and temporarily
stored to solve decoding dependencies. Figure II.2 shows that although the display
sequence is I B B P, the decoding sequence is I P B B, so that the forward reference is
already available in the decoder before bi-directional decoding begins.

(a) Displaying order and dependencies (b) Decoding order

Figure II.2: Frame decoding and display.

Picture reordering requires additional bu�ers at the decoder, and latency in order to
put the display order right again. The number of bi-directionally coded frames between
I and P frames must be restricted to reduce cost and minimize latency, if latency is an
issue.

II.1.4 MPEG-2 decoder model

Basic design

In its simplest form, playing out an MPEG-2 video stream requires three activities:
input, decoding, and display. These activities are performed by three tasks, which are
separated by an input bu�er, a decoding bu�er, and a display bu�er (see �gure II.3).
Recent dedicated media processors follow this design, e.g. the DaVinci Digital Media
Processors from Texas Instruments [Anderberg 07].
The input task directly responds to the incoming stream. It places encoded video

stream in the input bu�er at a certain rate, expressed in bits per second, the BR. In
the simple case, the input activity is very regular, and only determined by the �xed,
constant BR. In a more general case, the input may be of a more bursty character due
to an irregular source, e.g. the Internet. The input task drops an incoming frame if the
input bu�er is full (input bu�er over�ow).
The decoding task extracts an encoded frame from the input bu�er following the

arrival order, decodes the frame, and puts the result (decoded frame) in the decoding
bu�er. The decoding times for frames can vary, depending on the frame bit size and the
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Figure II.3: Decoding model.

used compression technique. Usually the decoding task is asynchronous, and decodes
a frame upon availability in the input bu�er, and given that there is free space in the
decoding bu�er to store the decoded frame. If the decoding of a frame is not �nished
by the time this frame has to be displayed, the decoding task drops the frame, hence
wasting resources.
The display task regularly copies a decoded frame from the decoding bu�er into the

display bu�er of the output screen device. This task also resizes the decoded frame
in order to match the output screen resolution. The framerate of the video dictates
the regularity of the display task, which once started, must always �nd a frame to
be displayed. If there is no frame to fetch in the decoding bu�er, the display task
leaves the previous frame in the display bu�er (frame dropping). The output screen
device refreshes the screen at a display rate with the content of the display bu�er. The
display rate may vary among devices; for example, TV sets have less diverse values than
computer screens.

Latency and buffer requirements

Latency requirements. The decoding latency is the amount of time elapsed between
the input task receives the �rst bit and the decoding task stores the �rst bit in the
decoding bu�er. This latency depends on the stream BR and the frame decoding time.
Thus, it may vary a lot.
The display latency of a forward reference frame is the amount of time elapsed between

the decoding task writes the �rst bit in the decoding bu�er and the display task displays
the �rst pixel of the �rst dependent frame on the screen. In the example depicted in
�gure II.2, P1 is a forward reference frame, and B1 is its �rst dependent frame. For all
other frames, the display latency is the amount of time elapsed between the decoding
task writes the �rst bit in the decoding bu�er and the output screen device displays the
�rst pixel on the screen.
Those latencies dictate the bu�er requirements of the decoder. Next, we analyze the
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bu�er requirements as a function of the desired latencies.

Input bu�er requirement. The input bu�er serves several purposes. First, it has to
compensate for the irregular data size of di�erent encoded frames, and possible variation
in the incoming BR due to an irregular source, e.g. the Internet. Second, the input bu�er
has to compensate for varying decoding times, which are not foreseen by the decoder.
Therefore, this compensation cannot be bounded a priori.
The input bu�er size IBS is essentially a design choice, and is closely related to

the maximum tolerable decoding latency from which the decoding task may be able to
recover without dropping frames. Once the size of the input bu�er is chosen, the maxi-
mum decoding latency of a reference frame is RDLmax = IBS/BR, and the maximum
decoding latency of a non-reference frame is NRDLmax = RDLmax − FP .

(a) (b)

Figure II.4: Example of decoding latencies.

Let us analyze the example depicted in �gure II.4, where we assume the frame period
FP = 1. An ↑ symbol represents the arrival of an encoded frame in the input bu�er
(frames arrive in decoding order), and a  symbol represents the display of the frame.
As can be seen in �gure II.4a, for RDLmax = 3×FP the maximum number of encoded
frames in the input bu�er is 3 (the frame being decoded plus two subsequent frames).
Remember that the maximum decoding latency of P1 is the length of the interval from
its arrival time to the display of B1, which is the �rst dependent frame of P1. The size
of the input bu�er can be easily derived from the bit rate, framerate, and the maximum
number of encoded frames in the input bu�er. NRDLmax = 2 × FP . Looking at
�gure II.4b, we can see that for RDLmax = 2 × FP , the input bu�er has to store at
most two frames, and that NRDLmax = FP .
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Decoding bu�er requirement. The decoding bu�er serves a dual purpose. It serves
as reference bu�er for the decoding task, and as input bu�er for the display task. This
makes decoding bu�er management somewhat more complicated than input bu�er man-
agement. The decoded frame may only be removed from the decoding bu�er after it has
been displayed, and is no longer needed as reference for the decoding of other frames.
This bu�er also allows the decoding task to recover if the decoding of a frame takes
longer than the frame period FP [Anderberg 07]. Recovering from a long decoding
latency requires that subsequent frames have short decoding latencies.
The decoding bu�er size DBS is also related to the maximum decoding latency.

If the stream contains at least one B frame, DBSmin ≥ 3 × DFS, where DFS is
the size of a decoded frame. The decoding bu�er must store at the same time the
backward reference, the forward reference, and the B frame being decoded. In this case,
RDLmax = DBS/DFS, and NRDLmax = RDLmax − 2× FP .
Let us analyze once again the example depicted in �gure II.4. As can be seen in

�gure II.4a, for RDLmax = 3 × FP the maximum number of decoded frames in the
decoding bu�er is 4 (2 reference frames and 2 B frames, because B2 may be available in
the input bu�er before B1 leaves the decoding bu�er). NRDLmax = FP . Looking at
�gure II.4b, we can see that for RDLmax = 2× FP , the decoding bu�er has to store at
most 3 frames (2 reference frames and one B frame), and that NRDLmax = FP .

Display bu�er requirement. This bu�er belongs to the output screen device, and
hence, does not depend on the decoder design. This bu�er stores only one frame with
the same resolution as the screen, and the content of the bu�er is the output on the
screen.

II.1.5 MPEG-2 video playout under scarce resource availability

The combination of highly variable decoding times, demand for high PQV, and de-
pendency constraints during decoding makes the decoder design very challenging. As
shown in the previous section, one way to compensate for the highly variable decoding
times typical of MPEG-2 streams is to introduce bu�ers in the video playout. This
approach provides for a decoder design with processing power provision for the average
case, but imposes larger latency. Moreover, bu�ering incurs in higher production cost
and energy consumption due to the ever increasing energy leakage of new memory ar-
chitectures. On-chip decoding bu�er of dedicated multimedia processors provides for
lower latencies, but have size limitation due to space restriction on the die [Sung 08].
One way to reduce the need for frame bu�ering is to reduce the maximum tolerable

decoding time latency, which reduces also the resilience to long decoding times. In
case of system overload, reactive quality-aware stream adaptation strategies such as
frame skipping [Isovic 04] provide for reduced degradation of the PQV. Another way to
reduce the need for frame bu�ering is to display the frame right after decoding. This
approach requires procrastination of the decoding task in order to not display frames
too early. Moreover, the decoder must account for the variability of the decoding times
with early/late displays, as bu�ering is not an option.
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Therefore, multimedia applications are target sensitive because of this strict no inter-
display jitter requirement for maximum PQV. However, such applications tolerate some
�exibility in this temporal requirements for the sake of feasibility.

II.2 Adaptive resource management

II.2.1 Basic concepts

The goal of the resource management is to guarantee availability of required resources to
applications. This guarantee implies that applications are to some degree isolated from
the behaviour of other applications on the same system. Adaptive resource management
adjusts the resource allocations on-demand based on the runtime resource requirements
of applications. This approach is particularly advantageous in systems with variable
resource requirements, where providing for the worst case scenario of each application
leads to resource underutilization most of the system lifetime. In such systems, resource
provision for the average case can meet the current resource requirements of each appli-
cation most of the time. Shall system overload occur, not all applications may obtain
all required resources simultaneously. In this case, the resource manager must guaran-
tee a minimum availability of required resources to each application, and the resource
distribution among applications must provide for minimized degradation of the overall
Quality of Service (QoS).
Adaptive algorithms are required so that all applications can deliver functionally

correct results under overload. These algorithms trade output quality against resource
requirements. If no compromises in output quality are acceptable, then the application
is no candidate for adaptivity, and has to run with the full required resources. Therefore,
there is no opportunity for adaptive resource management in a system without adaptive
applications.
For example, anytime algorithms provide a useful result after any amount of execution

time. The longer they can execute the better the result is. Imprecise computation
algorithms are a subtype of this type of algorithm. These algorithms require a minimum
execution time in which they produce a baseline result. If more time is available optional
steps of the algorithm are executed, resulting in more precise results. Examples include
iterative algorithms like Newton's root-�nding algorithm [Sun 06].
Another way to achieve adaptability in applications are multi-version algorithms. The

idea is straightforward: provide multiple implementations of the same functionality, e.g.
a fast low-quality version and a slow high-quality version. Then, the application may
switch between implementations depending on the currently available resources. An
example of such scheme is the quality-aware frame skipping algorithm [Isovic 04].
Therefore, adaptive applications are target sensitive because they have a target re-

source requirement, but accept some �exibility for the sake of feasibility. The resource
manager arbitrates the resource distribution based on the �exibility of each application
for minimized system utility degradation, which in this case relates to the overall QoS.
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II.2.2 Example of a resource management framework
Figure II.5 depicts the three major components of the ACTORS Framework architec-
ture: the CAL � a data�ow-based programming language � applications, the resource
manager [Rizvanovic 07] and the operating system. Applications are adaptive and the
operating system is capable of enforcing resource reservations for each application. The
resource manager negotiates between the applications and the underlying operating sys-
tem. The main functionality of the resource manager is to distribute system resources
among the applications in order to ful�ll the global optimization objective. This ob-
jective is user-de�ned and can be, for instance, maximize the system performance or
maximize the system life-time. The interfaces among these components use the fol-
lowing abstractions: service levels, happiness, reservation setup, and resource usage.
Those abstraction serve the purpose of abstracting away speci�c internal details of the
components.

Figure II.5: The resource manager architecture at run-time.

CAL applications are capable of adapting their behavior to di�erent resource avail-
ability, thus consuming di�erent amount of resources and delivering di�erent QoSs,
called service levels. Applications consist of independent thread groups called virtual
processors, each with a resource requirement for a given service level. Applications ex-
press the resource requirements using the (α,∆) model [Mok 01]. The idea of this model
is to express the timeliness constraints of the applications using only two minimal key
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features. The �rst key feature is the bandwidth α, which is a measure for the amount
of resources that are required by the application. The second key feature is the delay
∆, which speci�es the longest amount of time that the application may need to wait for
being assigned some resource. Applications also have an importance parameter, which
the system uses to determine the distribution of resources. Furthermore, each applica-
tion features a happiness parameter to express to which extent its current service level is
ful�lled based on its runtime state. The service levels and the happiness are abstractions
that the application uses to interface with other components.
The operating system features real-time schedulers capable of enforcing resource

reservations, i.e. it implements the scheduling algorithm that decides which application
to execute at which moment in time. For instance, it supports the standard Linux Com-
pletely Fair Scheduler, which together with Control Groups allows to assign shares of
CPU time for applications. Moreover, it supports a new implementation of a real-time
scheduling algorithm named SCHED_EDF, which also provides resource reservations
through the hard Constant Bandwidth Server mechanism [Lipari 01]. Since the reserva-
tion mechanism is hard an application may not execute more than its assigned budget
also if there are free CPU resources. To specify the individual reservations, the operating
system internally uses periods and budgets, the so-called reservation setup parameters.
At run-time, the operating system monitors the actual resource usage of each reservation
and, if necessary, adjusts these parameters. Each reservation is associated to a virtual
processor, and may span only one physical core.
The resource manager is the core component of the framework and possesses global

knowledge about the applications and the underlying system. Each application has a
resource demand associated to each service level it can deliver, and it is the goal of
each application to provide the best quality of service. However, under scarce resource
availability not all applications can achieve this goal simultaneously. For this reason,
the resource manager contains a control based resource allocation mechanism which
is in charge of distributing resources among competing applications. This mechanism
distributes resources so that the global optimization goal of the system is achieved.
The interaction between the resource manager and the applications uses service levels

and happiness as abstractions. The purpose of this interaction is to decide whether
resource reallocations are needed based on the monitored behavior of the applications
in order to improve the system performance. Applications register with the resource
manager and announce their available service levels. After successful completion of the
registration, the resource manager constantly monitors the happiness of the applications
in order to decide whether redistribution of resources is needed or not. The resource
manager tells each application at which service level they must run based on the resource
allocation mechanism.
The interaction between the resource manager and the operating system, on the other

hand, uses reservation setup and resource usage as abstractions. The resource man-
ager translates the (α,∆) values from the applications into reservation setup parameters
which are used to specify the reservations in the operating system. The resource manager
creates/changes reservations as instructed by the resource allocation mechanism. The
operating system periodically reports the usage of the reservation back to the resource
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manager, which redistributes unused resources among applications. The resource man-
ager has, for each reservation, a dedicated feedback-loop mechanism that keeps track of
long-term changes in the resource usage. This mechanism avoids frequent reallocations
of resources which are caused by short-term �uctuations in the resource usage.

II.3 Body area networks
Networks of sensors around as well as inside the human body, referred to as Body Area
Networks (BAN) (see �gure II.6), promise to revolutionize health-care practices as they
facilitate, among other things, better diagnosis, fast emergency response and person-
alized medication [Prabh 11]. �BANs enable early detection of clinical deterioration
through real-time patient monitoring in hospitals, enhance �rst responders' capability
to provide emergency care in large disasters through automatic electronic triage, im-
prove the life quality of the elderly through smart environments, and enable large-scale
�eld studies of human behavior and chronic diseases�[Ko 10]. Examples of currently ap-
plications include electrocardiogram sensors for monitoring heart activity, electromyo-
gram sensors for monitoring muscle activity, electroencephalogram sensor for monitoring
brain electrical activity, blood pressure sensors, tilt sensors for monitoring trunk posi-
tion, breathing sensors for monitoring respiration, and motion sensors to discriminate
the user's status and estimate the level of activity.

Figure II.6: A body area network.2

Although BANs have the potential to enable low-cost, personalized health-care sys-
tems, it is still unclear whether they can meet the stringent QoS requirements imposed

2Figure downloaded from www.gadgetstech.co.uk
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by some applications. For example, limiting interference to neighboring BANs and keep-
ing the speci�c absorption rate of Radio Frequency (RF) energy as low as possible � in
the interest of protecting the human tissues � demands low transmission power. There-
fore, although the distances between devices in a BAN are usually small, the wireless
signal may experience severe attenuation. This attenuation causes packet losses, hence
negatively impacting on the system reliability.
Furthermore, energy consumption is a serious constraint as many times nodes are de-

ployed within the human body, where access is extremely restricted. Empirical analyses
have revealed that the network communication dominates the energy consumption in
such systems � the main functionally of nodes is to monitor and relay sensed data,
hence demanding very low processing power [Prabh 11]. The packet loss rate has a
direct e�ect on the energy consumption of network communication, as dropped pack-
ets must be retransmitted. Therefore, the error-proneness of the low-power wireless
communication is a major challenge.
A wide range of metrics can be used to determine the network link quality. Some

of the popular metrics include link reliability, which may be measured as the packet
success/error rate on the link, or as the expected number of transmissions to successfully
send a packet to the other end of the link. Often, the link reliability is measured in terms
of the Reveived Signal Strength Indicator (RSSI), which is an indication of the radio
energy in the communication channel during the transmission of a packet.
Besides the usual indeterminism of RSSI �uctuations in Wireless Sensor Networks

(WSN), BANs are further in�uenced by factors directly related to human body pres-
ence in the environment. Human mobility changes the relative node distance, which
in�uences path-loss, fading, and the relative node orientation. The node orientation
in conjunction with the irregular antenna radiation pattern of the nodes can result in
di�erent signal strength at the same distance. Additionally, the human body severely
attenuates the wireless signal due to the high absorption of RF energy, an e�ect called
shadowing. The human body capability to absorb RF energy comes from the composi-
tion of body tissues, which are made up primarily of �salt water�, an e�ective absorber
of RF energy. High water-content tissues such as muscle and skin can absorb more RF
energy than low water-content tissues such as fat and bone or skull [Paul Bousquet 97].
Empirical evaluations of the RSSI e�ect on the link reliability revealed that the mag-

nitude of the RSSI �uctuation is usually position-dependent and often signi�cant. In
addition, the absolute RSSI values are often close to the sensitivity threshold of the
radio, where even a small change in RSSI can result in a substantial di�erence in packet
delivery performance. A detailed discussion on the e�ect of RSSI �uctuations in the
link reliability can be found in [Prabh 11].
One way to reduce energy consumption is to send packets during periods of high RSSI,

hence reducing the risk of message retransmissions. Therefore, the target sensitivity here
relates to the peak RSSI values, and tighttransmission windows � the interval of time
packets can be transmitted � ensure that packet transmission exploits moments of high
RSSI. However, tight transmission windows during high workload forces packets compete
for the medium, which may cause bu�er over�ow and packet loss, thus compromising
reliability. They also restrict the capability of the packet scheduler to �nd a feasible
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schedule, i.e. meet the deadlines of all packets. Moreover, there is no deterministic
relation between RSSI values and successful message transmission, which invalidates
the usage of �xed transmission windows. As can be seen, packet scheduling in BANs is
target sensitive and requires �exibility in its temporal constraint. The scheduler must
also account for the trade-o� among packets with con�icting targets.

II.4 Dataflow systems

II.4.1 Basic concepts

In data�ow systems, computations are performed in logical units denoted actors (see
�gure II.7). Actors can be seen as procedures in procedural programming (or imperative
programming). Applications consist of one or more specialized actors, which exchange
data over communication channels in order to reach a desired state. The communi-
cation between actors uses endpoints called input ports and output ports, and data is
transferred over the channels in quanta called tokens. An actor operates in steps called
�rings, during which it consumes a sequence of tokens from its input ports, and produces
tokens to its output ports. Firing is generally subject to constraints, such as availability
of tokens. When an actor is able to �re it is said to be enabled. These systems are mod-
eled as directed graphs in which nodes denote actors, and arcs denote communication
channels.

Figure II.7: Actors of a data�ow system.

The execution of a data�ow graph is inherently parallel with any dependence between
actors explicitly speci�ed as paths in the graph. Therefore, data�ow models o�er a rep-
resentation that e�ciently supports parallelization, vectorization and synthesis of both
hardware and software (for instance see [Lee 87, Ritz 93]). These features meet the re-
quirements of increasingly complex execution platforms e.g. for embedded multimedia
systems: parallelization is required to utilize multi-core architectures, vectorization is
required to utilize the so-called SIMD (Single Instruction Multiple Data) or �multime-
dia� instructions, and application-speci�c hardware acceleration emphasizes the need of
hardware/software partitioning. Low abstraction levels obstruct automated transforma-
tions to this end.
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II.4.2 Dynamic dataflow
A fundamental property of Dynamic Data�ows (DDF) is the capability to o�er a de-
terministic computation model, which means that the outputs that are computed by a
program only depends on the inputs it has consumed; any admissible schedule of the
computations produces the same result. Determinism is a result of data�ow process
networks being a special case of Kahn process networks [Kahn 74].
A DDF actor may have several so called �ring rules, each of which governs a �ring

that consumes a distinct set of tokens from the input ports. Such sets may di�er in the
number of tokens that are consumed and may di�er further in the required values of
these tokens.
DDF actors use FIFO channels, which means that the actor consumes tokens in the

same order as produced by its predecessors in the data�ow graph. Token consump-
tion uses blocking reads, whereas token production uses non-blocking writes. The use of
blocking reads means that the order, in which tokens are consumed for the purpose of
checking the �ring rules, is crucial. A poorly choosen order could cause an actor to block
although there is a satis�ed �ring rule. The �ring rules of a DDF actor must be sequen-
tial, which means that an appropriate order can be determined beforehand. A further
requirement is that the mapping from input tokens to output tokens be functional, that
is free from side-e�ects.

II.4.3 Synchronous dataflow
Synchronous Data�ows (SDF) are a special case of DDFs, in which actors have �xed
token rates. A particular actor thus consumes (and produces) the same number of tokens
in every �ring. This restriction sacri�ces expressiveness, but allows several interesting
properties to be determined using static (compile-time) analysis.
A model of computation, known as Boolean data�ow, results when extending SDFs

with two types of conditional actors, Switch and Select. This is su�cient to render the
data�ow language Turing complete [Buck 93]. Conditional actors presents a problem in
the SDF model of computation, since the token rates are not known beforehand. We
thus attain computational power at the expense of certain properties of SDFs that can
no longer be decided in general; the existence of a static schedule is one such property.
However, in several other extensions of the SDF model the task of �nding a static

schedule remains tractable while expressiveness is improved. One such extension, known
as well-behaved data�ow [Gao 92], restricts the use of conditional actors in particular
patterns: the conditional schema (if-then-else constructs) and the loop schema.
Another extension, cyclo-static data�ow [Bilsen 96], allows token rates to vary over a
�xed period that is associated with each actor. Firing advances an actor's phase within
its period and thus determines the token rates of the next �ring. In yet another exten-
sion, scenario-aware data�ow [Thelen 06], token rates are parameterized by particular
operational modes, called scenarios, but remain �xed within a single scenario. Scenario-
aware data�ow is primarily intended for static analysis of models with dynamic behavior
and includes stochastic modeling of performance metrics, such as throughput. Under
certain conditions, it is possible to analyze combinations of scenarios in isolation using
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techniques similar to those of SDF graphs.

II.4.4 Scheduling of dataflow graphs
Scheduling concerns the processes of assigning actors to processors and ordering their
execution on each processor. Assignment can be either static (performed at compile-
time) or dynamic (performed at run-time) and, given a static assignment, the ordering
can be either static or dynamic. In static ordering, we can distinguish the schedule
between fully-static schedule and self-timed [Ha 91]. Actors have exact starting times
within the period of a fully-static schedule, whereas self-timed schedules rely on inter-
processor synchronization.
The execution of a data�ow graph is usually assumed to be non-terminating, which

makes it relevant to �nd periodic schedules that can execute inde�nitely. The schedule
must respect precedence constraints, and execution window constraints. In particular,
it is desirable to rule out risk of deadlock, which arises when no actor is able to �re.
Executing consumers directly after their respective producers also brings some bene�ts

to the system, as the probability to transport tokens directly using processor registers,
i.e. without bu�er memory, increases. Reducing amount of tokens bu�ered on the FIFO
channels contribute to reduce bu�er size. Therefore, the bu�er requirement is a target
sensitive property of data�ow graph scheduling. This constraint may be relaxed for the
sake of feasibility, and the trade-o� among several producers and consumers provides
for reduced bu�er size.
The SDF model allows the scheduling constraints to be veri�ed beforehand [Lee 87],

whereas they are undecidable in general for DDF graphs [Buck 93, Parks 95]. SDF
graphs are usually ordered statically, which not only eliminates the run-time overhead
of scheduling, but also enables static allocation of bu�ers and generation of e�cient and
compact code that can be repeated inde�nitely without deadlock. DDF graphs, on the
other hand, usually require dynamic reordering and leeway of actors, thus demanding
e�cient strategies that account for target sensitivity and feasibility.

II.5 Control applications

II.5.1 Basic concepts
The objective of a control system is to make the system output of a dynamic system
behave according to a given reference by manipulating some system input. In the context
of control theory, the controlled system is called plant. The di�erence between the system
output and the reference is called error. The control performance relates, among others,
to this error.
The general functionality of control systems can be described as follows (see �g-

ure II.8): the sensory system samples data from the plant, generating a feedback value.
Then, the controller processes the di�erence between the reference value and the feed-
back value, i.e. the error, in order to derive the needed action (control output). Finally,
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Figure II.8: Control system.

the actuator system performs the action (system input) on the plant. At the design
stage, controllers are designed according to dynamics of the plant and control perfor-
mance speci�ed requirements.
�Embedded control systems are embedded systems where control activities are rel-

evant for their correct functionality. Often, they have resource constraints in terms
of computing and communication resources. Embedded control systems constitute an
important subclass of embedded computing systems. So important that, for example,
within automotive systems, computers commonly go under the name Electronic Control
Unit (ECU). A top-level modern car contains more than 50 ECUs of varying complex-
ity. A majority of these implement di�erent feedback control tasks, for instance, engine
control, traction control, anti-lock braking, active stability control, cruise control, and
climate control.�[A. Crespo 05]
Embedded control systems are often found in consumer products such as automotive

systems, mobile phones, as well as in daily utilities like blenders, mixers, dish washers,
wash machines, etc. Therefore, embedded computers by far outnumber desktop com-
puters. The pervasive nature of these systems generate further constraints on physical
size and power consumption. These product-level constraints give rise to resource con-
straints on the computing platform level, for example, limitations on computing speed
and memory size. Cost also plays a fundamental role in the design of these systems,
thus requiring minimization of system resources, and favoring general-purpose comput-
ing components over specially designed hardware and software solutions.
�Traditionally, control algorithms are designed assuming unlimited computing and

communication resources. In embedded systems, these resources are often shared be-
tween many applications, and the environmental conditions are changing. Thus, the
development of the real-time control algorithms must consider these constraints from
the very beginning in the control design procedure.�[A. Crespo 05]

II.5.2 Control temporal constraints

The basic timing parameters of control tasks are shown in �gure II.9. Control tasks
are released (e.g., inserted into the ready queue of the real-time operating system)
periodically at times rk, and rk+1 − rk = p, where p is the period of the controller.
Due to preemption from other tasks in the system, the actual start of the task may
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Figure II.9: Control timing parameters

be delayed for some time Ls(k). This is called the sampling latency of the controller.
A dynamic scheduling policy will introduce variations in this sampling latency across
intervals. These variations are called sampling jitter. The maximum sampling jitter is
quanti�ed by the di�erence between the maximum and minimum sampling latencies in
all task instances, thus JMAX

s = LMAX
s − LMIN

s .
The sampling interval latency hk is the interval of time between two consecutive

samplings Ik, thus hk = Ik+1 − Ik. The nominal sampling interval is such that hk =
p. Jitter in the sampling latency will of course also introduce jitter in the sampling
interval latency, called sampling interval jitter. The maximum sampling interval jitter
is JMAX

h = 2×
(
LMAX
s − LMIN

s

)
.

After some computation time and possibly further preemption from other tasks, the
controller will actuate the control signal (or control output) at time Ok. The delay
from the sampling to the actuation is the input-output latency LIO(k) = Ok − Ik. Vary-
ing execution times or task scheduling preemptions will introduce variations in this
interval. The maximum input-output jitter is quanti�ed by the di�erence between the
maximum and minimum input-output sampling latencies in all task instances, thus
JMAX
IO = LMAX

IO − LMIN
IO .

Basic control theory assumes all latencies to be zero, which also implies that all jitters
are zero. These assumptions provide for optimum control performance. However, control
tasks must run concurrently in systems with scarce resource availability, and strictly
enforcing no latencies leads to resource underutilization. Moreover, computer-based
control systems su�er from inherent input-output latencies LIO(k), since computations
are not instantaneous.

II.5.3 Effects of temporal properties on control performance

The e�ects of jitters and latencies on the control performance are not always simple to
analyze and quantify. From a control theory perspective, sampling latency and sampling
jitter can be interpreted as disturbances acting on the control system. They have in
general a negative e�ect on performance, although there are counterexamples. �As a
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rule of thumb, sampling interval jitters that are smaller than ten percent of the period
need no compensation. The sensitivity to sampling interval jitter is larger with systems
that use slow sampling and for systems with small phase margins; for such systems a
small sampling interval jitter can lead to instability.�[A. Crespo 05]
The input-output latency and jitter decrease the stability margin and introduce fun-

damental limitation on the control performance, but can be ignored if small. Otherwise,
they must be accounted for in the control design or, if possible, compensated for at run-
time. The work in [Marti 01] presents a run-time jitter compensation that guarantees
stability and improves the control performance. However, there are always exceptions.
For example, latency can have a stabilizing e�ect in systems that are conditionally sta-
ble with respect to the phase shift. However, the latency must be accounted for in
the controller and additional latencies caused by the implementation will only have a
detrimental e�ect. It is also in most cases so that a shorter but varying latency is better
with respect to control performance than a longer, but constant, latency, also if the
latter latency is compensated for. Please refer to [A. Crespo 05] for further details on
this topic.
As can be seen, the temporal properties of control system go beyond the expressibility

of execution windows. Execution windows alone can limit latency and jitter, but at the
expense of compromised feasibility. Moreover, traditionally RT scheduling algorithms
assign priority to tasks based on deadlines, rather than on functional properties of
the applications. This approach leads to a direct relation between application utility
and deadlines, which is not true. For example, some control tasks may tolerate large
deadlines, but at the expense of poor control performance. Thus scheduling algorithms
should minimize the latency and jitter of those tasks, allowing for large values only
for the sake of feasibility and provided that the overall system utility degradation is
minimized. Therefore, control applications are target sensitive and accept �exibility
for the sake of feasibility. Enforcing the target sensitivity leads to optimum control
performance, and the �exibility can be compensated for on-demand at runtime.

II.6 Summary
In this chapter, we described 5 examples of target sensitive real-time applications in
order to evidence the need for task models, as well as scheduling algorithms, which are
able to take into account the temporal requirements of such applications.
Section II.1 presented a multimedia application. We showed that multimedia systems

are embedded in our routine nowadays, with deployment in diverse areas such as health-
care systems, games, publicity, automobile industry, etc. We also used the MPEG-
2 video standard to illustrate the main activities involved in video playout, and the
resource and temporal constraints involved in these activities.
In section II.2, we described the adaptive management of RT application's resources.

Adaptive applications running on system which do not provide for the worst case re-
source requirements demand such management in order to decrease the QoS degradation
shall overload occur.
In section II.3, we presented the deployment of WSNs in assisted health-care systems,
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the so called BANs. BANs have very restricted resource availability, and high QoS
requirements, being the network the most critical resource. This section presented the
temporal requirements and resource constraints of packet scheduling in such networks,
which has target sensitive RT constraints.
In section II.4, we presented the relevance of data�ow-based programming paradigms

to raise the level of abstraction when writing codes tailored to multicore systems. We
then described the issues involved the data�ow graph scheduling, which contains target
sensitive properties.
Finally, in section II.5, we described the resource and temporal constraints of control

systems, which are the original source of the temporal requirements studied in Real-Time
Systems (RTS). We also showed that these temporal requirements are not as strict as
assumed by many task models and scheduling algorithms, accepting some �exibility for
the sake of feasibility and increased resource utilization. Therefore, also control can
bene�t from task models and scheduling algorithms designed for target sensitive RT
applications.





Chapter III

Gravitational Task Model: a bob pendulum
based approach to express trade-offs

In this chapter, we introduce a simple gravity pendulum (or bob pendulum) system as
a visualization model for trade-o�s among target sensitive real-time (RT) applications.
Analogies with well-known systems are helpful to �ll in the gap between theory and
practice. For instance, the so-called nature algorithms use key elements of physical
processes to form the basis of an optimization algorithm [Carnahan 01]. Examples
include the knapsack problem, traveling salesman problem, ant colony optimization,
and simulated annealing.
We introduce, then, the gravitational task model, which provides simple abstractions

for the expression of timing constraints of target sensitive RT applications based on the
analogy between the target sensitive task scheduling and bob pendulum systems. We
consider jobs as objects in a pendulum system, and the target points as the central
point. Then, the equilibrium state of the physical problem is equivalent to the best
compromise among jobs with con�icting targets. Although the gravitational task model
demands a slight change in the description of the pendulum system, the �nal intuition
remains.
We start with a detailed description of the problem, and the basic idea of our solution

in section III.1. Section III.2 covers our terminology and assumptions, section III.3
describes some basic properties of target sensitive task scheduling, and section III.4
describes the bob pendulum system. Section III.5 presents the analogy between target
sensitive task scheduling and bob pendulums, and section III.6 describes the equilibrium
state computation. Finally, section III.7 brings our concluding remarks.

35
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express trade-o�s

III.1 Introduction

Tasks of target sensitive RT applications have a target point in time for maximum
utility, and an execution window for correct system behavior. Moreover, these tasks
have an importance which accounts for the utility decay as a function of the moment
of execution. Classic RT task models, which are based on execution windows alone,
implicitly assume that correct system behavior implies in maximized system utility.
Hence, they fail to express that the utility of the system may vary among scenarios
which yield correct behavior. In these models, tasks of target sensitive RT applications
can tighten the execution windows to enforce the target point for maximum utility.
However, this approach compromises the task set feasibility, thus leading to resource
underutilization. In a concurrent system several tasks may compete for their target
points, and the best compromise accounts for the importance of the tasks.
RT task models must allow target sensitive RT applications to express their timing

constraints, yet providing simple abstractions for ease of understanding and develop-
ment. Classic RT task models demand complex scheduling algorithms to address the
requirements of target sensitive RT applications. Time Utility Function (TUF) based
RT task models lack of low complexity scheduling algorithms which are able to fully
exploit the expressiveness power of TUFs. Furthermore, there is no systematic method
to accurately de�ne the utility function of applications. For example, we are able to say
that deviation from the target point negatively a�ects the perceived quality of video in
multimedia applications, and that this impact is more intense in scenes with a lot of
motion. Nonetheless, to the best of our knowledge the exact relation between deviation
and perceived quality of video is unknown.
Besides the expressiveness in the task model, scheduling algorithms must be able to use

these extra information to take scheduling decisions. The trade-o� among several com-
peting tasks with di�erent importances is not trivial. Those trade-o�s can be modeled
as optimization problems, which consist of a goal function to be maximized/minimized,
and a set of constraints on the variables that comprise the goal function. However,
optimization theory based models and solutions are di�cult for non-specialists, hence
creating a gap between problem (practice) and solution (theory).
In this chapter, we propose an analogy between bob pendulum systems and adaptive

RT systems. This analogy provides a visualization model for trade-o�s, and makes the
solution intuitive. The bob pendulum consists of an object that is attached to a pivot
point, and can swing freely. The rest position of a single object in a pendulum is the
central point. An object placed in this position will not swing, and the system is in an
equilibrium state. If there is more than one object, they will push each other aside, and
their rest position will depend on their relations between weight and size. The heavier
an object is, the stronger is the force that drags it to the central point.
We introduce, then, the gravitational task model, which provides simple abstractions

for the expression of timing constraints of target sensitive RT applications based on
the analogy between target sensitive task scheduling and bob pendulum systems. We
consider jobs as objects in a pendulum and the target points as the central point. Then,
the equilibrium state of the physical problem is equivalent to the best compromise
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among jobs with con�icting targets. Although the gravitational task model demands
a slight change in the description of the pendulum system, the �nal intuition remains.
We present the terminology, assumptions and abstractions of this model.
Analogies with well-known systems are helpful to �ll in the gap between theory and

practice. For instance, the so-called nature algorithms use key elements of physical
processes to form the basis of an optimization algorithm [Carnahan 01]. Below are a
few examples:

Knapsack problem [Martello 90] � Given a set of items, each with a weight and
a value, the problem is to determine the amount of each item to include in a
collection so that the total weight is less than a given limit, and the total value
is as large as possible. The knapsack problem derives its name from the problem
faced by someone who must �ll a �xed-size knapsack with the most useful items.
Knapsack related problems are encountered in numerous industrial domains such
as transportation, logistics, cutting and packing, telecommunication, reliability,
advertisement, investment, budget allocation, and production management.

Traveling salesman problem [Applegate 07] � Given a list of cities and their pair-
wise distances, the problem is to �nd the shortest possible tour that visits each
city exactly once. There are many variations of the problem, e.g. the cities are
visited by car, the goal is to save gas, and the cost of a path depends on the direc-
tion taken (going uphill consumes more gas than going downhill). The traveling
salesman problem has several applications even in its purest formulation, such as
planning, logistics, and the manufacture of microchips.

Simulated annealing [Laarhoven 87] � "Simulated annealing is a single-objective
optimization technique inspired by the natural process of annealing solids. The
physical process of annealing is the cooling of a metal su�ciently slowly so that
it adopts a low-energy, crystalline state. When the temperature of the metal
is high, the particles within the metal are able to move around, changing the
structure of the metal, freely. As the temperature decreases, the movements of
the particles are increasingly limited to only those con�gurations with lower energy
than the previous state. Simulated annealing draws inspiration from the physical
process, in a computational model of the physical system"[Smith 06]. Simulated
annealing has been used in various combinatorial optimization problems, and has
been particularly successful in circuit design problems [Laarhoven 87].

Ant colony optimization [Dorigo 05] � Real ants are capable of �nding the shortest
path from a food source to the nest, and of adapting to changes in the environ-
ment � for example �nding a new shortest path once the old one is no longer
feasible due to a new obstacle. Ants deposit a certain amount of hormone called
pheromone while walking, and those which choose a faster path rapidly reconsti-
tute the interrupted pheromone trail. Because each ant probabilistically prefers
to follow a direction rich in pheromone rather than a poorer one, very soon all
the ants will choose the shorter path. This behavior serves as inspiration for a
whole family of probabilistic techniques for solving computational problems which
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can be reduced to �nding good paths through graphs, e.g. routing vehicles, pro-
tein folding, power electronic circuit design, connection-oriented network routing,
image processing, etc.

Like in the examples above, the intuition from the analogy with a pendulum system
serves well to represent trade-o�s in adaptive systems. This analogy makes the abstrac-
tions used in the gravitational task model and the trade-o� among tasks with con�icting
target points intuitive, and extends the traditional execution window based timeliness
criteria.
The gravitational task model allows jobs to express their target points, and to provide

some resistance to shift their execution away from this point based on their importance.
Therefore, jobs can actually execute at their target points when the system is idle
without the need of tight deadlines. Moreover, we present an approximation to the
best compromise among jobs with con�icting target points based on the equilibrium of
pendulums. This approximation has linear complexity, which represents a signi�cant
improvement compared to currently known TUF schedulers. We, then, derive a method
to compute the best compromise, yet keeping the pendulum intuition.

III.2 Terminology and assumptions

Figure III.1: Job parameters in the gravitational task model.

In the gravitational task model, we de�ne the real-time requirements of tasks at job
level; those jobs may be instances of recurring tasks or not. Let ji be the ith job to execute
in the schedule (see �gure III.1). This job has start time esti, relative deadline rel_dli
(hence, absolute deadline dli = esti + rel_dli), worst case execution time WCETi,
absolute target point tpi, and importance impi. The importance is proportional to the
utility decay, i.e. the need to execute as close as possible to the target point. Since the
entire execution of a job cannot be performed at a single point in time, each job expresses
a point αi within its execution, called anchor point, which relates the job to its target
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point. The value of αi is the fraction of WCETi executed before the anchor point, and
ranges from 0 to 1 � 0 corresponds to the beginning of execution, and 1 corresponds
to the end of execution. Finally, jobs have an utility function gi as a function of the
deviation xi from the target point (more details in section III.6).

Figure III.2: The execution window of a job.

The distance di between the anchor points of two consecutive jobs (ji and ji+1) in a
busy period is (1−αi)×WCETi+αi+i×WCETi+1. The execution window exec_wini
of ji is the interval where the anchor point can be placed without violating the timing
constraints, i.e. exec_wini = [esti+αi×WCETi, dli−(1−αi)×WCETi] (see �gure III.2,
which depicts 3 possible positions for a job ji within its execution window). The length
of this interval is |exec_wini| = rel_dli−WCETi. The anchor point cannot lie outside
the execution window, at the extremes of the execution window the utility is 0, the
�exibility of a job to deviate to the left or to the right side of the target point is the
same, and placing the anchor point on the target point results in maximum utility
accrual. Finally, in the gravitational task model, the kth busy period is called job chain
ck for the sake of intuition resulted from the analogy with pendulum systems.

III.3 Scheduling non-preemptive target sensitive real-time tasks

Non-preemptive target sensitive real-time tasks accrue maximum utility to the system
when executing at their target points. If the execution of 2 or more tasks overlap when
they execute simultaneously at their target points, tasks must deviate away from their
targets; the best compromise maximizes the utility accrual. Scheduling the execution
of those tasks involves 2 steps: shifting them, and reordering their execution sequence.
Shifting the execution of jobs with con�icting target points limits the schedule to a local
optimum � best compromise for this particular execution sequence of jobs. Reordering
the execution sequence has impact on the amount of jobs that compete with one another
for their target points, and relates to the global optimum. The utility of a schedule
depends on the importances, execution times, and target points of the tasks.
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III.4 Inspiration from bob pendulum system
A pendulum is an object attached to a pivot point that can swing freely. A basic example
is the simple gravity pendulum or bob pendulum. As depicted in �gure III.3, it consists
of a bob at the end of a massless string, which, when given an initial push, will swing
back and forth along the swinging range under the in�uence of gravity over its central
(lowest) point in a circular trajectory. Placed at the lowest point, the bob will come to
rest there (rest position).

Figure III.3: Bob pendulum.

If the bob pendulum contains more than one bob, they cannot be all at the same time
in the lowest part, and hence, will push each other aside to �nd a new rest position �
the equilibrium state. The pendulum system depicted in �gure III.4 consists of N bobs
with radius ri, weight ~Wi, hanging by massless strings of length R− ri with a trajectory
of radius R. Two adjacent bobs are an angle θi apart from each other. ϕi is the angle
between the string attached to bob i and ~Wi, and represents the position of the bob.
For now, we assume that the trajectory of all bobs in a pendulum are the same.
The equilibrium condition is that the sum of all torques in the system is equal to

zero and the distance between the centers of two consecutive bobs is the sum of their
radii. These conditions assure that the system is neither spinning nor translating. How
far from the central point each bob comes to rest in the equilibrium state depends on
their weights and sizes. In a pendulum system no translation is possible, which reduces
the equilibrium condition to ensure that the sum of all torques is zero. The torque of
a bob is the component of its weight perpendicular to the string (~Fi) times the length
of the string (R − ri). The angle θi between two given consecutive bobs is constant
and can be calculated as a function of the radii of the bobs and lengths of the strings
using the law of cosines, as shown in equation III.1. The �rst equation of equation
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Figure III.4: Several bob pendulums.

system III.2 expresses the distance constraint between bobs, the second equation the
torque constraint. The solution of this equation system is given by equation III.3, where
ϕ1 is the position of the �rst bob in the equilibrium state. The position of all other bobs
can then be calculated using the �rst equation of equation system III.2. The complexity
to calculate the equilibrium is linear with the number of bobs.

cos(θi) =
(R− ri)2 + (R− ri+1)2 − (ri + ri+1)2

2 (R− ri)× (R− ri+1)
(III.1){

ϕ1 − ϕi =
∑i

j=2 θj−1, i = 2..N∑N
i=1 | ~Wi| × sin (ϕi)× (R− ri) = 0

(III.2)

tg(ϕ1) =

∑N
i=1 |~Pi| (R− ri) sin

(∑i
j=2 θj−1

)
∑N

i=1 |~Pi| (R− ri) cos
(∑i

j=2 θj−1

) (III.3)

In nature, objects tend to change in such a way that their total energy is mini-
mized [Winterbone 96]. A more general de�nition of equilibrium that applies to conser-
vative systems is [Goldstein 02]: �A system is in mechanical equilibrium if its position
in con�guration space is a point at which the gradient with respect to the generalized
coordinates of the potential energy is zero�. In the pendulum system described above
there are only 2 coordinates (horizontal and vertical), and the trajectory of a bob in this
space describes a circular function. Zeroing out the gradient of the potential energy in
a pendulum system with multiple bobs guarantees only a local optimum, which is valid
for a given permutation of the bobs. The absolute minimization of the potential energy
of the system involves also reordering the bobs. Liquid systems are good to give an idea
of which permutation of bobs leads to a global optimum: liquids with higher density rest
closer to the bottom. Likewise, higher density bobs tend to rest closer to the bottom
of the trajectory in the global optimum con�guration as well. However, unlike in a bob
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pendulum system, liquids can go through each other without extra energy cost to reach
the rest position for global energy minimization.

III.5 Analogy between pendulum systems and target sensitive
real-time applications

Figure III.5: Analogy between bob pendulum and RT task set.

Drawing the analogy, we can think of a bob as a job whose execution time is equivalent
to the size of the bob. A job may execute at its target point in the absence of other
jobs in the system with the same target point. The target point is equivalent, thus, to
the central (lowest) point of a pendulum trajectory, the anchor point to the center of
mass of the bob (center of the bob), and the swinging range to the execution window of
the job. The importance of a job, which represents its resistance to shift away from its
target point when interacting with other jobs, can be seen as the weight of the bob. The
heavier a bob is, the closer to the bottom it will come to rest. Finally, the job utility
as a function of its deviation from the target point is similar to the potential energy of
a bob as a function of its deviation from the central point. As the equilibrium is the
state that minimizes the potential energy of the pendulum, the best compromise of the
jobs' interests maximizes the accrued utility of the system. This analogy is depicted in
�gure III.5, and summarized in table III.1.
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pendulum task set

bob job
weight importance
swinging range execution window
central point target point
bob's center anchor point
potential energy function utility function
equilibrium state best compromise

Table III.1: Analogy between bob pendulum and task set

There is still an issue with the analogy that prevents a direct mapping of the pendulum
to the task model. As can be seen in �gure III.6, representing jobs by the projection of
bobs over a straight line tangent to the swinging trajectory (equivalent to the timeline),
overlapping executions occur. We overcome this by changing the �rst constraint of
equation system III.2: instead of assuming the angle θi between two consecutive bobs as
constant, we consider that the distance di between the projection of their centers over
the tangent line is constant (see �gure III.7). Each center is seen as a massive particle
that concentrates the whole weight of the bob.

Figure III.6: Overlap issue.

In this �nal analogy summarized in table III.2, we consider the anchor point αi of a
job ji as a particle in a pendulum. We de�ne the value of αi as the fraction of WCETi
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executed before the anchor point, which ranges between 0 and 1, where 0 corresponds
to the beginning of WCETi and 1 the end of WCETi. Thus, the distance di between
two consecutive anchor points is (1− αi)×WCETi + αi+1 ×WCETi+1.
Ri is the length of the string that hangs job ji, and is equal to half of the swinging

range, thus half of the execution window. The anchor point of ji can be placed anywhere
within this range without violating the earliest start time and the deadline constraints.
Therefore Ri = (|exec_wini|)/2. The target point tpi is the projection of the pivot
point Pi, which is the lowest point of the trajectory of a particle (the central point).
Figure III.2 depicts the relation between the execution window, anchor point, and target
point.

Figure III.7: Analogy between particle pendulum and jobs with anchor points.

Let us now de�ne the relationship between weight of a particle and importance of a job.
In a particle pendulum, two particles with the same weight hanging by strings of di�erent
lengths are not pushed aside in the same proportion with respect to their respective
swinging ranges. The particle hanging by the longer string creates a bigger torque,
hence moving closer to the target point. However, in a real-time system environment,
two jobs with the same importance and di�erent execution windows should be pushed
aside in the same proportion with respect to the size of their execution windows. We
achieve this proportional deviation by normalizing the importance of a job to the length
of its string, hence obtaining Wi = 2× impi/(|exec_wini|).
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pendulum task set

Wi 2× impi/(|exec_wini|)
Ri (|exec_wini|)/2
Pi tpi
di (1− αi)×WCETi + αi+1 ×WCETi+1

Table III.2: Mapping jobs into particle pendulum parameters.

III.6 The equilibrium state

In this section, we describe how to compute the equilibrium of pendulum in order to
obtain the best compromise among competing jobs. Section III.6.1 presents a method
to approximate the best compromise based on the particle pendulum equilibrium, and
section III.6.2 presents a method for the best compromise that we call generic equilib-
rium.

III.6.1 Particle pendulum equilibrium

Equilibrium equation

In this section, we present the mathematical formulation of the equilibrium of the par-
ticle pendulum, and propose an approximation with linear complexity. First, let us
assume that all particles hang by the same pivot point, and then, extend the solution
to cover particles hanging by di�erent pivot points.
The equilibrium is the state that minimizes the potential energy of the system, and

is formulated as in the following Non-Linear Optimization Problem (NLOP) in the case
of the particle pendulum (recall that xi represents the deviation of a particle from its
target point in the horizontal axis (see �gure III.7)):

min :
∑N

i=1−Wi ×
√
R2
i − x2

i

s.t : Pi+1 + xi+1 − (Pi + xi) ≥ di ∀i = 1..N − 1
|xi| ≤ Ri ∀i = 1..N

(III.4)

Solving this NLOP gives the deviation of each particle from its central point that min-
imizes the potential energy of the system, subject to the constraints that each particle i
must be at least a distance di from the subsequent particle, and that the deviation must
not be larger than the length of its string. Solving this problem through mathematical
optimization methods for constrained functions is computationally expensive.
We can compute an approximation of the equilibrium by changing the distance con-

straint of the bob pendulum in equation system III.2 to the distance constraint of the
particle pendulum, obtaining equation system III.5.
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{
xi+1 − xi = di, i = 1..N − 1∑N

i=1 |~Fi| ×Ri = 0
(III.5)

After a few algebraic steps with the �rst equation, we achieve the result in III.6.

xi = xi+1 − di
= xi+2 − di − di+1

. . .

= xN −
N−1∑
j=i

dj (III.6)

Finally, replacing equation III.6 in the second equation of the equation system III.5,
we achieve the result in equation III.7. As we can see, the complexity to compute this
equilibrium state is linear. Replacing the particle pendulum variable from this equation
as described in table III.2 we �nd an approximation to the best compromise among the
jobs' interests, which maximizes the accrued utility of the system.

N∑
i=1

(
|~Fi| ×Ri

)
= 0

N∑
i=1

(
| ~Wi| × sin(ϕi)×Ri

)
= 0

N∑
i=1

(
| ~Wi| × xi

)
= 0

N−1∑
i=1

(
| ~Wi| × xi

)
+ | ~WN | × xN = 0

N−1∑
i=1

(
| ~Wi| × (xN −

N−1∑
j=i

dj)

)
+ | ~WN | × xN = 0

−
N−1∑
i=1

(
| ~Wi| × (

N−1∑
j=i

dj)

)
+

N∑
i=1

| ~Wi| × xN = 0

xN =

∑N−1
i=1

(
| ~Wi| × (

∑N−1
j=i dj)

)
∑N

i=1 | ~Wi|
(III.7)

Equation III.7 assumes that all particles hang by the same pivot point though. Since
jobs will most likely have di�erent target points, we must extend equation III.7 to be
applied in RT scheduling. Therefore, we modify the horizontal distance constraint di
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in equation system III.5 to add the horizontal distance between the pivot points of
subsequent particles (Pi+1−Pi). The new distance constraint is di = xi+1−xi+ (Pi+1−
Pi). With this new condition, equation III.6 becomes xi = xN −

∑N−1
j=i (dj) − Pi + PN .

The solution to the equilibrium state using this condition is shown in equation III.8,
and holds for a set of N particles that push each other aside when in equilibrium.

xN =

∑N−1
i=1

(
| ~Wi| × (

∑N−1
j=i (dj) + Pi − PN)

)
∑N

i=1 | ~Wi|
(III.8)

Although this equation has two nested sums and a multiplication, it can be solved
with linear complexity with respect to the number of particles if computing, initially,∑N−1

j=1 (dj) and then, for every iteration of the outer sum, subtracting di from the inner
sum (see algorithm 1, where function sum(v[j],...,v[k]) computes

∑k
i=j vi).

Algorithm 1 Computing xN .
sum_d = sum(d[1],...,d[N-1])
i = 1
numerator = 0
while i <= N − 1
{

numerator = numerator + W[i] x (sum_d + P[i] - P[N])
sum_d = sum_d - d[i]
i = i + 1

}
return numerator/sum(W[1],...,W[N])

Implicit utility function

In the gravitational analogy, the system utility maximization problem is equivalent to the
potential energy minimization of a pendulum system. This section describes the implicit
utility function which is present in the gravitational task model, and is a consequence
of the analogy with the particle pendulum.
A particle swinging in a pendulum describes a circular trajectory centered at the pivot

point. Let the horizontal and the vertical position be, respectively, on the x-axis and
y-axis of a cartesian plane centered at the pivot point. The set of points belonging to
the trajectory is given by the function yi = −

√
R2
i − x2

i . Observe that the height is
negative because we assume the pivot point as a reference for the vertical position, and
the particle will always be below this point.
The potential energy (Ei) of a particle is equal to its vertical position times its weight

(Ei = Wi × yi), which is given in equation III.9 as a function of the horizontal position
of a particle in its trajectory. This function is an ellipse centered at 0 with horizontal
axis of length R and vertical axis of length Wi ×Ri.
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Ei = −Wi ×
√
R2
i − x2

i (III.9)

A maximization problem is a minimization problem where max g = −min (−g).
Based on the analogy between pendulums and task sets in the gravitational task model,
we have min E ≡ max g (where E =

∑N
i=1 Ei). Making gi = −Ei we have max g =

max (−E) = −(min E ). Therefore, the system utility maximization problem becomes
the potential energy minimization problem. gi is de�ned replacing Wi and Ri in equa-
tion III.9 for job variables as described in table III.2 (see equation III.10). xi is equivalent
to the deviation of job ji from its target point tpi.

gi =
2× impi
|exec_wini|

×

√(
|exec_wini|

2

)2

− x2
i (III.10)

A property of ellipses (independent of their size and shape) is that in the region around
their centers a variation ∆x corresponds to a variation ∆y, but the same variation ∆x
in a region farther from the center corresponds to a variation ∆y′ > ∆y. For instance, a
job deviation of R/2 represents a utility decrease of approximately 14%, but a deviation
of R drops the utility to 0. This property is convenient to use with applications that
are target sensitive, and can tolerate small variances around the target with low impact
on its utility, but as the distance increases the utility drops abruptly.

III.6.2 Generic equilibrium

Generic equilibrium equation

The constrained maximization problem III.11 expresses the trade-o� in a job chain of
N jobs maximizing the accrued utility of the system for a given order of jobs. The
goal function is to maximize the sum of the utilities of each job, subject to the con-
straints that there is no idle time between consecutive jobs (1st constraint in (III.11)),
and that the anchor points are within the respective execution windows (2nd and 3rd
constraint in (III.11)). This mathematical formulation is equivalent to the equilibrium
condition of pendulums. In this section, we describe how to convert this constrained
multi-dimensional maximization problem into one single unconstrained uni-dimensional
maximization problem which has an optimum solution. Unlike the equilibrium equation
derived directly from the pendulum analogy, this solution holds assuming jobs with any
continuously di�erentiable concave utility function gi. The utility function gi of each
job can be of di�erent types, e.g. elliptical, parabolic, hyperbolic, etc.

max : g(x1, . . . , xn) =
∑N

i=1 gi(xi)

s.t :
tpi+1 + xi+1 − (tpi + xi) = di ∀i = 1..N−1
xi≤dli−(1−αi)×WCETi−tpi ∀i = 1..N
xi ≥ esti + αi ×WCETi − tpi ∀i = 1..N

(III.11)
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The goal function g is an N dimensional problem as function of x1, . . . , xN . However,
the 1st constraint can be rewritten to express xi as a function of xN , hence reducing the
problem to 1 dimension. The steps that lead to equation III.12 show this transformation.

tpi+1 + xi+1 − (tpi + xi) = di
N−1∑
j=i

(tpj+1 + xj+1 − (tpj + xi)) =
N−1∑
j=i

dj

tpN + xN − (tpi + xi) =
N−1∑
j=i

dj

�nally:

xi(xN) = tpN − tpi −
N−1∑
j=i

dj + xN (III.12)

As a result, g(x1, . . . , xn) becomes a sum of composite functions of gi and xi as a
function of xN (see equation III.13).

g(xN) =
∑N

i=1(gi(xi(xN))) =
∑N

i=1(gi ◦ xi)(xN) (III.13)

Replacing equation III.12 in the 2nd and 3rd constraint, which describe the space
where g(x1, . . . , xn) is de�ned, we obtain inequality system III.14.

xN≤dli−(1−αi)×WCETi−tpN+
∑N−1

j=i dj
xN≥esti + αi ×WCETi − tpN +

∑N−1
j=i dj

∀i = 1..N

(III.14)

Solving this inequality system gives the interval I where equation III.13 is de�ned. If
I is empty, there exists no trade-o� that meets the timing constraints of all jobs at the
same time. Otherwise, the schedule that maximizes the accrued utility in a job chain
is given by xN ∈ I that maximizes equation III.13. Once xN is found, the deviations of
the other jobs from their target points are calculated using equation III.12.
Next, we show how to �nd the maximum value of g(xN) in any interval I provided

g(xN) is concave. The sum of continuously di�erentiable concave functions is also a
continuously di�erentiable concave function [Sun 06]. Therefore, if each job ji has a
concave and continuously di�erentiable utility function gi(xi), then g(xN) is concave
and continuously di�erentiable in interval I. We assume applications provide utility
functions to the system along with their closed-form derivatives.
A function is called concave in a interval i� its derivative is monotonically decreasing

in this interval [Sun 06]. Figure III.8 shows a concave function and its derivative. If
g(xN) is concave and continuously di�erentiable, g′(xN) has at most one root in any
interval I, where I must fall in one of the 3 categories below (depicted in �gure III.8):

1. the interval contains only positive values of g′(xN), thus g(xN) is monotonically
increasing with maximum at the rightmost point of I.
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2. the interval contains only negative values of g′(xN), thus g(xN) is monotonically
decreasing with maximum at the leftmost point of I.

3. the interval contains both positive and negative values of g′(xN), thus g(xN) has
maximum at g′(xN) = 0, which is the absolute maximum.

We di�erentiate g(xN) applying the chain rule to solve
∑N

i=1(gi ◦xi)′(xN), and obtain
equation III.15, which we call generic equilibrium. Note that x′i(xN) = 1, ∀i = 1..N . If
I falls in either case 1) or 2), �nding xN that maximizes the accrued utility is straight-
forward. Otherwise, we must �nd the root of the generic equilibrium.

g′(xN) = 0
N∑
i=1

(gi ◦ xi)′(xN) = 0

N∑
i=1

(g′i ◦ xi)(xN)× x′i(xN) = 0

�nally:
N∑
i=1

(g′i ◦ xi)(xN) = 0 (III.15)

The root of the generic equilibrium can be found either analytically, or using any
numerical (iterative) root-�nding algorithm [Sun 06], e.g. the bisection method, New-
ton's method, etc. A discussion on these methods is beyond the scope of this work. An
analytical solution is preferable, but it is not always possible.
Solving equation III.15 consists of applying the numerical method rule to the sum of

N elements (
∑N

i=1(g′i ◦ xi)(xN)) until the return value of this sum converges to 0. Each
iteration of the numerical root-�nding algorithms has complexity O(1) and

∑N
i=1(g′i ◦

xi)(xN) is computed with complexity O(N) as in algorithm 2.
Figure III.9 shows some examples of types of continuously di�erentiable concave utility

functions. Note that since the gravitational task model de�nes that the utility of jobs is
maximized at the target points, gi(xi) is maximized when the deviation from the target
point is zero, i.e. xi = 0. We assume that a negative deviation happens to the left side
of the target point, and a positive to the right.
The complexity to solve the generic equilibrium is O(K ∗ N), where K denotes the

number of iterations necessary to converge, and is independent of the number of jobs.
Note that the e�ciency of the solution also depends on the rate of convergence of the
chosen root-�nding algorithm. Solving g′[i](x[i]) analytically is independent of any other
job rather than ji, hence having complexity O(1). Therefore, an analytical solution of
the generic equilibrium has complexity O(N). The next section brings an example of
an analytical solution of the generic equilibrium.
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Figure III.8: Example of a concave function and its derivative.
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Figure III.9: Some continuously di�erentiable concave utility functions.

Algorithm 2 Computing
∑N

i=1(g′i ◦ xi)(xN).
sum_d = - d[N]
result = 0
i = N
while i > 0
{

sum_d = sum_d + d[i]
x[i] = tp[N] - tp[i] - sum_d + x[N]
result = result + g’[i](x[i])
i = i - 1

}
return result

In the next section, we show an example of an analytic solution assuming that the
utility function of jobs are quadratic polynomials.

Example of an analytical solution of the generic equilibrium

In this section, we present an example of an analytical solution of the generic equilibrium
assuming quadratic utility functions as in equation III.16.

gi(xi) = aix
2
i + bixi + ci (III.16)
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Figure III.10 depicts a valid quadratic utility function. As gi(xi) must be concave,
we have a < 0. Furthermore, gi(xi) must be maximized at xi = 0 to be a valid utility
function, and hence, we have g′i(0) = 0. As can be seen in equation III.17, g′i(0) = 0
only if bi = 0. At xi = 0 the return value is ci.

Figure III.10: A quadratic utility function.

g′i(xi) = 2aixi + bi (III.17)

Replacing equation III.17 in the generic equilibrium (equation III.15), we obtain equa-
tion III.18 after a few steps for bi = 0. The outer sum in the numerator can be reduced
to range from 1 to N − 1 because, for i = N , tpi = tpN and

∑N−1
j=i dj = 0, which zeros

out the term.
Note that for a1 = Wi equation III.18 becomes equation III.8, which is the particle

pendulum equilibrium. Therefore, besides being an approximation of the trade-o� for
elliptical utility functions, the particle pendulum equilibrium is optimum for a particular
class of quadratic utility functions. This class of quadratic utility functions has ai =
(2× impi)/(dli −WCETi), bi = 0 and ci = impi.
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N∑
i=1

(g′i ◦ xi)(xN) = 0

N∑
i=1

2aixi(xN) = 0

N∑
i=1

(
2ai×

(
tpN − tpi −

N−1∑
j=i

dj + xN

))
= 0

N∑
i=1

2aixN +
N∑
i=1

2ai×

(
tpN−tpi−

N−1∑
j=i

dj

)
= 0

�nally:

xN =

∑N−1
i=1 ai(

∑N−1
j=i (dj) + tpi − tpN)∑N

i=1 ai
(III.18)

III.7 Summary
In this chapter, we introduced the simple gravity pendulum (or bob pendulum) system as
a visualization model for trade-o�s among target sensitive RT applications. As depicted
in �gure III.3, the pendulum system consists of a bob at the end of a massless string,
which can swing back and forth along the swinging range under the in�uence of gravity
over its central (lowest) point in a circular trajectory. Placed at the lowest point, the
bob will come to rest there (rest position). If the bob pendulum contains more than one
bob, they cannot be all at the same time in the lowest part, and hence, will push each
other aside to �nd a new rest position (equilibrium state). The equilibrium state implies
in minimized overall potential utility. The pendulum system depicted in �gure III.4
consists of N bobs with radius ri, weight ~Wi, hanging by massless strings of length
R− ri with a trajectory of radius R. Two adjacent bobs are an angle θi apart from each
other. ϕi is the angle between the string attached to bob i and ~Wi, and represents the
position of the bob.
Trade-o�s are present, for example, in the scheduling of target sensitive RT appli-

cations. We showed that classic task models, which are based on execution windows
alone, either compromise feasibility for the sake of maximized utility accrual or fail to
use resources e�ciently, i.e. for maximized utility accrual. We introduced, then, the
gravitational task model, which provides simple abstractions for expression of timing
constraints of such applications based on the analogy between the task model and pen-
dulum systems. This expressiveness provides for adaptivity in order to improve system
utility.
In the gravitational task model, each job ji can express (see �gures III.1 and III.2):

earliest start time esti; relative deadline rel_dli (hence, absolute deadline dli = esti +
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rel_dli); worst case execution time WCETi, target point tpi; an anchor point αi within
its execution that must coincide with the position of the target point upon execution for
maximum utility accrual; the execution window exec_wini = [esti +αi×WCETi, dli−
(1 − αi) ×WCETi] is the interval within which the anchor point must lie for correct
system behavior and deviating the anchor point away from the target point causes the
utility to decay; and, �nally, importance impi which relates to the need of the job to
execute as close as possible to its target point. Scheduling algorithms can exploit those
parameters for better scheduling decisions. Those algorithms must shift the execution
of jobs with con�icting targets to make room for execution such that the system utility
is maximized.
Drawing the analogy, the execution time of a job is equivalent to the size of the bob.

A job is allowed to execute at its target point in the absence of other jobs in the system
with the same target point. The target point is equivalent, thus, to the central (lowest)
point of a pendulum trajectory and the swinging range is the execution window of the
job. The importance of a job, which represents its resistance to be shifted away from its
target point when interacting with other jobs, can be seen as the weight of the bob. The
heavier a bob is, the closer to the bottom it will come to rest. Finally, the job utility
as a function of its deviation from the target point is similar to the potential energy of
a bob as a function of its deviation from the central point. As the equilibrium is the
state that minimizes the potential energy of the pendulum, the best compromise of the
jobs' interests maximizes the accrued utility of the system. This analogy is depicted in
�gure III.5 and summarized in table III.1.
However, following this analogy to schedule jobs might result and execution overlap,

as can be seen in �gure III.6. Then, we introduced the particle pendulum, where the
basic di�erence lies in the fact that adjacent particles have a constant horizontal distance
constraint di. This analogy is depicted in �gure III.7 and table III.2 summarizes the
mapping of the parameters from both systems.
We also calculated an approximation for the equilibrium of the particle pendulum in-

spired by the equilibrium condition for bob pendulums. Combined with the conversion
provided in table III.2, the equilibrium of particle pendulums calculates an approxima-
tion of the best compromise among jobs with con�icting target points. Then, we showed,
based on this new analogy, that the gravitational task model implicitly assumes that
jobs have elliptical utility functions as in equation III.10. Finally, we generalized the
equilibrium equation in section III.6.2 to allow jobs to have any arbitrary continuously
di�erentiable concave utility function. This generalization keeps the original intuition
from the analogy with pendulum systems.





Chapter IV

Scheduling target sensitive real-time tasks

In this chapter, we present a few scheduling algorithms for the gravitational task model.
The scheduling of target sensitive real-time (RT) applications must account for timing
constraints, and the trade-o� among tasks with con�icting targets. Those scheduling
algorithms use the equilibrium state concept to compute the deviation of jobs from their
target points for increased system utility. Furthermore, the execution sequence of jobs
in the schedule has a signi�cant impact on the equilibrium of jobs, and dominates the
complexity of the problem � the optimum solution is Non-deterministic Polynomial-
time hard (NP-hard) [Chen 96].
We start with a detailed description of the problem, and the basic idea of our schedul-

ing algorithms in section IV.1. Section IV.2 describes how to schedule jobs using the
equilibrium to compute trade-o�s, and in section IV.3 we present the importance of the
execution sequence of jobs in the schedule, and a few ordering heuristics. Section IV.4
brings some experimental results of simulations, where we compare the di�erent order-
ing heuristics, and the 2 proposed methods for equilibrium calculation: the pendulum
equilibrium and the generic equilibrium. Finally, section IV.5 brings our concluding
remarks.
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IV.1 Introduction
In chapter III, we proposed a method based on the equilibrium of bob pendulums to
compute the trade-o� among jobs with con�icting target points. However, not all jobs
in a schedule compete with one another for their target points. Therefore, in order
to apply the equilibrium, the scheduler must know which jobs have con�icting target
points. Identifying those jobs is not trivial, and requires equilibrium recomputations
that result in increased complexity. As a result, reducing the complexity to recompute
the equilibrium is crucial.
The execution sequence of jobs also impacts on the trade-o�; the equilibrium itself is

limited to �nding local optimums. Ordering the execution of non-preemptive tasks is a
NP-hard problem [Chen 96] � check all possible permutations. Therefore, an optimum
solution has high overhead, and hence, is unfeasible for on-line scheduling algorithms.
Heuristic solutions compromise between overhead, acceptance ratio, and utility accrual;
a�ording higher overhead tends to provide for better scheduling decisions. Traditional
execution windows based scheduling algorithms aim only at feasibility, e.g. Earliest
Deadline First (EDF), Rate Monotonic (RM), etc.
In this chapter, we present an algorithm based on bob pendulums to identify which

jobs in the schedule compete for their target points � those jobs comprise a job chain.
This algorithm inserts jobs one by one in the schedule and, similar to inserting bobs
one by one in a pendulum system, recomputes the equilibrium upon collision detection.
These equilibrium recomputations lead to a complexity O(N2). Then, we present a
method to avoid recomputing the whole equilibrium upon collision. This method consists
of storing intermediate values for jobs already in equilibrium in order save computational
steps in case the scheduler must recompute the equilibrium. This new equilibrium
recomputation method has linear complexity, and does not impact on the output of the
equilibrium calculation.
We also propose 3 heuristics to reorder the execution sequence of jobs: DST-1, DST-

2 and DST-3. Those heuristics are inspired by the physics of liquids: higher density
liquids come to rest closer to the bottom and, following the same rationale, tasks with
higher utility density should execute closer to their target points. The utility density
of a job is the ratio of its importance to its WCET. Heuristic DST-1 uses only the
utility density concept to come up with a execution ordering, ignoring the execution
windows of jobs. Hence, feasibility may be compromised. Heuristic DST-2 extends
DST-1 to account for execution windows on ordering decision. Both DST-1 and DST-2
have complexity O(N × log(N)) because the arrival of a job may cause reordering of
previously scheduled jobs. Heuristic DST-3, �nally, modi�es the previous ones to avoid
reordering of the execution sequence upon job arrival, and hence, has linear complexity.

IV.2 Trade-off among competing jobs
In this section, we describe how to schedule jobs using the equilibrium to compute trade-
o�s. The equilibrium is a method that shifts the execution of jobs with con�icting target
points for increased system utility accrual. However, the absolute maximum utility of
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a given task set must also consider the execution sequence of jobs � the equilibrium
itself is limited to �nding a local optimum. The optimum solution is to completely
enumerate all possible permutations of the execution sequence of jobs. As we focus on
the equilibrium now, we order the jobs statically according to their target points.
Section IV.2.1 describes the algorithm to compute the equilibrium of jobs upon

scheduling; section IV.2.2 shows a method to reduce the complexity to calculate the
equilibrium of jobs; section IV.2.3 shows the on-line job admission strategy; �nally,
sections IV.2.4 and IV.2.5 illustrate the scheduling algorithm with examples.

IV.2.1 Computing the equilibrium of jobs

The pendulum equilibrium (see equation III.8) and the generic equilibrium (see equa-
tion III.15) compute deviations of jobs with overlapping execution for increased utility
accrual. Those equations hold given that there is no idle period between any two con-
secutive jobs in the equilibrium state � those jobs comprise a job chain. A schedule
with 2 job chains is depicted in �gure IV.1.
We identify the job chains appending jobs one by one in the schedule, and recomputing

the equilibrium state when executions overlap. This is similar to inserting bobs one by
one in a pendulum system, and the equilibrium state changes upon collisions. Notice
that upon equilibrium recomputation a ripple e�ect might happen, and adjacent job
chains that merge must have their equilibrium recomputed.
Our algorithm to compute the equilibrium of jobs maintains a list of job chains.

Whenever we append a job in the schedule, we append a job chain containing the
appended job in the job chain list. The algorithm computes, then, the equilibrium for
the last job chain, and veri�es if the �rst job of the last job chain overlaps execution
with the last job of the previous job chain. If so, the algorithm merges the last and
the penultimate chains, and recomputes the equilibrium for this new last chain. This
may trigger new merges, which we call ripple e�ect. When the ripple e�ect stops,
the algorithm appends the next job, and repeats this process until all jobs are in the
schedule.
Recomputing the equilibrium may shift the execution of some jobs before the current

time, which is not feasible. Therefore, when scheduling periodic tasks, we consider all
jobs in the hyper-period at the beginning of each hyper-period. Note that the number
of jobs that must be considered grows, in the worst case, in factorial scale with respect
to the number of periodic tasks. This worst case happens when the periods of all tasks
are prime.
Appending N jobs to the schedule, and N job chains to the job chain list, has com-

plexity O(N). The maximum number of merged chains is N − 1, and for each merge,
the algorithm scans all jobs in the new chain, and computes the equilibrium. Updating
the job chain list to merge two chains has complexity O(1), and computing the equi-
librium has complexity O(N). As merges may happen N − 1 times, the complexity to
identify the job chains is O(N2) due to the equilibrium recomputations upon merge.
Sections IV.2.4 and IV.2.5 illustrate the calculation of the equilibrium of jobs during
scheduling with an example. There is an example with the pendulum equilibrium, and
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an example with the generic equilibrium.
In the next section, we present a method to recompute the equilibrium of merged

chains with complexity O(1). Using this method, the complexity of our algorithm to
identify job chains becomes linear.

IV.2.2 Reducing the complexity of equilibrium recomputations

We present in this section a method to dispense revisiting all jobs when computing
the equilibrium of merged chains using the particle equilibrium. Instead of visiting all
jobs in the new chain and computing the equilibrium as in equation III.8, this method
computes the equilibrium of the new chain only using intermediate values stored for
each of the merged chains.

Figure IV.1: Analogy between particle pendulum and tasks

In a job chain, we are interested in knowing what is the position of the �rst and
the last job in the equilibrium state. Let jfj be the �rst job and jlj the last job of a
job chain (fj, lj ∈ N∗). We de�ne the position of job ji (pos(ji)) as the point in time
in the schedule at which its anchor point is placed. We obtain pos(jlj) by summing
its deviation (computated as in equation III.8) and its target point. Once pos(jlj) is
known, we can determine pos(jfj) by subtracting the distance di of the jobs scheduled
to execute in between (fj ≤ i < lj). See equation system IV.1.
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 pos(jlj) =
∑lj−1
i=fjWi×(

∑lj−1
j=i (dj)+Pi−Plj)∑lj
i=fjWi

+ Plj

pos(jfj) = pos(jlj)−
∑lj−1

i=fj di
(IV.1)

In the sequence, we will explain how to compute the equilibrium of 2 chains that
merge using only intermediate values stored for each chain, and a �xed number of
operations that is independent of the number of jobs in each chain. The �rst step is to
decide which intermediate values must be stored for a job chain, and how to compute
the equilibrium using these values. Following the rationale of storing the result of sums
and multiplications that must be used in future equilibrium recomputations, we choose 3
intermediate values, X, Y and Z. They are computed as shown in equation system IV.2.
Using these values, we compute pos(jlj) and pos(jfj) as in IV.3. Equation systems IV.1
and IV.3 are equivalent.

X =
∑lj−1

i=fj

(
Wi ×

(∑lj−1
j=i (dj) + Pi

))
Y =

∑lj
i=fjWi

Z =
∑lj−1

i=fj di

(IV.2)

{
pos(jlj) =

X−Plj×(Y−Wlj)

Y
+ Plj

pos(jfj) = pos(jlj)− Z
(IV.3)

The second step is to compute the values X, Y and Z of a new chain only using the
intermediate values of each merged chain, instead of using equation system IV.2. This
way, we avoid going through all the jobs in the new chain, and we can compute X, Y
and Z with a �xed number of operations that is independent of the number of jobs in
each merged chain (i.e. O(1)). Let X ′, Y ′ and Z ′ be the intermediate values of the
�rst chain, and X ′′, Y ′′ and Z ′′ be the intermediate values of the second chain. Then
fj = fj′, lj = lj′′, and lj′ + 1 = fj′′ (jlj′ and jfj′′ are adjacent jobs). For instance, in
the particular case depicted in �gure IV.1, if the chains ck and ck+1 merge then we have
that fj = fj′ = ji, lj = lj′′ = ji+3, and that lj′ + 1 = fj′′ = ji+2.

Y =

lj∑
i=fj

Wi (IV.4)

Y =

lj′′∑
i=fj′

Wi

Y =

lj′∑
i=fj′

Wi +

lj′′∑
i=fj′′

Wi

Y = Y ′ + Y ′′ (IV.5)

Expressions IV.4 and IV.5 show how to compute Y as a function of Y ′ and Y ′′.
Expressions IV.6, IV.7 and IV.8 show how to compute Z as a function of Z ′, Z ′′ and
dlj′ .
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Z =

lj−1∑
i=fj

di (IV.6)

Z =

lj′−1∑
i=fj′

di + dlj′ +

lj′′−1∑
i=fj′′

di (IV.7)

Z = Z ′ + dlj′ + Z ′′ (IV.8)

In order to compute X, we break the outer sum in expression IV.9 into 3 parts. These
parts correspond to terms IV.11, IV.12 and IV.13. Term IV.13 is equal to X ′′, as can
be seen by the description of X in equation system IV.2.

X =

lj−1∑
i=fj

(
Wi ×

(
lj−1∑
j=i

(dj) + Pi

))
(IV.9)

X =

lj′′−1∑
i=fj′

(
Wi ×

(
lj′′−1∑
j=i

(dj) + Pi

))
(IV.10)

X =

lj′−1∑
i=fj′

(
Wi ×

(
lj′′−1∑
j=i

(dj) + Pi

))
(IV.11)

+Wlj′ ×

(
lj′′−1∑
j=lj′

(dj) + Plj′

)
(IV.12)

+

lj′′−1∑
i=fj′′

(
Wi ×

(
lj′′−1∑
j=i

(dj) + Pi

))
(IV.13)

Term IV.12 becomes term IV.14 after a few mathematical steps. The sum
∑lj′′−1

j=lj′ (dj)

in term IV.12 becomes the expression
∑lj′′−1

j=fj′′(dj) + dlj′ since dlj′ and dfj′′ are adjacent.

Notice that
∑lj′′−1

j=fj′′(dj) = Z ′′.

Wlj′ ×

(
lj′′−1∑
j=lj′

(dj) + Plj′

)
=

Wlj′ ×

(
lj′′−1∑
j=fj′′

(dj) + dlj′ + Plj′

)
=

Wlj′ × (Z ′′ + dlj′ + Plj′) (IV.14)

Finally, let us analyze term IV.11. We break the inner sum
∑lj′′−1

j=i (dj) into the term∑lj′−1
j=i (dj) + dlj′ +

∑lj′′−1
j=fj′′(dj)) (see (IV.15)). Then, we use the distribution property to
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break term IV.15 into terms IV.16 and IV.17. The former term is equal to X ′, and the
latter one is the sum of a variable multiplied by a constant. We remove the constant part
from the sum, and after some basic mathematical steps � which include replacing IV.2
in IV.18 � we obtain IV.19. The sum of expressions IV.11, IV.12 and IV.13 is the value
of X without revisiting jobs.

lj′−1∑
i=fj′

(
Wi ×

(
lj′′−1∑
j=i

(dj) + Pi

))
=

lj′−1∑
i=fj′

(
Wi×

(
lj′−1∑
j=i

(dj)+dlj′+

lj′′−1∑
j=fj′′

(dj)+ Pi

))
= (IV.15)

lj′−1∑
i=fj′

(
Wi ×

(
lj′−1∑
j=i

(dj) + Pi

))
+ (IV.16)

lj′−1∑
i=fj′

(
Wi ×

(
lj′′−1∑
j=fj′′

(dj) + dlj′

))
= (IV.17)

X ′ +

(
lj′′−1∑
j=fj′′

(dj) + dlj′

)
×

lj′−1∑
i=fj′

(Wi) = (IV.18)

X ′ + (Z ′′ + dlj′)× (Y ′ −Wlj′) (IV.19)

The calculations of X, Y and Z without revisiting jobs are summarized in equation
system IV.20. This alternative solution to equation system IV.2 uses only the interme-
diate values of the adjacent chains, and a �xed number of operations. These calculations
have, hence, complexity O(1), and they must be computed whenever there is a merge
of adjacent chains. For an incoming job ji, we compute its intermediate values as in
equation system IV.2 with lj = fj = i, thus X = 0, Y = Wi and Z = 0. We apply this
method recursively upon ripple e�ects.

X = X ′ + (Z ′′ + dlj′)× (Y ′ −Wlj′)
+Wlj′ × (Z ′′ + dlj′ + Plj′) +X ′′

Y = Y ′ + Y ′′

Z = Z ′ + dlj′ + Z ′′

(IV.20)

Notice that using equations IV.20 and IV.3 we obtain the positions of the �rst and last
jobs without considering the earliest start times and deadlines constraints of jobs within
the chain. Since these constraints must not be violated in order to yield a feasible
schedule, the boundary within which a chain can swing is limited. As a result, we
introduce the parameters Sleft and Sright, which represent, respectively, the amount of
slack that a job chain can shift to the left and to the right. These slacks must always
be larger than or equal to zero to ensure that no job within the chain violates its timing
constraints (see equation system IV.21).
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{
Sleft = min{pos(ji)− esti − αi ×WCETi} ∀i = fj..lj
Sright = min{dli − pos(ji)− (1− αi)×WCETi} ∀i = fj..lj

(IV.21)

A chain with one job has, hence, Sleft = tpi − αi × WCETi − esti and Sright =
dli−tpi−(1−αi)×WCETi, since this job executes at its target point. Then upon chain
collision, the equilibrium of chains that merge is computed as described in this section
and, at each merge, the slacks of the new chain are computed. Assume 2 consecutive
chains ck and ck+1 that merge into a new chain ck (the new chain is the kth chain in
the schedule). Their overlap is given by overlap = pos′(jlj′) + (1 − αlj′) ×WCETlj′ −
(pos′′(jfj′′) − αlj′′ × WCETlj′′) and the slacks of the new chain are computed as in
equation IV.22. As jlj = jlj′′ , let us use the term pos′′(jlj′′) to represent the position of
jlj before merging, and pos(jlj) to represent the position of jlj after merging. Figure IV.2
depicts this situation. The target points and the pendulum analogy were omitted to
avoid overcrowding the �gure.

Sleft = min{S∗left, S∗∗left}
Sright = min{S∗right, S∗∗right}
S∗left = S ′left + pos(jlj)− pos′′(jlj′′)− overlap
S∗right = S ′right − (pos(jlj)− pos′′(jlj′′)) + overlap
S∗∗left = S ′′left + pos(jlj)− pos′′(jlj′′)
S∗∗right = S ′′right − (pos(jlj)− pos′′(jlj′′))

(IV.22)

If after merging Sleft + Sright < 0, then the schedule is not feasible. Otherwise, if
either Sleft or Sright is negative, the chain must be appropriately shifted. If Sleft < 0,
then at least one job in the chain is scheduled at most |Sleft| before its start time. In
this case, we increase the position of the �rst and last job in the chain by |Sleft|, Sright
decreases by |Sleft|, and Sleft = 0. In case Sright < 0, then at least one job in the chain
is scheduled at most |Sright| after its deadline. In this case, we decrease the position of
the �rst and last job in the chain by |Sright|, Sleft decreases by |Sright|, and Sright = 0.
As we can see, the complexity of merging 2 chains remains O(1).
Notice that this method does not update the position of jobs within the chain, as

their positions are not needed during scheduling, and doing so implies in visiting all
jobs. We update the positions of all jobs in the end of the scheduling process (see
section IV.2.1). Section IV.2.4 illustrates a scheduling algorithm which uses this method
with an example.

IV.2.3 On-line admission
A job ja arriving on-line gets its own job chain ca. The scheduler inserts ca in the
job chain list so that ja is ordered with the other jobs by target point, and computes
the equilibrium for ca. Inserting ca in the list has complexity O(N), and calculating
the equilibrium of ca has complexity O(1). This insertion may cause an existing chain
c to split into c′ and c′′: c′ contains all jobs which execute before ja and c′′ contains
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Figure IV.2: Slack of merged chains

all jobs which execute after ja. The algorithm computes the equilibrium of c′ and c′′

using equation IV.3, their respective intermediate values using equation IV.2, and their
respective slacks using equation system IV.21. Computing the equilibrium for chains c′

and c′′ has linear complexity.
Next, the algorithm checks if ca merges with any of the adjacent chains as described

in sections IV.2.1 and IV.2.2. The necessary updates have worst case complexity O(N).
If after the necessary equilibrium recomputations � which happen due to execution
overlapping and ripple e�ect � jobs are scheduled for execution before the current
time, the scheduler postpones the execution of the next ready job; during this process
chains may merge again. Scanning the job chain to look for merges has complexity
O(N). The scheduler admits the incoming job only if the schedule is feasible, and the
resulting utility accrual is higher than before admission.
The worst case complexity of the on-line admission is, hence, linear with the number

of jobs. The next section brings an example of this method in a scheduling scenario.

IV.2.4 Scheduling example using pendulum equilibrium
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Without intermediate values

τ1 τ2 τ3

start time 0 0 0
period 6 12 12
relative deadline 6 6 12
WCET 2 1 4
importance 1 6.25 2
anchor point 0 0 0

Table IV.1: Task set.

Consider the task set shown in Table IV.1. Within the �rst hyper-period ([0, 12]),
we have the following jobs ordered by target point: τ1,1, τ2,1, τ3,1 and τ1,2, where τi,j
represents the jth instance of task τi (see table IV.2). Given this order, we now refer
to them as jobs j1, j2, j3 and j4, respectively. Their target points are 2, 2.5, 4 and 8,
respectively, as we assume that target points lie in the middle of the execution window
(tpi = esti + αi ×WCETi + |exec_wini|/2); for the sake of simplicity, we assume their
anchor points are all 0 (all anchor points are mapped to the beginning of the execution
of a job).
Following the algorithm described in section IV.2.1, we �rst place j1 at time 2. The

system utility at this point is 1. Next, we try to put j2 at time 2.5, but j1 �nishes its
execution at time 4, so we have to �nd the equilibrium state for them. We compute x2

with Equation III.8 and obtain the result 0.25. Hence, x1 = x2− d1−P1 +P2 = −1.25,
and the system utility is 0.5×

√
4− (−1.25)2 + 2.5×

√
6.25− 0.252 = 6.99929475. So,

j1 shifts 1.25 units of time to the left, and j2 shifts 0.25 units of time to the right of
its target point, hence scheduled to execute at times 0.75 and 2.75, respectively. Then,
we schedule j3 at time 4 and no job is pushed, since j2 �nishes at time 3.75. Finally,
we schedule j4 at time 8 and no job is pushed, since j3 �nishes exactly at time 8. The
�nal system utility is 6.99929475 + 2 + 1 = 9.99929475, and the �nal schedule has 2 job
chains (c1 and c2). This schedule is depicted in �gure IV.3.
Now suppose that an on-line job ja arrives at time 3 with deadline 13, anchor point 0,

WCET 2 and importance 2; hence weight 0.5, execution window [3, 11], utility function
0.5 ×

√
16− x2

a, and target point 7. In this case, we have to apply the on-line phase
described in section IV.2.3. First, we recompute the equilibrium state for jobs j3, ja and
j4, as j2 executes currently and cannot shift; j3 and j4 together accrue utility 3 to the
system before the arrival of ja. The result of the equilibrium is x3 = −1, xa = 0 and
x4 = 1. However, x3 cannot by smaller than −0.25 in order to not a�ect the schedule of
j2. Therefore, we have x3 = −0.25, xa = 0.75 and x4 = 1.75, and the �nal system utility
is 1.996 + 1.9645 + 0.484 = 4.4445, which is higher than the previous system utility, i.e.
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j1 j2 j3 j4

instance τ1,1 τ2,1 τ3,1 τ1,2

tpi 2 2.5 4 8
Wi 0.5 2.5 0.5 0.5
di 2 1 4 2
exec_wini [0, 4] [0, 5] [0, 8] [6, 10]

gi(xi) 0.5×
√

4− x2
1 2.5×

√
6.25− x2

2 0.5×
√

16− x2
3 0.5×

√
4− x2

4

Table IV.2: Jobs.

Figure IV.3: Schedule before on-line job arrival.

3. Hence, ja is accepted, and the �nal schedule with the pendulum analogy is depicted
in �gure IV.4.

With intermediate values

Let us schedule the same task set used in the previous example. We �rst place j1 at time
2, and create a job chain c1 with X1 = 0, Y1 = 0.5, Z1 = 0, Sleft1 = 2 and Sright1 = 2;
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Figure IV.4: Schedule after on-line job arrival.

these intermediate values are computed using equations IV.2 and IV.21. Next, we put j2

at time 2.5 in a job chain c2 with X2 = 0, Y2 = 2.5, Z2 = 0, Sleft2 = 2.5 and Sright2 = 2.5.
However, j1 �nishes its execution at time 4, and chains c1 and c2 overlap. Therefore, we
merge them into a new chain c1 with X1 = 2, Y1 = 3, Z1 = 2; these values are computed
using equation IV.20. Then, using equation system IV.3, we obtain pos(j2) = 2.75
and pos(j1) = 0.75. Finally, using equation system IV.21, we obtain Sleft1 = 0.75 and
Sright1 = 2.25. Then, we schedule j3 at time 4 in a job chain c2 with X2 = 0, Y2 = 0.5,
Z2 = 0, Sleft2 = 4 and Sright2 = 4. There is no merge, since j2 �nishes at time 3.75.
Finally, we schedule j4 at time 8 in a job chain c3 with X3 = 0, Y3 = 0.5, Z3 = 0,
Sleft3 = 4 and Sright3 = 4. Since j3 �nishes exactly at time 8, we merge chains c2 and c3,
obtaining a new chain c2 with X2 = 4, Y2 = 1 and Z2 = 4. Using equation system IV.3
we obtain pos(j4) = 8 and pos(j3) = 4. Finally, using equation system IV.21, we obtain
Sleft2 = 2 and Sright2 = 2. The �nal system utility is 6.99929475 + 2 + 1 = 9.99929475,
and the �nal schedule has 2 job chains (c1 and c2). There are no jobs whose positions
need to be updated. This schedule is depicted in �gure IV.3.

To �nalize the example, let us consider the arrival of the on-line job ja at time 3 with
deadline 13, anchor point 0, WCET 2 and importance 2; hence weight 0.5, execution
window [3, 11], utility function 0.5 ×

√
16− x2

a and target point 7. In this case, we
have to apply the on-line admission algorithm described in section IV.2.2. Ordering
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by target point, ja executes in between j3 and j4, hence splitting job chain c2 into 2
chains; j3 and j4 accrue utility 3 before the arrival of ja. Now jobs j3, ja and j4 have
their own chains, respectively c2, c3 and c4. Computing the equilibrium for each of
those chains independently using equations IV.3, and their intermediate values with
equation systems IV.2 and IV.21 results in: X2 = 0, Y2 = 0.5, Z2 = 0, Sleft2 = 4
and Sright2 = 4; X3 = 0, Y3 = 0.5, Z3 = 0, Sleft3 = 4 and Sright3 = 4; and, X4 = 0,
Y4 = 0.5, Z4 = 0, Sleft4 = 4 and Sright4 = 4. Obviously, scheduling the execution of j3,
ja and j4 at their target points causes these chains to overlap, and hence, we have to
merge c3 and c4, obtaining a new chain c3 with X3 = 4.5, Y3 = 1 and Z3 = 2. Then,
pos(j4) = 8.5, pos(ja) = 6.5, Sleft3 = 2.5 and Sright3 = 1.5. As this new c3 overlaps with
c2, we merge them into a new chain c2 with X2 = 9.5, Y2 = 1.5 and Z2 = 6. Then,
pos(j4) = 9, pos(j3) = 3, Sleft2 = 3 and Sright2 = 1. However, pos(j3) cannot be smaller
than 3.75, which is the �nishing time of j2; j2 cannot shift because it already executes
when ja arrives. Therefore, we have pos(j3) = 3.75, pos(j4) = 9.75, Sleft2 = 3.75 and
Sright2 = 0.25. Then, we update the position of jobs in the middle of chains, in this case
only ja. So, pos(ja) = 7.75, and the �nal system utility is 1.996+1.9645+0.484 = 4.4445,
which is higher than the previous system utility, i.e 3. Hence, ja is accepted, and the �nal
schedule with the pendulum analogy is depicted in �gure IV.4. As expected, the �nal
schedule is exactly the same as in the previous example, which does not use intermediate
values.

IV.2.5 Scheduling example using generic equilibrium
In this section, we show an example of how to schedule jobs using the generic equilibrium.
The scheduling algorithm is the same as presented in section IV.2.1, but now we use the
generic equilibrium to compute the compromise of jobs with con�icting target points.
The task set is also the same for comparison of utility accrual, but we skip the on-line
admission step; scheduling only the periodic tasks is enough to exemplify the use of the
generic equilibrium.
The algorithm �rst places j1 at time 2, and the system utility at this point is 1. Next,

the algorithm schedules j2 at time 2.5. However, j1 �nishes its execution at time 4, and
hence, the equilibrium state between j1 and j2 is computed with the generic equilibrium
(equation III.15). This equation is solved as a function of x2 (deviation of the last job,
i.e. j2), and hence, the algorithm uses equation III.12 to de�ne x1 as a function of x2,
obtaining x1 = 2.5− 2− 2 + x2 = x2 − 1.5. Then, using equation III.15:

g′2(x2) + g′1(x2 − 1.5) = 0

− 2.5× x2√
6.25− x2

2

− 0.5× (x2 − 1.5)√
4− (x2 − 1.5)2

= 0 (IV.23)

Next, the algorithm uses equation system III.14 to �nd the interval where equa-
tion IV.23 is valid, obtaining x2 ∈ [−0.5, 2.5]. The algorithm uses, then, a root �nding
algorithm (e.g. the bisection method) to �nd the value of x2 ∈ [−0.5, 2.5] that zeros out
equation IV.23, obtaining x2 = 0.3486. Hence, x1 = x2−1.5 = −1.1514, and the system
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utility is 0.5×
√

4− (−1.1514)2 + 2.5×
√

6.25− 0.34862 = 7.0066. So, j1 shifts 1.1514
units of time to the left, and j2 shifts 0.3486 units of time to the right of its target point,
hence scheduled to execute at times 0.8486 and 2.8486, respectively. Then, we schedule
j3 at time 4 and no job is pushed, since j2 �nishes at time 3.8486. Finally, we schedule
j4 at time 8 and no job is pushed, since j3 �nishes exactly at time 8. The �nal system
utility is 7.0066 + 2 + 1 = 10.0066. This utility accrual is higher than in the schedule of
section IV.2.4 because the generic equilibrium is optimum, and the particle equilibrium
is not.

IV.3 Reordering the execution sequence of jobs
Although nature seeks the minimization of the potential energy in such a system, nature
also tends to go to a local optimum. The basic premise is that if a lot of energy is needed
to change the actual con�guration of the system, then the con�guration will not change.
In fact, to the best of our knowledge, there is no closed formula to solve the bobs
ordering in a pendulum, but rather statistical methods based on stochastic processes
to come up with a possible con�guration. Therefore, the pendulum analogy cannot be
further exploited to solve the ordering problem.
In section IV.2, we used a intuitive simple static ordering by target points. The

simple example depicted in �gure IV.5 demonstrates the shortcoming of this simple
static ordering for maximizing the accrued utility of the system. Consider 3 jobs j1, j2,
and j3 with the same WCET, anchor points equal to zero, tp2 = tp3 and tp1 = tp2 − ε
(ε 7→ 0). Clearly, if imp2 = imp3 and imp2/imp1 7→ 0 (imp1 is a signi�cantly larger
importance than those of the other tasks), then j1's deviation will map to zero and j3

will be approximately at a distance 2×WCET from its target point in the equilibrium
state. A reasonable way to avoid this situation is to place j3 on the left side of j1, so
that its deviation can be minimized (this time the deviation is equal to WCET) and,
hence, accrue more utility to the system.

Figure IV.5: Job ordering example.

The heuristic we propose here to solve the ordering problem is based on a liquid
system analogy. In a container with liquids of di�erent densities, the higher the density
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the closer to the bottom this liquid will come to rest. Mapping jobs to liquids and target
points to the bottom of a container, jobs with higher density should execute closer to
their target points. The same density principle has been used to develop heuristics to
solve other optimization problems, like the knapsack problem [Martello 90], and the
traveling salesman problem [Applegate 07].
The physical de�nition of density is the ratio of the mass to the volume of a body:

density measures how tightly the matter is packed together. While in nature the mass
of a body and gravity de�ne the force that drags the body down, in a task set the
importance of a job drags it to the target point. Similarly, a body occupies space
(volume) and a job occupies time (WCET). Thus, we de�ne the density of a job ji as
densi = impi/WCETi. This density is called utility density.
The utility density represents the information of how much a job contributes to the

accrued utility of the system per unit of execution. The current de�nition of utility
depends only on the importance of the job, being independent of its WCET. Consider a
job with a large and a job with a short WCET, but with the same importance and utility
function. Although they provide the same utility to the system, the short job gives other
jobs the chance to execute and contribute to maximize the accrued utility of the system.
For instance, consider 3 jobs j1, j2 and j3 with importances imp1 = imp2 = imp3 = imp
and WCETs WCET1 = WCET2 = WCET3 = WCET and a job j′ with importance
imp′ = 2 × imp and WCET WCET ′ = 3 ×WCET ; all jobs have the same deviation
from their target points. j1, j2 and j3 execute for the same amount of time as j′ and
accrue more utility to the system, though j′ has the highest importance.
We use the utility density to derive a job ordering similar to the ordering of liquids. A

straightforward application of the analogy, however, is not practical: in a liquid system
liquids have the same target, which is not the case in the task set environment. Besides,
there is no best compromise concept; the liquid with higher density goes straight to the
bottom and pushes the others up.
The next sections bring 3 di�erent utility density based ordering heuristics: DST-1,

DST-2 and DST-3. Those heuristics assume that job parameters are available before
the job arrival, e.g. jobs are instances of strictly periodic tasks.

IV.3.1 Heuristic DST-1

This heuristic positions the anchor points of jobs with higher density directly at their
target points. However, if positioning the anchor point of a job jk directly at its target
point results in an execution overlap with a previously scheduled job chain, the job is
placed either on the left or on the right side of this job chain (wherever the job is closer
to its target point in order to minimize the disturbance in the actual equilibrium state).
Expression IV.25 returns on which side of the job chain to place jk, where devleft and
devright represent how far from the target point the anchor point lies if jk is placed on
the left or on the right side, respectively (see equation system IV.24 and �gure IV.6).
Then, the incoming job gets its own job chain, both chains are merged, and necessary
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equilibrium recomputations are performed 1 as described in section IV.2.2.

devleft = (tpk − pos(jfj)) + αfj ×WCETfj + (1− αk)×WCETk
devright = (1− αlj)×WCETlj + αk ×WCETk + (pos(jlj)− tpk) (IV.24)

(devleft < devright) ? left : right (IV.25)

This heuristic tries to favor jobs that pack more utility per time of execution (den-
sity) by scheduling their execution �rst and as close as possible to their target points.
Therefore, more jobs with high utility accrual contribution execute closer to their target
points, and hence, less jobs have to execute far away from their target points. As a
result, the negative impact of jobs competing for their target points decreases.
This heuristic has complexity O(N × log(N)) to order the jobs by utility density, e.g.

using an algorithm like merge sort, and complexity O(1) to recompute the equilibrium
every time chain merge happens. Finding the correct position and inserting a chain in
the chain list has complexity O(log(N)). As jobs are never inserted in the middle of a
job chain, chains can only merge. Therefore, the heuristic recomputes the equilibrium
at most N − 1 times, and the �nal complexity of the heuristic is O(N × log(N)).
Figure IV.6 depicts the heuristic with an example. In this scenario jm is inserted in

the schedule. Jobs jk and jl have higher densities and were already scheduled. αm can
be placed directly at tpm because no execution overlap happens. That is not the case
for job jn, though. As a result, the heuristic determines the free spot where αn is closer
to tpn, in this case the right side. Then, it computes the equilibrium for jk, jl, and
jn, checks for ripple e�ect, picks the next non-scheduled job with highest density, and
repeats the heuristic steps until all jobs are scheduled.
A scheduling algorithm using heuristic DST-1 schedules a group of N jobs at once.

For periodic tasks with deadline smaller than or equal to the period, we schedule all
jobs in the hyper-period at the beginning of a hyper-period.

Example

Let us consider the task set used in section IV.2.4. The heuristic initially orders the jobs
in decreasing order of utility density, obtaining τ2,1, τ3,1, τ1,1, and τ1,2 (see table IV.3).
The heuristic places, then, τ2,1 at its target point. No execution overlap occurs and
τ2,1 gets a job chain cτ2,1 with Xτ2,1 = 0, Yτ2,1 = 2.5, Zτ2,1 = 0, Sleftτ2,1 = 2.5 and
Srightτ2,1 = 2.5; these intermediate values are computed using equations IV.2 and IV.21.
Next comes τ3,1, which can also execute at its target point without causing any execution
overlap. τ3,1 gets a job chain cτ3,1 with Xτ3,1 = 0, Yτ3,1 = 0.5, Zτ3,1 = 0, Sleftτ3,1 = 4 and
Srightτ3,1 = 4.

1If we calculate devleft and devright after equilibrium recalculations, then in the worst case, after

each job insertion, one choice will result in N − 1 merges, the other one no merge, and the latter
will be the �nal choice. Hence, N − 1 unnecessary merges are computed N times, and the �nal
complexity of the heuristic is O(N2).
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Figure IV.6: Liquid based job ordering heuristic.

job τ1,1 τ2,1 τ3,1 τ1,2

density 0.5 2.5 0.5 0.5

Table IV.3: Density of each job.

The heuristic puts, then, τ1,1 at its target point, causing an execution overlap with
τ2,1. The heuristic assigns to τ1,1 a job chain cτ1,1 with Xτ1,1 = 0, Yτ1,1 = 0.5, Zτ1,1 = 0,
Sleftτ1,1 = 2 and Srightτ1,1 = 2, and then, merges cτ1,1 and cτ2,1 . The new chain cτ1,1,τ2,1
has intermediate values Xτ1,1,τ2,1 = 2, Yτ1,1,τ2,1 = 3, Zτ1,1,τ2,1 = 2. Then, using equation
system IV.3, we obtain pos(τ2,1) = 2.75 and pos(τ1,1) = 0.75. Finally, using equation
system IV.21, we obtain Sleftτ1,1,τ2,1 = 0.75 and Srightτ1,1,τ2,1 = 2.25.
Then, the heuristic inserts τ1,2 in the schedule at its target point within a new chain

cτ1,2 with Xτ1,2 = 0, Yτ1,2 = 0.5, Zτ1,2 = 0. No overlap happens, but chains cτ3,1 and cτ1,2
touch each other, and hence, are merged into a new chain cτ3,1,τ1,2 with Xτ3,1,τ1,2 = 4,
Yτ3,1,τ1,2 = 1 and Zτ3,1,τ1,2 = 4. Using equation system IV.3 we obtain pos(τ1,2) = 8
and pos(τ3,1) = 4. Finally, using equation system IV.21, we obtain Sleftτ3,1,τ1,2 = 2 and
Srightτ3,1,τ1,2 = 2. The �nal system utility is 6.99929475 + 2 + 1 = 9.99929475 and the
�nal schedule has 2 job chains (cτ1,1,τ2,1 and cτ3,1,τ1,2).
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IV.3.2 Heuristic DST-2
Heuristic DST-1 does not take the execution window into account to decide where to
place the jobs, hence over compromising feasibility. Heuristic DST-2 slightly modi�es
DST-1 in order to account for feasibility when the insertion of a job in the schedule
causes execution overlap. In DST-2, if positioning the anchor point of a job jk directly
at its target point results in an execution overlap with a previously scheduled job chain,
the job is placed either on the left or on the right side of this job chain using the rule in
expression IV.27.

�exleft = devleft − estk − αk ×WCETk
�exright = dlk − (1− αk)×WCETk − devright

(IV.26)

( (
(devleft < devright) and (�exleft > 0)

)
or( (

not
(

(devright < devleft) and (�exright > 0)
))

and(
�exleft − devleft > �exright − devright

))
) ? left : right

(IV.27)

Additionally to the terms devleft and devright, this expression introduces the �exi-
bility terms �exleft and �exright (see equation system IV.26 and �gure IV.7). These
�exibility terms represent, respectively, the distance from estk, if jk goes to the left side,
and dlk, if jk goes to the right side of the job chain. This expression places the job on
the side that minimizes the distance from the target point, given that on this side the
respective �exibility term remains positive. Else, a compromise between the deviation
terms and the �exibility terms is used for decision. A job tends to go to the left side
for lower devleft and higher �exleft; analogously, a job tends to go to the right side
for lower devright and higher �exright. This compromise is given by the expression
(�exleft − devleft > �exright − devright) ? left : right.
The rest of the heuristic remains exactly as DST-1, and hence, DST-2 has complexity

O(N × log(N)) as well.

IV.3.3 Heuristic DST-3
This heuristic ordering sorts an incoming job in the ready queue so that this job executes
at its target point. In case its execution overlaps with other jobs, the heuristic searches
for the closest place to the target point with either an idle period or a job with lower
density. The job is inserted, then, in this position. Both searching for the correct
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Figure IV.7: Parameters of equation system IV.26.

position and the insertion operation have linear complexity. Therefore, this heuristic
ordering has linear complexity.
Consider the situation depicted in �gure IV.8, where jk, jl, jm and jn are jobs already

scheduled to execute and density(jk) > density(jl) > density(jm) > density(jn). tc
represents the current time at which an aperiodic job j′ arrives in the system with anchor
point α′, target point tp′ and density(jl) > density(j′) > density(jm). α′ cannot be
positioned at tp′ because the execution of j′ would overlap with the execution of other
jobs. So, we scan the left and the right side of tp′ looking for either a free spot or a job
with less density. To the left side we �nd �rst a free spot before jk; to the right side
we �nd jn, whose density is smaller than density(j′). At this point we have 2 options:
either position j′ before jk or after jl. We choose, then, the side where α′ will be closer
to tp′, i.e., the right side.
Upon job arrival, the equilibrium might schedule the execution of some jobs before

the current time tc. In order to avoid this phenomenon, at time tc the schedule must
also consider jobs that will arrive within an intervals of time in the future of length ew,
which we call equilibrium window. Therefore, we anticipate the job arrivals by ew units
of time, i.e. a job arriving at time tc+ ew is taken into account in the schedule at time
tc. ew must be large enough to make sure that jobs arriving after tc+ew cannot change
the schedule at time tc during equilibrium recomputations. Theorem IV.1 proves that,
for ew equal to the length of the largest job chain, the new equilibrium state never
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Figure IV.8: The heuristic ordering DST-3.

causes a change of the schedule at time tc.

Theorem IV.1. If ew is larger than or equal to the length of the longest job chain, no
job j arriving at tc+ ew or later can change the schedule at time tc or before.

Proof. Assume that all jobs available in the system in the interval [tc, tc+ew[ are already
scheduled (i.e. in equilibrium). Lets assume that, after j is inserted in the schedule and
the equilibrium is recomputed, j belongs to the job chain ck. Jobs whose execution are
scheduled before the execution of j will have their schedule altered if, and only if, they
belong to ck (the pendulum analogy helps to understand this phenomenon). Therefore,
the schedule in tc will only be changed if ck reaches time t. However, ck can reach time
tc and contain job j if, and only if, the length of ck is larger than ew, which contradicts
the initial assumption that ew is larger than or equal to the longest job chain.

The scheduling algorithm with heuristic DST-3 consists of an o�-line and an on-line
part.

O�-line. First, the scheduler sorts all jobs by arrival time. If the jobs are instances
of periodic tasks, the scheduler considers all jobs until the next point in time that the
schedule repeats itself. For instance, the schedule of synchronized periodic tasks with
deadlines smaller than or equal to the period repeats itself at the end of the �rst hyper-
period. Then, for each job in increasing order of arrival time, the scheduler inserts the
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job in the schedule using heuristic DST-3, and then applies the equilibrium as described
in sections IV.2.1 and IV.2.2, which also checks for feasibility. Once all jobs are in the
schedule and meet their deadlines, the scheduler sets the equilibrium window ew to the
length of the longest job chain.

Online. At system startup, all jobs that arrive in the interval [0, ew[ are in the schedul-
ing table. The scheduler, then, includes new jobs in the scheduling table at runtime
when their arrival time is tc+ ew, and updates the scheduling table appropriately (ap-
ply heuristic DST-3 and compute necessary equilibriums). Upon completion of a job, its
entry is removed from the scheduling table. Notice that, despite of having a scheduling
table the method is on-line, and the scheduling table does not contain entries for all
jobs that will execute in the life time of the system. Table entries are only for jobs that
are ready for execution, and jobs that will arrive within an interval of time ew. If the
system is feasible in the o�-line part, it is also feasible in the on-line part, as each job
has exactly the same schedule in both parts.

The complexity to schedule the execution of a job upon its anticipated arrival in-
volves the complexity of choosing the order to insert it in the schedule, and potential
recomputations of equilibrium in the case of ripple e�ects. The ordering has complexity
O(N), and the number of equilibrium recomputations due to merges cannot be larger
than N − 1, where N is the number of jobs in the scheduling table at tc. Performing
all necessary updates in the scheduling table has linear complexity as well. Therefore,
scheduling the execution of a job has linear complexity.

IV.4 Evaluation
In this section, we initially describe the simulation setup. Then, we describe the 4 sets
of experiments performed, and their respective results. The �rst set of experiments
compares the pendulum equilibrium with the generic equilibrium; the second set of
experiments compares scheduling algorithms using the di�erent heuristics to order the
execution sequence of jobs; in the third set of experiments, we compare a scheduling
algorithm using the pendulum equilibrium and heuristic DST-3 with Generic Utility
Scheduler (GUS) [Li 06], and EDF with di�erent execution windows; �nally, in the
fourth set of experiments, we compare heuristic DST-3 with the optimum solution.

IV.4.1 Simulation setup
In our simulations, task sets comprise periodic tasks and the system utilization varies
in the range [0.1, 0.9] with granularity 0.1. Each utilization category comprises 1000
randomly generated task sets, including infeasible ones. The number of periodic tasks
in each task set is a random integer uniformly distributed in the interval [2, 10]. The
period and importance of each task are integer numbers uniformly distributed in the
interval [1, 10]. Deadlines are equal to the period, earliest start times are equal to 0
and target points lie in the middle of the execution window of the jobs, thus allowing
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the same amount of deviation to both sides of the target point. The computation times
were uniformly distributed such that the generated task set has the desired utilization.
In each schedule, we considered all jobs within the hyper-period and ordered them by
their target points. Our results are within a con�dence level of 95% with signi�cance
level of 0.05.
We consider 5 di�erent types of continuously di�erentiable utility functions (where

Ri = dli−WCETi
2

):

• g1i(xi) = impi ×
√

1−
(
xi
Ri

)2

• g2i(xi) = impi ×
√

1−
(
xi
Ri

)4

• g3i(xi) = impi ×
(

1−
(
xi
Ri

)4
)

• g4i(xi) = impi ×
(

2− e
1.31695×xi

Ri +e
− 1.31695×xi

Ri

2

)

• g5i(xi) = impi ×
(

1−
(
xi
Ri

)2
)

The respective derivatives are:

• g1′i(xi) = −
impi×

(
xi
Ri

)
Ri×

√
1−
(
xi
Ri

)2

• g2′i(xi) = −2×
impi×

(
xi
Ri

)3
Ri×

√
1−
(
xi
Ri

)4

• g3′i(xi) = −4× impi ×
(
xi
Ri

)3

× 1
Ri

• g4′i(xi)=−impi× 1.31695
Ri
×
(
e
1.31695×xi

Ri −e
− 1.31695×xi

Ri

2

)

• g5′i(xi) = −2× impi ×
(
xi
R2
i

)
The utility function g1i(xi) is the same as in equation III.10 after a few algebraic

steps to convert from the pendulum domain to the task set domain, and g5i(xi) is a
quadratic polynomial function as in equation III.16 (see section III.6.1). The other
utility functions are arbitrary.
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IV.4.2 Experiment set 1
In the �rst set of experiments, we compare the pendulum equilibrium with the generic
equilibrium. The metric of comparison is the accrued utility of each task set; acceptance
ratio is left out of this comparison because we are interested in evaluating the equilib-
riums, rather than the scheduling algorithm example. Therefore, we calculate for each
feasible task set the error of the accrued utility obtained by the pendulum equilibrium,
which is 1− geq

ggen
(geq stands for the utility accrual of the pendulum equilibrium and ggen

stands for the utility accrual of the generic equilibrium, which is optimum).
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Figure IV.9: C.D.F. of error of geq (job ordered by target point)

In the experiment depicted in �gure IV.9a, all jobs have utility function g1i(xi), and
are ordered by target point. To the best of our knowledge, a closed-form of the generic
equilibrium for elliptical functions is not possible; we solve the generic equilibrium using
the bisection method [Sun 06]. This �gure contains the cumulative distribution functions
(C.D.F.) of the error of geq. Task sets are categorized by their utilization in the ranges
[0.1, 0.3], [0.4, 0.6] and [0.7, 0.9], and we also plot the C.D.F. of the error considering
all task sets. Looking at the line that represents all task sets we observe that the error
of geq is smaller than 2% in almost 100% of the cases. Under low system utilization
jobs rarely overlap execution when scheduled at their target points. Hence, we can see
that for task set utilization within [0.1, 0.3] the equilibrium and the generic equilibrium
have very close results. As the utilization increases, the approximation of the pendulum
equilibrium loses accuracy. However, the line for task set utilization within [0.7, 0.9]
shows that even for task sets with high utilization the error of geq is smaller than 2% in
approximately 90% of the cases. Therefore, the approximation obtained by geq is very
good.
In �gure IV.10a, we plot the same results with polynomial scale to the power 40 in

the y-axis. The line for task set utilization within [0.7, 0.9] shows that the error in the
pendulum equilibrium is smaller than 4% in approximately 96% of the cases, but in 4%
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of the cases this error ranges from 4% to approximately 18%. This superiority of the
generic equilibrium does not come at the expense of a higher complexity.
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Figure IV.10: C.D.F. of error of geq (job ordered by target point)

In the experiment depicted in �gure IV.9b, each job has one of the 5 utility functions
listed earlier. All other parameters remain as in the previous experiment. Once again
we observe that for task set utilization within [0.1, 0.3] the original equilibrium and
the generic equilibrium have very close results, and that for high system utilization
the error of geq is smaller than 2% in approximately 90% of the cases. In fact, the
experiments depicted in �gures IV.9a and IV.9b have very similar results, revealing that
the approximation obtained by the pendulum analogy holds even for variable shapes of
utility functions.
In �gure IV.10b, we plot the same results of the previous experiment with polyno-

mial scale to the power 40 in the y-axis. Once again, the line for task set utilization
within [0.7, 0.9] shows that the error in the pendulum equilibrium is smaller than 4%
in approximately 96% of the cases, but in 4% of the cases this error ranges from 4% to
approximately 20%. Therefore, the shape of the functions do not have much impact on
the approximation of the pendulum equilibrium.
In the experiments depicted in �gures IV.11a and IV.11b, we investigate how the

choice of equilibrium calculation impacts on the utility accrual when the ordering heuris-
tic depends on the equilibrium calculation. We use heuristic DST-3 in these experiments.
This �gure contains the plot of geq normalized to ggen for each feasible task set, and cat-
egorized by system utilization. Values smaller than 1 indicate that geq < ggen, equal to
1 indicate that geq = ggen and higher than 1 indicate that geq > ggen.
In the experiment depicted in �gures IV.11a, jobs have elliptical utility functions. We

can observe that scheduling a task set using geq might accrue more utility than using
ggen. This is a consequence of the di�erent order of jobs' execution, which impacts on
the utility accrual. However, in most of the cases the generic equilibrium provides for
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Figure IV.11: C.D.F. of geq normalized to ggen (jobs ordered using heuristic DST-3)

higher utility accrual.
In the experiment depicted in �gure IV.11b, jobs may have any of the 5 utility func-

tions listed in section IV.4.1. Here, independently of the utilization category, all curves
are symmetric around point 1. This result reveals that the ordering heuristic is also
sensitive to the type of utility functions, and in this case, the method for equilibrium
calculation does not make much di�erence in the utility accrual.
We conclude from this �rst set of experiments that the approximation of the equi-

librium obtained from the pendulum analogy is very close to the optimum solution,
independent of the shape of the utility functions. However, in a very few cases the
generic equilibrium may increase the utility accrual up to 20%. Moreover, the generic
equilibrium may not improve the decisions of the ordering heuristic if jobs have arbi-
trary utility functions. The particle equilibrium has the additional advantage of constant
complexity for equilibrium recomputations, which allows for the design of a scheduling
algorithm with linear complexity (as described in sections IV.2.1 and IV.2.2).

IV.4.3 Experiment set 2
In the second set of experiments, we compare all ordering heuristics. The scheduling
algorithms use the pendulum equilibrium, and jobs have utility function g1i(xi), which
is the implicit utility function of the gravitational task model. This way we focus only
on the impact of ordering on the system utility accrual. As metrics of comparison we
consider the utility accrual and the acceptance ratio of task sets.
We compute the performance of a given schedule in accruing utility as the accrued

utility normalized to the utility that would be accrued if all jobs executed directly at
their target points. Although executing all jobs directly at their target points might
be infeasible, it gives an upper bound to de�ne how good a schedule is from the util-
ity accrual point of view. Moreover, this quotient is also comparable among di�erent
utilization categories, hence giving an insight on the impact of the system utilization
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on the utility accrual. For each utilization category, we plot the sum of these quotients
divided by the number of task sets in the category (including unfeasible task sets, which
we consider to accrue no utility to the system). In our experiments, the number of task
sets per utilization category is 1000.
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Figure IV.12: Utility accrual for all heuristics

The experiment depicted in �gure IV.12 contains the utility accrual for each sched-
ule under 2 simulation scenarios: target points in the middle of the execution window,
and target points randomly distributed within the execution window. We can observe
that heuristics based on the utility density of jobs (DST-1, DST-2, and DST-3) outper-
form the static ordering by target points in both scenarios. Furthermore, DST-3 has
statistically identical results to DST-1 and DST-2. This result shows that the lower
complexity of DST-3 does not come at the expense of decreased utility accrual. We can
also see that the trade-o� among jobs with con�icting target points has more impact
on the utility accrual for system utilization larger than or equal 40%, which is the point
where the utility accrual starts to decrease. Comparing between both scenarios, we can
observe that variable target points have a negative impact on the utility accrual for high
system utilization. Heuristic DST-1 su�ers more utility degradation due to its inability
to account for the execution window of jobs.
The experiment depicted in �gure IV.13 contains the utility accrual for each schedule

under 2 simulation scenarios: target points in the middle of the execution window,
and target points randomly distributed within the execution window. Interestingly,
both plots in this �gure are identical to the respective results for the utility accrual in
�gure IV.12. Obviously, the system utilization has a negative impact on both acceptance
ratio and utility accrual. This result reveals that the system utilization has actually the
same impact on both acceptance ratio and utility accrual.
These results reveal that DST-2 obtains the best results for utility accrual, but at

the expense of a high complexity. On the other hand, DST-3 obtains results close to
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Figure IV.13: Acceptance ratio for all heuristics

DST-2 at the expense of a linear complexity. This complexity signi�cantly reduces the
scheduling overhead in comparison to the other heuristics.

IV.4.4 Experiment set 3
In the third set of experiments, we compare the gravitational task model with the
Time Utility Function (TUF) task model, and with the deadline based task model.
The scheduling algorithms are DST-3 with pendulum equilibrium, GUS [Li 06], and
non-preemptive EDF with constrained execution window. As metrics of comparison
we consider the utility accrual and the acceptance ratio of task sets. We use the same
simulation scenarios as in experiment set 2 (see section IV.4.3).
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Figure IV.14: Utility accrual for DST-3 and GUS [Li 06]

In �gure IV.14 we compare DST-3 with GUS, which is a non-preemptive TUF sched-
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uler that considers the utility of a job only at the current point in time to take scheduling
decisions. Therefore, GUS does not account for the target sensitivity of tasks. GUS also
aborts the execution of jobs that will miss their deadlines because they accrue no utility
to the system. Therefore, this �gure contains plots only for the utility accrual, as an
comparison of acceptance ratio is meaningless. In order to fairly compare both algo-
rithms, we consider only schedules where all jobs execute and meet their deadlines. As
can be seen, DST-3 accrues more utility due to its capability to account for the target
points, and the task set utilization has a negative impact on the utility accrual of both
algorithms. Furthermore, we observe that variable target points also have a negative
impact on GUS as the system utilization increases.
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Figure IV.15: Utility accrual for DST-3 and EDF

In �gures IV.15 and IV.16, we compare DST-3 with non-preemptive EDF where tar-
diness is set to the period (original deadline), and we vary the values of o�sets and
deadlines � EDF expresses target sensitivity by tightening the execution window of
tasks. In other words, we schedule the tasks under EDF using the constrained deadline,
but a task set is infeasible if at least one task misses the original deadline. We have
3 con�gurations for EDF: no o�set and deadline equal to the period (EDF 0-100), no
o�set and deadline 35% of the execution window (EDF 0-35), and o�set 35% of the
execution window with deadline 70% of the execution window (EDF 35-70).
In �gure IV.15, we plot the utility accrual of the scheduling algorithms. As can be

seen in this �gure, scheduling the task sets under EDF only constraining the deadline
to 35% of the original deadline (EDF 0-35) is not enough to improve the utility accrual,
since the target point is in the middle of the execution window. Adjusting also the
o�set (EDF 35-70) improves the utility accrual of task sets with low utilization signif-
icantly, but large o�sets degrade the utility accrual of task sets with high utilization.
Of course, EDF without any adjustment does not achieve high utility accrual under low
system utilization, but this result changes for high system utilization. We can observe in
�gure IV.15a that for system utilization above 80% EDF 0-100 and DST-3 have statis-
tically identical results. In the experiment of �gure IV.15b, where we vary the location
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of the target points, EDF 0-100 may achieve values higher than DST-3, but only at
very high system utilization.; DST-3 is still superior in most cases. The values for EDF
in both �gures IV.15a and IV.15b do not change because only the target points vary
among scenarios, and EDF is unaware of target points.
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Figure IV.16: Acceptance ratio for DST-3 and EDF

In �gure IV.16, we plot the acceptance ratio of the scheduling algorithms. As can be
seen in this �gure, EDF 0-100 and EDF 0-35 have very high acceptance ratio compared
to the other approaches, and that large o�set decrease the acceptance ratio of EDF.
However, the o�set is a necessary artifact to improve the utility accrual under low
system utilization. On the other hand, using the gravitational task model the negative
impact on the feasibility of the task sets is small (see �gure IV.16a), and the utility
accrual signi�cantly increases. However, variable target points negatively impact on the
acceptance ratio of DST-3, which also explains the low utility accrual in this scenario
(see �gure IV.15a). We conclude, then, that scheduling algorithms for the gravitational
task model may further increase in the utility accrual by increasing the acceptance ratio.
In the next chapter, we propose a scheduling algorithm for the gravitational task

model based on both EDF � in order to account for feasibility � and utility density
� in order to account for utility accrual. We will observe signi�cant improvement in
the utility accrual over the heuristics presented in this chapter.

IV.4.5 Experiment set 4

In this last experiment, we compare the heuristic DST-3 with the optimum execution
sequence of jobs, which we obtain with an exhaustive search � we use the generic
equilibrium for scheduling. Due to the complexity of the optimum solution, we have to
severely restrict the number of jobs in the task set. Therefore, we generate 9000 task
sets with 10 jobs which have the same execution windows and target points, and all
task sets are feasible. This setup allows us to evaluate only the impact of the execution
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sequence of jobs on the utility accrual. The generation of other random parameters
remain as described in section IV.4.1. As can be seen in �gure IV.17, the utility accrual
of heuristic DST-3 is very close to the optimum among feasible scenarios. As expected,
the error increases as the utilization of the task set increases.
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Figure IV.17: Utility accrual for heuristic DST-3 and optimum order.

IV.5 Summary
In this chapter, we presented a few scheduling algorithms for the gravitational task
model. Initially, we presented in section IV.2 how to schedule jobs using the equilibrium
to compute trade-o�s. Section IV.2.1 describes a method inspired by the bob pendulum
to �nd job chains in a schedule. Appending bobs one by one in a pendulum reveals which
groups of jobs push one another, and the equilibrium state changes upon collisions �
appending one bob may cause more than one collision. Similarly, the algorithm to �nd
job chains appends jobs one by one to the schedule, and recomputes the equilibrium
for job chains that merge; execution sequence of jobs must be known. Appending one
job might cause more than one merge (ripple e�ect), but there can be no more than N
merges; chains do not split upon job append, only merge. Therefore, the �nal complexity
is O(N2). This algorithm allows the equilibrium to schedule jobs that do not compete
altogether with one another for their target points.
In section IV.2.2, we presented a method with constant complexity to recompute the

equilibrium of 2 adjacent chains that merge. As those equilibrium recomputations have
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constant complexity, and there can be no more than N − 1 merges, the complexity
to schedule jobs is linear. This method is valid for trade-o� calculations using the
particle pendulum equilibrium, which we described in chapter III. The basic idea is to
store intermediate values for each job chain in order to save computational steps when
computing the equilibrium of the new job chain which appears upon merge. We called
those intermediate values X, Y , Z, Sleft, and Sright. The 3 former values are used
for equilibrium recomputations (see equation IV.3), and the 2 latter ones are used to
identify timing constraint violations. Sleft and Sright express how much the chain can
shift to the left or right, respectively, without violating any constraint. Equations IV.2
and IV.21 compute those values for a job chain visiting all jobs, and equations IV.20
and IV.22 compute those values using the intermediate values of adjacent merged chains.
In section IV.2.3, we described the on-line job admission procedure. Upon on-line job

admission, the incoming job may be inserted anywhere in the schedule. In this case,
there can be at most one chain split and N chain merges. Upon chain split, the inter-
mediate values of the separated chains are computed using equations IV.2 and IV.21;
merges are handled as before. Therefore, on-line admission also has linear complexity.
Sections IV.2.4 and IV.2.5 illustrated the scheduling algorithm with examples.
In section IV.3, we presented the importance of the execution sequence of jobs in a

scheduling algorithm, and a few ordering heuristics. The execution sequence of jobs
dominates schedulability and utility maximization problems. Moreover, it is an NP-
hard problem � check all possible permutations for the execution of jobs. Therefore, an
optimum solution has high overhead, and is unfeasible for on-line scheduling algorithms.
Heuristic solutions compromise between overhead, acceptance ratio, and utility accrual;
a�ording higher overhead tends to provide for better scheduling decisions. We also
presented a few ordering heuristics which are based on the rationale of physics for �uids.
The basic idea is that in a container with liquid of di�erent densities, the higher the
density the closer to the bottom it will come to rest. Mapping jobs to liquids and target
points to the bottom of a container, jobs with higher density should execute closer to
their target points.
The physical de�nition of density is the ratio of the mass to the volume of a body:

density measures how tightly the matter is packed together. While in nature the mass
of a body and gravity de�ne the force that drags the body down, in a task set the
importance of a job drags it to the target point. Similarly, a body occupies space
(volume) and a job occupies time (WCET). Thus, we de�ned the density of a job ji as
densi = impi/WCETi. This density is called utility density.
In section IV.3.1, we presented heuristic DST-1, which has complexity O(N×log(N)).

This heuristic tries to favor jobs that pack more utility per time of execution (density)
by scheduling their execution �rst, and as close as possible to their target points. If
positioning the anchor point of a job directly at its target point results in an execution
overlap with a previously scheduled job chain, the heuristic places the job either on
the left or on the right side of this job chain (wherever the job is closer to its target
point in order to minimize the disturbance in the actual equilibrium state). Therefore,
more jobs with high utility accrual contribution execute closer to their target points,
and hence, less jobs have to execute far away from their target points. As a result,
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the negative impact of jobs competing for their target points decreases. However, this
heuristic does not consider the execution window of jobs for taking ordering decision,
hence compromising feasibility. This section also contains a scheduling example.
In section IV.3.2, we presented heuristic DST-2, which slightly modi�es DST-1 in order

to account for feasibility when the insertion of a job in the schedule causes execution
overlap. In DST-2, if positioning the anchor point of a job directly at its target point
results in an execution overlap with a previously scheduled job chain, the heuristic
places the job either on the left or on the right side of this job chain using the rule
in expression IV.27. This expression �nds a compromise between deviations from the
target points and how close the execution of jobs lie to the edge of their execution
windows. This heuristic also has complexity O(N × log(N)).
In section IV.3.3, we presented heuristic DST-3, which modi�es heuristic DST-1 and

DST-2 to avoid reordering of the execution sequence upon job arrival, and hence, has
linear complexity. In this heuristic, the jobs considered in the schedule at run-time are
all jobs ready for execution plus all jobs that will arrive within an interval of time called
equilibrium window. This equilibrium window is necessary to account for the disturbance
of jobs that have not yet arrived in the system on the schedule at the current time. We
proved that it su�ces that this equilibrium window is as large as or greater than the
length of the longest job chain to account for all possible disturbances.
Simulation results in section IV.4 showed that heuristics based on the utility density

of jobs yield good results. Moreover, DST-3 has results almost as good as DST-2, and
lower computational complexity. Results also showed the bene�ts of the gravitational
task model over scheduling algorithms for other task models � we considered the TUF
scheduler GUS [Li 06], and EDF as a deadline based task model. The gravitational task
model is able to accrue more utility without over-compromising the feasibility of the
task sets.



Chapter V

Reducing the complexity of periodic tasks’
scheduling

In this chapter, we propose a gravitational task model based on-line scheduling algorithm
for periodic tasks which is inspired on a mix of Earliest Deadline First (EDF) and
heuristic DST-3: EDF-swap. This algorithm limits the number of future jobs that the
scheduler takes into account at any point in time to n2 (n is the number of periodic
tasks), guarantees all timing constraints, and accounts for increased utility accrual.
Other scheduling algorithms for the gravitational task model must account for the arrival
of all jobs in the hyper-period � n! in the worst case � when computing the equilibrium
of jobs in order to guarantee timing constraints, and increase utility accrual. Therefore,
we achieve signi�cant reduction on the computational complexity to schedule periodic
tasks.
We start with a detailed description of the problem, and the basic idea of our solution

in section V.1. Section V.2 describes how to compute the equilibrium of jobs, and
in section V.3 we present the algorithm to reorder the execution sequence of jobs for
increased utility accrual. Section V.4 brings some experimental results from simulations,
and �nally, section V.5 brings our concluding remarks.

89
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V.1 Introduction

In chapter IV, we presented a few scheduling algorithms for the gravitational task model.
These algorithms consider a �nite number of jobs, and assume that jobs' parameters are
available prior to their arrival in the system. These algorithms di�er in the execution
sequence of jobs, and the computation of the equilibrium of jobs. Scheduling tasks
using the pendulum equilibrium and heuristic DST-3 has linear complexity with the
number of jobs, and simulation results showed the good performance of this approach.
In order to schedule periodic tasks, we limited the deadline to be smaller than or equal
to the period, and then, scheduled all jobs within a hyper-period at the beginning of
the hyper-period.
Let N be the number of jobs for which the scheduler computes the equilibrium, and

n be the number of periodic tasks. In a task set, the number of jobs within the hyper-
period can grow in factorial scale with the number of periodic tasks, thus N = n!.
Therefore, the previously introduced scheduling algorithms have a factorial worst case
complexity with the number of periodic tasks (O(N = n!)). Those algorithms, then,
have a very high overhead when scheduling periodic tasks, and hence, are impractical
as an on-line approach.
In scheduling algorithms for the gravitational task model, inserting jobs in the sched-

ule only upon their arrival restricts the freedom of the equilibrium in shifting the exe-
cution of tasks. This approach may cause deadline misses, and compromise the system
utility accrual � an incoming job might trigger an equilibrium recomputation that re-
sults in jobs being scheduled before the current point in time, which is not possible. On
the other hand, accounting for the arrival of all future jobs is computationally expensive.
Therefore, the scheduler must limit the amount of future jobs that the scheduler takes
into account at any point in time, and guarantee all timing constraints, yet accounting
for increased utility accrual.
In this chapter, we propose a gravitational task model based scheduling algorithm for

periodic tasks which is inspired on a mix of EDF and heuristic DST-3. This algorithm
uses an interval of time called equilibrium window (ew) to limit the amount of jobs
considered in the schedule. Only jobs which have arrival time within this window are in
the schedule, and we limit the number of jobs to N = n2. We, then, propose a method to
compute the equilibrium of jobs which guarantees the timing constraints of jobs outside
the equilibrium window.
Both ordering the execution sequence of jobs and computing the equilibrium of jobs

have complexity O(N). The equilibrium window limits the number of jobs that the
scheduler must consider at runtime, and hence, signi�cantly reduces the overhead to
schedule periodic tasks (O(N = n2)). This lower overhead does not come at the expense
of restricted feasibility, and simulation results show that there is a negligible impact on
the utility accrual compared to methods that consider full knowledge of the arrival of
future jobs.
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V.2 Trade-off among competing jobs
In section IV.2, we described a method based on the pendulum equilibrium to compute
the equilibrium of jobs for a given execution sequence. In this section, we describe
how to apply the equilibrium of jobs in non-preemptive EDF, which is an optimum
work-conserving deadline-based non-preemptive scheduling policy.
An optimum scheduling policy in the context of deadline-based scheduling means that

if there is a feasible schedule, then this policy also generates a feasible schedule. The
advantages of ordering the execution sequence of jobs as in non-preemptive EDF include
the optimality of the schedule, and reuse of its feasibility analysis, as well as other work
on its timeliness properties (e.g. [Kim 06, Baruah 06, Je�ay 91]). Moreover, EDF orders
the execution sequence of jobs based only on the deadlines of jobs ready for execution
� no need to consider the arrival of future jobs to take scheduling decisions.
There is an issue that prohibits the direct application of the equilibrium of jobs in

EDF: the equilibrium generates a non-work-conserving schedule among the ready jobs �
i.e. there are moments of idle processing even though there are jobs ready for execution
�, whereas EDF is work-conserving. Therefore, applying the equilibrium without fur-
ther consideration may cause EDF to produce a di�erent order of the execution sequence
of jobs.

τ1 τ2

start time 0 0
period 2 5
WCET 1 1
relative tp 0.5 0.875
anchor point 0.5 0.5
importance 1 1

Table V.1: Task set.

τ1,1 τ1,2 τ2,1

start time 0 2 0
deadline 2 4 5
WCET 1 1 1
target point 1 3 4
anchor point 0.5 0.5 0.5
importance 1 1 1

Table V.2: Job set.

Consider the following example. Table V.1 contains the parameters of 2 periodic tasks,
and table V.2 the �rst 3 jobs that arrive in the system (τi,j is the jth instance of task
τi). Scheduling these jobs with EDF results in the schedule depicted in �gure V.1a. Let
tc represent the current time. At tc = 0 jobs τ1,1 and τ2,1 are ready for execution, and
τ1,1 executed �rst because its deadline is earlier than the deadline of τ1,2. τ2,1 executes
at tc = 1, and job τ1,2 at tc = 2.
If we compute the equilibrium of jobs at tc = 0 with the execution sequence that

EDF generates, we obtain the schedule in �gure V.1b. In this schedule, job τ1,1 starts
to execute at tc = 0.5. Job τ1,2 arrives at time tc = 2, when job τ2,1 is still ready for
execution. In this case, EDF schedules τ1,2 to execute next, as this is the ready job with
the earliest deadline. Figure V.1c depicts the resulting schedule after computing the
equilibrium of jobs. As can be seen in this example, combining the equilibrium of jobs
with EDF without further consideration may alter the execution sequence of jobs. Also
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notice that all jobs have deviation 0 from their target points, hence accruing maximum
utility to the system.

(a) Schedule under EDF (b) Schedule at tc = 0 with
EDF and equilibrium

(c) Schedule at tc = 2 with EDF
and equilibrium

Figure V.1: Intermediate schedules for EDF with equilibrium.

Our scheduling algorithm combining equilibrium of jobs and EDF works as follows.
We de�ne an interval of time ew called equilibrium window � similar to the equilibrium
of heuristic DST-3 (see section IV.3.3). This interval starts at tc, and ends at ew_end
(hence, ew = [tc, ew_end[).
At system start-up, we calculate ew_end so that n2 jobs arrive within the interval

[0, ew_end[. Then, the scheduler schedules the execution of all jobs that arrive within
the equilibrium window as in work-conserving non-preemptive EDF. Then, the scheduler
computes the equilibrium of all jobs under the constraint that the schedule in the interval
[ew_end,∞[ must be exactly as in work-conserving non-preemptive EDF.
Upon completion of a job, the scheduler sets ew_end to the arrival time of the next

job outside the current equilibrium window, orders the execution of incoming jobs with
the other jobs using EDF, computes the equilibrium of all jobs as described above, and
the process repeats itself. The new constraint on the equilibrium guarantees that the
execution sequence that EDF generates prevails.

(a) Schedule at tc = 0 (b) Schedule at tc = 1 before
equilibrium

(c) Schedule at tc = 1 after
equilibrium

Figure V.2: Intermediate schedules for EDF with adapted equilibrium.

Let us repeat the example in table V.1 using this new equilibrium algorithm. For the
sake of simplicity, we assume ew_end = 2. The equilibrium window is ew = [0, 2[ at
tc = 0, and the jobs arriving in this interval are τ1,1 and τ2,1. Scheduling these jobs
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with EDF results in the schedule depicted in �gure V.2a. At this point, the equilibrium
cannot do anything, because the scheduler may not alter the schedule in the interval
[2,∞[. Upon completion of job τ1,1 at tc = 1, the scheduler sets ew_end = 4 � which
is the arrival time of the next job, i.e. τ1,3. Now the equilibrium window is ew = [1, 4[,
and the scheduler inserts τ1,2 in the schedule using EDF, resulting in the schedule of
�gure V.2b. Finally, the scheduler computes the equilibrium, resulting in the schedule
depicted in �gure V.2c. Observe that now all jobs deviate from their target points,
hence accruing less utility than the scheduling example in �gure V.1. This result is
a consequence of both the execution sequence of jobs and the constrained equilibrium
window.
The complexity of this scheduling algorithm is linear with the number of jobs in the

equilibrium window, which is the complexity to compute the equilibrium. As we limit
the number of jobs within the equilibrium window to n2, the complexity is O(n2).

V.3 Reordering the execution sequence of jobs
In section IV.3, we proposed a few ordering heuristics based on the utility density of
jobs, and simulation results showed their e�cacy in accruing utility. Those heuristics
had lower acceptance ratio than EDF in some cases, though. In this section, we describe
a heuristic to reorder the execution sequence that EDF generates for increased utility
accrual � EDF does not account for the utility of jobs. We call this heuristic EDF-
swap. Our reordering heuristic swaps the execution sequence of adjacent jobs based on
their utility density and target points, and does not compromise the feasibility of the
original schedule. Therefore, the �nal schedule accounts for both high acceptance ratio
and increased utility accrual.

Figure V.3: Busy interval on swap.

The swap heuristic resembles the bubble sort algorithm [Cormen 01]. The bubble
sort algorithm goes N times through an unsorted list with N items, compares adjacent
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items, and swaps them if they are in the wrong order. The name comes from the notion
that items are raised or �bubbled up� to the top.
EDF-swap scans the jobs within the equilibrium window, and applies the swap al-

gorithm 3; the apostrophe on a job parameter indicates its value upon swap without
any equilibrium recomputation. The if condition returns true whenever the adjacent
jobs belong to the same job chain (pos(ji+1)− pos(ji) = di) and, upon swap, no timing
constraint is violated (pos′(ji) ∈ exec_wini and pos′(ji+1) ∈ exec_wini+1), and the
job with higher utility density lies closer to its target point. In case both jobs have
the same utility density, the sum of their absolute deviations must decrease. Only jobs
in the same job chain compete for their target points, and hence, are considered for
swap. The heuristic swaps the execution of jobs so that the busy interval to which they
belong does not change (see �gure V.3). After scanning all jobs, EDF-swap computes
the equilibrium for the jobs within the equilibrium window as described in section V.2.
In the scheduling algorithm of section V.2, we apply the reordering heuristic every

time the scheduler admits a new job in the schedule. Upon each admission, the scheduler
may apply the reordering heuristic more than once, but simulations results show that
running the reordering heuristic more than once brings no extra increase in the utility
accrual.
Let us repeat the example in table V.1, this time using EDF-swap. For the sake of

simplicity, we assume ew_end = 4. The equilibrium window is ew = [0, 4[ at tc = 0,
and the jobs arriving in this interval are τ1,1, τ2,1, and τ1,2. Scheduling these jobs with
EDF results in the schedule depicted in �gure V.1a. Then, the scheduler computes the
equilibrium, resulting in the schedule depicted in �gure V.4b. Jobs τ2,1 and τ1,2 compete
for their target points in this scenario. We apply, then, the reordering heuristic. Jobs τ2,1

and τ1,2 have adjacent executions, and the same utility density � same importance and
same execution time. Their deviations before swap are x(τ2,1) = −1.5 and x(τ1,2) = 0.5,
and upon swap x′(τ2,1) = −0.5 and x(τ1,2) = −0.5. As upon swap the sum of their
absolute deviations from their target points gets smaller, the heuristic swaps them,
resulting in the schedule of �gure V.4c. The scheduler computes, �nally, the equilibrium,
which does not change the schedule at this point because the completion of τ2,1 may not
be deferred beyond the equilibrium window.

(a) Schedule at tc = 0 before
equilibrium

(b) Schedule at tc = 0 after
equilibrium

(c) Schedule at tc = 0 after
equilibrium and swap heuristic

Figure V.4: Intermediate schedules for EDF-swap.
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Algorithm 3 The swap heuristic.
if(

pos(j[i+1])-pos(j[i]) == d[i]
and
pos’(j[i]) ∈ exec_win[i]
and
pos’(j[i+1]) ∈ exec_win[i+1]
and
(

(
dens[i] > dens[i+1]
and
|x[i]| > |x’[i]|

)
or
(

dens[i+1] > dens[i]
and
|x[i+1]| > |x’[i+1]|

)
or
(
dens[i] == dens[i+1]
and
|x[i]| + |x[i+1]| > |x’[i]| + |x’[i+1]|

)
)

)
{

swap(j[i],j[i+1])
pos(j[i+1]) = pos(j[i+1])-WCET[i]
pos(j[i]) = pos(j[i+1]) + d[i+1]

}

Scanning the job list has complexity O(N = n2), swapping adjacent jobs has constant
complexity, and may happen at most N − 1 times (complexity O(N = n2)). Finally,
the equilibrium calculation performed at the end has linear complexity. Therefore, the
complexity of EDF-swap is O(N = n2).
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V.4 Evaluation
For the sake of comparability, we use the same simulation setup of the experiments
in section IV.4. We assume all jobs have the same utility function g1i(xi). The goal
of our experiments is to investigate the impact of the swap heuristic on the system
utility accrual, and compare the results with heuristic DST-2, which is the heuristic
for the gravitational task model that obtained the best results in the experiments of
section IV.4. We also measure the utility accrual in the same way as described in sec-
tion IV.4. We skip a comparison with Generic Utility Scheduler (GUS) because of its
bad performance in scheduling target sensitive real-time (RT) tasks (see the experiment
depicted in �gure IV.14 in section IV.4.4). We also skip the acceptance ratio as metric
of measurement, as the acceptance ratio for EDF-swap is the same as for EDF, and sec-
tion IV.4.4 already contains those results (see the experiments depicted in �gure IV.16).
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Figure V.5: Comparison of utility accrual among scheduling algorithms.

In the experiments depicted in �gure V.5, we compare heuristic DST-2, EDF-swap
without any round of the swap heuristic (EDF-swap 0), EDF-swap with 1 round of
the swap heuristic (EDF-swap 1), and EDF-swap with 5 rounds of the swap heuristic
(EDF-swap 5). We limit the number of jobs within the execution window to n2 in those
experiments. As can be seen, applying one round of the swap heuristic brings a slight
utility increase (∼ 5%), while more rounds of the swap heuristic brings no extra increase.
Therefore, we conclude that the acceptance ratio of the schedule has more impact on
the utility accrual than the actual execution sequence of jobs. Moreover, comparing the
result for EDF-swap and pure EDF without equilibrium (in �gure IV.15), we conclude
that most of the increase in the utility accrual comes from the equilibrium of jobs, and
not from the execution sequence of jobs.
We can also observe that `EDF-swap 1' is always superior or equivalent to DST-2,

and that varying the target points does not a�ect the performance of EDF-swap, which
is a very good result. The same does not apply for DST-2, as can be seen comparing
�gures V.5a and V.5b. Therefore, EDF-swap has signi�cantly lower complexity due to
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the limitation on the number jobs within the equilibrium window, and is superior to
DST-2.
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Figure V.6: Impact of equilibrium window length on the utility accrual.

In the experiments depicted in �gure V.6, we investigate the impact of the length of
the equilibrium window on the utility accrual of the schedule. In these experiments,
we compare EDF-swap with n2 jobs in the equilibrium window, and with equilibrium
window as large as the hyper-period. As can be seen, limiting the length of the execution
window to contain n2 jobs has negligible impact on the utility accrual, and is independent
of the location of the target points. Therefore, we con�rm that the signi�cant reduction
of the computational complexity does not come at the expense of a lower utility accrual.

V.5 Summary
In this chapter, we proposed a gravitational task model based on-line scheduling algo-
rithm for periodic tasks which is inspired on a mix of EDF and heuristic DST-3. We
called this algorithm EDF-swap. EDF-swap accounts for both high acceptance ratio
and increased utility accrual. Moreover, it also signi�cantly reduces the worst case com-
plexity to schedule n periodic tasks from n! to n2. We achieved high acceptance ratio
by ordering the execution sequence of jobs as in non-preemptive work-conserving EDF,
and increased utility accrual by computing the equilibrium of jobs and swapping the
execution of jobs based on their utility density. Finally, we achieved the complexity re-
duction by limiting the number of jobs in equilibrium � other gravitational task model
based on-line scheduling algorithms must consider all jobs within the hyper-period.
In section V.2, we showed that the equilibrium of jobs may not be applied directly on

EDF without further consideration. Doing so may lead to a execution sequence of jobs
that di�ers from the order that non-preemptive work-conserving EDF generates, hence
invalidating the timeliness properties of EDF. We proposed, then, a method to combine
the equilibrium of jobs with EDF, and illustrated this method with an example. This
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method also limits the number of jobs in equilibrium, which is the key contribution for
the reduced computational complexity.
In section V.3, we proposed a heuristic to reorder the execution sequence of jobs

within the equilibrium window for increased utility accrual. This heuristic is based
on the utility density of jobs, and does not compromise the feasibility of the original
schedule. We illustrated the heuristic with a scheduling example.
Simulation results in section V.4 showed that EDF-swap accrues more utility and has

higher acceptance ratio than any other scheduling algorithm for the gravitational task
model. Moreover, varying the target points within the execution window of jobs does
not have a negative impact on the performance of EDF-swap. This superiority is also
followed by a signi�cant reduction of the computational complexity.



Chapter VI

Scheduling tasks for increased system utility
under scarce resource availability

In this chapter, we address the scheduling of target sensitive tasks under scarce resource
availability. Traditional approaches to handle overload are shifting and aborting the
execution of jobs. We propose a trade-o� between shifting and aborting the execution
of jobs based on the gravitational task model for increased system utility accrual. The
abortion of a job frees resources which other jobs may use to decrease their deviation
from their target point, and yield an extra amount of utility.
We start with a brief description of the problem and basic idea of our solution in

section VI.1. Then, we describe our overload handling mechanism in section VI.2. We
show the bene�ts of our mechanism with a target sensitive application example: a
multimedia application. Section VI.3 contains the description of the application and
experimental results. Finally, we summarize our results and draw our conclusions in
section VI.4.

99
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VI.1 Introduction
Target sensitive real-time (RT) applications must execute within a time interval bounded
by earliest start time and deadline constraints to yield some utility to the system, and
have this utility maximized when executing at a target point. We say that the system
is overloaded if at least one job cannot execute at its target point. The traditional
approaches to handle overload are shifting and aborting the execution of jobs.
There is no direct relation between the amount of jobs that execute and the �nal

accrued utility. For example, jobs that do not meet the start time-deadline constraints
do not accrue any utility to the system. The abortion of a job frees resources which
other jobs may use to decrease their deviation from their target point, hence yielding
an extra amount of utility. However, abortion/deadline-miss may contribute negatively
to the system utility. The trade-o� between abortion and deviation from the target
point must account for a resulting increased utility accrual, and is a Non-deterministic
Polynomial-time hard (NP-hard) problem [Chen 96].
In this chapter, we propose an overload handling mechanism for target sensitive real

time applications. This mechanism di�ers from previous work because we consider
the trade-o� between aborting and shifting the execution of jobs in order to account
for increased system utility. The abortion heuristic of our mechanism is based on the
utility density of jobs � which is the ratio between utility accrual and execution time
�, and on the pendulum analogy of the gravitational task model.
Our mechanism has quadratic complexity, and is application independent; any ap-

plication can bene�t from it by modeling its requirements into the parameters of the
gravitational task model. The evaluation section brings a multimedia case study where
we use our mechanism to reduce frame display jitter and improve resource usage.

VI.2 Handling overload
The system utility is not only related to the amount of work done. If system resources
are not enough to allow all jobs to execute at their target points (overload condition),
a compromise for maximized utility accrual might imply the abortion of some jobs �
resources freed by an aborted job may allow other jobs in the system to accrue an extra
amount of utility which results in an increase in the resulting system utility. Notice that
an aborted job can either accrue no utility, or accrue a negative utility to the system.
In this work we will only consider the former case.
Our overload handling mechanism uses a heuristic which discards jobs based on their

utility density, and accounts for target sensitivity based on the equilibrium of the grav-
itational task model. As in the gravitational task model all jobs have elliptical utility
functions, the importance alone implicitly accounts for the utility variation as a func-
tion of the deviation from the target point. The smaller this ratio is, the smaller is the
utility accrual of the job per unit of execution. If these units of execution are used by
other jobs with higher utility density that compete for the same units of execution the
resulting utility accrual might be higher (example in the end of this section).
The overload handling mechanism works as follows. Assume any existing scheduling
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algorithm based on the gravitational task model. Our overloading handling mechanism
maintains a job list with the order jobs execute (exec_list), a job list ordered by decreas-
ing utility density (density_list), and a job list with the �nal schedule (sched_list).
The sorting criteria for exec_list depends on the scheduling algorithm. An incoming job
is inserted in exec_list and density_list accordingly. Then, our mechanism inserts jobs
in sched_list in decreasing order of utility density at the position de�ned by exec_list,
and applies the equilibrium. Whenever inserting a job results in a smaller system utility,
the scheduler aborts the job execution, and reapplies the equilibrium. This process is
repeated until there is no job left to be inserted in the schedule. See algorithm 4. Upon
completion of a job, the scheduler updates all lists accordingly.

Algorithm 4 Overload handling mechanism upon job arrival.
input: exec_list, density_list, incoming_job

sched_list = new_empty_list()
insert_sorted(incoming_job,exec_list)
insert_sorted(incoming_job,density_list)
for (i=0; i<length(density_list); i++)
{

job = density_list[i]
utility_before = utility(sched_list)
insert_sorted(job,sched_list,exec_list)
equilibrium(sched_list)
if (utility(sched_list)<utility_before)
{

abort(job,sched_list)
equilibrium(sched_list)

}
}

return sched_list

The complexity to insert and remove a job from all lists is linear, and reinserting all
jobs in the scheduler has quadratic complexity. Chapter IV.2.2 describes a method to
compute the equilibrium of N jobs with linear complexity. Our method may compute
the equilibrium N times in the worst case, hence leading to a quadratic complexity.
Therefore, the �nal complexity of this overload handling mechanism is quadratic.
Consider the following example, where we schedule the jobs described in table VI.1;

in this example, for the sake of simplicity, we order exec_list by target point. The
execution order in the schedule is, then, j1, j2 and j3. Our overload handling mechanism
inserts those jobs in the schedule in decreasing order of utility density. Therefore, we
initially insert job j1 in the schedule directly at its target point. The accrued utility of
the system is 10 at this point and this state is depicted in �gure VI.1a. Next, we insert
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j3 in the schedule, which can also be scheduled directly at its target point. The accrued
utility of the system is 18 at this point and this state is depicted in �gure VI.1b. At last,
we insert job j2 in the schedule, which demands a recomputation of the equilibrium of
the system. With these job parameters, the equilibrium schedules job j1 at time 2.57,
job j2 at time 3.57 and job j3 at time 5.57. This state is depicted in �gure VI.1c. In this
state the accrued utility of the system is 17.5, which is smaller than the system utility
without job j2. Therefore, the overload handling mechanism aborts the execution of j2,
and the �nal schedule is as depicted in �gure VI.1b.

j1 j2 j3

start time 0 0 2
deadline 4 6 6
WCET 2 1 2

target point 3 4 5
anchor point 1 1 1
importance 10 1 8
util. density 5 1 4

Table VI.1: Job set.

(a) (b) (c)

Figure VI.1: The overload handling heuristic

Assume now that the importance of j2 is 6, hence having a utility density of 6.
Applying the overload handling mechanism results in j1 executing at time 2.6, job j2 at
time 3.6 and job j3 at time 5.6. In this schedule the accrued utility of the system is 21.5,
which is more than the utility accrued when only j1 and j2 are scheduled to execute.
Therefore, j3 (the job with lowest utility density) is not aborted.

VI.3 Evaluation
We evaluate our overload handling mechanism with a multimedia case study, which is
an application example that can bene�t from the o�ered trade-o�. To the best of our
knowledge, there is no previous work in the literature which accounts for the trade-
o� between aborting and shifting the execution of jobs for increased utility accrual.
Therefore, we compare our results to Generic Utility Scheduler (GUS) [Li 06], which is
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a Time Utility Function (TUF) scheduler with an overload handling mechanism based
on the utility of jobs. We �rst describe the case study, and then, show the simulation
results.

VI.3.1 Multimedia case study
High quality media processing, such as consumer electronics, is target sensitive be-
cause each frame must be displayed at a speci�c point in time for maximized perceived
quality of video (PQV). Bu�ering frames in advance is not an option in these applica-
tions [Isovic 03], hence demanding frames to be displayed before the next frame starts
being decoded. Imposing tight timing constraints reduces the PQV degradation under
low utilization, but the degradation is sharp as the system load increases.
Since system cost drives the system development into optimized resource utilization,

such systems must be designed in order to exploit low utilization periods for higher PQV,
yet providing the necessary �exibility to adapt the application for overload conditions.
Common strategies to circumvent lack of resources are delayed frame decoding (and
hence display) and frame skipping [Isovic 03].
Here, we show how our overload handling mechanism can express the trade-o� between

delaying and skipping the display of a frame. For this case study, we consider the
MPEG-2 and the MPEG-4 Simple Pro�le (SP) as the video compression standards.
Notice that the capabilities of our overload handling mechanism are not limited neither
to any particular standard, nor to multimedia applications.
MPEG-2 is the standard used in Digital Versatile Disc (DVD), and MPEG-4 Simple

Pro�le (MPEG-4 SP) is the most common High De�nition (HD) compression standard
for Internet streaming and mobile devices nowadays. Among several other contributions,
the MPEG-2 standard de�nes 3 di�erent types of frames: I, P and B; MPEG-4 SP
contains only I and P frames. While I frames are self-contained, P and B frames depend
on other frames to be decoded. P frames depend on the previous P or I frame (which
ever comes �rst), and B frames depend on the previous and the next P or I frame. This
dependency graph is shown in �gure VI.2a. This strategy allows better compression by
avoiding the replication of data that remains unchanged in-between scenes, but imposes
more challenges to the real-time aspect of the application. All frames in-between two
I frames (including the �rst I frame) comprise a Group Of Pictures (GOP). A GOP
�nishing with a B frame is called dependent, else it is called independent.

(a) Displaying order and dependencies (b) Decoding order

Figure VI.2: Frame decoding and display
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The compression standard a�ects both frame skipping and delayed frame decoding.
Dependencies in between frames de�ned by the compression standard dictate how the
delay or abortion of one frame decoding a�ects other frames of the stream. By selecting
the appropriate set of parameters in the gravitational task model, the overload handling
mechanism can address the trade-o� between skipping and delaying frame decoding for
reduced PQV degradation.

In the gravitational task model, future jobs that a�ect the schedule of jobs currently
in the system must be considered in the equilibrium computation. For this case study
we consider all frames belonging to the current GOP; we assume that all GOPs are
independent. The start time of frames is the start of its GOP and the relative deadline
is the length of the GOP. Having a large execution window gives the multimedia appli-
cation more �exibility for adaptations under overload, yet allowing for maximum PQV
under no overload. The anchor point of each frame decoding is 1, since we are interested
in the decoding completion and frame display. We assume the frame decoding time is
known, e.g. given by a decoding time estimation tool.

Assuming a constant framerate, the target point of I and B frames is the start of the
GOP plus the position of the frame in display order (see �gure VI.2a) multiplied by
the frame inter-display time. For example, suppose a frame rate of 25fps, which has
an inter-display time of 1/25s = 40ms. If the current GOP starts at time 1200ms, its
3rd frame must be displayed at 1200 + 40 ∗ 3 = 1320ms. For P frames, its position in
the equation is subtracted by the number of B frames until the previous P or I frame in
the display order. For example, the 4th frame of the GOP in �gure VI.2a, which is a P
frame, has target point 1200 + 40 ∗ (3− 2) = 1240ms. This way, ordering the execution
of the decoding jobs by target point resolves all the dependencies. See �gure VI.2b.

Lastly, we assign importances to the decoding jobs based on the frame skipping al-
gorithm presented in [Isovic 04]. As criteria we consider the frame type and the frame
position in the GOP. The I frame is the most important in a GOP because all other
frames are dependent on it. Next come the P frames, whose importances are dependent
on their position in the GOP. The closer to the I frame in the same GOP, the higher
is the importance. Last comes the B frames, whose importance are also based on their
position on the GOP. However, since no frame depends on a B frame to be decoded,
the importance here depends only on the frame distribution on the GOP. Skipping too
many frames in a row a�ects the smoothness of the video, hence being preferable to
give di�erent importances to odd and even B frames; we assign higher priority to even
frames.

In our importance assignment policy, even B frames have double the importance of
odd B frames. Each P frame has double the importance of the next frame, and the last
P frame in the GOP has importance equal to the double of the importance of even B
frames. Finally, the importance of the I frame is the double of the importance of the
next P frame.



VI.3. Evaluation 105

60% 75% 90% 100% 150% 300%

−
0.

6
−

0.
3

0.
0

0.
3

0.
6

Average CPU demand

Ta
rg

et
 p

oi
nt

 d
ev

ia
tio

n 
(s

)

(a) BBC News

60% 75% 90% 100% 150% 300%

−
0.

6
−

0.
3

0.
0

0.
3

0.
6

Average CPU demand

Ta
rg

et
 p

oi
nt

 d
ev

ia
tio

n 
(s

)

(b) EuroSport Tennis

60% 75% 90% 100% 150% 300%

−
0.

6
−

0.
3

0.
0

0.
3

0.
6

Average CPU demand

Ta
rg

et
 p

oi
nt

 d
ev

ia
tio

n 
(s

)

(c) HD documentary

60% 75% 90% 100% 150% 300%

−
0.

6
−

0.
3

0.
0

0.
3

0.
6

Average CPU demand

Ta
rg

et
 p

oi
nt

 d
ev

ia
tio

n 
(s

)

(d) Matrix movie (DVD)

Figure VI.3: Jitter dispersion for proposed overload handling mechanism

VI.3.2 Experiments
In our experiments, we measure the percentage of skipped frames and the dispersion of
the deviation from the target point. We chose these parameters over a perceived quality
of video analysis because, to the best of our knowledge, there is no existing method that
can properly quantify it as a function of jitter and frame skipping. We use 4 streams
of di�erent types, each one having between 100 and 200 GOPs and di�erent properties.
The 1st stream is a BBC news satellite stream recorded using the Dreambox [dre ] set-
top box, and has all GOPs with 12 frames. The 2nd stream is a tennis match recorded
from EuroSport also using the Dreambox, and with 12 frames in GOPs. The 3rd stream
is a high de�nition documentary downloaded from the Internet, and has variable GOP
sizes. Finally, the 4th stream is a scene of the movie Matrix recorded from a DVD, has
no B frames, and has varying GOP sizes. For each stream, we assume 6 scenarios for
the average CPU demand needed to decode all frames: 60%,75%,90%,100%,150%,300%.
The di�erent scenarios are created by linearly scaling the original decoding times ob-
tained from the trace �les.
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Figure VI.4: Jitter dispersion for GUS [Li 06]

In �gure VI.3 we show, for our overload handling mechanism, the boxplot with the
deviation of each frame in a stream from the target point. In a boxplot, 50% of all
points are located in the range of the box, being 25% above the thick line that crosses
the box and 25% below. The whiskers above and below the box comprise, each one,
25% of all the points. As we can see in this �gure, for all streams considered, if the
average utilization is 60% or 75%, many of the frames �nish their decoding exactly
by their target point. This is concluded from the fact that the box comprising 50%
of all jitter is very short and indicates a jitter of zero. Nonetheless, con�icting target
points happen anyway and our method schedules the frames to keep the deviation under
limited boundaries. As the CPU demand increases, the deviation increases in order to
avoid skipping the whole movie. Even with the streams being so di�erent, our method
shows to be very stable based on the similarities of the 4 graphics. We run the same
experiment for GUS (see �gure VI.4). In this case, we observe a signi�cantly larger
jitter dispersion, independently of the system workload.
In �gure VI.5 we show, for our overload handling mechanism, the fraction of skipped
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Figure VI.5: Fraction of skipped frames for proposed overload handling mechanism

frames in each of the streams for the CPU demand scenarios proposed. Since we consider
average CPU demand, it is possible that some GOPs demand more CPU than others
and for these GOPs, frames must be skipped even if resources are enough to decoded
all frames by the end of the stream. Therefore, even in the case of CPU demand less
than 100% we can observe some skipped frames. Once again, observing all streams
analyzed, we see a stable behavior of our method. All decoded frames were displayed
in time and accounting for reduced jitter. Even for an average CPU demand of 300%,
we observed that on average two frames are displayed per GOP, hence still allowing
the user to appreciate a moving picture with some smoothness. In �gure VI.6 we plot
the fraction of skipped frames for GUS. In this experiment GUS has results statistically
identical to ours, an expected result, as the skipping heuristic is very similar in both
approaches. Therefore, our method is able to reduce the frame display jitter without
compromising the number of displayed frames, hence providing for a smoother video.
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Figure VI.6: Fraction of skipped frames for GUS [Li 06]

VI.4 Summary

In this chapter, we showed that executing as many tasks as possible does not imply in
maximized system utility. In fact, rejecting some tasks frees resources that other tasks
can use to accrue more utility. For instance, tasks that do not meet their starttime-
deadline requirements do not accrue utility to the system, yet consume resources that
other tasks can use to increase the utility accrual. The overload situation can be over-
come by either delaying or dropping jobs, and the choice must account for �nal increased
utility accrual. Dropping jobs is a combinatorial problem.
In section VI.2, we proposed a heuristic overload handling mechanism for target sen-

sitive RT applications. This mechanism increases the system utility by both aborting
jobs and computing the compromise among the deviation of the ones scheduled for exe-
cution. The abortion heuristic is based on the utility density of jobs, which is the ratio
between utility accrual and execution time. This mechanism has quadratic complexity,
and is application independent. Hence, any application can bene�t from it by modeling
its requirements into the parameters of the gravitational task model.
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Section VI.3 described a multimedia case study where we use this mechanism for
reduced frame display jitter and improved resource usage under scarce resource avail-
ability. The frame decoding timing constraint assignment is based on the frame skipping
algorithm [Isovic 04] for quality aware video adaptation. Simulation results showed the
e�cacy of the overload handling mechanism.





Chapter VII

Applications of the gravitational task model

In this chapter, we present 3 applications enhanced with the gravitational task model
in order to demonstrate the validity of our work. Section VII.1 brings a multimedia
application where we use the gravitational task model to reduce the degradation in
the perceived quality of video (PQV) during overload. The basic idea is to relax the
temporal constraints of the frame display. This way, the decoder may prepone/postpone
the frame display in order to cope with the longer decoding times without the need to
drop frames. Of course, without further consideration, this approach leads to large
variations of inter-display time, which degrades the PQV. We use the gravitational
task model to schedule the completion of the decoding task as close as possible to the
optimum display instant, hence accounting for both optimum PQV under low system
workload, and adaptivity under overload with decreased degradation of the PQV. This
section presents both quantitative and qualitative evaluations of the resulting video
output that show the bene�ts of our approach.
Section VII.2 brings an algorithm for adaptive resource management. This algorithm

uses a gravitational task model based compression method which has linear complexity
for reallocation of resources among applications under scarce resource availability. The
pendulum analogy provides for the intuition of the solution.
Finally, section VII.3 describes an opportunistic packet scheduling strategy which

aims at reduced retransmission ratio of packets in Body Area Networks (BAN). Re-
ducing the retransmission ratio increases communication reliability and reduces energy
consumption. This application has been entirely developed by researchers not involved
with studies on the gravitational task model, and evidences the contribution of the
gravitational task model's intuition to ease the cooperation among di�erent research
�elds.

111
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VII.1 Video stream adaptation

VII.1.1 Introduction
In section II.1, we exempli�ed the tasks involved in video playout using the MPEG-2
video encoding/decoding standard. We showed that digital video playout imposes tight
execution window constraints on frame display for maximum PQV; the inter-display
time must be strictly periodic and constant. Provisioning computational performance
for the worst case scenario leads to resource underutilization, as the decoding time of
frames may vary a lot due to advanced image compression techniques, e.g. temporal
compression. Temporal compression/decompression is computationally expensive and
its e�ort depends on the temporal aspects of the video.
We also showed that the standard MPEG-2 decoder design assumes computational

performance for the average case, and add frame bu�ers to cope with variable decoding
times, and hence, guarantee the strict inter-display time requirement for maximum PQV.
Larger bu�ers allow the decoder to recover from the long decoding time of a frame,
provided that subsequent frames have shorter decoding times. However, larger bu�ers
imposes longer latencies, require changes in the decoder design, and increase energy
consumption and production cost. Usually, decoders have decoding bu�er capacity for
3 frames, the minimum necessary to cope with precedence constraints.
We propose a relaxation of the temporal constraints of the frame display. This way,

the decoder may prepone/postpone the frame display in order to cope with the longer
decoding times without the need to drop frames, and without bu�ering extra frames.
Of course, without further consideration, this approach leads to large variations of inter-
display time, which degrades the PQV. We use the gravitational task model to schedule
the completion of the decoding task as close as possible to the optimum display instant,
hence accounting for both optimum PQV under low system workload, and adaptivity
under overload with decreased degradation of the PQV.
Our solution does not require any change in the standard architectural design of video

decoders, as we only alter the timing requirements of tasks and the scheduling algorithm.
Moreover, we reduce the degradation of the PQV without requiring additional bu�ering,
which comes at the expense of longer display latencies. The evaluation section brings
both a quantitative and a qualitative experimental analysis of the resulting video that
shows the bene�ts of our solution.

VII.1.2 Temporal constraints of tasks
In this section, we describe the temporal constraint assignment for the decoding and
display tasks. The input task works asynchronously, responding directly to the video
stream source and storing frames in the input bu�er, and has negligible execution time,
as a Direct Memory Access (DMA) module handles the data transfer between bu�ers.
Our goal is to provide some �exibility to the display task for early/late display in
order to avoid frame drop during overload. Early display allows the earlier decoding of
subsequent frames which would miss their deadlines otherwise, and late display avoids
frame drops.



VII.1. Video stream adaptation 113

The earliest start time of the decoding task is the moment of frame arrival, and the
deadline is customizable � larger deadlines provide for late display, and hence, �exibility
under overload. Without loss of generality, we assume that the frame arrival has the
same periodicity of the frame display. The decoding task does not have a target point,
since we are interested in the moment of display. Therefore, we assign importance 0 to
the decoding tasks, which implies in total �exibility to shift the decoding jobs within
their execution windows.
The execution window of the display task varies depending on the frame type. B

frames are not used as reference, and hence, can be displayed right after decoding in
order to free the bu�er and allow the decoding of the next frame. Thus, the display
task of B frames have the same execution window as the decoding task of the respective
frame; I and P frames have earliest start time equal to the desired display instant. The
relative deadline of the display task is the same as for the decoding task.
The execution time of the display task is 0, as a DMAmodule handles the data transfer

between decoding bu�er and display bu�er. The desirable frame display instant is the
target point of the display task, which has importance equal to the importance of the
video stream. Ordering the execution of all jobs using Earliest Deadline First (EDF)
ensures the correct decoding and display sequence [Isovic 03].

VII.1.3 Evaluation
Experiment setup

In our experiments, we measured the decoding times of MPEG-2 frames recorded from
satellite streams using a DreamBox [dre ] satellite receiver. The measurement tool uses
the Libmpeg2 library [lib ], which is a free library for decoding MPEG-2 video streams.
This library is highly optimized for high performance, has been ported to x86, PowerPC,
SPARC, ARM and SH4, and can be easily ported to other architectures. Due to its high
performance, Libmpeg2 is a very popular codec used in many free multimedia players,
such as MPlayer, Xine and VLC.
We use the measured decoding times to schedule the frame decoding and display using

a scheduling simulator. Finally, we use the output of the simulator to generate a video
output that displays frames according to the schedule of the display tasks. This video
output is a transport stream �le, and we alter the display time by editing the presentation
time stamp �eld of the transport stream packet header. Please refer to [Tra 00] for more
information about the transport stream syntax.
In order to investigate the impact of the workload on the PQV, we generate task sets

with variable number of video streams. However, our video adaptation strategy is also
applicable for systems with one single stream and insu�cient computing performance
for the worst case.

Scenarios

We generate task sets from the decoding times of 5 MPEG-2 satellite streams. Each
stream has frame rate of 25fps (hence, frame display periodicity is 40ms), and com-
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prises 7500 interpolated frames with di�erent properties. The 1st stream is a sport
car documentary from BBC news, and we assign importance 10; the 2nd stream is the
Bloomberg business news, and we assign importance 2; the 3rd stream is a volleyball
match recorded from Live Sport, and we assign importance 2; the 4th stream is a soccer
match recorded from DSF, and we assign importance 5; and �nally, the 5th stream is
the cartoon Lucky Luke from RTL, and we assign importance 2.
In our experiments, we use 7 task sets with di�erent workloads. Task set A contains

the 1st stream; task set B contains the 1st and 2nd streams; task set C contains the
1st, 2nd and 3rd streams; task set D contains the 1st, 2nd, 3rd and 4th streams; task
set E contains all streams; task set F contains all streams twice; and �nally, task set G
contains all streams 3 times. The average utilization of those task sets vary in between
5% and 70%.
We schedule the task sets using pure EDF and gravitational task model with EDF job

ordering. Under EDF, we consider 3 di�erent deadline assignments: deadline equal to
period, deadline equal to 4 times the period, and deadline equal to 16 times the period.
Under the gravitational task model, we consider only deadlines equal to 16 times the
period.

Results

We perform both a quantitative and a qualitative analysis of the resulting video quality.
For the quantitative analysis, we use the deviation from the target point (which relates
to the inter-display jitter), and the frame drop as metrics of comparison. Here, we show
only the graphs for the BBC News documentary, as the results for other streams are
very similar.
Figure VII.1 depicts the percentage of dropped frames (due to deadline misses) for

each task set and scheduling algorithm. As expected, we can observe that shorter
deadlines imply more dropped frame as the workload increases. Although the maximum
frame drop rate is below 1%, the resulting video shows that the impact on the PQV
may be signi�cant, as dropping random frames may also a�ect the decoding of other
frames due to precedence constraints. An interesting result is that `EDF d=4p' drops
a few frames for a workload with 10 stream, but drops no frames for a workload of 15
stream. We attribute this behavior to the EDF arbitration in scheduling jobs with the
same deadline.
In �gures VII.2, VII.3, VII.4, and VII.5, we plot the histogram of the deviation from

the target point for each frame display. The x-axis is the deviation in milliseconds �
each bar of the histogram has a width of 5 milliseconds �, and the y-axis is the number
of frames. Remember that the total number of frames in each stream is 7500. Each
graph plots the histogram for 6 task sets: A, B, C, D, F, and G. These task sets have
number of streams 1, 2, 3, 4, 10, and 15, respectively. Each �gure contains two sets of
histogram plots: one with the y-axis ranging from 0 to 7500, and one with the y-axis
ranging from 0 to 5. The latter plots show that there are a very few frames with very
large deviation from the target point, and these bars are not visible in a plot with a
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Figure VII.1: Dropped frames.
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Figure VII.2: EDF d=p.

wide y-axis range.
In �gure VII.2 we plot the histograms for EDF with deadline equal to the period. We

can observe that for low workloads, i.e. less streams, most of the frames have either
deviations 0 or −40 milliseconds. This behavior re�ects the incapability of EDF to
enforce display at the target points � under low workload B frames are displayed too
soon, which alters the periodicity of the frame display. These frames are of type B, which
are not needed for reference, and hence, displayed right after decoding. We observe that,
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Figure VII.3: EDF d=4p.

as we increase the workload, the deviations become more sparse. These variations of
the display time come from the interference of the decoding of other streams.
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Figure VII.4: EDF d=16p.

In �gure VII.3 we plot the histograms for EDF with deadline equal to the 4 times
period. The pattern of the deviations from the target point remain similar to the
previous experiment, but in this experiment we observe a few deviations larger than 0.
This is a consequence of the extended deadline, which allows for delayed display, hence
avoiding frame dropping. The same pattern can be observed in the experiment depicted
in �gure VII.4, where we set the deadline equal to 16 times the period. In this case,
we observed no frame dropping, but the incapability of EDF to enforce display at the
target points still allows for large deviations from the target point.
In �gure VII.5 we plot the histograms for a combination of the gravitational task
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Figure VII.5: Grav. EDF d=16p.

model and EDF with deadline equal to the 16 times period. In this case, the scheduler
is able to account for the target point of frames under low workload, yet providing the
necessary �exibility under high workload in order to avoid frame drops. We can see
that for as task set with only one stream, all frames are displayed at their target points,
and as the workload increases, the deviations gradually increase. Very few frames have
deviations larger than 0, although the maximum deviation may be very high.
Observing the resulting video output, we concluded that the dropped frames may

cause signi�cant disturbance, even though the dropping rate is low. Moreover, the
larger display jitters in EDF produced jerked scenes, while using the gravitational task
model resulted in a smooth video playout.

VII.2 Adaptive resource management
In this section, we describe the adaptive resource management algorithm that we im-
plemented in the ACTORS Framework described in section II.2. This algorithm uses
a gravitational task model based compression method which has linear complexity for
reallocation of resources among applications. The pendulum analogy provides for the
intuition of the solution. An alternative solution is the elastic task model, which has a
compression method based on a spring system, and quadratic complexity. Our solution
keeps the intuition from an analogy with physical systems, and has reduced complexity.
We skip a comparison between the resulting compression of both methods because they
are not comparable � they consider di�erent proportional compression rates.

VII.2.1 Terminology and assumptions
Assume a system with capacity C, and M cores with capacity ck (

∑M
k=1 ck = C). An

application Ai has SLi service levels, and operates at a service level sli|0 ≤ sli ≤
SLi − 1. A service level sli has a quality of service qosi(sli), a maximum band-
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width requirement BMAX
i (sli) and a minimum bandwidth BMIN

i (sli). Here we as-
sume BMIN

i (sli) = BMAX
i (sli + 1), BMIN

i (SLi − 1) = 0.8 × BMAX
i (SLi − 1), and

qosi(sli) > qosi(sli + 1). In order words, service level sli requires more bandwidth
and provides better quality of service than service level sli + 1. Each Ai has an assigned
bandwidth Bi|BMIN

i (sli) ≤ Bi ≤ BMAX
i (sli), and an importance impi.

An application Ai may contain 1 toM virtual processors V Pi,j, each with a maximum
bandwidth requirement BWDMAX

i,j (sli) and a minimum bandwidth BWDMIN
i,j (sli) �we

assume that
∑M

j=1BWDMAX
i,j (sli) = BMAX

i (sli) and
∑M

j=1 BWDMIN
i,j (sli) = BMIN

i (sli).
CAi,j represents the core assignment of virtual processor V Pi,j, and assumes values from
1 toM . The assignment of virtual processors to core k is valid i�

∑
CAi,j=k

BWDi,j ≤ ck,
where BWDi,j is the bandwidth assignment to V Pi,j. We assume that an application
may not have more than one virtual processor on the same core in order to exploit
potential parallelism.
Upon application registration/unregistration, the resource manager must assign to

each application Ai a service level sli, a bandwidth Bi, and assign virtual processors
to cores. The target of each application is to operate at service level sli = 0, with
bandwidth assignment Bi = BMAX

i (0). However, a bandwidth allocation is feasible if,
and only if,

∑N
i=1 Bi ≤ C. If

∑N
i=1B

MAX
i (0) > C, the resource manager compresses

bandwidth assignments, and changes service levels accordingly in order to ful�ll the
feasibility condition. Applications with higher importances and providing higher quality
of service undergo a smaller compression ratio. Notice that if

∑N
i=1B

MIN
i (SLi−1) > C,

then there exists no feasible bandwidth assignment. In this case, the resource manager
can either terminate some applications, or reject the registering application.

VII.2.2 Service level assignment

Let us assume N applications. In the case of registration, N includes the registering ap-
plication. In the case of unregistration, N does not include the unregistering application.
There exists a feasible bandwidth assignment if, and only if,

∑N
i=1B

MIN
i (SLi− 1) ≤ C.

Else, either the resource manager rejects the registering application, or terminates al-
ready registered applications.
The service level assignment works as follows. First, the resource manager assigns

the minimum service level to each registered application, and service level SLi to the
registering application. If terminations are allowed, the minimum service level is SLi,
which indicates that the application terminates. Else, the minimum service level is
SLi − 1. Then, the resource manager initializes an array containing the bandwidth
density of each applications for each service level. The bandwidth density, for a given
service level sli, is impi× qosi(sli)/Bi. Each element of this array contains the index of
the respective application and service level. The resource manager scans this array in
decreasing order of bandwidth density, and changes the service level of the corresponding
application if (i) the service level of the array's element upgrades the current service
level assignment of the application, and (ii) the new service level assignment does not
violate the condition

∑N
i=1B

MAX
i (sli) ≤ C. At the end of the scanning processes, all

applications have their respective service level assignment. Applications with service
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level SLi terminate, hence freeing resources.

VII.2.3 Core assignment

The core assignment for virtual processors of the registering application uses a simple
greedy algorithm. The resource manager assigns the virtual processor with more band-
width demand to the core with more free capacity that does not hold another virtual
processor of the same application. This process repeats until all virtual processors have
a core assignment.
This algorithm may return an assignment of virtual processors to cores that violates

the capacity constraint of some cores, i.e.
∑

CAi,j=k
BWDi,j > ck for some k. Therefore,

we also propose a migration algorithm in order to distribute the load among cores. The
migration algorithm runs also upon unregistration, and consists of the 2 steps that we
describe below.
In the �rst step, for each core k|

∑
CAi,j=k

BWDi,j > ck, the migration algorithm
searches for the virtual processor V Px,y with higher bandwidth, and moves V Px,y to the
core k′|

∑
CAi,j=k′

BWDi,j + BWDx,y ≤ ck′ . For each core k, the migration algorithm
repeats this step until either

∑
CAi,j=k

BWDi,j ≤ ck or there is no k′|
∑

CAi,j=k′
BWDi,j+

BWDx,y ≤ ck′ .
In the second step, for each core k, the migration algorithm searches for the virtual pro-

cessor V Px,y with higher bandwidth, and moves V Px,y to the core k′|
∑

CAi,j=k
BWDi,j >∑

CAi,j=k′
BWDi,j+BWDx,y. For each core k, the migration algorithm repeats this step

until there is no core k′|
∑

CAi,j=k
BWDi,j >

∑
CAi,j=k′

BWDi,j +BWDx,y.

VII.2.4 Bandwidth compression

The assignment of virtual processors to cores may violate the capacity constraint of
cores. In this case, for each core, the resource manager compresses the bandwidth of the
virtual processors until

∑
CAi,j=k

BWDi,j = ck. In this section, we present a bandwidth
compression algorithm based on an analogy with pendulum systems.

Pendulum system

A pendulum is an object attached to a pivot point that can swing freely. A basic example
is the simple gravity pendulum or bob pendulum. As depicted in �gure VII.6, it consists
of a massive bob (bobi) hanging by a massless string of length Li. When given an initial
push, the bob will swing back and forth under the in�uence of gravity over its central
(lowest) point in a circular trajectory. Placed at the lowest point, the bob will come to
rest there (rest position). As depicted in �gure VII.7, applying a force F perpendicular
to the string will cause the bob to rest at a position xi, hence, altering the equilibrium
state of the system. We call the angular displacement ϕi|0 ≤ ϕi ≤ π/2. The value of
xi depends on the intensity of the force F and the weight Wi of the bob. This analogy
di�ers from the one presented in chapter III in the interaction among the bobs. Here
each bob is in an isolated pendulum, and all bobs are pushed by a common force F .
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F = Wi × sin(ϕi) (VII.1)

F = Wi ×
(xi − rpi)

Li
(VII.2)

xi =
Wi × rpi + F × Li

Wi

(VII.3)

xi = rpi +
F × Li
Wi

(VII.4)

Let us de�ne the lowest point of a pendulum as rpi. At the maximum angular displace-
ment (i.e. ϕi = π/2), xi = rpi + Li. Given a force F , the pendulum is in equilibrium
when F = Wi × sin(ϕi). After a few algebraic steps, we obtain the value of xi (see
equation VII.4). As can be seen is this equation, xi is inversely proportional to Wi.

Figure VII.6: Bob pendulum Figure VII.7: Analogy between pendulum sys-
tem and bandwidth compression

Analogy between pendulum system and bandwidth compression

Figure VII.7 depicts the analogy between the pendulum system and the bandwidth
allocation for virtual processors. Let us assume each application Ai operates at a service
level sli. The target of a virtual processor belonging to Ai is to obtain a bandwidth
BWDi,j = BWDMAX

i,j (sli), and the target of a bob is to rest at the central (lowest) point
xi = rpi. The product of the importance and the quality of service of an application is
inversely proportional to the bandwidth compression ratio, and similarly, the weight of
a bob is inversely proportional to xi. Therefore, Wi ≡ impi × qosi(sli). Bobs cannot
be pushed beyond the swinging range, and a virtual processor V Pi,j cannot obtain a
bandwidth smaller than 0.8×BWDMIN

i,j (SLi − 1). Finally, the force F is equivalent to
the resistance that the system imposes on the applications to compress the bandwidth
assignment. Following this analogy, it is easy to see that the position xi of each bob in
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the equilibrium state is equivalent to a fair compression of the bandwidth assignment
for the virtual processors on a core.

F = impi × qosi(sli)× sin(ϕi) (VII.5)

F = impi × qosi(sli)×
(BWDMAX

i,j (sli)−BWDi,j)

BWDMAX
i,j (sli)− 0.8×BWDMIN

i,j (SLi − 1)
(VII.6)

BWDi,j =BWDMAX
i,j (sli)−

F×(BWDMAX
i,j (sli)−0.8×BWDMIN

i,j (SLi−1))

impi×qosi(sli)
(VII.7)

Expanding the equilibrium condition, i.e. F = Wi × sin(ϕi), using the applications'
parameters leads to equation VII.7. This equation gives the bandwidth assignment for
each V Pi,j upon a system resistance F .

Exploiting the intuition

In this section, we compare the bandwidth compression for resource allocation with
the equivalent bob pendulum system. The goal is to observe the dynamics of both
systems, and exploit the intuition from the analogy to better understand the meaning
of some applications' parameters. Let us consider 2 applications A1 and A2 with one
virtual processor each, and importances imp1 and imp2 respectively. For simplicity,
let us assume only one service level (qos = 1) with maximum bandwidth requirements
BMAX

1 = 10 and BMAX
2 = 5, and minimum bandwidth requirements BMIN

1 = 2 and
BMIN

2 = 1.
A force F compresses these bandwidths as follows:

B1 = BMAX
1 − F × (BMAX

1 −BMIN
1 )

imp1

= BMAX
1 − F × 8

imp1

(VII.8)

B2 = BMAX
2 − F × (BMAX

2 −BMIN
2 )

imp2

= BMAX
2 − F × 4

imp2

(VII.9)

As can be seen, F×8
imp1

and F×4
imp2

stand for the amount of bandwidth compression, be-
ing the maximum allowed compression the di�erence between the maximum and the
minimum bandwidth requirements. The actual compression is a fraction of the maxi-
mum compression, and proportional to F divided by the importance of the respective
application (e.g. F/imp1 for A1).
Let us �rst assume imp1 = imp2 = imp. In this case, the bandwidth of both appli-

cations are compressed by a factor F/imp. However, a compression by the same factor
results in di�erent absolute bandwidth compression. As can be see in �gure VII.8, the
compression factor is equivalent to the relative displacement of the bob (both bobs have
the same angular displacement), and the actual bandwidth compression is equivalent to
the actual displacement of the bob.
If imp1 = k × imp2 for any k, the compression factor scales linearly with k. The

compression of A1 is F×8
k×imp2 , and the compression of A2 is F×8

imp2
. As can be seen, higher
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(a) Application A1 (b) Application A2

Figure VII.8: Analogy between pendulums and applications (same importance).

importance leads to smaller compression. Similarly, a heavy bob experiences a smaller
angular displacement than a light bob under the in�uence of the same force F .
This model also allows applications to express compression in�exibility. This is the

extreme case when k →∞, which is equivalent to a bob with weight in�nity. Applica-
tions with importance in�nity can still have their resource assignment compressed, but
those are the last one's to experience any compression, in which case F →∞.

Compression algorithm

In the next section, we describe how the bandwidth allocation algorithm chooses F such
that

∑N
i=1BWDi,j ≤ ck, for each core k. For a given a core k, let us de�ne ΓC as the set

of virtual processors whose bandwidth can be compressed, and ΓL as the set of virtual
processors whose bandwidth are compressed to the maximum. The bandwidth of each
V Pi,j ∈ ΓC must ful�ll equation VII.11. Expanding this equation, we obtain the value
of F (see equation VII.12).
The compression algorithm works as follows for each core (see algorithm 5). Initially,

ΓC contains all virtual processors on core k and ΓL is empty (lines 1 and 2). Then,
the algorithm calculates 3 intermediate values sum_1,sum_2,sum_3 (lines 3 to 5)
for the calculation of F (line 8). Notice that if F > impi × qosi(sli), then BWDi,j <
BWDMIN

i,j (sli), and such a bandwidth assignment is not valid because BWDMIN
i,j (sli) ≤

BWDi,j ≤ BWDMAX
i,j (sli). Therefore, for each V Pi,j|F > impi×qosi(sli), the algorithm

removes V Pi,j from ΓC (line 14), appends it to ΓL (line 15), and appropriately updates
the intermediate values sum_1,sum_2,sum_3 to re�ect the changes in the sets ΓC and
ΓL (lines 16 to 18). The algorithm, then, recalculates the force F (line 8), and repeats
the succeeding lines until F > impi × qosi(sli) ∀V Pi,j ∈ ΓC (lines 7 and 12 adjust the
repeat loop condition). Finally, the algorithm calculates BWDi,j for all V Pi,j ∈ ΓC
(lines 22 to 25). In line 26, the algorithm updates the service level assignment of each
application to be consistent with the assigned bandwidth. The algorithm, then, returns
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a concatenation of sets ΓL and ΓC (line 27).

∑
V Pi,j∈ΓC

BWDi,j = C −
∑

V Pi,j∈ΓL

0.8×BWDMIN
i,j (SLi − 1)(VII.10)

∑
V Pi,j∈ΓC

BWDMAX
i,j (sli)−

F ×
∑

V Pi,j∈ΓC

(
BWDMAX

i,j (sli)− 0.8×BWDMIN
i,j (SLi − 1)

impi × qosi(sli)

)
=

C −
∑

V Pi,j∈ΓL

0.8×BWDMIN
i,j (SLi − 1)(VII.11)

F =

∑
V Pi,j∈ΓC

(BWDMAX
i,j (sli))− C +

∑
V Pi,j∈ΓL

0.8×BWDMIN
i,j (SLi − 1)∑

V Pi,j∈ΓC

(
BWDMAX

i,j (sli)−0.8×BWDMIN
i,j (SLi−1)

impi×qosi(sli)

) (VII.12)

The code from line 1 to line 5 has complexity O(N). The while loop does not execute
more than N times in total (not only for a iteration of the repeat loop), since each
element of ΓC is visited only once. Each line of code within this loop has complexity
O(1), and hence, the while loop has complexity O(N). The repeat loop does not
execute more than N times in total neither, because the variable repeat assumes the
value false at most N times (within the while loop). Finally, the forall loop has
complexity O(N). Therefore, the complexity of the compression algorithm is O(N).

VII.2.5 Example

This section illustrates the bandwidth compression algorithm with a simple example,
where 3 applications register with the resource manager. Table VII.1 shows the service
levels information of the 3 applications. For this example, we assume a system with 4
cores, and each core has capacity of 90 to serve actors-aware applications. Therefore,
the total system capacity is 360. Let us consider as initial state that applications A1 and
A2 are already registered with the resource manager, and running at their maximum
service level. Table VII.2 shows the resource distribution for both applications.
When A3 registers with the resource manager, the sum of bandwidth requirement for

all applications at their maximum service level is 440. Therefore, system resources are
insu�cient to allow for all applications to run at their maximum service level. In this
case, the resource manager executes the service level assignment algorithm (as described
in section VII.2.2), which assigns service level 0 to A1, service level 2 to A2, and service
level 0 to A3. The sum of bandwidth requirements for all applications under this service
level assignment is 160+120+80 = 360. However, the assignment of virtual processors to
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Algorithm 5 Bandwidth compression algorithm.
1: ΓC = VPs;
2: ΓL = ∅;
3: sum_1 =

∑
V Pi,j ∈ ΓC

BWDMAX
i,j (sli);

4: sum_2 =
∑

V Pi,j ∈ ΓL
BWDMIN

i,j (sli);

5: sum_3 =
∑

V Pi,j ∈ ΓC

(
BWDMAX

i,j (sl_i) − BWDMIN
i,j (sli)

Wi

)
;

6: repeat:
7: stop = true;
8: F = (sum_1 - C + sum_2)/sum_3;
9: VP = get_first(ΓC);
10: while (

(VP not ∅)
&&
(VP.app.imp*VP.app.qos(VP.app.SL-1) < F)

)
11: {
12: stop = false;
13: VP.BWD = 0.8 * VP.BWD_MIN[VP.app.SL-1];
14: remove_first(ΓC);
15: append(ΓL);
16: sum_1 -= VP.BWD_MAX[VP.app.sl];
17: sum_2 += VP.BWD_MIN[VP.app.sl];
18: sum_3 -=

(VP.BWD_MAX[VP.app.sl]-VP.BWD_MIN[VP.app.sl])
/(VP.app.imp*VP.app.qos(VP.app.sl));

19: VP = get_first(ΓC);
20: }
21:until (stop);
22:forall (VP in ΓC)
23:{
24: VP.BWD = VP.BWD_MAX[VP.app.sl]

- F*(VP.BWD_MAX[VP.app.sl] - VP.BWD_MIN[VP.app.sl])
/(VP.app.imp*VP.app.qos(VP.app.sl));

25:}
26:update_sl_assignment();
27:return ΓL ∪ ΓC

cores does not distribute the load equally among the cores. As can be seen in table VII.3,
which shows the assignment of virtual processors to cores, core 0 is overloaded. The
resource manager, then, applies the compression algorithm 5 to shrink the bandwidth of
the virtual processors on core 0, resulting in the bandwidth assignment of table VII.4.
This bandwidth assignment results in a service level reassignment for applications A1
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App Imp SL QoS [%] BW [%] ∆ [ms] BWD [%]

A1 10 0 100 160 40 [V P0 =40, V P1 =40, V P2 =40, V P3 =40]
1 80 120 50 [V P0 =30, V P1 =30, V P2 =30, V P3 =30]
2 50 80 100 [V P0 =20, V P1 =20, V P2 =20, V P3 =20]

A2 1 0 100 200 20 [V P0 =50, V P1 =50, V P2 =50, V P3 =50]
1 90 160 40 [V P0 =40, V P1 =40, V P2 =40, V P3 =40]
2 70 120 70 [V P0 =30, V P1 =30, V P2 =30, V P3 =30]
3 40 80 150 [V P0 =20, V P1 =20, V P2 =20, V P3 =20]

A3 100 0 100 80 20 [V P0 =20, V P1 =15, V P2 =45]
1 70 60 100 [V P0 =20, V P1 =10, V P2 =30]

Table VII.1: Service level table of applications A1, A2, and A3

Core VPs

0 [A1 V P0 = 40; A2 V P0 = 50]
1 [A1 V P1 = 40; A2 V P1 = 50]
2 [A1 V P2 = 40; A2 V P2 = 50]
3 [A1 V P3 = 40; A2 V P3 = 50]

Table VII.2: Assignment of VPs to cores (Apps A1, and A2)

Core VPs

0 [A1 V P0 = 40; A2 V P0 = 30; A3 V P2 = 45]
1 [A1 V P1 = 40; A2 V P1 = 30; A3 V P0 = 15]
2 [A1 V P2 = 40; A2 V P2 = 30; A3 V P1 = 20]
3 [A1 V P3 = 40; A2 V P3 = 30]

Table VII.3: Assignment of VPs to cores before compression (A1, A2, and A3)

(service level 1) and A2 (service level 3), which may change their bandwidth assignments
on other cores. The �nal bandwidth distribution is in table VII.4.

Core VPs

0 [A1 V P0 = 29; A2 V P0 = 16; A3 V P2 = 44]
1 [A1 V P1 = 30; A2 V P1 = 20; A3 V P0 = 15]
2 [A1 V P2 = 30; A2 V P2 = 20; A3 V P1 = 20]
3 [A1 V P3 = 30; A2 V P3 = 20]

Table VII.4: Assignment of VPs to cores after compression (A1, A2, and A3)
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VII.3 Opportunistic packet scheduling in body area networks

Besides the e�cacy and e�ciency in computing trade-o�s among target sensitive ap-
plications, the gravitational task model also o�ers an easy intuition for the sake of
understanding. This intuition is also a very important contribution, given that real-
time (RT) scheduling theory has applicability in diverse �elds where deep knowledge
of scheduling theory is not imperative. For example, cyber-physical systems emerges
as a new research �eld which combines control systems, embedded systems, Wireless
Sensor Networks (WSN), and Real-Time Systems (RTS). Although each of these areas
are focus of deep research, recent contributions to the state-of-the-art in each domain
tend to remain isolated until the knowledge matures and spreads out.
In this section, we describe an application of the gravitational task model in the �eld

of WSNs. This application has been entirely developed by researchers not involved
with studies on the gravitational task model, namely Shashi Prabh from the Center of
Real-Time Systems Research at Polytechnic Institute of Porto, and Jan-Hinrich Hauer
from the Telecommunication Networks Group at Technische Universität Berlin. This
application is part of the work presented in [Prabh 11], which has been published in
EWSN'11, a top European conference in the �eld of wireless sensor network. Therefore,
this application evidences the contribution of the gravitational task model's intuition
to ease the cooperation among those areas of research, and more, the synergy between
recent signi�cant contributions to the state-of-the-art in two di�erent �elds.
The opportunistic packet scheduling strategy aims at reduced retransmission ratio of

packets in BANs (refer to section II.3 for a detailed description of packet scheduling
issues in BANs). Therefore, this strategy achieves increased communication reliability
and reduced energy consumption. It uses an algorithm that schedules packets based
on the Reveived Signal Strength Indicator (RSSI) �uctuations of the wireless commu-
nication channel. We describe in the next section the empirical characterization of
RSSI �uctuations in a BAN, and then, the packet scheduling algorithm based on the
gravitational task model.

VII.3.1 Characterization of RSSI fluctuations

The characterization of RSSI �uctuations varies among scenarios, e.g. indoors, out-
doors, activity of the subject, etc. In this section, we present results of an empirical
characterization of RSSI �uctuations while the subject is moving outdoors. This inves-
tigation is complementary to studies in indoors settings, which receive more research
focus. Please refer to [Prabh 11] for a complete description of the experiments and
results. Here we focus on the relevant information to later describe the algorithm for
opportunistic packet scheduling.
In the experiments, nodes equipped with IEEE 802.15.4-compliant CC2420 radio

transceivers were positioned on the subjects as shown in �gure VII.9. Experiments
contained TelosB [Polastre 05], Shimmer2 [Burns 10], and MicaZ [Hill 02] platforms in
isolated scenarios � i.e. no scenario mixed nodes of di�erent platforms � in order to
investigate the in�uence of the type of platform on RSSI �uctuations. An experiment



VII.3. Opportunistic packet scheduling in body area networks 127

consisted of one node (sender) continuously broadcasting IEEE 802.15.4 packets with
a constant transmission frequency which was experiment dependent (red node in the
�gure). The other seven nodes (receivers) passively listened for packets (they did not
send acknowledgments). The measurement software accesses the CC2420 radio directly,
i.e., there is no Medium Access Control (MAC) layer involved and the senders send
packets immediately without clear channel assessment. Each of the seven receiver nodes
keeps statistics of the number of correctly received packets and the associated RSSI.
The receiver nodes are placed on the left and right ankle, left trouser pocket, left and
right hand, in the center of the chest, and in the center of the back (blue nodes in the
�gure).

Figure VII.9:

Node positions [Prabh 11]

0 1 2 3 4 5 6 7 8 9 10
−95

−90

−85

−80

time (s)

R
S

S
I (

dB
m

)

back

0 1 2 3 4 5 6 7 8 9 10

−80

−75

−70

−65

−60

−55

time (s)

R
S

S
I (

dB
m

)

right hand

Figure VII.10: RSSI measurements (right hand and
back) [Prabh 11]

In each experiment the subject that carries the BAN was continuously walking out-
doors in a large �eld with negligible external Radio Frequency (RF) interference, as
veri�ed with the help of periodic noise-�oor measurements on the nodes. The subjects
were walking at even speed of approximately 1.2 steps/s (common walking speed). A
single experiment lasted for 5 minutes, and 10 experiments were performed for each
scenario.
While a subject was walking, the changes in the relative positions of the limbs mani-

fested as periodic �uctuations in the RSSI. For example, the top graph in �gure VII.10
shows a 10-second snapshot of the RSSI obtained in one experiment scenario on a Shim-
mer2 node that was positioned on the right hand of the subject (recall that the sender
is always located in the right trouser pocket). The sender used a transmission power
of -10dBm. The graph shows a period of about 1.2s, which matches the step frequency
of the subject: often a plateau of about 1s with values of -60dBm is followed by short
trough with values as low as -80dBm, resulting in a signi�cant RSSI range of about
20dBm. The node position, however, has an impact on the RSSI pattern: for example,
the RSSI time series obtained in the same experiment on the back of the subject is
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much more noisy (�gure VII.10 bottom). Results for other node platforms have similar
RSSI �uctuation patterns, which con�rms that the e�ect is not platform-speci�c. How-
ever, the absolute values of radio signal may vary across platforms, which re�ects the
di�erence in transmission power levels of their antennas.

VII.3.2 The packet scheduling algorithm

The goal of this scheduling strategy is to account for the RSSI �uctuations, and schedule
packet transmissions for periods of high RSSI values. This way chances are better that
the packets are received correctly. The term opportune transmission window (OTW)
describes a time interval that yields high RSSI values relative to the average RSSI of
the link. Assuming that the subject performs regular movements, intuitively, we can
predict an OTW by adding the current step period to the time of the previous OTW
center.
The main di�culty in using RSSI measurements to predict OTWs arises due to signif-

icant noise content in the RSSI measurements. The second challenge arises due to the
irregularities of human movements, which are rarely exactly periodic. Consequently, the
simplistic approach of locating the peaks and extrapolating the inter-peak separation to
predict OTWs fails.
Therefore, the authors proposed a method to predict the OTWs which derives the

inter-peak separation of an RSSI time series using Fourier Transformations. The RSSI
time series are obtained from a set of initial probe (control) packets which are sent in
a very low frequency from the receivers to the sender (coordinator), and assumed to be
interspersed between data packets. The coordinator applies Fast Fourier Transforma-
tion to convert the RSSI time series to the Fourier domain, where the dominant peak
corresponds to the speed of the subject. A tight bandpass �lter identi�es the phase
of the frequency. As human movement is irregular, the coordinator must re-run this
method either periodically or on-demand, where the probe packet transmissions is op-
timized for energy vs. accuracy trade-o�. Refer to the original paper [Prabh 11] for a
detailed description of the method, as well as evaluations results.
The OTWs are described in terms of the period of RSSI �uctuations (T ) and the

width of the OTW (∆) as OTW = [kT + T/4 −∆/2, kT + T/4 + ∆/2], where k is an
integer number (see �gure VII.11). There is a cost function associated with the time of
transmissions. This cost function is directly related to the shape of the RSSI function,
and the higher the RSSI, the lower the cost. Thus the cost function has minima at the
center of a OTW.
Let us consider a set of n transmissions Γ = {X1, . . . , Xn} to be scheduled in this

order during a given OTW, where Xi denotes the events of polling by the coordinator
followed by the transmission of data packet and leading probe packets to the coordinator.
Each event has an importance ωi, and the data transmission lasts ei units of time. If a
message comprises m packets, this message is associated with m di�erent events. The
goal is to transmit all messages within a OTW minimizing the total cost.
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Figure VII.11: The opportunistic transmission window.

Pendulum Transmission events

Ri (∆− ei)/2
Wi ωi
Pi kT + kT/4
di ei

Table VII.5: Mapping transmission events into particle pendulum parameters.

Mapping the packet scheduling to the gravitational task model is fairly straight for-
ward, and the implicit utility function of the gravitational task model (see section III.6.1)
approximates the cost function. Table VII.5 summarizes the analogy. An transmission
event Xi is equivalent to a particle in the particle pendulum systems, with the center
of the OTW (kT + kT/4) being the pivot point. The anchor point is the start of the
transmission, and thus the distance di between adjacent particles is equivalent to the
transmission time ei. The length Ri of the string is equivalent to (∆ − ei)/2. Finally,
the weight Wi of a particle is equivalent to the importance ωi of a message; there is no
need for normalization of the importance to Ri in this case because all transmissions
share the same OTW. The equilibrium, then, returns the schedule for the transmission
of packets that approximates the minimum total cost.
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VII.4 Summary
In this chapter, we presented 3 applications enhanced with the gravitational task model
in order to demonstrate the validity of our work. Section VII.1 presented a multimedia
application where we use the gravitational task model to reduce the degradation in the
PQV during overload. The basic idea is to relax the temporal constraints of the frame
display. This way, the decoder may prepone/postpone the frame display in order to cope
with the longer decoding times without the need to drop frames. Of course, without
further consideration, this approach leads to large variations of inter-display time, which
degrades the PQV. We use the gravitational task model to schedule the completion of
the decoding task as close as possible to the optimum display instant, hence accounting
for both optimum PQV under low system workload, and adaptivity under overload with
decreased degradation of the PQV.
We measured the frame display jitter and the frame drop rate, as there is no precise

evaluation metric for the PQV. Results showed that with the gravitational task model
the jitter distribution is closer to 0, and the frame drop rate is 0. We also produced the
resulting video output to visualize the e�ect of jitter and frame drop, concluding that
the gravitational task model provides for better PQV than other approaches.
Section VII.2 presented an algorithm for adaptive resource management under scarce

resource availability. We considered a multicore system where applications may contain
parallelizable execution �ows, and each �ow has a resource requirement. Applications
may also o�er di�erent service levels, depending on the resource availability. Our al-
gorithm uses a gravitational task model based compression method which has linear
complexity for reallocation of resources among applications, and service level assign-
ment. The pendulum analogy provides for the intuition of the solution. This algorithm
has been implemented in the ACTORS Framework, which is a project of the 7th Frame-
work Programme for Research and Technological Development.
Finally, section VII.3 described an opportunistic packet scheduling strategy which

aims at reduced retransmission ratio of packets in BANs (refer to section II.3 for a
detailed description of packet scheduling issues in BANs). The basic idea is that sending
packets when the RSSI value is high reduces the retransmission ratio, which increases
communication reliability and reduces energy consumption. This application has been
entirely developed by researchers not involved with studies on the gravitational task
model, and evidences the contribution of the gravitational task model's intuition to ease
the cooperation among di�erent research �elds.
This section described a set of experiments for the characterization of RSSI �uctua-

tions in BANs. The results of this characterization were used to de�ne a transmission
window, within which packets are more likely to be successfully transmitted. As all
packets share the same target point for transmission, they are scheduled using the equi-
librium of the gravitational task model.
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Discussion

In this chapter, we cover a few scheduling related topics that may impact on the utility
accrual of a schedule, and thus, we consider that they should not be ignored. However,
due to the complexity to address these topics, we just present a discussion of their impact
on scheduling, and potential research directions. These topics are early completion
times, preemptive scheduling, and multicore scheduling.
Early completion times, which we discuss in section VIII.1, may deviate the anchor

points from their target points, thus altering the utility accrual of the original schedule
� the new utility accrual may be higher or lower than the original one. Furthermore,
on-line adaptivity upon detection of early completion may provide for higher utility
accrual.
In section VIII.2, we discuss the expressiveness that preemptive scheduling requires

from the task model. For that, we use a few examples to understand how preemption
relates to the utility accrual in the gravitational task model.
Finally, in section VIII.3, we discuss new issues that arise in multicore scheduling. For

example, jobs running in di�erent cores may have precedence constraints, and hence,
the equilibrium must consider job chains containing jobs that run in parallel.
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VIII.1 Handling early completion times

Throughout this work, we have considered that the actual execution times of jobs are
equal to the worst case execution times (WCET)). This assumption is not unrealistic,
e.g. the transmission time of a message on a communication bus in packet scheduling is
entirely predictable from the message size and the bus frequency. However, most likely
execution times are variable. For example, multimedia applications have highly variable
execution times. Therefore, in this section we ponder the impact of variable execution
times on the schedule of target sensitive applications.
Consider the schedule of a set of jobs in equilibrium assuming the WCETs. There

are 2 ways to handle the earlier completion of a job: (i) keep the schedule of subse-
quent tasks unchanged, and (ii) reschedule the subsequent jobs. The former approach
is possible because the gravitational task model is non-work-conserving, i.e. tasks may
procrastinate, and clearly does not increase the �nishing time of any job. Regarding
the utility accrual, early completion of a job may alter the deviation from its anchor
point to the target point. In �gure VIII.1, we plot the schedule of a job ji assuming
the worst case execution time (see �gure VIII.1a), and the actual position of the anchor
point upon early completion of ji (see �gure VIII.1b, where ETi stands for the actual
execution time of ji). The earlier completion of this job deviates its anchor point from
the target point by the same amount that the execution is reduced.

(a) Schedule assuming WCET (b) Schedule upon early completion

Figure VIII.1: E�ect of early job completion.

The latter approach may consider only reapplying the equilibrium, or also reordering
the execution of jobs. The equilibrium upon early completion of a job will never shift
the execution of any job forward in time (see theorem VIII.1). The computation of the
equilibrium of jobs does not require any special consideration, and thus, is trivial. It has
linear complexity, and accounts for increased utility accrual. Reordering the execution
of jobs also provides for higher utility accrual, but may also increase the �nishing time
of some jobs, and potentially cause deadline misses. Therefore, reordering the execution
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of jobs requires further special consideration upon early job completion (not covered in
this work).

Theorem VIII.1. The early completion of a job will never shift the execution of any
job forward in time.

Proof. Consider a job chain jc with C jobs, and that job ji completes earlier. We can
split this chain into 2 parts: jobs j1 to ji in job chain jc′, and jobs ji+1 to jC in job
chain jc′′ (see �gure VIII.2). Of course, chains jc′ and jc′′ have to overlap when in
equilibrium in order to merging into jc. This overlap implies that jc′′ starts execution
earlier in the absence of jc′. Therefore, if the former chain becomes shorter due to
the early completion of ji, the latter chain can only shift backwards upon equilibrium
computation.

Figure VIII.2: Splitting a job chain into 2.

Obviously, highly variable execution times have a bigger impact on the utility accrual.
In this case, one approach to mitigate the negative e�ect of early completion on the util-
ity accrual is to assume average execution times upon the initial equilibrium calculation,
and react to the actual execution times at runtime. Upon shorter execution times re-
computing the equilibrium allows for increased utility accrual; upon longer execution
times, the scheduler can only delay the execution of subsequent jobs, which incurs in less
utility accrual. Furthermore, without any further consideration in the original schedule,
this delay may cause deadline misses.
The work in [Liu 10], handles variable execution times in Time Utility Function (TUF)

schedulers using the concept of opportunistic cost to order the execution of jobs based
on their utilities and probability density function of the execution times. The goal is to
increase the probability of accruing more utility based on stochastic observations. This
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work considers only job ordering, and may cause jobs to miss their deadlines, since their
execute time may be longer than assumed initially. We believe on the possibility to
develop a scheduling algorithm for the gravitational task model which is based on this
concept of opportunistic cost and guarantees timing constraints.

VIII.2 Preemptive scheduling
So far, we have only considered non-preemptive scheduling algorithms. The advantages
of non-preemptive scheduling include no job context saving and switching overhead,
which may signi�cantly increase the WCET. These overheads involve, for example, loss
of cached data which have to be retrieved from main memory again. Moreover, some
simple embedded system do not support preemption, and some applications, like network
packet scheduling, are inherently non-preemptive. Nonetheless, preemptive scheduling
opens up possibility for more e�cient resource utilization, and hence, cannot be ignored.

Figure VIII.3: TUF model in [Farzinvash 09].

Most work on TUF schedulers are non-preemptive (see the related work in section I.4),
and we believe that this tendency is due to the lack of understanding of the impact of
preemption on the utility accrual. The work in [Farzinvash 09] proposes a preemptive
TUF based scheduler which assumes that each execution quantum of a job accrues
utility to the system as a function of the moment of execution, and to the best of our
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knowledge, this is the only work on TUF that considers preemption. The utility of a job
is, then, the integral of the utility function within the time intervals this job executes
(see �gure VIII.3). This �gure depicts the schedule of a job which executes in the time
intervals [t1, t2] and [t3, t4], and the corresponding utility accrual.
We believe that this task model does not correctly express the utility accrual of

applications as a function of time. Our studies led us to conclude that the utility that an
application accrues to the system varies as a function of the moment of I/O operations.
The internal computational state of an application is not visible to the system, and
hence, cannot alter the utility accrual. For example, the authors of [Farzinvash 09]
use as motivating example a tracking system which veri�es whether objects cross a
certain boundary and intercepts them. This system reads the coordinate of the objects
from registers that are periodically updated by a sensory system. The utility of this
application depends on the age of the sensed position when applying the interception
(the older the data, the less accurate the position of the object).
Let us consider now 2 target sensitive applications that we presented in this thesis

to analyze the impact of preemption on utility accrual: multimedia applications, and
control systems. As discussed in section II.1, video decoding and playout have strict
timing constraints for maximum perceived quality of video (PQV). This section also
presented the basic data structure of MPEG-2 video �les, and the resource requirements
for proper decoding and display. The PQV varies as a function of the display time of
each frame, and frames can be displayed only after decoded. Frames are decoded on
a slice basis, and the exact instant that each slice is decoded has no impact on the
PQV. For this reason, the video adaptation strategy that we presented in section VII.1
computes the utility of a frame as a function of an anchor point which represents the
display instant.

Figure VIII.4: Control timing constraints. Figure VIII.5: Gravitational task model with
multiple anchor points and target points.

The utility accrual of control applications, on the other hand, may vary upon pre-
emption. In II.5, we described the basic timing constraints of control tasks. Besides the
traditional constraints like periods and deadlines, these tasks have 2 types of latency
constraints: I/O latency LIO, and sampling interval latency Ls (see �gure VIII.4). The
lower the latencies, the higher the utility accrual. Variations of these latencies among
task instances also decrease the utility accrual. Please, refer to section II.5 for further
details on these timing constraints.
The I/O latency and jitter are not an issue in non-preemptive scheduling, as they

depend only on the actual execution times, which do not depend on the scheduler. For
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preemptive scheduling, on the other hand, the task model must explicitly express these
timing constraints in order to account for increased utility accrual. One possibility is
to extend the gravitational task model to allow jobs to express multiple anchor points
and target points (see �gure VIII.5). Other extensions, such as mobile target points in
order to relate anchor points to events, are part of future work on the gravitational task
model and respective scheduling algorithms.

VIII.3 Multicore scheduling
Until the 2000s, the processing performance of computing systems had increased ex-
ponentially over time. This performance increase was able to attend the demand for
IT products and services coming from virtually every sector of society like manufac-
turing, �nancial services, education, science, government, military, and entertainment.
However, processor performance growth faced an abrupt slowdown in the last decade
due to power, architectural, and physical limitations. Multicore system arouse then
as a promising alternative to bypass these limitations, yet brought a lot of other is-
sues along. For example, traditional sequential programming models do not provide
for parallel processing, and hence, are unable to exploit the performance of multicore
architectures. Furthermore, the communication among cores require complex memory
hierarchies and data busses which, if not properly managed, can negatively a�ect the
system performance.
Real-time (RT) scheduling theory also had to be revisited in order to account for

improved system utilization in multicore architectures. The research in this �eld includes
investigations on timeliness properties [Leontyev 10], proposal of new task models and
scheduling algorithms to express and exploit parallelism [Eker 03], reduce scheduling
overhead [Bastoni 10], etc.
As mentioned in section II.4, data�ow graphs o�er a representation that e�ciently

supports parallelization, vectorization and synthesis of both hardware and software (for
instance see [Lee 87, Ritz 93]). These features meet the requirements of increasingly
complex execution platforms e.g. for embedded multimedia systems: parallelization
is required to utilize multi-core architectures, vectorization is required to utilize the
so-called SIMD (Single Instruction Multiple Data) or �multimedia� instructions, and
application-speci�c hardware acceleration emphasizes the need of hardware/software
partitioning. This observation has motivated the research on data�ow-based program-
ming paradigm [Eker 03].
Executing consumers directly after their respective producers in a data�ow graph in-

creases the probability to transport tokens directly using processor registers, i.e. without
bu�er memory. Therefore data intensive applications, e.g. multimedia applications, can
achieve signi�cant performance enhancement. However, this constraint may be relaxed
for the sake of feasibility, and the trade-o� among several producers and consumers must
account for increased system utility.
Multicore architectures also create new issues in the context of target sensitive appli-

cations. For example, tasks running on di�erent cores may have precedence constraints.
On the one hand, solving these constraints with reduced execution windows compro-
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mises feasibility. On the other hand, enlarging the execution windows for the sake of
feasibility requires the scheduler to take care of those precedence constraints. Therefore,
the equilibrium calculation must be extended to consider the interactions among jobs
running on di�erent cores.
The target sensitive constraints must also be considered in combination with cache and

other architectural constraints when assigning jobs to cores in order to not compromise
the system performance. For example, jobs running on di�erent cores and exchanging
large amounts of data impose a large time overhead. In this context, running jobs with
con�icting target points on di�erent cores does not necessarily lead to higher utility ac-
crual, as the communication overhead may drastically decrease the system performance.
Therefore, accounting for the target sensitivity of tasks must not neglect other issues in-
herent from multicore architectures, and may require revisiting previous solutions which
are unaware of target sensitive constraints.

VIII.4 Summary
In this chapter, we discussed 3 scheduling related topics that may impact on the utility
accrual of a schedule: early completion times, preemptions, multicore architectures.
Although we have considered the actual execution times of jobs are equal to the WCETs
throughout this work, most likely execution times are variable. For example, multimedia
applications have target sensitive constraints, and highly variable execution times. We
showed in section VIII.1 how can this alter the utility accrual of a schedule, and discussed
pros and cons of possible solutions.
In section VIII.2, we discussed the expressiveness that preemptive scheduling requires

from the task model. We used the control application described in section II.5 as example
to illustrate the impact of preemption on utility accrual, and to identify which the
support that task models have to supply.
Finally, in section VIII.3, we brie�y discussed the issues involved in scheduling of

target sensitive applications on multicore systems.





Chapter IX

Conclusions

Real-time (RT) applications have timing constraints additionally to their logical output
for functionally correct system behavior. Real-Time Systems (RTS) commonly consist
of multiple tasks that concurrently compete for system resources, and hence, RT ap-
plications demand special scheduling algorithms which account for timing constraints.
These algorithms, called RT scheduling algorithms, de�ne a set of rules to schedule the
execution of tasks at system run-time in order to preserve timing constraint. For ex-
ample, some tasks have earliest start time and deadline constraints, which de�ne the
execution window of a task. This window is the interval of time where inputs become
available and the logical output results in correct system behavior. The scheduler must
guarantee that all tasks entirely execute within their respective execution windows.
Some RT applications have tight optimum execution windows for maximum system

utility, but accept some �exibility to enlarge those windows for the sake of feasibility.
This �exibility comes at the expense of a utility decay, though. For example, tasks of
target sensitive applications should preferably execute at a speci�c target point within
its execution window, called target point, but can execute around this point, albeit
at lower utility � the intensity of the utility decay depend on the importance of the
application to the system. In this case, the optimum execution window is extremely
tight. Ideally, all executions would be scheduled directly at the respective target points,
but it might not be feasible due to overlapping executions. Under this condition, the
execution of tasks must be scheduled so that no timing constraints are violated and the
accrued system utility is maximized. More important applications are less tolerant to
deviations from the target point.
On-line adaptivity requires scheduling algorithms with low overhead, and the com-

promise among tasks with overlapping executions involves reordering the execution of
jobs, shifting them and possibly aborting some executions. One of the di�culties is to
express whether two not very important tasks are more important than a very impor-
tant task. Scheduling must also account for the execution of future jobs before shifting
executions, and a complete knowledge of jobs that will execute in the system and the
exact temporal constraints may be hard, if not impossible (e.g. aperiodic tasks). Fi-
nally, reordering the execution sequence of jobs is a combinatorial problem [Chen 96].
Therefore, scheduling is non-trivial, and the need for a simple, yet e�ective, solution
imposes an extra challenge.
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In this thesis, we presented a novel task model, called gravitational task model, which
is based on a physical system: the pendulum. A pendulum is an object (or bob) that
is attached to a pivot point and can swing freely. The rest position of a single object
in a pendulum is the projection of the pivot point (central point). An object placed
in this position will not swing, and the system is said to be in an equilibrium state. If
there is more than one object, they will push each other aside and their rest position
will depend on their relations between weight and size. The heavier an object is, the
stronger the gravity drags it to the central point.
We drew an analogy between real time systems and pendulum systems, with instances

of tasks (jobs) as objects in a pendulum and the target points as the pivot point. A
point within the execution of a job, called anchor point, relates the job to the target
point. The anchor point can be an operation of input, output, or both. The equilibrium
state of the physical problem is, then, equivalent to the best compromise among the
jobs' interests. This model assumes non-preemptive tasks running on single processor
systems. This analogy provides for simple abstraction of applications' requirements and
intuition, which eases the understanding of the task model by applications developers.
We proposed a solution for the trade-o� among competing jobs based on the equi-

librium of pendulums. The equilibrium state in the physical problem depends on the
weights of the bobs, and can be seen as the best compromise among the jobs' impor-
tances: This equivalence makes it possible to use the equilibrium equation from physics
to schedule jobs aiming at maximizing the utility accrual of the system for a given exe-
cution sequence of jobs. We presented both an approximation and an optimum solution
to the best compromise among jobs with con�icting interests. We called these solutions
pendulum equilibrium and generic equilibrium, respectively. We also proposed a few
scheduling algorithms for the gravitational task model which ful�ll the requirements for
on-line adaptivity. These algorithms use the equilibrium state concept to reorder the
execution sequence of jobs, and compute the deviation of jobs from their target points
for increased system utility.
We also presented 3 applications enhanced with the gravitational task model in order

to demonstrate the validity of our work:

• A video stream adaptation strategy where we use relax the temporal constraints
of video playout so that the decoder may prepone/postpone the frame display in
order to cope with the longer decoding times without the need to drop frames.
Of course, without further consideration, this approach leads to large variations
of inter-display time, which degrades the perceived quality of video (PQV). We
use the gravitational task model to schedule the completion of the decoding task
as close as possible to the optimum display instant, hence accounting for both
optimum PQV under low system workload, and adaptivity under overload with
decreased degradation of the PQV.

• Algorithm for adaptive resource management which uses a gravitational task model
based compression method for reallocation of resources among applications under
scarce resource availability. The pendulum analogy provides for the intuition and
low complexity of the solution.
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• An opportunistic packet scheduling strategy which aims at reduced retransmission
ratio of packets in Body Area Networks (BAN). Reducing the retransmission ratio
increases communication reliability and reduces energy consumption. This appli-
cation has been entirely developed by researchers not involved with studies on the
gravitational task model, and evidences the contribution of the gravitational task
model's intuition to ease the cooperation among di�erent research �elds.

This work covered the task model and scheduling algorithms that account for the
speci�c timing constraints of target sensitive applications. However, there are several
scheduling related topics that require further investigation in this new context. Some of
them we discussed previous chapter (early completion times, preemption, and multicore
scheduling), but possibilities are numerous. For example, scheduling of sporadic tasks,
mutual exclusion of shared resources, etc.





Appendix A

Extended results

In this appendix, we plot the histograms of the target point deviation, and the barplots of
the fraction of skipped frames for all videos in the experiments described in section VII.1.
We omitted these results in their respective section due to the similarities in the results
for all videos.
In the histogram plots, the x-axis is the deviation in milliseconds � each bar of the

histogram has a width of 5 milliseconds �, and the y-axis is the number of frames.
Remember that the total number of frames in each stream is 7500. Each graph plots
the histogram for 3 task sets: E, F, and G (description in section VII.1). These task
sets have number of streams 5, 10, and 15, respectively. Each �gure contains two sets
of histogram plots: one with the y-axis ranging from 0 to 7500, and one with the y-axis
ranging from 0 to 5.
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Figure A.1: Dropped frames for soccer stream.
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Figure A.2: Histogram of target point deviation for soccer stream under EDF d=p.
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Figure A.3: Histogram of target point deviation for soccer stream under EDF d=4p.
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Figure A.4: Histogram of target point deviation for soccer stream under EDF d=16p.
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Figure A.5: Histogram of target point deviation for soccer stream under Grav. EDF d=16p.
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Figure A.6: Dropped frames for volleyball stream.
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Figure A.7: Histogram of target point deviation for volleyball stream under EDF d=p.
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Figure A.8: Histogram of target point deviation for volleyball stream under EDF d=4p.
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Figure A.9: Histogram of target point deviation for volleyball stream under EDF d=16p.



148

5 streams

−100 −50 0 50 100

0
15

00
30

00
45

00
60

00
75

00

10 streams

−100 −50 0 50 100

0
15

00
30

00
45

00
60

00
75

00

15 streams

−100 −50 0 50 100

0
15

00
30

00
45

00
60

00
75

00

Target point deviation (ms)

N
um

be
r 

of
 fr

am
es

(a) Complete y-axis

5 streams

−100 −50 0 50 100

0
1

2
3

4
5

10 streams

−100 −50 0 50 100

0
1

2
3

4
5

15 streams

−100 −50 0 50 100

0
1

2
3

4
5

Target point deviation (ms)

N
um

be
r 

of
 fr

am
es

(b) Reduced y-axis

Figure A.10: Histogram of target point deviation for volleyball stream under Grav. EDF
d=16p.
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Figure A.11: Dropped frames for bloomberg stream.



149

5 streams

−100 −50 0 50 100

0
15

00
30

00
45

00
60

00
75

00

10 streams

−100 −50 0 50 100

0
15

00
30

00
45

00
60

00
75

00

15 streams

−100 −50 0 50 100

0
15

00
30

00
45

00
60

00
75

00

Target point deviation (ms)

N
um

be
r 

of
 fr

am
es

(a) Complete y-axis

5 streams

−100 −50 0 50 100

0
1

2
3

4
5

10 streams

−100 −50 0 50 100

0
1

2
3

4
5

15 streams

−100 −50 0 50 100

0
1

2
3

4
5

Target point deviation (ms)
N

um
be

r 
of

 fr
am

es

(b) Reduced y-axis

Figure A.12: Histogram of target point deviation for bloomberg stream under EDF d=p.
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Figure A.13: Histogram of target point deviation for bloomberg stream under EDF d=4p.
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Figure A.14: Histogram of target point deviation for bloomberg stream under EDF d=16p.
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Figure A.15: Histogram of target point deviation for bloomberg stream under Grav. EDF
d=16p.
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Figure A.16: Dropped frames for Lucky Luke stream.
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Figure A.17: Histogram of target point deviation for Lucky Luke stream under EDF d=p.
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(b) Reduced y-axis

Figure A.18: Histogram of target point deviation for Lucky Luke stream under EDF d=4p.
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Figure A.19: Histogram of target point deviation for Lucky Luke stream under EDF d=16p.
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Figure A.20: Histogram of target point deviation for Lucky Luke stream under Grav. EDF
d=16p.
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Glossary

Bit Rate
Bit rate is the rate at which bits of a video stream arrive in the decoder.. 16,
18�20

Body Area Network
Body Area Network (BAN) are networks of sensors around as well as inside the
human body, with application e.g. in health-care and sports.. 14, 25�27, 33, 111,
126, 127, 130, 141, 169, 174

Central Processing Unit
Central Processing Unit (CPU) is the computing system component responsible
for the logical operations and data manipulation.. 4, 6

Digital Versatile Disc
Digital Versatile Disc (DVD) is an optical disc storage media format, and was
invented and developed by Philips, Sony, Toshiba, and Time Warner in 1995. Its
main uses are video and data storage.. 16, 103, 105

Direct Memory Access
Direct Memory Access (DMA) is a feature of modern computers and microproces-
sors that allows certain hardware subsystems within the computer to access system
memory for reading and/or writing independently of the central processing unit..
2, 112, 113

Dynamic Data�ow
Dynamic data�ow o�ers a determinate computation model to data�ows systems,
which means that the outputs that are computed by a program only depends on
the inputs it has consumed.. 28, 29

Earliest Deadline First
Earliest Deadline First is a dynamic scheduling rule that assigns priorities to jobs
based on their deadlines.. 6, 10, 12, 13, 58, 77, 83�85, 88�94, 96, 97, 113�117, 172
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Electronic Control Unit
Electronic control units (ECU) is a specialized nomenclature for embedded control
systems in automotive systems.. 30

Generic Utility Scheduler
A TUF based scheduling algorithm.. 77, 83, 84, 88, 96, 102, 106, 107, 172

Group Of Pictures
A Group Of Pictures consists of all frames in between two I frames (including the
�rst I frame).. 16, 103�105, 107

High De�nition
High De�nition (HD) video refers to any video system of higher resolution than
standard-de�nition (SD) video, and most commonly involves display resolutions
of 1, 280× 720 pixels (720p) or 1, 920× 1, 080 pixels (1080i/1080p).. 16, 103

Medium Access Control
Medium Access Control refers to the network layer responsible of establishing the
communication between two neighbor nodes. Typical duties of this layer include
carrier sensing and collision detection/avoidance.. 127

MPEG-2
MPEG-2 is a video standard de�ned by the Moving Picture Experts Group.. 16�
18, 21, 32, 103, 112, 113, 135, 168

MPEG-4
MPEG-4 is a video standard de�ned by the Moving Picture Experts Group.. 16

MPEG-4 Simple Pro�le
MPEG-4 Simple Pro�le is a video standard de�ned by the Moving Picture Experts
Group.. 103

Non-deterministic Polynomial-time hard
Non-deterministic Polynomial-time hard in computational complexity theory, is a
class of problems that are, informally, "at least as hard as the hardest problems
in NP".. i, 12, 13, 57, 58, 87, 100, 171

Non-Linear Optimization Problem
Non-Linear Optimization Problem is an optimization problem with a non-linear
goal function.. 45

opportune transmission window
Opportune transmission window is the interval of time in which packets may be
transmitted in the opportunistic packet scheduling algorithm proposed in [Prabh 11],
and brie�y described in section VII.3.. 128, 129
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perceived quality of video
Perceived quality of video stands for a formal or informal measure of the video
quality from the user's perception.. 3, 8, 14, 17, 21, 22, 103, 104, 111�114, 130,
135, 140, 173

Quality of Service
Quality of Service refers to the quantitative evaluation of one or several qualitative
metrics of a system.. 4, 22, 23, 25, 32, 33, 168, 169

Radio Frequency
Radio Frequency refers to the transmission of radio signals through the air.. 26,
127

Rate Monotonic
Rate Monotonic is a static scheduling rule that assigns priorities to jobs based on
their deadlines.. 12, 58

real-time
Real-time describes a system or application whose correct behavior depends on
timing constraints.. i, xiii, 2, 8, 10, 11, 13, 16, 32, 33, 35, 36, 42, 46, 54, 57, 96,
100, 108, 126, 136, 139, 167�169, 173

Real-Time System
Real-Time Systems are hardware or software systems in which the correctness of
their results is subject to prede�ned timeliness constraints.. 2�5, 7, 33, 126, 139,
167�169

Hard Real-Time Systems are RTS in which the violation of their timeliness con-
straints could result on fatal consequences. 4, 5, 7

Soft Real-Time System are RTS in which the violation of their timeliness con-
straints produces the degradation of the system performance, although they do
not necessarily result in fatal consequences. 4

Reveived Signal Strength Indicator
Reveived Signal Strength Indicator (RSSI) is a metric of link quality in wireless
network.. 26, 27, 126�128, 130, 174

Synchronous Data�ow
Synchronous data�ow is the special case of dynamic data�ow, in which actors have
�xed token rates.. 28, 29

Time Utility Function
Time Utility Function describe the utility accrued by a task as a function of the
moment of execution.. 9, 10, 36, 38, 83, 88, 103, 133�135, 172
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Wireless Sensor Network
A Wireless Sensor Network is constituted by a number of sensor nodes communi-
cating with an ad-hoc infrastructure running at least one common application in
a collaborative manner.. 7, 26, 32, 126, 168

worst case execution time
The worst case execution time (WCET) of a computational task is the maximum
length of time the task could take to execute on a speci�c hardware platform.. 3,
13, 132, 134, 137, 174



Summary

Real-time (RT) applications have timing constraints additionally to their logical output
for functionally correct system behavior. Control applications, which act on a physical
plant to make it behave according to a prescribed reference, are the source of the RT
constraints. These systems include safety critical, mission critical, and business criti-
cal control applications, which have stringent timing constraints � the violation of a
single deadline can jeopardize the entire system behavior, and even cause catastrophic
consequences [Bouyssounouse 05].
Real-Time Systems (RTS) commonly consist of multiple tasks that concurrently com-

pete for system resources. Therefore, RT applications demand special scheduling al-
gorithms which account for timing constraints, the so-called RT scheduling algorithms.
These algorithms de�ne as a set of rules to schedule the execution of tasks at system
run-time in order to preserve timing constraint. For example, some tasks have earli-
est start time and deadline constraints, which de�ne the execution window of a task.
This window is the interval of time where the logical output results in correct system
behavior, and the scheduler must guarantee that all tasks entirely execute within their
respective execution windows.
Some RT applications have tight optimum execution windows for maximum system

utility, but accept some �exibility to enlarge those windows for the sake of feasibility.
This �exibility comes at the expense of a utility decay, though. For example, tasks of
target sensitive applications should preferably execute at a speci�c target point within
its execution window, called target point, but can execute around this point, albeit at
lower utility � the intensity of the utility decay accounts for the importance of the
application to the system. In this case, the optimum execution window is extremely
tight. Ideally, all executions would be scheduled directly at the respective target points,
but it might not be feasible due to overlapping executions. Under this condition, the
execution of tasks must be scheduled so that no timing constraints are violated and the
accrued system utility is maximized. More important applications are less tolerant to
deviations from the target point.
Besides the necessary expressiveness, task models must also provide simple abstrac-

tions for easy understanding by applications developers. Moreover, on-line adaptivity
requires scheduling algorithms with low overhead, and the compromise among tasks
with overlapping executions involves reordering the execution of jobs, shifting them and

167
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possibly aborting some executions. The di�culties include expressing whether two not
very important tasks are more important than a very important task, and reordering
the execution sequence of jobs is a combinatorial problem. Therefore, scheduling is
non-trivial, and the need for a simple, yet e�ective, solution imposes an extra challenge.
In this thesis, we presented a novel real-time task model which provides for easy

abstractions to express the timing constraints of target sensitive real-time applications:
the gravitational task model. This model uses an analogy with pendulum systems to
ease the understanding of its temporal abstractions by application developers, which
not always have deep knowledge of real-time scheduling theory. In other words, this
model �lls in the gap between application requirements and theoretical abstractions
used in task models. We also presented a few scheduling algorithms designed for the
gravitational task model which ful�ll the requirements for on-line adaptivity. These
algorithms also exploit the analogy with pendulum system, which provides for clarity.
Finally, we presented 3 applications enhanced with the gravitational task model, and
highlighted the improvement in the results.
The following sections summarize the content of each chapter of this thesis.

Chapter I

This chapter contains the introduction of this thesis. In section I.1, we brie�y described
the basic concepts of RT scheduling, like timing constraints, task models, and scheduling
algorithms and paradigms. In section I.2, we focused on properties and requirements
of adaptive RTS. Then, in section I.3, we informally described target sensitive RT ap-
plications and related scheduling issues, followed by the related work in this area in
section I.4. In section I.5, we summarized our main contributions to the state-of-the-art
of real-time scheduling theory. Finally, in section I.6, we presented the outline of the
rest of the thesis.

Chapter II

In this chapter, entitled Examples of target sensitive real-time aplications, we described
5 examples of target sensitive real-time applications in order to evidence the need for
task models, as well as scheduling algorithms, which are able to take into account the
temporal requirements of such applications.
Section II.1 presented a multimedia application. We showed that multimedia systems

are embedded in our routine nowadays, with deployment in diverse areas such as health-
care systems, games, publicity, automobile industry, etc. We also used the MPEG-
2 video standard to illustrate the main activities involved in video playout, and the
resource and temporal constraints involved in these activities.
In section II.2, we described the adaptive management of RT application's resources.

Adaptive applications running on system which do not provide for the worst case re-
source requirements demand such management in order to decrease the Quality of Ser-
vice (QoS) degradation shall overload occur.
In section II.3, we presented the deployment of Wireless Sensor Networks (WSN) in
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assisted health-care systems, the so called Body Area Networks (BAN). BANs have
very restricted resource availability, and high QoS requirements, being the network the
most critical resource. This section presented the temporal requirements and resource
constraints of packet scheduling in such networks, which has target sensitive RT con-
straints.
In section II.4, we presented the relevance of data�ow-based programming paradigms

to raise the level of abstraction when writing codes tailored to multicore systems. We
then described the issues involved the data�ow graph scheduling, which contains target
sensitive properties.
Finally, in section II.5, we described the resource and temporal constraints of control

systems, which are the original source of the temporal requirements studied in RTSs. We
also showed that these temporal requirements are not as strict as assumed by many task
models and scheduling algorithms, accepting some �exibility for the sake of feasibility
and increased resource utilization. Therefore, also control can bene�t from task models
and scheduling algorithms designed for target sensitive RT applications.

Chapter III

In this chapter, entitled Gravitational Task Model: a bob pendulum based approach to
express trade-o�s, we proposed a gravitational task model for target sensitive RT appli-
cations. In section III.2, we introduced the terminology and assumptions of this model,
and in section III.3, we showed that the scheduling of target sensitive RT applications
involves the computation of trade-o�s. We also showed that classic task models, which
are based on execution windows alone, either compromise feasibility for the sake of
maximized utility accrual or fail to use resources e�ciently, i.e. for maximized utility
accrual.
In section III.4, we introduced the simple gravity pendulum (or bob pendulum) sys-

tem as a visualization model for trade-o�s among target sensitive RT applications. As
depicted in �gure III.3, the pendulum system consists of a bob at the end of a massless
string, which can swing back and forth along the swinging range under the in�uence of
gravity over its central (lowest) point in a circular trajectory. Placed at the lowest point,
the bob will come to rest there (rest position). If the bob pendulum contains more than
one bob, they cannot be all at the same time in the lowest part, and hence, will push
each other aside to �nd a new rest position (equilibrium state). The equilibrium state
implies in minimized overall potential utility.
In section III.5, we described the analogy between the schedule of target sensitive

jobs and the pendulum system. Drawing the analogy, the execution time of a job is
equivalent to the size of the bob. A job is allowed to execute at its target point in
the absence of other jobs in the system with the same target point. The target point is
equivalent, thus, to the central (lowest) point of a pendulum trajectory and the swinging
range is the execution window of the job. The importance of a job, which represents
its resistance to be shifted away from its target point when interacting with other jobs,
can be seen as the weight of the bob. The heavier a bob is, the closer to the bottom it
will come to rest. Finally, the job utility as a function of its deviation from the target
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point is similar to the potential energy of a bob as a function of its deviation from the
central point. As the equilibrium is the state that minimizes the potential energy of the
pendulum, the best compromise of the jobs' interests maximizes the accrued utility of
the system.
Finally, in section III.6, we calculated an approximation for the equilibrium of the

particle pendulum inspired by the equilibrium condition for bob pendulums. Combined
with the conversion provided in table III.2, the equilibrium of particle pendulums cal-
culates an approximation of the best compromise among jobs with con�icting target
points. Then, we showed, based on this new analogy, that the gravitational task model
implicitly assumes that jobs have elliptical utility functions as in equation III.10. Fi-
nally, we generalized the equilibrium equation in section III.6.2 to allow jobs to have
any arbitrary continuously di�erentiable concave utility function. This generalization
keeps the original intuition from the analogy with pendulum systems.

Chapter IV

In this chapter, entitled Scheduling target sensitive real-time tasks, we presented a
few scheduling algorithms for the gravitational task model. Initially, we presented in
section IV.2 how to schedule jobs using the equilibrium to compute trade-o�s. Sec-
tion IV.2.1 describes a method inspired by the bob pendulum to �nd job chains in a
schedule. Appending bobs one by one in a pendulum reveals which groups of jobs push
one another, and the equilibrium state changes upon collisions � appending one bob
may cause more than one collision. Similarly, the algorithm to �nd job chains appends
jobs one by one to the schedule, and recomputes the equilibrium for job chains that
merge; execution sequence of jobs must be known. Appending one job might cause
more than one merge (ripple e�ect), but there can be no more than N merges; chains
do not split upon job append, only merge. Therefore, the �nal complexity is O(N2).
This algorithm allows the equilibrium to schedule jobs that do not compete altogether
with one another for their target points.
In section IV.2.2, we presented a method with constant complexity to recompute the

equilibrium of 2 adjacent chains that merge. As those equilibrium recomputations have
constant complexity, and there can be no more than N − 1 merges, the complexity
to schedule jobs is linear. This method is valid for trade-o� calculations using the
particle pendulum equilibrium, which we described in chapter III. The basic idea is to
store intermediate values for each job chain in order to save computational steps when
computing the equilibrium of the new job chain which appears upon merge.
In section IV.2.3, we described the on-line job admission procedure. Upon on-line job

admission, the incoming job may be inserted anywhere in the schedule. In this case, there
can be at most one chain split and N chain merges. We compute the intermediate values
of the separated chains in linear complexity, as handle possible new merges as before.
Therefore, on-line admission also has linear complexity. Sections IV.2.4 and IV.2.5
illustrated the scheduling algorithm with examples.
In section IV.3, we presented the importance of the execution sequence of jobs in a

scheduling algorithm, and a few ordering heuristics. The execution sequence of jobs
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dominates schedulability and utility maximization problems. Moreover, it is an Non-
deterministic Polynomial-time hard (NP-hard) problem � check all possible permuta-
tions for the execution of jobs. Therefore, an optimum solution has high overhead, and
is unfeasible for on-line scheduling algorithms. Heuristic solutions compromise between
overhead, acceptance ratio, and utility accrual; a�ording higher overhead tends to pro-
vide for better scheduling decisions. We also presented a few ordering heuristics which
are based on the rationale of physics for �uids. The basic idea is that in a container
with liquid of di�erent densities, the higher the density the closer to the bottom it will
come to rest. Mapping jobs to liquids and target points to the bottom of a container,
jobs with higher density should execute closer to their target points.
The physical de�nition of density is the ratio of the mass to the volume of a body:

density measures how tightly the matter is packed together. While in nature the mass
of a body and gravity de�ne the force that drags the body down, in a task set the
importance of a job drags it to the target point. Similarly, a body occupies space
(volume) and a job occupies time (WCET). Thus, we de�ned the density of a job its
importance normalized to its execution time. This density is called utility density.
In section IV.3.1, we presented heuristic DST-1, which has complexity O(N×log(N)).

This heuristic tries to favor jobs that pack more utility per time of execution (density)
by scheduling their execution �rst, and as close as possible to their target points. If
positioning the anchor point of a job directly at its target point results in an execution
overlap with a previously scheduled job chain, the heuristic places the job either on
the left or on the right side of this job chain (wherever the job is closer to its target
point in order to minimize the disturbance in the actual equilibrium state). Therefore,
more jobs with high utility accrual contribution execute closer to their target points,
and hence, less jobs have to execute far away from their target points. As a result,
the negative impact of jobs competing for their target points decreases. However, this
heuristic does not consider the execution window of jobs for taking ordering decision,
hence compromising feasibility. This section also contains a scheduling example.
In section IV.3.2, we presented heuristic DST-2, which slightly modi�es DST-1 in order

to account for feasibility when the insertion of a job in the schedule causes execution
overlap. In DST-2, if positioning the anchor point of a job directly at its target point
results in an execution overlap with a previously scheduled job chain, the heuristic
places the job either on the left or on the right side of this job chain using the rule
in expression IV.27. This expression �nds a compromise between deviations from the
target points and how close the execution of jobs lie to the edge of their execution
windows. This heuristic also has complexity O(N × log(N)).
In section IV.3.3, we presented heuristic DST-3, which modi�es heuristic DST-1 and

DST-2 to avoid reordering of the execution sequence upon job arrival, and hence, has
linear complexity. In this heuristic, the jobs considered in the schedule at run-time are
all jobs ready for execution plus all jobs that will arrive within an interval of time called
equilibrium window. This equilibrium window is necessary to account for the disturbance
of jobs that have not yet arrived in the system on the schedule at the current time. We
proved that it su�ces that this equilibrium window is as large as or greater than the
length of the longest job chain to account for all possible disturbances.
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Simulation results in section IV.4 showed that heuristics based on the utility density
of jobs yield good results. Moreover, DST-3 has results almost as good as DST-2, and
lower computational complexity. Results also showed the bene�ts of the gravitational
task model over scheduling algorithms for other task models � we considered the Time
Utility Function (TUF) scheduler Generic Utility Scheduler (GUS) [Li 06], and Earliest
Deadline First (EDF) as a deadline based task model. The gravitational task model is
able to accrue more utility without over-compromising the feasibility of the task sets.

Chapter V

In this chapter, entitled Reducing the complexity of periodic tasks' scheduling, we pro-
posed a gravitational task model based on-line scheduling algorithm for periodic tasks
which is inspired on a mix of EDF and heuristic DST-3. We called this algorithm
EDF-swap. EDF-swap accounts for both high acceptance ratio and increased utility
accrual. Moreover, it also signi�cantly reduces the worst case complexity to schedule n
periodic tasks from n! to n2. We achieved high acceptance ratio by ordering the execu-
tion sequence of jobs as in non-preemptive work-conserving EDF, and increased utility
accrual by computing the equilibrium of jobs and swapping the execution of jobs based
on their utility density. Finally, we achieved the complexity reduction by limiting the
number of jobs in equilibrium � other gravitational task model based on-line scheduling
algorithms must consider all jobs within the hyper-period.
In section V.2, we showed that the equilibrium of jobs may not be applied directly on

EDF without further consideration. Doing so may lead to a execution sequence of jobs
that defers from the order that non-preemptive work-conserving EDF generates, hence
invalidating the timeliness properties of EDF. We proposed, then, a method to combine
the equilibrium of jobs with EDF, and illustrated this method with an example. This
method also limits the number of jobs in equilibrium, which is the key contribution for
the reduced computational complexity.
In section V.3, we proposed a heuristic to reorder the execution sequence of jobs

within the equilibrium window for increased utility accrual. This heuristic is based
on the utility density of jobs, and does not compromise the feasibility of the original
schedule. We illustrated the heuristic with a scheduling example.
Simulation results in section V.4 showed that EDF-swap accrues more utility and has

higher acceptance ratio than any other scheduling algorithm for the gravitational task
model. Moreover, varying the target points within the execution window of jobs does
not have a negative impact on the performance of EDF-swap. This superiority is also
followed by a signi�cant reduction of the computational complexity.

Chapter VI

In this chapter, entitled Scheduling tasks for increased system utility under scarce re-
source availability, we showed that executing as many tasks as possible does not imply in
maximized system utility. In fact, rejecting some tasks frees resources that other tasks
can use to accrue more utility. For instance, tasks that do not meet their starttime-
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deadline requirements do not accrue utility to the system, yet consume resources that
other tasks can use to increase the utility accrual. The overload situation can be over-
come by either delaying or dropping jobs, and the choice must account for �nal increased
utility accrual. Dropping jobs is a combinatorial problem.
In section VI.2, we proposed a heuristic overload handling mechanism for target sen-

sitive RT applications. This mechanism increases the system utility by both aborting
jobs and computing the compromise among the deviation of the ones scheduled for exe-
cution. The abortion heuristic is based on the utility density of jobs, which is the ratio
between utility accrual and execution time. This mechanism has quadratic complexity,
and is application independent. Hence, any application can bene�t from it by modeling
its requirements into the parameters of the gravitational task model.
Section VI.3 described a multimedia case study where we use this mechanism for

reduced frame display jitter and improved resource usage under scarce resource avail-
ability. The frame decoding timing constraint assignment is based on the frame skipping
algorithm [Isovic 04] for quality aware video adaptation. Simulation results showed the
e�cacy of the overload handling mechanism.

Chapter VII

In this chapter, entitled Applications of the gravitational task model, we presented 3
applications enhanced with the gravitational task model in order to demonstrate the
validity of our work. Section VII.1 presented a multimedia application where we use
the gravitational task model to reduce the degradation in the perceived quality of video
(PQV) during overload. The basic idea is to relax the temporal constraints of the frame
display. This way, the decoder may prepone/postpone the frame display in order to cope
with the longer decoding times without the need to drop frames. Of course, without
further consideration, this approach leads to large variations of inter-display time, which
degrades the PQV. We use the gravitational task model to schedule the completion of
the decoding task as close as possible to the optimum display instant, hence accounting
for both optimum PQV under low system workload, and adaptivity under overload with
decreased degradation of the PQV.
We measured the frame display jitter and the frame drop rate, as there is no precise

evaluation metric for the PQV. Results showed that with the gravitational task model
the jitter distribution is closer to 0, and the frame drop rate is 0. We also produced the
resulting video output to visualize the e�ect of jitter and frame drop, concluding that
the gravitational task model provides for better PQV than other approaches.
Section VII.2 presented an algorithm for adaptive resource management under scarce

resource availability. We considered a multicore system where applications may contain
parallelizable execution �ows, and each �ow has a resource requirement. Applications
may also o�er di�erent service levels, depending on the resource availability. Our al-
gorithm uses a gravitational task model based compression method which has linear
complexity for reallocation of resources among applications, and service level assign-
ment. The pendulum analogy provides for the intuition of the solution. This algorithm
has been implemented in the ACTORS Framework, which is a project of the 7th Frame-
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work Programme for Research and Technological Development.
Finally, section VII.3 described an opportunistic packet scheduling strategy which

aims at reduced retransmission ratio of packets in BANs (refer to section II.3 for a
detailed description of packet scheduling issues in BANs). The basic idea is that send-
ing packets when the Reveived Signal Strength Indicator (RSSI) value is high reduces
the retransmission ratio, which increases communication reliability and reduces energy
consumption. This application has been entirely developed by researchers not involved
with studies on the gravitational task model, and evidences the contribution of the
gravitational task model's intuition to ease the cooperation among di�erent research
�elds.
This section described a set of experiments for the characterization of RSSI �uctua-

tions in BANs. The results of this characterization were used to de�ne a transmission
window, within which packets are more likely to be successfully transmitted. As all
packets share the same target point for transmission, they are scheduled using the equi-
librium of the gravitational task model.

Chapter VIII
In this chapter, entitled Discussion, we covered a few scheduling related topics that may
impact on the utility accrual of a schedule, and thus, we consider that they should not
be ignored. However, due to the complexity to address these topics, we just present a
discussion of their impact on scheduling, and potential research directions. These topics
are early completion times, preemptive scheduling, and multicore scheduling.
Although we have considered the actual execution times of jobs are equal to the worst

case execution times (WCET)) throughout this work, most likely execution times are
variable. For example, multimedia applications have target sensitive constraints, and
highly variable execution times. We showed in section VIII.1 how can this alter the
utility accrual of a schedule, and discussed pros and cons of possible solutions.
In section VIII.2, we discussed the expressiveness that preemptive scheduling requires

from the task model. We used the control application described in section II.5 as example
to illustrate the impact of preemption on utility accrual, and to identify which the
support that task models have to supply.
Finally, in section VIII.3, we brie�y discussed the issues involved in scheduling of

target sensitive applications on multicore systems.

Chapter IX
This chapter summarized the main contributions of this thesis, and brought the con-
cluding remarks.

Appendix A
This appendix brings extended experimental results from the applications presented in
chapter VII. These results were not presented in their respective section due to their
similarities with other already discussed results.



Zusammenfassung

Echtzeitanwendungen haben zeitliche Begrenzung zusätzlich zu ihren logischen Outputs
für richtiges funktionales Systemverhalten. Regelungsanwendungen, die die Ursache für
die Entstehung der zeitlichen Begrenzungen der Echtzeitsysteme sind, wirken auf die Re-
gelstrecke um diese entsprechend der Führungsgröÿe zu steuern. Regelungsysteme bein-
halten sicherheitskritische und betriebsnotwendige Anwendungen, welche strikte zeitli-
che Begrenzungen haben. Nichteinhaltung eines einzigen Fristablaufs kann den Betrieb
des Systems zum Absturz führen und sogar katastrophale Konsequenzen herbeiführen.
Üblicherweise bestehen Echtzeitsysteme aus mehreren Tasks, die gleichzeitig um Sy-

stemressourcen konkurieren. Daher erfordern Echtzeitanwendungen spezielle Zeitpla-
nungsalgorithmen (sogenannte Echtzeitplanungsalgorithmen), die zeitliche Begrenzun-
gen beachten. Diese Algorithmen legen eine Anzahl von Regeln fest um die Reihenfolge
der Task-Ausführung zu planen, damit die zeitlichen Begrenzungen eingehalten werden.
Zum Beispiel haben einige Tasks Einschränkungen bezüglich ihres frühestmöglichen
Starts uns ihrer Abarbeitungsfrist. Diese beiden Zeitpunkte de�nieren das execution
window des Tasks. Das execution window ist ein Zeitraum in welchem das logische Er-
gebnis in korrektem Systemverhalten resultiert. Ein Echtzeitplanungsalgorithmus muss
garantieren, dass alle Tasks vollständig innerhalb ihres execution windows ausgeführt
werden.
Manche Echtzeitanwendungen haben sehr enge optimale execution windows für einen

maximalen Systemnutzen (system utility), akzeptieren aber aus Gründen der Realisier-
barkeit (feasibility) eine gewisse Flexibilität durch Ausdehnung der execution windows.
Um die Flexibilität aufrecht zu erhalten, werden Verluste der maximalen system utility
in Kauf genommen. Zum Beispiel Tasks sogenannter target sensitive applications sollten
bevorzugt an ihrem Zielzeitpunkt (target point) ausgeführt werden. Auch die Ausfüh-
rung eines Task in zeitlicher Nähe seines target points ist möglich, reduziert aber die
system utility. Diese Reduktion ist proportional zur Wichtigkeit der Anwendung für das
System. Idealerweise werden alle Tasks an ihrem target point ausgeführt, was wegen
Überlappung der Ausführungen nicht möglich ist. Unter dieser Bedingung müssen die
Ausführungen zeitlich geplant werden, so dass alle zeitlichen Begrenzungen eingehalten
werden und die system utility maximiert wird. Wichtige Anwendungen sind weniger
tolerant gegenüber der Abweichung zum target point.
Neben der notwendigen Ausdrucksfähigkeit, müssen die Task-Modelle auch simple
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Abstraktionen bereitstellen, damit die Anwendungsentwickler sie einfacher verstehen
können. Darüber hinaus erfordert Anpassbarkeit zur Laufzeit Zeitplanungsalgorithmen
mit geringem Overhead. Ein Kompromiss zwischen den Tasks mit der Ausführungsüber-
lappung schlieÿt eine Ausführungsumstellung des Jobs, seine Verschiebung und mögli-
cherweise seinen Abbruch ein. Eine Schwierigkeit besteht darin auszudrücken ob zwei
weniger wichtige Tasks wichtiger sind als ein sehr wichtiger Task. Eine andere Schwierig-
keit besteht darin, dass eine Änderung der Ausführungsreihenfolge ein NP-vollständiges
Problem darstellt. Deswegen ist die Entwicklung von Zeitplanungsalgorithmen mit ge-
ringem Overhead eine besondere Herausforderung.
In dieser Dissertation wird ein neues Echtzeit-Task-Modell vorgestellt, welches simple

Abstraktionen zum Ausdruck von zeitliche Begrenzungen der target sensitive applicati-
ons berücksichtigt: das Gravitational Task-Modell. Dieses Task-Modell verwendet Pendel
als Analogie um das Verständnis seiner zeitlichen Abstraktionen zu vereinfachen. Ebenso
werden einige Zeitplanungsalgorithmen für das Gravitational Task-Modell vorgestellt.
Diese Algorithmen verwenden auch die Analogie des Pendels auf Grund der Deutlich-
keit. Zum Schluss werden drei Anwendungen vorgestellt, die von dem Gravitational
Task-Model unterstützt werden und die Verbesserungen hervorgehoben.
Im Folgenden wird auf den Inhalt der einzelnen Kapitel eingegangen.

Kapitel I

Dieses Kapitel stellt die Einführung dieser Doktorarbeit dar. Im Abschnitt I.1, wird
das Basiskonzept der Echtzeitplanung beschrieben. Im Abschnitt I.2 wird der Fokus auf
Eigenschaften und Anforderungen von Echtzeitsysteme gelegt. Im Abschnitt I.3 werden
die target sensitive Echtzeitanwendungen und die dazugehörigen Zeitplanungsproble-
me erklärt, gefolgt von verwandten Arbeiten in diesem Bereich im Abschnitt I.4. Im
Abschnitt I.5 werden die Hauptbeiträge dieser Dissertation für den state-of-the-art der
Echtzeitsplanungs-Theorie zusammengefasst. Zum Schluss wird im Abschnitt I.6 der
inhaltliche Überblick der Dissertation gegeben.

Kapitel II

In diesem Kapitel, mit dem Titel Examples of target sensitive real-time aplications, wer-
den fünf Beispiele für target sensitive applications beschrieben, um die Notwendigkeit
eines Task-Modells zu bestätigen, welches die zeitliche Begrenzungen solcher Anwen-
dungen berücksichtigt.
Im Abschnitt II.1, wird eine Multimediaanwendung vorgestellt. Multimediasysteme

sind in unserem Alltag integriert, mit Anwendungen in verschiedensten Lebensberei-
chen, z.B. Gesundheitssysteme, Computerspiele, Automobilindustrie, Werbeindustrie,
etc. Der MPEG-2 Videokodierungsstandard wird verwendet, um die Vorgänge des Vi-
deoabspielens, sowie die Ressourcenanforderungen und zeitliche Begrenzungen dieser
Vorgänge zu erläutern.
Im Abschnitt II.2 wird die adaptive Ressourcenverwaltung von Echzeitanwendungen

beschrieben. Werden adaptive Anwendungen auf Systemen ausgeführt, deren Ressourcen
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nicht für den worst case konzipiert wurden, so erfordern sie eine solche Ressourcenver-
waltung, damit der Schwund des Quality of Service (QoS) reduziert wird.
Im Abschnitt II.3 wird eine Anwendung der drahtlosen Sensorsysteme in der medi-

zinischen Technik vorgestellt, sogenannte Body Area Networks (BAN). BANs verfügen
über sehr geringe Ressourcen und hohe QoS-Anforderung. Dieser Abschnitt zeigt auch
die zeitlichen Begrenzungen und Ressourcenanforderung des Scheduling von Netzwerk-
paketen, sowie die Gründe für die Bezeichnung dieser Anwendung als target sensitive
application auf.
Im Abschnitt II.4 wird die Relevanz des Daten�ussprogrammierungparadigmas vor-

gestellt, welches es erlaubt das Abstraktionsniveau in der Programmierung für Multico-
resysteme zu erhöhen. Danach werden Probleme des Scheduling von Daten�ussgraphen
beschrieben.
Zum Schluss, im Abschnitt II.5, werden die Ressourcenanforderungen und zeitliche

Begrenzungen von Regelungssystemen vorgestellt. Es wird auch gezeigt, dass die zeitli-
chen Begrenzungen nicht so strikt sind wie üblicherweise angenommen. Solche Systeme
akzeptieren etwa Flexibilität in den zeitlichen Begrenzungen auf Grund der Realisier-
barkeit der Zeitplanung des involvierten Tasks. Deswegen können sich Regelungssysteme
von Task-Modellen und Zeitplanungsalgorithmen, die für target sensitive applications
entwickelt wurden, positiv auswirken.

Kapitel III

In diesem Kapitel, mit dem Titel Gravitational Task Model: a bob pendulum based ap-
proach to express trade-o�s, wird das Gravitational Task-Modell für target sensitive
applications vorgestellt. Im Abschnitt III.2 werden Terminologie und Vermutungen prä-
sentiert und im Abschnitt III.3 wird aufgezeigt, dass die Zeitplanung von target sensitive
applications eine Kompromissberechnung einschlieÿt. Ebenso wird dargelegt, dass klas-
sische Task-Modelle entweder die Realisierbarkeit auf Grund der erhöhten angefallen
system utility beeinträchtigen oder bei e�zienter Ressourcennutzung versagen.
Im Abschnitt III.4 wird das Pendel als Visualisierungsmodel für den Kompromiss zwi-

schen allen target sensitive applications vorgestellt. Ein Pendel besteht aus einer Masse
am Ende eines Seiles, welche von der Erdanziehungskraft angezogen wird. Be�ndet sich
der Masseschwerpunkt in dem zentralen, tiefsten Punkt des Pendeltrajektorie (der Ruhe-
position) so schwingt die Masse nicht. Wenn mehrere Pendel aufeinander tre�en, die aus
verschiedenen Massen und Gröÿen bestehen können, so ist die ursprüngliche Ruheposi-
tion eines jeden Pendels versetzt. Die neue Ruheposition (das sogenannte Equilibrium)
entspricht einem Kompromiss zwischen allen Pendel bezüglich ihrer Gröÿen und Massen.
Im Abschnitt III.5 wird die Analogie zwischen Pendel und target sensitive application

beschrieben. Durch diese Analogie und das Equilibrium der Pendel ist eine einfache
Berechnung des Kompromisses zwischen mehreren target sensitive applications möglich.
Zum Schluss im Abschnitt III.6 wird die Berechnung des Equilibriums der Pendel

behandelt. Es werden sowohl eine Näherungslösung als auch eine exakte Lösung vorge-
stellt.
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Kapitel IV

In diesem Kapitel, mit dem Titel Scheduling target sensitive real-time tasks, werden
verschiedenen Zeitplanungsalgorithmen für das Gravitational Task-Modell vorgestellt.
Im Abschnitt IV.2 wird eine Methode vorgestellt, welche das Equilibriumkonzept des
Pendels verwendet um die Ausführung der Jobs in einer busy period zu planen, damit die
angefallene system utility erhöht wird. Im Abschnitt IV.2.1 wird eine weitere Methode
beschrieben, welche die busy periods in einer Zeitplanung aufzeigt und ebenso auf der
Pendelanalogie basiert. Beide Methoden haben eine lineare Komplexität.
Im Abschnitt IV.2.2 wird ein Algorithmus für die Berechnung einer Näherung des

Equilibriums von zwei busy periods mit Ausführungsüberlappung vorgestellt. Es wird
auch gezeigt, dass es in einer Zeitplanung nicht mehr als N Ausführungsüberlappungen
geben kann, wobeiN für die Anzahl der Jobs steht. Da dieser Algorithmus eine konstante
Komplexität hat, ist die Komplexität der Zeitplanung aller Jobs linear.
Im Abschnitt IV.2.3 wird ein Verfahren für die Job-Zulassung zur Laufzeit präsen-

tiert und in Abschnitten IV.2.4 und IV.2.5 werden die Zeitplanungsalgorithmen mit
Beispielen illustriert.
Im Abschnitt IV.3 werden die Wichtigkeit der Reihenfolge der Jobausführungen und

verschiedene Sortierungsheuristiken präsentiert. Das �nden der optimalen Ausführungs-
reihenfolge für Realisierbarkeit und maximale angefallene system utility der Zeitplan-
nung ist ein NP-vollständiges Problem. Deswegen benötigt die Berechnung optimaler
Lösungen erhöhter Rechenaufwand, welche die Verwendung zur Laufzeit solcher Algo-
rithmen verhindert. Sortierungsheuristiken �nden einen Kompromiss zwischen der Qua-
lität der Lösung und des Overheads der Berechnung.
Im Abschnitt IV.3.1 wird die Heuristik DST-1 präsentiert, welche die Komplexität

O(N × log(N)) hat. Diese Heuristik berücksichtigt die execution windows der Jobs
nicht für das Sortierungsverfahren und beeinträchtigt daher die Realisierbarkeit. Im
Abschnitt IV.3.2 wird die Heuristik DST-2 vorgestellt, welche eine Modi�kation zu DST-
1 ist, die die execution windows der Jobs berücksichtigt. Diese Heuristik hat ebenso wie
DST-1 die Komplexität O(N×log(N)). Im Abschnitt IV.3.3 wird auf die Heuristik DST-
3 eingegangen, welches eine erneute Sortierung der Ausführungsreihenfolge zur Zeit der
Ankunft eines Jobs verhindert. Diese Modi�zierung ermöglicht eine weitere Reduzierung
der Komplexität, was eine lineare Zeitkomplexität zur Folge hat.
Zum Schluss im Abschnitt IV.4 werden die Simulationsergebnisse präsentiert, welche

aus den oben genannten Heuristiken resultieren und sich als erfolgreich erwiesen ha-
ben. Es wurde festgestellt, dass DST-2 eine höhere angefallene system utility erreicht.
Auÿerdem wurde beobachtet, dass DST-3 gegenüber von DST-2 bei signi�kanter Re-
duzierung der Komplexität nur eine geringfügig schlechteres Endergebnis liefert. Die
Ergebnisse der Simulationen zeigen auch Vorteile von dem Gravitational Task-Modell
gegenüber den anderen klassischen Task-Modellen und deren Zeitplanungsalgorithmen.
Durch das Gravitational Task-Modell wird die angefallene system utility erhöht ohne
die Realisierbarkeit der Zeitplanung zu beeinträchtigen.
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Kapitel V

In diesem Kapitel mit dem Titel Reducing the complexity of periodic tasks' scheduling,
geht es um einen Zeitplanungsalgorithmus für periodische Tasks, der auf dem gravita-
tional task model basiert. Dieser Algorithmus ist eine Mischung aus EDF under der
Heuristik DST-3 und heiÿt EDF-swap. EDF-swap zieht erhöhte Realisierbarkeit und
erhöhte angefallene system utility in Betracht. Dazu reduziert er die Komplexität von
n! zu n2.
Im Abschnitt V.2 wird gezeigt, dass das Equilibrium der Jobs nicht ohne weitere

Berücksichtigung mit EDF kombiniert werden kann. Die Schwierigkeit liegt darin, die
Ausführung der Jobs zu verschieben ohne dabei die ursprüngliche Ausführungsreihen-
folge umzustellen. Dieses Problem wurde gelöst durch die Einführung eines Zeitraums
(equilibrium window), in dem das Equilibrium die Jobausführungen verschieben darf.
Das equilibrium window garantiert die ursprüngliche Ausführungsreihenfolge bei einer
möglichen Verschiebung der Jobausführungen.
Im Abschnitt V.3 wird eine Heuristik vorgeschlagen, die eine erhöhte angefallene sy-

stem utility durch die Umstellung der Ausführungsreihenfolge erreicht. Diese Heuristik
beeinträchtigt nicht die Realisierbarkeit der Zeitplanung. Anhand eines Beispiels wird
diese Heuristik illustriert.
Ergebnisse von Simulationen in Abschnitt V.4 zeigen, dass EDF-swap eine reduzierte

Komplexität, ohne die Beeinträchtigung sowohl der Realisierbarkeit als auch der system
utility Ansammlung, erreicht.

Kapitel VI

Im diesem Kapitel mit dem Titel Scheduling tasks for increased system utility under
scarce resource availability wird gezeigt, dass der Abbruch eines oder mehrerer Tasks
eine endliche erhöhte angefallene system utility ermöglichen kann. Es geht darum, dass
die Abbrüche einiger Tasks es ermöglichen, dass die übrigen Tasks näher an ihren ent-
sprechenden target points ausgeführt werden. Bei der Entscheidung über eine Verschie-
bung oder ein Abbruch einer Jobausführung, wird die angefallene system utility berück-
sichtigt. Diese Entscheidung, welche ein NP-vollständiges Problem ist, wurde im Ab-
schnitt VI.2 durch eine Methode mit O(N2)-Komplexität gelöst. Die Vorteile dieser Me-
thode werden im Abschnitt VI.3 mit einer Multimedia-Anwendung für qualitätsbewusste
Videoanpassung unter mangelnder Ressourcenverfügbarkeit. Diese Anpassungsstrategie
verwendet die oben genannte Lösungsmethode um zu entscheiden, ob die Dekodierung
eines Einzelbildes verschoben oder abgebrochen werden soll.

Kapitel VII

In diesem Kapitel, mit dem Titel Applications of the gravitational task model, wer-
den drei Anwendungen vorgestellt, die von dem gravitational task model unterstützt
werden, und die Verbesserungen hervorgehoben. Die Anwendungen sind die folgenden:
Multimedia-Anwendung für qualitätsbewusste Videoanpassung, Ressourcenverwaltung
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der adaptiven Echtzeitanwendungen und Zeitplanung der Netzwerkpaketensendungen
in einem Body Area Network.

Chapter VIII
Im diesem Kapitel, mit dem Titel Discussion, werden die Wichtigkeit 3 Themen im
Kontext des Scheduling der target sensitive applications diskutiert, und wie sie die an-
gefallene system utility beein�ussen können: frühstens completion time, preemption, und
multicore scheduling.

Chapter IX
Dieses Kapitel fasst die Hauptbeiträge dieser Dissertation zusammen und endet mit dem
Schlussbemerkungent.

Anhang A
Dieser Anhang enthält zusätzliche Versuchsergebnisse der Anwendungen von Kapitel VII.
Aufgrund ihrer Gleichartigkeit werden diese Ergebnisse nicht in den entsprechenden Ab-
schnitten erwähnt.
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