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Abstract

The interest of the exploration of new hydrocarbon fields as well as deep
geothermal reservoirs is permanently growing. The analysis of seismic data
specific for such exploration projects is very complex and requires the deep
knowledge in geology, geophysics, petrology, etc from interpreters, as well
as the ability of advanced tools that are able to recover some particular
properties. There again the existing wavelet techniques have a huge success
in signal processing, data compression, noise reduction, etc. They enable to
break complicate functions into many simple pieces at different scales and
positions that makes detection and interpretation of local events significantly
easier.

In this thesis mathematical methods and tools are presented which are
applicable to the seismic data postprocessing in regions with non-smooth
boundaries. We provide wavelet techniques that relate to the solutions of
the Helmholtz equation. As application we are interested in seismic data
analysis. A similar idea to construct wavelet functions from the limit and
jump relations of the layer potentials was first suggested by Freeden and his
Geomathematics Group (see, e.g., [32], [36], [48]). The particular difficulty
in such approaches is the formulation of limit and jump relations for sur-
faces used in seismic data processing, i.e., non-smooth surfaces in various
topologies (for example, uniform and quadratic). The essential idea is to
replace the concept of parallel surfaces known for a smooth regular surface
by certain appropriate substitutes for non-smooth surfaces.

By using the jump and limit relations formulated for regular surfaces,
Helmholtz wavelets can be introduced that recursively approximate func-
tions on surfaces with edges and corners. The exceptional point is that the
construction of wavelets allows the efficient implementation in form of a tree
algorithm for the fast numerical computation of functions on the boundary.

In order to demonstrate the applicability of the Helmholtz FWT, we
study a seismic image obtained by the reverse time migration (e.g., [2]) which
is based on a finite-difference implementation. In fact, regarding the require-
ments of such migration algorithms in filtering and denoising (e.g., [40], [44],
[45], [86]), the wavelet decomposition is successfully applied to this image
for the attenuation of low-frequency artifacts and noise. Essential feature
is the space localization property of Helmholtz wavelets which numerically
enables to discuss the velocity field in pointwise dependence. Moreover, the
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multiscale analysis leads us to reveal additional geological information from
optical features.
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Introduction

Due to the increasing energy consumption, the exploration of new fields
of natural gas and crude oil as well as the exploration of deep geothermal
reservoirs as an example of tapping a renewable energy source, are nowa-
days becoming very important (see, e.g., [42] for more details). The basic
and most computationally intensive step in each of such projects is the con-
struction of subsurface images representing the underground structure by
use of the seismogram recorded on the surface and in available bore holes.
In addition, for the practical applicability the resulting image of such a mi-
gration process must be interpreted appropriately from geological point of
view. In this respect the multiscale tools as presented in this thesis open
new perspectives. In fact, multiscale technique by use of Helmholtz wavelets
offer the possibility to relate migration data to certain wavelengths and to
decorrelate the L2-energy contained in the data into low-pass and band-pass
filtered information. In conclusion, the description of Helmholtz wavelet re-
flected multiscale analysis become accessible as component for interpretation
within seismic postprocessing. In more detail, the efficiency and economical
implementation of this approach is performed by means of the tree algorithm
as developed in [31], whose numerical realization has been performed for the
first time in this work.

In order to record seismic data, an energy source (vibroseis, airgun, etc)
is placed on the surface. The receivers (geo-phones, hydro-phones) are placed
along one or many parallel lines. The source produces an impulse, which is
transmitted through the Earth interior, reflected at the places of impedance
contrasts (rapid changes of density/velocity), transmitted back, and recorded
by receivers. Then, this configuration is moved into the direction of seismic
acquisition and the experiment is repeated (see Figure 0.1), so that each
underground point is covered many times and thus is represented from all
incidence angles needed for further data analysis. Other seismic acquisition
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8 Introduction

strategies are described in many textbooks, for example, [6], [19], [85].

Figure 0.1: Seismic acquisition (source: [83]).

In order to obtain an image of the subsurface structure corresponding
to some given parameters, like the wave propagation velocity or the un-
derground density, e.g., the methods of seismic migration are used. These
methods ‘migrate’ the seismogram (amplitudes) recorded in time to the ‘true’
depth position (Figure 0.2), so that the shape, the depth position, and the
reflection coefficient can be reconstructed (more details can be found, e.g.,
in [19], [85] and the references therein).

For the purpose of computation, all migration methods use an approx-
imate velocity model obtained by means of the migration velocity analysis
(e.g., tomography, full wave inversion, etc.; for more details the reader is
referred to [6] and the references therein). In addition, migration methods
can be recursively applied in order to refine the given velocity model. For
this purpose, the migration is repeated with a velocity differing in a small
perturbation in the local area from the initial model. In the end, the velocity
model is chosen which yields the obviously ‘best’ reflector image.

Nowadays a lot of methods are available to migrate seismic data sets,
but all of these are based on some approximation of the wave equation or,
more generally, on the elastodynamic equation. The strategy of the different
migration methods can be roughly divided into the following groups:

• ray based methods which usually model a high-frequency asymptotic
solution (see [8]), in terms of Gaussian beams, for example ([60], [66]),
or Kirchhoff migration based on the solution of the eikonal equation
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Figure 0.2: Coherence between seismic experiment and migration.

(e.g., [14], [59], [76]);

• depth continuation methods which are usually based on the one way
wave equation and compute wave fields from one depth level to the
next (e.g., [19], [23], [84]);

• reverse time migration which is based on the full wave equation and
follows the recorded seismogram backward in time until the first time
is reached (e.g., [2], [11], [41], [70]).

The numerical realizations of all aforementioned methods can be classi-
fied according to [85] in tree broad categories:
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(i) algorithms based on the integral solution to the scalar wave equation
(e.g., [7], [61], [69], [84], etc),

(ii) algorithms based on the finite-difference solutions (e.g., [3], [25], [43],
[62], etc),

(iii) algorithms based on the frequency-wavenumber implementations (e.g.,
[9], [10], [71], etc).

Modern migration methods can combine any number of strategies in
order to reach better accuracy and, as a consequence, better resolution in
the result image. Such algorithms can compute an initial approximation
with the finite difference approximation of the full way wave equation as,
for example, in [82] and additionally apply the depth continuation method
based on the space frequency implementation.

The further interpretation of such reflector images yields information
about available reservoirs, their structures, positions and sizes. Moreover,
from the additional analysis of the dependence between the amplitude and
the incidence angle (amplitude vs. angle/offset), the information, like den-
sity, bulk modulus, etc, can be obtained (more details can be found in, e.g.,
[85] and the references therein). However, the interpretation of seismic data
is a very complicated task and requires the deep knowledge in geology, geo-
physics, petrology, etc as well as the ability of advanced mathematical and
processing tools that are able to recover some specific information in a given
seismic data.

Due to the huge success of wavelet techniques in signal processing and
noise reduction and their ability to break complicated functions into many
small pieces at different scales and positions (e.g., [4], [21], [22], [46], [52]),
wavelet approaches are actively applied to seismic data in order to filter (e.g.,
[17]), compress (e.g., [5], [16], [27]), and even to construct interactive imaging
algorithms (e.g., [15], [18], [24]). Such approaches are based, in general, on
the geometrical decomposition of the input seismogram or of the resulting
image.

In this thesis we provide another wavelet technique that is based on the
solution of the Helmholtz equation and can further be applied to seismic data
analysis. A similar idea to construct wavelet functions from the limit and
jump relations of the layer potentials and to use them to approximate the
solution of the partial differential equation was first suggested by Freeden and
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his Geomathematics Group (see, e.g., [32], [36], [48]). For the boundary value
problem of the Helmholtz equation, and, consequently, of the scalar wave
equation, this approach has been developed by Freeden, Mayer and Schreiner
([31], [55]). All these geomathematically reflected methods are related only
to regions with smooth boundaries, i.e., boundary surface without edges and
corners.

Throughout this work we are not concerned with generating of seismic
data by Helmholtz wavelets. Instead, our essential goal is to decorrelate
available seismic data (e.g., migration results) for the purposes of multiscale
postprocessing by Helmholtz wavelets. To be more concrete, in order to
develop a new technique that can be used for the interpretation of seismic
data, decomposition procedures in form of a multiscale analysis are studied
by space localizing Helmholtz wavelets corresponding to Helmholtz operators
∆ + κ2 involving different wave numbers κ. Moreover, compression and
reduction of seismic data by Helmholtz wavelets are studied numerically.

The layout of this thesis is as follows: For convenience of the reader the
necessary mathematical tools are summarized in Chapter 1. In addition,
because the seismic data postprocessing algorithms usually concern regions
possessing edges and corners, we extend the classical definition of regular
surfaces as given in [31] to certain surfaces with edges and corners.

With respect to the specified regular surface, we present in Chapter 2
the limit and jump relations of the Laplace potential operator. Then, we
extend the formulation of the limit and jumps relations from the uniform
topology to the L2-framework only by use of functional analytic means. Ad-
ditionally, the limit and jump relations of the Helmholtz potential operator
are presented. Based on the constructed limit and jump relations, the (scale
continuous) scaling functions will be introduced which regularize the kernel
functions of the integral representation in the Helmholtz equation. According
to the (scale continuous) scaling functions we define the (scale continuous)
wavelet functions. Then, scale discrete scaling and wavelet functions provid-
ing an associated multiscale analysis in different nomenclatures (pointwise,
uniform, and quadratic) will be given in terms of Helmholtz wavelets. Ad-
ditionally, we use a tree algorithm (pyramid scheme) for the fast numerical
computation (Helmholtz Fast Wavelet Transform (Helmholtz FWT)). The
structure of this tree algorithm has already been proposed in [31] for smooth
surfaces. However, the numerical realization has not been performed before
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and realized in this work for the first time, even for non-smooth surfaces
such as cube, polyhedra, etc.

Before we start with the consideration of the application of the Helmholtz
wavelet techniques to seismic data postprocessing, we recapitulate one of
the standard migration methods, i.e., reverse time migration, developed by
Baysal et al. (see [2], [3]), in Chapter 3. Additionally, for the purposes of the
efficient and economical numerical implementation of this procedure, we pro-
pose to apply the additive scheme introduced by Samarkij and Vabishevich
(see [65], [73], [74]).

Chapter 4 is devoted to the pointwise application of the developed wavelet
techniques to a priori given seismic data (postprocessing), where the seis-
mic data are understood as a prescribed (continuous) function defined on a
surface element of a regular surface such as a cube, so that they can be re-
solved in terms of the Helmholtz scaling functions and wavelets. In order to
demonstrate the efficiency and economy of the tree algorithm (the Helmholtz
FWT) as described in Chapter 2, we assume the seismic image to be a priori
available, e.g., by the reverse time migration based on an additive scheme.
Regarding the specific requirements of such migration algorithms in filtering
and denoising (e.g., [40], [44], [45], [86]), the wavelet decomposition is suc-
cessfully applied to the seismic image for the attenuation of low-frequency
artifacts and noise. Moreover, the multiscale analysis (scale and detail illus-
trations) leads us to reveal additional geological information specific for the
selected frequency from the given seismic data ready as appropriate tools for
optical interpretation.

Chapter 5 summarizes results presented in the thesis. Furthermore, it
gives an outline for the further research.



Chapter 1

Basic Fundamentals

Throughout this work we adopt the nomenclature used in the monograph
[33].

1.1 Spherical and Cartesian Nomenclature

In this section we introduce some notation in three-dimensional Euclidean
space R3. The most important differential operators as well as basic theorems
are listed.

1.1.1 Scalars and Vectors

The letters N, N0, Z, R, and C denote the set of positive, non-negative
integers, integers, real numbers, and complex numbers, respectively. For the
representation of the elements of Euclidean space R3 we use the notation
x, y, . . .. Moreover, for each x = (x1, x2, x3)T ∈ R3 different from the origin
0, we have

x = rξ, r = |x| =
√
x2

1 + x2
2 + x2

3, (1.1)

where ξ = (ξ1, ξ2, ξ3)T is the uniquely determined unit vector of x ∈ R3. By
Ω we denote the unit sphere in R3:

Ω =
{
ξ ∈ R3

∣∣ |ξ| = 1
}
. (1.2)

Suppose that ε1, ε2, ε3 form the (canonical) orthonormal basis in R3:

ε1 =


1

0

0

 , ε2 =


0

1

0

 , ε3 =


0

0

1

 . (1.3)
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Then, each point x ∈ R3 can be represented in Cartesian coordinates by

x =

3∑
i=1

(
xεi
)
εi =

3∑
i=1

xiε
i, xi =

(
xεi
)
, i = 1, 2, 3. (1.4)

The inner (scalar), vector and dyadic (tensor) product of elements x, y ∈ R3,
are defined by

xy = xT y =

3∑
i=1

xiyi; (1.5)

x ∧ y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1)T ; (1.6)

x⊗ y = xyT =


x1y1 x1y2 x1y3

x2y1 x2y2 x2y3

x3y1 x3y2 x3y3

 , (1.7)

respectively. It is clear, that x2 = |x|2 = xx = xTx, x ∈ R3. Additionally,
we have the Cauchy-Schwarz inequality

|xy| ≤ |x||y|, x, y ∈ R3, (1.8)

and the triangle inequality

||x| − |y|| ≤ |x± y| ≤ |x|+ |y|, x, y ∈ R3. (1.9)

1.1.2 Spherical Notation

As already mentioned, the unit sphere in R3 is denoted by Ω

Ω =
{
ξ ∈ R3

∣∣ |ξ| = 1
}
. (1.10)

We denote by Ωint the inner space of Ω, and by Ωext the outer space of Ω.
More explicitly,

Ωint =
{
x ∈ R3

∣∣ |x| < 1
}

; (1.11)

Ωext =
{
x ∈ R3

∣∣ |x| > 1
}
. (1.12)

Furthermore, Ω(y) defines the unit sphere around y

Ω(y) =
{
x ∈ R3

∣∣ |x− y| = 1
}
. (1.13)
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Analogously, Ωint(y) and Ωext(y) define the inner space and the outer space
of Ω(y), respectively:

Ωint(y) =
{
x ∈ R3

∣∣ |x− y| < 1
}

; (1.14)

Ωext(y) =
{
x ∈ R3

∣∣ |x− y| > 1
}
. (1.15)

The sphere in R3 with radius R around the origin is denoted by ΩR

ΩR =
{
x ∈ R3

∣∣ |x| = R
}
. (1.16)

We set Ωint
R for the inner space of ΩR, while Ωext

R denotes the outer space of
ΩR

Ωint
R =

{
x ∈ R3

∣∣ |x| < R
}

; (1.17)

Ωext
R =

{
x ∈ R3

∣∣ |x| > R
}
. (1.18)

In the same manner, we introduce the sphere ΩR(y) in R3 with radius R
around y

ΩR(y) =
{
x ∈ R3

∣∣ |x− y| = R
}
. (1.19)

We set Ωint
R (y) for the inner space of ΩR(y), while Ωext

R (y) denotes the outer
space of ΩR(y):

Ωint
R (y) =

{
x ∈ R3

∣∣ |x− y| < R
}

; (1.20)

Ωext
R (y) =

{
x ∈ R3

∣∣ |x− y| > R
}
. (1.21)

For the total surface of ΩR we have

‖ΩR‖ =

∫
ΩR

dω(ξ) = 4πR2. (1.22)

As is well known, we may represent the points x ∈ R3, x = rξ, ξ ∈ Ω in
polar coordinates as follows

x = rξ, r = |x|;

ξ = tε3 +
√

1− t2
(
cosφε1 + sinφε2

)
;

− 1 ≤ t ≤ 1, 0 ≤ φ < 2π, t = cos θ,

(1.23)

(θ ∈ [0, π]: (co-)latitude, φ: longitude, t: polar distance), i.e.,

ξ = (sin θ cosφ, sin θ sinφ, cos θ)T . (1.24)
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1.1.3 Function Spaces

The set of scalar functions F : Ω→ R, for which

‖F‖Lp(Ω) =

∫
Ω

|F (ξ)|p dω(ξ)

 1
p

<∞, 1 ≤ p <∞, (1.25)

is known as Lp(Ω). It is clear, that Lp(Ω) ⊂ Lq(Ω) for 1 ≤ q < p. A
function F is of class C(k)(Ω), 0 ≤ k ≤ ∞, if F : Ω → R possesses k
continuous derivatives on the unit sphere Ω. The class of continuous scalar-
valued functions C(Ω) (= C(0)(Ω)) is a complete normed space endowed with

‖F‖C(Ω) = sup
ξ∈Ω
|F (ξ)| . (1.26)

By `F (δ), we denote the modulus of continuity of the function F ∈ C(Ω),
i.e.,

`F (δ) = max
ξ,ζ∈Ω

1−ξζ≤δ

|F (ξ)− F (ζ)| , 0 < δ < 2. (1.27)

A function F : Ω → R is Lipschitz-continuous, if there exists a (Lipschitz)
constant CF > 0 such that the inequality

|F (ξ)− F (ζ)| ≤ CF |ξ − ζ| =
√

2CF
√

1− ξζ (1.28)

holds for all ξ, ζ ∈ Ω. The class of all Lipschitz-continuous functions on Ω is
denoted by Lip(Ω). Clear C(1)(Ω) ⊂ Lip(Ω).
L2(Ω) is a Hilbert space with respect to the inner product (·, ·)L2(Ω)

defined by

(F,G)L2(Ω) =

∫
Ω

F (ξ)G(ξ)dξ, F,G ∈ L2(Ω), (1.29)

where G(ξ) means complex-conjugate to G(ξ).
In connection with (·, ·)L2(Ω), C(Ω) is a pre-Hilbert space. For each

F ∈ C(Ω) we have the norm estimate

‖F‖L2(Ω) ≤
√

4π ‖F‖C(Ω) . (1.30)

It can be proved that L2(Ω) is the completion of C(Ω) with respect to the
norm ‖ · ‖L2(Ω), i.e.

L2(Ω) = C(Ω)
‖·‖L2(Ω) . (1.31)



1.1 Spherical and Cartesian Nomenclature 17

l2(Ω) denotes the space of all square-integrable vector fields on Ω. In
connection with the inner product

(f, g)l2(Ω) =

∫
Ω

f(ξ)g(ξ)dω(ξ), f, g ∈ l2(Ω), (1.32)

l2(Ω) is a Hilbert space. The space of all p-times continuously differentiable
vector fields on Ω we denote by c(p)(Ω), 0 ≤ p ≤ ∞. The space c(Ω)

(= c(0)(Ω)) is complete with respect to the norm

‖f‖c(Ω) = sup
ξ∈Ω
|f(ξ)| , f ∈ c(Ω). (1.33)

Furthermore, it can be shown that

l2(Ω) = c(Ω)
‖·‖l2(Ω) . (1.34)

For all f ∈ c(Ω) the norm estimate

‖f‖l2(Ω) ≤
√

4π ‖f‖c(Ω) . (1.35)

1.1.4 Differential Operators

For an arbitrary Γ ⊂ R3, ∂Γ denotes the boundary of Γ. The set Γ = Γ∪ ∂Γ

is called the closure of Γ. A set Γ ⊂ R3 will be called a region if and only if
it is open and connected.

By a scalar or vector function (field) on a region Γ ⊂ R3, we assume a
function that assigns to each point of Γ, a scalar or vectorial function value,
respectively. We will use the following notations: capital letters F,G for
scalar functions, lower-case letters f, g for vector fields.

The restriction of a scalar-valued function F or a vector-valued function
f to a subset M of its domain is denoted by F |M or f |M , respectively. For
a set S of functions, we set S|M = {F |M |F ∈ S}.

Let Γ ⊂ R3 be a region and F : Γ→ R be differentiable.
∇F : x 7→ (∇F ) (x), x ∈ Γ, denotes the gradient of F on a region Γ. The
partial derivatives of F at x ∈ Γ, briefly written F|i, i ∈ {1, 2, 3}, are repre-
sented by

F|i(x) =
∂F

∂xi
(x) = (∇F ) (x)εi = ((∇F ) (x))i . (1.36)

We say that the scalar function F : Γ→ R, the vector function f : Γ→ R3,
respectively, is of class C(1) on Γ, c(1) on Γ, if F , f , respectively, is differen-
tiable at every point of Γ and ∇F , ∇f , respectively, is continuous on Γ. The



18 Basic Fundamentals

gradient of ∇F , ∇f is denoted by ∇(2)F , ∇(2)f . Continuing in this manner,
we say that F , f , respectively, is of class C(n), c(n) on Γ, n ≥ 1 (briefly,
F ∈ C(n)(Γ), f ∈ c(n)(Γ)) if it is of class C(n−1), c(n−1) and its (n − 1)st
gradient ∇(n−1)F , ∇(n−1)f , respectively, is continuously differentiable (note
that we usually write C, c instead of C(0), c(0), respectively).

Let u : Γ → R3 be a vector field, and suppose that u is differentiable at
a point x ∈ Γ. The partial derivatives of u at x ∈ Γ are given by

ui|j(x) =
∂ui
∂xj

(x) = εi (∇u) (x)εj . (1.37)

Then, the divergence of u at x ∈ Γ is the scalar value

∇xu(x) = divx u(x) =
3∑
i=1

ui|i(x). (1.38)

Let F : Γ → R be a differentiable scalar field, and suppose that ∇F is
differentiable at x ∈ Γ. Then we introduce the Laplace operator (Laplacian)
of F at x ∈ Γ by

∆xF (x) = divx ((∇F ) (x)) = ∇x ((∇F ) (x)) . (1.39)

Analogously, the Laplacian of a continuously differentiable vector field
f : Γ→ R3 is defined by

∆xf(x) = divx ((∇f) (x)) = ∇x ((∇f) (x)) . (1.40)

Clearly, for sufficiently often differentiable functions F, f we have

∆xF (x) =
3∑
i=1

F|i|i(x); (1.41)

∆xf(x)εi =
3∑
j=1

f|i|j|j(x). (1.42)

A region Γ ⊂ R3 is called admissible, if its boundary ∂Γ allows the Gauß
theorem ∫

Γ

∇f(x)dx =

∫
∂Γ

f(x)ν(x)dω(x),

for all continuously differentiable vector fields f on Γ, Γ = Γ ∪ ∂Γ (ν is
the outer (unit) normal field). By letting f = ∇F , F ∈ C(2)(Γ), Γ ⊂ R3

admissible, we obtain from the Gauß theorem∫
Γ

∆F (x)dx =

∫
∂Γ

∂F

∂ν
(x)dω(x),
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where
∂

∂ν
denotes the derivative in the direction of the outer (unit) normal

field ν. Consequently, for all functions F ∈ C(2)(Γ) satisfying the Laplace
equation ∆F = 0 in Γ, we have∫

∂Γ

∂F

∂ν
(x)dω(x) = 0.

For all vector fields f = F∇G, F ∈ C(1)(Γ), G ∈ C(2)(Γ), we get from
the Gauß theorem

Theorem 1.1 (First Green Theorem) Suppose that Γ ⊂ R3 is an admissible
region. For F ∈ C(1)(Γ), G ∈ C(2)(Γ) we have∫

Γ

(F (x)∆G(x) +∇F (x)∇G(x)) dx =

∫
∂Γ

F (x)
∂G

∂ν
(x)dω(x).

Taking f = F∆G−G∆F with F,G ∈ C(2)(Γ) we obtain

Theorem 1.2 (Second Green Theorem) Suppose that Γ ∈ R3 is an admis-
sible region. For F,G ∈ C(2)(Γ) we have∫
Γ

(G(x)∆F (x)− F (x)∆G(x)) dx =

∫
∂Γ

(
G(x)

∂F

∂ν
(x)− F (x)

∂G

∂ν
(x)

)
dω(x).

Next we mention an extension of the second Green theorem.

Theorem 1.3 (Extended Second Green Theorem) For a given number κ ∈ C
and an admissible region Γ ⊂ R3, and for F,G ∈ C(2m)(Γ), m ∈ N, we have∫

Γ

G(x)(∆ + κ2)mF (x)dx =

∫
Γ

F (x)(∆ + κ2)mG(x)dx

+
m−1∑
r=0

∫
∂Γ

(
∂

∂ν
(∆ + κ2)rF (x)

)(
(∆ + κ2)m−(r+1)G(x)

)
dω(x)

−
m−1∑
r=0

∫
∂Γ

(
(∆ + κ2)rF (x)

)( ∂

∂ν
(∆ + κ2)m−(r+1)G(x)

)
dω(x).

(1.43)
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Its simplest form is the case with vanishing boundary terms, i.e.,

m−1∑
r=0

∫
∂Γ

(
∂

∂ν
(∆ + κ2)rF (x)

)(
(∆ + κ2)m−(r+1)G(x)

)
dω(x)

−
m−1∑
r=0

∫
∂Γ

(
(∆ + κ2)rF (x)

)( ∂

∂ν
(∆ + κ2)m−(r+1)G(x)

)
dω(x) = 0,

such that (1.43) reduces to the formula∫
Γ

(
G(x)(∆ + κ2)mF (x)− F (x)(∆ + κ2)mG(x)

)
dx = 0.

Next we come to the well-known definition of harmonic and metahar-
monic functions.

Definition 1.4 U ∈ C(2)(Γ) is called a harmonic function in a region
Γ ∈ R3, if it satisfies the Laplace equation

∆U(x) =
3∑
i=1

∂2

∂x2
i

U(x1, x2, x3) = 0, x = (x1, x2, x3)T ∈ Γ. (1.44)

U ∈ C(2m)(Γ), m ∈ N, is called polyharmonic function of degree m in
Γ ⊂ R3, if

∆mU(x) = 0, x ∈ Γ. (1.45)

U ∈ C(2)(Γ) is called metaharmonic function with respect to the Helmholtz
operator ∆ + κ2, κ ∈ C, in a region Γ ⊂ R3, if it satisfies the Helmholtz
equation (

∆ + κ2
)
U(x) = 0, x ∈ Γ. (1.46)

U ∈ C(2m)(Γ), m ∈ N, is called a polymetaharmonic function of degree
m in Γ, if

(∆ + κ2)mU(x) = 0, x ∈ Γ. (1.47)

Let y ∈ Γ be fixed, where Γ is a region in R3. We are looking for a
harmonic function U in Γ \ {y} such that

U(x) = S(x, y), x ∈ Γ \ {y},
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i.e., U depends only on the mutual distance of x and y. From the identities

∂

∂xi
S(x, y) = S′(x, y)

xi − yi
|x− y|

, (1.48)

∂2

∂x2
i

S(x, y) = S′′(x, y)
(xi − yi)2

|x− y|2
+ S′(x, y)

(
1

|x− y|
− (xi − yi)2

|x− y|3

)
, (1.49)

we easily obtain

∆xS(x, y) = S′′(x, y) +
2

|x− y|
S′(x, y) = 0.

In other words, S(x, y) can be written in the form

S(x, y) =
C1

|x− y|
+ C2, (1.50)

with some constants C1, C2. By convention (see, e.g., [80]), the function

x 7→ S(|x− y|) =
1

4π|x− y|
(1.51)

is called the fundamental solution in R3 with respect to the Laplace operator
∆.

The fundamental solution of the Laplace operator possesses the following
property.

Lemma 1.5 For continuous functions F,G in the ball Ωint
R (y) with

R > r > 0, we have

lim
r→0
r>0

∫
|x−y|=r

G(x)
∂

∂ν(x)
S(|x− y|)dω(x) = −G(y), (1.52)

lim
r→0
r>0

∫
|x−y|=r

F (x)S(|x− y|)dω(x) = 0, (1.53)

where the (unit) normal field ν is directed to the exterior of Ωint
R (y).

Proof Because of the continuity of the function F in each ball Ωint
r (y),

r < R, we find∣∣∣∣∣∣∣
∫

|x−y|=r

F (x)
1

4π|x− y|
dω(x)

∣∣∣∣∣∣∣ ≤
C

4π

∫
|x−y|=r

1

|x− y|
dω(x)

=
C

4π
4πr

= Cr
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for some positive constant C. This shows the second limit relation (1.53).
For the first limit relation we observe that the normal derivative can

be understood as the radial derivative. From the mean value theorem we
therefore obtain∫

|x−y|=r

G(x)
∂

∂ν(x)

1

4π|x− y|
dω(x) = − 1

4πr2

∫
|x−y|=r

G(x)dω(x)

= − 1

4πr2
4πr2G(xr)

for certain points xr ∈ Ωr(y). The limit r → 0 implies xr → y, such that
the continuity of G yields

lim
r→0
r>0

G(xr) = G(y).

This is the desired result. �

Next we want to apply the second Green theorem (for an admissible
region Γ with continuously differentiable boundary ∂Γ) especially to the
functions

F : x 7→ F (x) = 1, x ∈ Γ,

G : x 7→ S(|x− y|), x ∈ Γ \ {y},

where y ∈ R3 is positioned in accordance with the following three cases:
Case y ∈ Γ: For sufficiently small ε > 0 we obtain by integration by parts,
i.e., the second Green theorem∫

x∈Γ
|x−y|≥ε

∆xS(|x− y|)︸ ︷︷ ︸
=0

dx =

∫
x∈∂Γ

∂

∂ν(x)
S(|x− y|)dω(x)

+

∫
x∈Γ
|x−y|=ε

∂

∂ν(x)
S(|x− y|)dω(x).

In connection with Lemma 1.5 we therefore obtain by letting ε→ 0∫
∂Γ

∂

∂ν(x)
S(|x− y|)dω(x) = 1. (1.54)

Case y ∈ ∂Γ: Again, by Green’s theorem we obtain for ε > 0

−
∫
x∈Γ
|x−y|=ε

∂

∂ν(x)
S(|x− y|)dω(x) =

∫
x∈∂Γ

∂

∂ν(x)
S(|x− y|)dω(x).
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By letting ε→ 0 we now find in case of a continuously differentiable surface
∂Γ ∫

∂Γ

∂

∂ν(x)
S(|x− y|)dω(x) =

1

2
. (1.55)

Case y /∈ Γ: The second Green theorem now yields∫
Γ

∆xS(|x− y|)︸ ︷︷ ︸
=0

dx =

∫
∂Γ

∂

∂ν(x)
S(|x− y|)dω(x). (1.56)

Summarizing all our results we obtain from (1.54), (1.55) and (1.56)

Lemma 1.6 Let Γ ⊂ R3 be an admissible region with continuously differen-
tiable boundary ∂Γ. Then

−
∫
∂Γ

∂

∂ν(x)
S(|x− y|)dω(x) =


1, y ∈ Γ,

1

2
, y ∈ ∂Γ,

0, y /∈ Γ.

In other words, the integral is a measure for the solid angle subtended by
the boundary ∂Γ at the point y ∈ R3.

Remark 1.7 From potential theory (see, e.g., [47]) it is known that Lemma
1.6 may be extended to admissible regions Γ with non-smooth boundaries ∂Γ

such as cube, simplex, polyhedron, more concretely, to admissible regions with
solid angle ω(y) at y ∈ R3 subtended by the surface ∂Γ.

Definition 1.8 The function

ω : y 7→
∫
∂Γ

∂

∂ν(x)

1

|x− y|
dω(x), y ∈ R3,

is called the solid angle at y ∈ R3 subtended by the surface ∂Γ.

An example of particular interest in our applications is the cube

Γ = (−R,R)3 ⊂ R3, R > 0.

In this case we have

(i) ω(y) = 1, if y is located in the open cube Γ,
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(ii) ω(y) =
1

2
, if y is located on one of the six faces of the boundary ∂Γ of

the cube Γ but not on an edge or in a corner,

(iii) ω(y) =
1

4
, if y is located on one of the eight edges of ∂Γ but not in a

vertex,

(iv) ω(y) =
1

8
, if y is located in one of the eight corners of ∂Γ.

Lemma 1.6 is a special case of the third Green theorem in R3 (see, e.g.,
[47]) that will mentioned next.

Theorem 1.9 (Third Green Theorem)

(i) Let Γ be an admissible region with continuously differentiable boundary
∂Γ. Suppose that U : Γ → R is twice continuously differentiable, i.e.,
U ∈ C(2)(Γ). Then we have

∫
∂Γ

(
S(|x− y|) ∂

∂ν(x)
U(x)− U(x)

∂

∂ν(x)
S(|x− y|)

)
dω(x)

−
∫
Γ

S(|x− y|)∆U(x)dx =


U(y), y ∈ Γ,

1

2
U(y), y ∈ ∂Γ,

0, y ∈ R3 \ Γ.

(ii) Let Γ be an admissible region. Suppose that U : Γ → R is twice con-
tinuously differentiable, i.e., U ∈ C(2)(Γ). Then we have

∫
∂Γ

(
S(|x− y|) ∂

∂ν(x)
U(x)− U(x)

∂

∂ν(x)
S(|x− y|)

)
dω(x)

−
∫
Γ

S(|x− y|)∆U(x)dx = ω(y)U(y),

where ω(y), y ∈ R3, is the solid angle at y subtended by the surface
∂Γ.

Proof We only consider the case y ∈ Γ. For every ε > 0, Green’s formula
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tells us that

−
∫

|x−y|≥ε
x∈Γ

S(|x− y|)∆U(x)dx

=

∫
∂Γ

(
U(x)

∂

∂ν(x)
S(|x− y|)− S(|x− y|) ∂

∂ν(x)
U(x)

)
dω(x)

+

∫
|x|=ε
x∈Γ

(
U(x)

∂

∂ν(x)
S(|x− y|)− S(|x− y|) ∂

∂ν(x)
U(x)

)
dω(x).

Letting ε→ 0 the theorem follows immediately from Lemma 1.5. �

Finally we mention the Poisson differential equation, which is a classical
result in potential theory (see, e.g., [33]).

Theorem 1.10 Let F be of class C(0)(Γ), Γ = Γ∪∂Γ ⊂ R3. Then U : Γ→ R
given by

U(x) =

∫
Γ

F (y)
1

|x− y|
dy

is of class C(1)(Γ), and we have

∇U(x) =

∫
Γ

F (y)∇x
1

|x− y|
dy.

If, in addition, F is assumed to be Lipschitz-continuous in Γ, i.e.,

|F (x)− F (y)| ≤ CF |x− y|

for all x, y ∈ Γ, then
∆U = −4πF

holds true in Γ.

1.1.5 Differential and Integral Calculus

We consider a vector function Φ : [0,∞)× [0, 2π)× [−1, 1]→ R3 defined by

Φ(r, φ, t) =

r
√

1− t2 cosφ

r
√

1− t2 sinφ

rt

 . (1.57)
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If we set r = 1, we obtain a local coordinate system on the unit sphere.
That means, instead of denoting any element of Ω by its vectorial represen-
tation ξ, we may also use its coordinates (φ, t) in accordance with Equation
(1.23). Calculating the derivatives of Φ and setting r = 1, the correspond-
ing set of orthonormal unit vectors in the directions r, φ, and t is easily
determined to be

εr(φ, t) =


√

1− t2 cosφ√
1− t2 sinφ

t

 , εφ(φ, t) =

− sinφ

cosφ

0

 , εt(φ, t) =

−t cosφ

−t sinφ√
1− t2

 .

(1.58)
It is clear, that εt(φ, t) = εr(φ, t) ∧ εφ(φ, t).

From Equations (1.58), we immediately obtain a representation of the
Cartesian unit vectors in terms of the spherical ones:

ε1 =
√

1− t2 cosφεr(φ, t)− sinφεφ(φ, t)− t cosφεt(φ, t); (1.59)

ε2 =
√

1− t2 sinφεr(φ, t) + cosφεφ(φ, t)− t sinφεt(φ, t); (1.60)

ε3 = tεr(φ, t) +
√

1− t2εt(φ, t). (1.61)

The system
{
εφ, εt

}
enables us to formulate a vector differential calculus.

Gradient fields ∇F can be decomposed into a radial and a tangential
component. The surface gradient ∇∗ contains the tangential derivatives of
the gradient ∇ as follows:

∇ = εr
∂

∂r
+

1

r
∇∗. (1.62)

For any x = rξ, r = |x|, ξ ∈ Ω there exists η ∈ Ω

∇x(xη) = η = εr(ξη) +∇∗ξ(ξη), (1.63)

such that
∇∗ξ(ξη) = η − (ξη)ξ. (1.64)

In addition, we denote the surface divergence given by

∇∗ξf(ξ) =
3∑
i=1

∇∗ξFi(ξ)εi. (1.65)

The aforementioned relations can be understood from the well-known role
of the Beltrami operator ∆∗ in the representation of the Laplace operator ∆

∆x =

(
∂

∂r

)2

+
2

r

∂

∂r
+

1

r2
∆∗ξ . (1.66)



1.1 Spherical and Cartesian Nomenclature 27

In spherical coordinates, the operator ∆∗ is represented as follows

∆∗ξ =
∂

∂t

(
1− t2

) ∂
∂t

+
1

1− t2

(
∂

∂φ

)2

. (1.67)

Equation (1.58) implies

∇∗ξ =
1√

1− t2
(
− sinφε1 + cosφε2

) ∂

∂φ

+
√

1− t2
(
−t cosφε1 − t sinφε2 +

√
1− t2ε3

) ∂

∂φ
. (1.68)

In the same way as for Euclidean space R3, a region Γ ⊂ Ω is called
admissible, if its boundary ∂Γ allows the surface theorem of Gauß∫

Γ

∇∗ξf(ξ)dω(ξ) =

∫
∂Γ

νξf(ξ)dσ(ξ), (1.69)

provided that f is a continuously differentiable field on Γ = Γ∪∂Γ such that
f(ξ)ξ = 0, ξ ∈ Γ. (ν and τ denotes surface normal vector (outward of Γ)
and tangential to ∂Γ normal vector, respectively. σ is the arc length along
∂Γ.)

Applying the Gauß formula (1.69) to f = F∇∗G with suitable F,G we
obtain the First Green Theorem∫

Γ

∇∗ξG(ξ)∇∗ξF (ξ)dω(ξ)+

∫
Γ

F (ξ)∆∗ξG(ξ)dω(ξ) =

∫
∂Γ

F (ξ)
∂

∂νξ
G(ξ)dσ(ξ).

(1.70)

Analogously, we obtain the Second Green Theorem∫
Γ

(
F (ξ)∆∗ξG(ξ)−G(ξ)∆∗ξF (ξ)

)
dω(ξ)

=

∫
∂Γ

(
F (ξ)

∂

∂νξ
G(ξ)−G(ξ)

∂

∂νξ
F (ξ)

)
dσ(ξ)

=

∫
∂Γ

(
F (ξ)

∂

∂τξ
G(ξ)−G(ξ)

∂

∂τξ
F (ξ)

)
dσ(ξ). (1.71)

There are immediate consequences of the above formulas due to the fact that
the integral identities also hold true on Ω\Γ (under suitable assumptions on
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the integrands). For the whole sphere this leads to∫
Ω

f(ξ)∇∗ξF (ξ)dω(ξ) = −
∫
Ω

F (ξ)∇∗ξf(ξ)dω(ξ); (1.72)

∫
Ω

∇∗ξF (ξ)∇∗ξG(ξ)dω(ξ) = −
∫
Ω

F (ξ)∆∗ξG(ξ)dω(ξ) (1.73)

∫
Ω

∇∗ξF (ξ)∇∗ξG(ξ)dω(ξ) = −
∫
Ω

G(ξ)∆∗ξF (ξ)dω(ξ). (1.74)

Furthermore, ∫
Ω

∇∗ξf(ξ)dω(ξ) = 0; (1.75)

∫
Ω

∇∗ξ (f(ξ) ∧ ξ) dω(ξ) = 0, (1.76)

provided that F : Ω → R (resp. f : Ω → R3) are sufficiently often continu-
ously differentiable.

By virtue of the isomorphism Ω 3 ξ 7→ Rξ ∈ ΩR, R > 0, we can
assume functions F : Ω → R to be defined on ΩR. With the surface mea-
sure dωR of ΩR, dωR = R2dω, we are able to introduce the L2(ΩR)-inner
product (·, ·)L2(ΩR) and the associated norm ‖ · ‖L2(ΩR), as usual. With the
relationship ξ ↔ Rξ, the surface gradient ∇∗;R and the Beltrami opera-
tor ∆∗;R on ΩR, respectively, have the representation ∇∗;R = (1/R)∇∗ and
∆∗;R = (1/R2)∆∗. It is clear that the function spaces defined on Ω admit
their natural generalization as spaces of functions defined on ΩR. We have
for example, C(∞)(ΩR), Lp(ΩR), etc.

1.2 Analytical and Geometrical Prerequisites

Based on the analytical and geometrical constructions as, e.g., introduced in
[72], [79] in this section we give some analytical and geometrical basics for
the ‘regularization’ of regions with non-smooth boundaries.

Definition 1.11 A non-degenerate, compact surface element Ξ ⊂ R3 free of
double points, is called regular, if it satisfies the properties:

(i) Ξ is twice continuously differentiable.
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(ii) There exist constants M̃, d > 0, such that for each surface point x ∈
Σ Ωint

d (x) ∩ Ξ can be represented in a Cartesian coordinate system
(tangential-normal-system) in the form

x3 = H̃(x1, x2), (x1, x2) ∈ T̃ ⊂ R2,

where the function H̃(x1, x2) is twice continuously differentiable on the
parameter domain T̃ ⊂ R2. Additionally, on T̃ ⊂ R2 the following
estimates are satisfied∣∣∣H̃(x1, x2)

∣∣∣ ≤ M̃ (
x2

1 + x2
2

)
,∣∣∣∇H̃(x1, x2)

∣∣∣ ≤ M̃√x2
1 + x2

2.

(iii) The boundary ∂Ξ of Ξ is a continuous and piecewise twice continuously
differentiable curve.

T̃ ⊂ R2 Ξ ⊂ R3

ν

x3 = H̃(x1, x2)@@

B
B
B
BM

j�
��3

HHj&%
'$

Figure 1.1: Parameterization of regular surface element Ξ ⊂ R3

An example of the surface element Ξ ⊂ R3 with its parameter space
T̃ ⊂ R2 is adumbrated in Figure 1.1.

In what follows we consider regions G in R3 with a boundary ∂G being
not necessary smooth. We use Definition 1.11 specify the boundary Σ = ∂G

of an admissible region G as a finite union of regular surface elements Ξl, l =

1, . . . , n. An example of a such region G is roughly illustrated in Figure 1.2.

Definition 1.12 Let G be a bounded, simply-connected region in R3. We say
that its boundary Σ = ∂G is regular, if it satisfies the following properties:

(i) Σ can be divided into a finite number of regular surface elements, i.e.,

Σ =
n⋃
i=1

Ξl, Ξl = Ξl ∪ ∂Ξl, l = 1, . . . , n, that are pairwise disjoint,

except for common boundary points.
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Ξn

Ξ2

Ξ1

G
Σ =

n⋃
i=1

Ξl

�
�

�

�
�
�

�

Figure 1.2: Regular surface Σ of an admissible region G ⊂ R3

(ii) For each x ∈ Σ the solid angle ω(x) satisfies the relation

sup
x∈Σ

∣∣∣∣ω(x)

2π
− 1

∣∣∣∣ < 1.

(iii) Σ has a continuous directional unit field µ pointing into the outer space
Σext. The directional unit field µ is twice continuously differentiable
on each regular surface element Ξl, l = 1, . . . , n, and pointing into the
outer space Σext, such that there exist constants M, δ > 0 that for
each boundary point x Ωint

δ (x) ∩ Σ can be represented in a Cartesian
coordinate system (ε3 = µ(x)) by

x3 = H(x1, x2), (x1, x2) ∈ T ⊂ R2,

where the function H is continuous, piecewise twice continuously dif-
ferentiable on the parameter domain T ⊂ R2. Additionally, on T ⊂ R2

the following relations are satisfied

|H(x1, x2)| ≤M
√
x2

1 + x2
2; (1.77)

|∇H(x1, x2)| ≤M. (1.78)

(The parameter domain T is decomposed in the neighborhood of edges
and corners into a finite number of subdomains, so that the estimate
(1.78) is satisfied in each subdomain.)

(iv) The inner space G contains the origin.

The directional unit field µ can be understood as a regularization of the
normal field ν, as illustrated in Figure 1.3. In addition, if the regular surface
Σ contains no edges and corners, the field µ equals to the field ν.
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Figure 1.3: The directional unit field µ and the normal unit field ν.

Remark 1.13

(i) As is well known, for each point x ∈ Σ, the solid angle ω(x) can be
defined by use of the tangential normal vector

τ(x) = lim
y→x
y∈Σ

y − x
|y − x|

, (1.79)

because the set of all τ(x) defines a cone which intersects a surface
ω(x) out of the unit sphere with the center in x.

(ii) Definition 1.12 (ii)−(iv) guarantees the validity of the inner and outer
cone condition for each boundary point (as, for example, considered in
[20], [77]).

(iii) The existence of the directional unit field µ is shown in [78], [79] that is
applied for the local surface representation in Definition 1.12 (iii), (iv).
The basic concept is the extension theorem according to [49], which
guarantees the extension of regular surface elements to a closed regular
surface.

Lemma 1.14 If Σ = ∂G is the boundary of a region G as defined by Defi-
nition 1.12, then there exists a constant α < 1, such that

|µ(x)(x− y)| ≤ α |x− y|
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uniformly with respect to x ∈ Σ and y ∈ Ωint
δ (x) ∩ Σ, Σ = ∂G.

Proof According to the condition (iii) of Definition 1.12, we are able to set
x to the origin of a local coordinate system and µ(x) = ε3, so that

|µ(x)(x− y)| = |H(y1, y2)| ≤M
√
y2

1 + y2
2

for all y = y1ε
1 + y2ε

2 +H(y1, y2)ε3 ∈ Ωint
δ (x) ∩ Σ.

Additionally, we are able to introduce a constant α satisfying the relation

α =

√
M2

M2 + 1
< 1. (1.80)

Observing the value α satisfying (1.80), we are led to

|H(y1, y2)| ≤M
√
y2

1 + y2
2 =

√
α2

1− α2

(
y2

1 + y2
2

)
.

Hence, after an obvious manipulation, we obtain(
1− α2

)
|H(y1, y2)|2 ≤ α2

(
y2

1 + y2
2

)
.

Altogether this yields

|H(y1, y2)| ≤ α
√
y2

1 + y2
2 +H(y1, y2)2 = α |x− y|

�

Lemma 1.15 Let Σ be a regular surface as introduced by Definition 1.12.
Assume that the constant α is given as defined by Equation (1.80). Then,

for constants τ , σ satisfying |σ| ≤ 1− α
4
|τ | ≤ 1− α

5− α
δ

2
, τ 6= 0, the integral∫

Σ

1

|x+ τµ(x)− (y + σν(y))|
dω(y) (1.81)

exists for all x ∈ Σ (The integral (1.81) has to be understood as the sum of
surface integrals over the occurring regular surface elements Ξl, l = 1, . . . , n).

Proof Let x be a point of the boundary Σ and δ be given as in Definition
1.12. We split the integral (1.81) into a sum of two integrals in the form∫

Σ\Ωintδ (x)

dω(y)

|x+ τµ(x)− (y + σν(y))|
+

∫
Σ∩Ωintδ (x)

dω(y)

|x+ τµ(x)− (y + σν(y))|
.

(1.82)
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Our purpose is to estimate each integral of (1.82), separately.
For all y ∈ Σ \ Ωint

δ (x) it follows by use of triangle inequality that

|τµ(x)− σν(y)| ≤ |τ ||µ(x)|+ |σ||ν(y)| ≤ |τ |+ |σ|

≤ |τ |+ 1− α
4
|τ | = 5− α

4
|τ | ≤ δ

2
.

From the last inequality, we are able to deduce that

|x+ τµ(x)− (y + σν(y))| ≥ ||x− y| − |τµ(x)− σν(y)||

≥ δ − δ

2
=
δ

2
> 0.

(1.83)

Now, for all y ∈ Σ ∩ Ωint
δ (x) we have

|x+ τµ(x)− (y + σν(y))|2 = |(x− y) + τµ(x)− σν(y)|2

= (x− y)2 + τ2 + σ2 + [2τµ(x)(x− y)]

− [2σν(y)(x− y)]− [2τσµ(x)ν(y)] . (1.84)

In connection with Lemma 1.14 we are able to give estimates for each term
on the right side in the squared brackets of Equation (1.84). More concretely,

2 |τ | |µ(x)(x− y)| ≤ 2α |τ | |x− y| ≤ α |τ |2 + α |x− y|2 , (1.85)

where the second part of the inequality can be evaluated by virtue of Bino-
mial’s rule

|τ |2 − 2 |τ | |x− y|+ |x− y|2 = (|τ | − |x− y|)2 ≥ 0.

From the inequality (1.85), we obtain the estimate for the first expression
in the squared brackets in Equation (1.84) on the right side

2τµ(x) (x− y) ≥ −α
(
|τ |2 + |x− y|2

)
. (1.86)

Analogously, according to our assumptions, we find

2 |σ| |µ(y) (x− y)| ≤ 1− α
4

2 |τ | |x− y| ≤ 1− α
4

(
|τ |2 + |x− y|2

)
.

The last inequality gives us the estimate for the second expression in the
squared brackets in Equation (1.84).

− 2σµ(y) (x− y) ≥ −1− α
4

(
|τ |2 + |x− y|2

)
. (1.87)
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By observing the inequality

2 |τ | |σ| |µ(x)ν(y)| ≤ 2 |τ | 1− α
4
|τ | = 1− α

2
|τ |2 ,

we obtain the estimate of the third expression in the squared brackets in
Equation (1.84) on the right side

− 2τσµ(x)ν(y) ≥ −1− α
2
|τ |2 . (1.88)

Collecting (1.86), (1.87), and (1.88) we obtain the estimate of Equation
(1.84) and, as a consequence, we arrive at

|x+ τµ(x)− (y + σν(y))|2 ≥ |x− y|2
(

1− α− 1− α
4

)
+ |τ |2

(
1− α− 1− α

4
− 1− α

2

)
+ |τ |2 ≥ |τ |2 1− α

4
> 0. (1.89)

Summarizing all our results, i.e., Equations (1.83), (1.89), we obtain

|x+ τµ(x)− (y + σν(y))| > 0, x, y ∈ Σ

and, as a consequence, the integral (1.81) exists for all x ∈ Σ �

Remark 1.16 In the case of σ = 0, Equation (1.84) implies the following
estimate

|x± τµ(x)− y|2 ≥ (1− α)
(
|τ |2 + |x− y|2

)
.

Σ Σν field µ field
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Figure 1.4: The construction of (smoothed) parallel surfaces for a regular
surface Σ without edges and corners.

For regular surfaces corresponding to regions Σ = S in R3 with smooth
boundaries ∂S, the concept of parallel surfaces as introduced, e.g., in [28],
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[31], [48] can be handled appropriately. In this case the parallel surfaces are
defined as the set {

x ∈ R3
∣∣x = y + τν(y), y ∈ ∂S

}
, (1.90)

which are exterior to ∂S for τ > 0 and interior for τ < 0, as illustrated in
Figure 1.4. It is well known from the differential geometry (e.g., [58]) that
if |τ | sufficiently small, then the parallel surfaces to a smooth surface are
regular, and the normal to one parallel surface is a normal to the other.

ν field µ field

�
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Figure 1.5: The construction of smoothed parallel surfaces for a regular
surface Σ with edges and corners.

For a non-smooth surface the concept of parallel surfaces as described
above is not applicable, since the surfaces as defined by (1.90) are not nec-
essarily closed. In consequence, for a region G in R3 with a non-smooth
boundary ∂G we have to find a different approach. As a matter of fact, in
order to build a sequence of surfaces converging to ∂G from the outer and
inner space, we use the advantage of the local representation by application
of the directional unit field µ. The sequence of such local ‘parallel’ surfaces
converge to the surface Σ from the outer and inner space (see Figure 1.5).

Definition 1.17 For a sufficiently small τ0 > 0 and for all |τ | < τ0, and
the directional unit field µ from Definition 1.12, the set

Σ(τ) =
{
x ∈ R3

∣∣x = y + τµ(y), y ∈ Σ
}

is called a smoothed parallel surface which is exterior to Σ for τ > 0 and
interior for τ < 0.

Clearly, if Σ is a smooth boundary (without edges and corners), a smoothed
parallel surface is a parallel surface.
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Remark 1.18 Because the directional unit field µ is continuous and piece-
wise continuously differentiable on each regular surface Ξl, l = 1, . . . , n, a
smoothed parallel surface Σ(τ) can be understood to satisfy all properties
in Definition 1.12. Furthermore, Σ(τ) can be verified to converge to Σ as
|τ | → 0.

In this respect, a result due to [56] based on [78] and [49] is of particular
interest for the later proof of double layer potentials: it uses the fact that
the surfaces Σ(τ) converge to Σ for |τ | → 0 „with bounded relation“. In
consequence, the next result become obvious.

Lemma 1.19 For each regular surface Σ and corresponding smoothed local
parallel surfaces Σ(τ) as defined by Definition 1.17, a constant M > 0 exists,
such that ∫

Σ(τ)

∣∣∣∣ ∂

∂ν(y)

1

|x− y|

∣∣∣∣ dω(y) ≤M,

is uniformly satisfied for all x ∈ R3 and all |τ | < τ0.



Chapter 2

Helmholtz Potential Wavelets

This chapter is the main part of the thesis. It is concerned with the intro-
duction and construction of Helmholtz potential wavelets. The preparatory
settings are listed in Section 2.1. Then, as an introductory case, we study the
Laplace case in Section 2.2. The Laplace concept later on serves as a tool for
further consideration. In accordance with the classical approach in potential
theory (see, e.g., [47]), we consider limit and jump relations in the Banach
space for continuous functions on Σ in uniform metric. Then, following [28],
[31], [55], we extend the limit and jump relations to the Hilbert space topol-
ogy of L2(Σ). Section 2.3 is devoted to the framework of Helmholtz potential
operators for regular surfaces Σ (as defined in Chapter 1). Moreover, it con-
tain the formulation of limit and jump relations for the Helmholtz operator
in L2(Σ). The so constructed kernel functions can be used to regularize sin-
gular integral representations of the Helmholtz potential operators. In fact,
these kernel functions are understood as scaling functions, where the scale
parameter is determined by the ‘distance’ τ of the smoothed parallel sur-
face Σ(τ) to surface Σ. The scaling functions enable us to construct wavelet
functions in usual way (see, e.g., [52]) in Section 2.4. Scale continuous and
scale discretized reconstruction formulas can be developed in straightforward
manner. Furthermore, we show that the expansion of the scaling and wavelet
functions provides a multiscale analysis of the Hilbert space L2(Σ). Finally,
an efficient and economical multiscale implementation in form of a tree al-
gorithm (pyramid scheme) for the fast wavelet transform (FWT) by means
of Helmholtz wavelets is presented in Section 2.5.

37
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2.1 Preliminaries

In this section we recapitulate some settings and structures of function
spaces, scalar products and norms that are used throughout this chapter.

Let Σ be a regular surface as defined by Definition 1.12. C(Σ) denotes
the class of all complex continuous functions on Σ. As usual, the supremum
norm on Σ is given by

‖F‖C(Σ) = sup
x∈Σ
|F (x)| , F ∈ C(Σ).

Equipped with the norm ‖.‖C(Σ) the space
(
C(Σ), ‖.‖C(Σ)

)
is a Banach space

and with scalar product defined for all functions F,G ∈ C(Σ) by

(F,G)L2(Σ) =

∫
Σ

F (x)G(x)dω(x), (2.1)

(
C(Σ), (., .)L2(Σ)

)
is a pre-Hilbert space. The scalar product (2.1) implies

the norm
‖F‖L2(Σ) =

(
(F, F )L2(Σ)

)1/2
. (2.2)

As usual, we let

L2(Σ) =

f |f : Σ→ R measurable,
∫
Σ

|f(x)|2dω(x) <∞


to be the space of (Lebesgue) square-integrable functions on the regular sur-
face Σ. With respect to the scalar product (2.1), L2(Σ) is a Hilbert space,
and a Banach space according to the norm (2.2). Moreover, L2(Σ) is the
completion of C(Σ) with respect to the norm ‖ · ‖L2(Σ):

C(Σ)
‖·‖L2(Σ) = L2(Σ). (2.3)

By C̃(1)(Σ) we denote the space of all continuously differentiable functions
F that map Σ into R and vanish with all its first derivatives at all edges and
corners on Σ. As is well known, [72], [79] the space C̃(1)(Σ) with respect
to the supremum norm is a normed space, i.e.,

(
C̃(1), ‖.‖C(Σ)

)
, and it is

a dense subspace in L2(Σ) corresponding to the scalar product (2.1), i.e.,(
C̃(1), (., .)L2(Σ)

)
.

By Ĉ(Σ) we denote the space of all piecewise differentiable and bounded
functions F on Σ that map Σ into R.
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As before, µ denotes the directional unit field defined on Σ. Canonically,
the directional derivative of F at point x ∈ Σ in the direction µ(x) is given
canonically by

∂

∂µ
F (x) = lim

τ→0
τ 6=0

F (x+ τµ(x))− F (x)

τ
. (2.4)

For later use we introduce the identity operator I : C(Σ)→ C(Σ)

IF (x) = F (x), x ∈ Σ

and the operator Ĩ : C̃(1)(Σ)→ C(Σ) defined by

ĨF (x) =

{
0, at edges and corners,

(µ(x)ν(x))F (x), outside edges and corners.
(2.5)

By convention, the operator norm will be designated with the same sym-
bol as the norm of the corresponding reference space.

2.2 Limit and Jump Relation for the Laplace Op-
erator

The construction of scaling and wavelet functions (cf. [31]) is based on the
formulation of limit and jump relations. Our purpose is to formulate these
relations first in the framework of the space C(Σ) for Σ being a regular
surface. Later on we go over to the L2-topology.

We start with the study of the limit and jump relations for the Laplace
operator ∆.

Definition 2.1 Let τ, σ ∈ R, τ 6= 0, satisfy the assumptions known from
Lemma 1.15 and Definition 1.17, i.e.,

|σ| ≤ 1− α
4
|τ | ≤ 1− α

5− α
δ

2
, |τ | ≤ τ0.

Then, for a regular surface Σ as defined by Definition 1.12, the operator
QΣ(τ, σ) : L2(Σ)→ C(Σ) represented by

QΣ(τ, σ)F (x) =

∫
Σ

F (y)
1

|x+ τµ(x)− (y + σν(y))|
dω(y), F ∈ L2(Σ),

is called a Laplace potential operator on Σ.
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In the sense of this definition we are able to introduce the Laplace po-
tential operators for a single and a double layer on the regular surface Σ.

The Laplace potential operator of a single layer on Σ for values on the
smoothed parallel surface Σ(τ): QΣ(τ, 0) : L2(Σ)→ C(Σ) is given by

QΣ(τ, 0)F (x) =

∫
Σ

F (y)
1

|x+ τµ(x)− y|
dω(y). (2.6)

Analogously, we can introduce the Laplace potential operator of a double
layer on Σ for values on Σ(τ): QΣ

|2(τ, 0) : L2(Σ)→ C(Σ) by

QΣ
|2(τ, 0)F (x) =

∂

∂σ
QΣ(τ, σ)F (x)

∣∣∣∣
σ=0

=

∫
Σ

F (y)
ν(y)(x+ τµ(x)− y)

|x+ τµ(x)− y|3
dω(y).

(2.7)

In the same manner, we are able to introduce the Laplace potential op-
erator of the directional derivative of a single layer potential for values on
Σ(τ):

QΣ
|1(τ, 0)F (x) =

∂

∂τ
QΣ(τ,Σ)F (x)

∣∣∣∣
σ=0

= −
∫
Σ

F (y)
µ(x)(x+ τµ(x)− y)

|x+ τµ(x)− y|3
dω(y).

(2.8)

If τ = σ = 0, the kernels of the formally defined potentials have weak
singularities. The associated potential operators are given by the weakly
singular integral expressions

QΣ(0, 0)F (x) =

∫
Σ

F (y)
1

|x− y|
dω(y), (2.9)

QΣ
|2(0, 0)F (x) =

∫
Σ

F (y)
∂

∂ν(y)

1

|x− y|
dω(y), (2.10)

QΣ
|1(0, 0)F (x) =

∂

∂µ(x)

∫
Σ

F (y)
1

|x− y|
dω(y). (2.11)

Remark 2.2 Let F be a continuous function on a regular surface Σ. Then
the functions (2.9), (2.10), and (2.11) are infinitely often differentiable and
satisfy the Laplace equation in Σint and Σext. In addition, these functions
are regular at infinity.
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For F ∈ C(Σ), these function can be continued continuously to the surface
Σ, but the limits depend from which (smoothed) parallel surface (inner or
outer) the point x tend to Σ. On the other hand, the functions also are
defined on the surface Σ, i.e., all integrals (2.9), (2.10), and (2.11) exist
for x ∈ Σ. However, it is known (see, e.g., [47], [56]) the integrals do not
coincide, in general, with the inner or outer limits of the potentials. This
observation, in fact, is the reason for the introduction of potential wavelets
as discussed in our approach.

In order to give concise formulations of the limit formulas and jump rela-
tions in the Hilbert space L2(Σ), the adjoint operators should be introduced.

Definition 2.3 The operator QΣ(τ, σ)∗ : L2(Σ)→ C(Σ) satisfying(
F,QΣ(τ, σ)G

)
L2(Σ)

=
(
QΣ(τ, σ)∗F,G

)
L2(Σ)

,

for all functions F,G ∈ L2(Σ) is called the adjoint Laplace operator of
QΣ(τ, σ) with respect to the scalar product (·, ·)L2(Σ).

According to Fubini’s theorem we are able to interchange the order of
integration(
F,QΣ(τ, σ)G

)
L2(Σ)

=

∫
Σ

F (x)

∫
Σ

G(y)
1

|x+ τµ(x)− (y + σν(y))|
dω(y)dω(x)

=

∫
Σ

G(y)

∫
Σ

F (x)
1

|x+ τµ(x)− (y + σν(y))|
dω(x)dω(y)

=
(
QΣ(τ, σ)∗F,G

)
L2(Σ)

.

By comparison we thus have the adjoint operator QΣ(τ, 0)∗ of the Laplace
potential operator QΣ(τ, 0) reads

QΣ(τ, 0)∗F (x) = QΣ(τ, σ)∗F (x)
∣∣
Σ=0

=

∫
Σ

F (y)
1

|x− y − τµ(y)|
dω(y).

In an analogous way, we obtain the adjoint operator of the directional
derivative of a single layer

QΣ
|1(τ, 0)∗F (x) =

∫
Σ

F (y)
µ(y)(x− y − τµ(y))

|x− y − τµ(y)|3
dω(y),
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and the adjoint operator of the Laplace potential operator of a double layer

QΣ
|2(τ, 0)∗F (x) = −

∫
Σ

F (y)
ν(x)(x− y − τµ(y))

|x− y − τµ(y)|3
dω(y),

where ν(x) may be replaced by µ(x) in all edges and corners x. This sub-
stitution has no influence on Lebesgue integrals, because the set of all edges
and corners has the surface measure zero.

If we tighten the smoothed parallel surfaces Σ(τ) and Σ(−τ) to the regu-
lar surface Σ, we obtain the limit and jump relations for the Laplace potential
operators. In doing so, we essentially follow [72].

As first result we mention two-sided limit relations for the single layer
operator.

Lemma 2.4 Let Σ be a regular surface as defined by Definition 1.12. Then

lim
τ→0
τ>0

∥∥(QΣ(τ, 0)−QΣ(−τ, 0)
)∣∣ C(Σ)

∥∥
C(Σ)

= 0.

Proof For F ∈ C(Σ) and the number δ, as defined by Definition 1.12, and
a sufficiently small number ε > 0 we get∣∣QΣ(τ, 0)F −QΣ(−τ, 0)F

∣∣
=

∣∣∣∣∣∣
∫
Σ

F (y)

(
1

|x+ τµ(x)− y|
− 1

|x− τµ(x)− y|

)
dω(y)

∣∣∣∣∣∣
≤ ‖F‖C(Σ)

 ∫
Σ\Ωintδ (x)

∣∣∣∣ 1

|x+ τµ(x)− y|
− 1

|x− τµ(x)− y|

∣∣∣∣ dω(y)

+

∫
Σ∩Ωintδ (x)

∣∣∣∣ 1

|x+ τµ(x)− y|
− 1

|x− τµ(x)− y|

∣∣∣∣ dω(y)

 .

For y ∈ Σ \ Ωint
δ (x) and |τ | < δ

2 , we have the estimate

|x± τµ(x)− y| ≥ ||x− y| − |τ || ≥ δ

2
.

Observing the last estimate we find∣∣∣∣ 1

|x+ τµ(x)− y|
− 1

|x− τµ(x)− y|

∣∣∣∣
=
||x− τµ(x)− y| − |x+ τµ(x)− y||
|x+ τµ(x)− y||x− τµ(x)− y|

≤ 2|τ |(
δ
2

)2 =
8|τ |
δ2

.
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For sufficiently small |τ |, it therefore follows that∫
Σ\Ωintδ (x)

∣∣∣∣ 1

|x+ τµ(x)− y|
− 1

|x− τµ(x)− y|

∣∣∣∣ dω(y) ≤ 8|τ |
δ2
‖Σ‖ < ε

2
, (2.12)

where, as always, ‖Σ‖ denotes the surface area of Σ.
Next, using the local surface construction of a regular surface and the

estimate provided by Remark 1.16, we obtain∫
Σ∩Ωintδ (x)

∣∣∣∣ 1

|x+ τµ(x)− y|
− 1

|x− τµ(x)− y|

∣∣∣∣ dω(y)

≤
∫

Σ∩Ωintδ (x)

2|τ |
(1− α) (|x− y|2 + τ2)

dω(y). (2.13)

Σ∩Ωint
δ (x) consists of ñ regular surface elements Ξl, l = 1, . . . , ñ. Converting

the integral on the right side in Equation (2.13) to the parameter domain T
and after that to the polar coordinates, we find

∫
Σ∩Ωintδ (x)

2|τ |dω(y)

(1− α) (|x− y|2 + τ2)
≤
∫

Ωintδ

2|τ |
√

1 +H2
|1 +H2

|2

(1− α) (|y|2 + τ2)
dy1dy2

≤ 2 (1 +M) |τ | 1

(1− α)

∫
Ωintδ

dy1dy2

|y|2 + τ2

≤ 2 (1 +M)

1− α
|τ |

2π∫
0

δ∫
0

rdrdφ

r2 + τ2

≤ 2 (1 +M)π

1− α
|τ | ln

{
δ2 + τ2

τ2

}
.

By virtue of l’Hôpital’s rule, we get

lim
τ→0
τ>0

2 (1 +M)π

1− α
|τ | ln

{
δ2 + τ2

τ2

}
= 0.

Thus we have for all sufficiently small |τ | the estimate:∫
Σ∩Ωintδ (x)

∣∣∣∣ 1

|x+ τµ(x)− y|
− 1

|x− τµ(x)− y|

∣∣∣∣ dω(y)

≤ 2 (1 +M)π

1− α
|τ | ln

{
δ2 + τ2

τ2

}
≤ ε

2
. (2.14)
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Summarizing the estimates (2.12), (2.14) for all sufficiently small τ we obtain∣∣∣∣∣∣
∫
Σ

F (y)

(
1

|x+ τµ(x)− y|
− 1

|x− τµ(x)− y|

)
dω(y)

∣∣∣∣∣∣ ≤ ‖F‖C(Σ)ε,

as required. �

Next we come to the adjoint operators.

Lemma 2.5 For a regular surface Σ

lim
τ→0
τ>0

∥∥∥(QΣ(τ, 0)−QΣ(−τ, 0)
)∗∣∣∣ C(Σ)

∥∥∥
C(Σ)

= 0.

Proof Our goal is to prove

lim
τ→0
τ>0

∥∥∥(QΣ(τ, 0)−QΣ(−τ, 0)
)∗∣∣∣ C(Σ)

∥∥∥
C(Σ)

= lim
τ→0
τ>0

sup
F∈C(Σ)

sup
x∈Σ

∣∣∣∣F (y)

(
1

y + τµ(y)− x
− 1

y − τµ(y)− x

)
dω(y)

∣∣∣∣ = 0.

Let x ∈ Σ, F ∈ C(Σ). For the constant δ as specified by Definition 1.12, we
choose δ0 < δ. Then, for y1, y2 ∈ Σ satisfying |y1 − y2| < δ0, because of the
continuity of µ we have

|µ(y1)− µ(y2)| ≤ 1− α
2

, (2.15)

where α is the constant known from Lemma 1.14. Moreover, we have∣∣∣∣∣∣
∫
Σ

F (y)

(
1

|x+ τµ(x)− y|
− 1

|y + τµ(y)− x|

)
dω(y)

∣∣∣∣∣∣
≤ ‖F‖C(Σ)

 ∫
Σ\Ωintδ0 (x)

∣∣∣∣ 1

|x+ τµ(x)− y|
− 1

|y + τµ(y)− x|

∣∣∣∣ dω(y)

+

∫
Σ∩Ωintδ0

(x)

∣∣∣∣ 1

|x+ τµ(x)− y|
− 1

|y + τµ(y)− x|

∣∣∣∣ dω(y)

 .

With the assumption that |τ | < δ0
2 , we obtain

|x± τµ(x)− y| ≥ ||x− y| − |τ || > δ0

2
.
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According to the last inequality, we immediately obtain (analogously to
Lemma 2.4) the estimate∫

Σ\Ωintδ0 (x)

∣∣∣∣ 1

|x+ τµ(x)− y|
− 1

|y + τµ(y)− x|

∣∣∣∣ dω(y) ≤ 8|τ |
δ2

0

‖Σ‖.

Next we study the case y ∈ Σ ∩ Ωint
δ0

(x):∣∣∣∣ 1

|x+ τµ(x)− y|
− 1

|y + τµ(y)− x|

∣∣∣∣
=
||y + τµ(y)− x| − |x+ τµ(x)− y||
|x+ τµ(x)− y||y + τµ(y)− x|

≤ 2|τ |
|x+ τµ(x)− y||y + τµ(y)− x|

. (2.16)

The denominator can be further estimated as follows

|x+ τµ(x)− y| |y + τµ(y)− x| = |(x+ τµ(x)− y) (y + τµ(y)− x)|

=
∣∣|y − x|2 + τ2 − τ(µ(x)− µ(y))(y − x)

∣∣
≥ |y − x|2 + τ2 − |τ ||µ(x)− µ(y)||y − x|. (2.17)

With respect to Equation (2.15), we can further estimate the term
|τ ||µ(x)− µ(y)||y − x| in the last inequality

|τ ||µ(x)− µ(y)||y − x| ≤ 1− α
2
|τ ||y − x|

≤ 1 + α

2
|τ ||y − x|

≤ 1 + α

2

(
|y − x|2 + τ2

) (2.18)

In response to (2.16) and by use of (2.17), (2.18) we obtain∫
Σ∩Ωintδ0

(x)

∣∣∣∣ 1

|x+ τµ(x)− y|
− 1

|y + τµ(y)− x|

∣∣∣∣ dω(y)

≤
∫

Σ∩Ωintδ0
(x)

2|τ |dω(y)

|x+ τµ(x)− y||y + τµ(y)− x|

≤
∫

Σ∩Ωintδ0
(x)

2|τ |dω(y)

(1− α) (|y − x|2 + τ2)
. (2.19)



46 Helmholtz Potential Wavelets

The same manipulations as in Lemma 2.4 imply

lim
τ→0
τ>0

2

1− α
|τ |

∫
Σ∩Ωintδ0

(x)

dω(y)

|y − x|2 + τ2
= 0,

which is already proven in Lemma 2.4. �

Now we deal with one-sided limit relation for the single layer operator.

Lemma 2.6 For a regular surface Σ

lim
τ→0
τ>0

∥∥(QΣ(±τ, 0)−QΣ(0, 0)
)∣∣ C(Σ)

∥∥
C(Σ)

= 0.

Proof For F ∈ C(Σ) and the number δ, as defined by Definition 1.12, and
a sufficiently small number ε > 0, we have:∣∣∣∣∣∣
∫
Σ

F (y)

(
1

|x± τµ(x)− y|
− 1

|x− y|

)∣∣∣∣∣∣
= ‖F‖C(Σ)

 ∫
Σ\Ωintδ (x)

∣∣∣∣ 1

|x± τµ(x)− y|
− 1

|x− y|

∣∣∣∣ dω(y)

+

∫
Σ∩Ωintδ (x)

∣∣∣∣ 1

|x± τµ(x)− y|
− 1

|x− y|

∣∣∣∣ dω(y)

 .

If y ∈ Σ \ Ωint
δ (x) and τ < δ

2 , we are able to write

|x− y| ≥ δ;

|x± τµ(x)− y| ≥ ||x− y| − |τ || ≥ δ

2
.

The last relation implies∣∣∣∣ 1

|x± τµ(x)− y|
− 1

|x− y|

∣∣∣∣ =

∣∣∣∣ |x− y| − |x± τµ(x)− y|
|x± τµ(x)− y||x− y|

∣∣∣∣ ≤ 2|τ |
δ2

.

For a sufficiently small τ , we have∫
Σ\Ωintδ (x)

∣∣∣∣ 1

|x± τµ(x)− y|
− 1

|x− y|

∣∣∣∣ dω(y) ≤ 2|τ |
δ2
‖Σ‖ < ε

2
,
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where ‖Σ‖ denotes as before the surface area of Σ.
Next we consider the case y ∈ Σ ∩ Ωint

δ (x). We study

|x± τµ(x)− y| |x− y| =
∣∣(x− y)2 ± τµ(x)(x− y)

∣∣ .
According to Equation (1.86), the last expression can be estimated as follows∣∣(x− y)2 ± τµ(x)(x− y)

∣∣ ≥ |x− y|2 − |τ ||µ(x)(x− y)|

≥ |x− y|2 − α

2

(
|x− y|2 + τ2

)
=

2− α
2
|x− y|2 − α

2
τ2.

Consequently, using the same manipulations as in Lemma 2.4, we obtain

∫
Σ∩Ωintδ (x)

∣∣∣∣ 1

|x± τµ(x)− y|
− 1

|x− y|

∣∣∣∣ dω(y)

≤ 2

2− α

∫
Σ∩Ωintδ (x)

|τ |
|x− y|2 − α

2−ατ
2
dω(y)

≤ 2

2− α

∫
Ωintδ

|τ |
√

1 +H2
|1 +H2

|2

|y|2 − α
2−ατ

2
dy1dy2

≤ (1 +M)
2|τ |

2− α

2π∫
0

δ∫
0

rdrdφ

r2 − α
2−ατ

2

= (1 +M)
2|τ |π
2− α

ln

(
(2− α)δ2

ατ2
− 1

)
,

where H is as defined by Definition 1.12.
According to l’Hôpital’s rule,

lim
τ→0
τ>0

(1 +M)
2|τ |π
2− α

ln

(
(2− α)δ2

ατ2
− 1

)
= 0.

So that for all sufficiently small |τ | we get the estimate:∫
Σ∩Ωintδ (x)

∣∣∣∣ 1

|x± τµ(x)− y|
− 1

|x− y|

∣∣∣∣ dω(y)

≤ (1 +M)
2|τ |π
2− α

ln

(
(2− α)δ2

ατ2
− 1

)
≤ ε

2
.
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Finally, we obtain for all sufficiently small |τ |

∫
Σ

∣∣∣∣ 1

|x± τµ(x)− y|
− 1

|x− y|

∣∣∣∣ dω(y) ≤ ‖F‖C(Σ)ε,

as required. �

It should be remarked that, according to Definition 1.8, the integral

∫
Σ

F (y)
∂

∂ν(y)

1

|x− y|
dω(y)

exists for all continuous functions F on Σ and all x ∈ R3, so that the defini-
tion QΣ

|2(0, 0) : C(Σ)→ Ĉ(Σ) makes sense, where QΣ
|2(0, 0)F is given by

QΣ
|2(0, 0)F (x) =

∫
Σ

F (y)
∂

∂ν(y)

1

|x− y|
dω(y)

(see (2.10)).

The following lemma presents a one-sided limit relation for the double
layer operator.

Lemma 2.7 For a regular surface Σ and all F ∈ C(Σ)

(i) lim
τ→0
τ>0

∥∥∥QΣ
|2(τ, 0)F −QΣ

|2(0, 0)F − ωF
∥∥∥
C(Σ)

= 0.

(ii) lim
τ→0
τ>0

∥∥∥QΣ
|2(−τ, 0)F −QΣ

|2(0, 0)F − (4π − ω)F
∥∥∥
C(Σ)

= 0.

Proof To (i): Let F ∈ C(Σ), x ∈ Σ, ε > 0, 0 < τ < τ0 be adapted. For
the number δ as defined by Definition 1.12 we choose a number δ0 satisfying
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0 < δ0 < δ. Then, we have

∣∣∣QΣ
|2(τ, 0)F −QΣ

|2(0, 0)F − ωF
∣∣∣ =

∣∣∣∣∣∣
∫
Σ

F (y)
∂

∂ν(y)

1

|x+ τµ(x)− y|
dω(y)

−
∫
Σ

F (y)
∂

∂ν(y)

1

|x− y|
dω(y)− ω(x)F (x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
Σ

F (y)
∂

∂ν(y)

1

|x+ τµ(x)− y|
dω(y) −

∫
Σ

F (y)
∂

∂ν(y)

1

|x− y|
dω(y)

− F (x)

∫
Σ

∂

∂ν(y)

1

|x− y|
dω(y)

∣∣∣∣∣∣
≤

∫
Σ∩Ωintδ0

(x)

|F (y)− F (x)|
∣∣∣∣ ∂

∂ν(y)

1

|x+ τµ(x)− y|

∣∣∣∣ dω(y)

+ |F (x)|

∣∣∣∣∣∣
∫
Σ

∂

∂ν(y)

1

|x+ τµ(x)− y|
dω(y)

∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣
∫

Σ\Ωintδ0 (x)

F (x)

(
∂

∂ν(y)

1

|x− y|
− ∂

∂ν(y)

1

|x+ τµ(x)− y|

)
dω(y)

∣∣∣∣∣∣∣∣
+

∫
Σ∩Ωintδ0

(x)

|F (x)− F (y)|
∣∣∣∣ ∂

∂ν(y)

1

|x− y|

∣∣∣∣ dω(y)

+

∣∣∣∣∣∣∣∣
∫

Σ\Ωintδ0 (x)

F (y)

(
∂

∂ν(y)

1

|x+ τµ(x)− y|
− ∂

∂ν(y)

1

|x− y|

)
dω(y)

∣∣∣∣∣∣∣∣
≤ `F (δ0)

∫
Σ∩Ωintδ0

(x)

∣∣∣∣ ∂

∂ν(y)

1

|x+ τµ(x)− y|

∣∣∣∣ dω(y) + |F (x)| 0

+ C‖F‖C(Σ)‖Σ‖
τ

δ3
0

+ `F (δ0)

∫
Σ∩Ωintδ0

(x)

∣∣∣∣ ∂

∂ν(y)

1

|x− y|

∣∣∣∣ dω(y).

The second integral is bounded according to Lemma 1.19 for a sufficiently
small δ0. And because (x+ τµ(x)) ∈ Σext, we have for the first integral with
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respect to Definition 1.8∫
Σ

∂

∂ν(y)

1

|x+ τµ(x)− y|
dω(y) = 0.

If we assume that δ0 = τ
1
4 , we immediately obtain the proof for the case (i).

To (ii): We use the same splitting as in case (i). The proof is obtained
with respect to Definition 1.8 because of (x− τµ(x)) ∈ Σint∫

Σ

∂

∂ν(y)

1

|x+ τµ(x)− y|
dω(y) = −4π.

�

Using results of Lemma 2.7, we formulate the next theorem.

Theorem 2.8 The following statements are satisfied:

(i) For all F ∈ C(Σ)

lim
τ→0
τ>0

∥∥∥QΣ
|2(τ, 0)F −Q|2(−τ, 0)F − 4πF

∥∥∥
C(Σ)

= 0.

(ii) There exist numbers M and τ0 > 0, such that for all 0 < τ < τ0∥∥∥(QΣ
|2(τ, 0)−QΣ

|2(−τ, 0)− 4πI
)∣∣∣ C(Σ)

∥∥∥
C(Σ)
≤M.

(iii) There exist numbers M and τ0 > 0, such that for all 0 < τ < τ0∥∥∥(QΣ
|2(τ, 0)−QΣ

|2(−τ, 0)− 4πI
)∗∣∣∣ C(Σ)

∥∥∥
C(Σ)
≤M,

where ν(x) = µ(x) for all edges and corners x.

Proof To (i) and (ii): From the proof of Lemma 2.7, we have with respect
to the triangle inequality∣∣∣QΣ

|2(τ, 0)F (x)−QΣ
|2(−τ, 0)F (x)− 4πF (x)

∣∣∣
≤ `F (δ0)

∫
Σ∩Ωintδ0

(x)

∣∣∣∣ ∂

∂ν(y)

(
1

|x+ τµ(x)− y|
+

1

|x− τµ(x)− y|

)∣∣∣∣ dω(y)

+ 2`F (δ0)

∫
Σ∩Ωintδ0

(x)

∣∣∣∣ ∂

∂ν(y)

1

|x− y|

∣∣∣∣ dω(y) + C‖F‖C(Σ)‖Σ‖
τ

δ3
0
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From this estimate with respect to Lemma 1.19 and according to the in-
equality `F (δ0) ≤ 2‖F‖C(Σ), we obtain the proof for (ii). Suppose in Lemma
2.7 that δ0 = τ

1
4 . Then we have the proof for (i) from the last estimate too:

lim
τ→0
τ>0

∥∥∥QΣ
|2(τ, 0)F −Q|2(−τ, 0)F − 4πF

∥∥∥
C(Σ)

= 0,

for all functions F ∈ C(Σ).
To (iii): Let F ∈ C(Σ), x ∈ Σ, 0 < δ0 < δ be defined as in Lemma 2.4.

Then, we have∣∣∣QΣ
|2(τ, 0)∗F (x)−QΣ

|2(−τ, 0)∗F (x)− 4πF (x)
∣∣∣

≤ 4π‖F‖C(Σ)

+

∣∣∣∣∣∣
∫
Σ

F (y)

(
ν(x) (y + τµ(y)− x)

|y + τµ(y)− x|3
− ν(x) (y − τµ(y)− x)

|y − τµ(y)− x|3

)
dω(y)

∣∣∣∣∣∣
≤ 4π‖F‖C(Σ)

+ ‖F‖C(Σ)

∫
Σ

∣∣∣∣ν(x) (y + τµ(y)− x)

|y + τµ(y)− x|3
− ν(x) (y − τµ(y)− x)

|y − τµ(y)− x|3

∣∣∣∣ dω(y)

≤ 4π‖F‖C(Σ)

+ ‖F‖C(Σ)

∫
Σ

∣∣∣∣ (y + τµ(y)− x) |y − τµ(y)− x|3

|y + τµ(y)− x|3|y − τµ(y)− x|3

− (y − τµ(y)− x) |y + τµ(y)− x|3

|y + τµ(y)− x|3|y − τµ(y)− x|3

∣∣∣∣ dω(y)

We split the last integral in the inequality into two parts
∫

Σ\Ωintδ0 (x)

(. . .) dω(y)

and
∫

Σ∩Ωintδ0
(x)

(. . .) dω(y). For the denominator of the first part of splitting

we have the estimate:

|y + τµ(y)− x|3|y − τµ(y)− x|3 ≥ δ6
0

64
.

For the denominator of the second splitting part

|y + τµ(y)− x|3|y − τµ(y)− x|3 ≥
(

1− α
2

)3 (
|y − x|2 + τ2

)3
.
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In the same manner as in Lemma 2.4 for an adapted τ < τ0, we obtain the
estimate for the first integral:∫

Σ\Ωintδ0 (x)

|. . .| dω(y) ≤ C

δ6
0

.

Because of a3 ± b3 = (a± b)
(
a2 ∓ ab+ b2

)
, where a = |y − x− τµ(y)| and

b = |y − x+ τµ(y)|, we have for the nominator of the second integral with
respect to the triangle inequality:∣∣(y − x)

(
a3 − b3

)
+ τµ(y)

(
a3 + b3

)∣∣
≤ 2|τ ||y − x|

(
a2 + ab+ b2

)
+ |τ | (2|y − x|+ 2τ)

(
a2 − ab+ b2

)
= 2|τ ||y − x|

(
a2 + 2b

)
+ 2|τ |2

(
a2 − ab+ b2

)
≤ 8|τ ||y − x|

(
|y − x|2 + |τ |2

)
+ 2|τ |2

(
2|y − x|2 − 2|τ |2 −

∣∣|y − x|2 − |τ |2∣∣)
≤ 8|τ ||y − x|

(
|y − x|2 + |τ |2

)
+ 4|τ |

(
|y − x|2 + |τ |2

)
=
(
8|τ ||y − x|+ 4|τ |2

) (
|y − x|2 + |τ |2

)
.

Thus we have the following estimate in terms of polar coordinates:∫
Σ∩Ωintδ0

(x)

8|τ ||y − x|+ 4|τ |2(
1−α

2

)3
(|y − x|2 + |τ |2)2

dω(y)

≤ C
∫

Σ∩Ωintδ0
(x)

|τ ||y − x|+ |τ |2

(|y − x|2 + |τ |2)2dω(y)

≤ C1|τ |
2π∫
0

δ0∫
0

r2drdφ

(r2 + τ2)2 + C1|τ |2
2π∫
0

δ0∫
0

rdrdφ

(r2 + τ2)2

≤ C2|τ |

(
−δ0

2
(
δ2

0 + τ2
) +

1

2|τ |
arctan

δ0

|τ |

)

+ C2|τ |2
(

1

2τ2
− 1

2
(
δ2

0 + τ2
)) ≤ C3.

Collecting all estimates, we obtain the proof for the constant

M = ‖F‖C(Σ)

(
4π +

C

δ6
0

+ C3

)
.

�
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The jump relations, known for smooth surfaces, lose their validity for
the directional derivative of the single layer potential on surfaces possessing
edges and corners, because of the singularity in the neighborhood of such
points. For this reason, we use the potentials of single and double layer and
the contour integral on regular surface elements as described in [57], [72], to
determine the singular behavior.

Lemma 2.9 For all x /∈ Σ and all F ∈ C(1)(Σ)

∇x
∫
Σ

F (y)
1

|x− y|
dω(y) = −

∫
Σ

F (y)ν(y)
∂

∂ν(y)

1

|x− y|
dω(y)

+

∫
Σ

(∇∗F + 2ΥFν) (y)
1

|x− y|
dω(y)

−
∫
Q(Σ)

ν(y)F (y)
1

|x− y|
dσ(y),

where the last integral denotes the contour integral over all boundaries of
regular surfaces. (If the boundary Σ is a C(2)-surface, the last integral in the
sum equals zero.)

From Lemma 2.9 it follows that

Lemma 2.10 For all x /∈ Σ and all F ∈ C̃(1)(Σ)

∇x
∫
Σ

F (y)
1

|x− y|
dω(y) = −

∫
Σ

F (y)ν(y)
∂

∂ν(y)

1

|x− y|
dω(y)

+

∫
Σ

(∇∗F + 2ΥFν) (y)
1

|x− y|
dω(y).

Because of F ∈ C̃(1)(Σ), the terms Fν and ∇∗F + 2ΥFν represent con-
tinuous vector fields in Lemma 2.10. Following the results of the previous
subsections, the limit relations for the directional derivative of the single
layer potential can be established.

Theorem 2.11 For the operator Ĩ as defined by (2.5), the following limit
relations are satisfied:

(i) For all F ∈ C̃(1)(Σ)

lim
τ→0
τ>0

∥∥∥QΣ
|1(τ, 0)F −QΣ

|1(−τ, 0)F + 4πĨF
∥∥∥
C(Σ)

= 0.
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(ii) For all F ∈ C̃(1)(Σ) and constants M , τ0 > 0 and 0 < τ < τ0

∥∥∥(QΣ
|1(τ, 0)−QΣ

|1(−τ, 0) + 4πĨ
)∣∣∣ C(Σ)

∥∥∥
C(Σ)
≤M.

(iii) For all F ∈ C̃(1)(Σ) and constants M , τ0 > 0 and all 0 < τ < τ0

∥∥∥(QΣ
|1(τ, 0)−QΣ

|1(−τ, 0) + 4πĨ
)∗∣∣∣ C(Σ)

∥∥∥
C(Σ)
≤M.

Proof To (i): For x ∈ Σ we have with respect to Lemma 2.10:

∣∣∣QΣ
|1(τ, 0)F −QΣ

|1(−τ, 0)F + 4π(µ(x)ν(x))F
∣∣∣∣∣∣∣∣∣=

∫
Σ

F (y)
µ(x)(x− τµ(x)− y)

|x− τµ(x)− y|3
dω(y)

−
∫
Σ

F (y)
µ(x)(x+ τµ(x)− y)

|x+ τµ(x)− y|3
dω(y) + 4(µ(x)ν(y))F (x)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
Σ

F (y)(µ(x)ν(y))
∂

∂ν(y)

1

|x+ τµ(x)− y|
dω(y)

−
∫
Σ

F (y)(µ(x)ν(y))
∂

∂ν(y)

1

|x− τµ(x)− y|
dω(y) + 4π(µ(x)ν(x))F (x)

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
Σ

(ν(x)∇∗F (y) + 2Υ(y)F (y)µ(x)ν(y))×

×
(

1

|x+ τµ(x)− y|
− 1

|x− τµ(x)− y|

)
dω(y)

∣∣∣∣ .
According to Lemma 2.4 and Theorem 2.8(i), the limit on the right side
in the last inequality is zero. As the limit relation is uniformly relative to
x ∈ Σ, this result is valid for all functions F ∈ C̃(1)(Σ).

To (ii): The proof can be directly obtained from the estimates from
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Lemma 1.14 and Theorem 2.8. We have for all functions F ∈ C(Σ):∣∣∣QΣ
|1(τ, 0)F −QΣ

|1(−τ, 0)F + 4π(µ(x)ν(x))F
∣∣∣

=

∣∣∣∣∣∣
∫
Σ

F (y)
µ(x)(x− τµ(x)− y)

|x− τµ(x)− y|3
dω(y)

−
∫
Σ

F (y)
µ(x)(x+ τµ(x)− y)

|x+ τµ(x)− y|3
dω(y) + 4(µ(x)ν(y))F (x)

∣∣∣∣∣∣
≤ 4π‖F‖C(Σ)

+

∣∣∣∣∣∣
∫
Σ

F (y)

(
µ(x)(x− τµ(x)− y)

|x− τµ(x)− y|3
− µ(x)(x+ τµ(x)− y)

|x+ τµ(x)− y|3

)
dω(y)

∣∣∣∣∣∣
≤ 4π‖F‖C(Σ) + ‖F‖C(Σ)

∫
Σ

∣∣∣∣ (x− τµ(x)− y)|x+ τµ(x)− y|3

|x− τµ(x)− y|3|x+ τµ(x)− y|3

− (x+ τµ(x)− y)|x− τµ(x)− y|3

|x− τµ(x)− y|3|x+ τµ(x)− y|3

∣∣∣∣ dω(y)

≤ ‖F‖C(Σ)

(
4π +

C

δ6
0

)
+‖F‖C(Σ)

∫
Σ∩Ωintδ0

(x)

8|τ ||y − x|+ 4|τ |2

(1− α)3 (|y − x|2 + τ2)2dω(y).

The final estimate is obtained for the constant M =

(
4π +

C

δ6
0

)
‖F‖C(Σ).

To (iii): Because |µ(x)| = |ν(y)| = 1 for all x ∈ Σ, the proof completely
matches the proof of Theorem 2.8(iii). �

Remark 2.12 With conventional agreements for the vector field, we deduce
from the proof of Theorem 2.11(ii) also uniform boundedness of the difference∫

Σ

F (y)
y − x− τµ(x)

|y − x− τµ(x)|3
dω(y)−

∫
Σ

F (y)
y − x+ τµ(x)

|y − x+ τµ(x)|3
dω(y),

for all 0 < τ < τ0 and all F ∈ C(Σ) relative to the supremum norm.

The jump and limit relations can be generalized to the Hilbert space
L2(Σ). The main tool for this assertion is a lemma known form functional
analysis (cf. [50], [55]).
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Lemma 2.13 Let H be a Hilbert space with the scalar product (., .). Let
B ⊂ H be a normed subspace with norms ‖.‖1 and ‖.‖2 = (., .)

1
2 . Assume

that there exists a constant C, such that

‖x‖2 ≤ C‖x‖1

for all x ∈ B. Moreover, let the operator T : B → B be linear and bounded
relative to ‖.‖1. Let T ∗|B : B → B be the adjoint operator of T with respect
to the scalar product (., .) and be further bounded relative to ‖.‖1. Then, the
operator T is also bounded relative to ‖.‖2.

Proof The operator T ∗ is the adjoint operator of T with respect to the
scalar product (., .). Then, after the application of the Cauchy-Schwarz’s
inequality we obtain for all x ∈ B:

‖T x‖22 = (T x, T x) = (x, T ∗T x) ≤ ‖x‖2‖T ∗T x‖2.

Hence, the next estimate is valid

‖T x‖42 ≤ ‖x‖22‖T ∗T x‖22 ≤ ‖x‖2‖x‖2‖(T ∗T )2x‖2.

Then, by the application of the induction and with use of the properties of
T and T ∗ we have

‖T x‖2n2 ≤ ‖x‖2
n−1

2

∥∥∥(T ∗T )2n−1

x
∥∥∥

2

≤ ‖x‖2n−1
2 C

∥∥∥(T ∗T )2n−1 x
∥∥∥

1

≤ ‖x‖2n−1
2 CC2n

1 ‖x‖1.

Consequently, we obtain for all n ∈ N and x 6= 0

‖T x‖2
n

2

‖x‖2n2

≤ CC2n

1

‖x‖1
‖x‖2

,

so that after some manipulations

‖T x‖2
‖x‖2

≤ C1

(
C‖x‖1
‖x‖2

)2−n

.

This shows that
‖T ‖2 ≤ C1

holds true for n→∞, as required. �
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Because the function spaces C(Σ) and C̃(1)(Σ) with the scalar product
(., .)L2(Σ) can be used as linear subspaces of L2(Σ), the next lemmas are
valid (cf. [72]):

Lemma 2.14 The space C(Σ) is dense in L2(Σ).

Lemma 2.15 The space C̃(1)(Σ) is dense as subspace of L2(Σ).

Proof Let Ξ ⊂ Σ be closed. χΞ is a characteristic function on Ξ. Then,
according to [67], it is sufficient to prove, that for each ε > 0 there exists a
function F ∈ C̃(1)(Σ) satisfying the estimate

‖χΞ − F‖L2(Σ) ≤ ε. (2.20)

Really, because each function of L2(Σ) is a limit function of a sequence
of piecewise constant functions W , so that with respect to

W =

n∑
l=1

clχΞl , Ξl ⊂ Σ, l = 1, . . . , n,

for all Fl ∈ C̃(1)(Σ), l = 1, . . . , n from the equality

n∑
l=1

clFl = F̃ ,

follows the estimate∥∥∥W − F̃∥∥∥
L2(Σ)

≤
n∑
l=1

|cl| ‖χΞl − Fl‖L2(Σ) .

Each Ξ ⊂ Σ can be divided into a finite number of regular surface ele-
ments. According to Definition 1.11, there exists a Cartesian coordinate sys-
tem (tangential-normal-system) for each of these regular surface elements.
Without loss of generality, we assume that Ξ is a regular surface element
with the tangential-normal-system defined in an inner point x ∈ Ξ, so that
the boundary of Ξ consists of edges and corners. In this case Ξ corresponds
to a closed parameter domain T ⊂ R2 possessing the origin.

Now we define a continuous function on T that equals the constant 1 out-
side the boundary stripes of the width 2a and declines to 0 at the boundaries
(as shown in the figure below).
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By use of the integral smoothing process (described, e.g., in [81]), we
obtain infinitely differentiable function F1 on T that equals 1 beyond the
boundary stripes and declines to zero at the boundaries with all its deriva-
tives. If we set all values of F1 at the remains of Σ to zero, we again obtain
the function F ∈ C̃(1)(Σ) because of the bijection between Ξ and T .

With a sufficiently small number a relative to ε > 0, the ratio of the
surface, corresponding to the boundary stripes relative to Ξ is less then

ε

2
.

This implies the estimate

‖χΞ − F‖L2(Σ) ≤ ε.

�

We obtain the continuation of operators from a subspace to L2 from the
next lemma.

Lemma 2.16 (cf. [51]) Let H be a Banach space. B ⊂ H is a linear
subspace, dense in H. T : B → H is linear and bounded. Then the operator
T can be continued to the whole space according to the linearity and the
norm.

For simplicity we introduce the following notation (cf. [31]).

Definition 2.17 For sufficiently small τ > 0, the operators

JΣ
1 (τ) = QΣ(τ, 0)−QΣ(−τ, 0),

JΣ
2 (τ) = QΣ

|1(τ, 0)−QΣ
|1(−τ, 0) + 4πĨ,

JΣ
3 (τ) = QΣ

|2(τ, 0)−QΣ
|2(−τ, 0)− 4πI,

(2.21)

are called jump operators.

Now we can prove the jump relations in L2(Σ) (see, e.g., [28], [72]).

Theorem 2.18 For a regular surface Σ and all F ∈ L2(Σ)

(i) lim
τ→0
τ>0

∥∥QΣ(τ, 0)F −QΣ(−τ, 0)F
∥∥
L2(Σ)

= 0.
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(ii) lim
τ→0
τ>0

∥∥∥QΣ
|2(τ, 0)F −QΣ

|2(−τ, 0)F − 4πF
∥∥∥
L2(Σ)

= 0.

(iii) lim
τ→0
τ>0

∥∥∥QΣ
|1(τ, 0)F −QΣ

|1(−τ, 0)F + 4πĨF
∥∥∥
L2(Σ)

= 0.

Proof Because Σint is a bounded region with a finite surface, the next in-
equality holds for the supremum norm and L2-norm:

‖F‖L2(Σ) ≤ D‖F‖C(Σ),

where D is a constant that depending only on Σ.
To (i): With respect to JΣ

1 (τ) : C(Σ) → C(Σ) and Lemmas 2.4, 2.5, we
have that JΣ

1 (τ)
∣∣ C(Σ) (and resp. JΣ

1 (τ)∗
∣∣ C(Σ)) is uniformly bounded for

0 < τ < τ0 relative to the ‖.‖C(Σ) norm. Under consideration of Lemma 2.13
(by letting T = JΣ

1 (τ), H = L2(Σ), B = C(Σ), ‖.‖1 = ‖.‖C(Σ),
‖.‖2 = ‖.‖L2(Σ)) we obtain that JΣ

1 (τ) is also bounded relative to ‖.‖L2(Σ),
i.e., there exists a constant K that

‖JΣ
1 (τ)F‖L2(Σ) ≤ K‖F‖L2(Σ) (2.22)

holds true for all F ∈ C(Σ) and 0 < τ < τ0. According to Lemma 2.14, the
space C(Σ) is a dense subspace in L2(Σ). Hence, with respect to Lemma
2.16, the operator JΣ

1 (τ) can be continued on L2(Σ) by using of the norm
‖.‖L2(Σ), and Equation (2.22) is satisfied for all F ∈ L2(Σ) and 0 < τ < τ0.

Let F ∈ L2(Σ) be given. Then there exists a series of functions {Fn}n∈N,
Fn ∈ C(Σ), such that for every ε > 0 a number N(ε) ∈ N exists, so that for
all numbers n ≥ N(ε) the estimate

‖F − Fn‖L2(Σ) < ε,

holds true. So that we have∥∥JΣ
1 (τ)F

∥∥
L2(Σ)

=
∥∥JΣ

1 (τ)F − JΣ
1 (τ)Fn + JΣ

1 (τ)Fn
∥∥
L2(Σ)

≤
∥∥JΣ

1 (τ)Fn
∥∥
L2(Σ)

+
∥∥JΣ

1 (τ)F − JΣ
1 (τ)Fn

∥∥
L2(Σ)

≤ D
∥∥JΣ

1 (τ)Fn
∥∥
C(Σ)

+
∥∥JΣ

1 (τ) (F − Fn)
∥∥
L2(Σ)

≤ D
∥∥JΣ

1 (τ)Fn
∥∥
C(Σ)

+K ‖F − Fn‖L2(Σ) .

With respect to Lemma 1.14,

lim
τ→0
τ>0

∥∥JΣ
1 (τ)Fn

∥∥
C(Σ)

= 0.
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holds for each n ∈ N. And the limit n→∞ yields

lim
τ→0
τ>0

∥∥JΣ
1 (τ)F

∥∥
L2(Σ)

= 0.

To (ii): Let B be the space Ĉ(Σ) as defined in Lemma 2.13. For a
continuous function F , the operator JΣ

3 (τ)∗F is not continuous in general
in edges and corners. For the space H, we substitute L2(Σ) and set the
operator T to JΣ

3 (τ). Thus, according to Theorem 2.8(ii) and (iii), we get
the estimate for JΣ

3 (τ) in the L2-norm:∥∥JΣ
3 (τ)F

∥∥
L2(Σ)

≤ K ‖F‖L2(Σ) .

The last estimate is satisfied for all functions F ∈ Ĉ(Σ), and 0 < τ < τ0,
(JΣ

3 (τ), according to Theorem 2.8, is also bounded on Ĉ(Σ) relative to the
supremum norm) as well as for all functions F ∈ L2(Σ), and 0 < τ < τ0

with respect to Lemma 2.14. The approximation of F ∈ L2(Σ) by a series
of functions {Fn}n∈N, Fn ∈ C(Σ) satisfying lim

n→0
‖F − Fn‖L2(Σ) = 0 implies,

analogously, as in case (i), the jump relation for all functions F ∈ L2(Σ):

lim
τ→0
τ>0

∥∥JΣ
3 (τ)F

∥∥
L2(Σ)

= 0.

To (iii): According to Theorem 2.11(i), the jump relations for the direc-
tional derivative of the single layer potential are proved only for the space
C̃(1)(Σ). But, with respect to Theorem 2.11(ii), the operator JΣ

2 (τ)
∣∣ Ĉ(Σ) is

uniformly bounded in the supremum norm for 0 < τ < τ0 and JΣ
2 (τ)(Ĉ(Σ)) is

a subset of Ĉ(Σ). So that we can apply Lemma 2.13 and Theorem 2.8(iii) by
letting H = L2(Σ), B = Ĉ(Σ), ‖.‖1 = ‖.‖C(Σ), T = JΣ

2 (τ) because of uniform
boundedness of the operator JΣ

2 (τ) in the supremum norm for 0 < τ < τ0.
Again, with respect to Lemma 2.14, we obtain the boundedness of JΣ

2 (τ)

in L2(Σ) with L2-norm, i.e., there exists a constant K, such that for all
F ∈ L2(Σ) ∥∥JΣ

2 (τ)F
∥∥
L2(Σ)

≤ K ‖F‖L2(Σ)

holds for 0 < τ < τ0. In addition, for F ∈ L2(Σ) there exists a series of
functions {Fn}n∈N, Fn ∈ C(Σ) that for every ε > 0 there exists N(ε) ∈ N,
such that

‖F − Fn‖L2(Σ) < ε,
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holds for all n ≥ N(ε). Then we have∥∥JΣ
2 (τ)F

∥∥
L2(Σ)

≤
∥∥JΣ

2 (τ)Fn
∥∥
L2(Σ)

+
∥∥JΣ

2 (τ) (F − Fn)
∥∥
L2(Σ)

≤ D
∥∥JΣ

2 (τ)Fn
∥∥
C(Σ)

+K ‖F − Fn‖L2(Σ)

Analogously, as in case (i), according to Theorem 2.11(i), we obtain for all
functions F ∈ L2(Σ)

lim
τ→0
τ>0

∥∥JΣ
2 (τ)F

∥∥
L2(Σ)

= 0.

�

Remark 2.19 With assumptions of Theorem 2.18 and with respect to Re-
mark 2.12, the uniform boundedness of the difference∫

Σ

F (y)
y − x− τµ(x)

|y − x− τµ(x)|3
dω(y)−

∫
Σ

F (y)
y − x+ τµ(x)

|y − x+ τµ(x)|3
dω(y),

can be shown for all 0 < τ < τ0 and all F ∈ L2(Σ) relative to the L2-norm.

2.3 Helmholtz Potential Operators

After the consideration of limit and jump relations for the Laplace operator
we now go over to the Helmholtz operator ∆ + κ2, κ ∈ C.

We introduce the Helmholtz potential operators which allow a unified
concept for the formulation of the boundary integrals involving the Helmholtz
equation to be needed for our wavelet concept.

Definition 2.20 Let numbers τ, σ ∈ R, τ 6= 0 satisfy the requirements
known from Lemma 1.15 and Definition 1.17, for a regular surface Σ, i.e.,

|σ| ≤ 1− α
4
|τ | ≤ 1− α

5− α
δ

2
, |τ | ≤ τ0.

Then, the operator PΣ(τ, σ;κ) : L2(Σ)→ C(Σ) defined for F ∈ L2(Σ) by

PΣ(τ, σ;κ)F (x) =

∫
Σ

F (y)
exp (iκ |x+ τµ(x)− (y + σν(y))|)
|x+ τµ(x)− (y + σν(y))|

dω(y), κ ∈ C,

is called a Helmholtz potential operator on Σ.
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In the sense of this definition we are able to introduce the potential
operators for a single and double layer on the regular surface Σ.

The Helmholtz potential operator of a single layer on Σ for values on the
smoothed parallel surface Σ(τ): PΣ(τ, 0;κ) : L2(Σ)→ C(Σ) is given by

PΣ(τ, 0;κ)F (x) =

∫
Σ

F (y)
exp (iκ |x+ τµ(x)− y|)
|x+ τµ(x)− y|

dω(y). (2.23)

Analogously, we can introduce the Helmholtz potential operator of a dou-
ble layer on Σ for values on Σ(τ), PΣ

|2 (τ, 0;κ) : L2(Σ)→ C(Σ) by

PΣ
|2 (τ, 0;κ)F (x) =

∂

∂σ
PΣ(τ, σ;κ)F (x)

∣∣∣∣
σ=0

=

∫
Σ

F (y)

(
∂

∂ν(y)

exp (iκ |x+ τµ(x)− (y + σν(y))|)
|x+ τµ(x)− (y + σν(y))|

)∣∣∣∣
σ=0

dω(y)

=

∫
Σ

F (y)
ν(y) (x+ τµ(x)− y) exp (iκ |x+ τµ(x)− y|)

|x+ τµ(x)− y|2
×

×
(
−iκ+

1

|x− τµ(x)− y|

)
dω(y).

(2.24)
In the same manner, we are able to introduce the Helmholtz operator of

the directional derivative of a single layer potential for values on Σ(τ):

PΣ
|1 (τ, 0;κ)F (x) =

∂

∂τ
P (τ, σ;κ)F (x)

∣∣∣∣
σ=0

= −
∫
Σ

F (y)
µ(x) (x+ τµ(x)− y) exp (iκ |x+ τµ(x)− y|)

|x+ τµ(x)− y|2
×

×
(
−iκ+

1

|x+ τµ(x)− y|

)
dω(y).

(2.25)
If τ = σ = 0, the kernels of the formally defined potentials have weak

singularities. The associated potential operators are given by the weakly
singular integral expressions

PΣ(0, 0;κ)F (x) =

∫
Σ

F (y)
exp (iκ|x− y|)
|x− y|

dω(y), (2.26)

PΣ
|2 (0, 0;κ)F (x) =

∫
Σ

F (y)
∂

∂ν(y)

exp (iκ|x− y|)
|x− y|

dω(y), (2.27)

PΣ
|1 (0, 0;κ)F (x) =

∂

∂µ(x)

∫
Σ

F (y)
exp (iκ|x− y|)
|x− y|

dω(y), (2.28)
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where PΣ, PΣ
|1 , P

Σ
|2 define linear bounded operators on L2(Σ) (cf. [31]).

Remark 2.21 Let F be a continuous function on Σ. Then, the functions
(2.26), (2.27), and (2.28) are infinitely often differentiable and satisfy the
Helmholtz equation in Σint and Σext. Moreover, these functions fulfill the
Sommerfeld radiation condition in Σext. According to classical potential the-
ory (see, e.g., [58]), these function can be continued continuously for all
F ∈ C(Σ) to the surface Σ, but the limits depend from which (smoothed)
parallel surface (inner or outer) the point x tends to Σ. On the other hand,
these functions are also defined on the surface Σ, i.e., all integrals (2.26),
(2.27), and (2.28) exist for x ∈ Σ.

In order to give concise formulations of the classical limit formulas and
jump relations, the adjoint operators come into play.

Definition 2.22 The operator PΣ(τ, σ;κ)∗ : L2(Σ)→ C(Σ) satisfying(
F, PΣ(τ, σ;κ)G

)
L2(Σ)

=
(
PΣ(τ, σ;κ)∗F,G

)
L2(Σ)

,

for all functions F,G ∈ L2(Σ) is called the adjoint Helmholtz operator
of PΣ(τ, σ;κ) with respect to the scalar product (., .)L2(Σ).

According to Fubini’s theorem we are able to interchange the order of
integration(

F, PΣ(τ, σ;κ)G
)
L2(Σ)

=

∫
Σ

F (x)

∫
Σ

G(y)
exp (iκ |x+ τµ(x)− (y + σν(y))|)
|x+ τµ(x)− (y + σν(y))|

dω(y)dω(x)

=

∫
Σ

G(y)

∫
Σ

F (x)
exp (iκ |x+ τµ(x)− (y + σν(y))|)
|x+ τµ(x)− (y + σν(y))|

dω(x)dω(y)

=
(
PΣ(τ, σ;κ)∗F,G

)
L2(Σ)

.

By comparison we thus have the adjoint operator PΣ(τ, 0;κ)∗ of the
Helmholtz potential operator PΣ(τ, 0;κ)

PΣ(τ, 0;κ)∗F (x) = PΣ(τ, σ;κ)∗F (x)
∣∣
σ=0

=

∫
Σ

F (y)
exp (−iκ |x− y − τµ(y)|)

|x− y − τµ(y)|
dω(y).
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In an analogous way, we obtain the adjoint operator of the potential op-
erator of a double layer

PΣ
|2 (τ, 0;κ)∗F (x) =∫

Σ

F (y)
ν(x)(x− y − τµ(y)) exp (−iκ |x− y − τµ(y)|)

|x− y − τµ(y)|2
×

×
(
−iκ− 1

|x− y − τµ(y)|

)
dω(y).

and the adjoint operator of the directional derivative of a single layer

PΣ
|1 (τ, 0;κ)∗F (x) =∫

Σ

F (y)
µ(y)(x− y − τµ(y)) exp (−iκ |x− y − τµ(y)|)

|x− y − τµ(y)|2
×

×
(

iκ+
1

|x− y − τµ(y)|

)
dω(y),

For the defined Helmholtz potential operators we present the limit and
jump relations in a Hilbert space L2(Σ) (see, e.g., [31], [72]).

Theorem 2.23 For a regular surface Σ as defined by Definition 1.12, the
next propositions are satisfied:

(i) For all F ∈ L2(Σ) and κ ∈ C

lim
τ→0
τ>0

∥∥PΣ(τ, 0;κ)F − PΣ(−τ, 0;κ)F
∥∥
L2(Σ)

= 0,

lim
τ→0
τ>0

∥∥PΣ(τ, 0;κ)∗F − PΣ(−τ, 0;κ)∗F
∥∥
L2(Σ)

= 0.

(ii) For all F ∈ L2(Σ) and κ ∈ C

lim
τ→0
τ>0

∥∥∥PΣ
|2 (τ, 0;κ)F − PΣ

|2 (−τ, 0;κ)F − 4πF
∥∥∥
L2(Σ)

= 0,

lim
τ→0
τ>0

∥∥∥PΣ
|2 (τ, 0;κ)∗F − PΣ

|2 (−τ, 0;κ)∗F − 4πF
∥∥∥
L2(Σ)

= 0.

(iii) For all F ∈ L2(Σ) and κ ∈ C

lim
τ→0
τ>0

∥∥∥PΣ
|1 (τ, 0;κ)F − PΣ

|1 (−τ, 0;κ)F + 4πĨF
∥∥∥
L2(Σ)

= 0,

lim
τ→0
τ>0

∥∥∥PΣ
|1 (τ, 0;κ)∗F − PΣ

|1 (−τ, 0;κ)∗F + 4πĨ∗F
∥∥∥
L2(Σ)

= 0,
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where the operator Ĩ : L2(Σ)→ L2(Σ) is represented by
ĨF (x) = (µ(x)ν(x))F (x).

Proof To (i): By use of series expansions of the exponential function to the
kernel of the Helmholtz potential operators, we obtain

exp(iκ|x+ τµ(x)− y|)
|x+ τµ(x)− y|

− exp(iκ|x− τµ(x)− y|)
|x− τµ(x)− y|

=

1

|x+ τµ(x)− y|
− 1

|x− τµ(x)− y|
+O(|τ |),

and, analogously, we have for the kernel of the adjoint operator

exp(−iκ|y + τµ(y)− x|)
|y + τµ(y)− x|

− exp(−iκ|y − τµ(y)− x|)
|y − τµ(y)− x|

=

1

|y + τµ(y)− x|
− 1

|y − τµ(y)− x|
+O(|τ |).

As a consequence, we obtain for M > 0, 0 < τ < τ0 and all functions
F ∈ C(Σ) the following estimates:∥∥PΣ(τ, 0;κ)F − PΣ(−τ, 0;κ)F

∥∥
C(Σ)

≤
∥∥QΣ(τ, 0)F −QΣ(−τ, 0)F

∥∥
C(Σ)

< M,

∥∥PΣ(τ, 0;κ)∗F − PΣ(−τ, 0;κ)∗F
∥∥
C(Σ)

≤
∥∥QΣ(τ, 0)∗F −QΣ(−τ, 0)∗F

∥∥
C(Σ)

< M.

From the last inequalities we obtain immediately for all F ∈ C(Σ)

lim
τ→0
τ>0

∥∥PΣ(τ, 0;κ)F − PΣ(−τ, 0;κ)F
∥∥
C(Σ)

= 0,

∥∥(PΣ(τ, 0;κ)− PΣ(−τ, 0;κ)
)∣∣ C(Σ)

∥∥
C(Σ)

< M, 0 < τ < τ0,

(2.29)

and

lim
τ→0
τ>0

∥∥PΣ(τ, 0;κ)∗F − PΣ(−τ, 0;κ)∗F
∥∥
C(Σ)

= 0,∥∥∥(PΣ(τ, 0;κ)− PΣ(−τ, 0;κ)
)∗∣∣∣ C(Σ)

∥∥∥
C(Σ)

< M, 0 < τ < τ0.

(2.30)

With respect to the uniform boundedness and analogously to the proof
of Theorem 2.18(i), the expressions (2.29), (2.30) can be continued on L2(Σ)

with the norm ‖.‖L2(Σ).
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To (ii): After the application of the same series expansion of the expo-
nential function, we obtain

∂

∂ν(y)

(
exp (iκ|x+ τµ(x)− y|)
|x+ τµ(x)− y|

− exp (iκ|x− τµ(x)− y|)
|x− τµ(x)− y|

)
=

∂

∂ν(y)

(
1

|x+ τµ(x)− y|
− 1

|x− τµ(x)− y|

)
+

∂

∂ν(y)

κ2

2
(|x− τν(x)− y| − |x+ τν(x)− y|) +O(|τ |),

and

∂

∂ν(y)

(
exp (−iκ|y + τµ(y)− x|)

|y + τµ(y)− x|
− exp (−iκ|y − τµ(y)− x|)

|y − τµ(y)− x|

)
=

∂

∂ν(y)

(
1

|y + τµ(y)− x|
− 1

|y − τµ(y)− x|

)
+

∂

∂ν(y)

κ2

2
(|y − τν(y)− x| − |y + τν(y)− x|) +O(|τ |).

Additionally, we have∣∣∣∣∣∣
∫
Σ

∂

∂ν(y)
(|x− τµ(x)− y| − |x+ τµ(x)− y|) dω(y)

∣∣∣∣∣∣
≤
∫
Σ

∣∣∣∣(x+ τµ(x)− y)|x− τµ(x)− y|
|x− τµ(x)− y||x+ τµ(x)− y|

− (x− τµ(x)− y)|x+ τµ(x)− y|
|x− τµ(x)− y||x+ τµ(x)− y|

∣∣∣∣ dω(y)

≤
∫
Σ

4|τ ||x− y|+ 2|τ |2

(1− α) (τ2 + |x− y|2)
dω(y) ≤ C|τ |,

and∣∣∣∣∣∣
∫
Σ

∂

∂ν(y)
(|y − τµ(y)− x| − |y + τµ(y)− x|) dω(y)

∣∣∣∣∣∣
≤
∫
Σ

8|τ ||x− y|+ 2|τ |2

(1− α) (τ2 + |x− y|2)
dω(y) ≤ C|τ |.

Accumulating all these estimates, we obtain∣∣∣PΣ
|2 (τ, 0;κ)F (x)− PΣ

|2 (−τ, 0;κ)F (x)− 4πF (x)
∣∣∣

≤
∣∣∣QΣ
|2(τ, 0)F (x)−QΣ

|2(−τ, 0)F (x)− 4πF (x)
∣∣∣+ C|τ |.
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As in Theorem 2.8, we have for a continuous function F and 0 < τ < τ0:

lim
τ→0
τ>0

∥∥∥PΣ
|2 (τ, 0;κ)F − PΣ

|2 (−τ, 0;κ)F − 4πF
∥∥∥
C(Σ)

= 0,∥∥∥(PΣ
|2 (τ, 0;κ)− PΣ

|2 (−τ, 0;κ)− 4πI
)∣∣∣ C(Σ)

∥∥∥
C(Σ)
≤M,∥∥∥(PΣ

|2 (τ ;κ)− PΣ
|2 (−τ, 0;κ)− 4πI

)∗∣∣∣ C(Σ)
∥∥∥
C(Σ)
≤M,

(2.31)

where the operator I denotes the identity operator in L2(Σ).
Analogously, as in case (i), the expressions (2.31) can be continuated on

L2(Σ) with the norm ‖.‖L2(Σ).
To (iii): After the application of the same series expansion of the expo-

nential function, we have the estimate∣∣∣PΣ
|1 (τ, 0;κ)F (x)− PΣ

|1 (−τ, 0;κ)F (x) + 4π(µ(x)ν(x))F (x)
∣∣∣

≤
∣∣∣QΣ
|1(τ, 0)F (x)−QΣ

|1(−τ, 0)F (x) + 4π(µ(x)ν(x))F (x)
∣∣∣+ C|τ |,

for all F ∈ C̃(1)(Σ), x ∈ Σ. Hence, the equality

lim
τ→0
τ>0

∥∥∥PΣ
|1 (τ, 0;κ)F − PΣ

|1 (−τ, 0;κ)F + 4πĨF
∥∥∥
C(Σ)

= 0

holds true for all F ∈ C̃(1)(Σ). With the analogous proof to Theorem 2.11,
we obtain for 0 < τ < τ0:∥∥∥(PΣ

|1 (τ, 0;κ)− PΣ
|1 (−τ, 0;κ) + 4πĨ

)∣∣∣ C(Σ)
∥∥∥
C(Σ)
≤M,∥∥∥(PΣ

|1 (τ, 0;κ)− PΣ
|1 (−τ, 0;κ) + 4πĨ

)∗∣∣∣ C(Σ)
∥∥∥
C(Σ)
≤M.

Because C̃(1)(Σ) is dense in L2(Σ), analogously to the last cases, we obtain
the proof. �

In the sequel, we define the limit and jump relations with respect to the
Helmholtz case in potential theory. Let I be the identity operator in L2(Σ),
the operator Ĩ : L2(Σ) → L2(Σ) is defined by ĨF (x) = (µ(x)ν(x))F (x).
Then, for all sufficiently small τ > 0, the operators

JΣ
1 (τ ;κ) = PΣ(τ, 0;κ)− PΣ(−τ, 0;κ),

JΣ
2 (τ ;κ) = PΣ

|1 (τ, 0;κ)− PΣ
|1 (−τ, 0;κ) + 4πĨ,

JΣ
3 (τ ;κ) = PΣ

|2 (τ, 0;κ)− PΣ
|2 (−τ, 0;κ)− 4πĨ
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are called jump operators, and

LΣ
1 (±τ ;κ) = PΣ(±τ, 0;κ)− PΣ(0, 0;κ),

LΣ
2 (±τ ;κ) = PΣ

|1 (±τ, 0;κ)− PΣ
|1 (0, 0;κ)± 2πĨ,

LΣ
3 (±τ ;κ) = PΣ

|2 (±τ, 0;κ)− PΣ
|2 (0, 0;κ)∓ 2πĨ,

are called limit operators.
In analogy to the Laplace case we can now prove the following theorem

(see, e.g., [31], [32]).

Theorem 2.24 For all F ∈ L2(Σ) and i = 1, 2, 3

lim
τ→0
τ>0

∥∥LΣ
i (±τ ;κ)F

∥∥
L2(Σ)

= 0, lim
τ→0
τ>0

∥∥JΣ
i (τ ;κ)F

∥∥
L2(Σ)

= 0,

lim
τ→0
τ>0

∥∥LΣ
i (±τ ;κ)∗F

∥∥
L2(Σ)

= 0, lim
τ→0
τ>0

∥∥JΣ
i (τ ;κ)∗F

∥∥
L2(Σ)

= 0.

2.4 Multiscale Modeling

Based on the limit and jump relations provided in Section 2.3, we formulate
in this section scaling and wavelet functions, and their important properties.

2.4.1 Scaling and Wavelet Functions

We reformulate the limit and jump relations in integral form.

Corollary 2.25 For all F ∈ L2(Σ)

lim
τ→0
τ>0

∫
Σ

Φi,Σ
τ (·, y;κ)F (y)dω(y) =



F, i = 3, 4;

0, i = 2;

PΣ(0, 0;κ)F, i = 1;

PΣ
|1 (0, 0;κ)F, i = 5;

PΣ
|2 (0, 0;κ)F, i = 6;

where Φi,Σ
τ (·, y;κ), i = 1, . . . , 6 are explicitly given by

Φ1,Σ
±τ (x, y;κ) =

exp(iκ|x± τµ(x)− y|)
|x± τµ(x)− y|

, (2.32)

Φ2,Σ
τ (x, y;κ) =

exp(iκ|x+ τµ(x)− y|)
|x+ τµ(x)− y|

− exp(iκ|x− τµ(x)− y|)
|x− τµ(x)− y|

, (2.33)
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Φ3,Σ
τ (x, y;κ)

=
exp (iκ |x− τµ(x)− y|) (x− τµ(x)− y)µ(x)

4πµ(x)ν(y) |x− τµ(x)− y|2

(
1

|x− τµ(x)− y|
− iκ

)
− exp (iκ |x+ τµ(x)− y|) (x+ τµ(x)− y)µ(x)

4πµ(x)ν(y) |x+ τµ(x)− y|2

(
1

|x+ τµ(x)− y|
− iκ

)
,

(2.34)

Φ4,Σ
τ (x, y;κ)

=
exp (iκ |x+ τµ(x)− y|) (x+ τµ(x)− y) ν(y)

4π |x+ τµ(x)− y|2

(
1

|x+ τµ(x)− y|
− iκ

)
− exp (iκ |x− τµ(x)− y|) (x− τµ(x)− y) ν(y)

4π |x− τµ(x)− y|2

(
1

|x− τµ(x)− y|
− iκ

)
,

(2.35)

Φ5,Σ
τ (x, y;κ)

=
exp (iκ |x+ τµ(x)− y|) (x+ τµ(x)− y)µ(x)

2 |x+ τµ(x)− y|2

(
1

|x+ τµ(x)− y|
− iκ

)
− exp (iκ |x− τµ(x)− y|) (x− τµ(x)− y)µ(x)

2 |x− τµ(x)− y|2

(
1

|x− τµ(x)− y|
− iκ

)
,

(2.36)

Φ6,Σ
τ (x, y;κ)

=
exp (iκ |x+ τµ(x)− y|) (x+ τµ(x)− y) ν(y)

2 |x+ τµ(x)− y|2

(
1

|x+ τµ(x)− y|
− iκ

)
− exp (iκ |x− τµ(x)− y|) (x− τµ(x)− y) ν(y)

2 |x− τµ(x)− y|2

(
1

|x− τµ(x)− y|
− iκ

)
.

(2.37)

From the limit and jump relations for the dual operators, we are able to
deduce the following result.

Corollary 2.26 For all F ∈ L2(Σ)

lim
τ→0
τ>0

∫
Σ

Φi,Σ
τ (·, y;κ)∗F (y)dω(y) =



F, i = 3, 4;

0, i = 2;

PΣ(0, 0;κ)∗F, i = 1;

PΣ
|1 (0, 0;κ)∗F, i = 5;

PΣ
|2 (0, 0;κ)∗F, i = 6;
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where Φi,Σ
τ (·, y;κ)∗, i = 1, . . . , 6 are explicitly representable by

Φ1,Σ
±τ (x, y;κ)∗ =

exp(−iκ|x∓ τµ(y)− y|)
|x∓ τµ(y)− y|

, (2.38)

Φ2,Σ
τ (x, y;κ)∗ =

exp(−iκ|x− τµ(y)− y|)
|x− τµ(y)− y|

− exp(−iκ|x+ τµ(y)− y|)
|x+ τµ(y)− y|

,

(2.39)

Φ3,Σ
τ (x, y;κ)∗

=
exp (−iκ |x+ τµ(y)− y|) (x+ τµ(y)− y)µ(y)

4πµ(x)ν(y) |x+ τµ(y)− y|2

(
1

|x+ τµ(y)− y|
+ iκ

)
− exp (−iκ |x− τµ(y)− y|) (x− τµ(y)− y)µ(y)

4πµ(x)ν(y) |x− τµ(y)− y|2

(
1

|x− τµ(y)− y|
+ iκ

)
,

(2.40)

Φ4,Σ
τ (x, y;κ)∗

=
exp (iκ |x− τµ(y)− y|) (x− τµ(y)− y) ν(x)

4π |x− τµ(y)− y|2

(
− 1

|x− τµ(y)− y|
− iκ

)
− exp (iκ |x+ τµ(y)− y|) (x+ τµ(y)− y) ν(x)

4π |x+ τµ(y)− y|2

(
− 1

|x+ τµ(y)− y|
− iκ

)
,

(2.41)

Φ5,Σ
τ (x, y;κ)∗

=
exp (−iκ |x− τµ(y)− y|) (x− τµ(y)− y)µ(y)

2 |x− τµ(y)− y|2

(
1

|x− τµ(y)− y|
+ iκ

)
− exp (−iκ |x+ τµ(y)− y|) (x+ τµ(y)− y)µ(y)

2 |x+ τµ(y)− y|2

(
1

|x+ τµ(y)− y|
+ iκ

)
,

(2.42)

Φ6,Σ
τ (x, y;κ)∗

=
exp (iκ |x− τµ(y)− y|) (x− τµ(y)− y) ν(x)

2 |x− τµ(y)− y|2

(
− 1

|x− τµ(y)− y|
− iκ

)
− exp (iκ |x+ τµ(y)− y|) (x+ τµ(y)− y) ν(x)

2 |x+ τµ(y)− y|2

(
− 1

|x+ τµ(y)− y|
− iκ

)
.

(2.43)
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Definition 2.27 For τ > 0 and i ∈ {1, . . . , 6}, the family
{

Φi,Σ
τ

}
τ>0

of

kernels Φi,Σ
τ : Σ×Σ→ C is called a Σ-scaling function of type i. Moreover,

Φi,Σ
1 : Σ×Σ→ C (i.e.: τ = 1) is called the mother kernel of the Σ-scaling

function of type i.

(a)

(b)

(c)

(d)

Figure 2.1: Scaling functions Φ6,Σ
τ (2.5, y; 1.0), y ∈ [0, 5]: (a) τ = 2−1, (b)

τ = 2−3, (c) τ = 2−5, (d) τ = 2−7. (left: real part, right: imaginary part).
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The scaling functions for different scales τ are illustrated in Figure 2.1. In
addition, Figure 2.2 (right column) shows the real parts of scaling functions
for different parameter κ.

Definition 2.28 Correspondingly, for τ > 0, a weight function α and the
integer i ∈ {1, . . . , 6}, the family

{
Ψi,Σ
τ

}
τ>0

of kernels Ψi,Σ
τ : Σ × Σ → C

given by

Ψi,Σ
τ (x, y;κ) = −τ d

dτ
Φi,Σ
τ (x, y;κ), x, y ∈ Σ, κ ∈ C, (2.44)

is called a Σ-wavelet function of type i. The differential equation (2.44)
is called the (scale continuous) Σ-scaling equation of type i.

For simplicity we omit explicit representations of the wavelet functions
Ψi,Σ
τ (x, y;κ), x, y ∈ Σ, i ∈ {1, . . . , 6}. But it should be pointed out, that

all of them allow explicit representations. For example, the wavelet function
Ψ1,Σ
τ (x, y;κ) is given by

Ψ1,Σ
τ (x, y;κ) = τ

exp(iκ|x+ τµ(x)− y|)(x+ τµ(x)− y)µ(x)

|x+ τµ(x)− y|
×

×
(

1

|x+ τµ(x)− y|
− iκ

)
.

The real part of the wavelet function Ψ1,Σ
τ for different parameters κ is

shown in Figure 2.2 (right column). The wavelet function Ψ6,Σ
τ for different

τ is illustrated in Figure 2.3.

Definition 2.29 Let
{

Φi,Σ
τ

}
τ>0

be a Σ-scaling function of type i. Then, the

associated Σ-wavelet transform of type i Wi,Σ
κ : L2(Σ)→ L2((0,∞)× Σ)

is defined by

Wi,Σ
κ (F )(τ, x) =

∫
Σ

Ψi,Σ
τ (x, y;κ)F (y)dω(y), κ ∈ C.
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(a)

(b)

(c)

(d)

(e)

Figure 2.2: The real part of the scaling function Φ1,Σ
τ (x, 0;κ) (left), the

real part of the wavelet function Ψ1,Σ
τ (x, 0;κ) (right), where τ = 2−5, x =

−20, . . . , 20: (a) κ = 1.0, (b) κ = 5.0, (c) κ = 10.0, (d) κ = 15.0, (e)
κ = 20.0.
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(a)

(b)

(c)

(d)

Figure 2.3: Wavelet functions Ψ6,Σ
τ (2.5, y; 1.0), y ∈ [0, 5]: (a) τ = 1, (b)

τ = 2−2, (c) τ = 2−4, (d) τ = 2−6. (left: real part, right: imaginary part).

2.4.2 Scale Continuous Reconstruction Formula

Of course, the convergence of the following integrals in the reconstruction
theorem is guaranteed.
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Theorem 2.30 Let
{

Φi,Σ
τ

}
τ>0

be a Σ-scaling function of type i. Suppose,

that F is of class C(Σ). Then, the reconstruction formula (the Σ-wavelet
transform of type i)

∞∫
0

Wi,Σ
κ (F )(τ, ·)dτ

τ
=



F, i = 3, 4;

0, i = 2;

PΣ(0, 0;κ)F, i = 1;

PΣ
|1 (0, 0;κ)F, i = 5;

PΣ
|2 (0, 0;κ)F, i = 6;

holds in the pointwise sense and in the sense of the C-norm for all κ ∈ C.
If F is of class L2(Σ), then

∞∫
0

Wi,Σ
κ (F )(τ, ·)dτ

τ
=



F, i = 3, 4;

0, i = 2;

PΣ(0, 0;κ)F, i = 1;

PΣ
|1 (0, 0;κ)F, i = 5;

PΣ
|2 (0, 0;κ)F, i = 6;

holds in the sense of the L2-norm for all κ ∈ C.

Proof Let R > 0 be arbitrary. By observing the Fubini’s theorem and the
identity

Φi,Σ
R (x, y;κ) =

∞∫
R

Ψi,Σ
τ (x, y;κ)

dτ

τ
, (x, y) ∈ Σ× Σ, κ ∈ C,

we obtain
∞∫
R

Wi,Σ
κ (F )(τ, ·)dτ

τ
=

∞∫
R

∫
Σ

Ψi,Σ
τ (·, y;κ)F (y)dω(y)

dτ

τ

=

∫
Σ

∞∫
R

Ψi,Σ
τ (·, y;κ)

dτ

τ
F (y)dω(y)

=

∫
Σ

Φi,Σ
R (·, y;κ)F (y)dω(y).

The limit R→ 0 in connection with Corollary 2.25 yields the desired result.
�
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Our next interest is to reformulate the wavelet transform and the recon-
struction theorem by means of the dilated and shifted versions of the mother
kernel. For that purpose we introduce the x-translation and τ -dilation op-
erator of the mother kernel as follows:

Tx : Ψi,Σ
1 7→ TxΨi,Σ

1 = Ψi,Σ
1;x = Ψi,Σ

1 (x, ·; ·), x ∈ Σ; (2.45)

Dτ : Ψi,Σ
1 7→ DτΨi,Σ

1 = Ψi,Σ
τ , τ > 0. (2.46)

Consequently, it follows that

TxDτΨi,Σ
1 = TxΨi,Σ

τ = Ψi,Σ
τ ;x = Ψi,Σ

τ (x, ·; ·),

for i = 1, . . . , 6. In other words,

Wi,Σ
κ (F )(τ, x) =

∫
Σ

Ψi,Σ
τ ;x(y;κ)F (y)dω(y), x ∈ Σ, κ ∈ C, τ > 0.

Moreover, we have the following limit results.

Theorem 2.31 For x ∈ Σ, F ∈ C(Σ) and all κ ∈ C

lim
R→0
R>0

∫
Σ

Φi,Σ
R;x(y;κ)F (y)dω(y) =



F (x), i = 3, 4;

0, i = 2;

PΣ(0, 0;κ)F (x), i = 1;

PΣ
|1 (0, 0;κ)F (x), i = 5;

PΣ
|2 (0, 0;κ)F (x), i = 6;

(2.47)

and

∞∫
0

∫
Σ

Ψi,Σ
τ ;x(y;κ)F (y)dω(y)

dτ

τ
=



F (x), i = 3, 4;

0, i = 2;

PΣ(0, 0;κ)F (x), i = 1;

PΣ
|1 (0, 0;κ)F (x), i = 5;

PΣ
|2 (0, 0;κ)F (x), i = 6,

(2.48)

holds in the pointwise sense and in the sense of C-norm.
For x ∈ Σ, F ∈ L2(Σ) and all κ ∈ C

lim
R→0
R>0

∫
Σ

Φi,Σ
R;x(y;κ)F (y)dω(y) =



F (x), i = 3, 4;

0, i = 2;

PΣ(0, 0;κ)F (x), i = 1;

PΣ
|1 (0, 0;κ)F (x), i = 5;

PΣ
|2 (0, 0;κ)F (x), i = 6;

(2.49)
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and

∞∫
0

∫
Σ

Ψi,Σ
τ ;x(y;κ)F (y)dω(y)

dτ

τ
=



F (x), i = 3, 4;

0, i = 2;

PΣ(0, 0;κ)F (x), i = 1;

PΣ
|1 (0, 0;κ)F (x), i = 5;

PΣ
|2 (0, 0;κ)F (x), i = 6,

(2.50)

holds in the sense of the L2-norm.

Remark 2.32 Note that the properties of the Σ-wavelets of type i (analo-
gously to variants of spherical wavelets developed in [30], [29]) do not pre-
sume the zero-mean property of Φi,Σ

τ . The wavelets constructed in such a
way, therefore, do not satisfy a substantial condition of the Euclidean con-
cept. However, it should be pointed out, that a construction of wavelets pos-
sessing the zero-mean property (see [30]), is obvious and will not be discussed
here.

Remark 2.33 The dual wavelets can be constructed in the same manner as
presented in this section. Their representation, discussion, and application
are omitted here.

2.4.3 Scale Discretized Reconstruction Formula

Until now we were concerned with a scale continuous approach to wavelets.
In what follows, scale discrete Σ-scaling functions and wavelets of type i will
be introduced. We start with the choice of a sequence, which divides the
continuous scale interval (0,∞) into discrete pieces. More explicitly, (τj)j∈Z
denotes a sequence of real numbers satisfying

lim
j→∞

τj = 0. (2.51)

As examples for sequences (τj), we choose in the following the dyadic
sequence τj = 2−j , j ∈ Z, where 2τj+1 = τj , j ∈ Z, or the sequence (τj) with
τj = 1− cos(2−jπ), j ∈ Z.

For a given Σ-scaling function
{

Φi,Σ
τj

}
τj>0

of type i, we define the (scale)

discretized Σ-scaling function of type i and denote
{

Φi,Σ
τj

}
j∈Z

by Φi,Σ
j .

Using the (scale) discretized Σ-scaling function and according to Theorem
2.31, we can formulate the next theorem.
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Theorem 2.34 For all F ∈ C(Σ)

lim
j→∞

∫
Σ

Φi,Σ
j (·, y;κ)F (y)dω(y) =



F, i = 3, 4;

0, i = 2;

PΣ(0, 0;κ)F, i = 1;

PΣ
|1 (0, 0;κ)F, i = 5;

PΣ
|2 (0, 0;κ)F, i = 6;

holds in the pointwise sense and in the sense of C-norm.
For all F ∈ L2(Σ)

lim
j→∞

∫
Σ

Φi,Σ
j (·, y;κ)F (y)dω(y) =



F, i = 3, 4;

0, i = 2;

PΣ(0, 0;κ)F, i = 1;

PΣ
|1 (0, 0;κ)F, i = 5;

PΣ
|2 (0, 0;κ)F, i = 6;

holds in the sense of L2-norm.

This allows us to define scale discretized wavelets.

Definition 2.35 Let
{

Φi,Σ
j

}
j∈Z

be a discretized Σ-scaling function of type

i. Then, the scale discretized Σ-wavelet function of type i is defined
by

Ψi,Σ
j (·, ·;κ) = −

τj∫
τj+1

Ψi,Σ
τ (·, ·;κ)

dτ

τ
, j ∈ Z, κ ∈ C.

By virtue of the equation (2.44), we get the formula

Ψi,Σ
j (·, ·;κ) = −

τj∫
τj+1

τ
d

dτ
Φi,Σ
τ (·, ·;κ)

dτ

τ
= Φi,Σ

j+1(·, ·;κ)− Φi,Σ
j (·, ·;κ), (2.52)

which is called the (scale) discretized Σ-scaling equation of type i.

Observing the discretized Σ-scaling equation of type i, we obtain for the
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function F ∈ L2(Σ) and numbers J ∈ Z and N ∈ N:∫
Σ

Φi,Σ
J+N (·, y;κ)F (y)dω(y)

=

∫
Σ

Φi,Σ
J (·, y;κ)F (y)dω(y) +

J+N−1∑
j=J

∫
Σ

Ψi,Σ
j (·, y;κ)F (y)dω(y). (2.53)

Corollary 2.36 Let
{

Φi,Σ
j

}
j∈Z

be a (scale) discretized Σ-scaling function of

type i. Then, the multiscale representation of a function F ∈ C(Σ)

∞∑
j=−∞

∫
Σ

Ψi,Σ
j (·, y;κ)F (y)dω(y) =



F, i = 3, 4;

0, i = 2;

PΣ(0, 0;κ)F, i = 1;

PΣ
|1 (0, 0;κ)F, i = 5;

PΣ
|2 (0, 0;κ)F, i = 6;

holds in the pointwise sense and in the sense of ‖.‖C-norm.
If F is of class L2(Σ), then

∞∑
j=−∞

∫
Σ

Ψi,Σ
j (·, y;κ)F (y)dω(y) =



F, i = 3, 4;

0, i = 2;

PΣ(0, 0;κ)F, i = 1;

PΣ
|1 (0, 0;κ)F, i = 5;

PΣ
|2 (0, 0;κ)F, i = 6;

holds in the sense of L2-norm.

Corollary 2.37 Under assumption of Corollary 2.36

P i,ΣJ (F ;κ) +
+∞∑
j=J

∫
Σ

Ψi,Σ
j (·, y;κ)F (y)dω(y) =



F, i = 3, 4;

0, i = 2;

PΣ(0, 0;κ)F, i = 1;

PΣ
|1 (0, 0;κ)F, i = 5;

PΣ
|2 (0, 0;κ)F, i = 6;

for every F ∈ C(Σ) (in the pointwise sense and in the sense of C-norm), and
for every F ∈ L2(Σ) (in the sense of L2-norm), where P i,ΣJ (F ;κ), J ∈ Z is
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defined by

P i,ΣJ (F ;κ) =

∫
Σ

Φi,Σ
J (·, y;κ)F (y)dω(y).

According to the scale discretized Σ-wavelets, we introduce, analogously
to [31], the following formulation:

TxDjΨ
i,Σ
1 = TxΨi,Σ

j = Ψi,Σ
j;x = Ψi,Σ

j (x, ·; ·)

for i = 1, . . . , 6 and x ∈ Σ.

Definition 2.38 The (scale) discretized Σ-wavelet transform of type
i is defined by

Wi,Σ
κ : L2(Σ) 7→

H : Z× Σ

∣∣∣∣∣∣
∞∑

j=−∞

∫
Σ

(H(j; y))2 dω(y) <∞


with

Wi,Σ
κ (F )(j;x) =

∫
Σ

Ψi,Σ
j;x(y;κ)F (y)dω(y).

Theorem 2.39 For all functions F ∈ C(Σ), the reconstruction formula

∞∑
j=−∞

Wi,Σ
κ (F )(j; ·) =



F, i = 3, 4;

0, i = 2;

PΣ(0, 0;κ)F, i = 1;

PΣ
|1 (0, 0;κ)F, i = 5;

PΣ
|2 (0, 0;κ)F, i = 6,

holds in the pointwise sense and in the sense of C-norm.
For all functions F ∈ L2(Σ), the reconstruction formula

∞∑
j=−∞

Wi,Σ
κ (F )(j; ·) =



F, i = 3, 4;

0, i = 2;

PΣ(0, 0;κ)F, i = 1;

PΣ
|1 (0, 0;κ)F, i = 5;

PΣ
|2 (0, 0;κ)F, i = 6,

holds in the sense of L2-norm.
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2.4.4 Scale and Detail Spaces

In this subsection we show that the subdivision of the continuous scale in-
terval (0,∞) into discrete pieces and the corresponding substitution of the
integral over τ by an associated discrete sum provide a multiscale analysis
of L2(Σ).

In fact, analogously to the conventional theory of wavelets (see [34] for
the spherical case), the operators P i,Σj , Ri,Σj defined by

P i,Σj (F ;κ) =

∫
Σ

Φi,Σ
j (·, y;κ)F (y)dω(y), κ ∈ C, F ∈ L2(Σ); (2.54)

Ri,Σj (F ;κ) =

∫
Σ

Ψi,Σ
j (·, y;κ)F (y)dω(y), κ ∈ C, F ∈ L2(Σ); (2.55)

may be understood as low pass and band pass filter, respectively. Then, the
scale spaces V ij(Σ) and the detail spaces W i

j(Σ) of type i are defined by

V ij(Σ) = P i,Σj (L2(Σ);κ) =
{
P i,Σj (F ;κ)

∣∣∣F ∈ L2(Σ)
}

; (2.56)

W i
j(Σ) = Ri,Σj (L2(Σ);κ) =

{
Ri,Σj (F ;κ)

∣∣∣F ∈ L2(Σ)
}

; (2.57)

for a fixed value κ ∈ C, respectively. And according to the identity∫
Σ

Φi,Σ
j+1(·, y;κ)F (y)dω(y)

=

∫
Σ

Φi,Σ
j (·, y;κ)F (y)dω(y) +

∫
Σ

Ψi,Σ
j (·, y;κ)F (y)dω(y),

we obtain for all j ∈ Z

P i,Σj+1(F ;κ) = P i,Σj (F ;κ) +Ri,Σj (F ;κ).

From the last identity, we obtain

V ij+1(Σ) = V ij(Σ) +W i
j(Σ).

The last equation may be interpreted in the following way: The set V ij(Σ)

contains a P i,Σj -filtered version of a function F belonging to the class L2(Σ).
The lower the scale, the stronger the intensity of the filtering. By adding
Ri,Σj -details contained in the spaceW i

j(Σ), the space V ij+1(Σ), which consists
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of a filtered versions at resolution j + 1 is created. Obviously, for i = 3, 4,
we have the multiscale analysis

∞⋃
j=−∞

V ij(Σ)

‖.‖L2(Σ)

= L2(Σ).

Furthermore, the next expressions are satisfied for a fixed value κ ∈ C

∞⋃
j=−∞

V1
j (Σ)

‖.‖L2(Σ)

= PΣ(0, 0;κ)
(
L2(Σ)

)
,

∞⋃
j=−∞

V5
j (Σ)

‖.‖L2(Σ)

= PΣ
|1 (0, 0;κ)

(
L2(Σ)

)
,

∞⋃
j=−∞

V6
j (Σ)

‖.‖L2(Σ)

= PΣ
|2 (0, 0;κ)

(
L2(Σ)

)
.

2.5 A Tree Algorithm

By use of the multiscale representation properties of scaling functions (Sec-
tion 2.4.4), we introduce in this section some aspects for the scientific numer-
ical computation. Our goal is to deduce a pyramid (decomposition) scheme
for the recursive computation of the integrals P i,Σj (F ;κ) and Ri,Σj (F ;κ) for
i ∈ {1, . . . , 6} and j = J0, . . . , J starting from the scale J ∈ N of a given
function F of class C(Σ) (or L2(Σ)). This scheme can further be applied to
the decomposition of seismic data. The tree algorithm is based on the ex-
istence of the ‘reproducing kernel function’ on each regular surface element
Ξl, l = 1, . . . , n defined in Definition 1.12. We assume that the sequence
τj , j = J0, . . . , J satisfies Equations (2.51).

In order to construct the recursive decomposition scheme, we consider a
pyramid scheme and decompose a given function G ∈ C(Σ) (or G ∈ L2(Σ)) in
a series of the scaling functions. For this reason, we assume, that for suitable,
sufficiently large J ∈ N, the integral P i,ΣJ (F ;κ) is close to the function G, so
that for all x ∈ Σ, a fixed κ ∈ C satisfies1:

P i,ΣJ (F ;κ)(x) '
NJ∑
k=1

αNJk Φi,Σ
J (x, yNJk ;κ) ' G(x), (2.58)

1The symbol ' always means, that the error is assumed to be negligible.
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where the function G is defined by

G =



F, i = 3, 4;

0, i = 2;

PΣ(0, 0;κ)F, i = 1;

PΣ
|1 (0, 0;κ)F, i = 5;

PΣ
|2 (0, 0;κ)F, i = 6.

We want to calculate coefficients

αNj ∈ RNj , αNj =
(
α
Nj
1 , . . . , α

Nj
Nj

)T
, j = J0, . . . , J,

which satisfy the statements:

• The vectors αNj , j = J0, . . . , J−1, are obtainable by recursion starting
from the vector αNJ .

• For j = J0, . . . , J

P i,Σj (F ;κ)(x) =

∫
Σ

Φi,Σ
j (x, y;κ)F (y)dω(y) '

Nj∑
k=1

α
Nj
k Φi,Σ

j (x, y
Nj
k ;κ).

For j = J0, . . . , J − 1

Ri,Σj (F ;κ)(x) =

∫
Σ

Ψi,Σ
j (x, y;κ)F (y)dω(y) '

Nj∑
k=1

α
Nj
k Ψi,Σ

j (x, y
Nj
k ;κ).

In this tree algorithm (pyramid scheme), we base the numerical integra-
tion on certain approximate formulas associated to known weights wNjk ∈ C
and prescribed knots yNjk ∈ Σ, j = J0, . . . , J . Note that j denotes the scale
of the discretized scaling function, Nj is the number of integration points to
the accompanying scale j, and k denotes the index of the integration knots
within the integration formulas under consideration, i.e.,

P i,Σj (F ;κ)(x) '
Nj∑
k=1

w
Nj
k F (y

Nj
k )Φi,Σ

j (x, y
Nj
k ;κ), j = J0, . . . , J, (2.59)

Ri,Σj (F ;κ)(x) '
Nj∑
k=1

w
Nj
k F (y

Nj
k )Ψi,Σ

j (x, y
Nj
k ;κ), j = J0, . . . , J − 1. (2.60)
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The pyramid scheme, as every recursive implementation, is divided into
two parts, the initial step and the recursion step, as in [31], called pyramid
step.

Initial step As mentioned before P i,ΣJ (F ;κ) approximates, for a suitable,
sufficiently large integer J ∈ N, the right side of Equation (2.58) for all x ∈ Σ

with negligible error. Thus, according to Equation (2.59) we simply get

αNJk = wNJk F (yNJk ), k = 1, . . . , NJ .

Pyramid step (decomposition) The essential idea for the develop-
ment of the recursive scheme is the existence of a (symmetric) kernel function
Θj : Σ× Σ→ C, such that

Φi,Σ
j (x, y;κ) '

∫
Σ

Φi,Σ
j (z, x;κ)Θj(y, z;κ)dω(z)

and
Θj(x, y;κ) '

∫
Σ

Θj(z, x;κ)Θj+1(y, z;κ)dω(z)

for j = J0, . . . , J .
Since the scaling functions are non-band-limited, the scale spaces Vj are

infinite dimensional. This leads us to choose the functions Θj , for example,
to be equal to

Θj = Φi,Σ
j+L, j = J0, . . . , J,

for suitable L ∈ N0. By virtue of the approximate integration rules we thus
obtain∫

Σ

Φi,Σ
j (·, y;κ)F (y)dω(y) '

∫
Σ

Θj(y, z;κ)

∫
Σ

Φi,Σ
j (·, z;κ)F (y)dω(z)dω(y)

'
∫
Σ

Φi,Σ
j (·, z;κ)

∫
Σ

Θj(y, z;κ)F (y)dω(y)dω(z)

'
Nj∑
k=1

α
Nj
k Φi,Σ

j (·, yNjk ;κ)

(2.61)
for j = J0, . . . , J − 1, where

α
Nj
k = w

Nj
k

∫
Σ

Θj(y
Nj
k , y;κ)F (y)dω(y)
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for j = J0, . . . .J−1 and k = 1, . . . , Nj . Hence, according to Equation (2.61),
we obtain

α
Nj
k = w

Nj
k

∫
Σ

Θj(y
Nj
k , y;κ)F (y)dω(y)

' wNjk
∫
Σ

∫
Σ

Θj+1(z, y;κ)Θj(y
Nj
k , z;κ)dω(z)F (y)dω(y)

' wNjk
Nj+1∑
s=1

w
Nj+1
s Θj(y

Nj
k , y

Nj+1
s ;κ)

∫
Σ

Θj+1(y
Nj+1
s , y;κ)F (y)dω(y)

= w
Nj
k

Nj+1∑
s=1

w
Nj+1
s Θj(y

Nj
k , y

Nj+1
s ;κ)α

Nj+1
s .

for all j = J0, . . . , J − 1 and k = 1, . . . , Nj .

In other words, the coefficients αNJ−1
s can be calculated recursively from

αNJs given on the initial level J ; αNJ−2

k can be deduced from α
NJ−1
s ; etc.

Finally, we obtain the decomposition scheme

P i,Σj (F ;κ) '
Nj∑
k=1

α
Nj
k Φi,Σ

j (·, yNjk ;κ), j = J0, . . . , J, (2.62)

Ri,Σj (F ;κ) '
Nj∑
k=1

α
Nj
k Ψi,Σ

j (·, yNjk ;κ), j = J0, . . . , J − 1. (2.63)

Note that the coefficients αNJ in the initial step do not depend on the
choice of ΘJ = Φi,Σ

J+L. Furthermore, the functions Θj , j = J0, . . . , J − 1,
can be chosen independently of scaling function {Φi,Σ

j }j∈Z used in Equations
(2.62) and (2.63).

In conclusion, the above considerations lead us to formulate (schemati-
cally) the decomposition scheme for a fixed value κ ∈ C:

F →αNJ → αNJ−1 → . . .→ αNJ0+1 → αNJ0

↓ ↓ ↓ ↓

P i,ΣJ (F ;κ) P i,ΣJ−1(F ;κ) P i,ΣJ0+1(F ;κ) P i,ΣJ0
(F ;κ)

Because the described scheme has a tree representation form, we can
easily construct also the reconstruction scheme by inversion of the decom-



86 Helmholtz Potential Wavelets

position scheme:

αNJ0 αNJ0+1 αNJ−1

↓ ↓ ↓

P i,ΣJ0
(F ;κ) P i,ΣJ0+1(F ;κ) P i,ΣJ−1(F ;κ)

↘ ↘ ↘

Ri,ΣJ0
(F ;κ) +→ Ri,ΣJ0+1(F ;κ) +→ . . .→ Ri,ΣJ−1(F ;κ) +→ P i,ΣJ (F ;κ)

where P i,Σj (F ;κ), Ri,Σj (F ;κ) are given by Equations (2.62), (2.62), respec-
tively.

The idea of the reconstruction scheme can be described as follows: We
start from a trend solution, a rough approximation on the low level J0 ∈ N0.
Regarding the more and more space-localizing properties of the wavelet func-
tions, the solution on the next level P i,ΣJ0+1(F ;κ) can be obtained by addition
of the detail information Ri,ΣJ0

(F ;κ) on the current level. This procedure can
be recursively continued. Schematically, by way of an example, the recon-
struction algorithm with the (2D) scaling and wavelet functions of type 6 is
shown in Figure 2.4.

The idea of the decomposition scheme is completely different (see Figure
2.5): We start from a scaling function with high level J . The data will
be „read in“ at this level and recursively decomposed by the tree algorithm
(pyramid scheme). The decomposition provides a decorrelation of the data
at different levels and at different positions.

The numerical effort of a pyramid step can be drastically reduced by use
of a panel-clustering method (e.g., fast multipole procedures as developed
by [36], [37], [38], [39]). In doing so, the evaluations take advantage of the
localizing structure of the kernels.Roughly spoken, the kernel is split into a
near field and a far field component. The far field component is approximated
by a certain expression obtaining the ‘low frequency contributions’. For
the points close to the evaluation position, the evaluation uses the exact
near field of the kernel. For the remaining points, the approximate far field
contributions are put together.
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Figure 2.4: Reconstruction scheme (a tree algorithm) with (2D) wavelet
functions of type 6. (τ = 2−j , 0 ≤ y1, y2 ≤ 1, x1 = 0.5, x2 = 0.5, κ = 1.0)
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Figure 2.5: Decomposition scheme (a tree algorithm) with (2D) wavelet
functions of type 6. (τ = 2−j , 0 ≤ y1, y2 ≤ 1, x1 = 0.5, x2 = 0.5, κ = 1.0)



Chapter 3

An Additive Scheme for
Seismic Modeling

This chapter is devoted to a finite-difference approach applied to the model-
ing of the acoustic wave transmission in inhomogeneous media. We base
our high performance computation on an additive scheme developed by
Samarskij, Vabishevich (see [74]) that approximates a second order differ-
ential equation. In fact, such a scheme can be successfully used for the
construction of the alternating direction implicit (ADI) method (e.g., [26])
as well as for the domain decomposition. At the end of this chapter, we
present an algorithm for seismic migration by use of the additive scheme.

3.1 Additive Scheme for a Second Order Differen-
tial Equation

We begin our consideration with the brief recapitulation of the theory de-
veloped by Samarskij, Vabishevich (cf. [74]).

We search for a function U in a suitable reference space (allowing the
specification of a Hilbert space structure, i.e., norms and angles), which
satisfies

d2

dt2
U(t) +AU(t) = F (t), t > 0, (3.1)

U(0) = u0, (3.2)
d

dt
U(0) = v0. (3.3)

89
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If the operator A is positive definite, self-adjoint, and stationary, the
following operator decomposition can be used

A =

p∑
α=1

A(α). (3.4)

We focus on the explicit scheme according to the operator decomposition
(3.4):

un+1 − 2un + un−1

τ2
+Aun = φn.

By using of the simplest multiplicative regularization, we have

un+1 − 2un + un−1

τ2
+ (I + µA)−1Aun = φn. (3.5)

Now, regarding the operator decomposition (3.4), we rewrite the explicit
scheme as follows

un+1 − 2un + un−1

τ2
+

p∑
α=1

A(α)un = φn.

The multiplicative perturbation of each operator components yields the ad-
ditive difference scheme

un+1 − 2un + un−1

τ2
+

p∑
α=1

(I + µAα)−1Aαun = φn. (3.6)

Theorem 3.1 (cf. [74]) For σ ≥ p

4
(µ = στ2) and all τ > 0, the additive

difference scheme (3.6) for the problem (3.1)-(3.3) is unconditionally stable,
i.e., the scheme (3.6) converges for all time-steps τ .

3.2 Approximate Solution of the Wave Equation

Figure 3.1: The strong velocity field of the ‘Marmousi’ model
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In this section we apply the additive difference scheme to the problem
of the wave propagation in an inhomogeneous medium. For this reason, we
rewrite the acoustic wave equation according to the form (3.1)

∂2

∂t2
Ũ(x, t)− C(x)2∆Ũ(x, t) = F̃ (x, t), in Σint × [0, T ], (3.7)

Ũ(x, 0) = 0, (3.8)
∂

∂t
U(x, 0) = 0, (3.9)

where Ũ is the solution of the wave equation (the pressure wave field) and
F̃ is defined by

F̃ (x, t) =

{
F (t), x = xs;

0, x 6= xs,
(3.10)

where F denoted the seismogram recorded at position xs.
In accordance with the theory described in Section 3.1, we have for the

problem (3.8)-(3.9) the following representation

ũn+1 − 2ũn + ũn−1

τ2
+

p∑
α=1

(I + µAα)−1Aαũn = φ̃n, (3.11)

where ũn denotes the discretized value of the function Ũ at the time-step
tn, n = 1, . . . , N , while φ̃n is the discretization of F̃ . The operator A de-
notes the finite difference approximation of −C(x)2∆Ũ(x, t) and can be rep-

resented as A =

p∑
α=1

A(α), where A(α) can be used for the domain decomposi-

tion into p domains (usually applied for three-dimensional models) as well as
for direction splitting into p directions (usually applied for two-dimensional
models).

Actually, the difference representation (3.11) contains two parts, i.e., im-
plicit and explicit one. In this sequence, Equation (3.11) has to be solved

(i) For each α = 1, . . . , p the linear system of equation is to solve(
I + µA(α)

)
w(α) = A(α)ũn. (3.12)

(ii) The explicit step is to calculate

ũn+1 − 2ũn + ũn−1

τ2
+

p∑
α=1

w(α) = φ̃n. (3.13)
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Figure 3.2: Wave transmission illustrated to 0.6, 1.1, 1.6, 2.1, 2.6sec in the
strong velocity field of the ‘Marmousi’ model (Fig. 3.1)
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Example We consider the commonly used (2D) ‘Marmousi’ model described
by Versteeg in [75]. This model is the most useful model in the history of
geophysics, and is applied to calibrate imaging algorithms. We focus on the
strong velocity field of the ‘Marmousi’ model, which is illustrated in Figure
3.1. In order to demonstrate examples of the transmission of seismic waves,
we consider the function F (that has to be substitute into Equation (3.10))

F (t) = exp(−γ2t2) cos(2πωpeakt), (3.14)

which according to the practical experience is used to simulate an impulse
of an energy source in seismic experiment. In Equation (3.14) γ denotes
a damping parameter, ωpeak is a peak angular frequency. We demonstrate
an example of the wave propagation by setting the function F on the sur-
face at point x = 6000m as an initial value. Then, we apply the numeri-
cal scheme (3.12), (3.13) in combination with non-reflecting boundary con-
ditions (e.g. [63]). The resulting snapshots of the wave transmission to
0.6, 1.1, 1.6, 2.1, 2.6sec are illustrated in Figure 3.2.

3.3 Imaging Condition and Seismic Migration

Figure 3.3: Seismic experiment.

In this section we construct a seismic migration method. For this pur-
pose, we again use the example of seismic data collecting illustrated in Figure
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3.3. This seismic experiment can be considered as two separate problems,
i.e., the simulation of the source wave field, and the extrapolation of the
receivers wave field by recorded seismogram. Such configuration is usually
called a (shot-gather) pre-stack migration. If, in the seismic experiment, we
have only one source and only one receiver, which occupy the same position,
we obtain the post-stack migration (or migration of zero-offset data set).

Figure 3.4: Schematic representation of the source wave field modeling (left)
and of the receiver wave field extrapolation (right). tmax denotes here the
last recorded time T , ∆t is the time sampling.

In order to compute the desired seismic image M of the subsurface inte-
rior, the imaging condition (e.g., [6] and the references therein; [40]), which
is mathematically represented as the convolution of both wave fields to the
time zero, applies

M(x) =

T∫
0

S(x, t)R(x, t)dt,

where S and R denote source and receiver wave fields, respectively. More-
over, if we have more than one source position, we obtain for the image M
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the following representation

M(x) =
∑
s

T∫
0

Ss(x, t)Rs(x, t)dt, (3.15)

where the sum over s denotes the sum over all source positions, Ss is the
source wave field in the initial position s, and Rs is the receiver wave field
corresponding to the current source position s.

Figure 3.5: The 121-124th shot gathers of the ‘Marmousi’ model.

Remark 3.2 In order to reduce some modeling artifacts, modified imaging
conditions can be used (for more details the reader is referred, e.g., to [44],
[45] and the references therein).

Figure 3.6: The migration result of the ‘Marmousi’ model.

By using of the imaging condition (3.15), we present a seismic migra-
tion method. The most intuitive understandable migration algorithm is the
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reverse-time migration developed by Baysal (see [2], [3]). This method is
schematically illustrated in Figure 3.4: the source wave field is simulated in
direct time by using the Ricker wavelet as initial value; the receiver wave
field is extrapolated in reverse time by using recorded seismogram as initial
value.

Example We turn back to the ‘Marmousi’ model (see [75]). This data set
consists of 240 shot gathers recorded during 2.7s with the time sampling 4ms.
Each shot gather contains 96 receiver positions. The 121st-124th shot gather
is illustrated in Figure 3.5. We apply the aforementioned additive scheme
with absorbing boundary conditions [63] to the data set and calculate the
seismic image by applying the reverse time approach using imaging condition
(3.15). The (migrated) seismic image is illustrated in Figure 3.6.



Chapter 4

Postprocessing by Helmholtz
FWT

This chapter is devoted to the application of the developed Helmholtz wavelet
theory for seismic data postprocessing. In Section 4.1 we recapitulate the
Helmholtz FWT in accordance with goals of noise and artifact attenuation.
Afterwards, in Section 4.2, we demonstrate some numerical results.

4.1 Construction of a Postprocessing Algorithm

In the previous chapter we briefly described the well-known procedure of
reverse time migration and demonstrated its numerical implementation by
use of an additive scheme. This migration algorithm is a powerful tool for
imaging complex geological structures because of its ability to calculate all
types of waves (e.g., head waves, multi-pathing, turning waves, etc), and also
to handle steep dips. However, the reverse time migration is very sensitive to
the accuracy of the velocity model, and, therefore, produces low-frequency
artifacts at the places of sharp velocity contrasts (see, e.g., [40], [45]). These
artifacts are created by the unwanted cross-correlation of head-waves, diving
waves and back-scattered waves by the application of the imaging condition.

The low-frequency events exert negative influence on the recognition of
seismic attributes from seismic data needed for geological interpretation and
analysis. These attributes can help to predict physical properties of the
Earth subsurface, and to map of faults and fractures. Their classification
may be based on time, amplitude, frequency, and attenuation (cf. [12], [13]).

97
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Figure 4.1: Experienced frequency range of currently used acoustical imaging
applications, with depth of penetration (source [35]).

Because each currently used acoustical imaging application corresponds
to the frequency range specific only for this application as illustrated in Fig-
ure 4.1, we can apply a postprocessing algorithm that filters out significant
frequencies and, in addition, attenuates noise and artifacts. For this purpose,
we apply our wavelet theory as proposed in Chapters 1, 2.

The main reason for our work is the Helmholtz wavelet decomposition,
which is provided by Corollary 2.37, i.e., for a regular surface Σ ⊂ R3, a
continuous or square-integrable function F on Σ, an integer J0 ∈ Z, and a
sufficiently large number J ∈ N

F '
∫
Σ

Φ3,Σ
J0

(·, y;κ)F (y)dω(y) +
J−1∑
j=J0

∫
Σ

Ψ3,Σ
j (·, y;κ)F (y)dω(y) (4.1)

' P 3,Σ
J0

(F ;κ) +
J−1∑
j=J0

R3,Σ
j (F ;κ). (4.2)

The scaling functions Φ3,Σ
j (x, 0;κ) and the wavelet functions Ψ3,Σ

j (x, 0;κ)

are illustrated in Figure 4.2. The efficient and economical implementation
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(a)

(b)

(c)

(d)

Figure 4.2: The scaling functions Φ3,Σ
j (x, 0;κ) (left) and the wavelet func-

tions Ψ3,Σ
j (x, 0;κ) (right), where j = −3, x = −10, . . . , 10, C = 2.0km/s:

(a) f = 0.5Hz, (b) f = 5Hz, (c) f = 10Hz, (d) f = 20Hz.

of the last equation can be accomplished by the Helmholtz FWT in form of
the tree algorithm described in Section 2.5.
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The multiscale representation (4.2) may be applied to perform the anal-
ysis of seismic attributes from a given seismic section (the given function F ),
as well as to obtain the multiscale analysis and to calculate the attributes
for each resolution scale (e.g., [64]).

Remark 4.1 Note that - because of the space localization properties of scal-
ing as well as wavelet functions - for the computation of the filtered versions
of the function F on the coarser scale, we need fewer control points. That
allows for the use of the same allocated memory for saving the decomposi-
tion coefficients used, for example, for the further entropy coding in order to
compress a seismic section (cf. [5]).

4.2 Numerical Tests

We consider the migration result of the ‘Marmousi’ model presented in Chap-
ter 3, and shown in Figure 3.6. Our goal is to reduce the low-frequency
artifacts, and to reveal additional informations relevant for seismic data in-
terpreters.

Figure 4.3: Lithology and model features including the location of hydrocar-
bons surfaces (source [53]).

In order to be able to verify further results, we briefly review the geo-
logical interpretation illustrated in Figure 4.3 of the ‘Marmousi’ model (cf.
[53], [75]): The geologic history underlying this model consists of two quite
different phases. The first corresponds to a continuous sedimentation of
marls and carbonates. At the end of the sedimentation, these deposits were
slightly folded and then eroded with erosion surface being flat. The second
began with the deposition of an isopachous seliferous evaporitic series. On
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this series a clayeymarly series rich in organic matter was deposited. These
sediments were followed by a thick deposit of shaly-sandy detrital sediments
with a western source whose facies thickness was governed by continuous lat-
eral creep of the salt resulting from the overburden pressure. Linked to this
salt creep, which locally causes complete disappearance of the salt, slanting
growth faults appeared which were continuously active during the deposition
of the detrital series.

Thereby, the main targets of this data set are salt structure related traps
and the deeper anticlinal structure, under which a single gas and oil accu-
mulation is located (see Figure 4.3).

In what follows we are interested in the multiscale decomposition of seis-
mic data. For this reason we treat Σ as a boundary of a cube with the
length 9.125km, the width 3.000km, and an arbitrary height. Each side of
this cube is represented by a regular surface element Ξi, i = 1, . . . , 6, so
that Σ = ∪6

i=1Ξi. The seismic data set, i.e., the collection of discrete values
of F is assumed to be given on the upper rectangular surface element Ξ1.
For the purposes of numerical tests, we associate the function F with the
migration result of the ‘Marmousi’ model calculated by the additive scheme
in Section 3.3 with the sampling interval 12.5m (corresponds to 730 pixels)
in the lateral direction and 4.0m (750 pixels) in the depth and illustrated in
Figure 3.6. The discrete data set of F is then handled by the tree algorithm
(decomposition scheme) as described in Section 2.5, i.e., according to the
formulas (4.1), (4.2) on a rectangular surface element Ξi in pointwise sense.

With respect to the tableau, which is illustrated in Figure 4.1, the fre-
quency range applied in the hydrocarbon industry lies approximatively be-
tween 10 and 100Hz. We use the aforementioned decomposition scheme in
order to reveal additional information about the geological structure, and in
order to attenuate noise and artifacts. We focus on the parameter κ (wave
number) given by

κ =
2π

λ
=
ω

C
, (4.3)

where λ is the wave length, ω is an angular frequency (ω = 2πf), C is a
medium velocity. For fixed f and after the application of the Helmholtz
FWT, we obtain the multiscale representation, which is associated to the
wave number κ, of a given seismic section.

In order to explain our postprocessing procedure we have to comment on
the role of κ from numerical point of view. On the one hand, our wavelet
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Figure 4.4: The smooth velocity field of the ‘Marmousi’ model.

theory as presented in Chapter 2 provides multiscale decomposition globally
on Σ for a constant κ. On the other hand, the Helmholtz wavelets – at least
for large J – show extreme space localization for which a constant value
κ has to be taken into account. In consequence, when we are interested
in numerics, the tree algorithm (decomposition scheme) for a data point x
of the seismic section involves only extremely localized areas with constant
κ. This is the reason why we finally decided – for numerical purposes –
to consider „the constant κ to be different from point to point“, such that
seismic sections become attackable in a realistic way. In other words, our
wavelet theory enables us to use the values κ to be dependent on the position
x to be discussed.

Contrary to the theoretical approach as presented in this thesis, but con-
sistently with the space localization properties of the Helmholtz wavelets we
therefore understand κ as given by Equation (4.3) to be a function of the
point x of the regular surface element of Σ containing the given informa-
tion for postprocessing. More concretely, the decomposition scheme can be
further represented as follows.
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Initial (read-in) step For a suitable sufficiently large J ∈ N, and a given
frequency f , we read in the (discrete) seismic data F and the corre-
sponding (discrete) velocity model C. F is associated by P 3,Ξi

J .

Pyramid (decomposition) step For a given J0 ∈ N, J0 < J the sections
P 3,Ξi

j are to be calculated for j = J − 1, . . . , J0.

1. We choose the integration knots yNjk ∈ Ξi and the corresponding
weights wNjk ∈ C.

2. For each x ∈ Ξi we set κx =
2πf

C(x)
and compute

(a) R3,Ξi

j (F ;κx) '
Nj∑
k=1

α
Nj
k Ψ3,Ξi

j (x, y
Nj
k ;κx).

(b) P 3,Ξi

j−1 (F ;κx) = P 3,Ξi

j (F ;κx)−R3,Ξi

j (F ;κx).

3. While j > J0 we set the current scale j = j − 1, repeat step 1.

By use of our algorithm we obtain multiscale representations of the input
seismic data, i.e., discrete values of F (Figure 3.6) over the selected frequency
into the low-pass filtered (scale) information and band-pass filtered (detail)
information. For the discrete choices of the scaling parameter we use τj =

1− cos(2−jπ), and for C in Equation (4.3) we use the smooth velocity field
illustrated in Figure 4.4. In order to understand how the decomposition
works, we study, for example, the result of the Helmholtz FWT illustrated
in Figure 4.5. The original values of F (730× 750 pixels) is recovered from
the sum of the low-pass filtered information P 3,Ξ1

10 (F ;κ) (365 × 375 pixels)
and the band-pass filtered information R3,Ξ1

10 (F ;κ) (365 × 375 pixels). The
section P 3,Ξ1

10 (F ;κ) is obtained as a sum of P 3,Ξ1

9 (F ;κ) (182×187 pixels) and
R3,Ξ1

9 (F ;κ) (182 × 187 pixels). The section P 3,Ξ1

9 (F ;κ) is calculated from
P 3,Ξ1

8 (F ;κ) (90× 93 pixels) and R3,Ξ1

8 (F ;κ) (90× 93 pixels).
Now we focus on the multiscale analysis (scale and detail illustrations)

obtained by the Helmholtz FWT and shown in Figures 4.5–4.11.
Since our target frequencies are 10Hz to 100Hz, the representation over

0.5Hz yields no specific details. Nevertheless, as it can easily be seen in
Figure 4.5 by comparing the section of F and the band-pass filtered sections,
the application of this decomposition reduces the low-frequency artifacts
attended in the input seismic section.
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The low-frequency artifacts, which are created by unwanted internal re-
flections and their cross-correlation, can be recognized from the band-pass
filtered sections in Figure 4.6.

Moreover, the frequency range, at which a given reflection is dominant,
is very useful, because by analyzing a given reflection at different resolutions
we are able to study the frequency-dependent attenuation (see, e.g., [64]).
For example, the high amplitude events in the center of R3,Ξ1

9 (F ;κ) and
R3,Ξ1

8 (F ;κ) of the decomposition, appearing at about 10Hz (Figure 4.7), we
associate (optically) with the oil sand traps that are marked in Figure 4.3.

In Figure 4.8 the decomposition over 20Hz is presented. The high-
amplitude reflectors can easily be identified in the band-pass filtered sections
that are also clearly visible in the input section. Additionally, we can better
recognize the faults, the salt dome and the deeper anticlinal structure (cf.
Figure 4.3) in R3,Ξ1

10 (F ;κ), R3,Ξ1

9 (F ;κ).
The band-pass filtered sections illustrated in Figure 4.9 provide finer

details that are difficult to discern in F .
Figures 4.10 and 4.11 demonstrate a decomposition over 40Hz and 50Hz,

respectively. Their detail information sections visualize finer structures of the
salt dome as well as of low-amplitude reflectors.

Because 250Hz is out of the frequency range, which is significant for the
oil and gas industry, the band-pass filtered sections illustrated in Figure 4.12
contain computational artifacts and noise only.

As a result of the interpretation of the developed Helmholtz FWT and
the multiscale representations of the synthetic seismic data set (‘Marmousi’
model), we are led to state the following advantages:

• The Helmholtz FWT enables us to decompose noisy seismic data sets
into multiscale low-pass and band-pass filtered series over a selected
frequency. This multiscale technique can be applied in the fields of
seismic reflection analysis to detect finer structural information.

• The wavelet transform allows the efficient and economical implemen-
tation in form of a tree algorithm for fast numerical computation.

• The multiscale representation can further be applied to the seismic
data compression by using entropy coding algorithms.

In conclusion, the Helmholtz FWT can be applied by the interpreters in
order to get additional information for analyzing seismic attributes.
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Figure 4.5: Multiscale analysis of the seismic section F (in [m]) (Fig. 3.6)
for f = 0.5Hz.
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Figure 4.6: Multiscale analysis of the seismic section F (in [m]) (Fig. 3.6)
for f = 5Hz.
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Figure 4.7: Multiscale analysis of the seismic section F (in [m]) (Fig. 3.6)
for f = 10Hz.
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Figure 4.8: Multiscale analysis of the seismic section F (in [m]) (Fig. 3.6)
for f = 20Hz.
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Figure 4.9: Multiscale analysis of the seismic section F (in [m]) (Fig. 3.6)
for f = 30Hz.
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Figure 4.10: Multiscale analysis of the seismic section F (in [m]) (Fig. 3.6)
for f = 40Hz.
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Figure 4.11: Multiscale analysis of the seismic section F (in [m]) (Fig. 3.6)
for f = 50Hz.
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Figure 4.12: Multiscale analysis of the seismic section F (in [m]) (Fig. 3.6)
for f = 250Hz.



Chapter 5

Conclusion and Future Work

The main goal of this work was the construction of an appropriate tech-
nique for seismic data postprocessing. Based on the wavelet approximation
provided for regular surfaces with smooth boundaries by Freeden, Mayer
and Schreiner ([31], [55]), we extended the limit and jump relations of the
Helmholtz potential operator to regions with boundaries containing edges
and vertices. With respect to these jump and limit relations we constructed
a regularization singular integral surface potentials in the Helmholtz theory
and allowing a multiscale computation of functions on the surface. For the
fast numerical computation we presented a tree algorithm as proposed in [31]
for smooth surfaces. We gave several examples of the wavelet decomposition
in order to represent a seismic image at different scales for a selected fre-
quency. These decompositions (scale and detail illustration) visualize some
structural details specific for a selected frequency in a given seismic data set.
In addition, our approach can further be used for data analysis as well as for
data compression.

All in all, the purpose of this work is threefold: (i) a multiscale approx-
imation by means of wave dependent Helmholtz potentials, (ii) to use the
space localization properties of the Helmholtz wavelets for pointwise wave
reflected seismic data postprocessing, (iii) to implement an efficient and
economical tree algorithm for fast computation.

For further research the following aspect should be mentioned: The devel-
oped Helmholtz wavelets can be used to solve also the boundary value prob-
lems of the Helmholtz equation in regions with edges and corners. Therefore,
our multiscale technique can be applied to the modeling of wave transmis-
sions in regions of R3. In order to handle inhomogeneous media, the pertur-
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bation theory (e.g., [1], [8], [54], [68]) should be involved. In addition, the
computational effort can be drastically reduced by use of the tree algorithm.
This is a challenge for future work.
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