Reformulating Resolution
Problems by Tactics

Manfred Kerber and Axel Pracklein

Published as: In Michel De Glas and Zdzislaw Pawlak, editors,
WOCFAI 95 — Proceedings of the Second World
Conference on the Fundamentals of Artificial In-
telligence, pages 169180, Paris, France, 1995.

Reformulating Resolution Problems by Tactics

Manfred Kerber
Fachbereich Informatik
Universitat des Saarlandes
D-66041 Saarbricken, Germany
e-mail: kerber@cs.uni-sb.de

Axel Pracklein
Neue Fahrstr. 13
D-75181 Pforzheim, Germany

e-mail: prckln@es.uni-sh.de

Abstract

A straightforward formulation of a mathematical problem is mostly not ad-
equate for resolution theorem proving. We present a method to optimize such
formulations by exploiting the variability of first-order logic. The optimizing
transformation is described as logic morphisms, whose operationalizations are
tactics. The different behaviour of a resolution theorem prover for the source
and target formulations is demonstrated by several examples. It is shown how
tactical and resolution-style theorem proving can be combined.

Keywords: problem formulation, resolution, tactics, theorem proving.

1 Introduction

Solving mathematical problems with resolution-based theorem proving systems re-
quires, in most cases, intelligence and ingenuity on the part of the user, since the
final formulation of the problem is of essential importance for the problem-solving
behaviour of the system. Often the main job is to formulate the task in a machine-
friendly form, and once this is done, the system easily finds a proof. Of course this
situation is far from being satisfactory, not at least, because the transtormed rather
than the original task, is solved; this is aggravated by the fact that the correspond-
ence between both formulations is usually not clear. When the user modifies the
problem until it can be mechanically solved, his reformulation efforts are typically
not documented. Although this procedure is not convincing, in many situations some
reformulations are necessary in order to obtain any automatically generated proofs
at all. Therefore it is only reasonable to exclude reformulations for checking special
features of a theorem prover but not for standard applications.

The general idea of changing the representation of a problem is classical: human
mathematicians rephrase problems, often until the reformulation of the original prob-
lem is similar to that of a known problem. In fact, Pélya suggests such recasting of
problems in his course on human mathematical problem solving [P665, vol.2, p.80]:
“Of course you want to restate the problem (transform it into an equivalent problem)
so that it becomes more familiar, more attractive, more accessible, more promising.”

In AT as in human problem solving the representation of a problem is essential to
the behaviour of the problem-solving mechanisms. The example of the checkerboard
without two opposite edges in [McCa64], [WOLB84, p.117] shows clearly that from
the very beginning, the reformulation of problems has played a central role in the
development of Al

In the domain of automated mathematical problem solving, Bundy [Bu83, p.91]
pleads for modifications of problems in order to obtain adequate formulations for
computers. In section 4.3, he gives practical hints for reformulations making problems
more digestible by theorem proving programs; in particular, he elaborates on the
advantage of avoiding all function symbols.> Wos et al. [WOLB84, chapter 4] have
also proposed several informal methods along these lines for representing various
exercises for automated reasoning programs.

In order to formalize the procedure of reformulating problems, we will consider two
different formulations of the problem: the original normally user-friendly formulation
and a second formulation, into which the original formulation is to be transformed
and which will then be given to the theorem proving system in order to obtain
a solution. Such a transformation between formalizations is appropriate only if a
proof for the second entails the existence of a proof for the original one. More
precisely, we require that a proof for the original problem is constructible using the
proof found for the transformed formulation. The best known methods to describe
the human behaviour in mathematical problem solving are writing tactics as, for
instance, those used in LCF [GMW79], Nuprl [Co86], and proof-planning [Bu88].
Tactics (or extensions of tactics) serve as the fundamental units comprising the entire
problem-solving processes of such systems.

In this paper we show that tactics are also suitable as a basis for the problem trans-
formation process outlined above. They will be used to optimize problem formu-
lations for a resolution theorem prover by performing a preprocessing step. In the
next section we formalize the notion of reformulation and in section 3 we present
some examples. The examples show how reformulations can drastically improve the
search behaviour of a theorem proving system. Finally, reformulation is operation-
ally described by tactics in section 4. More details of our procedure can be found

in [KePr95].

2 Basic Concepts for Problem Transformations

Since our examples are mathematical in nature, they are formulated originally in a
language that is very close to higher-order logic, namely in Church’s simple theory
of types [Ch40]. We do not use any A-expressions. In the following we formalize
the notion of reformulation, and present a particular transformation that allows the
transition from higher-order to first-order language.

!When using a completion-based equality theorem prover, however, it is usually better to state
the problem with function symbols. One of our focal points is the examination of classes of problems
that are well-served by the solution method of avoiding some function symbols.

2.1 A Description of Problem Transformations by Morphisms

In order to formally describe the translation of problem formulations we must define
precisely the notions of “logic morphism” and “reformulation”. A problem formula-
tion is a pair (I', THM) consisting of a formula set I' of preconditions, and a formula
THuM. The problem is to generate an inference I' = THM.

Definition (Morphism of Logics): A morphism of logics © is a mapping from
the signature S of a logic F'(S) to the signature of a logic F*(0(S)), which maps
every set of formulae in F!(S) to a set of formulae in F?*(0(S)). [|

Morphisms are extended to problem formulations in an obvious way. The source and
target formulations of a transformation can be expressed in the same or in different
logics. In order to relate the source and the target formulation, we consider only
sound morphisms, in this paper.

Definition (Soundness): Let ©® be a morphism from F! to F?. O is said to be
sound iff for every formula set I' in F' the following holds: if ' has a model in F*!
then there is a model of O(T") in F2. u

Assume © is a sound morphism. Then a solution for (O(I'), O(THM)) represents a
solution for the original problem formulation (I', THM), too.

To render precise the notion of a reformulation we need two additional properties
of morphisms. In order to effectively perform the transformation, morphisms are
required to be computable. While this assumption is indisputably appropriate, our
second requirement, namely retranslatability of morphisms, is controversial. A re-
translatable morphism is one with which a proof of the original problem formulation
can be effectively computed from the proof of the transformed problem formulation.
This property is necessary if communication of the proof to a human mathematician
is desired. Our position is that of a “nominalist” [Pe91], that is, we hold the com-
munication of a proof to be every bit as important as its actual derivation.

Definition (Reformulation): A reformulation is the application of a sound, com-
putable, and retranslatable morphism to a problem formulation. []

2.2 A Morphism from Higher-Order into First-Order Logic

Because we want to formulate mathematical problems in higher-order logic, but
prove them in sorted first-order logic, we introduce a special class of morphisms,
which translate higher-order expressions into the sorted first-order input logic of

MKRP [OhSi9l].
Definition (Quasi-Homomorphism): Let F'(S;) and F*(S;) be two logics. A

mapping © that maps every formula and every term of F'(S;) to a formula or
to a term of F?*(S,), respectively, is called a quasi-homomorphism iff constants or
variable x are mapped onto constants or variables ©(z) and each composed term

f(t1,...,t,) is either mapped homomorphical to O(f)(O(t1),...,0(t,)) or reified

by o (O(f),0(t1),...,0(t,)), where a’ stands for apply. For all other cases O is
homomorphic. []

In the remainder of this paper we consider injective quasi-homomorphisms from
higher-order logic to sorted first-order logic since they are, in fact, reformulations
(for a proof see [Ke92]).

3 Effect of Problem Transformations on Some Examples

In this section we give two examples illustrating the benefits of reformulations.
We begin by describing how to read the computer generated proofs of the MKRP-
system [OhSi91]. The preconditions I' of a problem formulation are named Axions,
the THM is called Theorems. The axioms and the negated theorem are transformed
into clause normal form. The names of clauses stemming from axioms begin with an a,
those from the theorem begin with a 1. Resolvents are labelled with an r. The asterisk
means that the clause is really used in the proof. Positive literals are marked with
a +, negative ones with a -. The equality predicate is written as an infix operator in
the input and as a prefix operator in the output.

3.1 Avoiding Functions by Preprocessing

Our first example shows how simple preprocessing steps on a given problem formu-
lation can result in a significantly less difficult initial clause set to be input to the
resolution theorem prover. The examined theorem is the associativity of the compos-
ition operation for relations, that is, that for all binary relations p, o, 7 over a fixed
set, (poo)oT =po(oor). We write relations as subsets of the binary Cartesian
product of the object level domain. The composition of two relations is defined by

Va,y (z,y) € poo < Iz (x,2) €E pA(z,y) € 0.

Furthermore, an extensionality axiom is needed for the proof. We translate the
problem by an injective quasi-homomorphism (as described in subsection 2.2) into
first-order logic and continue our considerations with the translated formulation.

3.1.1 The Initial First-Order Formulation

The “apply” predicate a from 2.2 is written as e. The type of binary relations is
denoted by reL and the type of individuals by pom. Instead of (z,y) € p we use the
notion p(x,y), which is translated into the first-order MKRP-atom e(rHO X Y).

Axioms: SORT DOM,REL:ANY * Sorts *
TYPE @(REL DOM DOM)
TYPE COMP(REL REL):REL * Definition of Composition *

ALL RHO,SIG:REL ALL X,Y:DOM (EX Z:DOM @(RHO X Z) AND @(SIG Z Y))
EQV @(COMP(RHO SIG) X Y)
* Extensionality Axiom *
ALL RHO,SIG:REL (ALL X,Y:DOM @(RHO X Y) EQV 0(SIG X Y)) IMPL RHO = SIG
Theorems: ALL RHO,SIG,TAU:REL COMP(COMP(RHO SIG) TAU) = COMP(RHO COMP(SIG TAU))

3.1.2 Normalization of the Original Formulation

If we input this formulation to the MKRP-system we obtain the following clauses with
the harmless-looking Skolem functions £2 and £3:

Al: A1l x:Any + =(x x)

* A2: A1l x,y:REL z,u:DOM + @(y u f1(y z u x)) - @(comp(y x) u z)

* A3: A1l x,y:DOM z,u:REL + @(u f1(z y x u) y) - @(comp(z u) x y)

* A4: A1l x,y,z:DOM u,v:REL - @(v z y) - @(u y x) + @(comp(v u) z x)

* A5: All x,y:REL - @(y f2(y x) £3(y x)) - @(x f2(y x) £3(y x)) + =(y x)
* A6: All x,y:REL + @(y f2(y x) £3(y x)) + @(x f2(y x) £3(y x)) + =(y x)
* T7: - =(comp(comp(cl c2) ¢3) comp(cl comp(c2 c3)))

The system needs 1115 seconds (on a UX1200 Symbolics machine) to generate a
proof with very complicated clauses.

3.1.3 Reformulation

Looking at the input formulae and at the result of the normalization we see the
possibility for a preprocessing step. The structure of the last axiom formula is (A <
B) = C where C matches the theorem C’. We can therefore construct a new theorem
A" & B’ according to the match. Starting with this “resolvent” as the theorem we
can avoid the unfolding during normalization, and can additionally split the theorem
into the two parts A’ = B’ and B’ = A’ with computation times for the split parts
of 18 and 13 seconds, respectively.

But this splitting is not the main reason for the improvement in performance (time
without splitting: 114 seconds). The problem with the first formulation is the un-
folding during normalization:

.A@B):>C

-([v][ae B)vC

-(([V]A= B)A([V]B= A)vC
ﬁ(ﬂA\/B) =([v]-BvA)vVC
(B]-(=AavB) v ([3]~(-BvA)vC
([3lan-B)v([3]BA-A)vC
V] (=A'V=B'VC)A(A'V B'V C)

¢

¢ ¢
.HEHH-

The last formula corresponds to the clauses a5 and aé above. There the A’s and
B’s contain troublesome Skolem functions, introduced in the last step because of
quantifiers in the theorem, which must be resolved in a difficult manner. By the
preprocessing step we replace the three-literal clauses a5 and a6, as well as the theorem
clause 17, by the simple unit clauses 15 through T8 in the proof below and hence avoid
the Skolem functions £2 and £3. Really complex clauses are no longer possible, because
these Skolem functions are replaced by the Skolem constants <3 and <5 (or <8 and <10
for the second split part, respectively), which cannot, of course, be nested. In the
formulation below one can immediately see the five variables that are Skolemized.

The general explicit formulation of the extensionality axiom is replaced by a special
implicit one. The alternative formulation together with the clause set is as follows:

Axioms: SORT DOM,REL:ANY * Sorts *
TYPE @(REL DOM DOM)
TYPE COMP(REL REL) :REL * Definition of Composition *

ALL RHO,SIG:REL ALL X,Y:DOM
(EX Z:DOM @(RHO X Z) AND @(SIG Z Y)) EQV @(COMP(RHO SIG) X Y)
Theorems: ALL RHO,SIG,TAU:REL ALL X,Y:DOM
Q(COMP (COMP (RHO SIG) TAU) X Y) EQV @(COMP(RHO COMP(SIG TAU)) X Y)

Set of Axiom Clauses Resulting from Normalization
Al: A1l x:Any + =(x x)
* A2: A1l x,y:REL z,u:DOM + @(y u fi(y z u x)) - @(comp(y x) u z)
* A3: A1l x,y:DOM z,u:REL + @(u f1(z y x u) y) - @(comp(z u) x y)
* A4: A1l x,y,z:DOM u,v:REL - @(v z y) - @(uy x) + @(comp(v u) z x)

Set of Theorem Clauses Resulting from Normalization and Splitting
Splitpart 1 * T5: - @(comp(comp(c4 c1) ¢c2) c3 c5)

* T6: + @(comp(c4 comp(cl c2)) c3 c5)
Splitpart 2 * T7: + @(comp(comp(c9 c6) c7) c8 c10)

* T8: - @(comp(c9 comp(c6 c7)) c8 c10)

3.2 Explicit versus Predicative Formalization

Our second example deals with a more fundamental change of representation that
relies on an explicit formulation. Again, the explicit statement of the problem is
closer to a textbook formulation, it can be instantiated in the examined case to a
very simple formulation. The task is to prove that the intersection of two equivalence
relations is also an equivalence relation.

3.2.1 Higher-Order Formulation
The problem is easily stated in higher-order logic by the following formulae:

Definition of Intersection: VYp(,x,—o), OC(.xim0) YV, b, (pNo)(a,b) < pla,b) A o(a,b)
Definition of Reflexivity: Vp(,x,—o) ref(p) & (Va, p(a,a))

Definition of Symmetry: Vp(,x,—o) sym(p) & (Ya,,b, p(a,b) = p(b,a))

Definition of Transitivity: Vp(,x,—.) trans(p) < (Va,, b, c, p(a,b)Ap(b,c) = p(a,c))
Definition of Equivalence Relation: Vp(,x,—.) eqv(p) < ref(p) A sym(p) A trans(p)
Theorem: Vp(,x,—0); O(ixi—0) €qV(p) Aeqv(o) = eqv(p N o)

3.2.2 First-Order Formulation

As with our first example, these higher-order formulae are translated by an injective
quasi-homomorphism (compare subsection 2.2) into the MKRP input language.

Axioms: SORT DOM,REL:ANY * Formulation with Variable Relations *
TYPE @(REL DOM DOM)
TYPE INTER(REL REL) :REL * Definition of Intersection *
ALL RHO,SIG:REL ALL A,B:DOM @(INTER(RHO SIG) A B) EQV @(RHO A B) AND @(SIG A B)
TYPE REF(REL) * Definition of Reflexivity *

ALL RHO:REL REF(RHO) EQV (ALL A:DOM @(RHO A A))

TYPE SYM(REL) * Definition of Symmetry *
ALL RHO:REL SYM(RHO) EQV (ALL A,B:DOM @(RHO A B) IMPL @(RHO B A))
TYPE TRANS(REL) * Definition of Transitivity *
ALL RHO:REL TRANS(RHO) EQV
(ALL A,B,C:DOM @(RHO A B) AND @(RHO B C) IMPL @(RHO A C))
TYPE EQ.REL(REL) * Definition of Equivalence Relation *
ALL RHO:REL EQ.REL(RHO) EQV REF(RHO) AND SYM(RHO) AND TRANS(RHO)
Theorems: ALL RHO,SIG:REL EQ.REL(RHO) AND EQ.REL(SIG) IMPL EQ.REL(INTER(RHO SIG))

3.2.3 Reformulation

The following variant of the above problem is expressed with constant predicates.
Instead of proving the theorem for all p and o we show it for arbitrary new constants
p and o according to the inference rule “AE” (All-Einfiithrung, Universal General-
ization) of Gentzen’s natural deduction calculus [Ge35]. After the expansion of all
definitions we obtain a formula set that is entirely first-order, with the exception of
the intersection function whose domain consists of predicates. In order to elimin-
ate this function symbol we introduce a new predicate constant ruosic for the term
p N o. The explicit definitions of the original formulation are now implicitly given
in the theorem. We give the problem formulation of this reformulation whose proof
consists of six trivial splitparts.
Axioms: SORT DOM:ANY * Formulation with Constant Relations *

TYPE RHO(DOM DOM)

TYPE SIG(DOM DOM)

TYPE RHOSIG(DOM DOM)

ALL A,B:DOM RHOSIG(A B) EQV RHO(A B) AND SIG(A B)
Theorems: ((ALL A:DOM RHO(A 4))

AND (ALL A,B:DOM RHO(A B) IMPL RHO(B A))

AND (ALL A,B,C:DOM RHO(A B) AND RHO(B C) IMPL RHO(A C))

AND (ALL A:DOM SIG(A A))

AND (ALL A,B:DOM SIG(A B) IMPL SIG(B A))

AND (ALL A,B,C:DOM SIG(A B) AND SIG(B C) IMPL SIG(A C)))

IMPL ((ALL A:DOM RHOSIG(A A))

AND (ALL A,B:DOM RHOSIG(A B) IMPL RHOSIG(B A4))
AND (ALL A,B,C:DOM RHOSIG(A B) AND RHOSIG(B C) IMPL RHOSIG(A C)))

3.2.4 Proof Statistics

In order to prove that the intersection of two equivalence relations is again an equiv-
alence relation, we have presented two different formulations of the problem - a
relatively direct translation of the higher-order formulation and a more subtle formu-
lation. Runtime behaviour of the MKRP-system (measured in seconds) for different
option settings is compared in the following table. “Depth” is the maximally allowed
term depth in the generated clauses. “Splitting” means that the theorem may be
divided into several parts for the proof. The “Terminator” is a special proof tool for
unit resolution [AnOh83]. The term depth has not been limited for the runs using
the terminator.

Depth Depth with Splitting Terminator

00 ‘ 2 ‘ 1 00 ‘ 2 ‘ 1 Standard ‘ Splitting
Variant 1 || oo | 2105 | unsolvable 269 65 22 00 10
Variant 2 || 46 | 46 47 5 5 5 23 5

In all settings, the second variant is superior to the first one. The difficulty with
the first formulation results primarily from the possibility of nesting the intersection
function. Note that for this example, the first variant has an infinite search space,
while the search space of the second is finite.

Although the two examples suggest that eliminating function symbols leads to more
efficient deductions, this need not always be the case. Sometimes precisely this elim-
ination method is used to construct sets of test examples with increasing complexity
for theorem provers. Consider, for example, the pigeonhole problem as presented in
[Pe86, example 72|, which can be proved in higher-order logic for all n € IN, but
which requires increasing amount of resources in propositional logic for increasing n

(for details see [KePr95]).

As it is not possible in general to determine the best formulation of a problem in
advance, it is necessary to decide heuristically whether or not reformulation is ad-
equate. For instance, a propositional logic formulation should be avoided when it is
very large compared to the corresponding first-order formulation.

4 Tactics for Problem Transformations

In order to operationalize our morphisms we use the tactic formalism, which was
invented during the development of the LCF proof system [GMW79]. In LCF and
other advanced proof-checking systems like Nuprl [Co86], tactics are basically abbre-
viations for sequences of calculus rules. Whereas all operations in these systems are
performed in the same logical language, for us a tactic is just the operationalization
of a reformulation, which may link two different languages.

In Nuprl elementary tactics correspond to the application of calculus rules. More
powerful composed tactics are obtained using tacticals to combine tactics: IF FExpres-
ston THEN Tactic, IF Ezpression THEN Tactic; ELSE Tactic;, REPEAT Tactic,
WHILE FEzpression DO Tactic, COMPOSITION Tacticy - - - Tactic,. Originally Fz-
pression is a boolean expression written in the programming language ML. We use
an informal logical language below to specify the expressions that are necessary to
specify the problem transformations.

4.1 Tactics for the Examples

Informally a tactic transforming our first example from its initial formulation into
the form that is more appropriate for resolution might be: If certain conditions are
fulfilled (namely, a theorem THM is to be proved from a formula set I', the theorem
is an atom, I' contains an implication, in which the antecedent is not an atom and
the succedent matches the theorem, and the predicate of the theorem does not occur
anywhere else in the problem formulation), then the theorem and one of the axioms
are replaced by a simpler formula. The replacement corresponds to the backward
application of modus ponens (modulo matcher), where the implication is valid.

ELIM_THM_PRED :=
IF TO_PROVE(I' F THM)

A ATOM(THM)

A JAX AX € I' A AX = (Antecedent = Succedent)

A = ATOM(Antecedent)

A Jdo: Matcher THM = o(Succedent)

A —“DOES_OCCUR(PREDICATE(THM), (I'-{AX} U {Antecedent})
THEN TO_PROVE(I'-{AX} I o(Antecedent))

We neglect the existence of universal quantifiers in this description of the tactic. Of
course, the variables in the domain of the matcher must be universally quantified in
the corresponding formula.

In the second example several different tactics are used to obtain the final formulation
of the problem from the initial first-order one. The first tactic serves to replace
universally quantified variables in the theorem by constants:

ELIM_THM_VARS := IF TO_PROVE(I' F THM)
ANTHM = Vaq,...,x2, ¢
No:={x) < ¢1,...,&, — Cp}
AV, e{l,....n}ANei=¢; = 1=
ANVec€{c,...,c,} = “DOES_OCCUR(c,I'U {p})
THEN TO_PROVE(I'F o(¢))

After the application of this tactic to the initial problem formulation (compare sub-
section 3.2.2), the problem is transformed into the following one (where the dots
mean that the rest of the problem formulation is unchanged):

Axioms: .
TYPE RHO,SIG:REL

Theorems: EQ.REL(RHO) AND EQ.REL(SIG) IMPL EQ.REL(INTER(RHO SIG))

The second tactic is used to expand the definitions occurring in the preconditions:

EXPAND_DEF := IF TO_PROVE(I' - THM)
ANJAX AX el AN AX =Vaq,..., 2, Plag,...,2,) & @
A “DOES_OCCUR(P, ¢)
THEN TO_PROVE(SUBST_ALL(P, p,'-{AX} F THM))

for a tactic SUBST_ALL(pred, formula, in) replacing all occurrences of the predicate P
in the form P(t4,...,t,) by o(¢), where o is the matcher o = {&1 «— t1,..., 2, «— t,,},
which matches the occurrence of P in formula with the definition of P.

Repeated application of this tactic SUBST_ALL yields a new problem formulation,
where the definitions of Rer, sym, Trans, and EQ.REL are expanded. (Note, that the
definition of intersection is not a “simple” definition and cannot be expanded by this
tactic):

Axioms: SORT DOM,REL:ANY
TYPE @(REL DOM DOM)
TYPE RHO,SIG:REL
* Definition of Intersection *
TYPE INTER(REL REL):REL
ALL RHO,SIG:REL ALL A,B:DOM @(INTER(RHO SIG) A B)
EQV @(RHO A B) AND @(SIG A B)

Theorems: (ALL OM @(RHO A A)) AND

A:D
(ALL A,B:DOM @(RHO A B) IMPL @(RHO B A)) AND
(ALL A,B,C:DOM @(RHO A B) AND @(RHO B C) IMPL @(RHO A C))
AND (ALL A:DOM @(SIG A A)) AND
(ALL A,B:DOM @(SIG A B) IMPL @(SIG B A)) AND
(ALL A,B,C:DOM @(SIG A B) AND @(SIG B C) IMPL @(SIG A C))
IMPL (ALL A:DOM O@(INTER(RHO SIG) A A)) AND
(ALL A,B:DOM @(INTER(RHO SIG) A B) IMPL Q(INTER(RHO SIG) B A)) AND
(ALL A,B,C:DOM Q(INTER(RHO SIG) A B) AND @(INTER(RHO SIG) B C)

IMPL Q(INTER(RHO SIG) A C))

The third tactic is used to instantiate universally quantified variables by constants:

INST_VARS :=
IF TO_PROVE(I' - THM)
A 3t DOES_OCCUR(f, THM) A GROUND(t) At = f(ty,...,t,)
= Vs DOES_OCCUR(s, THM) A s = f(s1,...,8,) = s =1

A VYAX AX € I' = Vs DOES_OCCUR(s, AX) A s = f(s1,...,5)
= AX = (Vaq,..., 2, @) AS1 =21 A . A Sy = Ty,
No:={xy —t1,...,x, «— t,}
THEN TO_PROVE(SUBST(Vzy,...,2, ¢,0(p), ') F THM)

where SUBST(from to in) replaces all occurrences of from by to in in.

The term ¢ that must occur in the theorem according to the specification of the tactic
is INTER(RHO s1G). Hence the universally quantified variables ruo and sig in the axiom
can be instantiated to the constants ruo and s1a of the theorem.

The fourth tactic replaces the e constructs by newly generated predicates:

ELIM_APPLY :=
IF TO_PROVE(I' F THM)
A Yo ATOM(p) A DOES_OCCUR(p,I' U {THM})A ¢ = Q(s,s1,...,5,)
=—> GROUND(s)
THEN TO_PROVE(SUBST(Q(s,$1,...,8,),5(81,...,8,),' F THM))

with the ground terms converted to new predicate symbols s. In applying the fourth
tactic, the ground term INTER(RHO SIG) is replaced by a new constant ruosic. Moreover,
the e-constructs are eliminated using new predicates instead of constants. This results
in the reformulation of subsection 3.2.3.

By building the presented tactics together we get the following composed tactic,
which performs the reformulation of example 3.1:

ELIM := COMPOSITION ELIM_THM _VARS
REPEAT EXPAND_DEF
INST_VARS
ELIM_APPLY

The tactic INST_VARS is rather complicated but very general in nature. In our context
this tactic is only applied to generate the preconditions for the ELIM_APPLY-tactic.
The tactic ELIM_APPLY should be applied when the “Apply”-construct appears only
in the presence of universal quantification.

An alternative procedure would be to begin the reformulation process with a higher-
order formulation and to use the following compound tactic, thus avoiding the tactics
INST_VARS and ELIM_APPLY:

ELIM := COMPOSITION ELIM_THM _VARS
REPEAT EXPAND_DEF
TRANSLATE

This is in contrast to the first procedure, where the translation is carried out as the
first step and then the ELIM tactic is applied.

4.2 Soundness Considerations

Of course the correctness of all involved tactics has to be proved. But as in, for ex-
ample, Nuprl, this follows for most of our tactics immediately from the fact that they
are iterations of calculus rules: the tactic ELIM_THM_PRED is a combination of instan-
tiation and modus ponens, ELIM_THM _VARS is universal generalization, EXPAND _DEF
combines instantiation and substitution, and INST_VARS is just a restricted form of
instantiation.

TRANSLATE is a transition between different logics. The correctness is ensured by
the theorem cited at the end of subsection 2.2. Applying the tactic ELIM_APPLY
preserves the logic of the problem, but changes its signature. This change is not es-
sential, because the proof steps can be mapped injectively. All e appear together with
constants ¢ in the form e(c,...) and are transformed to ¢(...). Such transformations
are possible for all proof steps.

5 Conclusion

We have shown how tactics can be used to reformulate problem descriptions so that
they are stated more appropriately for solution by a resolution theorem prover. Re-
formulated problems can often be solved much more efficiently. The examples given
above support the thesis that a resolution-based system alone is not adequate as a
tool in the daily work of a human mathematician.

Perhaps one day the automatic generation of tactics from new examples will be pos-
sible by exploiting the knowledge represented in rules, which are encoded in such a

system. In that case, it would be possible to distinguish classes of problem formula-
tions and reformulations. It is our contention that the explicit formulation of such
tactics reveals the structure and contents of the otherwise implicitly coded know-how.

References

[AnOhS3]
[Bus3]
[Buss]
[Co86]
[Ch40]
[CGe35]
[GMWT9]

[HKK+94]

[Ke92]

[KePr95]

[McCab4]

[OhSi91]

[P665]
[Pes6]
[Pe9l]

[WOLB84]

G. Antoniou and H. J. Ohlbach, Terminator, Proceedings of the Sth
IJCAI Karlsruhe, Germany, 1983, pp. 916-919.

A. Bundy, The Computer Modelling of Mathematical Reasoning, Aca-
demic Press, 1983.

A. Bundy, The use of explicit plans to guide inductive proofs, Proceedings
of the 9th CADE, Argonne, Illinois, USA, 1988, pp. 111-120.

R.L. Constable et al., Implementing Mathematics with the Nuprl Proof
Development System, Prentice Hall, 1986.

A. Church, A formulation of the simple theory of types, Journal of
Symbolic Logic, Vol. 5, 1940, pp. 56—68.

G. Gentzen, Untersuchungen tiber das logische Schlielen I & 11, Mathe-
matische Zeitschrift, Vol. 39, 1935, pp. 176-210, 572-595.

M. Gordon, R. Milner, and C. Wadsworth, Fdinburgh LCF: A Mechan-
ized Logic of Computation, Springer Verlag, 1979.

X. Huang, M. Kerber, M. Kohlhase, E. Melis, D. Nesmith, J. Richts, and
J. Siekmann, 2-MKRP — a proof development environment, Proceedings

of the 12th CADFE, Nancy, France, 1994, pp. 788-792.

M. Kerber, On the Representation of Mathematical Concepts and their
Translation into First Order Logic, PhD thesis, Fachbereich Informatik,
Universitat Kaiserslautern, Germany, 1992.

M. Kerber and A. Pracklein, Using tactics to reformulate formulae for
resolution theorem proving, Annals of Mathematics and Artificial Intel-
ligence, forthcoming.

J. McCarthy, A tough nut for proof procedures, AI Project Memo 16,
Stanford University, Stanford, California, USA, 1964.

H. J. Ohlbach and J. H. Siekmann, The Markgraf Karl Refutation Pro-
cedure, in Computational Logic — Essays in Honor of Alan Robinson,

J.-L. Lassez and G. Plotkin, eds., MIT Press, 1991, pp. 41-112.

G. Pdlya, Mathematical Discovery — On Understanding, Learning, and
Teaching Problem Solving, Princeton University Press, 1962/1965.

F. J. Pelletier, Seventy-five problems for testing automatic theorem
provers, Journal of Automated Reasoning, Vol. 2, 1986, pp. 191-216.

F. J. Pelletier, The philosophy of automated theorem proving, Proceed-
ings of the 12th IJCAI Sydney, Australia, 1991, pp. 538-543.

L. Wos, R. Overbeek, E. Lusk, and J. Boyle, Automated Reasoning —
Introduction and Applications, Prentice Hall, 1984.

