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Kaiserslautern, 2011

D386



Herausgeber

Lehrstuhl für Technische Mechanik

Technische Universität Kaiserslautern

Gottlieb-Daimler-Straße

Postfach 3049

67653 Kaiserslautern

© David Schrade

Ich danke der
”
Prof. Dr. Hans Georg und Liselotte Hahn Stiftung“ für die finanzielle
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Zusammenfassung

Ferroelektrische Materialien waren in den letzten Jahrzehnten aufgrund ihrer elek-

tromechanischen und pyroelektrischen Eigenschaften Gegenstand umfangreicher

wissenschaftlicher Betrachtungen. Die Kopplung von elektrischen und mechani-

schen Materialeigenschaften ist von großem Interesse für industrielle Anwendung-

en, so zum Beispiel in der Aktuator- und Sensortechnik oder bei der Herstellung

von ferroelektrischen Ultraschallmotoren.

Die makroskopischen Materialeigenschaften ferroelektrischer Keramiken (ande-

re Typen ferroelektrischer Materialien sind nicht Gegenstand dieser Arbeit) lassen

sich anhand ihrer kristallinen Mikrostruktur erklären. Unter den einundzwanzig

Kristallklassen, die über kein Symmetriezentrum verfügen, gibt es zehn, die eine

eindeutige polare Achse haben und, da positiver und negativer Ladungsschwer-

punkt lokal einen Dipol bilden, eine spontane elektrische Polarisation aufweisen.

Die Stärke der spontanen Polarisation ist temperaturabhängig, was als als py-

roelektrischer Effekt bezeichnet wird. Eine weitere Folge der polaren Symmetrie

ist der direkte und inverse piezoelektrische Effekt, der die lineare Beziehung zwi-

schen mechanischer Deformation und induzierter dielektrischer Verschiebung bzw.

zwischen angelegtem elektrischen Feld und mechanischer Deformation bezeichnet.

Ferroelektrika zeichnen sich dadurch aus, dass der Polarisationszustand entlang

der polaren Achse umgekehrt bzw. geschaltet werden kann; dies betrifft auch die

Zustände kristallographisch äquivalenter Achsen. Bereiche einheitlicher Polarisati-

on werden Domänen, ihre Übergänge Domänenwände genannt; zusammen bilden

sie die mikrostrukturellen Elemente eines Kornes oder Kristallites einer polykris-

tallinen Keramik. Die makroskopischen Materialeigenschaften resultieren aus dem

Polungsvorgang, bei dem die anfangs zufällig verteilte Polarisation sich durch An-

legen eines elektrischen Feldes im Zuge von Schaltvorgängen in dessen Richtung

reorientiert. Durch eine möglichst gute Ausrichtung der polaren Achsen wird die

gewünschte makroskopische Anisotropie mit ihren piezo- und pyroelektrischen Ei-

genschaften induziert.

Ziel der vorliegenden Arbeit ist die Simulation der Mikrostrukturentwicklung in

ferroelektrischen Materialien auf der Längenskala der ferroelektrischen Domänen.

Dazu werden zwei verschiedene Modelle zur Beschreibung der Domänenstruktur

herangezogen, die getrennt voneinander behandelt werden. Im ersten Modell wer-

den Domänenwände als scharfe oder singuläre (Grenz-)flächen abgebildet, an der

unter anderem die spontane Polarisation eine Diskontinuität besitzt. Dies ermög-

licht, die Grenzflächen als materielle Inhomogenitäten aufzufassen, so dass auf
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die Theorie der Konfigurationskräfte zurückgegriffen werden kann. Die homoge-

nen Bereiche werden auf der Basis der elektrischen Enthalpie, additiv erweitert

um das Skalarprodukt zwischen spontaner Polarisation und elektrischem Feld,

modelliert. Mit der Lösung des linearen gekoppelten Feldproblems, das mit Hil-

fe der Finiten-Elemente-Methode (FEM) näherungsweise gelöst wird, lässt sich

die thermodynamisch konjugierte (treibende) Kraft auf die Grenzfläche berech-

nen. Die Bewegung eines Punktes auf der Grenzfläche wird durch die Wahl ei-

nes thermodynamisch konsistenten kinetischen Gesetzes beschrieben, das die trei-

bende Kraft mit dessen Geschwindigkeit in Verbindung setzt. Im Hinblick auf Si-

mulationen zu Experimenten an zweidomänigen Proben aus Gadoliniummolybdat

wird die Komplexität des Problems durch das Betrachten einer einzelnen, planaren

Domänenwand reduziert. Die Bewegung der Domänenwand kann dann durch Zeit-

integration der Domänenwandgeschwindigkeit verfolgt werden; mit aktualisierter

Grenzflächenposition wird dann eine neue FEM-Berechnung gestartet. Die nume-

rischen Simulationen, die sich auf den 2d-Fall beschränken, beziehen sich zum Teil

auf experimentelle Studien, in denen der Einfluss von verschiedenen Defekten auf

die Mobilität einer 180◦ Domänenwand, die mit Hilfe eines elektrischen Feldes in

Richtung der Flächennormalen bewegt wird, untersucht wurde. Dabei stimmen

Experiment und Simulation qualitativ insoweit überein, als in beiden Fällen eine

beschädigte Elektrode die Domänenwandmobilität einschränkt und die Grenzfläche

zum Stoppen bringen kann (domain wall pinning) und weiterhin als ein seitlicher

Defekt, der die Elektroden unberührt lässt, keinen wesentlichen Einfluss auf die

Domänenwandmobilität hat. Ein Polarisationsdefekt, gekennzeichnet durch nicht-

schaltbare Polarisation, hat ebenfalls einen pinning-Effekt auf die Domänenwand.

Der Schwerpunkt dieser Arbeit liegt in der Mikrostruktursimulation mittels ei-

nes Phasenfeldmodells, in dem die Unstetigkeiten des Grenzflächenmodells durch

Einführung eines zweifach stetig-differenzierbaren Ordnungsparameters regulari-

siert werden. Abweichend von anderen Arbeiten auf diesem Gebiet, in denen die

gesamte materielle Polarisation als Ordnungsparameter verwendet wird, dient hier

die spontane Polarisation zur Beschreibung des Polungszustandes. Innerhalb ei-

ner Domäne ist der Ordnungsparameter homogen verteilt; an Domänengrenzen

findet ein glatter Übergang von einer spontan polarisierten Variante in eine an-

dere statt. Der Ordnungsparameter wird als zusätzliche unabhängige Feldvariable

zusammen mit dem konjugierten Mikrospannungstensor in den zweiten Haupt-

satz der Thermodynamik eingearbeitet. Das thermodynamische Potential setzt

sich additiv aus einer modifizierten elektrischen Enthalpie, die ordnungsparame-

terabhängige Materialkonstanten enthält, einem Phasenseparationspotential, das

die Bildung von Domänen erlaubt, und einem Gradientenpotential, das der Regu-

larisierung der Domänengrenzen dient. Nach der Gewinnung von Materialgesetzen
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für die Cauchyspannung und die elektrische Verschiebung liefert eine Auswertung

der Dissipationsungleichung eine nichtlineare Evolutionsgleichung für die spontane

Polarisation, die vom Ginzburg-Landau-Typ ist. Die im Zusammenhang mit dem

Separations- und Gradientenpotential eingeführten Parameter werden mit Hilfe ei-

nes 1d-Modells als spezifische Energiedichte und charakteristische Breite einer 180◦

Domänenwand identifiziert. Diese Erkenntnis erweist sich als hilfreich in der nume-

rischen Behandlung des Phasenfeldmodells, das in das FE-Programm FEAP im-

plementiert wurde. Dabei werden der Verschiebungsvektor, das elektrische Poten-

tial und der Ordnungsparameter als Knotenfreiheitsgrade definiert, um damit die

gekoppelten mechanischen und elektrostatischen Feldgleichungen näherungsweise

zu lösen; die zeitliche Integration der Evolutionsgleichung wird mit einem impli-

ziten Verfahren erster Ordnung unter Anwendung der Newton-Raphson-Methode

durchgeführt. Im Ergebnisteil wird zunächst eine Reihe von Simulationen zur Ve-

rifikation der verwendeten Voraussetzungen und Parameter sowie der grundlegen-

den Modelleigenschaften vorgestellt; dies beinhaltet Statik und Dynamik von 180◦

und 90◦ Domänenwänden. Eine weitere Reihe von Simulationen ist der Frage nach

dem Einfluss von Elektroden-, seitlichen und Polarisationsdefekten auf die Mobi-

lität der beiden Domänenwandtypen gewidmet. Je nach der Stärke des angelegten

elektrischen Feldes, der Defektgröße oder der Art der Defektmodellierung lässt sich

insgesamt ein einschränkender Effekt auf die Domänenwandmobilität, insbesondere

domain wall pinning, feststellen. In weiteren Simulationen werden die Mikrostruk-

turentwicklung ausgehend von einer zufällig verteilten Anfangspolarisation sowie

bimodale und keilförmige Domänenkonfigurationen untersucht. Das experimentell

beobachtete Auftreten von bimodalen, also alternierenden schmalen und breiten 90◦

Domänen, kann in der Simulation einerseits als Folge elektrischer, andererseits als

Folge mechanischer Effekte reproduziert werden. Die ebenfalls experimentell fest-

gestellten spitz zulaufenden keilförmigen Domänen können als Folge elektrischer

Gegebenheiten an den Keilspitzen gedeutet werden.

Im Umgang mit dem Phasenfeldmodell hat sich gezeigt, dass das Separations-

potential, zusammen mit der modifizierten elektrischen Enthalpie, sich für die Si-

mulation des makroskopischen Materialverhaltens bei uniaxialen elektrischen und

mechanischen Belastungen eignet. Dies ist der Ausgangspunkt für die Simulation

von multiaxialen Polungsexperimenten, in denen “Fließflächen” für die irreversible

Polarisation konstruiert wurden. Die makroskopische Modellantwort wird durch

einen Mittelungsprozess über die Antworten einer Reihe von Simulationen mit ver-

schieden orientierten Kristallachsen erhalten. Die so gewonnenen Fließflächen befin-

den sich in unerwartet guter Übereinstimmung mit den experimentell bestimmten

Fließflächen.
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Chapter 1

Introduction

1.1 Motivation

Ferroelectric ceramics are polycrystalline solids exhibiting strongly non-linear di-

electric properties which are related to electrically polarizable domains on the mi-

croscopic length scale. After the manufacturing process, which involves the sinter-

ing of powders, the material is poled by the application of an external electric field.

The microstructural changes during the poling process induce macroscopic mate-

rial anisotropy with respect to the electrical, mechanical, and thermal properties.

As in many materials, these physical properties exhibit some degree of coupling.

For example, all solids respond to an electric field with a strain that is quadratic

in the applied field. Coupling effects are often weak and therefore neglected, but

in the case of ferroelectrics the electromechanical coupling due to the direct and

inverse piezoelectric effect is strong enough to be useful in industrial applications

such as sensors, actuators, transducers, or ultrasonic motors.

Although most applications are limited to the linear small-signal range, it is

important to understand the underlying microstructural aspects. The initial poling

process, by which the material receives its electromechanical properties, involves

complex changes in the domain structure. Also, the local conditions at electrode

tips, defects, or other boundaries may cause microstructural changes that may

possibly compromise the desired macroscopic or microscopic behavior (as e.g. in

non-volatile ferroelectric RAMs).

The simulation techniques for ferroelectric material behavior mainly depend on

the considered length scale. Phenomenological models are most useful for the simu-

lation of the macroscopic material behavior relevant to applications. These models

are not further discussed here, instead the reader is referred to the review articles

1
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by Kamlah (2001) and Landis (2004) as well as to the broad overview given

in Mehling (2007). Micromechanically motivated formulations make simplifying

assumptions about the effective polarization state of individual grains (e.g. Hwang

et al. 1995, Michelitsch & Kreher 1998, Lu et al. 1999); some models

consider multiple domain states within a grain (e.g. Chen et al. 1997, Huber

et al. 1999, Kim et al. 2003). Energetic switching criteria are used to de-

termine when phase transformations in grains or volume fractions of grains take

place. Finite element homogenization is used e.g. in Hwang & Arlt (2000) and

Kamlah et al. (2005).

While the cited models are based on effective poling states of individual grains

to describe the macroscopic behavior, the focus of this work lies on the modeling

of the microstructure and its evolution on the length scale of ferroelectric domains.

Domain structures are characterized by regions of homogeneous polarization within

a grain which are separated by atomically thin interfaces, so-called domain walls.

Geometrically, these interfaces may be modeled as singular surfaces with vanish-

ing thickness or as continuous transitions between differently polarized domains.

The first concept allows for the application of the theory of configurational forces,

since sharp interfaces can be interpreted as material inhomogeneities. Within the

second, so-called phase field approach, the local polarization state is described by

an order parameter which enters the thermodynamic problem as an independent

field variable and evolves due to a time-dependent Ginzburg-Landau type evolution

equation.

The following section gives a brief outline of the contents; further details on

the two modeling approaches, including literature citations, can be found at the

beginnings of Ch. 4 and 5.

1.2 Outline

The focus of this work lies on the simulation of ferroelectric domain structures.

Chapter 2 gives an overview of ferroelectric ceramics with respect to crystal-

lographic aspects, the electromechanical coupling principle, microstructure, and

macroscopic material behavior.

Chapter 3 provides basic continuum-mechanical and electrostatic material for

later reference in the description of the sharp interface and phase field model.

This includes a review of discontinuities and a general statement of the thermo-

mechanical and electric balance equations leading to the formulation of the linear

piezoelectric material law.
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Chapter 4 is devoted to the sharp interface simulation approach. The driving

force on a domain wall, which can be viewed as a material inhomogeneity, is ob-

tained from thermodynamic considerations. By describing the interface position

with a single parameter, an average driving force is defined to postulate a ther-

modynamically consistent kinetic relation for the interface velocity. The resulting

linear field problem is then implemented using standard finite element techniques;

explicit numerical time integration is adopted for the interface position. Numerical

simulations for single crystal gadolinium molybdate are used to study the effect of

different kinds of defects on the domain wall mobility.

Chapter 5 introduces the phase field approach in which phase transformations

are modeled with a continuous order parameter, i.e. the spontaneous polariza-

tion. The introduction of the vector-valued order parameter adds another inde-

pendent variable, which is included in the thermodynamic framework developed

in Sec. 5.1.1. This procedure gives a non-linear time-dependent Ginzburg-Landau

type evolution equation for the spontaneous polarization. The electric enthalpy

introduced in Sec. 3.5 is altered to account for poling-dependent material parame-

ters; furthermore, it is extended by a phase separation and gradient potential to

allow for the formation of domains and non-vanishing interface widths. The addi-

tional model parameters are then identified and physically interpreted in Sec. 5.1.3.

The model is implemented in a finite element scheme in which the order parameter

enters as a nodal degree of freedom. Implicit time integration of the evolution

equation in context with a non-linear Newton scheme and the use of the algorith-

mic tangent yields a robust numerical solution strategy. In Sec. 5.3, the model is

first validated with a series of basic simulations. Further examples include domain

wall pinning at different kinds of defects, microstructure evolution, and bimodally

and wedge-shaped domain structures.

In Ch. 6, a microscopically motivated model is derived from the phase field

model to be utilized for the simulation of multiaxial poling experiments.

1.3 Notation

Symbolic notation is used in most equations throughout this work. Scalar quantities

are denoted by non-bold, italic Latin or Greek letters (e.g. a, H, Θ). Vectors are

indicated by boldface italic letters such as u or Σ . Components of higher-order

quantities with respect to an orthonormal basis system are indexed with italic

letters, i.e. (P )i = Pi. Second-order tensors are identified by boldface non-italic

letters (A, F) and, in some instances, by boldface Greek symbols (e.g. ε, σ).
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The third- and fourth-order tensors used are C, e, and d, besides the forth-order

identity tensor 1. The second-order identity tensor is denoted by 1, its components

are δij (the Kronecker symbol); ǫijk are the components of the permutation tensor.

(AT)ij = Aji and (eT)ijk = ekij is used for the transposition operator along with

A−T = (A−1)T. The subscripts (·)sym and (·)skew give the symmetric and skew-

symmetric part of a second tensor, respectively. For multiplications, the notation

(Au)i = Aikuk, (Cε)ij = Cijklεkl, (AB)ij = AikBkj are exemplary. The dyadic

product between two vectors is denoted by u ⊗ v. Inner products are written as

u · v = ukvk and A · B = AijBij = tr(ABT), where trA = Akk is the trace

of A. The Euclidean norm of a vector and second-order tensor is defined as |u| =√
u · u and ||A|| =

√
A · A, respectively. The vector product is denoted as u× v,

and (u × A)ij = ǫikmukAmj. The axial vector of a skew-symmetric second-order

tensor W is given by (axlW)i = 1
2
ǫijkWkj.

Partial derivatives with respect to A are sometimes written as ∂A(·); the mate-

rial time derivative of A is indicated by Ȧ =
dA

dt
. The differential operators curl(·),

div(·), and grad(·) are the curl, the divergence, and the spatial gradient in the

current configuration (in the reference configuration when capitalized). After geo-

metric linearization, ∇(·) is used for the sake of brevity; ∆(·) denotes the Laplace

operator. Specifically, (gradu)ij = ui,j and (div A)i = Aik,k, where (·),i = ∂xi
(·).

Discretized quantities in context with Voigt notation are denoted by an underbar,

e.g. σ.



Chapter 2

Ferroelectric ceramics

Introductions to the general topic of ferroelectric ceramics can be found in the

textbooks by Jaffe et al. (1971), Jona & Shirane (1993), and Xu (1991)

(which also covers experimental procedures and non-crystalline ferroelectrics) or

e.g. in the review article Kamlah (2001). The following remarks summarize the

main aspects of ferroelectrics relevant to this work.

In crystallography, there are thirty-two crystal classes which classify a given

crystal according to its symmetry properties. As is the case for all materials, an

applied electric field causes a strain which is quadratic in the applied field; this

reversible effect is called electrostriction. Of the thirty-two crystal classes, eleven

possess a center of symmetry; these centrosymmetric crystals have no polar axes.

The remaining twenty-one crystal classes have no center of symmetry and, with

the exception of the cubic class 432, exhibit the piezoelectric effect. This linear

effect occurs when the material is subjected to an elastic strain causing a voltage

difference between two sides of the sample. Also, the application of an electric field

results in elastic strain; this is the inverse piezoelectric effect, which is also linear.

Of the twenty non-centric, piezoelectric crystal classes, ten have a unique polar axis

and are thus spontaneously polarized. The value of the spontaneous polarization

is sensitive to temperature changes of the crystal, this is the so-called pyroelectric

effect. A crystal is defined as ferroelectric if it belongs to the pyroelectric class and

if the spontaneous polarization can be reversed or switched by an electric field.

Some of the most relevant ferroelectric crystals have a perovskite-type lattice

structure, e.g. barium titanate (BaTiO3), lead titanate (PbTiO3), and lead zir-

conate titanate (Pb(Zr1−xTix)O3) which is also known as PZT. These materials

have a non-polar cubic lattice structure above the Curie temperature and sponta-

neously polarize when cooled below that temperature. In the case of PZT, the unit

5
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0 ∼ 6 ∼ 48 100

∼ 350 ◦C

cubic

tetragonal

A

∼ 250 ◦C
rhombohedral

morphotropic phase boundary

amount of PbTiO3 [mol %]

Figure 2.1: Schematic PZT phase diagram. The rhombohedral and tetragonal

phase is separated by the morphotropic phase boundary. The antiferroelectric

phase labelled “A” is not of interest in the present context.

cell of the polar phase depends on the composition, see Fig. 2.1. However, in the

following only tetragonal (besides cubic) unit cells are considered.

The cubic and tetragonal perovskite-type phases of barium titanate and PZT

are illustrated in Fig. 2.2. In the course of the phase transition, the central ion of

the cubic cell is displaced along the c-axis so that an electric dipole is created. The

spontaneous polarization is then defined as the dipole moment per unit volume.

The phase transition is accompanied by a spontaneous strain under which the unit

cell is stretched in the polar direction and contracted along the a-axes. Since the

polar c-axis has two crystallographically equivalent axes in the cubic phase, there

are six distinct spontaneous states in 3d; this number reduces to four in 2d and

to two in 1d. Since two states with opposite spontaneous polarization exhibit the

same spontaneous strain, there are only three different spontaneous strain states

in 3d.

A ferroelectric crystal is defined by the ability to switch among spontaneously

polarized states. In the perovskite structure under consideration, this is accom-

plished by either 180◦ or 90◦ switching. The former transition is characterized by a

change in the absolute value of the spontaneous polarization, the latter primarily

by a rotation of the polar axis. Note that a crystal has ferroelastic properties if 90◦

switching can be achieved by the application of purely mechanical loading.

Ferroelectric ceramics are usually not produced as single crystals (which is dif-
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PZT: Ba2+ Zr4+/Ti4+ O2−
BaTiO3: Ba2+ Ti4+ O2−

a0

a0

a0

paraelectric cubic phasea)

c

a

a

tetragonal ferroelectric phaseb)

Figure 2.2: Sketch of perovskite structure in barium titanate and PZT. The high-

temperature paraelectric phase a) is cubic and non-polar, the low-temperature

phase b) has a unique polar axis and becomes tetragonal in the course of the phase

transition.

ficult and expensive) but rather as polycrystals consisting of a large number of

crystallites or grains. The spatial orientation of the dipoles is generally not homo-

geneous within one grain; rather, the volume is partitioned in a number of uniformly

poled regions, so-called ferroelectric domains. The transition region between two

adjacent domains is the domain wall which has a width of only a few unit cells. In

tetragonal systems, only 180◦ and 90◦ domain walls are of relevance. As sketched in

Fig. 2.3 a), the designation of the interfaces stands for the change in the orientation

of the spontaneous polarization across the interface. The complexity of a typical

ferroelectric microstructure can be observed in Fig. 2.3 b). Electrical conditions at

grain and domain boundaries, internal stresses due to mismatching spontaneous

strains, and various kinds of defects in the bulk material or at internal boundaries

appear to be important factors for the formation of domain patterns during the

phase transition at the Curie temperature.

The macroscopic properties of a ferroelectric ceramic depend on the internal

polarization state which is subject to change under electrical or mechanical load-

ing. Due to the ferroelectric effect, the spontaneous states can be switched which

leads to domain wall movement and the emergence and growth of new domains

at nucleation points. An untreated ferroelectric ceramic has a vanishing net po-

larization as the randomly distributed polarizations of individual domains add up

to zero. By the application of an external electric field, dipoles are reoriented
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a) b)

Figure 2.3: a) schematic sketch of a ferroelectric domain structure containing 180◦

and 90◦ interfaces; b) ferroelectric microstructure in barium titanate, reprinted

from Jaffe et al. (1971).

toward a closer alignment with the electric field. This poling process leads to a

macroscopically polarized crystal in the direction of the applied field as well as to

a macroscopic eigenstrain due to the alignment of the c-axes with the poling direc-

tion. When the electric field is disabled, the microstructural changes during poling

are not reversed. The remaining net polarization is called remanent polarization,

and the macroscopic eigenstrain with respect to the original unpoled state is the

remanent strain. Furthermore, a poled probe can be mechanically depolarized by

the application of a compressive stress in the poling direction. The compressive

stress favors a reorientation of the c-axes orthogonal to the loading direction that

is achieved by 90◦ switching. The resulting state has no remanent polarization but

a non-vanishing remanent strain.

The non-linear macroscopic behavior is characterized by the dielectric and but-

terfly hystereses under cyclic uniaxial electric loading, see Fig. 2.4. Starting at ①,

an unpoled probe with randomly polarized domains is loaded with an increasing

electric field. The initial response is linear dielectric until the poling process sets

in. The degree of poling depends on the strength of the electric field and its ability

to switch unaligned polarization. When the polarization of the domains is in op-

timal alignment with the electric field at ②, further loading only leads to a linear

dielectric response. As the electric field is reduced to zero at ③, the net polar-

ization reduces to the remanent polarization. If the probe was fully poled at ①,
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③

④

⑤

⑦①

③⑥

②

⑦①④

⑤

⑥

②

Figure 2.4: Uniaxial electric loading yields the typical dielectric and strain hystere-

ses. The states of completely switched and randomly distributed polarization are

indicated by simplified domain state symbols. Reprinted from Kamlah (2001).

this highest achievable value is referred to as the saturation polarization. Rever-

sal of the electric field leads to switching of polarization in the opposite direction.

The coercive field is reached at ④ when the net polarization vanishes. Domain

switching continues to ⑤, where the material is fully poled in the opposite direc-

tion. By reversing the electric field once more, the points ⑥, ⑦, and ② are passed

in an analogous way. These characteristic points are also observed in the strain

hysteresis plotted in Fig. 2.4. In the initial poling process, there is no piezoelectric

strain until domain switching is triggered and the material becomes macroscopi-

cally piezoelectric. When the fully poled state is reached at ②, the strain increases

only due to the inverse piezoelectric effect. The saturation strain is then reached

at point ③. The strain vanishes when the coercive field is reached and increases

again as poling in the other direction takes place.

The response for a mechanical depolarization experiment is shown in Fig. 2.5.
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②

③

②

③① ①

Figure 2.5: Strain and polarization changes relative to the poled initial state under

mechanical compression. Again, simplifying symbols are used to visualize overall

domain distributions. Reprinted from Kamlah (2001).

Since the initial poling state may not be known, only changes in strain and po-

larization relative to this initial state are given in the diagrams. The initial linear

response of the poled material at ① is due to linear elasticity and the piezoelectric

effect. When the coercive stress is passed, the switching of polarization accelerates

the depolarization process until the macroscopically unpolarized state is reached

at ②. Increasing the compressive stress beyond this point gives a linear elastic

response but no further change in polarization; the same is true when the stress

loading is reduced to zero at the point ③.

The macroscopic behavior of ferroelectric ceramics is time and rate dependent,

see e.g. Zhou (2003). The switching of polarization introduces an internal time

scale, which leads to variations in the hystereses curves when the external loading

frequency is changed. Explicit time dependency is observed in ageing and fatigue

effects, see Lupascu (2004) for a detailed discussion.



Chapter 3

Basic equations

3.1 Motion and deformation

There are many textbooks on the subject of classical continuum mechanics (e.g.

Gurtin 1981, Ogden 1984, Holzapfel 2000). In order to achieve a consistent

notation, the following review is based on the (rather formal) approaches given in

Haupt (2000) and Tsakmakis (1998).

In continuum mechanics, a material body B which consists of material points χ,

is represented by a region B in the three-dimensional Euclidean point space E . A

material point χ ∈ B is identified with its position x ∈ E or, equivalently, with its

position vector x in the three-dimensional Euclidean vector space E. Mathemati-

cally this is expressed by the mapping1

χ : B → E

χ 7→ x = χ(χ)
(3.1)

which is referred to as configuration2. The motion of a material body is described

by a family of configurations parametrized with time t:

χt(χ) ≡ χ(χ, t) . (3.2)

The configuration defined by χt(χ) or, equivalently, the region B occupied by the

body, is called current configuration. It is convenient to define a fixed reference

configuration χ0 by

X = χ0(χ) (3.3)

1This mapping is assumed to be invertible and sufficiently continuously differentiable, cf.

Sec. 3.3.
2The region in E which is defined by the image of χ(B) is also commonly called configuration.

11
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O

F

u = û(X, t)

dx

BB0

dX

X = χ0(χ) x = x̂(X, t)

C(λ) c(λ)

Figure 3.1: Motion and deformation of a body. The deformation gradient F

maps material line elements dX in the reference configuration to material line

elements dx in the current configuration.

in which the body occupies the region B0. As illustrated in Fig. 3.1, the motion of

the body can then be described by

x = x̂(X, t) . (3.4)

Additionally the set E0 is defined by E0 = {X : X = χ0(χ), χ ∈ B}.3

The deformation at a point X is characterized by the deformation gradient.

Considering a point Y in the vicinity of X and their respective positions y and x

in the current configuration, one can establish the Taylor expansion of y around x

for fixed time t:

y − x =
∂x̂(X, t)

∂X
[Y − X] + . . . . (3.5)

Thus the deformation gradient

F(X, t) =
∂x̂(X, t)

∂X
, (3.6)

which is the tangential of the point mapping x̂(X, t), describes the deformation at

a point X. Taking the differential of (3.4) for fixed t, one obtains

dx =
∂x̂(X, t)

∂X
dX = F(X, t) dX , (3.7)

i.e. F(X, t) maps material line elements dX in B0 to material line elements dx in B
3Generally, physical field quantities of B can be described in terms of χ (material description),

X (Lagrangian description), or x (spatial or Eulerian description).
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as illustrated in Fig. 3.1.4 It can be shown5 that there exists a unique multiplicative

decomposition of F such that

F = RU = VR , (3.8)

where R is a proper orthogonal second-order tensor describing a local rotation

of dX, and U and V are the symmetric positive definite right and left stretch

tensor, respectively, which capture the local stretch of dX.6

The material is considered unstrained if the length of dX is unchanged under

the deformation. Therefore the difference ∆ = |dx|2 −|dX|2 is a measure of strain

at the point X. Making use of Eq. (3.6), one obtains

∆ = dX ·
[(

FTF − 1
)
dX
]
. (3.9)

This gives rise to the definition of the Green or Lagrangian strain tensor7

G =
1

2

(
FTF − 1

)
=

1

2

(
U2 − 1

)
, (3.10)

which implies that ∆ = dX · (2G dX).

The velocity of a material point is given by the material time derivative of the

current configuration:

v = ẋ(t) =
d

dt
χt =

∂

∂t
x̂(X, t) = v̂(X, t) = v̄(x, t) . (3.11)

The spatial velocity gradient is defined by

L =
∂

∂x
v̄(x, t) = ḞF−1 (3.12)

and has the properties

(dx)
·
= L dx , (da)

·
=
[
(div v)1 − LT

]
da , (dv)

·
= (trL) dv , (3.13)

4The term material line element becomes clear in light of the following geometrical interpreta-

tion. Let C(λ) and c(λ) be material lines parametrized with λ in the reference and current config-

uration, respectively. With X = C(λ0) and x = c(λ0), dX =
dC(λ0)

dλ
dλ and dx =

dc(λ0)

dλ
dλ.

5See e.g. Ogden (1984, Ch. 2).
6Strictly speaking, Eq. (3.8) should be written as F(X, t) = R(X, t)U(X, t). In the following,

the arguments X and t are omitted to avoid congestion.
7The factor 1

2
stems from a more general definition of strain tensors by which the Lagrangian

tensors 1

m
(Um − 1) for integer m 6= 0 and lnU for m = 0 are used as measures of strain, cf.

Ogden (1984, Ch. 2).
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where da = dx1×dx2 and dv = (dx1×dx2) ·dx3 are material volume and surface

elements in the current configuration, respectively.

As shown in Fig. 3.1, the displacement u of a material point is defined by

u = û(X, t) = x̂(X, t) − X = x − X , (3.14)

and its gradient, the displacement gradient, is defined by

H =
∂û(X, t)

∂X
= F − 1 . (3.15)

The material body is said to undergo small deformations if

z(t) = sup
X∈E0

t̃∈{t̃: t̃≤t}

∥
∥H

(
X, t̃

)∥
∥≪ 1 and

û(X, t)

ℓ0
≪ 1 (3.16)

holds throughout its motion, whereat ℓ0 represents a characteristic length of the

body. The following asymptotic relations, stated in terms of the displacement

gradient, are obtained for small deformations:

F = 1 + H = 1 + O (z) , (3.17)

F−1 = 1 − H + O
(
z2
)
, (3.18)

detF = 1 + trH + O
(
z2
)
, (3.19)

R = 1 +
1

2

(
H − HT

)
+ O

(
z2
)
, (3.20)

U = 1 +
1

2

(
H + HT

)
+ O

(
z2
)
, (3.21)

V = 1 +
1

2

(
H + HT

)
+ O

(
z2
)
, (3.22)

G =
1

2

(
H + HT

)
+ O

(
z2
)
, (3.23)

L = Ḣ + O
(
z2
)
. (3.24)

For the linearization of L, small deformation rates have to be assumed, i.e.

Eq. (3.16)1 has to be valid for Ḣ as well. The relation

F = RU = 1 +
1

2

(
H − HT

)
+

1

2

(
H + HT

)
+ O

(
z2
)

(3.25)

shows that the polar decomposition can be expressed in terms of the antisymmetric

and the symmetric part of H. The latter, having already appeared in Eqs. (3.21)–

(3.23), is the linearized strain tensor

ε =
1

2

(
H + HT

)
. (3.26)
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3.2 Electrostatics

In this work, electrostatic conditions are assumed a priori; magnetic or electro-

dynamic effects due to moving charges are not considered. Textbooks on classi-

cal electrostatics and -dynamics include Landau & Lifshitz (1980), Landau

& Lifshitz (1984), Purcell (1965), and Jackson (1999); a brief summary

can be found in Mehling (2007). The following summarization closely follows

Fließbach (2008), who presents these topics from a theoretical physicist’s per-

spective.

Electric charge

Electric charge is a property of elementary particles. It is quantized in the sense

that it can only take values of integer multiples of the elementary charge e ≈
1.60217646·10−19 C which is the charge of the positron. Since charge8 is an additive

quantity, N particles with individual charges qi have the net charge

q =
N∑

i=1

qi . (3.27)

Within a continuum description, discrete charges qi are replaced by a charge density.

The microscopic charge density ρmic of N point charges can be expressed with the

Dirac delta distribution by

ρmic(x) =
N∑

i=1

qiδ(x − xi) , (3.28)

where xi is the position vector of the charge qi. A continuous and bounded charge

density ρ can be defined by means of volume averages of Eq. (3.28) over a repre-

sentative volume V R as sketched in Fig. 3.2. The averaging procedure yields

ρ(x) =
1

V R

∫

V R

ρmic(x̄) dv̄ =
1

V R

N∑

i=1

qi . (3.29)

The surface charge density ω is defined analogously for a representative surface

area AR containing Ns charges:

ω(x) =
1

AR

∫

∂V R

ρmic(x̄) dā =
1

AR

Ns∑

i=1

qi . (3.30)

8Charge is a more general notion in physics and applies not only to electric charge. For the

sake of brevity, charge and electric charge are used synonymously in this work.
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x

O

V R

ρ(x)

Figure 3.2: The charge density is defined as an average of microscopic point charges

in a representative volume element around the point x.

Coulomb’s law

Point charges interact with each other via the electrostatic force. The force exerted

by a charge q1 on another charge q2 (Fig. 3.3 a) is given by

F 12 =
q1q2
4πǫ0

x2 − x1

|x2 − x1|3
. (3.31)

The constant ǫ0 ≈ 8.854·10−12 C/(Vm) is called electric constant. The electrostatic

force obeys the actio = reactio principle in that F 12 = −F 21.

The force exerted by N charges with position vectors xi on a test charge q0
located at position x (Fig. 3.3 b) is given by

F 0(x) =
N∑

i=1

qiq0
4πǫ0

x − xi

|x − xi|3
. (3.32)

If the system of point charges is replaced with a charge density ρ (see Fig. 3.3 c),

the force exerted on a test charge q0 is given by

F 0(x) = q0

∫

V

ρ

4πǫ0

x − x̄

|x − x̄|3 dv̄ . (3.33)

a) O

x2
x1

q1

q2

O

x
xi

qi

q0

b)

q0

x

Oc)

V

ξ
dv

x − xix2 − x1
ρ x − x̄

Figure 3.3: Coulomb’s law is formulated for point charges and charge densities.
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Equations (3.32) and (3.33) give rise to the definition of the electric field strength9 E

which is defined as the ratio of F 0/q0:

E(x) =
N∑

i=1

qi
4πǫ0

x − xi

|x − xi|3
and E(x) =

∫

V

ρ

4πǫ0

x − x̄

|x − x̄|3 dv̄ . (3.34)

Work and electric potential

The work required to move a test charge q0 from an arbitrary point A with position

vector xA to another arbitrary point B with position vector xB along an arbitrary10

path Γ is given by

WB
A = −

∫

Γ

F 0 · ds = −q0
∫

Γ

E · ds . (3.35)

It can be shown11 that the electric field (3.34)2 is a conservative vector field12,

which implies that the integrals in Eq. (3.35) are path independent and that there

exists a scalar potential ϕ(x) so that Eq. (3.35) can be written as

WB
A = q0 (ϕ(xB) − ϕ(xA)) . (3.36)

It also follows that the electric field is the negative gradient of ϕ:

E(x) = − gradϕ(x) . (3.37)

The scalar field ϕ is called electric potential and is unique up to a constant which

is often set to zero.

The electric potential for the system of point charges and the charge distribu-

tions in Figs. 3.3 b) and c) are given by

ϕ(x) =
N∑

i=1

qi
4πǫ0|x − xi|

and ϕ(x) =

∫

V

ρ(x̄)

4πǫ0|x − x̄| dv̄ , (3.38)

respectively. Inserting Eq. (3.38)2 in (3.37), multiplying with −ǫ0, and taking the

divergence, one obtains

ǫ0∆ϕ(x) =

∫

V

ρ(x̄)∆
1

4π|x − x̄| dv̄ = −
∫

V

ρ(x̄)δ(x − x̄) dv̄ = −ρ(x) . (3.39)

9Or simply the electric field.
10

Γ is assumed piecewise continuously differentiable and F 0(Γ) piecewise continuous.
11See e.g. Jackson (1999, Ch. 1).
12Cf. Marsden & Tromba (2003, Ch. 8).
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In terms of the electric field, Eq. (3.39) reads

ǫ0 div E(x) = ρ(x) (3.40)

which is known as Gauss’s law. It follows from Eq. (3.37) that E is curl free:

curl E(x) = 0 . (3.41)

Equations (3.40) and (3.41) or, in terms of the electric potential, (3.39) and (3.37),

are the field equations of electrostatics.

The potential energy of the aforementioned system of point charges due to their

own electric fields can be calculated by consecutively adding the energies required

to move each point charge successively into the system from infinity. The potential

energy of a continuous charge distribution is derived analogously by discretizing

the charge distribution in N partial charges, each occupying a volume ∆Vi, and,

subsequently, taking the limit N → ∞ and ∆Vi → 0. The resulting potential

energies are then given by

U =
1

2

N∑

i,j=1
i6=j

qiqj
4πǫ0|xi − xj|

and U =
1

2

∫

V

∫

V

ρ(x̃)ρ(x̄)

4πǫ0|x̃ − x̄| dV̄ dṼ . (3.42)

With Eqs. (3.38)1 and (3.38)2, this reduces to

U =
1

2

N∑

i=1

qiϕ(xi) and U =
1

2

∫

V

ϕ(x̄)ρ(x̄) dv̄ . (3.43)

The potential energy of a system of point charges and a charge distribution

in an external field ϕext, excluding the fields due to the charges qi or the charge

distribution ρ, is given by

U =
N∑

i=1

qiϕext(xi) and U =

∫

V

ρ(x̄)ϕext(x̄) dv̄ , (3.44)

respectively.

Multipole expansion and electric polarization

Figure 3.4 shows a charge distribution ρ occupying a volume V . The positions in V

are denoted by ξ; a is a fixed position in V , and x is a position far away from V .

Furthermore, the vectors r = x − a = rn and r̃ = a − ξ = r̃ñ are defined so
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x

r

O
ξ

a
V
dv

nρ

r̃

Figure 3.4: Multipole expansion.

that x − ξ = r − r̃. The electric potential of the charge distribution is given by

Eq. (3.38)2 and reads

ϕ(x) =

∫

V

ρ(r̃)

4πǫ0

1

|r − r̃| dṽ =
1

4πǫ0r

∫

V

ρ(1 + α)−
1

2 dṽ , (3.45)

where α := r−2 (r̃2 − 2r · r̃) ≪ 1. The Taylor expansion of (1 + α)−
1

2 with respect

to α = 0 gives (1 + α)−
1

2 = 1 − 1
2
α+ 3

8
α2 − 5

16
α3 + . . . . Substitution in Eq. (3.45)

yields the multipole expansion of ϕ:

ϕ(x) =
1

4πǫ0

[
1

r

∫

V

ρ(r̃) dṽ +
n

r2
·
∫

V

ρ(r̃)r̃ dṽ

+
n ⊗ n

2r3
·
∫

V

ρ(r̃)(3r̃ ⊗ r̃ − r̃21) dṽ + . . .

]

.

(3.46)

The integrals in (3.46) are called the moments of the charge distribution. The first

integral is the monopole moment or simply the net charge q of the system, the

second integral is the dipole moment p, and the third integral is the quadrupole

moment. Except for the net charge, the multipole moments in (3.46) generally

depend on a. In fact, only the first non-vanishing term of the expansion is inde-

pendent of a. Within this work, only charges and dipole moments are taken into

account, while moments of higher order are neglected.

Charge distribution in an external field

The charge distribution ρ sketched in Fig. 3.5 is subjected to an external electric

field Eext = − gradϕext, i.e. the field due to the charge distribution itself is not

included in Eext. By the assumption that ρ does not change under the external field

and that Eext varies only slightly in V , the following Taylor expansions of ϕext(x)
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O
x

x0V
dṽ

r̃

ρ

Figure 3.5: Taylor expansion of ϕext around x0.

and Eext(x) around the center of the distribution x0 can be established:

ϕext(x) = ϕ̃ext(r̃) = ϕext(x0) +
∂ϕext

∂x

∣
∣
∣
∣
x0

· r̃ + . . . , (3.47)

Eext(x) = Ẽext(r̃) = Eext(x0) +

[

∂Eext

∂x

∣
∣
∣
∣
x0

]T

r̃ + . . . . (3.48)

With Eqs. (3.44)2 and (3.37), the potential energy of the charge distribution in the

external field Eext is

U(x0) =

∫

V

ρϕext dv =

∫

V

ρ̃(r̃)ϕ̃ext(r̃) dṽ

= ϕext(x0)

∫

V

ρ̃(r̃) dṽ − Eext(x0) ·
∫

V

ρ̃(r̃)r̃ dṽ + . . .

= qϕext(x0) − p · Eext(x0) + . . . ,

(3.49)

where q and p are the monopole and dipole moment, respectively, which were

calculated in (3.46).

The resulting force acting on the charge distribution is then given by the nega-

tive gradient of U with respect to x0:

F e(x0) = −∇x0
U(x0)

= Eext(x0)

∫

V

ρ̃(r̃) dṽ + [∇x0
Eext(x0)]

T

∫

V

ρ̃(r̃)r̃ dṽ + . . .

= qEext(x0) + [∇x0
Eext(x0)]

T
p + . . . ,

(3.50)

and the resulting angular momentum is given by

M e(x0) =

∫

V

(x0 + r̃) × Ẽext(r̃)ρ̃(r̃) dṽ

= x0 ×
(

Eext(x0)

∫

V

ρ̃(r̃) dṽ + [∇x0
Eext(x0)]

T

∫

V

ρ̃(r̃)r̃ dṽ

)

+

∫

V

ρ̃(r̃)r̃ dṽ × Eext(x0) + . . .

= x0 × F e(x0) + p × Eext(x0) + . . . .

(3.51)
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Electrostatics in matter

Up to now, this section was concerned with systems of point charges and charge

densities in a vacuum. However, the electrostatic field equations (3.40) and (3.41)

are also valid in matter. On the microscopic scale, the total charge density ρtot

and the associated electric field Etot can be split additively in the fields of the

undisturbed matter (index “0”), extra fields (index “ext”), and the induced fields

(index “ind”):

ρtot = ρ0 + ρext + ρind , (3.52)

Etot = E0 + Eext + Eind . (3.53)

From another point of view, one can distinguish between free and bound charges.

Free charges can move through the material and contribute to an electric current

when an external electric field is present, whereas bound charges can only move to

a limited extent and remain fixed to the material in the presence of an external

field. With a change in notation, the following decomposition is chosen:

ρtot = ρ0 + ρfree + ρbound
ind =: ρ0 + ρ , (3.54)

Etot = E0 + Efree + Ebound
ind =: E0 + E , (3.55)

where ρfree includes the extra charges in (3.52) and free induced charges. Then the

electrostatic field equations (3.40) and (3.41) become

ǫ0 div(E0 + E) = ρ0 + ρ and curl(E0 + E) = 0 . (3.56)

Since these field equations are linear, one obtains

ǫ0 div E = ρ and curl E = 0 . (3.57)

These are the microscopic electrostatic field equations.

While extra charges are assumed to be macroscopic, induced charges vary

strongly on the length scale of an elementary cell. Within a continuum descrip-

tion, the microscopic electrostatic field equations are replaced with the macroscopic

electrostatic field equations. The latter are obtained by means of a spatial average

procedure which has the form of a convolution. The spatial average of a field A(x, t)

with respect to a test function f is expressed by

〈A〉 (x, t) =

∫

V

A(x̄, t)f(x − x̄) dV̄ with

∫

V

f(x − x̄) dV̄ = 1 . (3.58)
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With the decomposition ρ = ρfree+ρbound
ind , the averaged microscopic electrostatic

field equations read

ǫ0 div 〈E〉 =
〈
ρfree

〉
+
〈
ρbound

ind

〉
and curl 〈E〉 = 0 , (3.59)

where the identities 〈divA〉 = div 〈A〉 and 〈curlA〉 = curl 〈A〉 were used. The

induced charge ρbound
ind is due to a shifting of charges within a neutral microscopic

unit, in our case a unit cell. If the material is made of different unit cells, ρbound
ind is

represented by the sum of the charge changes ∆ρi:

ρbound
ind (x, t) =

∑

i

∆ρi(x − xi, t) , (3.60)

where xi is the center of the i-th unit cell. Since the net charge remains unchanged,

the average of the induced charge yields

〈
ρbound

ind

〉
(x, t) =

∑

i

∫

V

∆ρi(x̄ − xi, t)f(x − x̄) dV̄

=
∑

i

f(x − xi)

∫

V

∆ρi(x̃, t) dṼ

︸ ︷︷ ︸

=0

−
∑

i

grad f(x − xi) ·
∫

V

x̃∆ρi(x̃, t) dṼ

︸ ︷︷ ︸

=pi

+ . . . .

(3.61)

In Eq. (3.61), the function f(x − xi − x̃) with x̃ = x̄ − xi was expanded in a

Taylor series with respect to x̃. The last integral in (3.61) is identified with the

dipole moment of the unit cells over which the average procedure was carried out.

Neglecting higher-order multipole moments, one obtains

〈
ρbound

ind

〉
(x, t) = − div

(
∑

i

pi(t)f(x − xi)

)

= − div

〈
∑

i

piδ(x̃ − xi)

〉

(x, t) .

(3.62)

The volume average of the dipole moments pi is the material polarization

P mat(x, t) =

〈
∑

i

piδ(x̃ − xi)

〉

(x, t) . (3.63)

It follows from Eq. (3.62) that

div P mat = −
〈
ρbound

ind

〉
. (3.64)
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Inserting Eq. (3.64) in (3.59) gives

div
(
〈ǫ0E〉 + P mat

)
=
〈
ρfree

〉
. (3.65)

With the definition of the electric displacement

D = 〈ǫ0E〉 + P mat (3.66)

and the simplified notation E := 〈E〉 and ρ :=
〈
ρfree

〉
, Eq. (3.59) yields the macro-

scopic electrostatic field equations,

div D = ρ and curl E = 0 . (3.67)

At the boundary of a material body, the dielectric displacement exhibits a jump in

the normal direction equal to the density of free surface charges:

[[D]] · n = ω , (3.68)

where n denotes the outer unit normal to ∂B. The definition of the jump opera-

tor [[·]] in Sec. 3.3 applies to the boundary of the body in an analogous way.

3.3 Discontinuities

The previous sections dealt with quantities which were assumed to be continuous

within the region B. In this section, the body is assumed to be divided into two

parts, B+ and B−, by an immaterial singular surface S(t), across which some given

quantity Λ(x, t) is allowed to be discontinuous, see Fig. 3.6. With reference to

Wilmanski (2008, Ch. 3), the singular surface can be described in the reference

and current configuration by the implicit representations

Σ (X, t) = 0 and σ(x, t) = 0 , (3.69)

respectively, so that Σ (X, t) = σ(x̂(X, t), t). Equivalently, a Gaussian parametri-

zation can be used, i.e.

X = X̌(Ξ1,Ξ2, t) and x = x̌(ξ1, ξ2, t) . (3.70)

The unit normal vectors on the surface are defined by

NS(X, t) =
GradΣ

|GradΣ | and nS(x, t) =
gradσ

|gradσ| , (3.71)
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B
∂B

v(x, t)

w(x, t)

S(t)

n

B+

B−

nS

Figure 3.6: The material body B with boundary ∂B and outer surface normal n

is separated into B+ and B− by the moving singular surface S(t) with surface

normal nS pointing from (−) to (+). Surface points move with the velocity w(x, t);

the material velocity is denoted by v(x, t).

and the tangential vectors of the surface are

T A =
∂X̌(Ξ1,Ξ2, t)

∂ΞA
and tα =

∂x̌(ξ1, ξ2, t)

∂ξα
(3.72)

for A = 1, 2 and α = 1, 2.

The velocity of points on S is denoted by w(x, t). In principle, S is allowed to

move through the material independently of the material velocity v. The normal

speeds of the interface are defined by

WN = −∂Σ
∂t

|GradΣ |−1 and wn = −∂σ
∂t

|gradσ|−1 , (3.73)

where WN is the speed of propagation in the reference configuration and wn is the

speed of displacement in the current configuration. The velocities W and w can

be formulated in terms of their normal and tangential components by

W = WNNS +WA T A

|T A|
and w = wnnS + wα tα

|tα|
(3.74)

with summation over A and α. The tangential velocity wtan is then given by

wtan =

∣
∣
∣
∣
∣

2∑

α=1

wα tα

|tα|

∣
∣
∣
∣
∣
. (3.75)

The jump of a quantity Λ at a point x ∈ S(t), denoted by [[Λ]](x, t), is defined as

[[Λ]] = Λ+ − Λ− (3.76)
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with

Λ+/−(x) = lim
δ→0

Λ(x ± δnS) . (3.77)

When the jump of Λ vanishes, the Maxwell theorem states that its gradient jump

is in the normal direction, i.e.13

[[Λ]] = 0 =⇒ [[grad Λ]] = bnS , b = nS · [[grad Λ]] . (3.78)

In the following, the displacement field and the electric potential are assumed

to be continuous across S, i.e.

[[u]] = 0 , [[ϕ]] = 0 on S . (3.79)

The displacement jump condition ensures a coherent interface, thereby excluding

the possibility of cracks, interpenetration, and tangential sliding. A continuous

electric potential can be assumed without loss of generality.14

3.4 Balance equations

Transport theorems

In this section, the balance equations for the electromechanical and thermodynami-

cal quantities are stated. The primary sources for this section are Haupt (2000,

Ch. 2–3) and Wilmanski (2008, Ch. 4).

Generally, a balanced bulk quantity Φ is assumed to have a volume density φ

in the current configuration:

Φ(t) =

∫

B
φ(x, t) dv =

∫

B+/−

φ(x, t) dv , (3.80)

where
∫

B+/−(·) dv =
∫

B+(·) dv +
∫

B−
(·) dv. The density φ is assumed to be contin-

uous except for points which belong to the discontinuity surface S. The balance

equation for such an additive quantity Φ has the general form

d

dt

∫

B+/−

φ(x, t) dv =

∫

B+/−

(π + ς) dv +

∫

∂B
Ξn da+

∫

S
̟ da , (3.81)

in which π(x, t) and ς(x, t) are the production and the supply of Φ in B+/−, re-

spectively, Ξ(x, t) is the flux of Φ across the boundary ∂B, and ̟(x, t) is the

13Cf. Wilmanski (2008, Ch. 2).
14See e.g. Toupin (1956).
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production of Φ on S. This balance equation also applies for all sub-volumes. Ap-

plying Gauss’s theorem and contracting the integrals in Eq. (3.81) to a point not

belonging to S, one obtains the local form of the general balance equation:

φ̇+ φ div v − div Ξ − ς = π in B+/− . (3.82)

Contraction of the integrals in Eq. (3.81) to a point on the surface S(t) yields the

jump condition

[[φ(v − w) · nS − ΞnS ]] = ̟ on S . (3.83)

When a quantity φS = φ̌S(ξ1, ξ2, t) = φ̆S(x̌(ξ1, ξ2, t), t) exclusively defined on S
has to be considered, Eq. (3.80) becomes

Φ(t) =

∫

B+/−

φ(x, t) dv +

∫

S
φ̆S(x, t)da . (3.84)

The time derivative of the second integral in this equation is given by15

d

dt

∫

S
φ̆S(x, t) da =

∫

S

(

φ̊S − φSκwn

)

da+

∫

∂S
φSwtan ds (3.85)

where κ is the trace of the curvature tensor on S. The time derivative φ̊S as seen

by an observer moving in the normal direction of S is defined by

φ̊S =
∂φ̆S
∂t

+ grad φ̆S · nSwn . (3.86)

In the presence of such a quantity φS , the jump condition (3.83) becomes

[[φ(v − w) · nS − ΞnS ]] + φ̊S − φSκwn = ̟ on S . (3.87)

For a thorough account of the thermodynamics of interfaces, the reader is referred

to Gurtin & Struthers (1990), Schmidt (1997), and Wilmanski (2008).

Conservation of mass

The total mass of the body is assumed to be constant. With φ = ̺, the mass

density, the conservation laws read16

˙̺ + ̺ div v = 0 in B+/− ,

[[̺(v − w)]] · nS = 0 on S .
(3.88)

15See Schmidt (1997) and Wilmanski (2008, Ch. 4).
16Interfacial mass is not considered.
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Conservation of charge

The density of free charges ρ is balanced with the electric current I, and with φ = ρ

and Ξ = I one obtains

ρ̇+ ρ div v + div I = 0 in B+/− ,

[[ρ(v − w)]] · nS − [[I]] · nS = 0 on S .
(3.89)

Conservation of linear momentum

The global balance of linear momentum reads

d

dt

∫

B
̺v dv =

∫

B
(f + f e) dv +

∫

∂B
(t + te) da , (3.90)

where f and f e are the mechanical and electrical volume force, respectively, and t

and te are the mechanical and electrical surface traction vector, respectively. The

electrical volume force and surface traction arise from electrical fields acting on the

charges in the material. It is assumed17 that the electrical volume force can be

derived from the Maxwell stress tensor σM such that

f e = div σM (3.91)

and hence

te = [[σM]]n . (3.92)

The Cauchy stress balances the total traction of a surface element, i.e.

t + te = −[[σ]]n , (3.93)

so that, with Eq. (3.92),

t = −[[σ + σM]]n . (3.94)

Thus the volume density of linear momentum given by φ = ̺v is balanced with the

Cauchy stress, i.e. Ξ = σ, and with the mechanical and electrical volume forces.

With ς = f +fe and on use of Eqs. (3.88)1 and (3.91), the conservation laws read18

̺v̇ − div
(
σ + σM

)
− f = 0 in B+/− ,

[[̺v(v − w) · nS − σnS ]] = 0 on S .
(3.95)

17See e.g. McMeeking & Landis (2005).
18Interfacial momentum and surface stress are not considered.
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Conservation of angular momentum

The global balance of angular momentum has the form

d

dt

∫

B
̺x × v dv =

∫

B
(x × (f + f e) + me) dv +

∫

∂B
x × (t + te) da , (3.96)

where me is the electric body couple which is derived from the Maxwell stress by

me = axl
(
2σM

skew

)
, i.e. me

i = ǫijkσ
M
kj . (3.97)

With φ = x × (ρv), Ξ = x × σ, and ς = x × (f + f e) + me and the application

of Eqs. (3.88)1, (3.91), and (3.95)1, the conservation law yields

ǫijk(σkj + σM
kj) = 0 =⇒ σ + σM =

(
σ + σM

)T
, (3.98)

which means that the total stress σ + σM is symmetric. Given the jump rela-

tion (3.95)2, the resulting condition for points on S is identically fulfilled.

Conservation of energy

The conservation of energy results from the first law of thermodynamics which

states that the rate of stored internal and kinetic energy is equal to the work rate

of external sources plus the heat supply. By adopting the representation given in

McMeeking & Landis (2005), the global form of the balance of energy is stated

as

d

dt

∫

B

(

̺e+
1

2
̺v · v

)

dv +
d

dt

∫

S
γ da =

∫

B
(f · v + ̺r) dv

+

∫

∂B
(t · v − qh · n) da+

∫

B
ϕ

d

dt
(ρ dv) +

∫

∂B
ϕ

d

dt
(ω da) ,

(3.99)

which introduces the specific internal energy per unit mass e, the specific energy

of the interface γ, the heat supply per unit volume r, and the heat flux qh. The

energy stored in the electric field outside the material body also contributes to

the balance of energy; this is however ignored in the following. In contrast to the

formulation in McMeeking & Landis (2005), the vacuum electric energy inside

the material body is included in the internal energy e.

The local form is obtained by evaluating the terms on the right hand side of

Eq. (3.99), the external work rate. With (3.13), one obtains

d

dt
(ρ dv) = (ρ̇+ ρ div v) dv (3.100)
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and, with Eq. (3.68),

d

dt
(ω da) =

d

dt
([[D · n]] da) =

([[

Ḋ + D div v − LD
]]

· n
)

da . (3.101)

When the vacuum Maxwell stress is neglected, t = (σ + σM)n, and the resulting

flux term is then easily identified with Ξ = (σ+σM)Tv−qh−ϕḊ+ϕ[(1−1⊗1)L]D.

The balanced quantity is φ = ̺e+ 1
2
̺v ·v, its volume supply ς = f ·v +̺r+ϕ(ρ̇+

ρ div v). With φS = γ, the conservation laws read

̺ė =
[
σ + σM + (E · D)1 − E ⊗ D

]
· L + E · Ḋ − div qh + ̺r in B+/− (3.102)

and, with Eq. (3.79)2,

[[

̺

(

e+
1

2
v · v

)

(v − w)

]]

· nS + γ̊ − γκwn +
[[

qh
]]
· nS

−
[[[(

σ + σM
)
nS
]
· v
]]

+ ϕ
[[

Ḋ
]]

· nS − ϕ[[((1− 1 ⊗ 1)L) D]] · nS = 0

(3.103)

on S.

Balance of entropy

With the entropy density s, the absolute temperature θ, the entropy productions πs

and ̟s in B+/− and on S, respectively, and with φ = ̺s, Ξ = −1
θ
qh, π = πs,

̟ = ̟s, and the assumption that the specific surface entropy vanishes, i.e. ΦS = 0,

the balance laws read

̺ṡ+ div
qh

θ
− ̺

r

θ
= πs in B+/− ,

[[̺s(v − w)]] · nS +

[[
qh

θ

]]

· nS = ̟s on S .

(3.104)

According to the second law of thermodynamics, the entropy production must be

non-negative:

πs ≥ 0 in B+/− and ̟s ≥ 0 on S . (3.105)

Clausius-Duhem inequality

In order to eliminate the specific internal energy, the Helmholtz free energy ψ is

introduced with the Legendre transformation

ψ̇ = ė− θ̇s− θṡ . (3.106)
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The combination of Eqs. (3.102) and (3.104)1 with (3.105)1 gives the Clausius-

Duhem inequality

̺ψ̇+ ̺sθ̇−
[
σ + σM + (E · D)1 − E ⊗ D

]
·L−E · Ḋ +

qh

θ
· grad θ ≤ 0 . (3.107)

By introducing the electric enthalpy H with the Legendre transformation

Ḣ = ̺ψ̇ − Ė · D − E · Ḋ , (3.108)

the Clausius-Duhem inequality (3.107) becomes

Ḣ + ̺sθ̇ −
[(

σ + σM + (E · D)1 − E ⊗ D
)
F−T

]
· Ḟ + D · Ė +

qh

θ
· grad θ ≤ 0 .

(3.109)

For points on S one obtains

−
[[(

H +
1

2
̺v · v

)

(v − w)

]]

· nS − [[nS · (E ⊗ D)nS(v − w) · nS ]] − γ̊

+ γκwn +
[[(

σ + σM
)T

v
]]

· nS − ϕ
[[

Ḋ − [(1− 1 ⊗ 1)L] D
]]

· nS ≥ 0 .

(3.110)

The electric enthalpy is assumed to depend on the deformation gradient, the

electric field, the temperature, and a set of internal variables q, i.e.

H = Ĥ(F,E, θ, q) . (3.111)

Insertion in (3.109) yields
(

∂Ĥ

∂θ
+ ̺s

)

θ̇ +

[

∂Ĥ

∂F
−
(
σ + σM + (E · D)1 − E ⊗ D

)
F−T

]

· Ḟ

+

(

∂Ĥ

∂E
+ D

)

· Ė +
qh

θ
· grad θ +

∂Ĥ

∂q
· q̇ ≤ 0 ,

(3.112)

which implies the constitutive relations19

̺s = −∂Ĥ
∂θ

, (3.113)

σ =
∂Ĥ

∂F
FT − σM − (E · D)1 + E ⊗ D , (3.114)

D = −∂Ĥ
∂E

, (3.115)

19Cf. Coleman & Noll (1963).
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and leaves the residual inequality

−qh

θ
· grad θ − ∂Ĥ

∂q
· q̇ ≥ 0 . (3.116)

Assuming that qh is independent of q and that q̇ is independent of grad θ, one may

separate the inequalities to obtain the heat conduction inequality

−qh

θ
· grad θ ≥ 0 (3.117)

and the internal dissipation inequality

−∂Ĥ
∂q

· q̇ ≥ 0 . (3.118)

The heat conduction inequality can be satisfied e.g. by the linear law of heat

conduction qh = −κq grad θ with the positive definite heat conduction tensor κq.

The internal dissipation inequality is satisfied by a proper choice of the evolution

law for the internal variables represented by q; this will be addressed in Ch. 4 and

Ch. 5 in the context of modeling domain walls.

The debate on the correct choice of the Maxwell stress in Eq. (3.114) has been

carried out for some time, see e.g. the contributions by Toupin (1956), Eringen

(1963), McMeeking & Landis (2005), Vu et al. (2006), and McMeeking

et al. (2007), and is still ongoing. As shown in McMeeking & Landis (2005),

an additive decomposition of the total stress into the Cauchy- and Maxwell-stress

is not unambiguous, rather only the total stress can be uniquely identified. With

reference to Toupin (1956), McMeeking & Landis (2005), Mehling (2007),

and Eqs. (3.50) and (3.51), the choice

σM = E ⊗ D − 1

2
ǫ0(E · E)1 (3.119)

gives

f e = ρE + (grad E)TP mat , (3.120)

me = x × F e + P mat × E , (3.121)

where Eqs. (3.91) and (3.97) have been made use of.

Material objectivity

The principle of material objectivity states that the material equations should be

independent of the Euclidean transformation

x∗ = Q(t)x + c(t) , t∗ = t− a (3.122)
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with Q−1 = QT, detQ = 1. This is the case if the arguments of the electric

enthalpy are objective quantities, which can be achieved by choosing the strain

tensor G and the objective electric field E′ = RTE along with objective internal

variables q′. With the transformations F∗ = QF and R∗ = QR, one obtains

G∗ =
1

2

(
F∗TF∗ − 1

)
= G , (3.123)

E′∗ = R∗TE∗ = RTE = E′ . (3.124)

Since, additionally, the temperature is (as any scalar quantity) objective, the elec-

tric enthalpy is objective, i.e.

H = ¯̄H(G∗,E′∗, θ∗, q′∗) = ¯̄H(G,E′, θ, q′) (3.125)

which guarantees objective constitutive equations.

Further assumptions and simplifications

� The material undergoes only small deformations. This is a reasonable as-

sumption for ceramic ferroelectrics, for which the strain is usually below 1%.

The distinction between current and reference configuration is dropped, and

one obtains

G ≈ ε , Lsym ≈ ε̇ , detF ≈ 1 , E′ ≈ E ,

∇(·) = grad(·) ≈ Grad(·) , ∂x(·) ≈ ∂X (·) .
(3.126)

� Ferroelectrics have a high specific electrical resistance and are considered as

non-conductive.20 Therefore the current of free charges is assumed to vanish:

I = 0 . (3.127)

� There are no free charges in the bulk or on any interface within the body, i.e.

ρ = 0 and [[D]] · nS = 0 . (3.128)

These assumptions neglect the fact that free charges may be required to

compensate for domain wall configurations which are not charge free by virtue

20See e.g. Kamlah (2001).
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of their geometrical arrangement21,22

� Isothermal conditions and a uniform temperature distribution are assumed,

i.e.

grad θ = 0 , qh = 0 . (3.129)

This is a very common assumption, cf. the cited literature on sharp interface

and phase field modeling.

� Quasi-static conditions are assumed with respect to the velocity and acceler-

ation of material points:

v ≈ 0 , v̇ ≈ 0 . (3.130)

� Electrostatic forces are neglected. This is a common assumption as the

Maxwell stress is small compared to the Cauchy stress; an estimate is given

in Kamlah & Wang (2003). The simplifications

σM = 0 , f e = 0 , me = 0 , te = 0 (3.131)

lead to a symmetric Cauchy stress tensor since the last two terms in (3.114)

are of the same order as σM.

� The movement of bound charges during poling processes as well as charges

moving onto or away from electrodes lead to electric currents. It is a common

assumption to neglect the associated magnetic phenomena and to assume

electrostatic conditions.

� The electric displacement of the space surrounding the material body is small

compared to the electric displacement of the body. Therefore the boundary

condition (3.68) is reduced to

D · n = −ω . (3.132)

21Such configurations cause strong electric fields required to satisfy electrostatic equilibrium

and can cause difficulties e.g. in phase field simulations of domain switching in polycrystalline

settings (therefore not presented in Ch. 5).
22See Xu (1991, p. 4) and Mokrý et al. (2007).
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For points in B+/−, the simplified set of equations then reads23

div σ + f = 0 , (3.133)

σ − σT = 0 , (3.134)

div D − ρ = 0 , (3.135)

σ = ∂εH̄ , (3.136)

D = −∂EH̄ , (3.137)

ε =
1

2

(
H + HT

)
, (3.138)

E = −∇ϕ , (3.139)

−∂qH̄ · q̇ ≥ 0 . (3.140)

For points on S, the mechanical equilibrium condition becomes

[[σ]]nS = 0 , (3.141)

and, on use of Eqs. (3.78) and (3.128)2, the dissipation inequality reduces to

(
[[H]] + γκ − nS ·

(
[[∇u]]TσnS

)
+ nS · [[E ⊗ D]]nS

)
wn − γ̊ ≥ 0 . (3.142)

Within this work, only Dirichlet and Neumann boundary conditions are used:

u − u∗ = 0 on ∂Bu ,

σ · n − t∗ = 0 on ∂Bt ,

ϕ− ϕ∗ = 0 on ∂Bϕ ,

D · n + ω∗ = 0 on ∂Bω .

(3.143)

3.5 Piezoelectric constitutive law

The induced charges in (3.60) are often assumed to be proportional to the macro-

scopic electric field. A non-conducting material for which this assumption is suit-

able is called dielectric. The material polarization is then given by P mat = κE, so

that Eq. (3.66) becomes

D = (ǫ01 + κ) E = ǫE . (3.144)

The second-order tensors ǫ and κ are called permittivity and susceptibility, respec-

tively, and are related by ǫ = ǫ01 + κ.

23Although the density of free charges ρ has already been dismissed by Eq. (3.128)1 and volume

forces f will not be used in the simulations, these quantities will continue to appear in the

equations because of their usefulness in other contexts, cf. e.g. Mueller et al. (2006).
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Depending on the choice of free variables, the linear equations of piezoelectricity

take different forms, see Ikeda (1990) or Mehling (2007) for details. In terms

of the electric enthalpy, these equations read

σ = Cε − e
TE , (3.145)

D = eε + ǫE , (3.146)

which means that P mat = κE + eε. The material constants C and e are the

mechanical stiffness and the third-order piezoelectric tensor, respectively.

Near the spontaneously polarized states, the electromechanical behavior of the

ferroelectric bulk material can locally be described with the linear piezoelectric

constitutive equations. However, the constitutive equations depend on the local

poling state, because the material polarization, the spontaneous strain (relative

to the cubic high temperature phase), and the material constants depend on the

variant of spontaneous polarization at each material point. Thus the piezoelectric

equations become

σ = C
(
ε − ε0

)
− e

TE , (3.147)

D = e
(
ε − ε0

)
+ ǫE + P 0 , (3.148)

where the material parameters C, e, ǫ, the spontaneous polarization P 0, and the

spontaneous strain ε0 depend on the objective internal variable q′ which can now

be identified with the state of spontaneous polarization. With reference to Xu

(1991) and Eq. (3.49), the electric enthalpy H takes the form

H̄(ε,E, q′) =
1

2

(
ε − ε0

)
·
[
C
(
ε − ε0

)]
−
(
ε − ε0

)
·
(
e

TE
)

− 1

2
E · (ǫE) − P 0 · E .

(3.149)

Evaluating Eqs. (3.136) and (3.137) with this electric enthalpy, one obtains the

constitutive equations (3.147) and (3.148).

In the next chapter, a ferroelectric domain wall is treated as a sharp interface,

and the set of position vectors x̌(t) that define the surface is interpreted as the

internal variable. Then dissipation takes place only on the interface, not in the

bulk. In Ch. 5 the internal variables are chosen as the spontaneous polarization

and its gradient.
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Chapter 4

Sharp interface approach

As pointed out in Ch. 2, ferroelectric domain walls typically have a width of a few

lattice constants. This gives rise to the treatment of a domain wall as an immate-

rial sharp interface or singular surface. The introduction of interfaces implies the

presence of material inhomogeneities as certain material properties exhibit a jump

across the interface. Thus the theory of configurational forces is applicable to the

current problem. Textbooks on configurational forces written from a continuum-

mechanical view include e.g. Maugin (1993), Gurtin (2000), Kienzler &

Herrmann (2000); a review on the topic, which includes an electromechanical

setting, is given in Gross et al. (2003).

In order to fulfill the second law (3.142) on the interface S, a kinetic law for the

normal velocity wn has to be specified. If a body contains multiple interfaces, the

kinetics of the interfaces becomes quite involved, see Simha & Bhattacharya

(1998), Simha & Bhattacharya (2000), Gurtin (1991), and Gurtin &

Voorhees (1993). These difficulties are circumvented here in that only single in-

terfaces, which will later be assumed to be planar, are considered. The body is then

divided into two domains, and the interface indicates a jump in the spontaneous

polarization.

There seem to be not too many publications on ferroelectric domain wall motion

based the notion of sharp interfaces. The work by Loge & Suo (1996) introduces

a set of generalized coordinates to capture the geometry of the domain state, and a

linear kinetic law, based on a variational principle, relates the rates of these coor-

dinates to the conjugate driving force; examples include spike-like domain growth

and sideways interface motion. In the consecutive publications Kessler & Balke

(2006a) and Kessler & Balke (2006b), the driving force is derived within a

thermodynamic framework emphasizing the bending of domain walls; numerical

37
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examples are given for a bending 90◦ interface due to surface charges and for a

circular domain in equilibrium.

The subsequent sections of this chapter are based on the procedures outlined in

Mueller et al. (2006) where a variational principle is used, and on Schrade

et al. (2007a) in which a thermodynamic approach is taken. In the following

section, a kinetic law for domain wall movement is postulated on the basis of the

driving force on the interface. The resulting equations are then discretized with

regard to a finite element implementation. Numerical simulations show the effect

of different kinds of defects on the mobility of a 180◦ domain wall. The results

are compared with experiments on single crystal gadolinium molybdate (GMO),

Gd2(MoO4)3.

4.1 Driving force and interface kinetics

The sharp interface approach is based on the assumption that each ferroelectric do-

main is a materially homogeneous region and that material properties may exhibit

a jump across an interface. Thus the internal variable of the electric enthalpy in

Eq. (3.149) can be seen as the position of the interface S. The dissipation inequal-

ity (3.140) is then trivially fulfilled for points within the bulk, and dissipation only

takes place on the interface according to Eq. (3.142). In the presence of just one

interface, the explicit spatial dependency of the electric enthalpy can be formulated

by

H̄(ε,E,x;S) =
1

2

(
ε − ε0

±
)
·
[
C±
(
ε − ε0

±
)]

−
(
ε − ε0

±
)
·
(
e

T
±E
)

− 1

2
E · (ǫ±E) − P 0

± · E ,
(4.1)

where the material parameter (·)+ is used if x ∈ B+ and (·)− is used if x ∈ B− (cf.

Fig. 3.6).

For the evaluation of the dissipation inequality (3.142), the configurational stress

tensor is introduced as1

Σ = H1 − (∇u)Tσ + E ⊗ D . (4.2)

With the definition of the (scalar) driving force τn as

τn = nS · ([[Σ]]nS) + γκ , (4.3)

1Cf. Gross et al. (2003).
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the second law (3.142) then reads

τnwn − γ̊ ≥ 0 on S . (4.4)

In view of the numerical examples in Sec. 4.3 and the experimental studies on

GMO (Flippen 1975, Utschig 2005), it is additionally assumed that the specific

interface energy γ is constant on S and in time t and that the interface S is planar

at all times. The dissipation inequality then reduces to

τnwn ≥ 0 on S (4.5)

with the driving force

τn = nS · ([[Σ]]nS) . (4.6)

This result does not imply a specific kinetic law for the interface normal veloc-

ity wn. For the formulation of such a relationship, experimental studies on GMO

by Flippen (1975) are taken into account. In these experiments, the domain

wall dynamics of an individual 180◦ domain wall in single crystal GMO was stud-

ied in that a domain wall was moved through the material by the application of

a homogeneous electric field E perpendicular to the interface normal. The mea-

surements suggest a linear relationship between the interface velocity wn and the

applied field E. The kinetic law can be stated in terms of the applied electric field

by

wn = µ̄(E − E0) . (4.7)

The parameter µ̄ defines the domain wall mobility, and E0 is an offset field at

which interface movement sets in. However, this simple relation only holds for a

homogeneous electric field. For the case of inhomogeneous fields, which is of interest

here, and in view of the second law (4.5), the kinetic law needs to be formulated

in terms of the driving force τn. Intending to do so, the average resulting driving

force Tn acting on the interface is introduced as

Tn(τn) =
1

AS

∫

S
τn da , (4.8)

where AS =
∫

S da is the surface area of S. Since only plane interfaces are con-

sidered here, the normal velocity wn is homogeneous on S. This allows for the

formulation of a kinetic law for the interface normal velocity wn as a function

of Tn, i.e. the dependency on the surface points of S is dropped. Figure 4.1 shows

three particular thermodynamically admissible constitutive relations. The kinetic

law postulated here has the form

wn =







µ(Tn − T0) if Tn ≥ T0 ,

0 if |Tn| < T0 ,

µ(Tn + T0) if Tn ≤ −T0 .

(4.9)
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not admissible

not admissible

Tn

wn

Figure 4.1: Sketch of admissible kinetic relations for domain wall movement.

The parameters µ and T0 are the interface mobility and the offset average driving

force, respectively. It is noted that this relationship implies the assumption that

the interface kinetics is independent of the dimensions of the interface. More recent

studies on the dynamics of domain walls in gadolinium molybdate can be found in

Shur et al. (1990), Shur et al. (1992), and Shur et al. (1999).

The driving force on a 180◦ domain wall in the presence of an electric field E

parallel to the interface can be obtained from Eq. (4.6). As shown in App. A.1,

this driving force can be approximated by2

τn ≈
[[

P 0 · E
]]

= 2P 0E (4.10)

with P 0 =
∣
∣P 0

∣
∣. The value of T0 is obtained from Eqs. (4.8) and (4.10) for E = E0:

T0 =
1

AS

∫

S
τn(E0) da = τn(E0) = 2P 0E0 . (4.11)

For E = 2E0, and hence Tn = 2T0, the combination of Eq. (4.7) with (4.9) gives

wn = µ(Tn − T0) = µT0 = 2µP 0E0 = µ̄E0 , (4.12)

so that

µ =
µ̄

2P 0
. (4.13)

The values for µ̄ and E0 can be obtained from Flippen (1975), see Sec. 4.3 for

details.

2Cf. Loge & Suo (1996).
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4.2 Numerical aspects

The electromechanical problem consists of the partial differential equations (3.133)

and (3.135) in context with Eqs. (3.134), (3.136)–(3.139), and (4.1), furthermore

of the associated jump conditions (3.141) and (3.128) and the boundary condi-

tions (3.143). Moreover, the stated problem is inherently time dependent due

to the movement of interfaces as described by the kinetic law (4.9). The un-

derlying concept for the solution process is to solve the electromechanical field

equations for fixed domain wall positions in a quasi-static manner. Initially, the

field equations are solved for the (prescribed) initial interface position. With that

solution, the resulting driving force on the interface is computed as a matter of

post-processing. The domain wall position can then be obtained by numerical

integration of Eq. (4.9).

The finite element implementation is straightforward and not explained in

detail here. For standard textbooks on that subject, the reader is referred to

Zienkiewicz & Taylor (2000), Hughes (2000), and Wriggers (2009). In

the context of piezoelectrics, the early work by Allik & Hughes (1970) is worth

mentioning; in Landis (2002), a vector potential is used to derive the compo-

nents of the electric field. A detailed account of the finite element formulation of

the current electromechanical problem can be found in Mueller et al. (2006).

Driving force

Once the boundary value problem is solved, it is possible to calculate the driving

force on the interface. This is a non-trivial task as the configurational stress defined

in Eq. (4.2) contains nodal as well as Gauss point quantities. Though it is possible

to project Gauss point values onto element nodes, this method is not preferable

due to its conceptual inconsistency. A more sophisticated approach utilizes the

concept of configurational forces. The configurational stress tensor satisfies the

balance equation3

div Σ + g = 0 in B+/− , (4.14)

where g is the configurational force vector. Multiplication with a test function η

and subsequent integration by parts yields

−
∫

B+/−

Σ · ∇η dv +

∫

B+/−

g · η dv = 0 , (4.15)

3See Gurtin (2000, Ch. 5) and Mueller et al. (2002) for details.
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where the test function is assumed to vanish on ∂B. The test function and its

gradient are then approximated on the element level by

η =
∑

I

N IηI and ∇η =
∑

I

ηI ⊗∇N I , (4.16)

where N I are the shape functions and ηI the nodal values of the shape function at

node I. Inserting these approximations in Eq. (4.15) gives

∑

I

[∫

Be

(
Σ ∇N I − gN I

)
dv

]

· ηI = 0 , (4.17)

where the summation is over all finite elements Be. As the term in the brackets

must vanish for arbitrary test functions, the configurational force at node I in

element Be is identified as

GI
e =

∫

Be

gN I dv =

∫

Be

Σ ∇N I dv . (4.18)

The resulting configurational force at node K is obtained by assembling all ne ele-

ments adjacent to node I:

GK =
ne⋃

e=1

GI
e . (4.19)

For the interface S, the normal configurational force Gn is defined by

Gn =
∑

K

GK
S · nS , (4.20)

where the summation is over all nodes lying on S. On the other hand, the balance

law (4.14) for points on S reduces to4

[[Σ]]nS + GS = 0 , (4.21)

GS denoting the surface configurational force acting on S. Scalar multiplication

with −nS/AS and integration over S yields

− 1

AS

∫

S
GS · nS da =

1

AS

∫

S
τn da = Tn . (4.22)

With the finite element approximation (4.18), the average driving force on S can

be obtained from

Tn = − 1

AS

∫

S
GS · nS da = − 1

AS

∑

K

GK
S · nS = − 1

AS
Gn . (4.23)

4Cf. Gross et al. (2003).
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x2

x3

x1

E
P 0

+

electrode

C,e+, ǫ, ε
0 C,e−, ǫ, ε

0

B−B+ P 0
−

electrode

Figure 4.2: Sample with two domains separated by an 180◦ domain wall with

electrodes attached at the top and bottom providing an applied external electric

field E.

Time integration

The kinetic law (4.9) is discretized in time by means of an explicit time integration

of first order. The continuous interface position xS(t) then becomes

xn+1
S = xn

S + wn
n∆t , (4.24)

where the indices n and n + 1 denote the current time step tn and the next time

step tn+1 after the time interval ∆t, which is taken to be constant, respectively.

The interface position xn+1
S of the next time step does not necessarily coincide

with element boundaries. Instead of creating a new mesh at every time step, a

discrete interface position is defined by means of the closest available surface de-

finable with the element boundaries of the constant mesh. This method requires a

sufficiently refined mesh to guarantee an acceptable error in the time integration.

The time integration itself is performed with the continuous interface position de-

fined in Eq. (4.24). Once the discrete interface position is found for time step tn+1,

the boundary value problem for tn+1 can be solved.

4.3 Examples

The numerical examples given in this section are based on gadolinium molybdate

(GMO) single crystals experiments in which single 180◦ domain walls were driven

over certain kinds of defects by the application of an electric field perpendicular to

the interface normal.5 The defect-free setting, consisting of the electroded sample

with two domains and the applied electric field, is sketched in Fig. 4.2. In this

setup the field quantities do not depend on x3, so that it is reasonable to restrict

5See Schrade et al. (2007a) and Utschig (2005) for a detailed description as well as the

publication by Lupascu et al. (2002).
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modeling to the (x1, x2)-plane. This is achieved by assuming plane strain conditions

and a vanishing electric field component E3 for the mechanical and the electrical

problem, respectively.

The material parameters for the mechanical stiffness can be found in Höchli

(1972); the dielectric constants are given in Xu (1991, p. 310). Due to the

lack of availability, the piezoelectric constants are assumed to be 1/100 of typical

values for PZT. The spontaneous polarization P 0 is stated in Coldren et al.

(1977) and Xu (1991, p. 309), and the components of the spontaneous strain are

calculated from the cell parameters of the pseudo-tetragonal system given in Keve

et al. (1971) and Newnham et al. (1969). With respect to the Voigt notation

ε = [ε11 ε22 2ε12 ]T and E = [E1 E2 ]T, the following material parameters for B+

and B− (cf. Fig. 4.2) are used:6

C =









6.82 2.0 0

2.0 9.82 0

0 0 2.55









· 1010 N

m2 , ǫ =




8.41 0

0 9.29



 · 10−11 C

Vm
,

e± =




0 0 ±17.0

∓6.5 ±23.3 0



 · 10−2 C

m2 .

(4.25)

For the spontaneous polarization and spontaneous strain, the values

P 0
± =

[

0 ±0.002

]T C

m2 and ε0 =
[

−0.004 0.024 0

]T

(4.26)

are chosen. Values for the interface mobility µ̄ in (4.13), and thereby for µ in (4.9),

can be found in Flippen (1975), Toda et al. (1973), and Shur et al. (1990);

here

µ =
µ̄

2P 0
=

2.1 · 10−6 m2/(Vs)

2 · 0.002 Cm−2 = 5.25 · 10−4 m4

Js
(4.27)

is chosen. The value for the threshold field E0 in Eq. (4.7) varies in the literature

just cited; the simulations are performed with

E0 = 105 V

m
=⇒ T0 = 400

J

m3 . (4.28)

The finite element model consists of plane 4-noded elements with bilinear shape

functions. Although being part of the samples, the electrodes are not modeled with

elements, but are incorporated by prescribing a difference in the electric potential
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ϕ = ϕ∗

σn = 0
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u1 = 0

P 0P 0
x1

x2

Figure 4.3: Boundary conditions for the 2d problem, side view.

by means of Dirichlet boundary conditions, see Fig. 4.3. The boundary is assumed

to be traction free, and the electric displacement component D1 is presumed to

vanish at the sides. Three mechanical displacement components at the top and

bottom are fixed to rule out rigid body motions. The displacement conditions

do not exactly reflect the experimental setting but are acceptable for the current

purposes. Volume forces are not used in the simulations, i.e. f = 0 in (3.133); also

recall that ρ = 0.

4.3.1 Electrode defect

In the experiments presented in Utschig (2005), artificial defects were induced in

the top electrode of GMO samples by laser ablation. These defects had a circular

shape with diameters ranging from 0.04 mm–0.2 mm. Single domain walls were then

driven toward a defect by an external electric field. Figure 4.4 shows a situation in

which a domain wall, moved from the right to the left, has stopped in front of an

electrode defect.

Since the damage inflicted on the electrode is difficult to estimate, the defect is

modeled in two different ways: with the Neumann condition D · n = 0 and with

the Dirichlet condition ϕ∗ = 0, each applied over a length of 0.2 mm. Within the

2d description, this corresponds to regions which extend over the whole width of

a sample in the x3-direction. The dimensions of the mesh used in the simulations

are 6 mm × 0.8 mm.

Interface approaching the electrode defect

In a first simulation, a domain wall is moved from right to left by the application

of a voltage difference of 400 V, which gives an electric field of 0.5 MV/m in regions

6Note that second-order tensors are invariant to rotations by 180◦ ( Qij = −δij).
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x3

x1

Figure 4.4: Domain wall stopped in front of an electrode defect, top view. Reprinted

from Schrade et al. (2007a).

sufficiently far away from the defect. Figures 4.5 and 4.6 show plots of the resulting

distributions of the driving force τn for different distances of the interface from the

beginning of the defect. For comparison, τn is also plotted for the defect-free case.

The defect condition D · n = 0 (Fig. 4.5) causes a strong electric field directed

in the negative x2-direction to compensate for the spontaneous polarization at the

boundary. This leads to an increased driving force in the lower part of the interface.

Toward the upper part near the defect, τn changes its sign and points away from

the defect. The defect condition ϕ∗ = 0 (Fig. 4.6) causes a weakened electric field

in the area around the bottom part of the interface which leads to a decreased

driving force in that region. Near the defect in the upper part of the domain wall,

τn has large negative values caused by the strong electric field due to the effect

of the defect boundary condition. While in the second scenario the driving force

always points in the direction of the defect, the first shows “repulsive” driving

forces pointing in the opposite direction.

The kinetics of the interface is determined by the total average driving force Tn

which is plotted in Figs. 4.7 and 4.8 against the distance of the interface to the

defect for the two defect conditions under consideration. In both plots, Tn is

nearly constant for positions in front of the defect. Its value coincides with that

of the defect-free case in which Tn = 2P 0E2 = −2 kJ/m3. Thus the domain wall

approaches the defect in the same way as it would in the absence of the defect. The

situation changes when the interface reaches the beginning of the defect. Under

the first defect condition, Tn exceeds the threshold value T0 = 400 J/m3 by far,

which implies that the domain wall is driven into the region under the defect. For

the second defect, Tn falls below T0 which results in domain wall pinning at the

beginning of the defect.
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x2

x1

xS = 100µm

defect-free case

P 0

xS = 40µm

defect b.c.: D · n = 0

domain wall

xSdefect (200µm wide)

800
µ
m

Ew

P 0

Figure 4.5: Distribution of τn for different interface positions in comparison to the

defect-free case. The positive driving force at the top has an impeding influence on

further domain wall movement in the negative x1-direction; the negative driving

force at the bottom supports movement in that direction. Averaged driving forces

as a function of xS are shown in Fig. 4.7.
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800

µ
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Figure 4.6: Distribution of τn for different interface positions in comparison to the

defect-free case. The driving force is reduced in the lower part of the interface

compared to the defect-free case; the top part is strongly attracted to the defect.

Averaged driving forces as a function of xS are shown in Fig. 4.8.
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Figure 4.7: Tn as a function of the interface position xS (cf. Fig. 4.5). The domain

wall movement is unaffected by the defect as Tn has the same value as for the defect-

free setting. The graph is continued in Fig. 4.11 for interface positions under the

defect.
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Figure 4.8: Tn as a function of the interface position xS (cf. Fig. 4.6). As in

Fig. 4.7, the domain wall movement is unaffected by the defect. The positive value

of Tn for xS = 0 indicates domain wall pinning wall just in front of the defect, cf.

the continued graph in Fig. 4.12.
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x1

x3

Figure 4.9: Domain wall trapped inside the electrode defect, top view. Reprinted

from Schrade et al. (2007a).

Interface under the electrode defect

In another experiment, a domain wall was moved under an electrode defect, where

it was pinned in the middle of the defect (see Fig. 4.9). This scenario is simulated

by placing a domain wall under the electrode defect; the geometrical and loading

parameters are the same as in the previous simulations.

To begin with, the defect condition D ·n = 0 is studied. Figure 4.10 shows the

driving force for domain wall positions 50µm and 70µm to the right and left of

the center of the defect, respectively. The distribution of τn for xS = 50µm implies

that the domain wall is strongly attracted to the center of the defect. The average

driving force Tn is plotted against the domain wall position in Fig. 4.11. As shown

in the previous simulations, the interface is driven into the defect area as it reaches

the defect at xS = 100µm. Near that position, the absolute value of Tn stays well

above T0; however, the domain wall is pinned at approximately xS = −20µm just

left of the center of the defect.

The situation changes when the defect condition ϕ∗ = 0 is considered. Again Tn

is evaluated for interface positions under the defect. The results, shown in Fig. 4.12,

imply that the interface does not pass the beginning of the defect at xS = 100µm.

A domain wall trapped in this kind of defect cannot be moved outside the defect

area since Tn ≈ 0.
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P 0

defect-free case

xSdefect

100µm 100µm

P 0

xS = 50µm xS = −70µm

defect b.c.: D · n = 0

E

Figure 4.10: Distribution of τn for different interface positions under the defect in

comparison to the defect-free case; xS = 0 marks the center of the defect. The

change in sign of τn, and hence in Tn, indicates that the domain wall is pinned

somewhere in between the two evaluated positions. This can be seen in Fig. 4.11,

where Tn is plotted against the interface position.
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Figure 4.11: Tn as a function of the interface position xS . As the domain walls

reaches the defect from the right, it is driven further toward the defect center at

xS = 0. Pinning takes place at xS = −20µm where Tn = −T0.
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Figure 4.12: Tn as a function of the interface position xS . The domain wall is

pinned at the beginning of the defect and cannot be moved further to the left as

Tn ≈ 0.
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x1

x3

B Adefect

Figure 4.13: Domain wall is moved over a side defect, top view. The dashed line

indicates the equilibrium interface position after it was moved over the defect.

Reprinted from Utschig (2005) and Schrade et al. (2007a).

4.3.2 Side defect

Another set of experiments in Utschig (2005) involves samples with holes which

were burned into one of the side faces. Figure 4.13 shows a top view of a sample

with such a side defect (bottom of the image); the electrodes at the top and bottom

remained completely intact. The electrodes at the top and bottom remained com-

pletely intact. The domain wall, which was initially located on the right side, was

moved over the defect until it reached an equilibrium position at the left end of the

sample (cf. Fig. 4.13). It was then moved back to its initial position. From optical

observations, the defect had no effect on the domain wall motion — in contrast to

the observed pinning effect of the electrode defect (cf. Sec. 4.3.1).

A better time resolution was achieved by measuring the switching current Ip for

the domain wall motion from position A to position B in Fig. 4.13. The resulting

graph (see Fig. 4.14 a) exhibits a sharp peak near 30.05 ms, which indicates that

the domain wall was slowed down within a short time interval. The peak occurs at

approximately 2/3 of the interval in which domain wall movement took place. As

one can see in Fig. 4.13, this corresponds to the moment when the domain wall was

passing the defect. For the way back to its initial position, there is only a slight

change in Ip shortly after 20 ms, see Fig. 4.14 b). The switching current indicates

that the domain wall motion was virtually unaffected by the defect.

The numerical simulations show a similar behavior. The defect is assumed to

be quadratic with an edge length of 120µm, and it is placed in the center of the

mesh; this approximates the geometry for a specific defect treated in Utschig

(2005). The defect is modeled as a region filled with air, which is achieved by

using the permittivity of air and a set of mechanical stiffness constants five orders
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Figure 4.14: Switching current Ip for domain wall movement from the starting

position to the dashed line in Fig. 4.13. Reprinted from Utschig (2005) and

Schrade et al. (2007a).

of magnitude smaller than that of the material (the parameters e, ε0, and P 0

vanish). Otherwise, the problem data is the same as in the previous simulations.

Fig. 4.15 shows two plots of the driving force τn acting on a domain wall which

approaches the defect from the right. In the central region, where the defect is

located, the driving force opposes further domain wall movement. Near its bound-

aries, the interface is strongly attracted toward the defect compared to the defect-

free case. The average resulting driving force for interface positions in front of the

defect is almost identical to the one shown in Fig. 4.7, excluding xS = 0; Tn is

equal to the value which is obtained for the defect-free case.

When the interface reaches the defect, it is split into an upper and a lower part.

Since the problem is symmetric with respect to the central horizontal axis, these

parts can be treated as one single entity. Figure 4.16 shows the driving force for

interface positions to the right and to the left of the center of the defect. Once

the domain wall enters the defect region, it is driven further to the left due to the

high values of τn; further movement leads to opposing contributions in τn. The

corresponding values for Tn are shown in Fig. 4.17. Given the threshold T0, the

domain wall comes to a halt at approximately xS = −30µm. This result seems to

contradict the experimental result of an almost undisturbed domain wall motion.

However, the modeled defect extends fully in the x3-direction, which increases

its effect on the interface movement. A simulation with a more realistic defect

geometry could reveal that the domain wall can pass a side effect without being

pinned.
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Figure 4.15: Distribution of τn for interface positions in front of the side defect in

comparison to the defect-free case. Although τn varies strongly over the domain

wall, the resulting values for Tn are the same as for the defect-free case.
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Figure 4.16: Distribution of τn for interface positions located in the region of the

side defect; comparison to the defect-free case. As the domain wall travels past

the center of the defect, the driving force gains partly repulsive contributions; the

values for Tn are plotted in Fig. 4.17.
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Figure 4.17: Tn as a function of the interface position xS , cf. Fig. 4.16. Contrary to

experimental observations, the domain wall is pinned in the 2d simulation before

it can escape the defect region.

4.3.3 Polarization defect

A polarization defect is characterized by a region of “frozen” spontaneous po-

larization in which switching is impossible; this has been observed in PZT thin

films in the context of electrical fatigue (cf. Gruverman et al. 1996, Colla

et al. 1998). In this section, the effect of a polarization defect on a moving

domain wall is investigated. The defect is assumed to have the same spontaneous

strain as the surrounding material and the isotropic permittivity ǫdef = ǫ111, cf.

Eq. (4.25)2. Except for the defect, the same simulation parameters as in the pre-

vious simulations are used.

Figure 4.18 shows the driving force on a defect with the defect polarization

P def = 0. The defect has a significant influence on the values of τn in the central

region of the interface. However, the contributions of τn driving the interface

toward the defect are stronger as compared with the defect-free case. In Fig. 4.19,

the driving force τn is plotted for two domain wall positions in the defect region.

The interface is strongly driven further to the left for xS = 20µm. Continued

movement in that direction leads to increasing opposing contributions in τn, which

eventually leads to domain wall pinning before the end of the defect is reached.

This is illustrated in Fig. 4.20, where Tn is plotted against the interface position
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Figure 4.18: Distribution of τn for interface positions in front of the polarization

defect in comparison to the defect-free case. The central part of the domain wall

is repelled by the defect while outer portions are attracted. Yet the values for Tn

are the same as for the defect-free case.
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Figure 4.19: Distribution of τn for interface positions “inside” the polarization

defect in comparison to the defect-free case. Upon entering the defect area, the

domain wall is driven further to the left; for xS = 50µm, τn exhibits repelling

contributions. Averaged driving forces are shown in Fig. 4.20.
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Figure 4.20: Tn as a function of the interface position xS for polarization defect

with dimensions 120µm × 120µm (“�”-data) and 60µm × 60µm (“♦”- and “+×”-

data). For the defects with P def = 0, the domain wall is pinned before it reaches

the end of the defect; the smaller defect has a considerably lower influence to the

domain wall movement. The defect with non-switchable polarization also has a

pinning effect which sets in just as the domain wall reaches the defect.

for differently parametrized defects. The large defect corresponds to the plots

in Figs. 4.18 and 4.19. Given the threshold value T0, the domain wall comes to

a stop after it has passed 2/3 of the width of the defect. The central curve in

Fig. 4.20 refers to a defect with the same properties but half the edge length,

i.e. 60µm × 60µm. Just before the end of the defect is reached, Tn reaches the

threshold field, and thus the domain wall halts at that position. Yet the effect of

the smaller defect is considerably weaker as opposed to that of the large defect. The

upper curve in Fig. 4.20 results for a defect with the non-switchable polarization

P def = P 0, which coincides with the spontaneous polarization of the surrounding

bulk material. The data points show that the domain wall is pinned just upon

reaching the defect area.



Chapter 5

Phase field approach

While the singular surface model introduced in Ch. 4 relies on the physically sound

and well-established theory of linear piezoelectricity and can be implemented with

standard numerical techniques, there are conceptual and practical concerns re-

garding its general applicability to microstructure evolution. First, the tracking

of (curved) interfaces can become objectionably cumbersome, especially given that

changing interfaces may require continuous remeshing. Second, the development

of a physically motivated and methodologically solid and systematic concept defin-

ing rules regarding changes in the topology of the microstructure such as merging,

separating, spawning, or vanishing interfaces is not easily achieved if at all possible.

These difficulties can be circumvented by employing an order parameter or

phase field concept in which discontinuities are regularized by introducing a (twice

continuously) differentiable order parameter. The order parameter is homogeneous

within “pure” phases and changes rapidly in interfacial regions. Its temporal evolu-

tion is derived from thermodynamic considerations and leads to a time-dependent

generalized Ginzburg-Landau equation. Thus changes in the topology are the re-

sult of the evolution of an order parameter, and no explicit interface tracking or

remeshing is required. On the other hand, a continuously changing order parame-

ter necessitates the formulation of material constants continuously varying from

one phase to another. This means that one has to make assumptions about the

electromechanical properties inside a domain wall. Given that ferroelectric domain

walls are typically the size of a few unit cell lengths, continuously changing material

parameters cannot capture the situation on that length scale, and the specification

of the parameters in the interface is somewhat ambiguous.

61
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5.1 Theory

A considerable number of publications on the subject of Ginzburg-Landau type

phase field models for ferroelectric phase transitions have accumulated over the

past decades. The proposed models vary in many respects, e.g. regarding the

choice of order parameter, the number of free variables in the free energy, the type

of electromechanical coupling, the numerical implementation, and other details in

the model formulation. In Cao & Barsch (1990) and Cao et al. (1990),

the order parameter is taken to be the rotation angle of BX6 octahedra in ABX3

perovskite structures; Cao & Cross (1991) use the material polarization as the

order parameter. These models are based on a free energy function which com-

prises the Landau-Devonshire free energy1, the order parameter gradient energy, a

quadratic elastic potential, and a coupling energy accounting for the electrostrictive

effect. Since the electric field problem is not solved and the strain is expressed in

terms of the order parameter, the order parameter appears as the only free variable.

These publications present quasi-1d analytic solutions for the order parameter pro-

file and for the strain distribution in context with static 180◦ and 90◦ ferroelectric

twin boundaries. An extension of this model formulation for 2d and 3d domain

structure evolution is presented in Hu & Chen (1997), Wang et al. (2004),

and Hu & Chen (1998) where, by adding another term to the free energy, the

dipole-dipole interaction for inhomogeneous polarization states is considered. The

mechanical equilibrium and Ginzburg-Landau equation are solved with a semi-

implicit Fourier spectral method. The same approach is taken in Ahluwalja &

Cao (2000) and Ahluwalja & Cao (2003), where the free energy is extended

to allow for an applied external electric field.

In Ahluwalja et al. (2005), Choudhury et al. (2005), Zhang &

Bhattacharya (2005), and Choudhury et al. (2007), the electric field prob-

lem is incorporated, and the equations are solved numerically with Fourier meth-

ods. Finite element implementations of the complete set of equations have been

published in Su & Landis (2007) and Wang & Kamlah (2008).

In contrast to the phase field models in Zhang & Bhattacharya (2005)

and Su & Landis (2007), where the material polarization is used as the order

parameter, the present theory is based on the spontaneous polarization as the order

parameter.2 This primary difference in the model formulation implicates constitu-

1Cf. Devonshire (1949) and Devonshire (1954).
2The term spontaneous polarization usually refers to the polarization of the spontaneously

polarized phase in the absence of external loading. Within the order parameter concept, the

spontaneous polarization is allowed to vary continuously in space.
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tive assumptions regarding the form of electromechanical coupling. If the material

polarization is used as the order parameter, the necessary inclusion of the dielectric

and piezoelectric behavior in the order parameter thwarts any attempt to formulate

explicitly a linear dielectric or piezoelectric constitutive relation. Consequently, the

thermodynamic potential can only approximate these properties near the polarized

states. As another consequence, the mechanical and electrical field equations, i.e.

the mechanical and electric equilibrium conditions, remain uncoupled in the strain

and the electric field; coupling is achieved only through the order parameter. The

present choice of order parameter, however, allows for a fully electromechanically

coupled model formulation. The conceptual differences between the present model

and the models presented in Zhang & Bhattacharya (2005) and Su & Landis

(2007) are discussed in App. A.2. Phase field models based on the spontaneous po-

larization as the order parameter can be found e.g. in Schrade et al. (2007b),

Schrade et al. (2009), and Schrade et al. (2008).

5.1.1 Thermodynamics

Within the order parameter approach, the electric enthalpy or phase field potential

is assumed to depend on the spontaneous polarization and its gradient, i.e.

H = H̃(ε,E,P ,∇P ) , (5.1)

where the spontaneous polarization is now denoted by P . The Ginzburg-Landau

evolution law for P can be derived directly from the internal dissipation inequal-

ity (3.140), see App. A.3 for details. A more general thermodynamic framework,

which is adopted here, can be found in Fried & Gurtin (1993), Fried &

Gurtin (1994), and Gurtin (1996). In these publications, the introduction

of a new independent field variable, i.e. the order parameter, is accompanied by

the postulate that there exists a second order micro-force stress tensor Σ̃ which is

thermodynamically conjugate to the rate of change of the order parameter. Fur-

thermore, an external volume micro-force ζ is introduced. Then the integral form

of the second law reads
∫

∂B

(

(σn) · u̇ − (D · n)ϕ̇+
(

Σ̃n
)

· Ṗ
)

da+

∫

B

(

f · u̇ − ρϕ̇+ ζ · Ṗ
)

dv

− d

dt

∫

B
H̃(ε,E,P ,∇P ) dv ≥ 0 .

(5.2)

The second underlying assumption is the balance of micro-forces
∫

∂B
Σ̃n da+

∫

B
(ζ + g̃) dv = 0 , (5.3)
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where g̃ is the internal micro-force, which does not enter the inequality (5.2). Since

Eq. (5.3) must hold for any sub-volume of B, one obtains

div Σ̃ + ζ + g̃ = 0 . (5.4)

With (3.133), (3.135) and (5.4), the local form of the second law reads

σ · ε̇ − D · Ė + Σ̃ · ˙∇P − g̃ · Ṗ − ˙̃H(ε,E,P ,∇P ) ≥ 0 (5.5)

or, equivalently,
(

σ − ∂H̃

∂ε

)

·ε̇−
(

D +
∂H̃

∂E

)

·Ė+

(

Σ̃ − ∂H̃

∂∇P

)

· ˙∇P−
(

g̃ +
∂H̃

∂P

)

·Ṗ ≥ 0 . (5.6)

The following constitutive equations are derived from this inequality:3

σ =
∂H̃

∂ε
, D = −∂H̃

∂E
, Σ̃ =

∂H̃

∂∇P
. (5.7)

The remaining dissipation inequality then reads

−
(

g̃ +
∂H̃

∂P
︸ ︷︷ ︸

g̃dis

)

· Ṗ ≥ 0 . (5.8)

It can be shown4 that the most general solution for g̃dis is given by

g̃dis = −βṖ , (5.9)

where β is a constitutive positive semi-definite second order inverse mobility tensor.

The dissipation can then be expressed by

D = −g̃dis · Ṗ = Ṗ ·
(

βṖ
)

. (5.10)

The evolution law for the order parameter is obtained from Eq. (5.9) by making

use of the balance law (5.4):

βṖ = div Σ̃ + ζ − ∂H̃

∂P
. (5.11)

With the assumption that ζ = 0 and on use of Eq. (5.7)3, this gives a time-

dependent Ginzburg-Landau type evolution law:

βṖ = div
∂H̃

∂∇P
− ∂H̃

∂P
. (5.12)

3Cf. Coleman & Noll (1963).
4See Gurtin (1996).
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5.1.2 Phase field potential

The phase field potential H̃ is additively split into three parts:5 a modified elec-

tric enthalpy H̃ent, the phase separation potential H̃sep, and the interface gradient

energy H̃ int, i.e.

H = H̃ent(ε,E,P ) + H̃sep(P ) + H̃ int(∇P ) (5.13)

with

H̃ent =
1

2

(
ε − ε0

)
·
[
C
(
ε − ε0

)]
−
(
ε − ε0

)
· eTE − 1

2
E · ǫE − P · E , (5.14)

H̃sep = κs
γ

ǫ
ψ̃(P ) , (5.15)

H̃ int =
1

2
κi
γǫ

P 2
0

‖∇P ‖2 . (5.16)

The material tensors C, e, and ǫ denote the elastic stiffness, the piezoelectric

coupling constants, and the dielectric tensor, respectively. These material parame-

ters generally depend on the polarization state, i.e. on the order parameter. In

Sec. 5.1.3, the constants γ and ǫ are identified as the characteristic energy density

and the characteristic length of an interface, respectively. The constant P0 desig-

nates the spontaneous polarization of the unloaded ferroelectric phase and defines

the minima of the phase separation potential (see below). The parameters κs and

κi are dimensionless calibration constants (see Sec. 5.1.3).

In this work, only tetragonal unit cells are considered. This poses a restriction

insofar as ferroelectric materials can also be e.g. of orthorhombic (e.g. lead zir-

conate) or rhombohedral (e.g. PZT with high Zr content) structure. Ferroelectrics

with tetragonal structure include barium titanate, lead titanate, and PZT with

high Ti content. These materials exhibit anisotropy and phase dependence in the

elastic stiffness and the dielectric constants.6 By the assumption that the mechan-

ical and the dielectric anisotropy are of minor importance for the phase transition,

the elastic stiffness and the dielectric tensor are assumed to be isotropic and thus

independent of P , i.e.

C = const. and ǫ = ǫ111 . (5.17)

An extension to anisotropic elastic or dielectric behavior can be implemented in

the model in a straightforward way.

The piezoelectric tensor e, however, strongly depends on the poling state and is

of great importance in the phase transitions. With reference to Kamlah (2001),

5Cf. Schrade et al. (2007b).
6See e.g. Xu (1991).
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transversely isotropic piezoelectric conditions are assumed; the axis of anisotropy

coincides with the direction of poling. With respect to Cartesian coordinates, the

following representation is used:

ekij(P ) =

( |P |
P0

)ν {

b‖eiejek + b⊥(δij − eiej)ek

+ b=
1

2
[(δki − ekei)ej + (δkj − ekej)ei]

}

,

(5.18)

where e = P /|P | is the direction of poling and b‖, b⊥, and b= are independent

scalar material constants. The exponent ν determines the smoothness of H̃ent at

the point P = 0. With ν = 3, which is used in the simulations, the second partial

derivatives of H̃ent with respect to P exist and are continuous at every point.7

The spontaneous strain ε0 is constructed to be purely deviatoric. This is justi-

fied by the observation that domain switching processes are volume preserving on

the macroscopic level.8 The spontaneous strain is thus expressed by

ε0(P ) =
3

2
ε0

( |P |
P0

)2{

e ⊗ e − 1

3
1

}

, (5.19)

where ε0 is the spontaneous strain of the unloaded ferroelectric phase. The value

of ε0 is to be determined with respect to the paraelectric cubic phase.9

In the 1d case, the phase separation potential has the form of a double-well

potential, allowing for two minima which correspond to the two distinct states of

the ferroelectric phase. The general 3d case has to account for the six variants

of spontaneous polarization of the tetragonal unit cell. Since the six states are

energetically indistinguishable, the energy landscape ψ̃ has to be invariant in ±Pi,

i = 1, 2, 3.10 This is commonly achieved with a fourth- or higher-order polyno-

mial in Pi. For the 2d case, which is considered here, the following eighth-order

polynomial allows for a flexible adjustment of the energy landscape:

ψ̃ = 1 +
a1

P 2
0

(
P 2

1 + P 2
2

)
+
a2

P 4
0

(
P 4

1 + P 4
2

)
+
a3

P 4
0

P 2
1P

2
2

+
a4

P 6
0

(
P 6

1 + P 6
2

)
+
a5

P 6
0

(
P 4

1P
2
2 + P 4

2P
2
1

)

+
a6

P 8
0

(
P 8

1 + P 8
2

)
+
a7

P 8
0

P 4
1P

4
2

+
a8

P 8
0

(
P 6

1P
2
2 + P 6

2P
2
1

)
.

(5.20)

7Lower values for ν lead to numerical intricacies regarding the positive definiteness of the

global tangent matrix and should thus be avoided.
8Cf. Kamlah (2001).
9See Sec. 5.3.

10Cf. Bhattacharya & Ravichandran (2003).



5.1 Theory 67

-0.5
0

0.5
10.5

0
-0.5

1

1

2

ψ̃ [-]

P1/P0 [-]P2/P0 [-]
-1

Figure 5.1: Phase separation potential with minima at P = (±P0, 0) and P =

(0,±P0) corresponding to the four spontaneously polarized states of the tetragonal

unit cell in 2d.

This energy is normalized in the way that ψ̃(0, 0) = 1, ∂Pi
ψ̃(±P0, 0) = 0, and

∂Pi
ψ̃(0,±P0) = 0 for i = 1, 2. The coefficients ai are dimensionless and define

the shape of ψ̃, which is illustrated in Figure 5.1. For a detailed account on the

calculation of the coefficients ai, see App. A.4.

Constitutive equations

The specification of H̃ allows for a statement of the constitutive equations. Eval-

uation of Eq. (5.7) yields

σ = C
(
ε − ε0

)
− e

TE , (5.21)

D = e
(
ε − ε0

)
+ ǫE + P , (5.22)

Σ̃ = κi
γǫ

P 2
0

∇P . (5.23)

Further evaluation of Eq. (5.12) yields the evolution equation for P :

βṖ = κi
γǫ

P 2
0

∆P − κs
γ

ǫ

∂ψ̃

∂P
− ∂H̃ent

∂P
. (5.24)
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Finally, the boundary conditions (3.143) are to be completed with

P − P ∗ = 0 on ∂BP ,

Σ̃n − π∗ = 0 on ∂Bπ .
(5.25)

The determination of the boundary conditions for the order parameter is not a triv-

ial task. While the physical interpretation of (5.25)1 is straightforward, the Neu-

mann type condition (5.25)2 should be discussed in more detail. With Eq. (5.23)

the condition states that

∇Pn =
P 2

0

κiγǫ
π∗ on ∂Bπ , (5.26)

which means that the gradient of P in the normal direction is prescribed by the

right hand side of (5.26). In the following the condition

π∗ = 0 on ∂B (5.27)

is used, forcing domain walls to be normal to the boundary ∂B. This choice is

appropriate for the geometries of the 180◦ and 90◦ domain wall settings simulated

in Secs. 5.3.2–5.3.3 as well as the microstructures examined in Secs. 5.3.5–5.3.6.

The effect of this boundary condition can be seen quite clearly in Fig. 5.24 where

all domain walls remain normal to the boundary.

5.1.3 Phase field parameters

This section provides a motivation for the introduction of the material parameters γ

and ǫ first introduced in Eqs. (5.15) and (5.16); cf. the parameter γ in the context

of sharp interface models in Sec. 3.4 and 4.1.

Interface energy and width

Employing a simplified 1d model, one can show that γ and ǫ are the characteristic

specific energy and the characteristic width of the interface, respectively. Specif-

ically, the calibration constants κs and κi are used to identify γ with the specific

energy of a 180◦ domain wall and ǫ with its width.

The starting point of the 1d model is a region with two domains separated

by a 180◦ domain wall under load-free conditions as depicted in Fig. 4.3. By

neglecting the x2-direction and naming x = x1, the order parameter profile for this

configuration has the form shown in Fig. 5.2. Furthermore, it is assumed that the
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Figure 5.2: Order parameter profile for a 180◦ interface in the 1d model. The

domain wall width d is defined via the slope of P (x) at the point where P (x0) = 0.

energy H̃sep + H̃ int outweighs H̃ent in the interface region. Thus, by neglecting the

contribution from H̃ent, the model reduces to

h̃(P, P ′) = κs
γ

ǫ
Ψ̃(P ) +

1

2
κi
γǫ

P 2
0

(P ′)
2

= h̃s(P ) + h̃i(P ′) , (5.28)

where Ψ̃(P ) = ψ̃(P, 0) and (·)′ =
d

dx
(·). Figure 5.3 shows the typical double well

potential for the 1d separation potential Ψ̃ with minima at P = ±P0. The total

energy of the system, which is minimal in equilibrium states, is given by

W =

∫ +∞

−∞
h̃(P, P ′) dx

!
= min. (5.29)

For the boundary conditions lim
x→±∞

P (x) = ±P0, the solution of this optimization

problem yields a configuration with just one interface, i.e. the domain configura-

tion under consideration. With reference to the approach in Cahn & Hilliard

(1958), the Euler-Lagrange equation is applied to Eq. (5.29):

∂h̃

∂P
− d

dx

∂h̃

∂P ′ = 0 . (5.30)

Separation of variables and subsequent integration gives

h̃s = h̃i =
1

2
κi
γǫ

P 2
0

(P ′)
2
. (5.31)
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Figure 5.3: 1d phase separation potential Ψ̃ with minima at P = ±P0.

With this result, the minimized energy of the system can be expressed by

W =

∫ +∞

−∞
h̃(P, P ′) dx =

∫ +∞

−∞
2h̃s(P ) dx

=

∫ P0

−P0

2κs
γ

ǫ
Ψ̃(P )

√
κi

2κsΨ̃(P )

ǫ

P0

dP

=
√

2κiκsγ

∫ 1

−1

√

¯̃Ψ(P̄ ) dP̄ ,

(5.32)

where the integration is with respect to the normalized order parameter P̄ = P/P0

and ¯̃Ψ(P̄ ) = Ψ̃(P ). The energy W depends only on κi, κs, γ, and on the shape of

the normalized phase separating potential, but not on the parameter ǫ. Therefore

the parameter γ can be identified with the energy W , i.e.

W =
√

2κiκsγ

∫ 1

−1

√

¯̃Ψ(P̄ ) dP̄
!
= γ , (5.33)

which gives the first equation for the solution of κi and κs:

κiκs =
1

2

(∫ 1

−1

√

¯̃Ψ(P̄ ) dP̄

)−2

. (5.34)

With reference to Fig. 5.2, the domain wall width is defined as

d =
2P0

|P ′(x0)|
, P (x0) = 0 . (5.35)

Making use of the results previously obtained from the variation procedure, one

obtains

d = ǫ

√
2κi

κs

. (5.36)
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Therefore the parameter ǫ is identified with the domain wall width d, and d = ǫ =

ǫ
√

2κi/κs leads to second equation for the determination of κi and κs:

κs = 2κi . (5.37)

As indicated before, the integrals in (5.32) depend on the shape of Ψ, i.e. on the

constants ai. For a typical set of ai, numerical integration gives

Υ :=

∫ 1

−1

√

¯̃Ψ(P̄ ) dP̄ ≈ 1.4 . (5.38)

Finally, one obtains

κs = Υ−1 ≈ 0.71 and κi =
1

2
Υ−1 ≈ 0.35 . (5.39)

The result may be summarized as follows: In a 1d setting, the parameters γ

and ǫ can be identified as the energy of the interface and its width, respectively, if

the calibration coefficients κs and κi are chosen according to Eq. (5.39) and H̃ent

is neglected. This gives rise to an analogous formulation of the phase separation

potential and the gradient energy in Eqs. (5.15) and (5.16), respectively. It is noted

that in the 2d or 3d case, γ becomes the specific domain wall energy, whereas in

1d it is the interface energy itself. The values for κs and κi are kept for the 2d

simulations in Sec. 5.3, and their suitability will be shown therein.

Interface velocity

In the following, a system with two domains separated by a 180◦ domain wall,

which is loaded with an electric field parallel to the domain wall, is considered.

The previous 1d model is extended to include the electric field and thus becomes

h̃ = κs
γ

ǫ
Ψ̃(P ) +

1

2
κi
γǫ

P 2
0

(P ′)
2 − PEapp , (5.40)

where Eapp is the applied uniform electric field. Evaluation of the Ginzburg-Landau

evolution equation gives

βṖ = κi
γǫ

P 2
0

P ′′ − κs
γ

ǫ

dΨ̃

dP
+ Eapp . (5.41)

The position of the domain wall xd is defined by means of P (xd, t) = 0, i.e. the

middle of the interface. The domain wall velocity vd is then defined as vd =
dxd

dt
,

and a short calculation shows that

vd =
dxd

dt
= − Ṗ

P ′

∣
∣
∣
∣
∣
xd

= − ǫ

2P0

Ṗ

∣
∣
∣
∣
xd

= − ǫ

2P0

β−1Eapp . (5.42)
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In 1d, the domain wall velocity is therefore proportional to the applied electric field

and to the width of the interface.

Evaluating the evolution equation at P = 0 in the 2d model gives

Ṗ

∣
∣
∣
P=0

= β−1E . (5.43)

For an isotropic inverse mobility tensor β = β1, the domain wall velocity in 2d is

given by

vd =
ǫ

2P0

β−1E‖ = β−1
0 E‖ , (5.44)

where E‖ is the electric field component parallel to the domain wall, and the inverse

mobility is now written as

β−1 =
2P0

ǫ
β−1

0 . (5.45)

The use of β0 as inverse mobility constant guarantees that the domain wall dy-

namics is independent of the width of the interface. Furthermore, the relation

vd = β−1
0 E‖ coincides with the domain wall velocity of a planar 180◦ domain wall

that is treated as a singular surface and for which a linear kinetic law relating its

normal velocity to the jump in the configurational stress tensor is postulated (cf.

Sec. 4.1).

5.2 Numerical implementation

The initial boundary value problem consisting of Eqs. (3.133)–(3.135), (3.143) and

(5.24)–(5.27) is solved within a 2d finite element scheme. Plane 4-noded elements

with five degrees of freedom (ui, ϕ, Pi) per node and bilinear ansatz functions

are used in the spatial discretization. Time integration is accomplished by using

an implicit first order method. The following outline of the numerical procedure

does not cover every detail required for a complete summary. Further background

on standard finite element techniques can be acquired from e.g. Zienkiewicz &

Taylor (2000), Hughes (2000), and Wriggers (2009).

The starting point of the finite element formulation is the weak form of the

field equations (3.133), (3.135), and (5.24). After multiplication with the test

functions ηu, ηϕ, ηP, subsequent partial integration, and on use of the boundary

conditions (3.143), (5.25), and (5.27), the weak forms read
∫

B
(−σ · ∇ηu + f · ηu) dv +

∫

∂Bt

t∗ · ηu da = 0 , (5.46)

∫

B
(−D · ∇ηϕ − ρηϕ) dv −

∫

∂Bω

ω∗ηϕ da = 0 , (5.47)
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∫

B

{(

βṖ +
∂H̃ent

∂P
+ κs

γ

ǫ

∂ψ̃

∂P

)

· ηP + κi
γǫ

P 2
0

∇P · ∇ηP

}

dv = 0 . (5.48)

The geometry, the independent variables and their test functions are approxi-

mated by the shape functions and the nodal quantities. Denoted by an underbar,

the discretized quantities and equations are represented in matrix notation. For a

finite element Be this gives

x =

nel∑

I

N I
xxI , u =

nel∑

I

N I
uuI , ϕ =

nel∑

I

N I
ϕϕ

I , P =

nel∑

I

N I
PP I ,

η
x

=

nel∑

I

N I
xηI

x
, η

u
=

nel∑

I

N I
uηI

u
, η

ϕ
=

nel∑

I

N I
ϕη

I

ϕ
, η

P
=

nel∑

I

N I
PηI

P
.

(5.49)

The superscript I denotes the node number, nel is the number of nodes per element,

and N I
x , N I

u , N I
ϕ, and N I

P are the shape functions for the element geometry, the dis-

placements, the electric potential, and the spontaneous polarization, respectively.

The respective nodal values are denoted by xI , uI , ϕI , and P I .

For the 2d case, the differential operator matrices Bu, Bϕ, and BP are defined

by the derivatives of the shape functions:

BI
u =









N I
u,1 0

0 N I
u,2

N I
u,2 N I

u,1









, BI
ϕ =




N I

ϕ,1

N I
ϕ,2



 , BI
P =












N I
P,1 0

0 N I
P,2

N I
P,2 0

0 N I
P,1












, (5.50)

where N I
·,k denotes the partial derivative of a shape function with respect to the

coordinate xk. The approximated gradient quantities read

ε =

nel∑

I

BI
uu

I , E = −
nel∑

I

BI
ϕϕ

I , ∇P =

nel∑

I

BI
PP I ,

∇η
u

=

nel∑

I

BI
uη

I

u
, ∇η

ϕ
=

nel∑

I

BI
ϕη

I

ϕ
, ∇η

P
=

nel∑

I

BI
PηI

P
,

(5.51)

which implies the use of the Voigt notation

ε =
[

ε11 ε22 2ε12

]T

, ∇P =
[

P1,1 P2,2 P1,2 P2,1

]T

, (5.52)
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and E = [E1 E2 ]T. Insertion of the discretized equations (5.49) and (5.51) into

the weak forms (5.46)–(5.48) yields the approximations

ne⋃

e=1

nel∑

I=1

(

ηI

u

)T
[∫

Be

(

−
(
BI

u

)T
σ +N I

uf
)

dv +

∫

∂Be

N I
ut∗ da

]

= 0 , (5.53)

ne⋃

e=1

nel∑

I=1

ηI

ϕ

[∫

Be

(

−
(
BI

ϕ

)T
D −N I

ϕρ
)

dv −
∫

∂Be

N I
ϕω

∗ da

]

= 0 , (5.54)

ne⋃

e=1

nel∑

I=1

(

ηI

P

)T
∫

Be

{

N I
P

(

βṖ +
∂H̃ent

∂P
+ κs

γ

ǫ

∂ψ̃

∂P

)

+κi
γǫ

P 2
0

(
BI

P

)T ∇P

}

dv = 0 .

(5.55)

The integration is performed for each finite element, and the operator
⋃

symbolizes

the assembly of the equations over all elements. The integrals in the brackets are

the element residuals for node I:

RI
σ =

∫

Be

(

−
(
BI

u

)T
σ +N I

uf
)

dv +

∫

∂Be

N I
ut∗ da , (5.56)

RI
D =

∫

Be

(

−
(
BI

ϕ

)T
D −N I

ϕρ
)

dv −
∫

∂Be

N I
ϕω

∗ da , (5.57)

RI
P =

∫

Be

{

N I
P

(

βṖ +
∂H̃ent

∂P
+ κs

γ

ǫ

∂ψ̃

∂P

)

+ κi
γǫ

P 2
0

(
BI

P

)T ∇P

}

dv . (5.58)

With the more compact notation

RI =
[
(
RI

σ

)T
RI

D

(
RI

P

)T
]T

, (5.59)

the element residual for the four-noded element e is introduced as

Re =
[
(
R1
)T (

R2
)T (

R3
)T (

R4
)T
]T

. (5.60)

Then the assembled system of equations reads

ne⋃

e=1

(
ηe
)T

Re = 0 . (5.61)

The assembled residual must vanish for arbitrary test functions, i.e.

R =
ne⋃

e=1

Re = 0 . (5.62)
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The global residual vector R is a function of the nodal degrees of freedom. These

are collected in the global vector of degrees of freedom d so that

R = R(d, ḋ) . (5.63)

The velocities are approximated by means of the implicit Euler method:

ḋ ≈ dn+1 − dn

∆tn
(5.64)

with the time increment ∆tn. With respect to the time discretization, the indices n

and n + 1 denote quantities at the current and next time step in the Newton

iteration, respectively.11 The residual is then a function of the time-discretized

degrees of freedom: Rn+1 = R̂(dn+1). Postulating that the residual vanishes at

the next time step tn+1, one obtains the non-linear system of equations

Rn+1 = R̂(dn+1) = 0 . (5.65)

The Newton-Raphson method is used to find approximate solutions di+1
n+1, where i

is used as the index of the iteration procedure. This requires the computation of

the system matrix

S(di
n+1) =

∂R̂

∂dn+1

∣
∣
∣
∣
∣
di

n+1

(5.66)

as well as the current residual Ri
n+1. The next iterative solution is then calculated

with

di+1
n+1 = di

n+1 − [S(di
n+1)]

−1Ri
n+1 . (5.67)

The system matrix S is to be constructed from the stiffness and damping matrix

of the residual in Eq. (5.63). On the element level, the stiffness and damping matrix

contributions are obtained by derivation with respect to uJ , ϕJ ,P J and u̇J , ϕ̇J , Ṗ J ,

respectively:

KIJ =
[

RI
,uJ RI

,ϕJ RI
,PJ

]

=









KIJ
σσ KIJ

σD KIJ
σP

KIJ
Dσ KIJ

DD KIJ
DP

KIJ
Pσ KIJ

PD KIJ
PP









(5.68)

11Note that time discretization is only needed for the residual (5.58), the other two residuals

are independent of Ṗ .
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and

DIJ =
[

RI
,u̇J RI

,ϕ̇J RI
,ṖJ

]

=









0 0 0

0 0 0

0 0 DIJ
PP









. (5.69)

The computation of the tangent matrix contributions is a straightforward, however

lengthy calculation. Further details on the procedure can be found in App. A.5.

In light of the time discretization in Eq. (5.64), the contributions to the system

matrix read

SIJ =









KIJ
σσ KIJ

σD KIJ
σP

KIJ
Dσ KDD

IJ KIJ
DP

KIJ
Pσ KIJ

PD KIJ
PP +

1

∆tn
DIJ

PP









. (5.70)

The element system matrix Se is a 20×20 matrix constructed by

Se =












S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44












. (5.71)

The global system matrix in (5.66) is obtained by assembling the element matrices,

i.e.

S =
ne⋃

e=1

Se . (5.72)

Due to the postulated existence of the thermodynamic potential H̃, the assem-

bled system matrix S is symmetric; this can also be seen from the contributions

to the element stiffness matrix, cf. App. A.5.

The integrals in Eqs. (5.56)–(5.58) are integrated by using standard four-point

Gauss integration.

5.3 Examples

5.3.1 Introduction

The following numerical simulations are based on material data characterizing PZT-

5H, for which a set of constants for transversely isotropic material behavior can be
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found in Ding & Chen (2001, p. 12). These constants are slightly adapted to

meet the symmetry prerequisites imposed by Eqs. (5.17) and (5.18):

C =









13 5.0 0

5.0 13 0

0 0 4.0









· 1010 N

m2 ,

e =




0 0 17.0

−6.5 23.3 0




C

m2 ,

ǫ =




1.3 0

0 1.3



 · 10−8 C

Vm
.

(5.73)

The value of the spontaneous polarization for PZT-5H is given in Chong et al.

(2008) by the estimate

P0 =
1

0.83
Psat ≈ 0.32 C/m2 . (5.74)

The geometric factor 1/0.83 accounts for the polycrystalline structure of the ma-

terial due to which P0 is greater than Psat.

The aforementioned publication also provides the lattice constants a and c of

the tetragonal unit cell. In view of the definition of the spontaneous strain in

Eq. (5.19), one obtains

ε0 = 2
c− a

c+ 2a
≈ 0.0057 (5.75)

with a = 0.4051 nm and c = 0.4086 nm.

Ferroelectric domain walls are typically the width of a few unit cells.12 With

reference to Meyer & Vanderbilt (2002), the following values are used for the

specific interface energy and width:

γ = 0.13
J

m2 , ǫ = 2 · 10−9 m . (5.76)

The velocity of ferroelectric domain walls is dependent on the applied electric

field (cf. Sec. 4.1). For electric fields near the coercive field Ec, domain wall

12See e.g. Merz (1954), Stemmer et al. (1995), Foeth et al. (1999).
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velocities are roughly of the order of 1 m/s. Since the literature seems to be unable

to provide any precise data, the inverse mobility β = β1 is chosen by

β−1 =
2P0

ǫ

v0

Ec

= 0.32 · 103 A

Vm
, (5.77)

where Ec = 1 MV/m13 and v0 = 1 m/s. The parameters of ψ̃ are chosen as

a1 = −1.125 , a2 = −0.75 , a3 = 3.3 , a4 = 0.875 ,

a5 = 0 , a6 = 0 , a7 = 0 , a8 = 0 .
(5.78)

For a detailed account on the calculation of these parameters, the reader is referred

to App. A.4.

5.3.2 Parameter verification

Linear response

The choice of the electric enthalpy in Eq. (5.14) implies the structure of the con-

stitutive equations (5.21)–(5.22). If the order parameter P is fixed, i.e. Ṗ ≡ 0,

then these equations reflect a linear piezoelectric constitutive law with respect to

the current, fixed poling state. Within uniformly poled regions in which P is equal

to or near the minimizers of the phase separation potential, i.e. near the vari-

ants of the spontaneous states, the material tensors C, ǫ, and e are the “classic”

piezoelectric parameters.

However, since the order parameter is allowed to change, there will be an extra

contribution to the electric displacement due to the change in P when an electric

field is applied. This extra polarization, induced by the external field, should be

accounted for in the choice of ǫ if necessary. A simple estimate of this extra polar-

ization shows that this effect can be neglected for the chosen material parameters.

For that purpose, a homogeneously poled region with P = [0 P0 ]T is subjected

to an electric field E2 in the x2-direction; quasi-static conditions and stress-free

support are assumed. As a consequence, Eq. (5.21) reduces to C(ε − ε0) = eTE,

and thereby, with (5.14), the evolution equation (5.24) becomes

−κs
γ

ǫ

∂ψ̃

∂Pm

− (εij − ε0
ij)
∂ekij

∂Pm

Ek − Em = 0 . (5.79)

By the assumption that ∂Pmekij ≪ 1 (which is the case, see below), the middle sum-

mand in that equation can be neglected, so that for m = 2 the previous equation

13Cf. Chong et al. (2008).
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reads

−κs
γ

ǫ

∂ψ̃

∂P2

+ E2 = 0 . (5.80)

The change in P2 due to the field E2 can be approximated by a Taylor expansion

of ∂P2
ψ̃ around the spontaneous state (0, P0). Since, by definition, ∂P2

ψ̃(0, P0) = 0,

this gives

κs
γ

ǫ

∂2ψ̃(0, P0)

∂P 2
2

(P2 − P0) = E2 . (5.81)

Evaluating the second partial derivative gives the value 15/P 2
0 , and with the ab-

breviation

κP :=
ǫP 2

0

15κsγ
, (5.82)

the resulting linear relation for P2 then reads

P2 − P0 = κPE2 . (5.83)

The parameter κP is the dielectric constant associated with the electric displace-

ment due to a change in P2. If, for a different set of material parameters, κP should

reach the value of the material parameter ǫ11, the former can be reduced by chang-

ing the shape of the separation potential and thereby altering the value of κs. For

the chosen material parameters, κP = 1.5 ·10−10 C/(Vm). This value would have to

be subtracted from the value of ǫ11 = 1.3 ·10−8 C/(Vm). In view of the assumption

of an isotropic dielectric tensor and the difference of roughly 1% in the two values,

the influence of κP can be neglected.

The piezoelectric response will also depend on the change of ε0 and e as both

depend on P . By assuming quasi-static and stress-free conditions once more, a

simulation shows that the components ε0
ij are linear in the applied electric field.

This can be seen in Fig. 5.4 a), where the differences between ε0
ij and their initial

values are plotted. The deviation from the latter is well below 3%, revealing the

small influence of the change in P .

Under stress-free conditions, the piezoelectric law reduces to

ε − ε0 = eC
−TE = d

TE . (5.84)

Figure 5.4 b) shows the strain response for the prescribed electric field. The linear

relationship is in excellent quantitative agreement with Eq. (5.84), which implies

that e does not change significantly under the electric loading.

The results of these preceding calculations permit the interpretation of C, e,

and ǫ as the linear piezoelectric material constants. The extra electric displacement

contributed by changes in P due to a small-signal electric field is negligible with

respect to the dielectric polarization.
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Figure 5.4: a) The change in the spontaneous strain components under electrical

loading is very small compared to ε0 = 0.57%, which is used in the simulations; this

effect can therefore be ignored in the following. b) Linear piezoelectric response

to electrical loading of the poled s phase. The influence of the electric field on the

order parameter-dependent material constants ε0(P ) and e(P ) is negligible.

180◦ domain wall

A planar 180◦ domain wall is modeled with a rectangular region of 20 nm× 40 nm

under stress-free support and vanishing electric potential on the boundary. The

initial conditions for P are chosen to define a vertical sharp 180◦ interface in the

center of the region. During the simulation, the interface becomes diffuse and

quickly reaches a state of equilibrium. This is illustrated in Fig. 5.5 where P2 andD2

are plotted. The geometry of the phase transition leads to a tensile stress σ22 in

the interface, see Fig. 5.6. The three parts of the phase field potential, H̃ent, H̃sep

and H̃ int, are plotted in Figs. 5.6 and 5.7. The difference in the order of magnitude
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Figure 5.5: Distribution of P2 and D2, 180◦ domain wall.
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Figure 5.7: The phase separation and gradient energy densities are considerably

larger than H̃ent plotted in Fig. 5.6.

between H̃sep + H̃ int and H̃ent justifies the basic working assumption of Sec. 5.1.3,

namely that the former outweighs the latter.

The intrinsic length scale ǫ requires a mesh resolution which is able to resolve

the interfaces. In order to find a reasonable spatial discretization, the previous

simulation is repeated for different element edge lengths in the x1-direction, i.e. in

the direction perpendicular to the domain wall. Figure 5.8 a) contains a plot of the

element edge length vs. the interface width d by means of Eq. (5.35). For edge

lengths smaller than ǫ/4, the numerically obtained interface width differs from the

value of ǫ by less than 5%. If the edge length is near ǫ, then d depends strongly

on the position of the middle of the interface within the element. In view of these
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edge length should be chosen as ǫ/4. b)The numerically obtained specific 180◦

domain wall energy varies with the element edge length used in the simulations.

The deviations amount up to 10% with respect to γ = 0.13 J/m2.

results, a maximum element edge length of ǫ/4 is indicated.

The contributions to the specific energy of an interface are obtained by inte-

grating the fields H̃ent, H̃sep, and H̃ int along the horizontal path in the center of

the discretized region. This procedure circumvents the boundary effects visible in

Fig. 5.6 by assuming that these fields are homogeneous in the vertical direction.

The numerically obtained values are shown in Fig. 5.8 b). For element edge lengths

less than ǫ/4, the calculated specific energies deviate less than 2% from the value

of γ. Even for large edge lengths, the difference is below 10%.

90◦ domain wall

The simulations performed for the 180◦ interface are repeated for a 90◦ domain

wall. Figure 5.9 shows contour plots of P2 and D2; the orientation of the crystal

axes is rotated 45◦ with respect to the x1-x2 coordinate system used in the preced-

ing simulations. The tensile stress σ22 and the distribution of H̃ent, H̃sep, and H̃ int

are plotted in Figs. 5.10 and 5.11. As for the 180◦ interface, the stress σ22 origi-

nates from the varying ε0(P ) across the interfacial region; the energy contribution

from H̃ent is also small compared to H̃sep and H̃ int.

Analogously to the 180◦ case, the interface width and the specific energy are

computed for a 90◦ domain wall. Figure 5.12 a) shows that the calculated interface

widths increase with coarsening mesh resolution. The values for the 180◦ domain

wall show that the two interfaces are of comparable width. This is supported
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Figure 5.9: Distribution of P2 and D2, 90◦ domain wall.
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Figure 5.13: Influence of the auxiliary parameter ψ90 introduced in App. A.4 on

H̃. Due to the nearly linear relationship, the parameter ψ90 can be used to adjust

the 90◦ domain wall energy.

by recent results in the literature (cf. Meyer & Vanderbilt 2002, Stemmer

et al. 1995).

The contributions to the numerically obtained specific interface energy are plot-

ted in Figs. 5.12 b) and 5.13. The set of ai defined in (5.78) yields a 90◦ interfacial

energy which amounts to about one half of the 180◦ domain wall energy. This

is also in good agreement with experimental data and atomistic simulations, see

Meyer & Vanderbilt (2002), Stemmer et al. (1995) and the references

cited therein. The 90◦ interface energy can further be adjusted by changing the
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parameter ψ90 (see App. A.4) which is used in the calculation of the non-zero coef-

ficients ai in Eq. (5.78). The graph in Fig. 5.13 shows that there is a linear relation

between ψ90 and the specific 90◦ interface energy, which lies approximately between

0.35γ and 0.6γ.

Domain wall dynamics

The dynamics of 180◦ and 90◦ interfaces is studied on the basis of the previous

simulations. The discretized region is now 40 nm× 40 nm, and the applied voltage

difference of 4 · 10−2 V induces an electric field of 1 MV/m. Since the domain wall

remains planar during its movement, it is reasonable to define the interface position

with P2(x1, x
c
2) = 0, where xc

2 lies in the center of the mesh in the vertical direction.

At the beginning of the simulation, the electric field is activated for the time

interval ∆t. During this time, the interface moves by the distance ∆x; the average

domain wall velocity is then given by vd = ∆x/∆t. With the estimate in Eq. (5.44)

and the value of β−1 given in Eq. (5.77), a 180◦ interface velocity of vd = 1 m/s is

to be expected.

Figures 5.14 a) and b) show the resulting domain wall velocities for varying

element edge lengths in the x1-direction and for different values for ǫ, respectively.

In view of Eq. (5.44) and the chosen value of β−1, the calculated values for vd are

considerably higher than the expected value of vd = 1 m/s. Since the center of

the interface need not lie on an element edge, the values of Ṗ are not evaluated

exactly at P = 0. This leads to a higher absolute value of Ṗ2 to which this
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b) Both the 180◦ and 90◦ domain wall velocity show only a weak dependence on

the interface width.
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Figure 5.15: The velocity of the 90◦ domain wall is almost linear in the auxiliary

parameter ψ90 used in App. A.4.

deviation in vd is to be attributed. The figures also show that vd varies only

slightly with a change in the mesh discretization normal to the interface. Due to

the rescaling of β−1 in (5.45), vd depends only mildly on the interface width. It

is noted that β−1 represents the inner time scale of the model; thus the interface

velocity is proportional to β−1.

The results for the 90◦ domain wall are shown in Figs. 5.14 b) and 5.15. The

interface velocities are approximately 50% higher as compared to the 180◦ case. The

dependency of vd on ǫ is also comparably low. The interface velocity is however

strongly influenced by the parameter ψ90, see Fig. 5.15 besides App. A.4.

5.3.3 Domain wall pinning

Domain wall mobility and motion are affected by different kinds of defects which can

be a cause for the slowing or pinning of domain walls.14 The following simulations

are concerned with a defected electrode and two kinds of “frozen polarization”

defects.

Electrode defect

As in Sec. 4.3.1, an electrode defect is modeled by imposing the boundary condition

D · n = 0 or ϕ∗ = 0 over the length of the defect width. Figure 5.16 shows the

14Cf. Brennan (1993), Yang et al. (1999), Scott & Dawber (2000), Kontsos &

Landis (2009), Bhattacharya & Higgins (2009).
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Figure 5.16: Initial configuration for a 180◦ domain wall driven toward the electrode

defect by an applied electric field activated for a fixed time interval.

initial configuration in which a 180◦ domain wall is located to the right of a defect.

An external electric field is applied for a fixed time interval, driving the domain

wall toward the defect. The influence of the defect on the domain wall mobility

is studied by calculating the average domain wall velocity for that time interval.

This requires the determination of the interface position, which depends on the

vertical direction due to the bending of the interface near the defect. As a working

assumption, the interface positions are determined from P2(x1, x
c
2) = 0 where xc

2

stands for the center of the mesh in the vertical direction, i.e. xc
2 = 0 in Fig. 5.16.

For the defect condition ϕ∗ = 0, the obtained average velocities are plotted

versus the driving field in Fig. 5.17; the linear relation of the defect-free case is

shown for comparison. The smaller defect has no pinning effect on the domain

wall, but its mobility is severely decreased. The other defect is wide enough to lead

to domain wall pinning for all applied driving fields. For the strongest field, pinning

takes place within the fixed time interval; for the weaker fields, the (slower) domain

walls are pinned only if the time interval of the activated driving field is extended

such that a stationary state is reached. The pinning effect can be explained by a

strong positive electric field E2 around the defect which prevents switching in that

area. Since this disturbance is only local, switching continues in lower parts of the

interface, which leads to domain wall bending.

The defect condition D ·n = 0 has a considerably weaker effect on the interface

mobility. This can be seen in Fig. 5.18, where average interface velocities are
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Figure 5.17: Both of the two defects modeled with ϕ∗ = 0 have an impeding effect

on the defect mobility as reflected by the average domain wall velocity vd. While

the smaller defect has no pinning effect and can be overcome by the domain wall,

the wider defect ultimately leads to pinning.

plotted against the driving field for three different interface widths (which are

wider compared to the previous simulations).

Again, the linear velocity for the defect-free case is plotted for comparison. The

smallest defect has only little influence on the interface mobility; it is overcome

for all driving fields except for the lowest, where the final interface position (after

application of the driving field for the fixed time interval) is located at the end of

the defect. For this defect, pinning takes place for driving fields below approxi-

mately 0.4 MV/m. For the 10 nm defect, pinning takes place at a higher driving

field compared to the smaller defect, and the domain wall does not even reach the

end of the defect for the lowest driving field. The situation is similar for the widest

defect where the domain wall is pinned for an even higher driving field. Note that

the graphs for 10 nm and 15 nm intersect the other two graphs, which indicates

an increased domain wall mobility for low driving fields despite the fact that the

former graphs belong to the wider, i.e. stronger, defects. This behavior is due

to the strong negative electric field E2 around the defect needed to compensate

for the electric displacement from the spontaneous polarization. The same result

was obtained in Sec. 4.3.1 in the context of the sharp interface approach. As can

be seen in Fig. 4.11, the average driving force has a very high absolute value and
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Figure 5.18: The defects modeled with D · n = 0 also have an impeding effect on

the domain wall mobility. The smaller defects can be overcome at lower driving

fields, and the critical pinning fields increase with defect width. The increased

mobilities for low driving fields compared to the defect-free case are due to the

strong electric field in the defect area which lead to accelerated poling.

drives the domain wall through the defect area at an increased velocity compared

to the defect free-case for which Tn = −2 kJ/m3.

Polarization defect

A polarization defect is regarded as a microscopic area in which the spontaneous

polarization is frozen in the sense that switching is impossible in that area. As

noted in Sec. 4.3.3, this phenomenon has been observed in PZT thin films in the

context of electrical fatigue (cf. Gruverman et al. 1996, Colla et al. 1998).

In the following, the influence of polarization defects on the mobility of 180◦

and 90◦ domain walls is studied. The defect under consideration is a quadratic

region of 2 nm × 2 nm, which is of the same length scale as the interface width. In

that region the spontaneous polarization is assigned the fixed value P def . Except

for the evolution equation, all field equations apply for the defect just as well as

for the surrounding material.
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Figure 5.19: 180◦ domain wall approaching a polarization defect with P def = 0. a)

initial configuration; b) pinning of the domain wall.

Figure 5.19 a) shows the initial 180◦ configuration with the defect in the center

when the driving field of 1 MV/m is activated for a fixed time interval. For the

defect polarization P def = 0, the simulation shows that the domain wall is pinned

at the defect, cf. Fig. 5.19 b). The same result is obtained when a 90◦ interface is

considered (which is not depicted).

The preceding simulations are extended by varying the defect polarization for

both the 180◦ and the 90◦ domain wall. In the first case, P def =
[
0 P def

]T
in

the range of −1.5 ≤ P def/P0 ≤ 1.5; in the 90◦ case, P def =
√

2
2

[
P0 P def

]T
for the

interval −1.5 ≤ P def/P0 ≤ 1.5, which coincides with the interval of the 180◦ case.

Then the average velocity of the domain wall is calculated from the interface posi-

tions at the beginning and the end of the simulation. These positions are obtained

as the solution of P2(x, y0) = 0 where y0 designates the center of the mesh in the

vertical direction. The resulting average interface velocities are shown in Fig. 5.20.

Negative values on the abscissa represent a “pre-aligned” spontaneous polarization

while positive values indicate a non-switchable defect polarization. The interface

velocity for the defect-free case is dashed for comparison. If P def is pre-aligned

and close to the equilibrium polarization at the ratio of −1, domain walls are not

pinned but instead are attracted by the defect, which explains their increased mo-

bility compared to the defect-free case. On the other hand, as P def becomes more

unfavorable, the domain wall mobility decreases. Domain wall pinning takes place

where the two graphs lie below the dashed line.

If the driving field is strong enough, a defect with P def = 0 can be overcome

by the domain wall. Figure 5.21 illustrates the detachment of a 180◦ domain wall

for an external field of 10 MV/m.
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Figure 5.20: The effect of the polarization defect on the domain wall mobility,

reflected by the average interface velocity vd, depends on the value of the defect
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Figure 5.21: 180◦ domain wall overcoming a polarization defect with P def = 0,

strong driving field. a) before detachment; b) after detachment from the defect.
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Figure 5.22: 180◦ domain wall pinned by a) small and b) large side defect.
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Figure 5.23: 180◦ domain wall overcoming side defect, strong driving field. a)

before detachment; b) after detachment from the defect.

Side defect

The third type of defect under investigation is a hole inside the material. The defect

is modeled with a quadratic region in the center of the meshed region that remains

unmeshed; its boundary is assumed to be charge and stress free. Starting with an

initial configuration analogous to Fig. 5.19 a), the domain wall is driven toward the

defect with a driving field of 1 MV/m. Figure 5.22 shows the final configurations

for defect edge lengths of ǫ/2 and ǫ. In both cases, the domain wall is pinned in the

center of the defect. When the driving field is increased to 10 MV/m, the domain

wall can overcome the defect; this situation is shown in Fig. 5.23.

A similar simulation was presented in Sec. 4.3.2 for gadolinium molybdate

(GMO). There, the mobility of the domain wall was only slightly reduced and

no pinning was observed. The two simulations differ in the material parameters,
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the geometry and defect size, and in the modeling of the interfaces (sharp interface

vs. phase field). Rerunning the presented phase field simulation using parameters

for GMO makes no difference with respect to the pinning effect. Furthermore, the

defect size is significantly smaller in the phase field simulation, and increasing its

size would lead to an even stronger pinning effect. Therefore the different outcome

of the simulations is to be attributed to the different interface modeling approaches.

With regard to the GMO experiments, in which the defect reaches into the mate-

rial only to a certain extent, a 3d simulation would allow for a realistic modeling

of the defect geometry. Under such conditions, the driving field remains intact in

regions sufficiently far away from the defect so that domain wall movement should

be impeded only mildly.

5.3.4 Microstructure evolution

In some sense, the above simulations all belong to “microstructure evolution”;

however, the view was limited to simple cases with just one interface. In this

section, the focus lies on the evolution of more complex microstructures.

With respect to the phase field model, microstructure evolution depends mainly

on the imposed boundary conditions, the initial configuration with respect to P ,

and the relation between the specific interface energy vs. the electric enthalpy H̃ent.

For the first set of simulations, the initial conditions on P are chosen to reflect the

“least structured” state, i.e. a state of randomly oriented spontaneous polarization.

Two cases are considered: case a) |P (x, 0)|/P0 ≪ 1, thus resembling conditions

just below the Curie temperature, and case b) |P (x, 0)|/P0 = 1. The mechanical

boundary conditions are assumed stress free with statically determinate support.

Electrically, both homogeneous Dirichlet and homogeneous Neumann conditions

are considered.

Figure 5.24 illustrates the microstructure evolution in a region of 40 nm×40 nm

with ϕ∗ = 0 on the boundary for case a) and case b). At the beginning of the evo-

lution, an intricate domain structure starts to form, becoming less complex as time

proceeds. The case a) simulation evolves slower in terms of complexity reduction

in the microstructure. However, for both simulations, the final configuration is a

single domain state in which all interfaces have transcended the boundaries. The

system has then reached its minimal energy configuration.

The previous simulation is repeated for the electrical boundary condition D·n =

0. The microstructure evolution is qualitatively very similar to the one shown in

Fig. 5.24 and is therefore not displayed here. The charge-free boundary condition

necessitates either the spontaneous polarization to be aligned with the boundary
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H̃sep [
J

m3 ] H̃sep [
J

m3 ]

case a) |P (x, 0)|/P0 ≪ 1 case b) |P (x, 0)|/P0 = 1

Figure 5.24: Domain structure evolution for ϕ∗ = 0 boundary condition starting

with random initial polarizations case a) and case b).
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Figure 5.25: Final configuration for D · n = 0 on the boundary for both case a)

and case b) random initial polarization, cf. Fig. 5.24.

or the compensation of misaligned spontaneous polarization by an electric field.

The first possibility requires the formation of interfaces to create a vortex-like

domain structure. In the present simulations, the final configurations for case a)

and b) coincide with the configuration shown in Fig. 5.25. The equilibrated system

contains just one 90◦ domain wall while the spontaneous polarization perpendicular

to the boundary is compensated by the electric field.

The specific domain wall energy of PZT-5H is relatively high compared to other

ferroelectrics (see e.g. Padilla et al. 1996). The effect of different specific

interface energies on the microstructure evolution is studied in the following set of

simulations. By choosing a case a) random initial polarization in a region of 20 nm×
10 nm and by applying electrically homogeneous Neumann boundary conditions,

the variation of the parameter γ leads to the equilibrium configurations shown in

Fig. 5.26. For γ = γ0, the cost of forming domain walls is high enough to allow for

misaligned spontaneous polarization vectors at the boundary. As the creation of

interfaces becomes more favorable with smaller values for γ, an increasing part of

the boundary is characterized by aligned spontaneous polarization. It is completely

aligned for γ = 1
20
γ0, and the result is a vortex-like pattern with four 90◦ and one

180◦ domain wall.
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γ = γ0 = 0.13 J/m2 γ =
1

5
γ0

γ =
1

20
γ0γ =

1

10
γ0

Figure 5.26: The value of the characteristic interface width γ has a profound influ-

ence on the outcome of the microstructure evolution which started with a case a)

random initial polarization; charge-free boundary conditions are applied.

5.3.5 Bimodality

In Schmitt et al. (2007), domain structures of unpoled Pb(Zr1−xTix)O3 sam-

ples with different Zr/Ti compositions were investigated in a detailed TEM study.

The study reveals a characteristic configuration of alternating broad and narrow

90◦ domains, referred to as bimodal domain structure. Figure 5.27 shows bimodal

domain configurations in two samples with different Zr/Ti compositions. The av-

erage ratio of the volume fractions of narrow and wide domain is approximately

1 : 2 with absolute widths of 66 nm and 147 nm.

In the following, an attempt is made to simulate bimodal domain configurations

with the current phase field model. The question arises under which kind of initial

and boundary conditions stationary bimodal states can be achieved. It is, for

example, possible that an initially bimodal configuration evolves to a unimodal

state, or that narrow domains lose width and eventually vanish completely.

The first simulation uses the (somewhat artificial) boundary condition ϕ∗ = 0

on the boundary ∂B; the initial bimodal configuration is shown in Fig. 5.28. The

discretized region is 600 nm × 100 nm containing 1200 × 20 elements. The mesh

refinement in the x1-direction gives an element edge length of 0.5 nm, one fourth
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Figure 5.27: Bimodal 90◦ domain patterns in unpoled PZT samples, reprinted

from Schmitt et al. (2007). The left image is for tetragonal single phase

Pb(Zr0.45Ti0.55)O3, the right image for Pb(Zr0.545Ti0.455)O3.
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Figure 5.28: Bimodal initial conditions with ϕ∗ = 0 on the boundary and static

support. The structure “dissolves” to a single domain poled in the ց-direction.
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Figure 5.29: The initially unimodal configuration is bordered by regions with uni-

form polarization modeled with equivalent surface charge loadings ∓ωϑ at the top

and bottom, respectively.

the value of ǫ. The simulation is run until the system is in equilibrium, i.e. Ṗ = 0

in B. In the course of the time evolution, the widths of the narrow domains

decrease, and the final state shows just one domain poled in the ց-direction. On

the other hand, the use of a coarser mesh, i.e. 800 × 20 elements, results in a

stationary bimodal domain structure. The reason for this different outcome is not

obvious at all. Since the system is free of external loading, the evolution of the

order parameter is extremely slow. In the dissolving process, this evolution takes

place in the interfacial regions where the spatial discretization plays an important

role (cf. Sec. 5.3.2). The use of a coarser mesh may reduce the accuracy of the

simulation so that the subtle changes in the microstructure observed when using a

finer mesh cannot be resolved.

The boundary and initial conditions are now changed as depicted in Fig. 5.29.

The initially unimodal configuration is assumed to be bordered by a uniformly

polarized region at the top and bottom; this polarization is characterized by its

angle ϑ to the horizontal. Instead of discretizing the dashed regions in Fig. 5.29,

the electric boundary condition D · n = ±ωϑ is applied to the top and bottom

boundary, respectively. The strain mismatch at this boundary is ignored to isolate

the electric effect on the domain evolution. The values of ωϑ are then given by

ωϑ = P0 sinϑ. Specifically, the cases ϑ = 0, ϑ = 4.05◦, ϑ = 8.13◦, and ϑ = 16.4◦

are considered.

The resulting stationary domain configurations are shown in Fig. 5.30. For

ϑ = 0, the final domain pattern is unimodal as is to be expected from symmetry
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ϑ = 0◦

ϑ = 8.13◦

ϑ = 16.4◦

ϑ = 4.05◦

Figure 5.30: Resulting stationary domain configurations for different charge con-

ditions at the top and bottom boundary, cf. Fig. 5.29. Bimodality becomes more

pronounced as the surface charge density increases.

considerations. Since the boundary is charge free, all domains are electrically eq-

uitable. The situation changes if ϑ > 0. The domains poled in the ր-direction

are electrically more favorable than the domains poled in the ց-direction, and bi-

modality becomes more distinct with increasing angles. For angles above roughly

25◦, the narrow domains vanish, which eventually leads to homogeneously poled

states.

In the last setting, the influence of mechanical loading is studied. The geometry

and electrical loading conditions are identical to the case ωϑ = 0 in the foregoing

simulations. Additionally, a pure shear stress loading τ is applied as indicated

in Fig. 5.31. Although the electric boundary condition favors a unimodal domain

pattern, the application of the mechanical load τ = 50 MPa results in a bimodal

configuration as can be seen in the same figure. The bimodality is more pronounced

for higher stresses; smaller values for τ lead to a lesser degree of bimodality.

The simulations show that bimodal domain structures can be explained by

the electrical conditions imposed by neighboring domains. On the other hand, bi-

modality can also be stress induced. It remains unclear whether the electrical or the

mechanical effect dominates in the material; most likely, one will have to take both

into account to understand the phenomenon of bimodality. Furthermore, the TEM
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Figure 5.31: Resulting stationary domain configuration under pure shear stress

loading and charge-free boundary conditions. The degree of bimodality is more

pronounced as the strength of the shear stress is increased.

study in Schmitt et al. (2007) reveals that the degree of bimodality depends

on the Zr/Ti-composition of individual samples, some exhibiting bimodal domain

structures to different degrees, others showing no bimodality in the investigated

regions.

5.3.6 Wedge formation

Figure 5.32 shows a TEM image reprinted from Schmitt et al. (2010) in which

the two wedge-shaped domains form charge-neutral in-plane 90◦ interfaces with the

domains bordering the flanks of the wedges. To the left, the wedges are bordered

by another domain polarized in the opposite direction relative to the polarization

Figure 5.32: Wedge-shaped structure in 90◦ domain pattern, reprinted from

Schmitt et al. (2010).
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Figure 5.33: The initially unimodal configuration is subjected to the sketched

electric boundary conditions; this causes the wedge-shaped structures shown in

Fig. 5.34. The configuration shown in Fig. 5.32 is represented by ϑ = 45◦.

of the wedges which results in a charged interface at the tips of the wedges.

This domain geometry is investigated with a set of simulations under the con-

ditions sketched in Fig. 5.33. The discretized region is 80 nm×80 nm with 160×80

elements. The electrical boundary condition at the bottom is formulated anal-

ogously to the preceding simulations (cf. Fig. 5.29). On the top boundary, a

prescribed charge density preserves the initially equidistant domain spacing. As

before, ϕ∗ = 0 on the lateral sides.

The resulting stationary domain structures for ϑ = 12.2◦, ϑ = 16.4◦, ϑ =

20.7◦, and ϑ = 25.1◦ are shown in Fig. 5.34. The wedges become more distinct

with increasing values for ϑ, just as was the case for the degree of bimodality

in Fig. 5.31. For higher angles, including ϑ = 45◦, which corresponds to the

experimental setting shown in Fig. 5.32, the electrical mismatch causes the tips

of the wedges to recede to the top boundary until a homogeneous poling state is

reached. Since the mechanical mismatch at the bottom boundary was ignored, the

formation of wedge-like structures can be explained solely on electrical grounds.

The possibility of a mechanical or a combined cause can however not be excluded.
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ϑ = 16.4◦ϑ = 12.2◦

ϑ = 25.1◦ϑ = 20.7◦

Figure 5.34: Resulting wedge-shaped domain configurations for different electrical

loading conditions at the bottom boundary, cf. Fig. 5.33.



Chapter 6

Effective material behavior

The coercive field Ec is a macroscopic property of ferroelectric ceramics with re-

gard to cyclic uniaxial electric loading. Using the material parameters stated in

Sec. 5.3.1, one can obtain the numerical coercive field for the single crystal by

applying an electric field to a region which is uniformly poled in the opposite di-

rection. The resulting value for Ec exceeds experimentally determined coercive

fields for single crystals by a factor of approximately one thousand, making a real-

istic simulation with the given set of material parameters impossible. The present

phase field model, which applies primarily to microstructure evolution, can how-

ever be modified to allow for the simulation of the macroscopic behavior under

uniaxial/multiaxial electric and mechanical loading; this is shown in the following.

6.1 Theory

The phase field model presented in Sec. 5.1 is altered in that microstructural aspects

are ignored, i.e. domains and interfaces are not taken into account. This means

that ∇P ≡ 0; hence Eq. (5.16) becomes trivial. The parameters in Eq. (5.15)

lose their physical meaning and have to undergo a metamorphosis under which the

(macroscopic) coercive field Ec appears. The former separation potential becomes

the switching potential H̃sw:

H̃sw(P ) = κswP0Ecψ̃(P ) , (6.1)

where κsw is a calibration constant which ensures that the value of Ec coincides

with the numerically obtained coercive field. The value of κsw is estimated using a

reduced model in which H̃ent(E,P ) = −P · E. The potential then reads

H̃(E,P ) = −P · E + κswP0Ecψ̃(P ) , (6.2)

103
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and the evolution equation is then given by

Ṗ = β−1

(

E − κswP0Ec
∂ψ̃

∂P

)

. (6.3)

The initial conditions are chosen as P 0 = [0 P0 ]T, and a linearly increasing elec-

tric field is applied in the opposite direction of poling so that the solution only

depends on P2. Furthermore, quasi-static conditions are assumed with respect to

the evolution of P , i.e. β−1 → ∞. In view of Eq. (6.3), the coercive field is reached

when the right summand in the parenthesis becomes maximal, which means that

the strongest electric field for which equilibrium can be achieved is reached. This

is equivalent to the condition
∂2ψ̃

∂P 2
2

= 0 . (6.4)

Adopting ψ̃ from Eq. (5.20) gives a sixth-degree polynomial in P2. Given the

coefficients ai in Table 6.1, the resulting “critical” spontaneous polarization is Pc ≈
0.87P0. Applying the equilibrium condition Ṗ = 0 to Eq. (6.3) and evaluating the

equation for P2 = Pc and E2 = Ec yields the equation for the determination of κsw:

κswP0
∂ψ̃(0, Pc)

∂P2

= 1 =⇒ κsw ≈ 0.27 . (6.5)

Uniaxial electric and mechanical loading

The theoretical considerations are verified with a uniaxial electric and a mechanical

loading scenario. Since the problem is homogeneous, the simulations are done using

just one finite element subjected to the loading histories plotted in Fig. 6.1. The
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Figure 6.1: Loading histories for the uniaxial electric and mechanical loading sim-

ulations.



6.1 Theory 105

P0 [ C/m2] ε0 [%] β−1 [ A/(Vm)] Ec [ MV/m]

0.27 0.23 1.7 · 10−7 1.0

a1 a2 a3 a4 a5

1.0 -1.1 5.425 27.75 -11.55

a6 a7 a8 a9

-122.05 6.225 259.75 127.9

Table 6.1: Material parameters used in the simulations for the uniaxial loading

scenarios given in Fig. 6.1.

remaining boundary conditions are given by statically determinate support and

ϕ = 0 or, in the case of electric loading, a prescribed potential difference. The

parameters used in the simulations are stated in Eq. (6.8) and in Table 6.1. The

initial poling state is assumed as fully poled in the x2-direction.

The model responses for the two loading histories (Fig. 6.1) are plotted in

Figs. 6.2 and 6.3 for three different mobilities β−1. The typical dielectric and

butterfly hysteresis behavior are qualitatively reproduced during the 180◦ switching

process. The response is highly dependent on the mobility; the quasi-static loading

case is approximated by the highest mobility. For lower values of β−1, the evolution

of P “lags” behind the applied loading, which causes a shift in the coercive field as

can be seen in both plots in Fig. 6.2. This dependency on the mobility translates

directly to a change of the loading frequency: doubling the mobility has the same

effect as reducing the loading frequency by half.

The compressive stress loading (Fig. 6.3) causes a 90◦ switching of spontaneous

polarization. In the simulation, the crystal axes were rotated by 5◦ to break the

symmetry of the problem with respect to x2-axis. Failing to do so leads to a

pathological model response, since the spontaneous polarization would change only

in the P2-component which corresponds to 180◦ switching. The effect of this slight

rotation can be seen by taking a close look at the unloading interval in the σ22-∆D2

plot in which the tangent is not quite vertical.
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Figure 6.2: Dielectric and butterfly hystereses resulting from the uniaxial electric

loading history shown in Fig. 6.1 a) for different mobilities β−1. The quasi-static

case is approximated by the highest value of β−1.
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shown in Fig. 6.1 b) for different mobilities β−1 (cf. Fig. 6.2). The change in D2 is

with respect to the initial value of D2.
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Figure 6.4: Measured dielectric responses for different angles ϑ. Reprinted from

Huber & Fleck (2001).

6.2 Multiaxial loading

Experiments by Huber and Fleck

Huber & Fleck (2001) compared data obtained from a multi-axial loading ex-

periment with results from three different material models: a self-consistent crystal

plasticity model, a simplified viscoplastic crystal model, and a phenomenological

model. In the experiments, a parent specimen of unpoled polycrystalline PZT-5H

was poled by the application of an electric field of 1.5 MV/m for 100 s. Subse-

quently, the parent specimen was cut at different angles to the poling direction,

so that an electric field could be applied at angles of 0◦ − 180◦ to the polarization

direction at increments of 15◦. Each specimen was then subjected to an electric

field which was increased from 0 to 1.5 MV/m and then decreased to 0 over a time

of 30 s.

Figure 6.4 shows the measured electric displacement ∆D for angles of 0◦, 45◦,

90◦, 135◦, and 180◦. The change in remanent polarization ∆Pr was estimated by

∆Pr = ∆D − κE , (6.6)

where the dielectric constant κ was calculated from the 0◦ poling curve. With

this estimation the maximum value of switchable polarization was identified as
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Figure 6.5: Measured offset yield surfaces, reprinted from Huber & Fleck

(2001). The angle θ in the figure corresponds to the angle ϑ used in this chapter.

∆Pmax
r = 0.48 C/m2. The yield point was then defined as the electric field at

which a fixed value of remanent polarization is reached. Measured yield surfaces

for offset values of ∆Pr = 0.01 C/m2, 0.03 C/m2, and 0.1 C/m2 (approximately 2%,

6%, and 20% of ∆Pmax
r observed in the 180◦ specimen) are shown in Fig. 6.5.

Orientation averaging

Due to the complexity of a ferroelectric polycrystal, it is currently too expensive

to use the phase field model to simulate a realistically complex domain structure

of multiple grains. However, as was shown in Sec. 6.1, the phase field model can

be modified to simulate the effective 180◦ poling behavior. A simple averaging

procedure over lattice orientations makes the modified phase field model usable for

multiaxial loading scenarios.

An initially unpoled polycrystal consists of grains with different net polariza-

tions which add up to a macroscopically vanishing net polarization. When the

saturation polarization is reached during a poling experiment, each grain is polar-

ized maximally in the poling direction. The initial unpoled state is now captured

by considering n fully poled single crystals with rotated crystal axes at increments
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of ∆ϑ = 360◦/n. The initial polarization for ϑ = 0 undergoes the same orthogonal

transformation as the crystal axes. The poling process of the parent sample is then

simulated by applying the loading history used in the cited experiment to each of

the n crystals in a serial manner and averaging over the resulting field quantities

with respect to the crystal orientations. The effective electric displacement, which

is of interest here, is then given by

〈D〉 =
1

n

n∑

i=1

D(i) , (6.7)

where D(i) is the electric displacement of the i-th grain. In the simulations, lattice

orientations from 0◦ − 180◦ by 5◦ increments are considered. The range between

180◦ − 360◦ is captured by symmetry considerations.

Results

The material parameters are identified by fitting the numerically obtained poling

curve to the experimental 180◦ poling curve in Fig. 6.4. The values used in the

simulations are given in Table 6.2 and furthermore by

C =









7.56 3.4 0

3.4 7.56 0

0 0 2.08









· 1010 N

m2 ,

e =




0 0 17.0

−6.5 23.3 0




C

m2 ,

ǫ =




1.0 0

0 1.0



 · 10−9 C

Vm
.

(6.8)

Figure 6.6 shows the calculated change in electric displacement ∆D for electric

fields applied at 0◦, 45◦, 90◦, 135◦, and 180◦ to the initial poling direction. The

180◦ curve is in reasonable agreement with the dotted experimental data, while the

other curves reproduce the measured curves in Fig. 6.4 at least qualitatively.

The definition of reversible and irreversible polarization plays a crucial role in

the construction of the yield surfaces. Experimentally, the dielectric permittivity κ
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P0 [ C/m2] ǫ0 [%] β−1 [ A/(Vm)] Ec [ MV/m]

0.29 1.4 1.7 · 10−7 0.54

a1 a2 a3 a4 a5

1.0 -1.1 5.425 27.75 -11.55

a6 a7 a8 a9

-122.05 6.225 259.75 127.9

Table 6.2: Material parameters used in the simulations for the yield surfaces.

can be calculated from the initial slope ∂D/∂E. With respect to the currently

used model, the reversible polarization results from the dielectric permittivity and

partly from the change in P which evolves under external fields due to Eq. (6.3).

The latter contribution is non-linear in the electric field (since ψ̃ is non-linear)

even for small signals so that one cannot identify an “effective” κ for the range of

electric fields in question. Consequently, the split into reversible and irreversible

polarization is ambiguous. In our case, the numerically computed slope ∂D/∂E

lies approximately between 1.3 · 10−8 C/(Vm) and 3.5 · 10−8 C/(Vm); as a working

assumption, κ = 2.4·10−8 C/(Vm) is used for the construction of the yield surfaces.

Each point of the yield surface is obtained analogously to Huber and Fleck’s

procedure, i.e. the remanent polarization ∆Pr is estimated by means of Eq. (6.6).

Figure 6.7 shows the calculated yield surfaces for offset values of ∆Pr = 0.01 C/m2,

0.03 C/m2, and 0.1 C/m2 (corresponding to approximately 2%, 6%, and 20% of

∆Pmax
r ). The curves corresponding to 6% and 20% offset polarization are both

open, i.e. the remanent polarization does not reach the 6% and 20% offset values

in the range of ϑ < 20◦ and ϑ < 55◦, respectively. Keeping in mind that the

experiments were done at 15◦ increments (5◦ was used in the simulation), this is in

very good agreement with the experimental curves. All in all, the calculated yield

surfaces are in excellent qualitative and good quantitative agreement with Huber

and Fleck’s experimental data.
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Chapter 7

Conclusion

In this work two different models for the simulation of the microstructure evolu-

tion in ferroelectrics have been presented. In the first approach, a ferroelectric

domain wall is viewed as a singular surface across which the spontaneous polariza-

tion observes a discontinuity. The linear electromechanically coupled field problem

is solved numerically with the finite element method for fixed domain wall posi-

tions. The resulting driving or configurational force is then used to postulate a

kinetic law for the domain wall velocity. The simulations are concerned with the

effect of different kinds of defects on the motion of a single planar domain wall

in single crystal gadolinium molybdate. It is shown that a defect in one of the

electrodes or a hole through the side faces can lead to domain wall pinning; the

same result is obtained for different polarization defects.

The second approach is based on an order parameter concept which gives rise to

a phase field model in which the spontaneous polarization becomes an independent

field variable. By choosing an extended thermodynamical framework which postu-

lates a balance law for a micro-force stress tensor, the constitutive relations and the

evolution equation for the spontaneous polarization are derived from the phase field

potential. The resulting equations are numerically solved with finite elements; the

nodal degrees of freedom are the mechanical displacement, the electric potential,

and the spontaneous polarization. Time integration is achieved by means of an

implicit first order scheme which is implemented with a Newton-Raphson iteration

at each time step. In a first set of simulations, the statics and kinetics of single

180◦ and 90◦ domain walls is studied, and the parameters introduced in the phase

field model are verified. Another series of simulations is concerned with the effect

of an electrode defect, a defect in the side faces, and various polarization defects on

the mobility of 180◦ and 90◦ domain walls. Depending on the electric field strength

and the size of a defect, the motion of a domain wall can be more or less affected
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and domain wall pinning may take place. Bimodal domain patterns and wedge-like

domain structures observed in PZT are ascribed to electrical and/or mechanical

boundary conditions. Finally, a macroscopic material model is derived based on

the electric enthalpy and the phase separation potential. The model is then used

to calculate yield surfaces for the irreversible polarization which are compared with

experimental findings in the literature.

The phase field model presented in this work offers a quite general and flexible

tool for the simulation of the microstructure evolution in ferroelectric materials. It

can be altered, for example, to allow for different unit cell structures and possible

phase transitions between them. Other kinds of defects such as point defects can

be implemented within the given finite element frame, see e.g. Goy (2010). An

extension of the phase field to 3d can be done in a straightforward manner and

would provide a more realistic basis to study domain structures and their evolution.

Future work should examine the electric and mechanical conditions at grain bound-

aries in more detail to study the effects on the switching behavior within a grain.

Furthermore one might try to incorporate the phase field model in a numerical

multiscale homogenization scheme.



Appendix

A.1 Driving force acting on a 180
◦ interface

Based on the geometry and boundary conditions sketched in Fig. 4.3, the driving

force acting on a 180◦ interface can be approximated as shown in the following.

Inserting the configurational stress (4.2) into the driving force (4.6) and observ-

ing Eqs. (3.128)2 and (3.141), one obtains

τn = [[H]] − nS ·
([[

(∇u)Tσ
]]

nS
)

+ nS · ([[E ⊗ D]]nS)

=
1

2

[[(
ε − ε0

)
·
[
C
(
ε − ε0

)]]]
−
[[(

ε − ε0
)
·
(
e

TE
)]]

− 1

2
[[E · (ǫE)]] −

[[
P 0 · E

]]
− nS ·

([[
(∇u)T

]]
σ − [[E]] ⊗ D

)
nS .

(A.1)

Given the material parameters in Eqs. (4.25)–(4.26) and provided that the electric

field is not significantly stronger than approximately 1 MV/m, the terms in the

second line of Eq. (A.1) and the first term in the third line can be considered to be

small compared to
[[

P 0 · E
]]

. By the same arguments, the last term in the third

line of (A.1) can be dismissed, because the jumps of (∇u)T and E in the normal

direction are small compared to
[[

P 0 · E
]]

. This gives the approximation

τn ≈
[[

P 0 · E
]]

= 2P 0E2 (A.2)

which is then used to obtain relations for the threshold field T0 and the interface

mobility µ.

A.2 Comparison of phase field models

The phase field models used in Zhang & Bhattacharya (2005) and Su &

Landis (2007) use the total material polarization P mat as the order parameter,

which leads to a structurally different thermodynamic potential compared to the
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potential used here. These differences become apparent upon evaluating the con-

stitutive equations and the resulting balance equations. The electric constitutive

equations for the two models read

D = ǫ0E + P mat and D = e
(
ε − ε0

)
+ ǫE + P , (A.3)

respectively. With the isotropic permittivity ǫ = ǫ111, the electric balance equa-

tions then become

ǫ0∆ϕ− div P mat = 0 and ǫ11∆ϕ− div
(
e
(
ε − ε0

)
+ P

)
= 0 (A.4)

or, in terms of functional dependencies,

ǫ0∆ϕ− div f̂(P mat) = 0 and ǫ11∆ϕ− div f̃(ε,P ) = 0 , (A.5)

where f̂ coincides with the identity function. The left hand side equations only

depend on ϕ and the order parameter while the other also depend on the strain ε.

Also, the right hand side equations contain a linear dielectric and piezoelectric law

which the other do not include. As a consequence, the cited models cannot be able

to reproduce the linear dielectric and piezoelectric behavior in the way possible

with the current phase field model.

The same applies for the mechanical balance equation. Using the same arrange-

ment as above, one can compare the functional dependencies by writing

div
(
ĝ1(ε) + ĝ2(P

mat) + ĝ3(ε,P
mat)

)
= 0 and

div (g̃1(ε) + g̃2(P ) + g̃3(E,P )) = 0 ,
(A.6)

where ĝi and g̃i are tensor-valued functions. Both equations contain two functions

that only depend on ε and the order parameter, respectively (indices 1 and 2). The

first equation shows no dependency on the electric field while the second reflects

the linear relationship between the stress and the electric field.

The main differences between the present model and the models proposed in

Zhang & Bhattacharya (2005) and Su & Landis (2007) are: (1) the choice

of the order parameter and (2) the structural differences in the phase field poten-

tial, which, as a consequence, result in a different mechanical and electric balance

law and different constitutive equations. In the cited models, the dielectric and

piezoelectric response is dependent on the non-linear evolution of the order pa-

rameter, and the field equations are not explicitly coupled in the strain and the

electric field. On the contrary, the featured model implements linear constitutive

laws and is fully coupled in ε and E.
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A.3 Alternative derivation of the evolution equa-

tion

The Ginzburg-Landau evolution equation can be derived from the internal dissi-

pation inequality (3.140) by using q = {P ,∇P } as internal variables, i.e. H =

H̃(ε,E,P ,∇P ). Inserting this enthalpy in the dissipation inequality (3.140) with

subsequent integration then gives

−
∫

B

∂H̃

∂P
· Ṗ dv −

∫

B

∂H̃

∂∇P
· ˙∇P dv ≥ 0 . (A.7)

After integration by parts one obtains

−
∫

B

(

∂H̃

∂P
− div

∂H̃

∂∇P

)

· Ṗ dv −
∫

∂B

(

∂H̃

∂∇P
n

)

· Ṗ da ≥ 0 . (A.8)

The balance of energy (3.99) contains the tacit assumption that the surface stress

thermodynamically conjugate to Ṗ vanishes everywhere on the boundary. As

shown in Sec. 5.1.1, where a stress system of micro-forces is considered, the ex-

pression ∂∇P H̃ in (A.8) is identical to the micro-force stress tensor. Because of

the a priori assumption that this stress vanishes on the boundary, the dissipation

inequality can be satisfied with the Ginzburg-Landau equation

Ṗ = −β−1

(

∂H̃

∂P
− div

∂H̃

∂∇P

)

(A.9)

which is equivalent to the evolution equation (5.12) obtained in Sec. 5.1.1.

A.4 Parameters of the phase separation poten-

tial

It is not a trivial task to determine the coefficients ai in the phase separation

potential (5.20). In Sec. 5.3.2–5.3.5 the reduced sixth-order polynomial

ψ̃ = 1 +
a1

P 2
0

(
P 2

1 + P 2
2

)
+
a2

P 4
0

(
P 4

1 + P 4
2

)
+
a3

P 4
0

P 2
1P

2
2 +

a4

P 6
0

(
P 6

1 + P 6
2

)
(A.10)

is used. This polynomial is already normalized so that ψ̃(0, 0) = 1; symmetry

considerations regarding the interchangeability of P1 and P2 as well as of ±P1
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(and ±P2) are already taken into account by virtue of its construction. The fol-

lowing conditions are used for the determination of the four coefficients in ψ̃. The

location and function value of the local minima are defined by

ψ̃(P0, 0) = 0 , (A.11)

∂P1
ψ̃(P0, 0) = 0 . (A.12)

Another prominent point is the 90◦ switching barrier which is located at an angle

of 45◦ to the crystal axes. Location and function value are specified by

ψ̃(ιP0, ιP0) = ψ90 , (A.13)

∂P1
ψ̃(ιP0, ιP0) = 0 (A.14)

with 0 < ι < 1. This gives the linear system of equations











1 1 0 1

2 4 0 6

2ι2 2ι4 ι4 2ι6

2ι 4ι3 2ι3 6ι5























a1

a2

a3

a4












=












0

0

ψ90

0












. (A.15)

In Sec. 5.3.2, the parameter ψ90 is shown to be in a linear relationship with the

specific 90◦ interface energy and can thus be physically interpreted. The value of ι

is determined with a condition that preserves the shape of ψ̃ for varying ψ90. Using

ψ90 = 0.5 and ι = 0.63, the four coefficients ai are calculated and subsequently

used in the evaluation of the (somewhat arbitrary) condition

∫ P0

−P0

ψ̃(P1, 0) dP1 =
6

5
P0 . (A.16)

This gives an equation which contains ψ90 and ι, and with a Taylor expansion

around ψ90 = 0.5 one obtains

ι = 0.89 − 0.52ψ90 − 0.44(ψ90 − 0.5)2 , (A.17)

which ensures that the shape of ψ̃ does not degenerate.

A.5 Element stiffness and damping matrix

The element stiffness matrix is obtained by differentiation of the element residu-

als (5.56)–(5.58) with respect to the nodal degrees of freedom of the element as
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stated in Eq. (5.68). For that purpose, the discretized constitutive equations

σ = C
(
ε − ε0

)
− e

TE , D = e
(
ε − ε0

)
+ ǫ E + P (A.18)

are stated besides the chain rule for the derivatives with respect to P J in Eq. (5.58):

∂

∂P J
=

∂

∂P

∂P

∂P J
= NJ

P

∂

∂P
. (A.19)

Carrying out the partial derivatives gives

KIJ
σσ = −

∫

Be

(
BI

u

)T
CBJ

u dv , (A.20)

KIJ
σD = −

∫

Be

(
BI

u

)T
e

TBJ
ϕ dv , (A.21)

KIJ
σP =

∫

Be

(
BI

u

)T
(

C
∂ε0

∂P
+
∂eT

∂P
E

)

NJ
P dv , (A.22)

KIJ
Dσ = −

∫

Be

(
BI

ϕ

)T
eBJ

u dv , (A.23)

KIJ
DD =

∫

Be

(
BI

ϕ

)T
ǫ BJ

ϕ dv , (A.24)

KIJ
DP = −

∫

Be

(
BI

ϕ

)T
[
∂e

∂P
(ε − ε0) − e

∂ε0

∂P
+ 1

]

NJ
P dv , (A.25)

KIJ
Pσ =

∫

Be

N I
P

(

∂ (ε0)
T

∂P
C+ ET ∂e

∂P

)

BJ
u dv , (A.26)

KIJ
PD = −

∫

Be

N I
P

[

−∂ (ε0)
T

∂P
e

T +
(
ε − ε0

)T ∂eT

∂P
+ 1

]

BJ
ϕ dv , (A.27)

KIJ
PP = −

∫

Be

{

−N I
P

[

∂2 (ε0)
T

∂P 2 σ − ∂ (ε0)
T

∂P

(

C
∂ε0

∂P
+
∂eT

∂P
E

)]

NJ
P

−N I
P

(

−∂ (ε0)
T

∂P

∂eT

∂P
+
(
ε − ε0

)T ∂2eT

∂P 2

)

NJ
PE

+N I
Pκs

G

ǫ

∂2ψ̃

∂P 2N
J
P + κi

Gǫ

P 2
0

(
BI

P

)T
BJ

P

}

dv .

(A.28)

The remaining derivatives of e, ε0, and ψ̃ with respect to P follow directly —

observing the Voigt notation in ε0 — from Eqs. (5.18)–(5.20) and are not carried

out explicitly here. Evaluation of Eq. (5.69) gives

DIJ
PP = −

∫

Be

N I
PβNJ

P dv , (A.29)

the remaining contributions vanish identically.
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