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Abstract

In recent years, convex optimization methods were successfully applied for various im-
age processing tasks and a large number of first-order methods were designed to minimize
the corresponding functionals. Interestingly, it was shown recently in [19] that the sim-
ple idea of so-called “superstep cycles” leads to very efficient schemes for time-dependent
(parabolic) image enhancement problems as well as for steady state (elliptic) image com-
pression tasks. The ”superstep cycles” approach is similar to the nonstationary (cyclic)
Richardson method which has been around for over sixty years.

In this paper, we investigate the incorporation of superstep cycles into the gradient
descent reprojection method. We show for two problems in compressive sensing and im-
age processing, namely the LASSO approach and the Rudin-Osher-Fatemi model that
the resulting simple cyclic gradient descent reprojection algorithm can numerically com-
pare with various state-of-the-art first-order algorithms. However, due to the nonlinear
projection within the algorithm convergence proofs even under restrictive assumptions on
the linear operators appear to be hard. We demonstrate the difficulties by studying the
simplest case of a two-cycle algorithm in R? with projections onto the Euclidian ball.

1 Introduction

Many sparse recovery problems as well as image processing tasks such as denoising, deblurring,
inpainting and image segmentation can be formulated as convex optimization problems. To
minimize the corresponding functionals, first-order methods, i.e., methods which only use
gradient information of the functional were extensively exploited in recent years. The most
popular ones are gradient descent reprojection methods introduced in [18, 22], see [6] for
further references, and their variants such as FISTA [5], Barzilai-Borwein techniques [3, 11]
and primal-dual methods [10, 36].

On the other hand, the idea of so-called “super-time stepping” was recently revitalized from
another point of view within fast explicit diffusion (FED) schemes in [19]. More precisely, the
authors provided very efficient schemes for time-dependent (parabolic) image enhancement
problems as well as for steady state (elliptic) image compression. In the latter case, FED
schemes were speeded up by embedding them in a cascadic coarse-to-fine approach. Indeed
the idea of “super-time stepping” proposed by Gentzsch et al. [16, 17] for the explicit solu-
tion of parabolic partial differential equations is very similar to those of the nonstationary

*Saarland University, Dept. of Mathematics and Computer Science, Campus E1.1, 66041 Saarbriicken,
Germany
TUniversity of Kaiserslautern, Dept. of Mathematics, Felix-Klein-Center, 67653 Kaiserslautern, Germany



(cyclic) Richardson method [2, 7, 15]: zeros of Tschebyscheff polynomials were used as vary-
ing acceleration parameters in the algorithm in a cyclic way. Although these nonstationary
acceleration parameters violate the convergence restrictions on an iterative algorithm in 50
percent of all cases, the overall cycle is still in agreement with these restrictions. Hence the
theoretical convergence of the algorithm is ensured. However, practical implementation of
these cyclic methods require a proper ordering of the acceleration parameters to avoid the
accumulation of round-off errors in case of larger cycles.

In this paper, we are interested in incorporating cyclic supersteps in gradient descent repro-
jection algorithms. Indeed our numerical experiments show that this simple idea can speed
up the fixed step-length version of the algorithm significantly and can even compare with
various state-of-the-art first-order algorithms. However, due to the nonlinear projection op-
erator involved in the algorithm it seems to be hard to provide any convergence analysis as a
simple case study underlines.

The rest of the paper is organized as follows. In Section 2, we review the basic idea of the
method of “super-time stepping” and of the nonstationary (cyclic) Richardson method. In
Section 3 we incorporate cyclic supersteps within the gradient descent reprojection method
and call the resulting approach the cyclic gradient descent reprojection method. Then, we
examine the convergence of the method in a simple case study. Section 4 compares our
cyclic gradient descent reprojection method with various first-order algorithms for two sparse
recovery and image processing tasks, namely for the LASSO problem and the Rudin-Osher-
Fatemi approach. While the first one requires projections onto the ¢,.-ball, the second method
involves projections onto the (generalized) ¢;-ball.

2 Modified Cyclic Richardson Method

In this section we briefly explain the idea of so-called “super-time stepping” [16, 17] which is
closely related to the nonstationary (cyclic) Richardson method [2, 7, 15] so that we call the
first one a modified cyclic Richardson method. Consider the standard example of the heat
equation

U = AU = Ugg + Uyy (1)

on [0, 1]? with Neumann boundary conditions and initial condition u(z,y,0) = f(z,y). A

simple explicit scheme to approximate the solution of (1) on the spatial-temporal grid with

spatial mesh size dx = % and time step size Jt is given by

u® = f,
wkt) = (1 - ot L)yu®, k=0,1,... (2)
(5'%.)2 ) ) ) 9
where u®) is the column vector obtained by columnwise reshaping (ufl;))fvj_:%, and uz(lg) ~

u((i+3)éz, (j+ 3)dz, kot). The matrix L results from the approximation of the derivatives in
the Laplacian by symmetric finite differences. More precisely, we have that L = VTV, where



V is the discrete gradient operator V : u (Zm) given by
Y
-1 1 0 0 0
reD 0O -1 1 ... 00
_(f® : . . . N,N
V= <D®I> with D := : : e RV, (3)
0o 0 0 ... -1 1
o o o ... 00

The matrix L is a symmetric, positive semi-definite matrix which eigenvalues are given by
Aij = 4 (sin(im/(2N))? +sin(jw/(2N))?), i,5 = 0,...,N — 1 so that 0 < X;; < 8. Let
Amaz(L) = || L]|2 denote the largest eigenvalue of L Then the above scheme converges if and
only if the eigenvalues of I — o) ) > L given by 1 — B2 ) s Ai,j are within the interval (—1, 1] which

is the case if and only if ((;sTt)Q < 1. Note that in this case u(®) converges to a constant vector

whose entries are equal to the mean value of f. In [16, 17] the authors suggested to speed up
the algorithm by incorporating “superstep cycles”. To understand the basic idea we provide
the following proposition.

2(2n+1)
a symmetric matriz A with eigenvalues in [0, 1] that

Proposition 2.1. Let ¢; := cos (ﬂ(%ﬂ)) and T; = 1/0?, 1=0,...,n—1. Then we have for

n—1

A= H(I —7;A)

i=0
has eigenvalues in (—1,1].

Proof: First note that {0,+c¢; : i =0,...,n—1} are the zeros of the Tschebyscheff polynomial
of first kind T5,,+1. Using Vieta’s theorem, we see that

n—1
[[¢=2""@n+1).

=0
Let
n—1
Po(2?) :=2°" [ [ (&® = }) = Tonta(2)/2.
=0
Then, we have that
1 1
-1)"———P, = (-1)"———P,(0) = 1, 4
ﬁﬁﬁ( )2n+1 (y) ( )2n+1 (0) (4)
1
-1)"———P, > -1 5
ﬁwﬁ ) 51 W) (5)

Next, we rewrite A as

A = HTlH A—c)
T

-2 = (=)™

2% 1

= (=1)" -
( ) 2n+1

Py(A).



By (4) and (5) this yields the assertion. O
In [16, 17] the following algorithm was proposed.

u® = f,
u(sn-i—i-i—l) _ (I _ %L)u(sn-&-i)
This iteration scheme has an inner cycle of length n whose iteration matrices can have eigen-
values with absolute values much larger than 1. However, by Proposition 2.1 the overall
iteration matrix of the inner cycle has again eigenvalues in (—1, 1] so that the convergence of
the whole algorithm is assured in exact arithmetic. In the ordinary explicit scheme (2), we

. i=0,1,....n—1,s=0,1,.... (6)

: . _ (02)? (02)* @
arrive after nS steps of maximal length 6t = =~ at nS-=~. Since
n—1 9
ZTi = *n('l”L + 1),
: 3
=0
we have after nS steps in (6) the time length %n(n +1)S % which is a larger time interval
for n > 3.

The recursion (6) is closely related to the following nonstationary (cyclic) Richardson algo-
rithm [7, 15, 32] which solves the linear system of equations Au = b by

u(sn+i+1) _ u(sn-‘ri) +Vi(b_Au(Sn+i))
= (I—p; A 4ub, i=0,1,....,n—1,5s=0,1,....
Here, A is assumed to be a symmetric, positive definite matrix with eigenvalues in [dy, da],

0 < di < do and v; are the reciprocals of the zeros of the Tschebyscheff polynomials 7, on
[dl, dg], i.e.,

2
V; =

dy + dy — (dg — dy) cos (7r(2227:1)> .

Although Richardson’s original method was a stationary one with fixed v; = v he always
observed that better convergence can be obtained for varying v;. In subsequent papers,
numerical properties of the nonstationary Richardson methods and various applications were
discussed. For an overview see the preprint [2].

Note that for d; = 0 and do = 1 which was our setting in Proposition 2.1, we obtain that

v; = 1/ sin? (ﬂ%fi:l)) Of course, assuming d; = 0 neglects that A has to be positive definite.
We call the following algorithm the modified cyclic Richardson method.

Algorithm (Modified Cyclic Richardson Method)

Initialization: u(?), A symmetric, b, a > || Al

For s =0,1,... repeat until a convergence criterion is reached
For i =0,...,n — 1 repeat

u(sn-l—i-‘rl) _ u(sn+i) + E(b _ Au(sn+z))
«

All the above algorithms converge in exact arithmetic which is of course not provided by
a computer. In practice, round-off errors can accumulate throughout the cycles and cause



numerical instabilities for larger n. This is in particular the case if we apply the acceleration
parameters within the algorithm in ascending or descending order. Indeed, the success of the
cyclic algorithms depends on the proper ordering of the acceleration parameters 7;, resp. v;,
see [1]. The so-called “Lebedev-Finogenov ordering” of v; which makes the cyclic Richardson
iteration computationally stable was first proposed by Lebedev-Finogenov [21] and a stability
analysis for cycles of lengths n which are powers of two was given in [33].
In [16, 17], the following heuristic procedure was suggested to order the values ;. Let 1 <
Kk < n be an integer having no common divisors with n. Then, we permute the order of the
7; by Tr(;) with

(i) :=i-kmodn, i=0,...,n—1. (7)

Up to now it is not clear which values of x lead to the best stability results.

3 Cyclic Gradient Descent Reprojection Method

3.1 Supersteps in Gradient Descent Reprojection

Recently, gradient descent reprojection algorithms were applied in various image processing
tasks, in particular when minimizing functionals containing the Rudin-Osher-Fatemi regu-
larization term [9, 26] or in sparse approximation and compressed sensing. To improve the
convergence of the gradient descent reprojection algorithm various first-order algorithms as
Nesterov’s algorithm [25] and the related FISTA [5], Barzilai-Borwein techniques [3, 11] or
primal dual methods [10, 36] were developed. Here, we propose a very simple speed up by
incorporating supersteps into the gradient descent reprojection algorithm. In Section 4, we
will see that the resulting algorithm can compete with the other state-of-the-art algorithms.
We are interested in minimizers of the convex functional

anganin { 31150 113 + eol) | 0

ueRM

where f € RV, B € RVM (' is a closed, convex set and ¢ is the indicator function of the
set C defined by t¢(u) := 0 for v € C and ¢ (u) := +oo for u € C.

Note that without the term ¢ the solutions of (8) are given by the solutions of BT Bu = B™ f
which can be computed by the cyclic Richardson method with A := BTB and b := BTf.
Denoting by Pc the orthogonal projection onto C', our cyclic gradient descent reprojection
method reads as follows:

Algorithm (Cyclic Gradient Descent Reprojection Method)
Initialization: u(®) ¢ RM B e RVM fec RN o > | B3
For s =0,1,... repeat until a convergence criterion is reached

For i =0,...,n — 1 repeat

u(sn-i—i-i—l) =P (u(sn+i) + %BT(J(- N Bu(sn+i))) )

An operator T : RY — RY is called firmly nonezpansive if



A firmly nonexpansive operator is nonexpansive, i.e., a linear symmetric operator (in matrix
form) is firmly nonexpansive if and only if all its eigenvalues lie within the intervall (—1,1].

If T is firmly nonexpansive and has at least one fixed point, then the sequence (T ku(o)) kN

converges for any starting point u(®) € RV to a fixed point of 7. For more information on
firmly nonexpansive operators or more general averaged operators, see [4].

It is well-known that P¢ is a firmly nonexpansive operator. However, we cannot apply Proposi-
tion 2.1 to prove convergence of the algorithm since we do not have in general that Po A1 PoAp
is nonexpansive if A1 Ay is nonexpansive as the following example shows.

Example. Let C' C R? be the closed fo-ball so that Pc is given by (9). Then we obtain for

1 1
T = <0>, Y= <€>, 0<exl1

that ||z — y||2 = €. Further, we have for

10 1 0
e (00 s (10, 0

that A; Ag is nonexpansive. We compute

Apx = PoAgx = A1 PcApxr = PoA1PoApx = x

and

A= (1) Peagy =2 (1), 4,PcAgy = Pod Podgy = = (1
0y = ac ]’ CO?J*C ac ]’ 1coyf01coyfc c

with ¢ := /1 + (ag)? and get
2 2 2
1 1/1 c—1)"+e
HpcAlpcA()(IZ — PcAlpcA()y”% = H <0> - - < > = %

c \&/ |, c

Using this relation we conclude for ¢ > 2/(1 — £2) that
|PcA1Po Aoz — PoArPoAoyll2 > (|2 — yll2
so that PoA1PoAp is not nonexpansive.

Indeed, it seems to be hard give a convergence proof for the cyclic gradient descent reprojection
method even under stronger conditions on . We demonstrate the difficulties by a case study
in the following subsection.

3.2 A Case Study
In this subsection, let C := {x € RY : ||z||2 < 1} so that

ch:{x if x € C, ()

x/||x||2 otherwise.

We are interested in the cyclic gradient descent reprojection method with f = 0, more pre-
cisely, in the nonlinear operator
n
T :=[[(PcAn—i) = PcAn_1... PoAs,
i=1

where A; :== I — ;A and A is a symmetric matrix with eigenvalues in [0, 1).



Remark 3.1. In one dimension, i.e., if N = 1 it is easy to check that T : R — R is
nonerpansive since

|T£U - Ty‘ = ‘PcAn,1 ce PcA0$ - PcAn,1 ce PCA0y|

‘An,1 e PcAol‘ - An,1 e PcA1y|
= ‘An,1|‘PcAn,2 . PcA(]:L‘ — PcAn,Q e POA0y|

IN

IN

n
< TAn-illz =yl < |z -y,
=1

where the last inequality follows by Proposition 2.1.

By the following lemma we can restrict our attention also in higher dimensions to diagonal
matrices A;.

Lemma 3.2. Let A; =UMNU",i=0,...,n—1 be the eigenvalue decompositions of A; with an
orthonormal matriz U and diagonal matrices A;. Then the operator T is firmly nonexpansive

if and only if S := [[ (PcAn—i) is firmly nonexpansive.
i=1

Proof: Since ||Uzx|2 = ||z||2 it follows that PoUxz = U Pcx. Consequently, we obtain

T =][(PcAn-i)z = PcUA, U™ ... PeUAU™ PeUAU
=1
= PcUAnflUT e PCUA2 UTU PcA()UT$
I

n

= U][(PcAn—i) Uz
=1

Hence it follows with v := U™z and v := U™y that
|7 — Tyl = [USU™e — USUT|I3 = || Su — S
and
Tz —Ty,z—y) = (USu—USv,x —y) = (USu—USv,Uu— Uv) = (Su— Sv,u —v).

Since U" is a one-to-one mapping, we obtain the assertion. O

In the rest of this section, we consider the cyclic gradient descent reprojection method for
the case N = 2 and n = 2. More precisely, we are interested if the operator PoAgPcAy is
nonexpansive, where cq := cos(7/10), ¢1 := cos(37/10), 7; := 1/c?, i = 0,1 and

o o )\0 0 o )\iO 0 _i C%—)\o 0 )
=ty 0) =0 ) =2 (0™ 2ly). webn o

7

The matrix Ag has eigenvalues in (—0.1056, 1] and the matrix A; in (—1.8944,1]. Note that
by Lemma 3.2 we can restrict our attention to diagonal matrices A;. Then we can claim the
following proposition which “proof” contains a numerical component.



Proposition 3.3. Let A;, i = 0,1 be given by (10), where A\; € [0,1 — €], € > 0.16. Then the
relation
‘|P0A0P0A1u — PcA(]PcAl’UHQ S Hu — ’UHQ (11)

holds true, i.e., PcAgPc/A1 is nonexpansive.

“Proof” (with numerical computation): By Remark 3.1, we can restrict our attention to
invertible matrices A;, i = 0,1 i.e., matrices without zero eigenvalues, since we are otherwise
in the one-dimensional setting. Using x := Aju and y := Ajv and regarding that Ay and Po
are nonexpansive, the assertion (11) can be rewritten as

[AoPea — AoPeyllz < AT (& = )2 (12)

We distinguish three cases.

L. If ||z|l2 < 1 and |ly|]|2 < 1, then (12) is equivalent to ||[AgAi(u — v)||2 < |Ju — v||2 which
holds true by Proposition 2.1.

2. Let ||z]]2 <1 and [|y|l2 > 1. W.lo.g. we assume that xg,z; > 0, i.e., = lies within the first
quadrant. Then, (12) becomes

Yy _
0 (2= 75 ) e < 1A = )l
yll2
and using (10) further
Yo ? Y1 2 1 1
)\2 __J0 )\2 g < _ 2 - _ 2
00 (560 ”yH2) + A1 (561 Hyb) =% (xo — yo)* + (1 — 1)
and
1 2 \2 v \’ 1 2 \2 Y
0< < (xo—y0)" — A (azo—> + (1 —y1)" = A (x —) .
32, (70 W) = Ao w0~ )b g (o )" = A (s e

(ci—20)%(ci—M)?
i

yields

2
0 < (- n)? <<zo—yo>2—w <x0—”?;|3,2>)

+(cd =2 | (@1 —y1)? —m <331 - y1>2 (13)
! lylz) )

Multiplying by

where by the proof of Proposition 2.1

(e = A)%(cf = M)* _ <1

i =
i

We consider the following cases for y.
2.1. If y lies within the area denoted by 3 in Fig. 1, then (x; —y;)? > (:1:Z
so that (13) holds true.

2
Y P
uy||2) fori =0,1



2.2. Let y lie within the areas denoted by 1 and 1" in Fig. 1. Any element in the area 1" can
be written as y = (—yo,y1)", where (yo,y1)" lies within area 1. Then, (13) reads

2
0 < (c% — )\1)2 <($0 + y0)2 <$0 T ||||2> )
2
+ (¢} — Xo)? (Wl —y)*=m <m1 B ||31j|1!2> ) .

By straightforward computation we see that for 1/||y||2 < 1 the relation

2 2
Yo Yo
(2o — y0)® — Y0 (960 — ) < (zo +10)* — Y0 <$0 + >
/2 yll2

holds true. Therefore, we can restrict our attention to area 1.

Let y lie within area 1. By the following argument, we may assume that ||z|s = 1. If
lz|l2 < 1, we shift it to Z := x + (6,0)" such that ||Z]]2 = 1. We have that 6 € (0, eq], where
eo := Yo/ |lylla — ©o. Then, the second summand on the right-hand side of (13) is the same
for x and Z. Concerning the first summand, we obtain with dy := yy — x¢ that

2
(20 + 6 — y0)* =0 <x0+5— H?;T2> = (do — 6)* = yo(eo — 8)* < d — o€

if § < M which holds true since eg < 2((107::060) Therefore it remains to consider the

case ||z||2 = 1. Changing our setting to polar coordinates

_ [cosv - COS
v (S00) = ol (o)

where 0 < ¢ <1 < 7, inequality (13) becomes
0

< (e = M)? ((cos ¥ — [lyllz cos p)* —ro(cos ¢ — cos p)?)

+(cf = 20)? ((sin e — [|y[l2sin)? — 7 (sin e —sinp)?) . (14)
The right-hand side is a convex, quadratic function in ||y||2 and we can compute the values
where this function is zero. Now we have checked numerically if the largest of these (real)
values is less or equal than 1. In this case (14) is valid since |Jy||2 > 1. To this end, we have
used the grid A; :==0:0.001: 0.84 for = 0,1 and @ := 0: 0.0017 : 7/2, ¢ < 1. The desired
property follows for A; € [0,0.84], i = 1, 2.
2.3. If y lies within the area denoted by 2 or 2" in Fig. 1, then we can argue as in the case
2.2 by exchanging the roles of the coordinates.
3. If 1 < ||z]|2 < ||yll2, then (12) becomes

0 (2 = ) e < AT e - Dl (19

. i
Since Hyllz = Pc (II»’CII2> and by case 2 we obtain

S () e = 1 (e () 7 ()
B 1\2” ek "k = Mol \nR )~ \ R ) 12
A (w )

”1 el Tals) 2

9

IN



Figure 1: Areas for the study of case 2.

which implies (15). O

4 Numerical Comparison

In this section, we show how the cyclic gradient descent reprojection algorithm compares with
other state-of-the-art algorithms. We consider the minimization problem

1 )
min {5 | Bu — fll; +to(u)}, (16)

where B € RVM and f € RV are given and C C RM denotes the set of feasible points.
We restrict our attention to first-order methods, i.e., methods which only use gradient in-
formation. Algorithms of this type have become popular recently, e.g., for sparse recovery
problems, see Subsection 4.1, and in image processing, cf. Subsection 4.2. We consider two
groups of first-order algorithms: variants of the gradient descent reprojection algorithm and
first-order primal-dual methods.

Variants of the Gradient Descent Reprojection Algorithm Recall that the main idea
of the gradient descent reprojection algorithm, often called the gradient projection algorithm,
is to perform in each iteration a gradient descent step on the quadratic part of (16) followed
by projecting the resulting point back onto the feasible set C. We consider the following
versions of the gradient projection algorithm:

i) Gradient descent reprojection algorithm with fixed step size (GP),
ii) Cyclic gradient descent reprojection algorithm (C-GP),

iii) Gradient descent reprojection algorithm with Barzilai-Borwein step sizes (BB-GP),

10



iv) Fast iterative threshold algorithm (FISTA) of [5].

The GP algorithm has the form

Algorithm (GP)
Initialization: u(®) € RM, B e RNM | f e RN~ < 2/||B|3
For k =0,1,... repeat until a convergence criterion is reached

u ) = Po(u® — BT (Bu® — f)).

Convergence is guaranteed for any v < 2/||B||3. Note that || B||3 is the Lipschitz constant of
the quadratic part of (16).

As we will see in the experiments below, our cyclic version C-GP of this algorithm performs
much better. We want to compare our algorithm C-GP to acceleration schemes of GP which
have become popular recently. In [3], Barzilai and Borwein proposed to use a Quasi-Newton
method with the simplest matrix v, '] fulfilling the Quasi-Newton condition

’y,?ll(u(k) —uF ) = BTB(u® — 4k—1),
This results in the following algorithm.

Algorithm (BB-GP)
Initialization: u(®) € RM, B € RVM | f e RN, v5 > 0, ulV) = Po(u® — BT (Bu® — f))
For k =1,... repeat until a convergence criterion is reached

(s(F) | s(k))
e = T8
(s(K) (k)
u ) = Po(u®) — 3BT (Bu® — f)).

Observe that we can easily reformulate BB-GP so that we have to compute BTBu®) only
once in each iteration. Hence, BB-GP uses the same number of matrix multiplications as GP.
The above form was chosen for the sake of better readability. It should be mentioned that
many related Barzilai-Borwein step-size rules have been proposed in recent years. We refer
to [14] for an overview and further references. Note that in general, one needs to incorporate
a line search to guarantee convergence of BB-GP. However, in our experiments, it turned out
that a line search was neither necessary nor beneficial for the convergence of BB-GP.
Another method designed to improve the convergence speed of GP is the fast iterative shrink-
age thresholding algorithm (FISTA) in [5]. It uses a fixed step-length but combines preceding
iterations in a clever way to achieve a significant speed-up for some problems which was also
be shown analytically.

Algorithm (FISTA)
Initialization: u(®) = w® e RM, Be RNM | f e RN, ~ = | B||?

11



For £k =0,1,... repeat until a convergence criterion is reached

u) = Po(w® —yBT(Bu® - f)),

1
thyr = 5(1 + /1 +4t3),

k) u® ¢ Lty 0y
trr1

First-Order Primal-Dual Algorithms An increasingly important class of algorithms are
first-order methods based on the primal-dual Lagrangian formulation of the given optimization
problem. We consider the following three methods:

i) Two primal-dual algorithms (CP-I/II) proposed by Chambolle and Pock in [10].

ii) The primal-dual hybrid gradient algorithm (PDHG) with dynamic step sizes of Zhu and
Chan, cf., [36].

More specifically, CP-I has the following form:

Algorithm (CP-I)
Initialization: u(®) € RN, v ¢ RM B e RNM e RN, o7 < 1/|B|3

For k =0,1,... repeat until a convergence criterion is reached
WD — Pc(u(k) + UBTg(k))’
1
oD = T T(v(k) —7Bu**Y) 47 ),
7‘~}(k+1) _ U(k+1) + e(v(kJrl) - U(k))

In our experiments, we will always choose § = 1. Algorithm CP-II shown below is a variant
of CP-I with dynamic step-sizes.

Algorithm (CP-II)
Initialization: u(®) ¢ RN, v(® ¢ RM B e RVM | f ¢ RN, ggm < 1/||B||3

For k£ =0,1,... repeat until a convergence criterion is reached
u* D) = Po(u® + 0, BT,
1
o) — T+ (U(k) — 7, BuFtY) 4 7% f),
O = 1//1+ 297, Tiy1 = O/ Tk, Oky1 = okl
,ﬁ(k+1) — v(k+1) +0k('l)(k+l) —U(k)).

It was shown in [10] that if the step-length parameters in CP-I/II are chosen as indicated
above, the algorithms converge.

The following PDHG algorithm differs from CP-II in that 6, = 0 for all £ and a special dy-
namic step-size rule is used. Although no convergence proof exists up to now, this strategy is
very fast for solving the Rudin-Osher-Fatemi model we consider in Subsection 4.2. However,
it cannot be applied for the other experiments presented here since the setting is tailored for
the Rudin-Osher-Fatemi model and we have no convergence for the other tasks.

12



Algorithm (PDHG)
Initialization: ©(® € RN, v(0 ¢ RM, B ¢ RNM | § ¢ RN

For £ =0,1,... repeat until a convergence criterion is reached
uF ) = Po(u® 4+ 7, BToW),
o= (1= 00 ™ + 04(f — ButHY),

Te+1 = 0.2+ 0.08k,
1 5
0 = — (05 ——+].
il Ter1 < 15 + I<;>

In the following experiments, we consider two different sets C. We start with the ¢;-ball and
then consider a generalization of the f,.-ball.

4.1 Projection onto the /;-Ball

The basis pursuit problem consists of finding a sparse solution of an underdetermined system
via the conver minimization problem

argmin ||ul|; subject to Bu = f (17)
ueRM

with B € RY"M N <« M and f € RY being the measured signal. This model has attracted
a lot of attention recently both from a theoretical point of view as well as because of its
importance for sparse approximation and compressed sensing, cf., e.g., [8, 13]. Since in most
application noise is present, different problems related to (17) where proposed which relax the
linear constraint. We refer to [29, 31] for comparisons of these models and further references.
The noise-robust model we want to consider here is the following convex problem called
LASSO (least absolute shrinkage and selection operator) which was originally proposed by
Tibshirani in [28]. It has the form

1
argmin —||Bu — f||3 subject to |jul; <&, (18)
ueERM 2

with C := {u € RM : |jul|y < A} being the closed /;-ball, f € RY and B € RMM with
N < M. Recall that by solving (18) we are trying to find a sparse vector u* which is an
approximate solution to the underdetermined system Bu = f.

For our numerical tests, we use the software described in [23]. For given B and u* it computes
a parameter ¢ and a right-hand side f such that u* is a solution of (18). We choose a matrix
B € R2090:1000 whose entries are independent realization of a Gaussian random variable with
mean zero and standard deviation one. The vector u* € R19% has 25 nonzero elements which
are also independent realizations of a Gaussian random variable with mean zero and standard
deviation one.

Choice of parameters: All the methods except BB-GP are designed to work without
an additional line-search but require knowledge of ||B||3. Although estimating this norm
can be costly, we exclude the computation of ||B||2 from the performance measure below
since for some matrices used in compressed sensing, e.g., partial DCT matrices, this value is
immediately known to be 1. Here, we simply normalize B such that its spectral norm is equal
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lu — u*loo < 1071 lu —u|lo < 1078

Method Parameters Matrix multipl. Parameters Matrix multipl.
GP y=1 308 v=1 520
C-GP n=8 k=7 85 n=T7k=5 158
BB-GP Y0 = 10 46 Y =10 68
FISTA L=1 313 L=1 892
CP-1 oc=5T1=1/5 145 oc=4217=1/4.2 274
CP-II | 09 =4.6, 79=1/4.6 168 00 =3.9,1=1/3.9 368

Table 1: Comparison of first-order algorithms to solve the LASSO problem (18). The param-
eters are hand-tuned and the results averaged over 100 experiments.

to one. In order to guarantee convergence of BB-GP, one has to use a line-search in general,
cf., [30]. In our experiments, however, BB-GP did convergence without any line-search.

We optimized the parameters of all methods by hand in order to be independent from the
performance of application-specific parameter strategies.

As already mentioned, there exist various variants of the Barzilai-Borwein step-length rule
presented above. We tested several of them, including the Adaptive Barzilai-Borwein method
(ABB) of [34], the ABBmin2 strategy proposed in [14], the cyclic Barzilai-Borwein method
of [12, 20] and the GP-SS algorithm of [24]. For all these methods, we also optimized the
parameters by hand but obtained results which where very similar to BB-GP so that we show
only the results of the latter here. We suspect that the hand-tuning itself is the reason for this
result. Observe that the SPGL1 algorithm of [29] uses the Barzilai-Borwein method applied
here.

Table 1 summarizes the results of our experiments. As a performance measure, we choose the
number of matrix multiplication needed to reach two different values of the maximal difference
to the exact solution v*. Comparing matrix multiplications allows us to be independent of
the implementation, hardware and programming language used and takes into account that
the matrix multiplications with the fully populated matrix B are by far be the most expensive
part of the algorithm. Observe that we have averaged the results of 100 experiments.

Our results confirm the observation of other papers that the Barzilai-Borwein step-length rule
is very effective for sparse recovery problems. Although our C-GP algorithm is outperformed
by BB-GP, we still see that it is superior to the other methods considered here.

4.2 Projection onto the Generalized /..-Ball

Next we compare the convergence speed of the algorithms for two image denoising problems
which can be written in the form (16). First, we consider the Rudin-Osher-Fatemi model for
edge-preserving image denoising, cf. [26]. For (weakly) differentiable functions v : Q — R,
Q) C R? and a noisy image f, the Rudin-Osher-Fatemi model has the form

o1
argm1n{§\|v — fllza) + )\/Q \/(811))2 + (Oyv)? dzdy}. (19)

In order to discretize (19), we use the gradient matrix V defined in (3). So, if we reorder
the discrete noisy image columnwise into a vector f € RY we obtain the following discrete
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[0 = v"]loo <1

Method Parameters Iterations | Time [sec]
GP v =0.249 253 1.64
C-GP n=19, n =11 AT 0.29
BB-GP Yo =06 86 0.96
FISTA ~=0.125 59 0.72
CP-1 oc=14,7=0.125/1.4 7 0.78
CP-II | 09 =1.2, 79 =0.125/1.2 75 0.67
PDHG 46 0.34

Table 2: Comparison of first-order algorithms to solve the dual Rudin-Osher-Fatemi problem
(21). Stopping criterion: maximal pixel difference to a reference solution (obtained after a
large number of FISTA iterations) smaller than 1.0 in the primal variable.

version of (19)
argmin{|lv — f[1 + All [Vl [|1}, (20)
veRN

where we use the notation (|Vvl|); := ((I ® D)v)? + ((D ® I)v)?)"/2. The dual problem of
(20) has the form of (16), i.e.,

argmin{ 2 |1 Bu — FI3 + 1) <a) ()} (21)
ueR2N
with B = V™. Note that we can recover the solution v* of (20) from a solution u* of (21) as
follows

v* = f — Bu®.
We show the number of iterations and runtimes of several first-order methods in Tables 2 and
3. The noisy image of size 256 x 256 we use here is shown in Figure 2 as well as the denoising
result using the regularization parameter A = 25. The experiments were conducted using a
laptop with an Intel Core Duo processor 2.66 GHz running Matlab R2008b.
As in Subsection 4.1, we hand-tuned the parameters of all the methods so that they yield
fastest convergence. Observe that we use the bound || B||3 < 8. We see that our method C-GP
outperforms the others for the first experiment where a moderate accuracy is required. For the
second experiment, which uses a more restrictive stopping criterion it is only outperformed by
the PDHG algorithm. Moreover, we see that the results for FISTA are much better compared
to what we have seen in Subsection 4.1 whereas BB-GP is now much less efficient. Note that
we have tested several BB-GP variants, including those considered in [14, 35|, but this did
not improve the speed of convergence.
Finally, we consider the following variant of the Rudin-Osher-Fatemi model. We substitute
the norm of the gradient in (19) by the Frobenius norm of the Hessian, cf. [27]. This yields

.1
argm1n{§Hv = fllzac) + )\/Q \/(8;3351))2 + (Oyv)? + (yzv)? + (Oyyv)? dady}. (22)
We obtain a discrete version of (22) as follows
argmin{|[v — f3 + Al [BT] |1}, (23)
veRN
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Figure 2: Top: Original image with values in [0,255] and noisy image (Gaussian noise with
standard deviation 25). Bottom: Reconstruction via the Rudin-Osher-Fatemi model (21)

(left) and model (24) (right).

lv —v*]|eo < 0.1

Method Parameters Iterations | Time [sec]
GP v =0.249 5073 32.90
C-GP n=38 k=11 297 1.95
BB-GP Yo =6 1066 12.23
FISTA v =0.125 279 3.10
CP-1 o=517=0.125/5 278 2.95
CP-II | 09 =44, 19 =0.125/4.4 274 2.55
PDHG 194 1.40

Table 3: Comparison of first-order algorithms to solve the dual Rudin-Osher-Fatemi problem
(21). Stopping criterion: maximal pixel difference to a reference solution smaller than 0.1 in

the primal variable.
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[0 = v"]loc <1

Method Parameters Iterations | Time [sec]
GP v = 0.0312 511 7.57
C-GP n=27 k=19 58 0.88
BB-GP Yo =06 142 3.45
FISTA v=1/64 96 1.95
CP1 | 0=02 r=1/(64 02) 104 1.75
CPII | 09=02, 70=1/(64-02)| 101 1.68

Table 4: Comparison of first-order algorithms to solve problem (24). Stopping criterion:
maximal pixel difference to a reference solution smaller than 1 in the primal variable.

Dy, I®D"D
D D'D®I
T _ wy |
where B" = D |~ | prep and
Dy, D ® D"

(I1B™0])i = ((Daa); + (Dayv)? + (Dysv)? + (Dyy)?) 2.

As above, the dual problem to (23) has the form of (16), i.e.,

1
argmin{_ | Bu — FIB + g <y ()3 (24)

u6R4N

Note that we can recover a solution v* of (20) from a solution and u* of (21) as follows
v* = f — Bu®.

Tables 4 and 5 show the performance of the first-order methods for solving (24). We use
the regularization parameter A = 15 and again two different stopping criteria. The resulting
denoised image is depicted in Figure 2. Observe that we have now || B3 < 64.

PDHG using the dynamic step-length strategy described above does not converge for this
problem and a simple rescaling of the parameters does not yield an efficient method. So,
since we cannot apply PDHG any more, C-GP is now the fastest method for both stopping
criteria. Furthermore, we notice a clearer advantage of C-GP over the remaining methods
than for the case B = V7.
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