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Abstract

A standard approach for deducing a variational denoising method is the max-
imum a posteriori strategy. Here, the denoising result is chosen in such a way
that it maximizes the conditional density function of the reconstruction given
its observed noisy version. Unfortunately, this approach does not imply that
the empirical distribution of the reconstructed noise components follows the
statistics of the assumed noise model. In this paper, we propose to overcome
this drawback by applying an additional transformation to the random vec-
tor modeling the noise. This transformation is then incorporated into the
standard denoising approach and leads to a more sophisticated data fidelity
term, which forces the removed noise components to have the desired statis-
tical properties. The good properties of our new approach are demonstrated
for additive Gaussian noise by numerical examples. Our method shows to be
especially well suited for data containing high frequency structures, where
other denoising methods which assume a certain smoothness of the signal
cannot restore the small structures.

Keywords:
denoising, additive Gaussian noise, maximum a posteriori estimation,
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1. Introduction

Measured signals and images are usually corrupted by noise which makes
their denoising and reconstruction a central aim in signal and image process-
ing. Especially data with a low quality requires reliable and robust recon-
struction methods. In the last decades many methods have been proposed
for denoising corrupted data. A common approach is to solve a variational
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problem, where one has to minimize a functional consisting of a data fi-
delity term and a regularization term. The functional is usually deduced by
a maximum a posteriori strategy, which requires some knowledge about the
noise statistics and the distribution of the original data. In literature, e.g.,
when considering detector noise or in case of high photon counts, where the
Poisson distribution can be well approximated by a Gaussian one, it is often
assumed that the corrupted data follows an additive Gaussian noise model.
This means that our given noisy data g ∈ RN can be modeled as

g = f0 + ε0,

where f0 ∈ RN is the unknown noise-free data and ε0 ∈ RN is the realization
of a random vector E : Ω → RN defined with respect to a continuous prob-
ability space (Ω,F , P ). Here, Ω denotes a sample space, F a σ-algebra and
P : F → [0, 1] a probability measure. The vectors g and f0 are assumed to
be realizations of independent N -dimensional random vectors G : Ω → RN

and F : Ω → RN , respectively, so that G = F + E .
To deduce an estimate f̂MAP of f0 by a maximum a posteriori (MAP)

strategy, one usually sets

f̂MAP := argmin
f∈RN

{− log pF |G(f |g)}, (1)

where pF |G(f |g) is the conditional probability density for observing f given
G = g. By Bayes’ theorem it holds that

pF |G(f |g) =
pG|F (g|f) pF (f)

pG(g)
. (2)

Here, pG|F is the so-called likelihood, which is usually closely related to the
density of the noise, pF is some a priori density of F and pG is the density ofG.
Since we consider additive noise, it holds that pG|F (g|f) = pE(g−f) = pE(ε),
where ε := g− f and pE denotes the density of E . Moreover, by inserting (2)
in (1) it follows that

f̂MAP = argmin
f∈RN

{− log pE(g − f)− log pF (f)}. (3)

Here, the terms − log pE(g− f) and − log pF (f) imply that we search for the
most likely vectors ε̂MAP = g − f̂MAP and f̂MAP under the condition that
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g = f̂MAP + ε̂MAP . If the components Ei of the random vector E are pairwise
independent and identically distributed (i.i.d.) as it is often assumed, then

− log pE(g − f) = − log
N∏

i=1

pEi(gi − fi) = −
N∑

i=1

log pEi(gi − fi). (4)

For the special case that Ei ∼ N (0, σ2), i = 1, . . . , N , this leads to

− log pE(g − f) = −
N∑

i=1

log

(
1√
2πσ

exp
−(gi − fi)

2

2σ2

)

= −N log
1√
2πσ

+
1

2σ2
‖g − f‖22. (5)

To determine − log pF (f), at least some estimate of the a priori density pF is
needed. Assuming that pF (f) = exp(−c J(f)) for some constant c > 0 and
a nonnegative function J : RN → R, the minimization problem (3) with (5)
is finally equivalent to

f̂MAP = argmin
f∈RN

{1
2
‖g − f‖22 + λ J(f)} with λ := c σ2 > 0. (6)

Here, the amount of filtering is controlled by the parameter λ, which steers
the influence of the two terms within the functional. If J is assumed to be
J(f) := ‖Df‖22, where D is a discrete first derivative operator, we obtain by
this approach the regularization method proposed by Tikhonov and Miller
(TM) in [1], which we will shortly call MAP-TM. By this choice for J the
initial signal is assumed to have small first derivatives, i.e., to be of a cer-
tain degree of smoothness (in H1 for the continuous setting). Unfortunately,
if the signal contains jumps, the TM regularization will oversmooth them.
To overcome this drawback, J is often set to J(f) := ‖Df‖1, which is the
discrete one-dimensional version of the total variation regularizer (TV). The
corresponding denoising method (6) leads to the classical approach of Rudin,
Osher and Fatemi [2], which is well known for its discontinuity preserving
properties. In the following, we will refer to this method as MAP-TV and
we will use it as well as the MAP-TM approach as reference methods for our
numerical experiments.

Now, if we forget about the regularization term for a moment and have
again a closer look at our data fidelity term − log pE(g − f) in (4), where
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E is assumed to be i.i.d., we see that this data fidelity term is minimal
whenever all components εi = gi−fi maximize pEi(εi). Consequently, without
the regularization term or equivalently for λ = 0, our reconstructed noise
vector ε̂ would be a constant vector of value argmaxe pEi(e) and thus, f̂ =
g− argmaxe pEi(e). These estimates may seem reasonable for a signal length
N close to one. However, since the vector E is i.i.d., we may expect for larger
N that the empirical distribution of the components of our estimated noise
vector ε̂ resembles the distribution of Ei, i = 1, . . . , N . In principal, to check
how good a set of samples coincides with a given distribution we could for
example apply the Kolmogorov-Smirnov [3] or the Anderson-Darling test [4].

In contrast to [5, 6] we introduce a representation of the noise distribu-
tion that depends both on moments and especially on the correlation of the
random variables Ei. We also embed noise correlation [7] in a concise for-
malism that allows to achieve de-correlated estimates εi of the original noise
components if the Ei are independent, a result that is often achieved ad hoc
with non-local means [8] according to empirical studies.

Outline. In the following, we show that it is possible to overcome the draw-
backs of the standard MAP approach by applying a suitable variable trans-
formation to the random vector E before computing the MAP estimates.
Our new approach is presented in Section 2 and we investigate two different
transformations with respect to their benefits and shortcomings. In Section
3 we discuss a first implementation of our approach for one-dimensional data
and present numerical results. Finally, we summarize our new findings and
finish with concluding remarks in Section 4.

2. A new denoising approach

For simplicity, we assume in the following that the random variables Ei
are again i.i.d. with expectation value E(Ei) = µ and variance Var(Ei) =
σ2. Hence, the components of the vector ε can be considered as samples of
the same random variable. Computing the MAP estimator f̂MAP and the
corresponding noise vector ε̂MAP = g− f̂MAP from equation (3) is equivalent
to solving the minimization problem

argmin
f∈RN , ε∈RN

{− log pE(ε)− log pF (f)} subject to g = f + ε (7)

for the given noisy data g ∈ RN . Since the term − log pE(ε) does not guaran-
tee that the empirical distribution of the components of the estimate ε̂MAP
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approximates the distribution of Ei, i = 1, . . . , N , as demonstrated above,
we want to replace it by a term with better properties. One approach in
this direction can be found for example in [9], where the authors propose to
incorporate a multiresolution statistic into the data fidelity term. The basic
idea for our approach is to transform the random vector E into a new ran-
dom vector V := T (E) with corresponding density pV using an appropriate
transformation T : RN → RM and to solve instead of (7) the minimization
problem

argmin
f∈RN , ε∈RN

{− log pV (T (ε))− log pF (f)} subject to g = f + ε. (8)

Obviously, if M = N and T is the identity, then V = E and problems (7)
and (8) coincide. A more general result is given by the following proposition.

Proposition 1. If T is injective and has a continuously differentiable inverse
T−1 on its range with non-vanishing Jacobian JT−1, then

pV (T (ε)) = pE(ε) |detJT−1(T (ε))|.

Thus, if additionally |detJT−1(T (ε))| = 1 for all ε ∈ RN , then problems (7)
and (8) are equivalent.

This proposition follows directly from Jacobi’s transformation formula,
see e.g. [10, p. 92f]. Of course, the interesting cases are those, where (7) and
(8) are not equivalent.

Remark 1. Although we have assumed that the random variables Ei are i.i.d.,
in the often considered case of normally distributed random variables, this
restriction, in particular the independence, can be omitted. In fact, we can
exploit that whenever E ∼ N (µ,Σ) with mean vector µ ∈ RN and covariance
matrix Σ ∈ RN,N , then the components Ei of E are pairwise independent
if and only if Σ is a diagonal matrix, see, e.g., [11, p. 214]. Since Σ is
symmetric, there exists further an eigenvalue decomposition of Σ such that
Σ = UD

1
2D

1
2 UT for some orthogonal matrix U ∈ RN,N and a diagonal matrix

D
1
2 ∈ RN,N . By setting Ẽ := T0(E) with T0(E) = D− 1

2UT(E − µ), where D− 1
2

denotes the pseudoinverse of D
1
2 if the inverse does not exist, one can show

that Ẽ ∼ N (0N , IN) is i.i.d. with 0N denoting a vector consisting of N zeros
and IN being the identity matrix of size N×N . Hence, we only have to replace
the transformation T used in (8) by T̃ = T ◦T0 to handle also random vectors
E which are normally distributed, but where the components are not i.i.d.
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In the following, we propose two transformations which are useful for our
purposes. The first transform is theoretically well-suited, but the numerical
realization is only feasible for huge datasets. The second transform can be
considered as a modification of the first one which is computationally more
capable.

Moment transformation. Our first transformation T is given by

(v1, . . . , vM)T = T (ε1, . . . , εN) :=

(
1
N

N∑

i=1

εi,
1
N

N∑

i=1

ε2i , . . . ,
1
N

N∑

i=1

εMi

)T

, (9)

i.e. vk is an estimate of the expectation value E(Ek
i ), the kth raw moment of

the Ei, i = 1, . . . , N .

Remark 2. It is well known that alternatively to characterizing Ei by its
density function, it is also uniquely determined by its moment generating
function MEi(t) := E(e[tEi]) if MEi is finite in some open ball around zero,
see, e.g., [11]. In this case, the kth moment mEi(k) := E(Ek

i ) of Ei can be

deduced from its moment generating function by mEi(k) =
∂k

∂tk
MEi(0) and the

moment generating function is itself uniquely determined by its moments via
the Taylor series expansion. In detail, we have

MEi(t) =
∞∑

k=0

tk

k!
mEi(k) =

∞∑

k=0

tk

k!
E(Ek

i ).

If for example Ei ∼ N (µ, σ2) is normally distributed with mean value µ and
variance σ2, the moment generating function exists and it is given by

MEi(t) = exp(tµ+ 1
2
σ2t2) ∀ t ∈ R.

By this remark we see that for a sufficiently large number of moments
M the transformation (9) preserves, loosely speaking, the information con-
tained in (ε1, . . . , εN)

T about the density pE , although T is not even injec-
tive. Note that any of the N ! possible permutations of the values ε1, . . . , εN
within the vector ε leads to the same value T (ε). However, this implies
that whenever two vectors ε, ε̃ have the same empirical distribution, then
pV (T (ε)) = pV (T (ε̃)). Moreover, pV (T (ε)) is supposed to be large whenever
the estimated moments T (ε) are close to the moments of the Ei, i = 1, . . . , N .
For our data fidelity term − log pV (T (ε)) this implies that, loosely speaking,
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it does not favor any particular noise vector as long as the empirical dis-
tribution of ε approximates well the distribution of Ei. Hence, the role of
− log pF (f) in (8) is to choose a particular noise vector such that pF (f) is
large for the resulting data vector f .

Unfortunately, the minimization problem (8) with the particular trans-
formation (9) has the following drawback: To obtain a reliable estimate
vk = 1

N

∑N

i=1 ε
k
i of the kth moment E(Ek

i ), the number of necessary samples
N can significantly increase with k as we will see in the following. To this
end, we determine the variance of the random variables Vk :=

1
N

∑N

i=1 Ek
i .

Lemma 1. Let Xi, i = 1, . . . , N , be i.i.d. random variables with E(Xi) = µ
and Var(Xi) = σ2. Then, for Mk := 1

N

∑N

i=1X
k
i , k ∈ N and i = 1, . . . , N it

holds that

E(Mk) = E(Xk
i ) and Var(Mk) =

1

N
(E(X2k

i )− E(Xk
i )

2).

In particular, for k = 1 we have

E(M1) = µ and Var(M1) =
1

N
(E(X2

i )− E(Xi)
2) =

σ2

N
.

The proof of this lemma follows directly by applying standard results for
the calculation with expectation values and variances.

If we assume for example that Ei ∼ N (0, σ2), then

E(Ek
i ) =

{
0 if k is odd,

1 · 3 · · · (k − 1) σk if k is even,
(10)

see, e.g., [11, p. 93]. As a consequence, we obtain

Var(V1) =
σ2

N
, Var(V2) =

2σ4

N
, Var(V3) =

15σ6

N
, Var(V4) =

96σ8

N
, . . .

For σ2 ≥ 1 and a constant number of samples N , this implies that the
variance increases significantly with the order k of the estimated moments.
Thus, to keep the variances constant, the number of samples has to increase
significantly with k. Already for σ2 = 1 and N samples used for estimating
V1, we would need 2N samples for V2, 15N samples for V3 and 96N samples
for estimating V4.
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Figure 1: Decomposition of ε into equally sized subvectors ε̃k for k = 1, . . . ,K.

Modified moment transformation. To overcome this drawback of transforma-
tion (9) while still exploiting its benefits, we consider a different transforma-
tion. In the following, we want to restrict our attention to estimates of the
first two moments. For N = KÑ with K, Ñ ∈ N, we split the random vector
E into K equally sized subvectors of length Ñ as

E :=
(
Ẽk
)K
k=1

with Ẽk :=
(
E(k−1)Ñ+j

)Ñ
j=1

and similarly the vector of realizations ε = (ε̃k)
K
k=1, cf. Figure 1. Let µ :=

E(Ei) and µk := 1

Ñ

∑Ñ

j=1 ε(k−1)Ñ+j
. Then, we define our transform T =

(Tk)
K
k=1 : RN → RK(K+3)

2 by

Tk(ε) :=

(
µk

1

Ñ
(〈ε̃k − µ, ε̃l − µ〉)Kl=k

)
.

The transformation Tk maps ε to estimates of the mean and variance of the
Ẽk as well as to estimates of the covariances between the random variables
of the vectors Ẽk and Ẽl for l > k. Since the vectors Ẽj are supposed to

be independent, for Ñ large enough the matrix 1

Ñ
(〈ε̃k − µ, ε̃l − µ〉)Kk,l=1 is

approximately a diagonal matrix with a nearly constant diagonal.
Of course other splittings than just those into subsequent vectors as well as
multiple splittings could also be used in the construction of T , cf. Section 4.

In order to incorporate T into (8) we need to determine the density pV
of the transformed random vector V = T (E). To this purpose, we use the
notation Tk(E) = (Mk, Ck,k, Ck,k+1, . . . , Ck,K).

For a Gaussian distributed random vector E ∼ N (µ, σ2) it holds that

Mk ∼ N (µ, 1

Ñ
σ2) and Ñ/σ2·Ck,k is χ

2-distributed with Ñ degrees of freedom.
Moreover, Mk and Ck,k are independent if we replace µ by the sample mean
Mk in the definition of Ck,k, cf. [11, Thm. 4.4.2].
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However, in general we cannot expect the components of V to be mutually
independent and thus, the density pV is not just the product of the densities
of the random variables forming the vector V . Therefore, we use the following
proposition to determine an estimate of pV :

Proposition 2. Let Xi, Yi, Zi, i = 1, . . . , N , be i.i.d. random variables with
expectation value µ and variance σ2. Moreover, set




M
S

CXY

CXZ


 :=

1

N

N∑

i=1




Xi

(Xi − µ)2

(Xi − µ)(Yi − µ)
(Xi − µ)(Zi − µ)


 .

Then, the random vector (M,S,CXY , CXZ)
T has mean vector µ = (µ, σ2, 0, 0)T

and covariance matrix

Σ =
1

N




σ2 E
(
(Xi − µ)3

)
0 0

E
(
(Xi − µ)3

)
E
(
(Xi − µ)4

)
− σ4 0 0

0 0 σ4 0
0 0 0 σ4


 . (11)

Moreover, it is asymptotically normal with mean µ and covariance matrix Σ.
In the particular case of normally distributed random variables, the covari-
ance matrix is given by

Σ =
1

N




σ2 0 0 0
0 2σ4 0 0
0 0 σ4 0
0 0 0 σ4


 . (12)

Proof: By Lemma 1 and since

E(aX + b) = aE(X) + b, E(X + Y ) = E(X) + E(Y )
and E(XY ) = E(X)E(Y ) + Cov(X, Y ),

where Cov(X, Y ) = 0 in case of independent random variables with finite
variance, we obtain that µ = (µ, σ2, 0, 0)T. By definition of the covariance
matrix we have

Σ =




Var(M) Cov(M,S) Cov(M,CXY ) Cov(M,CXZ)
Cov(S,M) Var(S) Cov(S,CXY ) Cov(S,CXZ)

Cov(CXY ,M) Cov(CXY , S) Var(CXY ) Cov(CXY , CXZ)
Cov(CXZ ,M) Cov(CXZ , S) Cov(CXZ , CXY ) Var(CXZ)


 .
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Now, we consider the diagonal of Σ (with similar arguments for Var(CXY )
and Var(CXZ)). By Lemma 1 and since

Var(Xk) = E(X2k)− E(Xk)2 for k ∈ N, Var(aX + b) = a2Var(X),
Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y )

and for independent X, Y further

Var(XY ) = E(Y )2Var(X) + E(X)2Var(Y ) + Var(X)Var(Y ),

we conclude that




Var(M)

Var(S)

Var(CXY )


 =




1
N
σ2

1
N

(
E
(
(Xi − µ)4

)
− E

(
(Xi − µ)2

)2)

1
N2

N∑
i=1

Var
(
(Xi − µ)(Yi − µ)

)




=
1

N




σ2

E
(
(Xi − µ)4

)
− E

(
(Xi − µ)2

)2
Var(Xi − µ)Var(Yi − µ)




=
1

N




σ2

E
(
(Xi − µ)4

)
− σ4

σ4


 .

Furthermore, using the above rules again as well as

Cov(aX, b Y ) = abCov(X, Y ) and Cov
( N∑
i=1

Xi,
N∑
j=1

Yj

)
=

N∑
i=1

N∑
j=1

Cov(Xi, Yj),

we obtain the following off-diagonal elements of Σ:



Cov(M,S)
Cov(M,CXY )
Cov(S,CXY )

Cov(CXY , CXZ)


 =

1

N2

N∑

i=1

N∑

j=1




Cov
(
Xi, (Xj − µ)2

)

Cov
(
Xi, (Xj − µ)(Yj − µ)

)

Cov
(
(Xi − µ)2, (Xj − µ)(Yj − µ)

)

Cov
(
(Xi − µ)(Yi − µ), (Xj − µ)(Zj − µ)

)




=
1

N2

N∑

i=1




E
(
(Xi − µ)((Xi − µ)2 − σ2)

)

E
(
(Xi − µ)2(Yi − µ)

)

E
(
((Xi − µ)2 − σ2)(Xi − µ)(Yi − µ)

)

E
(
(Xi − µ)2(Yi − µ)(Zi − µ)

)




=
1

N




E
(
(Xi − µ)3

)
− σ2E(Xi − µ)

E
(
(Xi − µ)2

)
E(Yi − µ)

E
(
(Xi − µ)3 − σ2 E(Xi − µ)

)
E(Yi − µ)

E
(
(Xi − µ)2

)
E(Yi − µ) E(Zi − µ)
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=
1

N




E
(
(Xi − µ)3

)

0
0
0


 .

Since Σ is symmetric, this leads finally to the matrix (11). The special
matrix (12) follows directly from (10). Moreover, we obtain by the central
limit theorem, see, e.g., [12, p. 28], that (M,S,CXY , CXZ)

T is asymptotically
normal with mean vector µ and covariance matrix Σ. �

In the case of normally distributed random variables, it follows directly
from this result that each random vector Tk(E), k = 1, . . . , K, is uncorrelated
and thus, this applies also to the whole vector V = T (E). Besides, for N
large enough we can approximate

pV (T (ε)) ≈ c

K∏

k=1

exp
−(µk − µ)2

2

Ñ
σ2

exp
−
(

1

Ñ
‖ε̃k − µ‖2 − σ2

)2

4

Ñ
σ4

·
K∏

k=1

K∏

l=k+1

exp
−
(

1

Ñ
〈ε̃k − µ, εl − µ〉

)2

2

Ñ
σ4

with c := (2π)K+K(K+1)
4 2

K

2 Ñ−K−K(K+1)
4 σK(K+4) and thus,

− log pV (T (ε)) ≈ J (1)
mean(ε) + J (2)

var(ε) + J (2)
cov(ε)− log c (13)

with

J (1)
mean(ε) =

Ñ

2σ2

K∑

k=1

(µk − µ)2,

J (2)
var(ε) =

1

4Ñσ4

K∑

k=1

(
‖ε̃k − µ‖2 − Ñσ2

)2
,

J (2)
cov(ε) =

1

2Ñσ4

K∑

k=1

K∑

l=k+1

〈ε̃k − µ, ε̃l − µ〉2.

Hence, in contrast to − log pV (ε), our new data fidelity term in (13) favor vec-
tors, where each subvector ε̃k has approximately the mean value and variance
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we would expect from the statistics. Moreover, all subvectors are forced to
be uncorrelated, which forces all parts of the original signal to be contained
in f̂ rather than ε̂ when minimizing (8). However, in contrast to (5) our new
data fidelity term in (13) is no longer convex, which means that it can have
many local minimal. Indeed, if ε minimizes our data fidelity term, then this
is also true for all permutations of the subvectors within ε as well as for every
permutation of entries within one subvector. Thus, the regularization term
in (8) is again essential for restricting the possible set of solutions.

3. Numerical results

Minimizaton problem. To demonstrate the capability of our new denoising
approach we proceed with numerical examples. In the following, we want to
minimize the higher order statistics (HOS) functional

J(ε) = J (1)
mean(ε) + J (2)

var(ε) +
2

K − 1
J (2)
cov(ε) + λ ‖g − ε‖22 (14)

with respect to ε so that our reconstruction of the original data vector is
given by f̂ = g − ε̂. Here, the regularization term ‖g − ε‖22 weighted by the
parameter λ > 0 guarantees that the reconstructed noise vector ε̂ is related
to the given noisy signal g. This function is kept quite simple and λ is always
chosen very small to ensure that the result is mainly determined by our new
higher order terms. For denoising smoother functions other smoothness term
could be applied.
For our experiments we set the length of the subvectors to Ñ = 50 so that
the number of subvectors K is given by the signal length divided by Ñ .
Note that in (14) the functional J

(2)
cov is weighted differently compared to the

functional on the right-hand side of (13). Since J
(1)
mean and J

(2)
var are based

on K summands whereas J
(2)
cov consists of K(K−1)

2
values, we multiply J

(2)
cov by

2
K−1

to compensate for the differing number of terms so that J
(1)
mean, J

(2)
var and

J
(2)
cov have a similar influence on the result.

Implementation. In order to minimize (14) we apply a Quasi-Newton method.
Setting F := ∇J such methods compute a local minimizer of J by iterating

ε(r+1) = ε(r) −ArF (ε(r)),

where Ar is an approximation of the inverse of the Hessian of J at ε(r)

which has to fulfill the Quasi-Newton condition Ar

(
F (ε(r+1)) − F (ε(r))

)
=

12



ε(r+1) − ε(r). We use the BFGS formula, see [13, 14, 15, 16], to produce
the matrices Ar. The described Quasi-Newton method is implemented in
the Medium-Scale algorithm of the fminunc function provided by Matlab
(Version: R2008b, www.mathworks.org). The gradients of our higher order
terms are given by

∇J (1)
mean(ε) =

1

σ2

(
(µk − µ) 1

Ñ

)K
k=1

,

∇J (2)
var(ε) =

1

σ4

(( 1
Ñ
‖ε̃k − µ‖2 − σ2

)
(ε̃k − µ)

)K
k=1

,

∇J (2)
cov(ε) =

1

Ñσ4

( K∑

l=1
l 6=k

〈ε̃k − µ, ε̃l − µ〉 (ε̃l − µ)
)K
k=1

.

The minimization procedure is initialized with ε(0) := g as a first guess of the
noise vector ε. Thus, our reconstruction of the noisefree signal is first set to
be f = 0.

Quantitative evaluation. To be able to quantify the quality of the results we
use synthetic signals so that the original data vectors f are known and we
can directly compare them to the obtained results f̂ . As a simple quality
measure we apply the mean square error (MSE) criterion

MSEf,f̂ =
1

N

N∑

i=1

(
fi − f̂i

)2
. (15)

For our experiments we use the MAP-TM and MAP-TV approaches com-
mented on in Section 1 as reference methods. To choose the involved regular-
ization parameters λ in an optimal way, we perform a brute force search and
use the parameter for which the reconstruction result produces the smallest
MSE.

Experiments. By the subsequent examples we will show that our new ap-
proach is particularly well suited for signals with a lot of oscillations, since
in these cases it is particularly hard to distinguish the signal parts from the
noise and the usually applied smoothness terms fail to reconstruct the sig-
nals. Our first example in Figure 2 shows a signal constructed by adding
three sine signals of different frequencies and amplitudes. To obtain its noisy
version, this signal has been corrupted by additive Gaussian noise with µ = 0
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Figure 2: From top to bottom: Signal 1, noisy signal, reconstruction by MAP-TV (λ = 3.8),
MAP-TM (λ = 1.1) and HOS (λ = 0.0001).
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Figure 3: From top left to bottom right: Zoom into signal 1 as well as into MAP-TV,
MAP-TM and HOS results.

and σ2 = 20. As displayed in Figures 2 and 3 our HOS method yields a good
reconstruction of the original signal. Table 1 shows that the MSE of this
result is significantly better than the ones of the MAP-TM and MAP-TV
results. Moreover, our HOS method produces a much better reconstruction
ε̂ of the original noise vector as illustrated in Figure 4. Here, the histogram
of our noise values approximates well the shape of the density function of the
noise, and the sample mean µ̃ and sample variance s2 defined by

µ̃ :=
1

N

N∑

i=1

εi and s2 :=
1

N

N∑

i=1

(εi − µ̃)2

are very close to the original parameters µ and σ2. Furthermore, if we com-

pute the matrices
(

1

Ñ
〈ε̃k−µ, ε̃l−µ〉

)K
l,k=1

from our reconstructed noise signal

as done in Figure 8 (left), we see that it approximates well a diagonal matrix
with diagonal entries σ2 = 20. Thus, the subvectors of our reconstructed
noise signal are uncorrelated and have the right variances.
These results are also confirmed by our second example displayed in Figures
5, 6, 7 and 8 (right). Here, a highly oscillating signal with several jumps is
used which has been corrupted by additive Gaussian noise with µ = 0 and
σ2 = 80.
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Figure 4: Left, top to bottom: True noise signal used for corrupting signal 1, reconstructed
noise by MAP-TV, MAP-TM as well as HOS. Right: Histograms of the noise values with
corresponding sample mean and sample variance. The red curve shows a by N scaled
Gaussian with µ = 0 and σ2 = 20 for comparison.
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Figure 5: From top to bottom: Signal 2, noisy signal, reconstruction by MAP-TV (λ = 4.6),
MAP-TM (λ = 0.46) and HOS (λ = 0.00005).
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Figure 6: From top left to bottom right: Zoom into signal 2 as well as into MAP-TV,
MAP-TM and HOS results.

Signals signal 1 signal 2

Noisy signal 20.00 79.98

MAP-TV 9.52 52.64
MAP-TM 6.62 46.25
HOS 5.39 31.13

Table 1: Average MSE of the denoising results for 3000 different noisy realizations of the
initial signals.
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Figure 7: Left, top to bottom: True noise signal used for corrupting signal 2 and recon-
structed noise signals by MAP-TV, MAP-TM as well as HOS. Right: Histograms of the
noise values with corresponding sample mean and sample variance. The red curve shows
a by N scaled Gaussian with µ = 0 and σ2 = 80 for comparison.
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Figure 8: Left to right: Estimated covariance matrices
(

1

Ñ
〈ε̃k − µ, ε̃l − µ〉

)K
l,k=1

for the

reconstructed noise signals by our HOS approach displayed in Figures 4 and 7, resp. As
expected, we obtain nearly diagonal matrices with diagonal entries around σ2. The means
of the absolute values of the off-diagonal entries are 0.23 (left) and 1.20 (right).

4. Conclusions

We have shown that the standard maximum likelihood estimation ap-
proach for denoising signals can be generalized by introducing an additional
transformation of the random variables modeling the noise. This transfor-
mation allows to consider also pixel correlations within the noise vectors and
helps to obtain a reconstructed noise vector, which resembles the statistical
properties of the assumed noise model. The transformation of our choice
leads to a nonconvex minimization problem. A local minimizer of the func-
tional was computed by a BFGS Quasi-Newton method. In order to evaluate
the capability of our new approach, we performed feasibility tests on different
signals. These experiments showed that especially in cases where the signal
consists of high frequency components, our approach allows to recover even
fine structures in the data. These results give hope that our HOS approach
allows for more detailed and accurate reconstructions compared to standard
techniques. As a topic of future research, different, more complex transfor-
mations including for example multiple splittings could be considered. More-
over, we aim to integrate suitable, more sophisticated regularization terms
modeling the a priori knowledge about the data vector f in our reconstruc-
tion procedure. To this purpose, suitable minimization methods have to be
found to be able to handle the resulting possibly nondifferentiable, nonconvex
minimization problems.
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