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1 Introduction

Approximations on regular surfaces are becoming more and more an important issue in
recent times. The obvious applications involve approximation of data from different envi-
ronmental sources, such as meteorology, oceanography or pollution. Applications include
representing functions on the Earth’s surface, which model temperature, pressure, ozone,
gravitational and magnetic forces, elastic deformation etc. at all points on the surface of
the Earth, based on a discrete sample of values taken at arbitrary points. In this thesis
we are concerned with the new approximation methods that allow representation of the
Earth’s gravitational potential on regular surfaces.
The Earth’s gravity field is one of the most fundamental forces. Although invisible, gravity
is a complex force of nature that has an immeasurable impact on our everyday lives. It is
often assumed that the force of gravity on the Earth’s surface has a constant value, and
gravity is considered acting in straight downward direction, but in fact its value varies
subtly from place to place and its direction known as the plumb line is actually slightly
curved. If the Earth had a perfectly spherical shape and if the mass inside the Earth were
distributed homogeneously or rotationally symmetric, these considerations would be true
and the line along which Newton’s apple fell would indeed be a straight one. The grav-
itational field obtained in this way would be perfectly spherically symmetric. In reality,
however, the situation is much more complex. Gravitational force deviates from one place
to the other from that of a homogeneous sphere, due to a number of factors, such as the
rotation of the Earth, the topographic features (the position of mountains, valleys or ocean
trenches) and variations in density of the Earth’s interior. As a consequence the precise
knowledge of the Earth’s gravitational potential and equipotential surfaces is crucial for
all sciences that contribute to the study of the Earth, such as seismology, topography, solid
geophysics or oceanography. With the growing awareness with respect to environmental
problems like pollution and climate changes, this problem becomes every day a more and
more important issue. In former geophysical prospecting, which was dominated by seismic
reflection surveying, gravity methods have mostly been used as complements when difficul-
ties with seismic methods have arisen. The determination of the gravitational field of the
Earth was done by methods of classical potential theory as a solution to an exterior bound-
ary value problem. Moreover, the up–to–now unrealistic assumption of a global coverage
of boundary data (e.g., gravity anomalies) was required in geodetic and geophysical appli-
cations. Nowadays, however, with the advent of satellite based techniques, like the Global
Positioning system (GPS), SLR (satellite laser ranging), SRA (satellite radar altimetry)
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1 Introduction

and recent satellite missions different types of boundary values have become available (e.g.,
the gradients of both gravitational potential and field) and also the geometric shape of the
Earth became measurable with unimaginable precision. High precision and resolution of
the gravity field, obtained with space-borne satellite techniques have changed the ordinary
routine in future prospecting. From being a secondary prospecting tool, the gravity field
or the geoid, i.e., the equipotential surfaces, computed from (scattered) terrestrial and/or
satellite data, are more and more used to locate prospective regions as well as individual
prospects. As a consequence, the gravity field and the geoid determination, from actually
being a major interest in physical geodesy, gained a renewed popularity in lots of different
positioning, mapping and exploration applications, some of which are listed bellow.

• Height Measurements: Geometric heights can be obtained fast and efficiently
from space positioning systems like GPS, GLONASS, and GALILEO. In order to
convert the geometric heights into leveled heights, the precise geoid has to be sub-
tracted. For this reason, the exact knowledge of the geoid is fundamental.

• Prospecting and Exploration: Gravity anomalies caused by, e.g., oil, gas struc-
tures or geothermal reservoirs can be detected by analyzing the small (spatial) vari-
ations of the Earth’s gravitational potential.

• Satellite Orbits: Gravitational uncertainties must be taken into account when
calculating the exact orbit of the spacecraft.

• Solid Earth Physics: Together with seismic velocities the gravity field is one of the
most important signals of the Earth’s interior being measurable in the exterior. More
explicitly, internal density signatures are reflected by gravitational field signatures.
Thus, by measuring the gravity anomalies, we get valuable information on mass
inhomogeneities of the continental and oceanic lithosphere, which are caused by
tectonic processes.

• Physical Oceanography: Computation of ocean circulations and currents caused
by winds, slopes in temperature or salinity also requires precise knowledge of the
geoid, since their determination depends directly on geometric distance between the
geoid and the sea surface topography, and its variation in time. The transport
processes of polluted material can also be determined.

• Earth System: Today’s satellite missions are important tools for the investigation
of global environmental problems, such as global sea–level changes and the CO2–
question. In this context, the geoid serves as an almost static reference for rapidly
changing processes.
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From a mathematical point of view the modeling of the gravitational potential on and
outside the surface of the real Earth seems to be very simple. Namely, the potential is
given by Newton’s Law of Gravitation

V =

∫
Earth

ρ(x)

|x− ·|
dx,

where ρ denotes the density distribution inside the Earth, which means that knowing the
density distribution inside the Earth, we can easily calculate the gravitational potential.
Unfortunately, we have very poor information about the Earth’s interior, and as a matter
of fact, the density is known in sufficient quality only in some areas near the Earth’s sur-
face and thus Newton’s law is not applicable directly. Another possibility for providing the
solution of the problem would be to measure the gravity vector (gravity being the resultant
of gravitational and centrifugal force of the Earth’s rotation) at discrete locations all over
the surface of the Earth. But certainly, acquiring such terrestrial data is not as simple as
one might think. First of all, if we want to model the potential with reasonable accuracy,
we need a very dense equidistribution of points on the Earth’s surface, and several areas
are difficult to access due to their topographic structures. Secondly, measurements of the
gravity vector are only possible on continents with a reasonable compromise between ac-
curacy and costs and one has to look for other techniques such as altimetry on oceanic
surfaces.
Until recent times, three essential data sources have been available (terrestrial, airborne
and satellite), all of them combined, e.g., in the Earth Geopotential Model EGM96 (which
consists of spherical harmonic coefficients up to degree 360). The data types used were:
(mean) gravity anomalies, potential values over marine areas by satellite radar altimetry
and (pseudo) ranges from orbit analysis of high flying satellites (of altitudes more than 600
km). Terrestrial measurements are not everywhere available, and even in regions where
they are available do not always possess sufficient accuracy. In contrast, satellite data yield
easily a (nearly) global and rather ‘dense’ data coverage, but due to the fact that gravita-
tional force is exponentially attenuated with increasing distance from the Earth’s surface,
they do not reflect all gravity anomalies. Thus for the global coverage, measurements from
several satellites and airplanes had to be combined, likewise being of heterogeneous type
and having variable accuracies. As consequence, the situation was far away from having a
dense global coverage with gravity measurements, not to mention with the homogeneous
quality, and so neither of these three data sources nor their combination was sufficient for
the applications listed above.
The latest satellite mission launched March 2009, namely the ESA’s Gravity field and
steady-state Ocean Circulation Explorer (GOCE), has brought a new level of understand-
ing of the gravity field of the Earth. The entire satellite is actually one extremely sensitive
measuring device flying at just 250 km above the Earth’s surface an mapping global
variations in the gravity field with extreme detail and accuracy. GOCE together with
its predecessors GRACE (launched March, 2002, at altitude of 500 km) and CHAMP
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1 Introduction

(launched in July, 2000, at altitude of 450 km) have done unprecedented measurements of
the gravity field. The result is a unique model of the ’geoid’ which yields valuable informa-
tion about the distribution and flow of mass within the Earth, changes due to surface and
deep currents in the ocean, runoff and ground water storage on land masses, exchanges
between ice sheets or glaciers and the oceans etc., but mainly with techniques based on
spherical reference surfaces. Nevertheless, using tables of spherical harmonic coefficients,
geodetic observables, i.e., linear functionals such as geoid undulation, gravity anomaly,
radial derivative at Earth’s surface or at the satellite height can be evaluated. The latest
gravity model EGM2008 consists of spherical harmonic coefficients up to degree 2190, thus
providing scientists from all over the world with an efficient and cost-effective way to map
the Earth’s gravity fields with greatest accuracy on global basis.

In the view of these satellite missions the classical definition of geodesy as a scientific disci-
pline concerned with the measurement and determination of the figure of the Earth and it’s
gravitational field in its exterior can be more and more realized from the data availability.
The theory of spherical harmonic splines and wavelets were developed, showing that spline
functions can be viewed as canonical generalizations of the outer harmonics, having desir-
able properties such as interpolating, smoothing, and best approximation functions, while
harmonic wavelets are giving possibility of multiscale analysis as constituting ‘building
blocks’ in the approximation of the gravitational potential. Seen from the mathematical
point of view, however, new developments and numerical models are necessary in order
to reach the goals described above from the huge data sets. The technological progress
and the increasing observational accuracy require adequate mathematical methods with
the need of observing geophysically more realistic reference surfaces than sphere and ellip-
soid. Also, in recent years reasonably accurate measurements of the surface of the Earth
have become available, so today we are in a position to discuss various developments and
generalization of mathematical methods for integrals over regular regions, such as for ex-
ample the Newton integral. This situation offers great challenges in developing a new
mathematical framework for the determination of the geoid. Today we are interested in
non–spherical boundaries when solving potential theory problems, such as the real Earth’s
surface. In this thesis we are concerned with developing the real Earth oriented strategies
and methods for the Earth’s gravitational potential determination. For this purpose we
introduce the reproducing kernel Hilbert space of Newton potentials on and outside given
regular surface with reproducing kernel defined as a Newton integral over it’s interior.
The outline of the thesis is as follows:
The second chapter introduces the basic notation, important results from the theory of
spherical harmonics and some basic theorems from potential theory.
In the third chapter, we introduce regular surfaces, boundary value problems, as well as
formulations of approximating solutions, with respect to a given regular surface. The
fourth chapter gives a closer look to the Earth’s gravitational potential, the Newton po-
tentials and their characterization in the interior and the exterior space of the Earth, in
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relation to density function. We also present the L2-decomposition for regions in R3 in
terms of distributions, as a main strategy to impose the Hilbert space structure on the
space of potentials on and outside a given regular surface. The properties of the Newton
potential operator are investigated in relation to the closed subspace of harmonic density
functions.
After these preparations, in the fifth chapter we are able to construct the reproducing
kernel Hilbert space of Newton potentials on and outside a regular surface. The spline
formulation for the solution to interpolation problems, corresponding to a set of bounded
linear functionals is given, and corresponding convergence theorems are proven.
The sixth chapter deals with the representation of the used kernel in the spherical case.
We recapitulate the basic results from the spherical harmonic splines theory, correspond-
ing Sobolev spaces and the spherical reproducing kernels, as much as we need to establish
a relation for the kernel to spherical ones. Then we prove that the representation of the
reproducing kernel for the spherical Earth, corresponds to the representations of kernels
such as Abel-Poisson or the singularity kernel. We also investigate the existence of the
closed expression of the kernel. However, at this point it remains to be unknown to us.
So, in Chapter 7, we are led to consider certain discretization methods for integrals over
regions in R3, in connection to theory of the multidimensional Euler summation formula
for the Laplace operator. We discretize the Newton integral over the real Earth (repre-
senting the spline function) and give a priori estimates for approximate integration when
using this discretization method.
The last chapter summarizes our results and gives some directions for the future research.
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2 Preparatory Material

In this chapter we introduce the mathematical background of the thesis. The first two
sections explain the basic notation and spherical nomenclature. The third section gives
an introduction to potential theory, boundary value problems, and harmonic functions.
Spherical harmonics as the most important functions in geosciences are introduced in the
fourth section, as well as inner and outer harmonics. The last section deals with material
involving the fundamental solution to the Laplacian.

2.1 Basic Notations

The letters N,N0,Z and R, denote the set of positive integers, non-negative integers,
integers and real numbers, respectively. R3 denotes the three-dimensional Euclidian space.
Using the canonical orthonormal basis in R3

ε1 = (1, 0, 0)T , ε2 = (0, 1, 0)T , ε3 = (0, 0, 1)T ,

each element x ∈ R3 can be represented in cartesian coordinates as follows:

x =

3∑
i=1

xiε
i. (2.1)

The inner (scalar) and vector product of two elements x, y ∈ R3 are defined respectively,
by

x · y = xT y = x1y1 + x2y2 + x3y3 (2.2)

and

x ∧ y =

 x2y3 − x3y2

x3y1 − x1y3

x1y2 − x2y1

 . (2.3)

Let D ⊂ R3 be a region, i.e., an open and connected set in R3. C(k)(D) denotes the
set of all k-times continuously differentiable scalar functions F : D → R, with k ∈ N.
Moreover, C(0)(D) and C(∞)(D) denote the set of all continuous and infinitely often
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2 Preparatory Material

continuously differentiable scalar functions F : D → R, respectively. If D is compact,
then C(D)(= C(0)(D)) equipped with the norm

||F ||C(D) = sup
x∈D
|F (x)|

is a Banach space.
For a measurable D ⊂ R3 and 1 ≤ p <∞, we denote by

(
Lp(D), || · ||p

)
the Banach space

of all Lebesgue integrable functions F , such that

||F ||Lp(D) =

(∫
D
|F (x)|pdx

) 1
p

<∞.

Setting p = 2 we get the Hilbert space
(
L2(D), ||·||L2(D)

)
, equipped with the scalar product

(F,G)L2(D) =

∫
D
F (x)G(x)dx.

For later use we define the notion of a reproducing kernel in a Hilbert space.

Definition 2.1.1. Let (H, (·, ·)H) be a real Hilbert space of functions defined on a domain
D ⊂ Rn, n ∈ N. A function K, defined on D ×D, is called a reproducing kernel of H if
the following properties are satisfied:

i) K(x, ·) ∈ H,K(·, x) ∈ H for all x ∈ D

ii) (K(x, ·), F )H = (K(·, x), F )H = F (x) for all F ∈ H and all x ∈ D.

Reproducing kernels play an important role in this thesis, since they give the characteri-
zation of the approximating functions used for the gravitational field of the Earth. Several
important results from the theory of reproducing kernels are listed below without proof.
For details the reader is referred to, e.g., [3], [9].

Theorem 2.1.2. Let H be a real Hilbert space of functions defined on D ⊂ Rn. Then
H possesses a reproducing kernel if and only if for each y ∈ D the evaluation functional
Ly(F ) = F (y) is bounded, i.e.,

|Ly(F )| ≤ cy||F ||H (2.4)

holds for some constant cy and for all F ∈ H.

Theorem 2.1.3. If H has a reproducing kernel then the kernel is unique.

Theorem 2.1.4. Let D ⊂ Rn be a non–empty set and H be a separable reproducing kernel
Hilbert space of real–valued functions on D. Assume that {φn}n∈N0 ⊂ H is a complete
orthonormal system in H. Then its reproducing kernel K has the representation

K(x, y) =
∞∑
n=0

φn(x)φn(y). (2.5)
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2.2 Cartesian Nomenclature

Theorem 2.1.5. Let D ⊂ Rn be a non–empty set and H be a separable reproducing
kernel Hilbert space of real–valued functions on D. Let K be its reproducing kernel, L be a
bounded linear functional on H and let L ∈ H denote its representer according to the Riesz
representation theorem, i.e., LF = (L,F )H for all F ∈ H. Assume that {φn}n∈N0 ⊂ H is
a complete orthonormal system in H. Then the representer L is explicitly given by

L(x) = LK(·, x) =
∞∑
n=0

(Lφn)φn(x), x ∈ D. (2.6)

Theorem 2.1.6. Let H be a reproducing kernel Hilbert space and let {Lxi}i∈N be a set of
bounded linear functionals such that {LxiK(·, ·)}i∈N ⊂ H defines a complete sequence of
functions. Then

span{LxiK(·, ·)}i∈N
||·||H

= H. (2.7)

Definition 2.1.7. Let H be a real Hilbert space. A linear operator P : H → H,
F 7→ PF , is called a projection operator (projector) onto Im(P ), if it satisfies P 2 = P .
If additionally (PF,G)H = (F, PG)H for all F,G ∈ H, the operator is called
an orthogonal projection operator (orthogonal projector) onto Im(P ).

The following lemma gives a useful characterization of orthogonal projection operators.

Lemma 2.1.8. Let H be a real Hilbert space and let P : H → H, F 7→ PF be a projection
operator. The following two statements are equivalent:

(i) P is an orthogonal projection operator onto Im(P ),

(ii) (F, S)H = (PF, S)H for all F ∈ H and all S ∈ Im(P ).

2.2 Cartesian Nomenclature

Next we introduce some differential operators in R3 which are used throughout this work.
As usual, the gradient operator is denoted by ∇ and the Laplace operator by ∆. Their
representations in Cartesian coordinates in R3 are well known

∇ =
3∑
i=1

(
∂

∂xi

)
εi, (2.8)

∆ = ∇ · ∇ =
3∑
i=1

(
∂

∂xi

)2

. (2.9)
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2 Preparatory Material

The gradient and the Laplace operator applied to functions F ∈ C(1)(D) and
G ∈ C(2)(D) respectively, where D ⊂ R3, are defined by

grad F (x) = ∇F (x) =

(
∂F

∂x1
,
∂F

∂x2
,
∂F

∂x3

)T
(2.10)

and

∆G(x) =

(
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)
G(x). (2.11)

Let α1, α2, α3 be given non-negative integers. Then α = (α1, α2, α3)T is called a
three-dimensional multi-index. For a given multi-index α = (α1, α2, α3)T ∈ N3

0 and a
given 3-tuple x = (x1, x2, x3)T ∈ R3 we let

α! = α1! · α2! · α3!, (2.12)

[α] = α1 + α2 + α3, (2.13)

|α| =
√
α2

1 + α2
2 + α2

3, (2.14)

xα = xα1
1 xα2

2 xα3
3 . (2.15)

We say α = (α1, α2, α3)T is a 3−dimensional multi-index of degree n if [α] = n. By
definition, we set

∇α =

(
∂

∂x1

)α1
(

∂

∂x2

)α2
(

∂

∂x3

)α3

. (2.16)

2.3 Spherical Nomenclature

The Earth is an almost perfect sphere. Deviations from its spherical shape are less than
0.4% of its mean radius (6371 km). Although the non-spherical approach is becoming
more and more important in modern geosciences, especially due to the modern satellite
techniques, spherical tools still play an important role. Thus, before turning to non-
spherical geometries, we will give a detailed description of spherical tools.
We denote the unit sphere in R3 by Ω, i.e.,

Ω = {x ∈ R3, |x| = 1}.

Any element x ∈ R3, x = (x1, x2, x3)T with |x| 6= 0, has a unique representation

x = rξ, r = |x|, ξ =
x

|x|
,

where r = |x| is the distance from x to the origin and ξ ∈ Ω, with ξ = (ξ1, ξ2, ξ3)T is
uniquely determined directional unit vector of x. We set Ωint for the ’inner space’ of Ω,
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2.3 Spherical Nomenclature

while Ωext denotes the ’outer space’ of Ω. It is well-known that the total surface ||Ω|| of
Ω is equal to 4π, i.e., ∥∥Ω

∥∥ =

∫
Ω
dω = 4π. (2.17)

Any arbitrary point ξ ∈ Ω can be given in spherical coordinates

ξ = tε3 +
√

1− t2(cosϕε1 + sinϕε2),

ϕ ∈ [0, 2π), t ∈ [−1, 1], t = cosϑ, ϑ ∈ [−π, π].
(2.18)

Written out this means that x ∈ R3 is given by the polar coordinates

x(r, ϕ, t) =

( r
√

1− t2 cosϕ

r
√

1− t2 sinϕ
rt

)
, (2.19)

where r ≥ 0 is the distance to the origin, ϕ denotes the spherical longitude, ϑ the spherical
latitude and t the polar distance.

We are interested in constructing the orthonormal triad on Ω. We consider the vector
function

Φ : [0,∞)× [0, 2π)× [−1, 1],

defined by

Φ(r, ϕ, t) =

( r
√

1− t2 cosϕ

r
√

1− t2 sinϕ
rt

)
.

Setting r = 1 we get the local coordinate system on the unit sphere Ω as before. Now,
calculating the derivatives of Φ and setting r = 1, the corresponding set of orthonormal
unit vectors in the directions r, φ and t is easily determined by

(ξ =) εr(ϕ, t) =

( √1− t2 cosϕ√
1− t2 sinϕ

t

)
,

εϕ(ϕ, t) =

( sinϕ
cosϕ

0

)

and

εt(ϕ, t) =

( t cosϕ
−t sinϕ√

1− t2

)
.

17



2 Preparatory Material

Figure 2.1: Moving local triad on the unit sphere

These vectors represent a moving orthonormal triad on the unit sphere Ω, where the vector
εr is the radial vector, while the vectors εϕ, εt mark tangential directions.

We decompose the gradient and the Laplacian into a radial and angular part. The gradient
∇ in R3 is represented by

∇ = ξ
∂

∂r
+

1

r
∇∗ξ , (2.20)

where ∇∗ is the surface gradient on the unit sphere Ω. For the Laplace operator ∆ = ∇·∇
in R3 we have the representation

∆ =

(
∂

∂r

)2

+
2

r

∂

∂r
+

1

r2
∆∗ξ , (2.21)

where ∆∗ is the Beltrami operator on the unit sphere Ω. For explicit representations in
polar coordinates see [38].

Next we will present some scalar function spaces for later use. In accordance to the
previous notations Lp(Ω), 1 ≤ p <∞, denotes the space of all scalar functions F : Ω→ R
that are measurable and for which∥∥F∥∥

Lp(Ω)
=

(∫
Ω
|F (η)|pdω(η)

)1/p

<∞. (2.22)

As Ω is compact Lp(Ω) ⊂ Lq(Ω), for 1 ≤ q ≤ p. For p = 2 we get the space of all
measurable and square-integrable functions on the sphere. L2(Ω) is a Hilbert space with
respect to the inner product given by

(F,G)L2(Ω) =

∫
Ω
F (η)G(η)dω(η). (2.23)
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2.4 Spherical Harmonics

C(k)(Ω), 0 ≤ k ≤ ∞, denotes the class of k-times continuously differentiable scalar func-
tions F : Ω→ R. C(Ω) = C(0)(Ω), denoting the set of continuous scalar functions on the
sphere, is a complete normed space equipped with the norm∥∥F∥∥

C(Ω)
= sup

ξ∈Ω
|F (ξ)|. (2.24)

In connection with (·, ·)L2(Ω), the space C(Ω) is a pre-Hilbert space. For each F ∈ C(Ω)
we have the norm estimate ∥∥F∥∥

L2(Ω)
≤
√

4π
∥∥F∥∥

C(Ω)
. (2.25)

L2(Ω) is the completion of C(Ω) with respect to the norm
∥∥ · ∥∥

L2(Ω)
, i.e.,

L2(Ω) = C(Ω)

∥∥·∥∥
L2(Ω) . (2.26)

Any function of the form Gξ : Ω → R, η 7→ Gξ(η) = G(ξ · η), η ∈ Ω, is called a ξ-zonal
function on Ω. Zonal functions are constant on the set of all η ∈ Ω with ξ · η = h,
h ∈ [−1,+1]. The set of all ξ-zonal functions is isomorphic to the set of functions on
the interval [−1,+1]. This gives rise to interpret C[−1,+1] and Lp[−1,+1] with norms
defined correspondingly as subspaces of C(Ω) and Lp(Ω). More explicitly, we have

∥∥G∥∥
Lp[−1,+1]

=
∥∥G(ε3·)

∥∥
Lp(Ω)

=

(
2π

∫ +1

−1
|G(t)|pdt

)1/p

(2.27)

and ∥∥G∥∥
C[−1,+1]

=
∥∥G(ε3·)

∥∥
C(Ω)

= sup
ξ∈Ω

G(ε3 · ξ)| = sup
ξ∈Ω
|Gε3(ξ)|. (2.28)

Zonal functions (in the jargon of approximation theory, radial basis functions) show an
important principle for many purposes on the sphere, namely rotational invariance. Using
zonal functions, i.e., functions of axial symmetry, and varying their axes, many differ-
ent approximation techniques can be constructed, for example multiscale approximation
by spherical wavelets or approximation techniques such that the invariance of the corre-
sponding pseudodifferential operator (with respect to Riemannian geometry of the sphere)
is preserved. For more details the interested reader is referred to, e.g., [29], [38].

2.4 Spherical Harmonics

We next introduce the most commonly used harmonic functions for representing scalar
functions on a spherical surface, namely the spherical harmonics. They form a complete
orthonormal system in the Hilbert space L2(Ω), and thus can be used for the construction
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2 Preparatory Material

of Fourier series in L2(Ω). Spherical harmonics constitute the classical tool in gravita-
tional field determination, they are used extensively in the gravitational and magnetic
applications involving Laplace’s equation. Important results of the theory of spherical
harmonics are the addition theorem and the formula of Funk and Hecke. The addition
theorem shows the relation between spherical harmonics and Legendre polynomials, i.e.,
zonal functions on the sphere. The connection between the addition theorem and the
orthogonal invariance of the sphere is established by the Funk–Hecke formula. For more
details the reader is referred to [14], [38].

Spherical harmonics are defined as restrictions of homogeneous harmonic polynomials.
Given a homogeneous harmonic polynomial Hn : R3 → R of degree n, the restriction
Yn = Hn|Ω is called a spherical harmonic of degree n. The space of all spherical harmonics
of degree n is denoted by Harmn(Ω). This space is of dimension 2n+ 1, i.e.,

d(Harmn(Ω)) = 2n+ 1. (2.29)

Spherical harmonics of different degrees are orthogonal in the sense of the L2(Ω)- inner
product

(Yn, Ym)L2(Ω) =

∫
Ω
Yn(ξ)Ym(ξ)dω(ξ) = 0, n 6= m. (2.30)

Using the standard method of separation and observing the homogeneity we have
Hn(x) = rnYn(ξ), x = rξ, r = |x|, ξ ∈ Ω. From the identity

1

r2

(
d

dr

)
r2 d

dr
rn = n(n+ 1)r(n−2) (2.31)

it follows in connection with the harmonicity of Hn that

0 = ∆xHn(x) = r(n−2)n(n+ 1)Yn(ξ) + r(n−2)∆∗ξYn(ξ). (2.32)

This means that any spherical harmonic Yn, n ∈ N0, is an infinitely often differentiable
eigenfunction of the Beltrami operator, corresponding to the eigenvalue
−n(n+ 1), n ∈ N0. More explicitly,

∆∗ξYn(ξ) = (∆∗)∧(n)Yn(ξ), ξ ∈ Ω, Yn ∈ Harmn(Ω), (2.33)

where the ’spherical symbol’ {(∆∗)∧(n)}n∈N0 of the operator ∆∗ is given by

(∆∗)∧(n) = −n(n+ 1), n = 0, 1, .... (2.34)

A special class of functions, which are members of the class of radial basis functions, are
the Legendre polynomials. They can be defined via the Legendre operator

Lt = (d/dt)(1− t2)(d/dt),
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2.4 Spherical Harmonics

which is the ’longitude-independent part’ of the Beltrami operator. In doing so, the Leg-
endre polynomial Pn : [−1,+1] → R of degree n is the (uniquely defined) infinitely often
differentiable eigenfunction of the Legendre operator Lt, corresponding to the eigenvalue
−n(n+ 1), i.e.,

LtPn(t) = −n(n+ 1)Pn(t), t ∈ [−1,+1], (2.35)

which satisfies Pn(1) = 1. It is well–known that the Legendre polynomials are orthogonal
with respect to the L2([−1,+1])−inner product, i.e.,∫ +1

−1
Pn(t)Pm(t)dt =

2

2n+ 1
δn,m, (2.36)

where δn,m is the Kronecker symbol. The Legendre polynomial Pn has the explicit repre-
sentation

Pn(t) =

[n/2]∑
s=0

(−1)s
(2n− 2s)!

2n(n− 2s)!(n− s)!s!
tn−2s, t ∈ [−1,+1]. (2.37)

Furthermore, we have

Pn(t) =
1

2nn!

( d
dt

)n
(t2 − 1)n, t ∈ [−1,+1], (2.38)

which is known as Rodrigues’ formula. The Legendre polynomial Pn, seen as zonal function
of the sphere Pn(ξ·), is the only spherical harmonic of degree n that is invariant with respect
to orthogonal transformations which leave ξ fixed. The system {Pn}n∈N0 of all Legendre
polynomials is closed and complete in L2([−1,+1]), with respect to

∥∥ · ∥∥
L2[−1,+1]

.

The Legendre transform G 7→ (LT )(G), G ∈ L1[−1,+1] is defined by

(LT )(G)(n) = G∧(n) = G
∧L2[−1,+1](n) = (G,Pn)L2[−1,+1]. (2.39)

The series
∞∑
n=0

2n+ 1

4π
G∧(n)Pn, (2.40)

is called the Legendre expansion of G (with Legendre coefficients G∧(n), n = 0, 1, ...). For
all G ∈ L2[−1,+1] we have

lim
N→∞

∥∥G− N∑
n=0

2n+ 1

4π
G∧(n)Pn

∥∥
L2[−1,+1]

= 0. (2.41)

This property in L2[−1,+1] is equivalent to the Parseval identity

(G,G)L2[−1,+1] =

∞∑
n=0

2n+ 1

4π
(G∧(n))2, G ∈ L2[−1,+1]. (2.42)
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By {Yn,k}k=1,...,2n+1 we denote a (maximal) complete orthonormal system in the space
Harmn(Ω) with respect to (·, ·)L2(Ω). The following theorem, known as the addition the-
orem for spherical harmonics, relates functions on the unit sphere (spherical harmonics)
of degree n to the univariate functions defined on the interval [−1,+1] (Legendre polyno-
mials).

Theorem 2.4.1. (Addition Theorem) Let {Yn,k}k=1,...,2n+1 be an orthonormal system of
spherical harmonics with respect to (·, ·)L2(Ω) in Harmn(Ω). Then

2n+1∑
k=1

Yn,k(ξ)Yn,k(η) =
2n+ 1

4π
Pn(ξ · η), ξ, η ∈ Ω. (2.43)

In connection with the Cauchy-Schwarz inequality we obtain as a consequence of the
addition theorem

2n+1∑
k=1

|Yn,k(ξ)|2 =
2n+ 1

4π
(2.44)

and
|Pn(t)| ≤ Pn(1) = 1, t ∈ [−1,+1]. (2.45)

It should be remarked that there exist infinitely many L2(Ω)-orthonormal systems in
Harmn(Ω) (for more details see, e.g., [38]). One example, usually used in the geosciences,
is the system of fully normalized spherical harmonics in terms of Legendre functions
(cf., e.g., [50]). Consider the 2n+ 1 functions, expressed in polar coordinates (2.18)

Yn,k(ξ) = cn,kP
|k|
n (t) cos(kφ), k = −n, ..., 0. (2.46)

Yn,k(ξ) = cn,kP
|k|
n (t) sin(kφ), k = 1, ..., n. (2.47)

where the normalization coefficients cn,k are given by

cn,k =

√
(2− δ0,k)

2n+ 1

4π

(n− |k|)!
(n+ |k|)!

and P kn denotes the associated Legendre functions of degree n and order k

P kn (t) = (1− t2)k/2
( d
dt

)k
Pn(t),

k = 0, ..., n, t ∈ [−1,+1]. For example the Earth Gravity Models EGM96 and EGM2008
are given as expansions in terms of fully–normalized spherical harmonics (see [63], [53]).
From the numerical point of view it is important that there exist stable algorithms for the
calculation of Legendre polynomials, Legendre functions and spherical harmonics (cf., e.g.,
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2.4 Spherical Harmonics

[12]). These algorithms are based on three–term recurrence formulas. Representatives of
such recurrence formulas are, for example for Legendre polynomials,

nPn(t) + (2n− 1)Pn−1(t) + (n− 1)Pn−2(t) = 0, (2.48)

and for their derivatives,

(n− k)P (k)
n (t)− tP (k+1)

n (t) + P
(k+1)
n−1 (t) = 0, (2.49)

where P0(t) = 1 and P1(t) = t. Equivalent formulas exist for Legendre functions P kn (t),
and thus for spherical harmonics. Based on these formulas, fast and stable algorithms can
be derived for the evaluation of finite series of Legendre polynomials, Legendre functions
and spherical harmonics (see, e.g., [11]).

For t ∈ [−1, 1] and all h ∈ (−1, 1)

∞∑
n=0

Pn(t)hn =
1√

1 + h2 − 2ht
. (2.50)

If x = |x|ξ, y = |y|η, where ξ, η ∈ Ω, since

|x− y|2 = (|x|2 + |y|2 − 2|x||y|(ξ · η)) = |y|2
( |x|2
|y|2

+ 1− 2
|x|
|y|
ξ · η

)
, (2.51)

we have for the fundamental solution of the Laplace’s equation the following expression

1

|x− y|
=

1

|y|

(
1 +

(
|x|
|y|

)2

− 2
|x|
|y|
ξ · η

)−1/2

. (2.52)

Choosing t = ξ · η and h = |x|
|y| we find from (2.50) for |x| < |y| (or equivalently |x||y| < 1)

1

|x− y|
=

1

|y|

∞∑
n=0

( |x|
|y|
)n
Pn(ξ · η). (2.53)

For 0 ≤ h < 1 and t ∈ [−1, 1] the following series representation can be derived from
(2.50)

∞∑
n=0

(2n+ 1)Pn(t)hn =
1− h2

(1 + h2 − 2ht)3/2
. (2.54)

For F ∈ L2(Ω), the series
∞∑
n=0

2n+1∑
k=1

F∧(n, k)Yn,k (2.55)
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is called the Fourier expansion (or spherical harmonic expansion) of F with Fourier (or
spherical harmonic) coefficients given by

F∧(n, k) =

∫
Ω
F (ξ)Yn,k(ξ)dω(ξ) (2.56)

n = 0, 1, ...; k = 1, ..., 2n+ 1. For all F ∈ L2(Ω) we have

lim
N→∞

∥∥F − N∑
n=0

2n+1∑
k=1

F∧(n, k)Yn,k
∥∥
L2(Ω)

= 0. (2.57)

This property in L2(Ω) is equivalent to the Parseval identity

(F, F )L2(Ω) =
∞∑
n=0

2n+1∑
k=1

(F∧(n, k))2, F ∈ L2(Ω). (2.58)

The recovery of a function F ∈ L2(Ω) by its Fourier expansion (in the sense of
∥∥ · ∥∥

L2(Ω)
)

is equivalent to the following conditions:

(i) (closure) The system {Yn,k}n=0,1,...
k=1,...,2n+1

is closed in L2(Ω), i.e., for any number

ε > 0 and any function F ∈ L2(Ω), there exist coefficients dn,k, such that

∥∥F − N∑
n=0

2n+1∑
k=1

dn,kYn,k
∥∥
L2(Ω)

≤ ε, (2.59)

(ii) (completeness) The system {Yn,k}n=0,1,...
k=1,...,2n+1

is complete in L2(Ω), i.e.,

F ∈ L2(Ω) with F∧(n, k) = 0, for all n, k implies F = 0.

(iii) The system {Yn,k}n=0,1,...
k=1,...,2n+1

, is a Hilbert basis of L2(Ω), i.e.,

span n=0,1,...
k=1,...,2n+1

{Yn,k}
∥∥·∥∥

L2(Ω) = L2(Ω). (2.60)

The closure (and consequently the completeness) in L2(Ω) states that spherical harmonics
are able to represent square-integrable functions on the sphere within arbitrarily given
accuracy in the L2(Ω)-topology. For q ≥ p ≥ 0 we denote by Harmp,...,q(Ω) the space of
all spherical harmonics of degrees n with p ≤ n ≤ q. Because of the orthogonality it is
clear that Harmp,...,q(Ω) may be written as orthogonal direct sum

Harmp,...,q(Ω) =

q⊕
n=p

Harmn(Ω). (2.61)
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2.4 Spherical Harmonics

Harmp,...,q(Ω) is of dimension

q∑
n=p

(2n+ 1). In particular, Harm0,...,m(Ω) denotes the set

of all spherical harmonics of degree ≤ m, and we have

d(Harm0,...,m(Ω)) =

m∑
n=0

(2n+ 1) = (m+ 1)2.

We denote Harm0,...,∞(Ω) simply as Harm(Ω).

For every Yn ∈ Harmn(Ω)

2n+ 1

4π

∫
Ω
Pn(ξ · η)Yn(η)dω(η) = Yn(ξ), ξ ∈ Ω. (2.62)

In other words, the kernel KHarmn(Ω)(·, ·) : Ω× Ω→ R defined by

KHarmn(Ω)(ξ, η) =
2n+ 1

4π
Pn(ξ · η), (ξ, η) ∈ Ω× Ω, (2.63)

represents the (uniquely determined) reproducing kernel in Harmn(Ω).

The connection between spherical harmonics and radial basis functions is established by
the Funk-Hecke formula∫

Ω
G(ξ · η)Yn(η)dω(η) = G∧(n)Yn(ξ), ξ ∈ Ω, G ∈ L1[−1,+1], (2.64)

where the ’Legendre transform’ of G ∈ L1[−1,+1] is given by

G∧(n) = G
∧L2[−1,+1](n) = 2π

∫ +1

−1
G(t)Pn(t)dt. (2.65)

The Funk-Hecke formula founds the basis for the introduction of spherical convolutions
(cf. [6], [7]) which, in turn, are fundamental for the theory of spherical singular integrals
and spherical wavelets. Suppose that F ∈ L2(Ω) and G ∈ L2[−1,+1]. Then the function

G ∗ F =

∫
Ω
G(·η)F (η)dω(η), (2.66)

is called L2(Ω)− spherical convolution of F against G. Two important properties of
spherical convolutions should be listed

• If F ∈ L2(Ω) and G ∈ L2[−1,+1], then G ∗ F is of class L2(Ω), and we have

(G ∗ F )∧(n, k) = G∧(n)F∧(n, k), n = 0, 1, ...; k = 1, ..., 2n+ 1. (2.67)

• If G1, G2 ∈ L2[−1,+1], then the convolution of G1 against G2 is of class C[−1,+1],
and we have

(G1(·η) ∗G2(·η))∧(n) = G∧1 (n)G∧2 (n). (2.68)
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2.5 Inner and Outer Harmonics

We consider a sphere ΩR ⊂ R3 around the origin with radius R > 0. Denote by Ωint
R

and Ωext
R the inner and the outer space of ΩR, respectively. By virtue of the isomorphism

Ω 3 ξ 7→ Rξ ∈ ΩR we can assume functions F : Ω → R to be defined on ΩR. With the
surface measure dωR of ΩR,

dωR = R2dω, (2.69)

we are able to introduce the L2(ΩR) - inner product (·, ·)L2(ΩR) and the associated norm∥∥ · ∥∥
L2(ΩR)

, as usual. Obviously, an L2(Ω) - orthonormal system of spherical harmonics

forms an orthogonal system on ΩR (with respect to (·, ·)L2(ΩR)). More explicitly,

(Yn,k, Yp,q)L2(ΩR) =

∫
ΩR

Yn,k

(
x

|x|

)
Yp,q

(
x

|x|

)
dωR(x) = R2δn,p δk,q. (2.70)

With the relationship ξ → Rξ, the surface gradient ∇∗;R and the Beltrami operator ∆∗;R

on ΩR, respectively, have the representations

∇∗;R = (1/R)∇∗ (2.71)

and
∆∗;R = (1/R2)∆∗. (2.72)

The function spaces defined on Ω have their natural generalizations as spaces of functions
defined on ΩR. We have for example, C(ΩR), Lp(ΩR), etc.
The system of spherical harmonics {Y R

n,k}n=0,1,...
k=1,...,2n+1

, where

Y R
n,k(x) =

1

R
Yn,k

(
x

|x|

)
, x ∈ ΩR, (2.73)

is orthonormal in L2(ΩR)-sense, i.e.,

(Y R
n,k, Y

R
p,q)L2(ΩR) =

∫
ΩR

Y R
n,k(x)Y R

p,q(x)dωR(x) = δn,p δk,q. (2.74)

Moreover,

C(ΩR) = spann=0,1,...
k=1,...,2n+1

(
Y R
n,k

)||·||C(ΩR)

(2.75)

and

L2(ΩR) = spann=0,1,...
k=1,...,2n+1

(
Y R
n,k

)||·||L2(ΩR)

. (2.76)

Next we introduce the inner (outer) harmonics as the solution of the interior (exterior)
Dirichlet problem in Ωint

R (Ωext
R ) corresponding to the L2–boundary values Y R

n,k on ΩR.

26



2.5 Inner and Outer Harmonics

The system {HR
n,k}n=0,1,...

k=1,...,2n+1
of inner harmonics of degree n and order k,

defined by

HR
n,k(x) =

(
|x|
R

)n
Y R
n,k(x), x ∈ R3, (2.77)

satisfies the following properties:

• HR
n,k is of class C(∞)(R3),

• ∆HR
n,k(x) = 0, x ∈ R3,

• HR
n,k|ΩR = Y R

n,k,

•
(
HR
n,k, H

R
p,q

)
L2(ΩR)

=
∫

ΩR
Y R
n,k(x)Y R

p,q(x)dωR(x) = δn,p δk,q.

The system {HR
−n−1,k}n=0,1,...

k=1,...,2n+1
of outer harmonics of degree n and order k,

defined by

HR
−n−1,k(x) =

(
R

|x|

)n+1

Y R
n,k(x), x ∈ R3 \ {0}, (2.78)

satisfies the following properties:

• HR
−n−1,k is of class C(∞)(R3 \ {0}),

• ∆HR
−n−1,k(x) = 0, x ∈ R3 \ {0},

• HR
−n−1,k is regular at infinity, i.e.,∣∣∣HR

−n−1,k(x)
∣∣∣ = O

(
1
|x|

)
, |x| → ∞,∣∣∣∇HR

−n−1,k(x)
∣∣∣ = O

(
1
|x|2

)
, |x| → ∞,

• HR
−n−1,k|ΩR = Y R

n,k,

•
(
HR
−n−1,k, H

R
−p−1,q

)
L2(ΩR)

= δn,p δk,q.

In the case of ΩR = Ω, i.e., R = 1, we have HR
n,k|R=1 = HR

−n−1,k|R=1 = Yn,k for all
n = 0, 1, ...; k = 1, ...., 2n+ 1.

From the addition theorem of spherical harmonics (Theorem 2.4.1) it is easy to derive
the following addition theorems for inner and outer harmonics
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Theorem 2.5.1. (Addition Theorems of Inner and Outer Harmonics).
Let {HR

n,k} and {HR
−n−1,k}, k = 1, ..., 2n + 1 be systems of inner and outer harmonics as

defined before. Then the following identities hold true:

2n+1∑
k=1

HR
n,k(x)Hr

n,k(y) =

2n+ 1

4π

(
|x||y|
Rr

)n
Pn

(
x

|x|
· y
|y|

)
, x, y ∈ R3,

(2.79)

2n+1∑
k=1

HR
−n−1,k(x)Hr

n,k(y) =

2n+ 1

4π

(
R

|x|

)n+1( |y|
r

)n
Pn

(
x

|x|
· y
|y|

)
, x ∈ R3 \ {0}, y ∈ R3,

(2.80)

and

2n+1∑
k=1

HR
−n−1,k(x)Hr

−n−1,k(y) =

2n+ 1

4π

(
Rr

|x||y|

)n+1

Pn

(
x

|x|
· y
|y|

)
, x, y ∈ R3 \ {0}.

(2.81)

In accordance with our above notation Harmn(Ωint
R ) (Harmn(Ωext

R )) denotes the space of
all inner (outer) harmonics of degree n. More explicitly we have

Harmn(Ωint
R ) = spank=1,...,2n+1(HR

n,k) (2.82)

and

Harmn(Ωext
R ) = spank=1,...,2n+1(HR

−n−1,k). (2.83)

Thus we have:

d
(
Harmn(Ωint

R )
)

= d
(
Harmn(Ωext

R )
)

= 2n+ 1. (2.84)

For m ≥ 0 we denote by Harm0,...,m(Ωint
R ) (Harm0,...,m(Ωext

R )) the space of all inner (outer)
spherical harmonics of degree ≤ m. Because of the orthogonality it is clear that

Harm0,...,m(Ωint
R ) =

m⊕
n=0

Harmn(Ωint
R ), (2.85)

d
(
Harm0,...,m(Ωint

R )
)

=

m∑
n=0

(2n+ 1) = (m+ 1)2, (2.86)
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Harm0,...,m(Ωext
R ) =

m⊕
n=0

Harmn(Ωext
R ), (2.87)

and

d
(
Harm0,...,m(Ωext

R )
)

=

m∑
n=0

(2n+ 1) = (m+ 1)2. (2.88)

We denote the space Harm0,...,∞(Ωint
R ) (Harm0,...,∞(Ωext

R )), accordingly defined, simply
as Harm(Ωint

R ) (Harm(Ωext
R )).

At the end of this section concerned with harmonics, we introduce the Kelvin transform
in R3 with respect to the sphere ΩR (cf., for example [51], [68]).

Theorem 2.5.2. Let G ⊂ R3 be a region with 0 /∈ G. Consider a function F defined on
G. Then the function

K(x) =
R

|x|
F

(
R2

|x|2
x

)
, (2.89)

is called the Kelvin transform of F with respect to the sphere ΩR. K is defined on the
region G∗, arising from reflection of G with respect to ΩR, i.e.,

G∗ = {x ∈ R3| R
2

|x|2
x ∈ G}. (2.90)

If F ∈ C(2)(G), F is harmonic in G if and only if the Kelvin transform K is harmonic in
G∗.

It should be noted that the outer harmonics are the Kelvin transforms of the inner har-
monics, and vice versa.

2.6 Fundamental Solution to the Laplacian

The fundamental solution to the Laplacian plays a very important role in describing spline
spaces for the Earth’s gravitational potential approximation procedure. In this section we
summarize some results from classical vector analysis and potential theory, which are of
later use in this thesis.

2.6.1 Integral Theorems for Normal Regions in R3

A region G ∈ R3 is called normal, if the Gauss theorem∫
G
∇x · f(x)dx =

∫
∂G
f(x) · ν(x)dω(x), (2.91)
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is valid for its boundary ∂G, where f : ∂G → R3 is continuously differentiable vector field
and ν denotes the outer (unit) normal field. Given a normal region G ∈ R3, by letting
f = ∇F , F ∈ C(2)(G), we obtain from the Gauss Theorem∫

G
∆xF (x)dx =

∫
∂G

∂F

∂ν
(x)dω(x), (2.92)

where ∂/∂ν denotes the derivative in the direction of the outer (unit normal) field ν.
Consequently, for all functions F ∈ C(1)(G) ∩ C(2)(G) satisfying the Laplace equation
∆F = 0 in G, we have ∫

∂G

∂F

∂ν
(x)dω(x) = 0. (2.93)

Remark: By convention, F ∈ C(1)(G) ∩ C(2)(G) means that F : G → R is continuously
differentiable in G, such that F |G is twice continuously differentiable.

For all vector fields f = F∇G, such that F ∈ C(1)(G), G ∈ C(2)(G), we get from the
Gauss theorem

Theorem 2.6.1. (First Green Theorem) Suppose that G ∈ R3 is a normal region. For
F ∈ C(1)(G), G ∈ C(2)(G) we have∫

G
{F (x)∆xG(x) +∇xF (x) · ∇xG(x)}dx =

∫
∂G
F (x)

∂G

∂ν
(x)dω(x). (2.94)

Taking f = F∇G−G∇F with F,G ∈ C(2)(G), we obtain

Theorem 2.6.2. (Second Green Theorem) Suppose that G ∈ R3 is a normal region. For
F,G ∈ C(2)(G)∫

G
{F (x)∆xG(x)−G(x)∆xF (x)}dx =

∫
∂G

{
F (x)

∂G

∂ν
(x)−G(x)

∂F

∂ν
(x)

}
dω(x). (2.95)

Let y ∈ G be fixed, where G is a region in R3. We are looking for a harmonic function U
in G \ {y}, such that

U(x) = F (|x− y|), x ∈ G \ {y}, (2.96)

i.e., U depends only on the mutual distance of x and y. From the identities

∂

∂xi
F (|x− y|) = F ′(|x− y|)xi − yi

|x− y|
(2.97)

and(
∂

∂xi

)2

F (|x− y|) = F ′′(|x− y|)(xi − yi)2

|x− y|2
+ F ′(|x− y|)

(
1

|x− y|
− (xi − yi)2

|x− y|3

)
, (2.98)
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we easily obtain

∆xF (|x− y|) = F ′′(|x− y|) +
2

|x− y|
F ′(|x− y|) = 0. (2.99)

In other words, F (|x− y|) can be written in the form

F (|x− y|) = C1|x− y|−1 + C2, (2.100)

with some constants C1, C2. By convention, the function

x 7→ F (|x− y|) =
1

4π

1

|x− y|
(2.101)

is called the fundamental solution in R3 with respect to the Laplace operator ∆. An
important property of the fundamental solution of the Laplace operator is given by the
following

Theorem 2.6.3. For a continuous function H in the ball

BR(y) = {x ∈ R3 : |x− y| < R},

such that R > r > 0, we have

lim
r→0
r>0

∫
|x−y|=r

H(x)
∂

∂νx
F (|x− y|)dω(x) = −H(y), (2.102)

and

lim
r→0
r>0

∫
|x−y|=r

H(x)F (|x− y|)dω(x) = 0, (2.103)

where the (unit) normal field ν is directed to the exterior of BR(y).

For proof reader is referred, e.g., to [51].

Next we want to apply the Second Green theorem (for a normal region G with continuously
differentiable boundary ∂G) especially to the functions

F : x 7→ F (x) = 1, x ∈ G, (2.104)

G : x 7→ G(x) = F (|x− y|), x ∈ G \ {y}, (2.105)

where y ∈ R3 is positioned in accordance with the following three cases:
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Case y ∈ G: For sufficiently small ε > 0 we obtain by integration by parts, i.e., the
second Green theorem∫

x∈G
|x−y|≥ε

∆xF (|x− y|)︸ ︷︷ ︸
=0

dx =

∫
x∈∂G

∂

∂νx
F (|x− y|)dω(x) +

∫
x∈G
|x−y|=ε

∂

∂νx
F (|x− y|)dω(x).

(2.106)
In connection with Lemma 2.6.3 we therefore obtain by letting ε→ 0∫

∂G

∂

∂νx
F (|x− y|)dω(x) = 1. (2.107)

Case y ∈ ∂G: Again, by Green’s theorem we obtain for ε > 0

−
∫

x∈G
|x−y|=ε

∂

∂νx
F (|x− y|)dω(x) =

∫
x∈∂G

∂

∂νx
F (|x− y|)dω(x). (2.108)

By letting ε→ 0 we now find in case of a continuously differentiable surface ∂G∫
∂G

∂

∂νx
F (|x− y|)dω(x) =

1

2
. (2.109)

Case y /∈ G: The Second Green theorem now yields∫
G

∆xF (|x− y|)︸ ︷︷ ︸
=0

dx =

∫
∂G

∂

∂νx
F (|x− y|)dω(x). (2.110)

Summarizing all results we obtain

Lemma 2.6.4. Let G ⊂ R3 be a normal region with continuously differentiable boundary
∂G. Then ∫

∂G

∂

∂νx
F (|x− y|)dω(x) =


1 , y ∈ G
1
2 , y ∈ ∂G
0 , y /∈ G

. (2.111)

In other words, the integral is a measure for the ‘solid angle’ subtended by the boundary
∂G at the point y ∈ R3. Lemma 2.6.4 is a special case of the Third Green theorem in R3.

Theorem 2.6.5. (Third Green Theorem)

(i) Let G be a normal region with continuously differentiable boundary ∂G. Suppose that
U : G → R is twice continuously differentiable, i.e., U ∈ C(2)(G). Then we have∫

∂G

{
U(x)

∂

∂νx
F (|x− y|)− F (|x− y|)∂U

∂ν
(x)

}
dω(x)

+

∫
G
F (|x− y|)∆U(x)dx =


U(y) , y ∈ G
1
2U(y) , y ∈ ∂G

0 , y /∈ G
.

(2.112)
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(ii) Let G be a normal region. Suppose that U : G → R is twice continuously differen-
tiable, i.e., U ∈ C(2)(G). Then we have∫

∂G

{
U(x)

∂

∂νx
F (|x− y|)− F (|x− y|)∂U

∂ν
(x)

}
dω(x)

+

∫
G
F (|x− y|)∆U(x)dx = α(y)U(y),

(2.113)

where α(y), y ∈ R3, is the solid angle at y, subtended by the surface ∂G.

For proof the reader is referred to, e.g., [51], [68].
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3 Real Earth Surface Based Methods

In what follows some results from potential theory will be given, generally following the
course of the monograph [33]. We begin our considerations by introducing the concept of
a regular surface.

3.1 Regular Surfaces

Definition 3.1.1. A surface Σ ⊂ R3 is called a C(k)-regular surface, if it satisfies the
following properties:

(i) Σ divides R3 into the bounded region Σint (inner space) and unbounded region Σext

(outer space) defined by Σext = R3 \ Σint, Σint = Σint ∪ Σ.

(ii) Σ is a closed and compact surface free of double points.

(iii) The origin 0 is contained in Σint.

(iv) Σ is locally a C(k)-surface (i.e., every point x ∈ Σ has an open neighborhood U ⊂ R3

such that Σ∩ U has a parametrization which is k-times continuously differentiable).

Definition 3.1.2. A C(2)-regular surface is simply called a regular surface.

Note that the C(k)-regularity conditions on the surface Σ imply that the surface Σ has a
k-times continuously differentiable outer unit normal. This outer unit normal (pointing by
convention into the outer space Σext) in the point x ∈ Σ is denoted by ν(x). Georelevant
regular surfaces are for example, the sphere, ellipsoid, (regular) Earth’s surface.
Given a regular surface, there exist a positive constants α, β, such that

α < σinf = inf
x∈Σ
|x| ≤ sup

x∈Σ
|x| = σsup < β. (3.1)

As usual, Aint, Bint (resp. Aext, Bext) denote the inner (resp. outer) space of the sphere
A resp. B around the origin with radius α resp. β. A is a so–called ’Runge sphere’ for
Σext, and B is a so-called ’Runge sphere’ for Σint. Σint

inf , Σint
sup (resp. Σext

inf , Σext
sup) denote
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3 Real Earth Surface Based Methods

Figure 3.1: The geometric concept of a regular surface

the inner (resp. outer) space of the sphere Σinf (resp. Σsup) around the origin with radius
σinf (resp. σsup).

Let Σ be a regular surface in the sense of Definition 3.1.2. The set

Σ(τ) = {x ∈ R3|x = y + τν(y), y ∈ Σ}, (3.2)

generates a parallel surface which is exterior to Σ for τ > 0 and interior for τ < 0. It is
well known from differential geometry (see, e.g., [60]), that if |τ | is sufficiently small, then
the surface Σ(τ) is regular, and the normal to one parallel surface is a normal to the other.

Let Σ be a regular surface. Then the functions

(x, y) 7→ |ν(x)− ν(y)|
|x− y|

, (x, y) ∈ Σ× Σ, x 6= y, (3.3)

and

(x, y) 7→ |ν(x) · (x− y)|
|x− y|2

, (x, y) ∈ Σ× Σ, x 6= y, (3.4)

are bounded. Hence, there exists a constant M > 0 such that

|ν(x)− ν(y)| ≤M |x− y| (3.5)

and
|ν(x) · (x− y)| ≤M |x− y|2, (3.6)
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for all (x, y) ∈ Σ× Σ.

Definition 3.1.3. A C(k,µ)-regular surface Σ ⊂ R3 with µ ∈ (0, 1) is a locally C(k)-
regular surface, where every point x ∈ Σ has a neighborhood U ⊂ R3, such that Σ ∩ U has
a parametrization which is k-times µ- Hölder continuously differentiable.

3.2 Function Spaces

Next we introduce some spaces of potentials that are of particular importance for gravi-
tational field theory related to a regular surface Σ (such as the real Earth’s surface).
For Σ being a regular surface we define two classes of potentials, namely

• Pot(Σint) as the space of all functions U in C(2)(Σint) satisfying the Laplace equation
in the inner space Σint of Σ, i.e.,

Pot(Σint) = {U ∈ C(2)(Σint)|∆U = 0}. (3.7)

• Pot(Σext) as the space of all functions U in C(2)(Σext) satisfying the Laplace equation
in the outer space Σext and being regular at infinity (that is, |U(x)| = O(|x|−1),
|∇U(x)| = O(|x|−2) for |x| → ∞ uniformly with respect to all directions ξ = x

|x|).
In brief,

Pot(Σext) = {U ∈ C(2)(Σext)|∆U = 0 and U regular at infinity}. (3.8)

For k = 0, 1, ... we denote by Pot(k)(Σint) the space of all functions U ∈ C(k)(Σext) such
that U |Σint is of class Pot(Σint). Analogously, Pot(k)(Σext) is the space of all functions
U ∈ C(k)(Σext) such that U |Σext is of class Pot(Σext). In shorthand notation,

Pot(k)(Σint) = Pot(Σint) ∩ C(k)(Σint) (3.9)

and
Pot(k)(Σext) = Pot(Σext) ∩ C(k)(Σext). (3.10)

Let U be of class Pot(0)(Σint). Then the maximum/minimum principle of potential theory
(see, e.g., [51], [68]) for the inner space Σint states

sup
x∈Σint

|U(x)| ≤ sup
x∈Σ
|U(x)|. (3.11)

Let U be of class Pot(0)(Σext). Then the maximum/minimum principle for the outer space
Σext gives

sup
x∈Σext

|U(x)| ≤ sup
x∈Σ
|U(x)|. (3.12)
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A function U possessing µ–Hölder continuous derivatives of k-th order is said to be of class
C(k,µ). We let

Pot(k,µ)(Σint) = Pot(Σint) ∩ C(k,µ)(Σint) (3.13)

and

Pot(k,µ)(Σext) = Pot(Σext) ∩ C(k,µ)(Σext). (3.14)

Of particular importance for our considerations is the space C(0,µ)(Σ) of all µ-Hölder
continuous functions on Σ, µ ∈ (0, 1). We discuss some properties of C(0,µ)(Σ) in more
detail. For µ′ ≤ µ we have

C(0,µ)(Σ) ⊂ C(0,µ′)(Σ). (3.15)

C(0,µ)(Σ) is a non-complete normed space with respect to the norm

||F ||C(0)(Σ) = sup
x∈Σ
|F (x)| , (3.16)

and a Banach space with respect to the norm

||F ||C(0,µ)(Σ) = sup
x∈Σ
|F (x)|+ sup

x,y∈Σ
x 6=y

|F (x)− F (y)|
|x− y|µ

. (3.17)

For µ′ ≤ µ and F ∈ C(0,µ)(Σ), there exists a positive constant A = A(µ′, µ)

||F ||C(0,µ′)(Σ) ≤ A||F ||C(0,µ)(Σ). (3.18)

C(0,µ)(Σ) is a non-complete normed space with respect to the norm || · ||C(0,µ′)(Σ), for

µ′ ≤ µ. For F,H ∈ C(0,µ)(Σ) it is easy to verify that

||FH||C(0)(Σ) ≤ ||F ||C(0)(Σ)||H||C(0)(Σ), (3.19)

and

||FH||C(0,µ)(Σ) ≤ ||F ||C(0,µ)(Σ)||H||C(0)(Σ) + ||F ||C(0)(Σ)||H||C(0,µ)(Σ)

≤ 2||F ||C(0,µ)(Σ)||H||C(0,µ)(Σ). (3.20)

In C(0,µ)(Σ) we have the inner product

(F,H)L2(Σ) =

∫
Σ
F (x)H(x)dω(x), (3.21)

where dω denotes the surface element. The inner product (·, ·)L2(Σ) implies the norm

||F ||L2(Σ) = ((F, F )L2(Σ))
1/2. (3.22)
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The space (C(0,µ)(Σ), (·, ·)L2(Σ)) is a pre-Hilbert space. For every F ∈ C(0,µ)(Σ) we have
the norm estimate

||F ||L2(Σ) ≤
√
||Σ|| · ||F ||C(0)(Σ) ≤

√
||Σ|| · ||F ||C(0,µ)(Σ), (3.23)

where

||Σ|| =
∫

Σ
dω(x). (3.24)

L2(Σ) is the completion of C(0)(Σ) and of C(0,µ)(Σ) with respect to the norm || · ||L2(Σ).

3.3 Boundary Value Problems

In accordance with previous notations we first introduce the classical boundary value prob-
lems of potential theory.

Interior Dirichlet Problem (IDP) Given F ∈ C(0)(Σ), find U ∈ Pot(0)(Σint) such
that U−Σ = F , where

U−Σ = lim
τ→0
τ>0

U(x− τν(x)) = F (x), x ∈ Σ. (3.25)

Exterior Dirichlet Problem (EDP) Given F ∈ C(0)(Σ), find U ∈ Pot(0)(Σext) such
that U+

Σ = F , where

U+
Σ = lim

τ→0
τ>0

U(x+ τν(x)) = F (x), x ∈ Σ. (3.26)

Interior Neumann Problem (INP) Given F ∈ C(0)(Σ), find U ∈ Pot(1)(Σint) such that
∂U−

∂νΣ
= F , where

∂U−

∂νΣ
= lim

τ→0
τ>0

ν(x) · (∇U)(x− τν(x)) = F (x), x ∈ Σ. (3.27)

Exterior Neumann Problem (ENP) Given F ∈ C(0)(Σ), find U ∈ Pot(1)(Σext) such

that ∂U+

∂νΣ
= F , where

∂U+

∂νΣ
= lim

τ→0
τ>0

ν(x) · (∇U)(x+ τν(x)) = F (x), x ∈ Σ. (3.28)

Henceforth we restrict ourselves to the geoscientifically (more) relevant exterior boundary
value problems.
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Let D+ (more accurately, D+
Σ) denote the set

D+ =
{
U+

Σ

∣∣∣ U ∈ Pot(0)(Σext)
}
. (3.29)

The solution of (EDP) is always uniquely determined, hence, D+ = C(0)(Σ). It can be
formulated in terms of a potential of the form

U(x) =

∫
Σ
Q(y)

∂

∂ν(y)

1

|x− y|
dω(y) +

1

|x|

∫
Σ
Q(y)dω(y), Q ∈ C(0)(Σ), (3.30)

where Q satisfies the integral equation

F (x) = U+
Σ (x) = 2πQ(x) +

1

|x|

∫
Σ
Q(y)dω(y) +

∫
Σ
Q(y)

∂

∂ν(y)

1

|x− y|
dω(y). (3.31)

It is shown ([33]) that

L2(Σ) = D+||·||L2(Σ) = C(0)(Σ)
||·||L2(Σ) . (3.32)

Let N+ (more accurately, N+
Σ ) denote the set

N+ =

{
∂U+

∂νΣ

∣∣∣U ∈ Pot(1)(Σext)

}
. (3.33)

The solution of (ENP) is always uniquely determined, hence, N+ = C(0)(Σ). It can be
formulated in terms of a potential of the form

U(x) =

∫
Σ
Q(y)

1

|x− y|
dω(y), Q ∈ C(0)(Σ), (3.34)

where Q satisfies the integral equation

F (x) =
∂U+

∂νΣ
(x) = −2πQ(x) +

∂

∂ν(x)

∫
Σ
Q(y)

1

|x− y|
dω(y). (3.35)

It is shown ([33]) that

L2(Σ) = N+||·||L2(Σ) . (3.36)

Of a special importance for our approach to gravitational potential determination
from georelevant data on the real Earth’s surface, is the exterior oblique boundary–value
problem. In fact, it plays an important part in Earth sciences, particularly in geodetic
and geophysical applications. For example, the determination of the gravitational field
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Figure 3.2: The gravity gradient

in the Earth’s exterior using the (magnitudes of the) gravity gradients g(x)(= −λ(x))
(see Figure 3.2) as boundary values on the Earth’s surface Σ, leads to an exterior oblique
boundary–value problem, since the actual surface of the Earth does not coincide with the
equipotential surface of the geoid.

Note that
g(x) · (−ν(x)) = (−λ(x)) · (−ν(x)) = λ(x) · ν(x), x ∈ Σ. (3.37)

Next we present the essential aspects of this problem.

Exterior Oblique Derivative Problem (EODP)

Let Σ be a C(2,µ)-regular surface with µ ∈ (0, 1). Given F ∈ C(0,µ)(Σ), find a function
U ∈ Pot(1,µ)(Σext), satisfying the boundary condition

∂U+

∂λ
(x) = lim

τ→0
τ>0

λ(x) · (∇U)(x+ τλ(x)) = F (x), x ∈ Σ, (3.38)

where λ (more accurately, λΣ) is C(1,µ)-vector field on Σ with |λ(x)| = 1 satisfying

inf
x∈Σ

(λ(x) · ν(x)) > 0. (3.39)

Remark: If the field λ coincides with the normal field ν on Σ, Equation (3.38) becomes
the boundary condition of the classical exterior Neumann problem.
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Provided that both the boundary and the boundary values are of sufficient smoothness,
the oblique derivative problem can be solved by well-known integral equation methods
using the potential of a single layer.
For surfaces that fulfill the smoothness conditions, the uniqueness of a solution can be
proven with the help of the extremum principle of Zaremba and Giraud (cf. [5], [58]) com-
bined with the regularity condition at infinity imposed on the elements of Pot(1,µ)(Σext).
The proof of the existence of a solution uses a single layer potential

U(x) =

∫
Σ
Q(y)

1

|x− y|
dω(y), Q ∈ C(0,µ)(Σ). (3.40)

Observing the discontinuity of the directional derivative of the single layer potential, from
(3.38) we obtain for each Q ∈ C(0,µ)(Σ) and all points x ∈ Σ

− 2πQ(x)(λ(x) · ν(x)) +

∫ ∗
Σ
Q(y)

1

∂λ(x)

1

|x− y|
dω(y) = F (x). (3.41)

The resulting integral equation (3.41) for F ∈ C(0,µ)(Σ) is of singular type since the in-
tegral with the asterisk exists only in the sense of Cauchy’s principal value. However,
Miranda [58] has shown, for λ satisfying (3.39), all standard Fredholm theorems are still
valid. As is well-known ([5]), the homogeneous integral equation corresponding to (3.41)
has no solution other than Q = 0. Thus, the solution of the oblique derivative problem
with boundary condition (3.38), exists and can be represented by a single layer potential
(3.40). For more details the reader is referred to [18].
All in all, we are confronted with the following situation:

Let L+ (more accurately L+
Σ) denote the set

L+ =

{
∂U

∂λΣ
|U ∈ Pot(1,µ)(Σext), λ is a C(1,µ)-unit vector field on Σ , s.t. (3.39) is valid

}
.

(3.42)
The solution to (EODP) is always uniquely determined, hence, L+ = C(0,µ)(Σ).
It can be formulated in terms of a potential of the form

U(x) =

∫
Σ
Q(y)

1

|x− y|
dω(y), Q ∈ C(0,µ)(Σ), (3.43)

where Q satisfies the integral equation

F (x) =
∂U+

∂λ
(x) = −2πQ(x)(λ(x) · ν(x)) +

∫ ∗
Σ
Q(y)

∂

∂λ(x)

1

|x− y|
dω(y). (3.44)

It shows that
L2(Σ) = L+||·||L2(Σ) . (3.45)
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3.4 Regularity Theorems

In the context of the space C(0)(Σ) we are able to formulate regularity theorems.
From maximum/minimum principle of potential theory we already know that

sup
x∈Σext

|U(x)| ≤ sup
x∈Σ

∣∣U+
Σ (x)

∣∣ , (3.46)

holds for all U ∈ Pot(0)(Σext). Moreover, from the theory of integral equations, it follows
that for U ∈ Pot(1)(Σext) there exists a constant C, such that

sup
x∈Σext

|U(x)| ≤ C sup
x∈Σ

∣∣∣∣∂U+

∂νΣ
(x)

∣∣∣∣ . (3.47)

Moreover, regularity theorems can be verified in the L2(Σ) context.

Theorem 3.4.1. Let U be of class Pot(0)(Σext). Then there exists a constant
C(= C(k,K,Σ)) such that

sup
x∈K

∣∣∣∇(k)U(x)
∣∣∣ ≤ C (∫

Σ

∣∣U+
Σ (x)

∣∣2 dω(x)

)1/2

, (3.48)

for all K ⊂ Σext with dist(K,Σ) > 0 and for all k ∈ N0.

Theorem 3.4.2. Let U be of class Pot(1)(Σext). Then there exists a constant
C(= C(k,K,Σ)) such that

sup
x∈K

∣∣∣∇(k)U(x)
∣∣∣ ≤ C (∫

Σ

∣∣∣∣∂U+

∂νΣ
(x)

∣∣∣∣2 dω(x)

)1/2

, (3.49)

for all K ⊂ Σext with dist(K,Σ) > 0 and for all k ∈ N0.

As an immediate consequence of Theorem 3.4.1, Theorem 3.4.2 and the norm estimate
(2.25) we obtain the following

Corollary 3.4.3. Under the assumptions of Theorem 3.4.1 and Theorem 3.4.2, respec-
tively, we have

sup
x∈K

∣∣∣∇(k)U(x)
∣∣∣ ≤√||Σ|| C sup

x∈Σ

∣∣U+
Σ (x)

∣∣ (3.50)

and

sup
x∈K

∣∣∣∇(k)U(x)
∣∣∣ ≤√||Σ|| C sup

x∈Σ

∣∣∣∣∂U+

∂νΣ
(x)

∣∣∣∣ . (3.51)
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3 Real Earth Surface Based Methods

Similarly, in the context of (exterior) oblique derivative problems, it was proven (see [17]),
that for each vector field U ∈ Pot(1,µ)(Σext) with µ ∈ (0, 1), there exists a constant Cµ > 0,
with

sup
x∈Σext

|∇U(x)| ≤ Cµ
∥∥∥∥ ∂U∂λΣ

(x)

∥∥∥∥
C(0,µ)(Σ)

. (3.52)

Theorem 3.4.4. Let U ∈ Pot(1,µ)(Σext) be the uniquely determined solution of the EODP
corresponding to the boundary values (3.38). Then

sup
x∈K

∣∣∣∇(k)U(x)
∣∣∣ ≤ C (∫

Σ

(
∂U+

∂λΣ
(x)dω(x)

))1/2

, (3.53)

holds for all K ⊂ Σext, with dist(K,Σ) > 0 and all k ∈ N0.

For proof the reader is referred to [33].

3.5 Locally Uniform Runge Approximation

In classical boundary-value problems of potential theory a result first motivated by C.
Runge (1885) and later generalized by J.L. Walsh (1929) is of basic interest. For our
geoscientifically relevant purpose of gravitational potential determination, it may be for-
mulated as follows: Any function V satisfying Laplace’s equation in Σext and regular
at infinity may be approximated by a function U , harmonic outside an arbitrarily given
sphere inside Σint, in the sense that for any given ε > 0, the inequality |V (x)−U(x)| ≤ ε
holds for all points x ∈ R3 outside and on any closed surface completely surrounding the
surface Σ in the outer space. The value ε may be arbitrarily small, and the surrounding
surface may be arbitrarily close to the surface Σ.

In the terminology used in Sections 3.1 and 3.2, the Runge-Walsh theorem states that
any function V ∈ Pot(0)

(
Σext

)
can be approximated in arbitrary accuracy in uniform

sense by a potential U possessing a larger harmonicity domain. The domain of harmonic-
ity of U may be chosen particularly to be the outer space of a ‘Runge sphere’ A, completely
situated in the Earth’s interior, i.e., we may choose U ∈ Pot(∞)

(
Aext

)
. Obviously, this

is a pure existence theorem. Nothing is said about the approximation procedure and the
structure of the approximation.

Assuming that the boundary Σ is a sphere around the origin, however, a constructive
approximation of a potential in the outer space is available, e.g., by means of outer har-
monics. More precisely, in a spherical approximation, a constructive version of the Runge-
Walsh theorem can be established by finite truncations of Fourier expansions in terms of
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3.5 Locally Uniform Runge Approximation

outer harmonics, (see, e.g., [47]).
For every real number ε > 0, any function F ∈ Pot(0)

(
Aext

)
and any compact set K ⊂ Aext

with dist(K,A) > 0, there exists an integer N = N(ε) such that

sup
x∈K

∣∣∣∣∣∣F (x)−
N∑
n=0

2n+1∑
j=1

(F,Hα
−n−1,k)L2(A)H

α
−n−1,k(x)

∣∣∣∣∣∣ ≤ ε. (3.54)

As a matter of fact, the essential steps involved in the Fourier expansion method can
be generalized to a non-spherical, i.e., regular boundary Σ. The main techniques for
establishing these results are the jump relations and limit formulae and their formulations
in the Hilbert space nomenclature of (L2(Σ), || · ||L2(Σ)) (see, e.g., [16], [33]). We restrict
ourselves to the geophysically relevant exterior case.

Lemma 3.5.1. Let Σ be a regular surface such that (3.1) holds true. Then the following
statements are valid:

(i) (Hα
−n−1,k|Σ)n=0,1,...

k=1,...,2n+1
is linearly independent,

(ii)
(
∂Hα
−n−1,k

∂νΣ

)
n=0,1,...
k=1,...,2n+1

is linearly independent.

For the proof the reader is referred to [16], [33].

Theorem 3.5.2. Let Σ be a regular surface such that (3.1) holds true. Then the following
statements are valid:

(i) (Hα
−n−1,k|Σ)n=0,1,...

k=1,...,2n+1
is complete in L2(Σ) = D+||·||L2(Σ),

(ii)
(
∂Hα
−n−1,k

∂νΣ

)
n=0,1,...
k=1,...,2n+1

is complete in L2(Σ) = N+||·||L2(Σ).

For the proof the reader is referred to [16], [33].

From functional analysis we know that the properties of completeness and closure are
equivalent in a Hilbert space such as L2(Σ). This leads us to the following corollary.

Corollary 3.5.3. Under the assumptions of Theorem 3.5.2 the following statements are
valid:

(i) (Hα
−n−1,k|Σ)n=0,1,...

k=1,...,2n+1
is closed in L2(Σ), i.e., for given F ∈ L2(Σ) and arbitrary

ε > 0 there exists a linear combination

Hm =
m∑
n=0

2n+1∑
k=1

an,kH
α
−n−1,k|Σ, (3.55)
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3 Real Earth Surface Based Methods

such that
||F −Hm||L2(Σ) ≤ ε. (3.56)

(ii)
(
∂Hα
−n−1,k

∂νΣ

)
n=0,1,...
k=1,...,2n+1

is closed in L2(Σ), i.e., for given F ∈ L2(Σ) and arbitrary

ε > 0 there exists a linear combination

Sm =
m∑
n=0

2n+1∑
k=1

an,k
∂Hα
−n−1,k

∂νΣ
, (3.57)

such that
||F − Sm||L2(Σ) ≤ ε. (3.58)

Based on the results on outer harmonics developed in Section 3.5, a large number of
‘polynomial-based’ countable systems of potentials can be shown to have the L2-closure
property on Σ. The best known are ‘mass point representations’, i.e., fundamental solu-
tions of the Laplace operator (see Section 2.6). Their L2-closure is adequately described
by using the concept of ‘fundamental systems’, which we recapitulate briefly for the case
of regular surfaces.

Definition 3.5.4. A sequence Y = (yn)n=0,1,... ⊂ Σint of points of the inner space Σint

(with yn 6= yl for n 6= l) is called a fundamental system in Σint if the following properties
are satisfied

(i) dist(Y,Σ) > 0,

(ii) for each U ∈ Pot(Σint) the conditions U(yn) = 0 for n = 0, 1, ... imply U = 0 in
Σint.

Some examples of fundamental systems should be listed for the inner space Σint.
Y = (yn)n=0,1... is, for example, a fundamental system in Σint if it is a dense set of
points of one of the following subsets of Σint:

(i) region Ξint with Ξint ⊂ Σint,

(ii) boundary ∂Ξint of a region Ξint with Ξint ⊂ Σint.

Theorem 3.5.5. Let Σ be a regular surface such that (3.1) holds true. Then the following
statements are valid:

(i) For every fundamental system Y = (yn)n=0,1... in Σint the system(
x 7→ |x− yn|−1, x ∈ Σ

)
n=0,1...

(3.59)

is closed in L2(Σ) = D+L
2(Σ)

.
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3.5 Locally Uniform Runge Approximation

Figure 3.3: Region Ξint inside Σ

(ii) For every fundamental system Y = (yn)n=0,1... in Σint the system(
x 7→ ∂

∂ν(x)
|x− yn|−1, x ∈ Σ

)
n=0,1...

(3.60)

is closed in L2(Σ) = N+L
2(Σ)

.

For proof the reader is referred to [16], [33]. Besides outer harmonics and mass poles
there are other countable systems of potentials satisfying the properties of completeness
and closure in L2(Σ). The systems generated by superposition (i.e., infinite clustering)
of outer harmonics, turn out to be particularly suitable for numerical purposes (see e.g.,
[26], [27]).

Theorem 3.5.6. Let Σ be a regular surface such that (3.1) is satisfied. Consider the
kernel function

K(x, y) =
∞∑
k=0

2k+1∑
l=1

K∧(k)Hα
k,l(y)Hα

−k−1,l(x)

=
α

|x|

∞∑
k=0

2k + 1

4πα2
K∧(k)

(
|y|
|x|

)k
Pk

(
x

|x|
· y
|y|

)
,

(3.61)

y ∈ Aint, x ∈ Aext. Let Y = (yn)n=0,1... be a fundamental system in Σint
inf with

α = sup
y∈Y
|y| < α < σinf = inf

x∈Σ
|x|. (3.62)
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3 Real Earth Surface Based Methods

Suppose that
∞∑
k=0

(2k + 1)
∣∣K∧(k)

∣∣ (α
α

)k
<∞, (3.63)

with K∧(k) 6= 0 for k = 0, 1, .... Then the following statements are valid:

(i) The system
(x 7→ K(x, yn), x ∈ Σ)n=0,1,... (3.64)

is closed in L2(Σ) = D+L
2(Σ)

.

(ii) The system

(x 7→ ∂

∂ν(x)
K(x, yn), x ∈ Σ)n=0,1,... (3.65)

is closed in L2(Σ) = N+L
2(Σ)

.

Examples of kernel representations (3.61) are easily obtainable from known series expan-
sions in terms of Legendre polynomials (see, e.g., [54]).

With the help of the Kelvin transform (2.89), analogous arguments hold for fundamental
system in Σext.
Applying the Kelvin transform with respect to the sphere A around origin with radius α,
we are led to systems (see [32], [39])(

K(x, yn)|x ∈ Σext
)
n=0,1,...

(3.66)

with

K(x, y) =
∞∑
k=0

2k+1∑
l=1

K∧(k)Hα
−k−1,l(x)Hα

−k−1,l(y)

=
∞∑
k=0

2k + 1

4πα2
K∧(k)

(
α2

|x||y|

)k+1

Pk

(
x

|x|
· y
|y|

)
, x ∈ Σext, y ∈ Y ⊂ Σext

inf ,

(3.67)

where Y = (yn)n=0,1,... is the point system generated by Y by letting

yn =
α2

|yn|2
yn, n = 0, 1, ... (3.68)

(thereby assuming that 0 /∈ Y ). Note that our assumptions above imply the estimate

∞∑
k=0

(2k + 1)
∣∣K∧(k)

∣∣ (α
α

)k
<∞, (3.69)
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3.5 Locally Uniform Runge Approximation

where α is given by

α = inf
y∈Y
|y| > α. (3.70)

Theorem 3.5.7. Suppose that Y = (yn)n=0,1,... is given as described above. Let K(x, y)
be given by (3.67) with coefficients K∧(k) 6= 0 for k = 0, 1, ... satisfying (3.69). Then the
following properties hold true:

(i) The system

(x 7→ K(x, yn), x ∈ Σ)n=0,1,... (3.71)

is closed in L2(Σ) = D+L
2(Σ)

.

(ii) The system

(x 7→ ∂

∂ν(x)
K(x, yn), x ∈ Σ)n=0,1,... (3.72)

is closed in L2(Σ) = N+L
2(Σ)

.

Combining the L2-closure (Theorem 3.5.2) for the system of outer harmonics and the
regularity theorems (Theorem 3.4.1 and Theorem 3.4.2), we obtain the following

Theorem 3.5.8. Let Σ be a regular surface satisfying the condition (3.1).
(EDP) For given F ∈ C(0)(Σ), let U be the potential of class Pot(0)(Σext), with U+

Σ = F .
Then, for any given value ε > 0 and K ⊂ Σext with dist(K,Σ) > 0, there exist an integer
m = m(ε) and a set of coefficients a0,1, ..., am,1, ..., am,2m+1, such that∫

Σ

∣∣∣∣∣F (x)−
m∑
n=0

2n+1∑
k=1

an,kH
α
−n−1,k(x)

∣∣∣∣∣
2

dω(x)

1/2

≤ ε (3.73)

and

sup
x∈K

∣∣∣∣∣(∇(k)
)
U(x)−

m∑
n=0

2n+1∑
k=1

an,k

(
∇(k)Hα

−n−1,k

)
(x)

∣∣∣∣∣ ≤ Cε (3.74)

hold for all k ∈ N0.
(ENP) For given F ∈ C(0)(Σ), let U satisfy U ∈ Pot(1)(Σext), ∂U+/∂νΣ = F . Then, for
any given value ε > 0 and K ⊂ Σext with dist(K,Σ) > 0, there exist an integer m = m(ε)
and a set of coefficients a0,1, ..., am,1, ..., am,2m+1, such that∫

Σ

∣∣∣∣∣F (x)−
m∑
n=0

2n+1∑
k=1

an,k
∂Hα
−n−1,k

∂ν
(x)

∣∣∣∣∣
2

dω(x)

1/2

≤ ε (3.75)
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and

sup
x∈K

∣∣∣∣∣(∇(k)
)
U(x)−

m∑
n=0

2n+1∑
k=1

an,k

(
∇(k)Hα

−n−1,k

)
(x)

∣∣∣∣∣ ≤ Cε (3.76)

hold for all k ∈ N0.

In other words, locally uniform approximation is guaranteed in terms of outer harmon-
ics, i.e., the L2- approximation in terms of outer harmonics on Σ implies the uniform
approximation (in ordinary sense) on each subset K with positive distance of K to Σ.
The above theorems are non-constructive, since further information about the choice of m
and the coefficients of the approximating linear combination is needed. In order to derive
a constructive approximation theorem the system of potential values and normal deriva-
tives, respectively, has to be orthonormalized on Σ. As a result, we obtain a ‘(generalized)
Fourier expansion’ (orthogonal Fourier approximation) that shows locally uniform approx-
imation (see e.g., [16], [33]). The orthonormalization procedure can be performed (e.g.,
by the well-known Gram-Schmidt orthonormalization process) once and for all when the
regular surface Σ is specified. Furthermore, locally uniform approximation by ‘generalized
Fourier expansions’ can be obtained not only for the multipole system of outer harmonics,
but also for the mass point and related kernel representations.
In what follows we summarize our generalized Fourier approach in

Theorem 3.5.9. Let Σ be a regular surface such that (3.1) holds true.

(EDP) Let (Dn)n=0,1,..., Dn ∈ Pot(0)(Aext), n = 0, 1, ... be a Dirichlet basis in Σext, i.e., a
sequence (Dn)n=0,1,... ⊂ Pot(0)(Aext) satisfying the properties

(i)

spann=0,1,...(Dn|Σ)
||·||L2(Σ) = L2(Σ), (3.77)

(ii)
(Dn|Σ, Dm|Σ)L2(Σ) = δnm. (3.78)

If F ∈ C(0)(Σ), then

lim
m→∞

∫
Σ

∣∣∣∣∣F (x)−
m∑
n=0

(F,Dn)L2(Σ)Dn(x)

∣∣∣∣∣
2

dω(x)

1/2

= 0. (3.79)

The potential U ∈ Pot(0)(Σext), U+
Σ = F , can be represented in the form

lim
m→∞

sup
x∈K

∣∣∣U(x)− U (m)(x)
∣∣∣ = 0, (3.80)
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3.5 Locally Uniform Runge Approximation

with

U (m) =
m∑
n=0

(F,Dn)L2(Σ)Dn, (3.81)

for every K ⊂ Σext with dist(K,Σ) > 0.

(ENP) Let (Nn)n=0,1,..., Nn ∈ Pot(0)(Aext), n = 0, 1, ... be a Neumann basis in Σext, i.e., a
sequence (Nn)n=0,1,... ⊂ Pot(0)(Aext) satisfying the properties

(i)

spann=0,1,...

(
∂Nn

∂νΣ

)||·||L2(Σ)

= L2(Σ), (3.82)

(ii) (
∂Nn

∂νΣ
,
∂Nm

∂νΣ

)
L2(Σ)

= δnm. (3.83)

If F ∈ C(0)(Σ), then

lim
m→∞

∫
Σ

∣∣∣∣∣F (x)−
m∑
n=0

(
F,
∂Nn

∂νΣ

)
L2(Σ)

∂Nn

∂νΣ
(x)

∣∣∣∣∣
2

dω(x)

1/2

= 0. (3.84)

The potential U ∈ Pot(1)(Σext), ∂U
+

∂νΣ
= F , can be represented in the form

lim
m→∞

sup
x∈K

∣∣∣U(x)− U (m)(x)
∣∣∣ = 0, (3.85)

with

U (m) =
m∑
n=0

(
F,
∂Nn

∂νΣ

)
L2(Σ)

Nn, (3.86)

for every K ⊂ Σext with dist(K,Σ) > 0.

Finally, having in mind the regularity theorems (Theorem 3.4.1 and Theorem 3.4.2) for
the classical boundary value problem we get the following

Corollary 3.5.10. Let Σ be a regular surface such that (3.1) is valid.

(EDP) For given F ∈ C(0)(Σ), let U satisfy U ∈ Pot(0)(Σext), U+
Σ = F . Furthermore,
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suppose that (Dn)n=0,1,... is a Dirichlet basis in Σext. Then

sup
x∈K

∣∣∣∣∣(∇(k)U
)

(x)−
m∑
n=0

(F,Dn)L2(Σ)

(
∇(k)Dn

)
(x)

∣∣∣∣∣ (3.87)

≤ C

(
||F ||2L2(Σ) −

m∑
n=0

(F,Dn)2
L2(Σ)

)1/2

,

holds for all k ∈ N0 and all subsets K ⊂ Σext satisfying dist(K,Σ) > 0.

(ENP) For given F ∈ C(0)(Σ), let U satisfy U ∈ Pot(1)(Σext), ∂U
+

∂νΣ
= F . Furthermore,

suppose that (Nn)n=0,1,... is a Neumann basis in Σext. Then

sup
x∈K

∣∣∣∣∣(∇(k)U
)

(x)−
m∑
n=0

(
F,
∂Nn

∂νΣ

)
L2(Σ)

(
∇(k)Nn

)
(x)

∣∣∣∣∣ (3.88)

≤ C

(
||F ||2L2(Σ) −

m∑
n=0

(
F,
∂Nn

∂νΣ

)2

L2(Σ)

)1/2

,

holds for all k ∈ N0 and all subsets K ⊂ Σext satisfying dist(K,Σ) > 0.

Next we turn over to the exterior oblique derivative problem. To this end we consider
the pre-Hilbert space

(
C(0,µ)(Σ), || · ||L2(Σ)

)
. The following theorem gives the necessary

closure condition for the case of the oblique derivative.

Theorem 3.5.11. Let (Dn)n=0,1,... ⊂ Pot(0)(Aext) be a Dirichlet basis in Aext (see Theo-
rem 3.5.9). Then the linear space

spann=0,1,...

(
∂D+

n

∂λΣ

)
(3.89)

is dense in the pre-Hilbert space
(
C(0,µ)(Σ), || · ||L2(Σ)

)
.

Orthonormalizing the system
(
∂D+

n
∂λΣ

)
n=0,1,...

we obtain the following systems:

(i) a closed and complete orthonormal system Dn(Σ; ·)n=0,1,... in the pre-Hilbert space(
C(0,µ)(Σ), || · ||L2(Σ)

)
,
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3.6 Globally Uniform Approximation

(ii) corresponding solutions D̃n(Σ; ·)n=0,1,... to the EODPs D̃n(Σ; ·) ∈ Pot(1,µ)(Σext),
0 < µ < 1, such that

∂D̃n(Σ; ·)
∂λΣ

= Dn(Σ; ·). (3.90)

Furthermore, for U ∈ Pot(1,µ)(Σext), F = ∂U+

∂λΣ
, the orthogonal (Fourier) expansion

∞∑
n=0

(F,Dn(Σ; ·))L2(Σ)
∂D̃n(Σ; ·)
∂λΣ

(3.91)

converges to F (in the sense of || · ||L2(Σ)). From the regularity theorem (Theorem 3.4.4)
it follows that

U(x) =

∞∑
n=0

(F,Dn(Σ; ·))L2(Σ)D̃n(Σ;x), x ∈ K, (3.92)

holds uniformly on each subset K of Σext with a positive distance of K to the boundary
Σ.

3.6 Globally Uniform Approximation

The same results from the previous section remain valid when the regular surface Σ is
replaced by any parallel surface Σ(τ) of distance |τ | to Σ (where |τ | is chosen sufficiently
small). This fact can be exploited to verify the following closure properties (see [16]).

Theorem 3.6.1. Let Σ be a regular surface satisfying (3.1). Then the following statements
are true:

(i)
(
Hα
−n−1,k|Σ

)
is closed in D+ = C(0)(Σ), i.e.,

D+ = span
(
Hα
−n−1,k|Σ

)||·||
C(0)(Σ)

= C(0)(Σ), (3.93)

(ii)
(
∂Hα
−n−1,k

∂νΣ
|Σ
)

is closed in N+ = C(0)(Σ), i.e.,

N+ = span
(
∂Hα
−n−1,k/∂νΣ

)||·||
C(0)(Σ)

= C(0)(Σ). (3.94)

Combining this results with the norm estimates (3.46) and (3.47) we get
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Theorem 3.6.2. Let Σ be a regular surface satisfying (3.1). Then the following state-
ments are valid:

(EDP) For given F ∈ D+ = C(0)(Σ), let U satisfy U ∈ Pot(0)(Σext), U+
Σ = F . Then,

to every ε > 0, there exist an integer m = m(ε) and a finite set of a real numbers an,k
such that

sup
x∈Σext

∣∣∣∣∣U(x)−
m∑
n=0

2n+1∑
k=1

an,kH
α
−n−1,k(x)

∣∣∣∣∣
≤ sup

x∈Σ

∣∣∣∣∣F (x)−
m∑
n=0

2n+1∑
k=1

an,kH
α
−n−1,k(x)

∣∣∣∣∣ ≤ ε.
(3.95)

(ENP) For given F ∈ N+ = C(0)(Σ), let U satisfy U ∈ Pot(1)(Σext), ∂U+/∂νΣ = F .
Then, to every ε > 0, there exist an integer m = m(ε) and a finite set of a real numbers
an,k such that

sup
x∈Σext

∣∣∣∣∣U(x)−
m∑
n=0

2n+1∑
k=1

an,kH
α
−n−1,k(x)

∣∣∣∣∣
≤ C sup

x∈Σ

∣∣∣∣∣F (x)−
m∑
n=0

2n+1∑
k=1

an,k
∂Hα
−n−1,k

∂νΣ
(x)

∣∣∣∣∣ ≤ ε.
(3.96)

Unfortunately, a constructive procedure for determining the best approximation coeffi-
cients an,k in the || · ||C(0)(Σ)-topology seems to be unknown. Therefore, harmonic splines

are introduced on Hilbert subspaces of Pot(0)(Σext), so that the best approximations to
solutions of boundary-value problems can be guaranteed on certain types of Sobolev-like
subspaces of Pot(0)(Σext) (see Chapter 6).

Turning over to EODP we are confronted with the following (cf. [18])

Theorem 3.6.3. Let Σ be a C(2,µ)-regular surface with µ ∈ (0, 1) satisfying (3.1). Then(
∂Hα
−n−1,k

∂λΣ
|Σ
)

is closed in C(0,µ)(Σ), i.e.,

span
(
∂Hα
−n−1,k/∂λΣ

)||·||
C(0,µ)(Σ)

= C(0,µ)(Σ), (3.97)

where µ ∈ (0, 1) and the vector field λ on Σ is required to be C(1,µ), to satisfy |λ| = 1 and
to possess a non-vanishing normal part infx∈Σ λ(x) · ν(x) > 0.

Theorem 3.6.4. Let Σ be a C(2,µ)-regular surface with µ ∈ (0, 1) satisfying (3.1). Then
the following statement is valid:
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3.6 Globally Uniform Approximation

(EODP) For given F ∈ C(0,µ)(Σ) µ ∈ (0, 1), let U satisfy U ∈ Pot(1,µ)(Σext),
∂U+/∂λΣ = F . Then, to every ε > 0, there exists an integer m = m(ε) and a finite
set of real numbers an,k such that

sup
x∈Σext

∣∣∣∣∣U(x)−
m∑
n=0

2n+1∑
k=1

an,kH
α
−n−1,k(x)

∣∣∣∣∣
≤ C

∥∥∥∥∥F (x)−
m∑
n=0

2n+1∑
k=1

an,k
∂Hα
−n−1,k

∂λΣ
(x)

∥∥∥∥∥
C(0,µ)(Σ)

≤ ε.
(3.98)

More general results can be found in [17] and [43].
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4 Real Earth Body Based Strategy

4.1 Geodetic Approach to Gravity and Gravitation

In this thesis we are interested in the determination of (the Earth’s equipotential surfaces
arising from) the Earth’s gravitational potential from georelevant data. As already ex-
plained in the Introduction the exact knowledge of the Earth’s gravitational potential, and
subsequently the equipotential surfaces, especially the geoid, is of enormous importance
in all sciences that contribute to the knowledge of Earth’s processes.
In what follows we present some basic ingredients of the gravitational field theory (for
more details the interested reader is referred to [50]).

The gravity acceleration (gravity) of the Earth is the resultant of the gravitational and

Figure 4.1: The gravitational and the centrifugal force

the centrifugal acceleration (Figure 4.1). The centrifugal force c arises as a result of the
rotation of the Earth about it’s axis (usually the ε3-axis). Considering a rectangular coor-
dinate system whose origin is at the Earth’s center of gravity and z-axis coincides with the
Earth’s mean axis of rotation. The centrifugal force c on a unit mass is given by c = ω2p,
where ω is the angular velocity of the Earth’s rotation and p =

√
x2 + y2 is the distance

from the axis of rotation. It can also be derived from a potential C = 1
2ω

2(x2 +y2) so that
c = ∇C. The gravity potential W of the Earth is the sum of the gravitational potential
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4 Real Earth Body Based Strategy

V , and the centrifugal potential C, i.e.,

W = V + C (4.1)

The gradient vector of W

g = ∇W =

(
∂W

∂x
,
∂W

∂y
,
∂W

∂z

)
(4.2)

is called the gravity vector and we can write

g = ∇W = ∇V +∇C. (4.3)

The surfaces of constant gravity potential are called equipotential surfaces (in geodesy also
known as geopotential surfaces). The geoid is an example of such a surface. Namely, it is
a ’horizontal’ or ’level’ surface, which is everywhere perpendicular to the local direction
of gravity. If there were no ‘disturbations’ in the ocean, it is where the sea surface would
settle in equilibrium. The magnitude of the gravity vector, is the quantity g = |g| called
the gravity intensity (or often just gravity in the narrower sense). It is measured in gals
(1 gal = 1 cm sec−2), the unit being named in honor of Galileo Galilei. The numerical
value of g is about 978 gals at the equator, and 983 gals at the poles. The direction
of the gravity vector is the direction of the plumb line or the vertical, and it is of basic
significance for geodetic and astronomic measurements.

In Newtonian nomenclature, the gravitational potential V of the Earth generated by a
mass-distribution F inside the Earth is given by the volume integral (Newton integral)

V (x) = G

∫
Earth

F (y)

|x− y|
dy, x ∈ R3, (4.4)

where G is the gravitational constant (G = 6.67422 · 10−11m3/(kg s2)) and dy is the
volume element. As is well known (see, e.g., [51]), the gravitational potential of the Earth
corresponding to an integrable and bounded density function F , satisfies the Laplace
equation in the outer space

∆V = 0, (4.5)

and the Poisson equation in the interior space

∆V = −4πF. (4.6)

The Newton integral (4.4) and its first derivatives are continuous everywhere on R3, i.e.,
V ∈ C(1)(R3). The second derivatives are analytic everywhere outside the real Earth
surface, but they have a discontinuity when passing across the surface. Moreover, the
gravitational potential V of the Earth, shows at infinity the following behavior:
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4.2 Newton Potential

(i) |V (x)| = O
(

1
|x|

)
, x→∞,

(ii) |∇V (x)| = O
(

1
|x|2

)
x→∞,

i.e., it is regular at infinity.

In the sequel we discuss the Newton integral in more detail.

4.2 Newton Potential

Let Σ ⊂ R3 be a regular surface. The Newtonian potential V can be expressed by the
integral

V (x) =

∫
Σint

F (y)

|x− y|
dy, x ∈ R3, (4.7)

where F is the density function. For this integral we have

Theorem 4.2.1. Let F : Σint → R be of class C(0)(Σint). Then V : Σext → R given by

V (x) =

∫
Σint

F (y)
1

|x− y|
dy, x ∈ Σext, (4.8)

satisfies the Laplace equation in Σext, i.e.,

∆xV (x) = ∆x

∫
Σint

F (y)
1

|x− y|
dy =

∫
Σint

F (y)∆x
1

|x− y|
dy = 0. (4.9)

Next, we are interested in showing that the Newton integral satisfies the Poisson equa-
tion in Σint, at least under some canonical conditions on the density function F . Our
considerations essentially follow [33], [38].

Theorem 4.2.2. Let F : Σint → R be of class C(0)(Σint). Then V : Σint → R given by

V (x) =

∫
Σint

F (y)
1

|x− y|
dy, x ∈ Σint (4.10)

is of class C(1)(Σint), and we have

∇xV (x) =

∫
Σint

F (y)∇x
1

|x− y|
dy = −

∫
Σint

F (y)
x− y
|x− y|3

dy, x ∈ Σint. (4.11)
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Proof : We replace the fundamental solution of potential theory

S : (x, y) 7→ S(|x− y|), x 6= y,

given by

S(|x− y|) =
1

|x− y|
, (4.12)

by a ‘regularization’ of the form

Sδ(|x− y|) =


1
2δ (3− 1

δ2 |x− y|2), |x− y| ≤ δ

1
|x−y| , |x− y| > δ,

(4.13)

where δ > 0. In other words, by letting r = |x− y|, we replace S(r) = 1
r , by

Sδ(r) =


1
2δ (3− 1

δ2 r
2), r ≤ δ

1
r , r > δ,

. (4.14)

It can be easily seen that Sδ is continuously differentiable for all for all r ≥ 0, and moreover
S(r) = Sδ(r) for all r > δ.
We set

V (x) =

∫
Σint

F (y)S(|x− y|)dy (4.15)

and

VSδ(x) =

∫
Σint

F (y)Sδ(|x− y|)dy. (4.16)

The integrands of V and VSδ differ only in the ball around the point x with radius δ.

Moreover, the function F : Σint → R is supposed to be continuous. Hence, it is uniformly
bounded on Σint by

||F ||
C(Σint)

= sup
x∈Σint

|F (x)|. (4.17)

This shows us that

|V (x)− VSδ(x)| = O

(∫
|x−y|≤δ

(S(|x− y|)− Sδ(|x− y|))dy

)
= O(δ2). (4.18)

Therefore, V is of class C(0)(Σint), as a limit of a uniformly convergent sequence of con-
tinuous functions on Σint. Furthermore we set

v =

∫
Σint

F (y)∇xS(|x− y|)dy (4.19)
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4.2 Newton Potential

and

vSδ(x) =

∫
Σint

F (y)∇xSδ(|x− y|)dy. (4.20)

Note that ∣∣∣∣∇x 1

|x− y|

∣∣∣∣ =

∣∣∣∣− x− y
|x− y|3

∣∣∣∣ =
1

|x− y|2
, (4.21)

so the integrals v and vSδ exist for all x ∈ Σint. It is not difficult to see that

sup
x∈Σint

|v(x)− vSδ(x)| = sup
x∈Σint

|∇V (x)−∇VSδ(x)| = O(δ). (4.22)

Consequently, v is a continuous vector field on Σint. Moreover, as the relation (4.22) holds
uniformly on Σint, we obtain

v(x) = ∇V (x) =

∫
Σint

F (y)∇xS(|x− y|)dy. (4.23)

This is the desired result.
Next we come to the Poisson equation under the assumption of Hölder continuity of the
function F on Σint.

Theorem 4.2.3. Let F : Σint → R be Hölder continuous with exponent α ∈ (0, 1] on Σint.
Then the potential V : Σint → R

V (x) =

∫
Σint

F (y)
1

|x− y|
dy, x ∈ Σint (4.24)

satisfies the Poisson differential equation

∆xV (x) = −4πF (x), (4.25)

for all x ∈ Σint.

Proof : We introduce the function

Hδ(|x− y|) =


1

2δ3 (5− 3
δ2 |x− y|2), |x− y| ≤ δ

1
|x−y|3 , |x− y| > δ,

(4.26)

Setting r = |x− y|, we obtain

Hδ(r) =


1

2δ3 (5− 3
δ2 r

2), r ≤ δ

1
r3 , r > δ,

(4.27)
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thusHδ is continuously differentiable for all r ≥ 0. Moreover, by already known arguments,
it can be shown (cf. Theorem 4.2.2) that the vector field

−
∫

Σint
F (y)(x− y)Hδ(|x− y|)dy. (4.28)

converges uniformly on Σint to the limit field

∇V (x) = −
∫

Σint
F (y)

x− y
|x− y|3

dy. (4.29)

Now for all x ∈ R3 with |x− y| ≤ δ, a simple calculation yields

∇x · ((x− y)Hδ(|x− y|)) =
15

2

(
1

δ3
− |x− y|

2

δ5

)
. (4.30)

Furthermore, ∫
|x−y|≤δ

∇x · ((x− y)Hδ(|x− y|)) = 4π. (4.31)

Hence it is not hard to verify that

−∇x ·
∫

Σint
F (y)(x− y)Hδ(|x− y|)dy

= −
∫
|x−y|≤δ

F (y)∇x · ((x− y)Hδ(|x− y|))dy

= −4πF (x)

+

∫
|x−y|≤δ

(F (x)− F (y))∇x · ((x− y)Hδ(|x− y|))dy.

(4.32)

The Hölder continuity of F then assures the estimate

sup
x∈Σint

∣∣∣∣−∇x · ∫
Σint

F (y)(x− y)Hδ(|x− y|)dy + 4πF (x)

∣∣∣∣ = O(δα). (4.33)

In a analogous way, we are able to show that the first partial derivatives of (4.31) uniformly
converge to continuous limit fields. This shows that ∇V is differentiable in Σint, and we
have

∆x

∫
Σint

F (y)

|x− y|
dy = −4πF (x), (4.34)

as required.
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4.3 L2-decomposition for Regions in R3

4.3 L2-decomposition for Regions in R3

Note that from now on the Earth surface will be understood as a regular surface Σ, and
it’s interior and exterior space, respectively is denoted by Σint and Σext.
We are interested in introducing an appropriate Hilbert space structure on the space of
potentials in Σext, generated by the Newton integral (4.7). In order to accomplish this,
some characterization of the density function F : Σint → R is required. It will be shown
that associating the density function to the class of harmonic functions in L2(Σint) is
closely related to the Hilbert space structure we are interested in. In the following, some
necessary definitions and theorems will be first introduced. For more details the reader is
referred to [1] or [69].

4.3.1 Distributionally Harmonic Functions in L2(Σint)

Definition 4.3.1. Let D ⊂ R3 be an open set. We define

C
(k)
0 (D) =

{
F ∈ C(k)(D)| supp(F ) is compact in D

}
, (4.35)

for k ∈ N ∪ {∞}, where

supp(F ) = {x ∈ D|F (x) 6= 0} (4.36)

is the support of F .

Theorem 4.3.2. The space C
(∞)
0 (D) is dense in Lp(D), 1 ≤ p <∞.

Theorem 4.3.3. The space C
(0)
0 (D) is dense in Lp(D), 1 ≤ p <∞.

For the proof the reader is referred, e.g., to [1].

Definition 4.3.4. Let D be an open set. By D(D) we denote the space C
(∞)
0 (D) equipped

with the following topology:

The sequence {ϕk}k∈N ⊂ D(D) is called convergent to 0 iff

(i) there exists a bounded set E ⊂ D such that every ϕk vanishes outside E.

(ii) the sequence {∇αϕk}k∈N is convergent to 0 with respect to C(0)(D) for every multi-
index α.

Elements of D(D) are called test functions.
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4 Real Earth Body Based Strategy

Definition 4.3.5. Let D ⊂ R3 be an open set. Elements of the dual space D∗(D), i.e.,
continuous linear functionals

F : D(D)→ R, (4.37)

are called distributions. Scalar multiplication and addition are defined for functionals and
are used for distributions in the same way ([69]).

In Hilbert spaces like L2(D) (D measurable) continuous linear functionals on the Hilbert
space can be represented by a scalar product with a given element that only depends on
the functional. This is a result of Riesz’s representation theorem. But on D(D) this is not
always possible.

Definition 4.3.6. Let D ⊂ R3 be a given open and measurable set and let F ∈ D∗(D) be
a given distribution. If there exists a function F : D → R which is locally integrable, i.e.,
F is Lebesgue integrable on every compact subset of D, such that

Fϕ =

∫
D
F (x)ϕ(x)dx (4.38)

for all test functions ϕ ∈ D(D), then F is called a regular distribution. ([69])

Theorem 4.3.7. Let D ⊂ R3 be a given open and measurable set. If F ∈ D∗(D) is
a regular distribution then the corresponding function F is uniquely determined with the
exception of a set of Lebesgue measure zero.

Hence regular distributions are usually identified with their corresponding functions in the
sense of an Lp- space.

Definition 4.3.8. Let D ⊂ R3 be an open set. A sequence {Fk}k∈N in D∗(D) is called
convergent to F ∈ D∗(D) iff

lim
k→∞

(Fkϕ) = Fϕ for all ϕ ∈ D(D). (4.39)

Derivatives of distributions can also be defined.

Definition 4.3.9. Let D ⊂ R3 be an open set and F ∈ D∗(D) be a given distribution. If
there exists a distribution K ∈ D∗(D) such that

Kϕ = (−1)|α|F(∇αϕ), (4.40)

for every ϕ ∈ D(D), then we write

∇αF = K. (4.41)
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4.3 L2-decomposition for Regions in R3

We are particularly interested in one special case.

Definition 4.3.10. Let D ⊂ R3 be an open and measurable set. A functional F ∈ D∗(D)
is called a distributionally harmonic functional or harmonic distribution iff

∆F = 0, (4.42)

where ∆ is the Laplace operator. We denote the set of all regular harmonic L2(D)–
distributions in D∗(D) by Harm(D), i.e.,

Harm(D) = {F ∈ L2(D)|∆F = 0}. (4.43)

With Definition 4.3.10 we apparently obtain a generalization of the harmonic functions.
It is easy to prove the following

Theorem 4.3.11. Let D ⊂ R3 be a given open and measurable set. Then the space
Harm(D) is a closed subspace of L2(D) (concerning the functions that correspond to the
regular distributions).

Proof: Let F,G ∈ Harm(D) be given and r ∈ R. Then∫
D
F (x)∆ϕ(x)dx =

∫
D
G(x)∆ϕ(x)dx = 0, (4.44)

for all ϕ ∈ D(D). Hence ∫
D

(F (x) +G(x)) ∆ϕ(x)dx = 0 (4.45)

and ∫
D

(rF (x)) ∆ϕ(x)dx = 0, (4.46)

for all ϕ ∈ D(D). Thus Harm(D) is a linear subspace of L2(D).

Let {Fn}n∈N ⊂ Harm(D) be a given arbitrary sequence with

lim
n→∞

Fn = F ∈ L2(D). (4.47)

Then ∫
D
Fn(x)∆ϕ(x)dx = 0, (4.48)

for all ϕ ∈ D(D) and all n ∈ N. As strong convergence implies weak convergence we get∫
D

lim
n→∞

Fn(x)∆ϕ(x)dx = lim
n→∞

∫
D
Fn(x)∆ϕ(x)dx = 0, (4.49)

65



4 Real Earth Body Based Strategy

for all ϕ ∈ D(D). Hence F ∈ Harm(D). This is the desired result.

Later we will see that the set Harm(D) plays a significant role in this thesis, especially in
introducing a reproducing kernel Hilbert spaces which we use for representing the gravi-
tational potential.
A fundamental property of Hilbert spaces is the following (see [49])

Theorem 4.3.12. Let H be a Hilbert space and G ⊂ H be a closed linear subspace. Then
there exists a decomposition

H = G⊕G⊥, (4.50)

i.e., for every x ∈ H, there exist unique vectors y ∈ G, and z ∈ G⊥, such that

x = y + z.

Moreover, there exist projection operators

P1 : H → G and P2 : H → G⊥, (4.51)

such that the decomposition is given by

x = P1x+ P2x. (4.52)

From Theorem 4.3.11 and Theorem 4.3.12 we thus have the following

Corollary 4.3.13. L2(Σint) = Harm(Σint)⊕ (Harm(Σint))⊥.

4.3.2 Volume Potentials to Harmonic Density Distributions

Obviously,

V (x) =

∫
Σint

F (y)

|x− y|
dy, x ∈ Σext, F ∈ L2(Σint) (4.53)

defines a linear operator

P : L2(Σint)→P(L2(Σint)) (4.54)

P : F 7→ V (4.55)

such that for every density function F ∈ L2(Σint),

PF =

∫
Σint

F (y)

| · −y|
dy. (4.56)
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We denote by H the space P(L2(Σint)) of potentials in Σext representing the images of
the density functions from L2(Σint) under the Newton operator P , i.e., we say that a
function V is an element in H , if we can write V in the form (4.53).
By the definition of H the operator P is surjective, but is not one to one: to a given
potential P ∈H there corresponds an infinite set of density functions F ∈ L2(Σint) that
generate the same potential. This results from the fact that none of the contributions to
a given density function F ∈ L2(Σint), coming from the nullspace of the operator P has
an actual contribution to the generated potential in the free space, i.e., for every arbitrary
density function there exists an infinite-dimensional set of different density functions which
generate exactly the same potential. Obviously we have to consider the nullspace N(P)
of the integral operator (4.56). This space consists of all density functions F ∈ L2(Σint),
that generate potentials which are zero in Σext, i.e.,

N(P) = {F ∈ L2(Σint) | PF = 0}. (4.57)

It is shown (see, e.g., [70]) that the space N(P) consists of precisely those functions which
are orthogonal to harmonic functions on Σint, i.e., we can state the following

Theorem 4.3.14. For the nullspace N(P) of the Newton’s gravitational potential operator
P the following statement is valid

N(P)⊥ = Harm(Σint). (4.58)

From Corollary 4.3.13 it then easily follows that

L2(Σint) = N(P)⊕Harm(Σint). (4.59)

Let P1 and P2 be the orthogonal projections of L2(Σint) on N(P) and Harm(Σint) re-
spectively. Then every element F ∈ L2(Σint) can be written as

F = P1F + P2F. (4.60)

Moreover applying the linear operator P in (4.60) yields

PF = PP1F + PP2F

= PP2F.
(4.61)

Having in mind that ∥∥F∥∥
L2(Σint)

=
∥∥P1F

∥∥
L2(Σint)

+
∥∥P2F

∥∥
L2(Σint)

, (4.62)

(4.61) means that the harmonic density function P2F is that element of L2(Σint), which
has the smallest norm among all density functions in L2(Σint), that generate in H the
same potential as F . Thus we can state

Corollary 4.3.15. For every potential P ∈ H , there exists a unique harmonic density
function F ∈ Harm(Σint), such that PF = PP2F = P .
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In gravitational field theory, the relation between the object function, i.e., the gravita-
tional potential V and the data is non-linear. However, it may supposed to be linear if we
go over from the gravitational potential to a (suitably defined) anomalous gravitational
potential (see, e.g., [50]). Mathematically, the handling of the anomalous gravitational
potential is equivalent to restricting the gravitational field theory to a linear relation of
the object function to the data. In consequence, this assumption is supposed to hold true
for the remaining part of this thesis. To be more concrete, the actual problem of grav-
itational theory today is the determining of a harmonic function, regular at infinity, to
certain linear functionals, for example, discrete boundary data on the Earth’s surface or
discrete satellite data from space. In consequence, gravitational field theory canonically
leads to interpolation based on a specific linear functionals, usually functional values or
derivatives in certain (discretely given) points.
The problem of interpolating the gravitational potential outside the surface of the Earth,
from heterogeneous, i.e., terrestrial, airborne, and spaceborne data demands us to give
these potentials a mathematical structure by which both quality and computability of the
approximation can be attacked. In the conventional geodetic approach due to [42], [52],
it was proposed, that the class of approximating functions should conveniently be struc-
tured as a Hilbert space with reproducing kernel. There are several reasons for using this
topological structure:

i) In accordance with the fact that the Laplace operator is a linear differential operator,
the gravitational potential can be obtained by superposition of certain potential
functions.

ii) By introducing the norm in a reproducing Hilbert space, it is easily possible to
specify the class of approximating functions and to control the accuracy of the ap-
proximation.

iii) All linear (observation) functionals of terrestrial, airborne as well as spaceborne
origin can be identified with elements of the dual space of this Hilbert space.

iv) Reproducing kernel functions turn out to have extremely desirable properties as
interpolating, smoothing, and best approximation functions.
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The problem of interpolation using reproducing kernels becomes inextricably involved with
the problem of choosing a specific norm (see [20], [52]). This exposes the strength and the
weakness of the method of interpolation. Given a norm in a Hilbert space we can calculate
the reproducing kernel (if it exists), which again delivers the interpolating function under
minimum norm assumptions.

For computational reasons, the spline interpolation of the Earth’s gravitational potential
is usually done in a spherical framework (see e.g., [19], [24], [25]). In this work, however,
the intention is to propose a spline approach for the real Earth. Essential tools are a
reproducing property involving the Newton potential and the decomposition of L2(Σint)
(as explained in the previous chapter).

5.1 Reproducing Kernel Hilbert Space

In the previous chapter we have already introduced the space H = P(L2(Σint)) of po-
tentials in Σext representing the images of the density functions from L2(Σint) under the
Newton operator

PF =

∫
Σint

F (y)

| · −y|
dy. (5.1)

In this section we will present a way to impose a Hilbert space structure on the space H .
Using the decomposition (4.59) of the Hilbert space of density functions L2(Σint), this
can be easily done by restricting the Newton potential operator P to the closed subspace
in L2(Σint) of harmonic density functions on Σint. Indeed discarding the nonharmonic
density contributions to the potentials in H , it is clear that the operator

P̃ = P|Harm(Σint) : Harm(Σint)→H , (5.2)

is bijective, since for every potential P ∈ H , there exists a unique harmonic density
function F ∈ Harm(Σint), such that P = P̃F (see Corollary 4.3.15). This enables us to
define the norm in H in the following way: for every P ∈H let∥∥P∥∥

H
=
∥∥P̃F

∥∥
H

=
∥∥F∥∥

L2(Σint)
, (5.3)

where F is the unique harmonic density function F ∈ Harm(Σint) such that PF =

P̃F = P . Moreover, we are able to define a scalar product in H by

(P̃F, P̃G)H = (F,G)L2(Σint), for F,G ∈ Harm(Σint). (5.4)

By this we have imposed a Hilbert space structure on the space of potentials H by using
the isometric operator P̃ between L2(Σint) and H .
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5.1.1 The Reproducing Kernel

In the following we will prove that H is a reproducing kernel Hilbert space, i.e., a Hilbert
space equipped with a reproducing kernel. Considering the kernel function
k : Σext × Σint → R

k(x, y) =
1

|x− y|
, (5.5)

it is clear that for a fixed x ∈ Σext, k(x, ·) is an element of Harm(Σint) (it is an element of
C(∞)(Σint) and harmonic in Σint). Thus, from (5.1) and our previous considerations, it is
clear from Hilbert space theory (cf., e.g., [55]) that at the point x ∈ Σext we can represent
a given potential P ∈H as

P (x) = P̃F (x) = (F, k(x, ·))L2(Σint), (5.6)

for some F ∈ Harm(Σint). It is remarkable that not only for x ∈ Σext, but also for all
points x ∈ Σext the functional Lx(P ) = P (x) is a bounded functional on H .
Indeed, from the representation

P (x) = (F, k(x, ·))L2(Σint), (5.7)

and Cauchy–Schwarz inequality we get

|P (x)|2 ≤ ||F ||2L2(Σint)||k(x, ·)||2L2(Σint). (5.8)

Then from (5.3), it follows that

|P (x)|2 ≤ C(x) · ||P ||2H , for every P ∈H , (5.9)

where C(x) = ||k(x, ·)||2
L2(Σint)

for a fixed x ∈ Σext.

Thus the necessary and sufficient condition for a Hilbert space to possess a reproduc-
ing kernel (see, e.g., [3], [9]) is fulfilled (see Theorem 2.1.2).

Next we want to find the explicit expression of the reproducing kernel

K (x, y) : Σext × Σext → R (5.10)

for the space H . Obviously, for every P ∈H it must satisfy the property

P (x) = (P,K (x, ·))H , x ∈ Σext. (5.11)

Thus, from (5.4) and (5.6), for fixed x ∈ Σext and for F ∈ Harm(Σint), such that P̃F = P
we get

P (x) = (F, k(x, ·))L2(Σint) = (P̃F, P̃k(x, ·))H = (P, P̃k(x, ·))H . (5.12)
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But this means that
K (x, ·) = P̃k(x, ·), (5.13)

i.e., we have the following expression for the reproducing kernel of the space of potentials
H

K (x, ·) =

∫
Σint

dz

|x− z|| · −z|
= (k(x, ·), k(·, ·))L2(Σint), x ∈ Σext, (5.14)

i.e., we can formulate the following

Theorem 5.1.1. The space H of Newton integrals (4.4) in Σext, corresponding to har-
monic density functions, is a reproducing kernel Hilbert space with the reproducing kernel

K (x, ·) =

∫
Σint

dz

|x− z|| · −z|
, x ∈ Σext. (5.15)

The reproducing kernel (5.15) is of great importance for our later considerations, so we
will do a closer examination of it.

Remark: Equation (5.13) clearly states that for a fixed x ∈ Σext, the reproducing kernel
K (x, ·) is a Newtonian potential corresponding to the harmonic density function 1

|x−·|
from L2(Σint). Moreover, for a fixed x ∈ Σext, the potential K (x, ·) is an element of the
space Pot(0)(Σext). Indeed, for a fixed x ∈ Σext, the density 1

|x−·| is an element of L1(Σint).

This fact assures (see [64]) that K (x, ·) satisfies the Laplace equation in Σext, i.e.,

K (x, ·) ∈ Pot(Σext). (5.16)

Moreover, the potentials corresponding to densities in L2(Σint) are elements in C(0)(R3)
(see [64]). Altogether we have

K (x, ·) ∈ Pot(Σext) ∩ C(0)(Σext), x ∈ Σext, (5.17)

i.e.,
K (x, ·) ∈ Pot(0)(Σext), x ∈ Σext. (5.18)

As already mentioned this is an extraordinary fact, since it means that now in interpolation
methods we will be able to use potentials of the same nature as the Earth’s gravitational
potential, instead of using outer harmonic expressions (as in the spherically harmonic case
(cf. [24]) of harmonic splines), which are of class Pot(∞)(Aext) (see Chapter 6). The
serious problem may be the fact that, for given x, y ∈ Σext, it is impossible to find a
closed expression for this kernel in terms of elementary functions (as in the spherically
harmonic case [24]) and from obvious reasons of expensiveness and time consumption, in
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the case of practical implementation this is a very unfortunate situation. Nevertheless, the
reproducing kernel is available in integral form for any geophisically relevant geometry (like
ellipsoid, geoid, actual Earth’s surface). In addition for practically interesting functionals
L on H , certain discretization methods for LLK (·, ·) can be found based on the calculus
of the Euler summation formula. This will be the subject of the last chapter.

5.2 Discrete Boundary Value Problems

Contrary to the classical boundary value problems (see Chapter 3), where the solution
process requires the continuous knowledge of the boundary function as a whole, in the
case of the discrete boundary value problems, values of the boundary functions are known
only in a set of discrete points on the boundary. In accordance to our considerations in
the previous section, we consider the following discrete boundary value problems which
are adequate in gravitational theory for a general geometry.

Discrete Exterior Dirichlet Problem (DEDP)

Let Σ be a regular surface. Let {x1, ..., xN} be a discrete set of N points on Σ and let
αi = U(xi), i = 1, ..., N , be a given data set corresponding to a function U ∈ C(0)(Σ).
Find an approximation UN ∈ Pot(0)(Σext) to the potential U : Σext → R, U ∈ Pot(0)(Σext)
such that

UN (xi) = U(xi) = αi, i = 1, ..., N.

Discrete Exterior Oblique Derivative Problem (DEODP)

Let Σ be a C(2,µ)-regular surface, µ ∈ (0, 1). Let λ be a unit C(1,µ)-vector field on Σ, such
that

inf
x∈Σ

(λ(x) · ν(x)) > 0, (5.19)

where ν(x) denotes the outer unit normal vector field on Σ. Let {x1, ..., xN} be a discrete
set of N points on Σ and let αi = ∂U

∂λΣ
(xi), i = 1, ..., N , be a given data set corresponding

to a function U ∈ C(1,µ)(Σ). Find an approximation UN ∈ Pot(1,µ)(Σext) to the potential
U ∈ Pot(1,µ)(Σext), such that

∂UN
∂λΣ

(xi) =
∂U

∂λΣ
(xi) = αi, i = 1, ..., N.
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5.3 Bounded Linear Functionals

We first consider the Dirichlet functional. From (5.9), we easily get the following

Lemma 5.3.1. For each x ∈ Σext, the linear functional Dx defined by

Dx : P 7→ DxP = P (x), P ∈H , (5.20)

is bounded on H , i.e.,

|DxP | = |P (x)| ≤ C(x,Σ)||P ||H , (5.21)

where C(x,Σ) = ||k(x, ·)||L2(Σint). Moreover, for each point x ∈ Σext,

y 7→ K (x, y), y ∈ Σext, (5.22)

is an element of H , and for all P ∈H , we have (see Section 5.1.1)

DxP = P (x) = (P,K (x, ·))H . (5.23)

In other words, Lemma 5.3.1 states that the Dirichlet functional is bounded on the space
of potentials H .

Next we consider the linear functional of the oblique derivative Nx for the potentials
in H .

Nx : P 7→ NxP =
∂P

∂λΣ
(x), P ∈H , x ∈ Σ, (5.24)

where λ is a unit C(1,µ)-vector field on Σ, satisfying the conditions (5.19). Clearly, within
the oblique framework, Σ is considered to be a C(2,µ)-regular surface, with µ ∈ (0, 1).
Let x be an arbitrary point on Σ, P be a given potential in H , and suppose that ε > 0
is arbitrary. For given unit C(1,µ)-vector field λ on Σ, satisfying the conditions (5.19),
we investigate the limit of ε−1 (P (x)− P (x+ ελ(x))), as ε tends to 0. The reproducing
property together with the Cauchy inequality yield

ε−1 |P (x)− P (x+ ελ(x))| ≤ ε−1||P ||H ||K (x, ·)−K (x+ ελ(x), ·)||H . (5.25)

For the potential K (x, ·)−K (x+ ελ(x), ·) we find the following representation∫
Σint

(
1

|x− z|
− 1

|x+ ελ(x)− z|

)
1

| · −z|
dz. (5.26)
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From our definition of the norm in H and the triangle inequality we easily find

||K (x, ·)−K (x+ ελ(x), ·)||2H

=

∥∥∥∥ 1

|x− z|
− 1

|x+ ελ(x)− z|

∥∥∥∥2

L2(Σint)

=

∫
Σint

∣∣∣∣ 1

|x− z|
− 1

|x+ ελ(x)− z|

∣∣∣∣2 dz
=

∫
Σint

∣∣∣|x+ ελ(x)− z| − |x− z|
∣∣∣2

|x− z|2|x+ ελ(x)− z|2
dz

≤
∫

Σint

|ελ(x)|2

|x− z|2|x+ ελ(x)− z|2
dz

.

(5.27)

Having in mind that λ is a unit vector field on Σ, i.e., |λ(x)| = 1, x ∈ Σ we have

ε−2||K (x, ·)−K (x+ ελ(x), ·)||2H ≤
∫

Σint

dz

|x− z|2|x+ ελ(x)− z|2
. (5.28)

Obviously, as ε tends to zero, the last integral is divergent for x ∈ Σ and we are not able
to guarantee in canonical way the boundedness of the linear functional for the oblique
derivative.

Instead of considering Newton integrals on Σint our concept now is to replace Σint by
Σint
τ , i.e., in the case of the functional of the oblique derivative we replace the regular

surface Σ, by an inner parallel surface Στ at distance |τ | to Σ

Στ = {x ∈ R3|x = y − τν(y), τ > 0, y ∈ Σ}, (5.29)

where ν(y) as usual denotes outer unit normal (pointing into the outer space Σext) at the
point y ∈ Σ. In doing so we have to choose a sufficiently small |τ |, in order to preserve the
regularity of the parallel surface Στ (see Section 3.1). Then, for the regular surface Στ , in
analogous way as in the Section 5.1, we start from the image space Hτ = Pτ (L2(Σint

τ ))
of potentials in Σext

τ , generated by the Newton potential operator

PτF =

∫
Σintτ

F (y)

| · −y|
dy. (5.30)

Using the decomposition of the space of density functions L2(Σint
τ )), we restrict the Newton

potential operator to the closed subspace Harm(Σint
τ ) of harmonic density functions in

L2(Σint
τ ). The isometric operator

P̃τ = Pτ |Harm(Σintτ ) : Harm(Σint
τ )→Hτ (5.31)
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between L2(Σint
τ ) and Hτ imposes a Hilbert space structure on Hτ . The scalar product

in Hτ is defined by
(P̃τF, P̃τG)Hτ = (F,G)L2(Σintτ ), (5.32)

for F,G ∈ Harm(Σint
τ ). By analogous arguments as in Section 5.1, it clearly follows that

the space Hτ possesses a uniquely determined reproducing kernel Kτ related to Στ

Kτ (x, y) =

∫
Σintτ

dz

|x− z||y − z|
, x, y ∈ Σext

τ . (5.33)

Of course, it is an element of the class Pot(0)(Σext
τ ).

Now, considering a potential P from Hτ and the reproducing kernel Kτ , in analogous
way as described above, we get the following modified version of the Equation (5.28)

ε−2||Kτ (x, ·)−Kτ (x+ ελ(x), ·)||2H ≤
∫

Σintτ

dz

|x− z|2|x+ ελ(x)− z|2
, (5.34)

only now we have the following estimate

ε−2||Kτ (x, ·)−Kτ (x+ ελ(x), ·)||2Hτ
≤ C(x,Στ ), (5.35)

where

C(x,Στ ) =

∫
Σintτ

dz

|x− z|4
. (5.36)

The last integral is convergent for all x ∈ Σext. Then we get for the Equation (5.25) in
the case of Hτ

ε−1 |P (x)− P (x+ ελ(x))|
≤ ε−1||P ||Hτ ||Kτ (x, ·)−Kτ (x+ ελ(x), ·)||Hτ

≤ ||P ||Hτ

√
C(x,Στ ).

(5.37)

This shows that the functional Nx of the oblique derivative for the points x on the surface
Σ is bounded, but with respect to the Hτ -topology. Thus, we can state the following

Lemma 5.3.2. Let x be a point of the regular surface Σ. Then the function

y 7→ λΣ(y) · ∇Kτ (x, y), y ∈ Σext, (5.38)

is the representer of the linear functional

Nx : P 7→ NxP =
∂P

∂λΣ
(x), P ∈Hτ , (5.39)

i.e.,
NxP = (P, λΣ · ∇Kτ (x, ·))Hτ , for all P ∈Hτ , x ∈ Σext, (5.40)

where

Kτ (x, y) =

∫
Σintτ

dz

|x− z||y − z|
, x, y ∈ Σext

τ . (5.41)
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5.4 Solution to the Interpolation Problems

In principle, in the Dirichlet case, if we have the measurements α1, ..., αN of a scalar field
U at points x1, ..., xN on the surface Σ, we want to find the harmonic function that fits
these data, and which has also the minimum norm in the space that is used. Interpolation
of the gravitational potential field in terms of reproducing kernels immediately leads to a
spline formulation, i.e., a minimum norm formulation. The potentials are considered being
elements of a certain Hilbert space possessing a reproducing kernel, while the measured
values at the points x1, ..., xN are assumed to be linearly independent bounded functionals
L1, ...,LN of the gravitational potential U . It is known that if the Hilbert space possesses
a reproducing kernel, we can find the solution as a linear combination of the representers
LK (xi, ·) of the functionals Li, i.e., the solution is exactly the projection of U on the
N -dimensional linear subspace of the used Hilbert space, spanned by the linearly indepen-
dent representers LK (xi, ·), i = 1, ..., N .
Having in mind that the reproducing kernel we have constructed, is a volume integral over
the surface Σ (i.e., it carries the information of the regular geometry Σ), the interpolating
splines corresponding to given bounded functionals, also gives the interpolating potential
a characterization which is strongly connected to the body Σint, i.e., the geometry of Σ is
reflected in the representation of the interpolating splines.

5.4.1 Solution to DEDP

In Section 5.3 we have proven that the Dirichlet functional of the gravitational potential
for points on the surface Σ, is bounded on the reproducing kernel Hilbert space H as
defined in Section 5.1. Let {α1, ..., αN} be a given data set of Dirichlet functionals for
the unknown potential U , corresponding to the discrete set XN = {x1, ..., xN} of pairwise
disjoint points on Σ, i.e., for i = 1, ..., N

DiU = U(xi) = αi. (5.42)

Our aim is to find the smoothest H – interpolant corresponding to data set {α1, ..., αN},
where by ‘smoothest’ we mean that the norm is minimized in H . In other words, the
problem is to find a function SUD1,...,DN in the set

IUD1,...,DN = {P ∈H | DiP = αi, i = 1, ..., N}, (5.43)

such that ∥∥SUD1,...,DN
∥∥

H
= inf

P∈IUD1,...,DN

‖P‖H . (5.44)
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The corresponding representer of the functional Di can be written as

DiK (·, ·) = K (xi, ·), (5.45)

where K is the reproducing kernel of H . Then, for a given set {D1, ..., DN} of N Dirichlet
functionals on H , corresponding to the set XN = {x1, ..., xN} of points on Σ, we have
the set of representers

{D1K (·, ·), ...,DNK (·, ·)}. (5.46)

The reproducing property of K yields, for i = 1, ..., N , and P ∈H

DiP = (DiK (·, ·), P )H . (5.47)

Having in mind that the reproducing kernel is given as a Newton integral (5.15), so are
the representers of the functionals Di, i.e.,

DiK (·, ·) =

∫
Σint

dz

|xi − z|| · −z|
. (5.48)

In order to present the solution method, we first introduce the following

Definition 5.4.1. A system XN of points x1, ..., xN on the surface Σ is called fundamental
system on Σ, if the corresponding representers L1K (·, ·), ...,LNK (·, ·) of a given linear
functional L, are linearly independent.

The interpolating spline function is defined as follows

Definition 5.4.2. Let XN = {x1, ..., xN} be a given fundamental system of points on
Σ and let {D1, ...,DN} be the set of the corresponding bounded linear Dirichlet function-
als.Then, any function of the form

S(x) =

N∑
i=1

aiDiK (·, x) =

N∑
i=1

ai

∫
Σint

dz

|xi − z||x− z|
, x ∈ Σext, (5.49)

with arbitrarily given (real) coefficients a1, ..., aN is called a H -spline relative to {D1, ...,DN}.

Obviously the space

SH (D1, ...,DN ) = span{D1K (·, ·), ...,DNK (·, ·)}, (5.50)

of all H -splines relative to {D1, ...,DN}, is an N -dimensional subspace of H .
As an immediate consequence of the reproducing property (5.47), viz. the H -spline
formula we get the following
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Lemma 5.4.3. Let S be a function of class SH (D1, ...,DN ). Then for each P ∈H , the
following identity is valid

(S, P )H =

N∑
i=1

aiDiP. (5.51)

Now the problem of determining the smoothest function in the set (5.43) of all H -
interpolants is related to a system of linear equations which needs to be solved to obtain
the spline coefficients. Indeed, the application of the linear functionals D1, ...,DN to the
H -spline of the form (5.49), yields N linear equations in the coefficients aN1 , ..., a

N
N

N∑
j=1

aNj DiDjK (·, ·) = DiU, i = 1, ..., N. (5.52)

The elements of the coefficients matrix

(DiDjK (·, ·))i,j=1,...,N , (5.53)

are given by

DiDjK (·, ·) =

∫
Σint

1

|xi − z||xj − z|
dz. (5.54)

Since the coefficient matrix as Gram matrix of the N linearly independent functions
D1K (·, ·), ...,DNK (·, ·) is non-singular, the linear system (5.52) is uniquely solvable. To-
gether with the set of linear bounded functionals and the reproducing kernel Hilbert space
H , the coefficients aN1 , ..., a

N
N define the unique interpolating spline we are looking for.

Thus we can state

Lemma 5.4.4. (Uniqueness of interpolation) For given U ∈ H there exist a unique
element in SH (D1, ...,DN ) ∩ IUD1,...,DN . We denote this element by SUD1,...,DN .

Moreover, we have the following

Lemma 5.4.5. The interpolating H -spline SUD1,...,DN of U (relative to {D1, ...,DN}) is
the H -orthogonal projection of U onto the space SH (D1, ...,DN ).

Proof : Due to the uniqueness of the solution of the interpolation problem, for all
V ∈ SH (D1, ...,DN ) we have SVD1,...,DN = V . Consequently, the H - spline interpola-
tion operator is a projector onto the spline space SH (D1, ...,DN ). We now use Lemma
2.1.8 to prove that this projector is even an orthogonal projector.
Let U in H be arbitrary. Then, by construction

(U,DiK (·, ·))H = DiU = DiSUD1,...,DN = (SUD1,...,DN ,DiK (·, ·))H (5.55)
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is valid for i = 1, ..., N . Hence, for all S =
∑N

i=1 biDiK (·, ·) ∈ SH (D1, ...,DN ), the identity

(U, S)H = (SUD1,...,DN , S)H (5.56)

is also valid. According to Lemma 2.1.8, the H -spline interpolation operator is an or-
thogonal projector.

The upcoming lemmata give several properties, namely the minimum norm properties
which also justify the use of the name ‘spline’ for such interpolants.

Lemma 5.4.6. (First minimum property) If P ∈ IUD1,...,DN , then

||P ||2H = ||SUD1,...,DN ||
2
H + ||SUD1,...,DN − P ||

2
H . (5.57)

Lemma 5.4.7. (Second minimum property) If S ∈ SH (D1, ...,DN ) and P ∈ IUD1,...,DN ,
then

||S − P ||2H = ||SUD1,...,DN − P ||
2
H + ||S − SUD1,...,DN ||

2
H . (5.58)

Proof : Since the solution of the normal equations is nothing else than the orthogo-
nal projection onto the N–dimensional subspace SH (D1, ...,DN ), the remainder function
SUD1,...,DN − P is orthogonal to each element in SH (D1, ...,DN ). This is likewise true for

every P ∈ IUD1,...,DN and in particular, we obtain

(SUD1,...,DN − P, S
U
D1,...,DN )H = 0. (5.59)

Then it follows that

(P, P )H = (SUD1,...,DN − (SUD1,...,DN − P ), SUD1,...,DN − (SUD1,...,DN − P ))H

= (SUD1,...,DN , S
U
D1,...,DN )H + (SUD1,...,DN − P, S

U
D1,...,DN − P )H ,

(5.60)

which is, in fact equation (5.57). Similar arguments are valid for the equation (5.58).
Equation (5.57) states that in fact, the spline SUDx1 ,...,DxN

solves the minimum norm inter-

polation problem (5.44), i.e. that SUDx1 ,...,DxN
is the interpolant in H , with the smallest

norm in the H –topology, while equation (5.58) states that SUDx1 ,...,DxN
is closest to U

among all possible splines in SH (Dx1 , ...,DxN ), also to be understood in the H –topology.

Summarizing our results we finally find

Theorem 5.4.8. The interpolation problem

||SUD1,...,DN ||H = inf
P∈IUD1,...,DN

||P ||H , (5.61)
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is well-posed in the sense that its solution exists, is unique, and depends continuously on
the data α1, ..., αN . The uniquely determined solution SUD1,...,DN is given in the explicit
form

SUD1,...,DN (x) =

N∑
i=1

aNi

∫
Σint

1

|xi − z||x− z|
dz, x ∈ Σext, (5.62)

where the coefficients aN1 , ..., a
N
N satisfy the linear equations

N∑
i=1

aNi

∫
Σint

1

|xi − z||xj − z|
dz = αj , j = 1, ..., N. (5.63)

Remark: It should be noted that the requirement for the linear independence of the given
bounded linear functionals is not necessary from the theoretical point of view, but essen-
tial for numerical computations. It guarantees that the H -spline coefficients are uniquely
determined, i.e., that the linear equation system (5.52) is uniquely solvable. Without lin-
ear independence of the functionals, the dimension of the spline space SH (D1, ...,DN ) is
smaller than N , and the coefficients of the interpolating H -spline SUDx1 ,...,DxN

of U ∈ H

relative to {D1, ...,DN} are no longer uniquely determined. Nevertheless, the interpolat-
ing H -spline is the uniquely determined orthogonal projection of U onto the spline space
SH (D1, ...,DN ) and all the spline properties are still valid.

It is an important question whether the interpolating spline to a certain function on Σ,
converges to this function as the number N of bounded linear functionals tends to infinity.
Such a convergence property justifies the approximation by the given interpolating spline.
Note that the linear independence of the given functionals is not required also for the
upcoming convergence results for H -splines.

We start our considerations with the following

Theorem 5.4.9. Let X = {xi}i∈N ⊂ Σ be a countable dense set of points on Σ. Then

span{K (xi, ·)|i ∈ N}||·||H = H . (5.64)

Proof: Our purpose is to show that the properties P ∈H and (K (xi, ·), P )H = 0 for all
i ∈ N, imply that P = 0. Then the statement of the Theorem 5.4.9, follows immediately
from Theorem 2.1.6. Clearly, the condition (K (xi, ·), P )H = 0 is equivalent to P (xi) = 0
for all i ∈ N. Now, according to our construction, P is continuous function on Σ. Hence
it follows that if P (x) 6= 0 for some x ∈ Σ, then P would be different from zero in a whole
neighborhood of X on Σ. But this is impossible because of the density of X on Σ. This
proves the theorem.
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Next we state the obvious generalization of Theorem 5.4.9 by means of Dirichlet functionals
on H .

Theorem 5.4.10. Let X = {xi}i∈N ⊂ Σ be a countable dense set of points on Σ. Let
{Di}i∈N be the set of bounded linear Dirichlet functionals on H , corresponding to the set
X. Then

spanDi∈X{DiK (·, ·)|i ∈ N}||·||H = H . (5.65)

Now, Theorem 5.4.10 enables us to prove the following convrgence theorem for the solution
of DEDP.

Theorem 5.4.11. Let the assumptions and the notation be the same as in Theorem 5.4.10.
Let U ∈H be arbitrary function and let SUD1,...,DN be the interpolating H –spline relative
to {D1, ...,DN}. Then the following convergence results hold true:

(i) limN→∞ ||U − SUD1,...,DN ||H = 0

(ii) limN→∞ ||U − SUD1,...,DN ||C(Σext) = 0

Proof: The spline interpolation operator U 7→ SUD1,...,DN is the orthogonal projection onto
span{D1K (·, ·), ...,DNK (·, ·)}. Due to Theorem 5.4.10, the Gram Schmidt orthonor-
malization process can be used to obtain successively a complete orthonormal system
{Φn}n ∈ N in H , such that span{D1K (·, ·), ...,DNK (·, ·)} = span{Φ1, ...,ΦN ′}, where
N ′ = N ′(N) ≤ N , for all N ∈ N. Then

SUD1,...,DN =
N ′∑
n=1

(U,Φn)H Φn, (5.66)

and this is the truncated Fourier series of U , with respect to the orthonormal system
{Φn}n ∈ N, and it converges in H –sense to U for N →∞. This proves (i).
In order to prove (ii), we realize that for arbitrary x ∈ Σext, reproducing property of H
and Cauchy inequality, yields

|U(x)− SUD1,...,DN (x)| = |(U − SUD1,...,DN ,DxK (·, ·))H |
≤ ||U − SUD1,...,DN ||H ||DxK (·, ·)||H .

(5.67)

From the representation (5.45) of the reproducing kernel DxK (·, ·), and our definition of
the norm in H , we find for x ∈ Σext the following estimate for the norm of the representer
DxK (·, ·) in H

||DxK (·, ·)||H ≤
∥∥∥∥ 1

|x− z|

∥∥∥∥
L2(Σint)

=

(∫
Σint

1

|x− z|2
dz

)1/2

, (5.68)
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and we know that the last integral is convergent. Then, from (5.67), for arbitrary x ∈ Σext

we have

|U(x)− SUD1,...,DN (x)| ≤ C(x,Σ)||U − SUD1,...,DN ||H , (5.69)

where

C(x,Σ) =

(∫
Σint

1

|x− z|2
dz

)1/2

. (5.70)

Equation (5.69) together with (i) shows the validity of (ii).

This proves the Theorem 5.4.11.

5.4.2 Solution to DEODP

The solution to DEODP will be constructed in the similar way, but with a different solution
space. Obviously, from our discussion in Section 5.3, it is clear that we will seek the solution
to DEODP in the space Hτ (since the functional of the oblique derivative is bounded on
Hτ ). Let {α1, ..., αN} be a given data set of functionals of the oblique derivative for the
unknown potential U , corresponding to the discrete set XN = {x1, ..., xN} of points on Σ,
i.e., for i = 1, ..., N

NiU =
∂U

∂λΣ
(xi) = αi. (5.71)

Our aim is to find the smoothest function SUN1,...,NN ∈ Hτ from the set of all Hτ– inter-
polants, where the norm is minimized in Hτ , i.e., the problem is to find a function SN in
the set

IUNN ,...,NN = {P ∈ Hτ | NiP = αi, i = 1, ..., N}, (5.72)

such that ∥∥SUN1,...,NN
∥∥

Hτ
= inf

P∈IUN1,...,NN

‖P‖Hτ
. (5.73)

As previously we denote the representer of the functional Ni is by NiKτ (·, ·), where Kτ

is the reproducing kernel of Hτ , defined by (5.33), i.e.,

NiKτ (·, ·) = NKτ (xi, ·) =
∂Kτ (xi, ·)
∂λΣ(xi)

. (5.74)

Again considering the Newton integral representation of the reproducing kernel, we write

NiKτ (·, ·) =
∂

∂λΣ(xi)

∫
Σintτ

dz

|xi − z|| · −z|
=

∫
Σintτ

−λ(xi)(xi − z)
|xi − z|3| · −z|

dz (5.75)
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For the set {N1, ...,NN} of N linearly independent bounded linear functionals on Hτ ,
corresponding to the set XN = {x1, ..., xN} of points on Σ, and the set of representers
{N1Kτ (·, ·), ...,NNKτ (·, ·)} such that for i = 1, ..., N

NiP = (NiKτ (·, ·), P )Hτ , P ∈Hτ , (5.76)

the Hτ -spline relative to {N1, ...,NN} is given by

S(x) =
N∑
i=1

aiNiKτ (·, x) =
N∑
i=1

ai

∫
Σintτ

−λ(xi)(xi − z)
|xi − z|3|x− z|

dz, x ∈ Σext. (5.77)

In analogous way the same results as in previous subsection are valid also for the Hτ -spline,
i.e., we have the following

Lemma 5.4.12. Let S be a function of class SHτ (N1, ...,NN ). Then for each P ∈ Hτ ,
the following is valid

(S, P )Hτ =
N∑
i=1

aiNiP. (5.78)

Lemma 5.4.13. (Uniqueness of interpolation) For given U ∈ Hτ there exist a unique
element in SH (N1, ...,NN ) ∩ IUN1,...,NN . This element is denoted by SUN1,...,NN .

Proof : Application of the linear functionals N1, ...,NN to the Hτ -spline of the form (5.77),
yields N linear equations in the coefficients aN1 , ..., a

N
N

N∑
j=1

aNj NiNjKτ (·, ·) = NiU, i = 1, ..., N, (5.79)

where the elements of the coefficients matrix

(NiNjKτ (·, ·))i,j=1,...,N , (5.80)

are given by

NiNjKτ (·, ·) =

∫
Σintτ

λ(xi)λ(xj)(xi − z)(xj − z)
|xi − z|3|xj − z|3

dz. (5.81)

The same argumentation as before yields that the linear system (5.79) is uniquely solvable.

Lemma 5.4.14. The interpolating H -spline SUN1,...,NN of U (relative to {N1, ...,NN}) is
the H -orthogonal projection of U onto the space SH (N1, ...,NN ).

Minimum norm properties for the interpolating spline are also valid.
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Lemma 5.4.15. (First minimum property) If P ∈ IUN1,...,NN , then

||P ||2Hτ
= ||SUN1,...,NN ||

2
Hτ

+ ||SUN1,...,NN − P ||
2
Hτ
. (5.82)

Lemma 5.4.16. (Second minimum property) If S ∈ SHτ (N1, ...,NN ) and P ∈ IUN1,...,NN ,
then

||S − P ||2Hτ
= ||SUN1,...,NN − P ||

2
Hτ

+ ||S − SUN1,...,NN ||
2
Hτ
. (5.83)

Altogether we have

Theorem 5.4.17. The interpolation problem

||SUN1,...,NN ||Hτ = inf
P∈IUN1,...,NN

||P ||Hτ , (5.84)

is well-posed in the sense that its solution exists, is unique, and depends continuously on
the data α1, ..., αN . The uniquely determined solution SUN1,...,NN is given in the explicit
form

SUN1,...,NN (x) =

N∑
i=1

aNi

∫
Σintτ

−λ(xi)(xi − z)
|xi − z|3|x− z|

dz, x ∈ Σext, (5.85)

where the coefficients aN1 , ..., a
N
N satisfy the linear equations

N∑
i=1

aNi

∫
Σintτ

λ(xi)λ(xj)(xi − z)(xj − z)
|xi − z|3|xj − z|3

dz = αj , j = 1, ..., N. (5.86)

As remarked earlier, the linear independence for the set N1, ...,NN of bounded linear
functionals is not necessary. All results are also valid if N1, ...,NN are linearly dependent.
In this case uniqueness of the H - spline is still guaranteed, because the spline interpolation
operator is still an orthogonal projector. However, the system of linear equations (5.79)
is no longer uniquely solvable.

An obvious analogue to Theorem 5.4.9 is also valid for the space Hτ and its reproducing
kernel, i.e., we have

Theorem 5.4.18. Let X = {xi}i∈N ⊂ Σ be a countable dense set of points on Σ. Then

span{Kτ (xi, ·)|i ∈ N}||·||Hτ = Hτ . (5.87)

Generalizing the Theorem 5.4.18 for the functionals of the oblique derivative we get
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Theorem 5.4.19. Let X = {xi}i∈N ⊂ Σ be a countable dense set of points on Σ. Let
{Ni}i∈N be the set of bounded linear oblique derivative functionals on H , corresponding
to the set X. Then

spanNi∈X{NiKτ (·, ·)|i ∈ N}||·||Hτ = Hτ . (5.88)

Proof : Our purpose is to show that the properties P ∈Hτ and (NiKτ (·, ·), P )Hτ = 0 for
all i ∈ N, imply that P = 0. Then the statement of the theorem, follows immediately from
Theorem 2.1.6. According to our construction, P is harmonic function in Σext

τ . Clearly,
the condition (NiKτ (·, ·), P )Hτ = 0 is equivalent to ∂P

∂λΣ
(xi) = 0 for all i ∈ N. Due to

harmonicity of P in Σext
τ , this means that ∂P

∂λΣ
(x) = 0 for all x ∈ Σ ⊂ Σext

τ , i.e., P (x) = C
for x ∈ Σ. Moreover, the potentials from Hτ are regular at infinity. This yields C = 0,
and thus P = 0 as required.
We are now able to give the following theorem for the convergence of the interpolating
spline SUNx1 ,...,NxN

:

Theorem 5.4.20. Let the assumptions and the notation be the same as in Theorem 5.4.19.
Let U ∈H be arbitrary function and let SUN1,...,NN be the interpolating H –spline relative
to {N1, ...,NN}. Then the following convergence results hold true:

(i) limN→∞ ||U − SUN1,...,NN ||Hτ = 0

(ii) limN→∞ ||U − SUN1,...,NN ||C(Σext) = 0

Proof: The proof of (i) follows by analogous arguments as in Theorem 5.4.11.
In order to prove (ii), we realize that for arbitrary x ∈ Σext ⊂ Σext

τ , reproducing property
of Hτ and Cauchy inequality, yields

|U(x)− SUN1,...,NN (x)| = |(U − SUN1,...,NN ,NxKτ (·, ·))|
≤ ||U − SUN1,...,NN ||Hτ ||NxKτ (·, ·)||Hτ .

(5.89)

From the representation (5.75) of the reproducing kernel NxKτ (·, ·), and our definition
of the norm in Hτ , we find for x ∈ Σ ⊂ Σext

τ the following estimate for the norm of the
representer NxKτ (·, ·) in Hτ

||NxKτ (·, ·)||Hτ ≤
∥∥∥∥λ(x)(x− z)
|x− z|3

∥∥∥∥
L2(Σintτ )

=

∫
Σintτ

∣∣∣∣λ(x)(x− z)
|x− z|3

∣∣∣∣2 dz ≤ ∫
Σintτ

dz

|x− z|4
,

(5.90)
where the last integral is convergent for x ∈ Σ. Thus, from (5.89) for arbitrary x ∈ Σext

we have

|U(x)− SUN1,...,NN (x)| ≤ C(x,Στ )||U − SUN1,...,NN ||Hτ , (5.91)
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where

C(x,Στ ) =

∫
Σintτ

dz

|x− z|4
. (5.92)

Equation (5.91) together with (i) shows the validity of (ii).
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6 Spherical Earth Geometry

In the previous chapter we have constructed a reproducing kernel Hilbert space of po-
tentials outside the regular surface Σ under consideration, as a space of approximating
functions to the gravitational potential outside Σ. We have shown that the reproducing
kernel is a potential of class Pot(0)(Σext), represented by a Newton integral over the body
Σint.
The advantage of this reproducing kernel is twofold: First, it shows the same properties
as the gravitational potential, and second it carries the information of the regular surface
Σ under consideration. This is a great step forward, especially having in mind the con-
ventional Runge approach, where the reproducing kernels used in gravitational potential
determination, are of class Pot(∞)(Aext). They are generated as sequences of outer har-
monics corresponding to a Runge sphere A (see Section 3.1), i.e., they possess a larger
harmonicity domain than the gravitational potential. Obviously, the reproducing kernel
K is a ‘natural’ choice in the interpolation processes. It is certainly more appropriate, than
the spherically oriented kernels with ‘Runge sphere’ inside Σint. Choosing Σ especially as a
sphere this rises a question whether K is a kind of generalization to these types of kernels
known from spherically harmonic spline theory (see [20], [24])? In spherical nomenclature
we are able to show that K can indeed be considered a generalized version of a spherically
harmonic kernel function, and this justifies its importance even more. The theory of spher-
ical harmonic interpolation is well–known (see [20], [24], [31], [33], [41], [44], [48]). However,
in order to explain these properties we must in short present some basic elements of this
theory.

6.1 Spherically Based Runge Approach

The spherically harmonic spline theory is using the theoretical background of outer har-
monics under a Sobolev space formalism, to solve the problem of gravitational potential
determination discretely. The approximating spherically harmonic potentials are assumed
to be functions in a Sobolev-like Hilbert space equipped with a reproducing kernel. All
elements of this space are harmonic functions outside a ‘Runge sphere’ inside Σint, i.e.,
they are harmonic in the Aext. The Runge–Walsh approximation property then yields
that every function harmonic outside the regular surface Σ, may be approximated arbi-
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trarily well (in uniform sense) by elements of this space. Sobolev space considerations are
of great importance in spherical harmonic based approximation methods for gravitational
potential determination. The Sobolev space formalism has proven conceptually suitable to
verify the boundedness of the linear functionals representing the gravitational observables.
Working with the gravitational potential in the exterior of a regular surface Σ we have the
advantage to deal with a function which contains outer harmonics contributions of any
degree. In other words, the Sobolev space to constitute the reference class for the gravi-
tational potential determination contains all spaces Harmn(Aext), n ∈ N0. Consequently,
not only low degrees are involved (as, for example, in truncated Fourier series), but also
high degree contributions are present. Thus, the spline theory seems to be much more of
advantage if high frequency approximations are searched for.

6.1.1 The Hilbert Spaces H
(
{An};Aext

)
In the following we introduce the (Sobolev-like) Hilbert spaces H({An};Aext) of harmonic
functions which serve as reference spaces for spherically harmonic spline theory. As al-
ready mentioned, from the mathematical point of view, functions in H({An};Aext) can
be seen as series expansions in terms of outer harmonics with certain assumptions on the
growth of the coefficients.
Let A = {{An}n∈N0 | An ∈ R+ for all n ∈ N0} denote the set of all sequences of
positive real numbers. Given a sequence {An}n∈N0 ∈ A, we consider the linear space
E = E({An};Aext), E ⊂ Pot(∞)(Aext) of all potentials F of the form

F =
∞∑
n=0

2n+1∑
j=1

F∧(n, j)Hα
−n−1,j (6.1)

whose Fourier coefficients (with respect to L2(A))

F∧(n, j) = F
∧L2(A)(n, j) =

∫
A
F (x)Hα

−n−1,jdωα(x) (6.2)

satisfy
∞∑
n=0

2n+1∑
j=1

A2
n(F∧(n, j))2 <∞ (6.3)

The last sum is imposed as a norm for E

||F ||H({An};Aext) =

( ∞∑
n=0

2n+1∑
j=1

A2
n(F∧(n, j))2

)1/2

(6.4)
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Definition 6.1.1. The Sobolev space H
(
{An};Aext

)
is defined by

H({An};Aext) = E({An};Aext)
||·||
H({An};Aext) . (6.5)

It is a Hilbert space equipped with the inner product

(F,G)H({An};Aext) =
∞∑
n=0

2n+1∑
j=1

A2
nF
∧(n, j)G∧(n, j) (6.6)

for F,G ∈ H({An};Aext), where F∧(n, j) and G∧(n, j) are Fourier coefficients of F and G
with respect to L2(A). Every element F of the spaceH({An};Aext) is uniquely determined
by its Fourier coefficients F∧(n, j) that satisfy

||F ||2H({An};Aext)
=
( ∞∑
n=0

2n+1∑
j=1

A2
n(F∧(n, j))2

)
<∞, (6.7)

and F can be formally represented by the expansion

F =
∞∑
n=0

2n+1∑
j=1

F∧(n, j)Hα
−n−1,j , (6.8)

which has to be understood in ‘distributional sense’ (at least on A). Condition (6.7)
determines the maximal possible growth behavior of the Fourier coefficients. It follows
directly from the definition of H({An};Aext) that the set {A−1

n Hα
−n−1,k}n∈N0,k=1,...,2n+1 is

a complete orthonormal system in H({An};Aext).

Remark: In particular, we let

Hs(Aext) = H({(n+ 1/2)s};Aext), s ∈ R. (6.9)

Especially for s = 0 we have

H0(Aext) = H({1};Aext). (6.10)

The space H0(Aext) may be understood as the space of all harmonic functions in Aext,
regular at infinity, corresponding to L2(A)–restrictions. Its norm || · ||H0(Aext) can be un-

derstood as the L2(A)–norm. Loosely spoken, the topology of H0(Aext) is led back to
the topology of L2(A) = H0(Aext)|A and H0(Aext) forms the harmonic continuations of
L2(A)-functions.
According to our construction, the space Pot∞(Aext) is a dense subspace of Hs(Aext) for
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each s. Moreover, if t < s, then ||F ||Ht(Aext) ≤ ||F ||Hs(Aext).

When we associate to a potential F ∈ Pot∞(Aext) the series (6.8), it is of fundamen-
tal importance to know if the series converges uniformly on Aext. The answer is provided
by an analogue of the Sobolev lemma. In order to present this lemma, we first introduce
the concept of summable sequences.

Definition 6.1.2. A sequence {An}n∈N0 ∈ A is called summable if it satisfies the summa-
bility condition

∞∑
n=0

2n+ 1

4π

1

A2
n

<∞. (6.11)

Lemma 6.1.3. (Sobolev Lemma) If a sequence {An}n∈N0 ∈ A is summable, then each
F ∈ H({An};Aext) corresponds to a potential of class Pot(0)(Aext).

Proof: For a sufficiently large integer N and all x ∈ Aext we find in connection to Cauchy-
Schwarz inequality and the addition theorem for outer harmonics

∣∣∣∣∣
N∑
n=0

2n+1∑
k=1

F∧(n, k)Hα
−n−1,k

∣∣∣∣∣
2

=

∣∣∣∣∣
N∑
n=0

2n+1∑
k=1

A−1
n Hα

−n−1,kAnF
∧(n, k)

∣∣∣∣∣
2

(6.12)

≤

(
N∑
n=0

2n+1∑
k=1

|An|−2(Hα
−n−1,k)

2

)
×

(
N∑
n=0

2n+1∑
k=1

|An|2(F∧(n, k))2

)

≤

( ∞∑
n=0

2n+ 1

4πα2
|An|−2

)
||F ||2H({An};Aext)

<∞

This shows that the series (6.8) converges uniformly to the function F ∈ H({An};Aext).
Now, as the limit function of the uniformly convergent series of continuous functions is
also a continuous function, we get the statement of Lemma 6.1.3.
The Sobolev lemma gives us the right to call the spacesH({An};Aext) created via summable
sequences, Sobolev spaces.

Considering the differentiability of potentials in the Sobolev spaces, we present the follow-
ing

Lemma 6.1.4. If F ∈ Hs(Aext) with s > k+ 1, then F corresponds to a function of class
Pot(k)(Aext).

Moreover, the following lemma is valid (see e.g., [31], [38]):
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Lemma 6.1.5. Suppose that F is of class Hs(Aext), s > [l] + 1, for a given multi-index
l. Then

sup
x∈Aext

∣∣∣∣∣(∇lF )(x)−
N∑
n=0

2n+1∑
k=1

F∧(n, k)∇lHα
−n−1,k

∣∣∣∣∣ ≤ CN [l]+1−s||F ||Hs(Aext), (6.13)

holds for all positive integers N , and C is a positive constant independent of F .

Theorem 6.1.6. Let {An}n∈N0 ∈ A be a summable sequence. Then H({An};Aext)
is a reproducing kernel Hilbert space with the reproducing kernel given by

KH({An};Aext)(x, y) =

∞∑
n=0

2n+1∑
j=1

1

An
Hα
−n−1,j(x)

1

An
Hα
−n−1,j(y)

=

∞∑
n=0

1

A2
n

2n+ 1

4πα2

(
α2

|x||y|

)n+1

Pn

( x
|x|
· y
|y|

) (6.14)

where x, y ∈ Aext.

Proof: From the Sobolev lemma it follows thatH({An};Aext) is a subset of Pot(0)(Aext). A
necessary and sufficient condition that H({An};Aext) possesses a reproducing
kernel is that, for all x ∈ Aext, the evaluation functional (i.e., Dirichlet functional)
Dx : H({An};Aext) → R given by DxF = F (x), x ∈ Aext is bounded. This can be
easily derived from (6.8) and (6.12). Namely we have

|DxF | = |F (x)| ≤

( ∞∑
n=0

1

A2
n

2n+ 1

4πα2

)1/2

||F ||H(Aext). (6.15)

The statement of the theorem then follows directly from Theorem 2.1.4, with

KH({An};Aext)(x, x) =
∞∑
n=0

1

A2
n

2n+ 1

4πα2

(
α2

|x|2

)n+1

≤ 1

4πα2

∞∑
n=0

(2n+ 1)
1

A2
n

<∞
(6.16)

The following theorem imposes the necessary conditions on the sequence {An}n∈N0 ∈ A,
for the boundedness of the functionals of the oblique derivative on H({An};Aext).

Theorem 6.1.7. Let {An}n∈N0 ∈ A be a summable sequence for which the following
condition holds: There exists a constant C > 0 and a parameter s > 2, such that

An ≥ C (n+ 1/2)s (6.17)
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for all but finitely many n ∈ N0.
Then the first directional derivative Nx : H({An};Aext)→ R, defined by

NxF =
∂F

∂λx
(x), (6.18)

in the point x ∈ Aext and direction λ, |λ| = 1, where λ(x) ·ν(x) > 0 in case x ∈ A (ν is the
unit normal field on A), is a well-defined bounded linear functional with the representer

NKH({An};Aext)(·, x) =
∞∑
n=0

2n+1∑
j=1

1

An
NxHα

−n−1,j(x)
1

An
Hα
−n−1,j(·), x ∈ Aext, (6.19)

which is a continuous function on Aext.

Note that condition (6.17) can be dropped if we restrict ourselves to first directional deriva-
tives Nx in points x ∈ Aext. For details and for the proof of Theorem 6.1.7, the reader is
referred to [48].

Reproducing kernel representations may be used to act as basis system in reproducing
Sobolev spaces.

Theorem 6.1.8. Let {An}n∈N0 ∈ A be a summable sequence. Assume that X = {xi}i∈N
is a countable dense set of points on a regular surface Ξ ⊂ Aext (for example, Runge sphere
A, ‘spherical Earth’s surface’ ΩR, actual Earth’s surface Σ). Then

spanxi∈XKH({An};Aext)(xi, ·)
||·||
H({An};Aext) = H({An};Aext),

For proof the reader is referred to [31].

6.1.2 Spherically Harmonic H({An};Aext)–Splines

The Sobolev spaces of harmonic functions H({An};Aext) allow the definition of harmonic
splines (see [20], [27] for the original papers or the text books [31], [38]). These splines are
introduced with respect to a set of linear bounded functionals which provide interpola-
tion conditions. The choise of the solution space H({An};Aext), i.e., the corresponding
sequence {An}n∈N0 ∈ A, is dictated by the specifics of the functional under consideration.
Since we are interested in the interpolation with respect to the functional of the oblique
derivative, from now on we consider in accordance to Theorem 6.1.7, that the Sobolev-
like space H({An};Aext) corresponds to a summable sequence {An}n∈N0 ∈ A, such that

94



6.1 Spherically Based Runge Approach

condition (6.17) is valid for all but finitely many n ∈ N0. It should be noted that when
solving the satellite problems the spline method can be used even for the case when no
summability condition is imposed on the sequence {An}n∈N0 ∈ A (cf. [48]). However, in
such cases an additional requirement must be imposed on the sequence {An}n∈N0 ∈ A,
i.e., it must be required that An ≥ 1 for all but finitelly many n ∈ N.

Definition 6.1.9. Let {L1, ...LN} be a set of N linearly independent bounded linear func-
tionals on the Sobolev-type Hilbert space H({An};Aext). Then any function S of the form

S(x) =

N∑
i=1

aiLiKH({An};Aext)(·, x), x ∈ Aext, (6.20)

with a set of real numbers {a1, ..., aN} ⊂ R is called a H({An};Aext)-spline relative to
{L1, ...LN}.

The function space of all H({An};Aext)–splines relative to {L1, ...LN} is denoted by
SH({An};Aext)(L1, ...LN ).

H({An};Aext)–spline interpolation problem

Let F ∈ H({An};Aext), and let {L1, ...LN} be a set of N linearly independent bounded
linear functionals on the Hilbert space H({An};Aext). As usual we denote the representer
of Li, by LiKH({An};Aext)(·, ·), i = 1, ..., N . The space of all interpolating functions in

H({An};Aext) for F relative to L1, ...,LN is denoted by

IL1,...,LN = {G ∈ H({An};Aext) | LiG = LiF, i = 1, ..., N}.

The H({An};Aext)–spline interpolation problem is to determine a function

SFH({An};Aext)
(L1, ...LN ) ∈ SH({An};Aext)(L1, ...LN ) ∩ IL1,...,LN ,

i.e., to determine a spline SF
H({An};Aext)

(L1, ...LN ) which fulfills the interpolation conditions

LiSFH({An};Aext)
(L1, ...LN ) = LiF,

for all i = 1, ..., N .
In analogous way as in the Section 5.4, the solution to the interpolation problem cor-
responding to H({An};Aext)-splines relative to a finite set of linear bounded functionals,
relates the interpolation conditions to a system of linear equations which needs to be solved
to obtain the spline coefficients. Together with the set of linear bounded functionals and
the Sobolev space H({An};Aext) (or the corresponding representers) these coefficients de-
fine the interpolating spline. For this spline the analogous minimum norm properties are
valid as for the splines defined in Section 5.4.
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Theorem 6.1.10. Let F ∈ H({An};Aext) and let {L1, ...LN} be a set of N linearly
independent bounded linear functionals on the Hilbert space H({An};Aext). Then the
H({An};Aext)–spline interpolation problem relative to {L1, ...LN} is uniquely solvable and
its solution has the representation

SFH({An};Aext)
(L1, ...LN ) =

N∑
i=1

aNi LiKH({An};Aext)(·, x), (6.21)

with H({An};Aext)–spline coefficients aNi , i = 1, ..., N . These coefficients are uniquely
given by the following system of linear equations

N∑
i=1

aNi LiLjKH({An};Aext)(·, ·) = LjF, j = 1, ..., N. (6.22)

The interpolating spline has the following properties

(i)
||SFH({An};Aext)

(L1, ...LN )||H({An};Aext) ≤ ||F ||H({An};Aext). (6.23)

(ii) (first minimum property)

||G||2H({An};Aext)
=
∥∥∥SFH({An};Aext)

(L1, ...LN )
∥∥∥2

H({An};Aext)

+
∥∥∥G− SFH({An};Aext)

(L1, ...LN )
∥∥∥2

H({An};Aext)
,

(6.24)

for all G ∈ IL1,...,LN , i.e., SF
H({An};Aext)

(L1, ...LN ) is the interpolating function of F

in H({An};Aext) with minimal norm.

(iii) (second minimum property)

||S −G||2H({An};Aext)
=
∥∥∥SFH({An};Aext)

(L1, ...LN )−G
∥∥∥2

H({An};Aext)

+
∥∥∥S − SFH({An};Aext)

(L1, ...LN )
∥∥∥2

H({An};Aext)
,

(6.25)

for all G ∈ IL1,...,LN and S ∈ SH({An};Aext)(L1, ...LN ).

The proof can be found in [31] or [38].

The link between the boundary value problems on regular surfaces and harmonic
H({An};Aext)–splines with respect to the Runge sphere A ⊂ Σint, is provided by the
Runge–Walsh theorem
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Theorem 6.1.11. Let Σ be a C(k)- regular surface, k ≥ 2, with A being a Runge sphere
in Σint (see Section 3.1). Then the following holds true:

span{Hα
−n−1,j |Σext : n ∈ N0, k = 1, ..., 2n+ 1}||·||C(Σext) = Pot(0)(Σext). (6.26)

See [16] and [26] for the proof.

An immediate consequence of Theorem 6.1.11 is the following corollary that allows us
to use functions of a reproducing kernel Hilbert space H({An};Aext) for approximation.

Corollary 6.1.12. Let Σ be a C(k)- regular surface, k ≥ 2, with a A being a Runge sphere
in Σint. Let {An}n∈N0 ∈ A be a summable sequence. Then

H({An};Aext)|Σext
||·||

C(Σext) = Pot(0)(Σext). (6.27)

A proof of Corollary 6.1.12 can be found e.g., in [48].

The convergence of the interpolating spline SF
H({An};Aext)

(L1, ...LN ) to F ∈ H({An};Aext)
as N →∞, is guaranteed by the following

Theorem 6.1.13. Let {An}n∈N0 ∈ A be a summable sequence such that condition (6.17)
is valid for all but finitely many n ∈ N0. Let Σ ⊂ Aext be a C(2,µ)–regular surface and let
X = {x1, x2, ...} ⊂ Σ be a dense point set on the surface Σ. Assume the set of bounded
linear functionals {L1, ...LN} on H({An};Aext) consists of either

(i) evaluation functionals Di : H({An};Aext)→ R, F 7→ DiF = F (xi)

(ii) oblique derivatives Ni : H({An};Aext)→ R, F 7→ NiF = ∂F
∂λ(xi)

(xi), where λ denotes

a unit C1,µ–vector field in R3, that satisfies λ(x) · ν(x) > 0 for all x ∈ Σ, with ν(x)
being the outer unit normal vector in x and xi ∈ X ⊂ Σ.

Let F ∈ H({An};Aext) be arbitrary and let SF
H({An};Aext)

(L1, ...LN ) be the interpolating

H({An};Aext)–spline of F relative to L1, ...LN . Then

lim
N→∞

||F − SFH({An};Aext)
(L1, ...LN )||H({An};Aext) = 0, (6.28)

lim
N→∞

||F − SFH({An};Aext)
(L1, ...LN )||C(Ωextr ) = 0 for every r ≥ α, (6.29)

and

lim
N→∞

||F − SFH({An};Aext)
(L1, ...LN )||C(Σext) = 0. (6.30)
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Furthermore, the following statement hold true due to summability of the sequence {An}n∈N0

span{LiKH({An};Aext)(·, ·)|Ωextr
|i ∈ N}||·||C(Ωextr ) = Pot(0)(Ωext

r ) for every r ≥ α, (6.31)

and
span{LiKH({An};Aext)(·, ·)|Σext |i ∈ N}||·||C(Σext) = Pot(0)(Σext). (6.32)

For the proof the reader is referred to [48]. For more detailed stability and convergence
estimates we recommend [27], [38] or [31].

Theorem 6.1.13 yields the following convergence theorems for the treatment of the bound-
ary value problems with spherically harmonic splines, i.e., splines related to a Runge sphere
A.

Theorem 6.1.14. Let the assumptions and the notation of Theorem 6.1.13 be valid. Sup-
pose that u is an element of the class

DΣH({An};Aext) = {DΣU |DΣ : x 7→ DxU,U ∈ H({An};Aext), x ∈ Σ}. (6.33)

Let {XN} be a sequence of fundamental systems XN = {x1, ..., xN} such that ΘN → 0 as
N →∞. Then the solution of the exterior boundary value problem

U ∈ H({An};Aext), DΣU = u, (6.34)

can be approximated in the sense that, to every ε > 0, there exist an integer N = N(ε)
and a harmonic spline UN such that

sup
x∈Σext

|U(x)− UN (x)| ≤ ε. (6.35)

Theorem 6.1.15. Let the assumptions and the notation of Theorem 6.1.13 be valid. Sup-
pose that u is an element of the class

NΣH({An};Aext) = {NΣU |NΣ : x 7→ NxU,U ∈ H({An};Aext), x ∈ Σ}. (6.36)

Let {XN} be a sequence of fundamental systems XN = {x1, ..., xN} such that ΘN → 0 as
N →∞. Then the solution of the exterior boundary value problem

U ∈ H({An};Aext), NΣU = u, (6.37)

can be approximated in the sense that, to every ε > 0, there exist an integer N = N(ε)
and a harmonic spline UN such that

sup
x∈Σext

|U(x)− UN (x)| ≤ ε. (6.38)
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To establish the solution of the boundary value problems in its classical form we combine
the last theorems with an extension of Helly’s theorem

Theorem 6.1.16. Let M be a dense and convex subset in a normed, not necessarily
complete linear space (X, || · ||). Let L1, ...,LN be N bounded linear functionals on X. For
any F ∈ X and ε > 0, there exists a G ∈M such that

(i) ||F −G||X < ε

(ii) LiF = LiG for all i = 1, ..., N .

The general version of the theorem is proven in [72].

Having in mind the density arguments from Corollary 6.1.12 the extension of Helly’s
theorem yields the existence of the approximating H({An};Aext)–spline to a given func-
tion U ∈ Pot(0)(Σext) , in the sense that, to every ε > 0, there exist an integer N = N(ε)
and a harmonic spline UN such that

sup
x∈Σext

|U(x)− UN (x)| ≤ ε. (6.39)

The last result shows that best approximations to solutions of boundary-value problems
can be guaranteed on certain types of Sobolev-like subspaces of Pot(0)(Σext) by using
harmonic H({An};Aext)–splines.

6.2 Spherical Representation of the Kernel K

Next we will investigate the connection between the reproducing kernel K we have intro-
duced in Chapter 5 and the spherically oriented kernels. For this purpose we will consider
the special case Σ = A, i.e., we calculate the kernel K for the Runge sphere A = Ωα.
In this case we get for the reproducing kernel K (x, ·) in H

K (x, y) =

∫
Aint

dz

|x− z||y − z|
. (6.40)

Now using the known expansions in spherical harmonics for fundamental solutions (of the
Laplace’s equation) appearing in the integral (see Section 2.5) we can write

1

|x− z|
=

∞∑
n=0

|z|n

|x|n+1
Pn

(
x

|x|
· z
|z|

)
. (6.41)
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and
1

|y − z|
=
∞∑
m=0

|z|m

|y|m+1
Pm

(
y

|y|
· z
|z|

)
. (6.42)

Substituting this expressions in (6.40) we get

K (x, y) =

∫
Aint

1

|x− z|
1

|y − z|
dz

=

∫ α

0

∫
Ωr

∞∑
n=0

|z|n

|x|n+1
Pn

(
x

|x|
· z
|z|

)
·
∞∑
m=0

|z|m

|y|m+1
Pm

(
y

|y|
· z
|z|

)
dωr

(
z

|z|

)
dr

(6.43)

Using the addition theorem (2.43) for spherical harmonics the last expression can be
written as ∫ α

0

∫
Ωr

∞∑
n=0

rn

|x|n+1

n∑
j=−n

4π

2n+ 1
Yn,j

(
x

|x|

)
Yn,j

(
z

|z|

)

·
∞∑
m=0

rm

|y|m+1

m∑
k=−m

4π

2m+ 1
Ym,k

(
y

|y|

)
Ym,k

(
z

|z|

)
dωr

(
z

|z|

)
dr

(2.70)
=

∫ α

0

∞∑
n=0

r2n

|x|n+1|y|n+1

n∑
j=−n

(
4π

2n+ 1

)2

Yn,j

(
x

|x|

)
Yn,j

(
y

|y|

)
r2dr

(2.43)
=

∫ α

0

∞∑
n=0

r2n+2

|x|n+1|y|n+1

(
4π

2n+ 1

)2 2n+ 1

4π
Pn

(
x

|x|
· y
|y|

)
dr

=
∞∑
n=0

4π

2n+ 1
· 1

|x|n+1|y|n+1
Pn

(
x

|x|
· y
|y|

)∫ α

0
r2n+2dr

=

∞∑
n=0

4π

2n+ 1

1

|x|n+1|y|n+1
Pn

(
x

|x|
· y
|y|

)
α2n+3

2n+ 3

=
∞∑
n=0

4πα

(2n+ 1)(2n+ 3)
·
(

α2

|x||y|

)n+1

Pn

(
x

|x|
· y
|y|

)

=

∞∑
n=0

(4π)2α3

(2n+ 1)2(2n+ 3)
· 2n+ 1

4πα2

(
α2

|x||y|

)n+1

Pn

(
x

|x|
· y
|y|

) (6.44)

Altogether we have

K (x, y) =

∞∑
n=0

(4π)2α3

(2n+ 1)2(2n+ 3)
· 2n+ 1

4πα2

(
α2

|x||y|

)n+1

Pn

(
x

|x|
· y
|y|

)
. (6.45)
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This means that in case of Σ = A, the kernel (5.15) corresponds to the type of kernels
defined by (6.14) and the reproducing kernel Hilbert space H (Section 5.1) we have used

as a solution space (Section 5.4) corresponds to the space H
(
{An};Aext

)
, where An is the

summable sequence
An = 4π(2n+ 1)(2n+ 3)1/2α−3/2, (6.46)

i.e.,

H = H
(
{4π(2n+ 1)(2n+ 3)1/2α−3/2};Aext

)
. (6.47)

This shows us that we can consider the kernel (5.15) as a generalized version to the spher-
ically oriented kernels. Following figures represent the reproducing kernel K , calculated
for x, y ∈ Ω and different values of α using the Clenshaw algorithm.

Figure 6.1: Kernel K on Ω with α = 0.7.

Figure 6.2: Kernel K on Ω with α = 0.9.
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Figure 6.3: Kernel K on Ω with α = 0.99.

Figure 6.4: Coefficients A−1
n of K with α = 0.7.

Figure 6.5: Coefficients A−1
n of K with α = 0.9.
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Figure 6.6: Coefficients A−1
n of K with α = 0.99.

6.3 Explicit Representations of the Kernel K

It is obvious that for computational reasons of special importance are the reproducing
kernels which have closed expressions. For some special classes of summable sequences
{An}n∈N0 we can find closed representations of the reproducing kernel as an elementary
function by the use of the addition theorem (2.43) as well as (2.50) or (2.54), respectively.
In the following we present the most often used spherically oriented kernels.

(i) Kernels of Abel–Poisson type: An = h−n/2 for h ∈ (0, 1)

K
H
(
{h−n/2};Aext

)(x, y)

=

∞∑
n=0

hn
2n+ 1

4πα2

(
α2

|x||y|

)n+1

Pn

(
x

|x|
· y
|y|

)

=
1

4π

|x|2|y|2 − h2α4(
|x|2|y|2 + h2α4 − 2hα2(x · y)

)3/2
(6.48)

with x, y ∈ Aext.

(ii) Kernels of Singularity type: An =
(
n+ 1

2

)
h−n/2 for h ∈ (0, 1)

K
H
(
{
(
n+ 1

2

)
h−n/2};Aext

)(x, y)

=

∞∑
n=0

hn(
n+ 1

2

) 2n+ 1

4πα2

(
α2

|x||y|

)n+1

Pn

(
x

|x|
· y
|y|

)
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Figure 6.7: Kernel of Abel-Poisson type on Ω with h = 0.9

=
1

2π

1(
|x|2|y|2 + h2α4 − 2hα2(x · y)

)1/2
with x, y ∈ Aext.

Figure 6.8: Singularity Kernel on Ω with h = 0.9

(iii) Kernels of Logarithmic Type: An =
(
n+ 1

)1/2(
2n+ 1

)1/2
h−n/2 for h ∈ (0, 1)

K
H
(
{
(
n+1
)1/2(

2n+1
)1/2

h−n/2};Aext
)(x, y)

=
∞∑
n=0

hn(
n+ 1

)(
2n+ 1

) 2n+ 1

4πR2

(
α2

|x||y|

)n+1

Pn

(
x

|x|
· y
|y|

)

=
1

4πhα2
log

(
1 +

2hα2(
|x|2|y|2 + h2α4 − 2hα2(x · y)

)1/2
+ |x||y| − hα2

)

with x, y ∈ Aext.
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Figure 6.9: Logarithmic Kernel on Ω with h = 0.9

Next we will do an investigation on the existence of a closed expression for the kernel K .
We have

K (x, y) =
4πα3

|x||y|

∞∑
n=0

( α2

|x||y|

)n 1

(2n+ 1)(2n+ 3)
Pn

(
x

|x|
· y
|y|

)
. (6.49)

Writing h1 = α2

|x||y| =
(

α√
|x||y|

)
= h2, and using partial fraction we get

K (x, y) =
4πα3

|x||y|

∞∑
n=0

h2n 1

(2n+ 1)(2n+ 3)
Pn

(
x

|x|
· y
|y|

)

=
2πα3

|x||y|

( ∞∑
n=0

hn1
1

2n+ 1
Pn

(
x

|x|
· y
|y|

)
︸ ︷︷ ︸

=S1

−
∞∑
n=0

hn1
1

2n+ 3
Pn

(
x

|x|
· y
|y|

)
︸ ︷︷ ︸

=S2

)
.

(6.50)

For the sum S1 we get from (2.50) for t = x
|x| ·

y
|y|

∞∑
n=0

hn1Pn(t) =
∞∑
n=0

(h2)nPn(t) =
1√

1 + h4 − 2th2
. (6.51)

Integrating both sides with respect to h, we get

∞∑
n=0

h2n+1

2n+ 1
Pn(t) =

∫
1√

1 + h4 − 2th2
dh = F(h, t) = F(

√
h1, t), (6.52)

where
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F(h, t) =

−

(
i
√

h2√
t2−1−t + 1

√
1− h2√

t2−1+t
F
(
i sinh−1

(√
1√

t2−1−t · h
) ∣∣∣ t−√t2−1

t+
√
t2−1

))
√

1√
t2−1−t

√
2th2 + h4 + 1

(6.53)
and F (h, t) is an elliptic integral of I kind.

In conclusion we have for the sum S1

S1 =
∞∑
n=0

hn1
2n+ 1

Pn(t) =
1√
h1
F(
√
h1, t). (6.54)

In a similar way we calculate the sum S2. Equation (2.50) yields for t = x
|x| ·

y
|y| and for

the sum

∞∑
n=0

h2n+2Pn(t) = h2
∞∑
n=0

(h2)nPn(t) =
h2

√
1 + h4 − 2th2

. (6.55)

Again integrating both sides with respect to h, we get

∞∑
n=0

h2n+3

2n+ 3
Pn(t) =

∫
h2

√
1 + h4 − 2th2

dh

= h3
∞∑
n=0

h2n

2n+ 3
Pn(t) = G(h, t) = G(

√
h1, t),

(6.56)

where G(h, t) is defined via

E

(
i sinh−1

(√
1√

t2−1−t · h
) ∣∣∣ t−√t2−1

t+
√
t2−1

)
− F

(
i sinh−1

(√
1√

t2−1−t · h
) ∣∣∣ t−√t2−1

t+
√
t2−1

)
√

1√
t2−1−t

√
−2th2 + h4 + 1

×(
√
t2 − 1 + t)

√
h2

√
t2 − 1− t

+ 1

√
1− h2

√
t2 − 1 + t

(6.57)
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and F (h, t) and E(h, t) are elliptic integrals of I and II kind respectively. In conclusion we
have for the sum S2

S2 =

∞∑
n=0

hn1
2n+ 3

Pn(t) =
1

h
3/2
1

G(
√
h1, t). (6.58)

Finally for the reproducing kernel (6.45) we have

K (x, y) =

∫
Aint

1

|x− z|
1

|y − z|
dz =

2πα3

|x||y|

(
1√
h1
F(
√
h1, t) +

1

h
3/2
1

G(
√
h1, t)

)
. (6.59)

For elliptic integrals of I and II kind is known that there exist closed expression only in
the case t = −1 or t = 1. For other values of t, namely for which we are interested,
the integral must be calculated numerically. This means that the closed expression for
this kernel does not exist even in the case of spherical boundary. Thus, in order to use
this kernel for practical purposes, we must consider certain numerical integration methods
for its integral expression. This is the topic of the last chapter, where we present a
discretization method for the approximate integration of the kernel.

6.4 Numerical Illustration

In the following we present an example of a spherically harmonic spline application for
the oblique derivative functionals with randomly distributed points on the Earth’s surface.
For more details on this procedures the reader is referred to [44].
For a test scenario, 100000 points on the Earth’s surface are considered given by the free
Terrainbase model, Figure 6.10 (see e.g., [46] for more details). The resulting potential
is depicted in Figure 6.11. For the oblique derivatives the directions provided by gradi-
ents of the gravitational potential are used, i.e., the gradient is applied to the EGM96
model. A spherically harmonic H–spline for the oblique derivative functionals (with
α = 6.3781363 · 106) is then computed with randomly distributed points on the Earth’s
surface. These points are uniformly distributed on a sphere, with different distances from
the origin. The computation of the spline of singularity type with h = 0.965 yields the
results displayed in Figure 6.12, while the Figure 6.13 shows the absolute error between
the spline and the original potential V .
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Figure 6.10: The Terrainbase model (heights in m).

Figure 6.11: The EGM96 gravitational potential.
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6.4 Numerical Illustration

Figure 6.12: Spline with the singularity kernel for oblique derivative functionals with ran-
domly distributed points on the Earth’s surface

Figure 6.13: Absolute error.
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7 Integral Discretization Based on Euler
Summation

As already mentioned, of great importance for practical implementation of the spline
method is the existence of the closed representation for the reproducing kernel under
consideration. However, in Section 6.3, we did not succeed in finding such representation
for given x, y ∈ Σext, even for the case of a sphere. Going over to a regular surfaces as the
real Earth surface this task becomes even more complicated. Thus, when using this kernel
in approximation processes, one loses the convenience offered by reproducing kernels with
closed representations in elementary form, like the Abel-Poisson or the singularity kernel.
At the end, we must cope with the integral expression of the reproducing kernel, i.e., with
the Newton integral over the inner space of a regular surface. In doing so, we were led
to consider certain discretization methods, concerning regions in R3. The basic tool for
our purposes is the multidimensional Euler summation formula. A certain discretization
of the inner space of a regular surface, yields a numerical integration procedure for the
calculation of the reproducing kernel. Moreover, the a priori estimate of the error term is
given, under a certain constrain of the density function.

7.1 Threedimensional Lattices

Let g1, g2, g3 be arbitrary linearly independent vectors in Euclidean space R3.

Definition 7.1.1. The set Λ of all points

g = n1g1 + n2g2 + n3g3 (7.1)

(ni ∈ Z, i = 1, 2, 3) is called a lattice in R3 with basis g1, g2, g3.

Clearly, the vectors ε1, ε2, ε3 form a lattice basis of Z3. Trivially, a lattice basis {g1, g2, g3}
is related to the canonical basis {ε1, ε2, ε3} in R3 via the formula

gi =

3∑
j=1

(gi · εj)εj . (7.2)
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7 Integral Discretization Based on Euler Summation

Each lattice vector g ∈ Λ, described by

g =
3∑

k=1

nkgk, (7.3)

is determined with respect to the basis {ε1, ε2, ε3} by the equation

g =

3∑
k=1

nk

3∑
j=1

(gk · εj)εj =

3∑
j=1

(
3∑

k=1

(gk · εj)nk

)
εj . (7.4)

In other words, the components of g with respect to the basis {ε1, ε2, ε3} are obtainable by
a simple multiplication of the matrix (gk · εj)j,k=1,2,3 with the vector (nk)k=1,2,3 of integer
values.

Definition 7.1.2. The half-open parallelotope F consisting of the points x ∈ R3 with

x = t1g1 + t2g2 + t3g3, −1

2
≤ ti <

1

2
, i = 1, 2, 3. (7.5)

F is called the fundamental cell of the lattice Λ.

From Linear Algebra (see, e.g., [9]) it is well known that the volume of F is equal to the
quantity

||F|| =
∫
F
dV =

√
det(gi · gj)i,j=1,2,3 (7.6)

(dx is the volume element). Since the vectors g1, g2, g3 are assumed to be linearly inde-
pendent, there exists a system of vectors h1, h2, h3 in R3 such that

hj · gi = δij =

{
0 , i 6= j
1 , i = j

(7.7)

(δij is the Kronecker symbol).

Definition 7.1.3. The lattice with basis h1, h2, h3 is called the inverse (or dual) lattice
Λ−1 to Λ.

The inverse lattice Λ−1 consists of all vectors h ∈ R3 such that the inner product h · g is
an integer for all g ∈ Λ. Obviously,

Λ = (Λ−1)−1. (7.8)

Moreover, for the fundamental cell F−1 of the inverse lattice Λ−1 we have

||F−1|| = ||F||−1. (7.9)
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Example:
Let Λ = τZ3 be the lattice generated by the basis τε1, τε2, τε3, where τ is a positive
number and ε1, ε2, ε3 form the canonical orthonormal basis in R3. Then the volume of
the fundamental cell is ||F|| = τ3. Generating vectors of the inverse lattice Λ−1 are
τ−1ε1, τ−1ε2, τ−1ε3. The volume of the fundamental cell of the inverse lattice is given by
||F−1|| = τ−3 = ||F||−1

7.1.1 Λ-periodic Functions

The functions Φh, h ∈ Λ−1, defined by

Φh(x) =
1√
||F||

e(h · x) =
1√
||F||

e2πi(h·x), x ∈ R3, (7.10)

are Λ-periodic, i.e.,

Φh(x+ g) = Φh(x) (7.11)

for all x ∈ R3 and all g ∈ Λ. An elementary calculation yields

∆xΦh(x) + ∆∧(h)Φh(x) = 0, ∆∧(h) = 4π2h2, h ∈ Λ−1. (7.12)

The space of all F ∈ C(m)(R3) that are Λ-periodic is denoted by C
(m)
Λ (R3), 0 ≤ m ≤ ∞.

LpΛ(R3), 1 ≤ p < ∞ is the space of all F : R3 → C that are Λ-periodic and are Lebesgue-
measurable on F with

||F ||LpΛ(R3) =

(∫
F
|F (x)|pdx

) 1
p

<∞. (7.13)

Clearly, C
(0)
Λ (R3) ⊂ LpΛ(R3). As is well-known, L2

Λ(R3) is the completion of C
(0)
Λ (R3) with

respect to the norm || · ||L2
Λ(R3), i.e.,

L2
Λ(R3) = C

(0)
Λ (R3)

||·||
L2

Λ
(R3)

. (7.14)

An easy calculation shows∫
F

Φh(x)Φh′(x)dx = δhh′ =

{
0 , h = h′

1 , h 6= h′.
(7.15)

In other words, the system {Φh}h∈Λ−1 is orthonormal with respect to the L2
Λ(R3)-inner

product, i.e.,

(Φh,Φh′)L2
Λ(R3) = δhh′ . (7.16)
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7 Integral Discretization Based on Euler Summation

We shall say that λ is an eigenvalue of the lattice Λ with respect to the operator ∆, if
there is a non-trivial solution U of the differential equation (∆ + λ)U = 0 satisfying the
‘boundary condition of periodicity’ U(x + g) = U(x) for all g ∈ Λ. The function U then
is called eigenfunction of the lattice Λ with respect to the eigenvalue λ and the operator
∆. Since the solutions of (∆ + λ)U = 0 are analytic, application of the standard multi-
dimensional Fourier theory (see for example [71]) shows that the functions Φh are the only
eigenfunctions. Furthermore, the scalars

∆∧(h)(= ∆∧Λ(h)) = 4π2h2, h ∈ Λ−1 (7.17)

are the eigenvalues of ∆ with respect to lattice Λ. The set of all eigenvalues of ∆ with
respect to Λ is the spectrum Spect∆(Λ)

Spect∆(Λ) = {∆∧(h)|∆∧(h) = 4π2h2, h ∈ Λ−1}. (7.18)

The system {Φh}h∈Λ−1 is closed and complete in the pre-Hilbert space

(C
(0)
Λ (R3); || · ||L2

Λ(R3)) as well as in the Hilbert space L2
Λ(R3). A fundamental result in

Fourier analysis is that each F ∈ L2
Λ(R3) can be represented by its Fourier series in the

sense
lim
N→∞

||F −
∑
|h|≤N
h∈Λ−1

F∧Λ (h)Φh||L2
Λ(R3) = 0, (7.19)

where the Fourier coefficients F∧Λ (h) of F are given by

F∧Λ (h) =

∫
F
F (x)Φh(x)dx, h ∈ Λ−1. (7.20)

The Parseval identity then tells us that, for each F ∈ L2
Λ(R3),∫

F
|F (x)|2dx =

∑
h∈Λ−1

|F∧Λ (h)|2. (7.21)

A useful corollary of (7.19) (see [67]) is that any F ∈ L1
Λ(R3) with∑

h∈Λ−1

|F∧Λ (h)| <∞, (7.22)

can be modified on a set of measure zero so that it is in C
(0)
Λ (R3) and equals its Fourier

series, i.e.,

F (x) =
∑
h∈Λ−1

F∧Λ (h)Φh(x), for all x ∈ F . (7.23)

Suppose that F ∈ C(k)
Λ (R3) with k > 3

2 . Then∫
F
∇αF (x)Φh(x)dV (x) = (−2πih)αF∧Λ (h), (7.24)
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whenever F ∈ C(k)
Λ (R3) and α = (α1, α2, α3)T is chosen such that [α] = α1 +α2 +α3 ≤ k.

Since ∇αF is continuous in F it must belong to L2
Λ(R3). In other words,

∑
[α]=k

( ∑
h∈Λ−1

|F∧Λ (h)|2((2πh)α)2

)
<∞. (7.25)

Moreover, there exists a constant C (dependent on 3k) such that

C|h|2k ≤
∑

[α]=k

((2πh)α)2. (7.26)

From the Cauchy-Schwarz inequality we therefore obtain for all N > 0, and for all x ∈ R3∣∣∣∣∣∣∣∣
∑
|h|≤N
h∈Λ−1

F∧Λ (h)Φh(x)

∣∣∣∣∣∣∣∣ ≤
∑
|h|≤N
h∈Λ−1

|F∧Λ (h)|

≤
∑
|h|≤N
h∈Λ−1

|F∧Λ (h)|

( ∑
[α]=k

((2πh)α)2

)1/2

C−1/2|h|−k

≤

( ∑
|h|≤N
h∈Λ−1

|F∧Λ (h)|2
∑

[α]=k

((2πh)α)2

)1/2

×

( ∑
|h|≤N
h∈Λ−1

|h|−2k

)1/2

C−1/2

(7.27)

If k > 3
2 , the sum

∑
|h|≤N |h|−2k is finite, hence, the last expression must also be finite.

This leads us to the following statement:

Theorem 7.1.4. If F ∈ C(k)
Λ (R3) with k > 3

2 , then∑
h∈Λ−1

|F∧Λ (h)| <∞, (7.28)

where F∧Λ (h) are the Fourier coefficients of F .

This means that we have the pointwise convergence of the Fourier series in this case, i.e.,
when the assumptions of the Theorem 7.1.4 are fulfilled, we have

F (x) =
∑
|h|≤N
h∈Λ−1

F∧Λ (h)Φh(x). (7.29)
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7.2 Euler Green Function

In the literature there are known various formulas for numerical integration using cuba-
ture sums, such as Euler summation formula, but they are mostly presented for the one–
dimensional case and related to parallelepipeds in iterated one-dimensional way. Since
our integration must be done over the inner space Σint ⊂ R3 of a regular surface Σ,
in the following we present a generalization of these formulas, however, in specifically
three-dimensional way. The idea is the same, namely to put the lattice inside the regular
surface Σ and then to approximate the integral via the sum of the functional values at
the lattice points (see Figure 7.1). The essential idea is based on the interpretation of the
Bernoulli function occurring in the classical (one–dimensional) Euler summation formula,
as Green’s function G(∆; Λ; ·) with respect to the Laplace operator ∆ corresponding to
‘boundary conditions of periodicity’ to a lattice Λ under consideration. In other words,
the Green function, acts as the connecting tool to convert a differential equation involving
the Laplace operator corresponding to (periodic boundary conditions) into an associated
integral equation, i.e., the Euler summation formula. For broader and more detailed ap-
proach the interested reader is referred to [40].

7.2.1 Defining Properties

In order to guarantee the existence of the Green function G(∆; Λ; ·), we imbed this function
in a more general framework involving Helmholtz operators ∆ + λ (see e.g., [40]). Seen
from the point of view of mathematical physics, the Λ-Euler (Green) function is the Green
function with respect to the operator ∆ +λ, λ ∈ R, in R3 and the ‘boundary condition’ of
periodicity with regard to the lattice Λ.
If there is no confusion likely to arise we simply use the notation G(∆ + λ;x) instead of
G(∆ + λ; Λ;x).

Definition 7.2.1. G(∆+λ; ·) : R3\Λ→ R, λ ∈ R fixed, is called Λ-Euler (Green) function
with respect to the operator ∆ + λ if it has the following properties:

(i) (periodicity) For all x ∈ R3 \ Λ and g ∈ Λ

G(∆ + λ;x+ g) = G(∆ + λ;x) (7.30)

holds true.

(ii) (differential equation) G(∆ + λ; ·) is twice continuously differentiable for x /∈ Λ with

(∆ + λ)G(∆ + λ;x) = 0, (7.31)
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if λ /∈ Spect∆(Λ), and

(∆ + λ)G(∆ + λ;x) = − 1√
||F||

∑
∆∧(h)+λ=0
h∈Λ−1

Φh(x), (7.32)

if λ ∈ Spect∆(Λ) (note that the summation on the right hand side is to be taken
over all h ∈ Λ−1 satisfying (∆ + λ)∧(h) = −λ + ∆∧(h) = −λ + 4π2h2 = 0, i.e.,
λ = 4π2h2).

(iii) (characteristic singularity) In the neighborhood of the origin

G(∆ + λ;x) + F (|x|) = O(1), (7.33)

and
∇xG(∆ + λ;x) +∇xF (|x|) = O(|x−1|), (7.34)

where the F : x 7→ F (|x|) = 1/|x|, x 6= 0, is the fundamental solution in R3 with
respect to ∆ (see (2.101)).

(iv) (normalization) For all h ∈ Λ−1 with (∆ + λ)∧(h) = 0∫
F
G(∆ + λ;x)Φh(x)dx = 0. (7.35)

7.2.2 Uniqueness of the Euler (Green) Function

Next we deal with the essential results of the theory of Λ-Euler (Green) functions with
respect to the Helmholtz operator ∆ + λ, λ ∈ R. All these results can be derived directly
by means of partial integration, i.e., by Green’s second theorem observing the ‘boundary
condition’ of Λ-periodicity and the particular construction of the fundamental solution
F of the Laplace operator ∆ in R3. Let Λ be n arbitrary lattice in R3. By application
of Green’s theorem we obtain for every (sufficiently small) ε > 0 and all lattice points
h ∈ Λ−1 with (∆ + λ)∧(h) 6= 0∫

x∈F
|x|≥ε

(
(∆ + λ)G(∆ + λ;x)Φh(x)−G(∆ + λ;x)(∆ + λ)Φh(x)

)
d(x)

=

∫
x∈∂F

((
∂G(∆ + λ;x)

∂ν

)
Φh(x)−G(∆ + λ;x)

(
∂Φh(x)

∂ν

))
dω(x)

+

∫
x∈F
|x|=ε

((
∂G(∆ + λ;x)

∂ν

)
Φh(x)−G(∆ + λ;x)

(
∂Φh(x)

∂ν

))
dω(x),

(7.36)

117



7 Integral Discretization Based on Euler Summation

where ν is the outward directed (unit) normal field. Because of the Λ-periodicity of both
the Λ-Euler (Green) function and the functions Φh, h ∈ Λ−1, the integral over the boundary
∂F of the fundamental cell vanishes in (7.36). Moreover, observing the differential equation
(Condition (ii)) of the Λ-Euler (Green) function we get

−(λ−∆∧(h))

∫
x∈F
|x|=ε

G(∆ + λ;x)Φh(x)dx

=

∫
x∈F
|x|=ε

((
∂G(∆ + λ;x)

∂ν

)
Φh(x)−G(∆ + λ;x)

(
∂Φh(x)

∂ν

))
dω(x).

(7.37)

Letting ε→ 0 we obtain, in connection with Lemma 2.6.3, the identity

(λ−∆∧(h))

∫
F
G(∆ + λ;x)Φh(x)dx =

1√
||F||

, ∆∧(h) 6= λ. (7.38)

Consequently, for all h ∈ Λ−1 with ∆∧(h) 6= λ, i.e., 4π2h2 6= λ, the Fourier coefficients of
G(∆ + λ; ·) read as follows∫

F
G(∆ + λ;x)Φh(x)dx = − 1√

||F||
1

(∆ + λ)∧(h)
. (7.39)

In addition, the normalization condition (iv) tells us that for all h ∈ Λ−1 with
∆∧(h) = 4π2h2 = λ ∫

F
G(∆ + λ;x)Φh(x)dx = 0 (7.40)

Thus combining (7.38) and (7.40) we find the following result.

Lemma 7.2.2. For h ∈ Λ−1∫
F
G(∆ + λ;x)Φh(x)dx =

{
0 , λ = 4π2h2

− 1√
||F||

1
λ−4π2h2 , λ 6= 4π2h2 (7.41)

From Lemma 7.2.2 we are immediately able to verify the uniqueness of the Λ-Euler (Green)
function G(∆+λ; ·) by virtue of the completeness of the system Φh, h ∈ Λ−1 in the Hilbert
space L2

Λ(R3). We formulate this result in next theorem.

Theorem 7.2.3. There exists one and only one Λ-Euler (Green) function G(∆ + λ; ·)
satisfying the constituting conditions (i)-(iv) listed under Definition 7.2.1.

Proof : The difference of two Λ-Euler (Green) functions with respect to the Helmholtz
operator ∆ + λ permits only vanishing Fourier coefficients. Moreover, the difference
is a continuously differentiable function on R3. Then the completeness of the system
Φh, h ∈ Λ−1 tells us that the difference vanishes in R3. Thus the two Λ-Euler (Green)
functions are identical.
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7.2 Euler Green Function

7.2.3 Existence of the Euler (Green) Function

As we have seen, the Λ-Euler (Green) function G(∆ + λ; ·) is uniquely determined by its
defining properties. Unfortunately, in R3, the bilinear expansion of the function G(∆+λ; ·)
does not converge absolutely and uniformly. In [40] however, the existence of the function
G(∆+λ; ·) is guaranteed by following Hilbert’s classical approach to the theory of Green’s
functions. Namely, after giving an explicit representation of the Λ-Euler (Green) function
to the operator Λ − 1, the Fredholm theory of linear integral equations corresponding to
(weak) singular kernels is used to deduce the full theory for the Λ-Euler (Green) function
in Rq. Here we present only some important results from this theory, i.e., the results that
are relevant for this thesis.

The following identity compares the Green function to an operator ∆ + λ with the Green
function to the operator ∆ + λ∗, where λ∗ /∈ Spect∆(Λ).

Lemma 7.2.4. Under the assumption that λ 6= λ∗, λ∗ /∈ Spect∆(Λ) the identity

G(∆ + λ;x) = G(∆ + λ∗;x) +
1

||F||
∑

(∆+λ)∧(h)=0
h∈Λ−1

1

λ− λ∗
Φh(x)

+(λ− λ∗)
∫
F
G(∆ + λ∗;x− y)G(∆ + λ; y)dy,

(7.42)

holds true for all x ∈ F \ {0}, where the sum on the right hand side only occurs if λ is an
eigenvalue, i.e., λ ∈ Spect∆(Λ).

It can be shown that the Λ-lattice function with respect to the operator ∆−1 is expressible
by a series expansion in terms of Kelvin function K0(3; ·) of dimension 3.

Lemma 7.2.5. For q = 3 and λ∗ = −1

G(∆− 1;x) = − 1

8π

∑
g∈Λ

K0(3; |x+ g|), (7.43)

where

K0(3; r) =
e−r

r
. (7.44)

The Poisson’s differential equation of potential theory (Theorem 4.2.3) admits the follow-
ing transfer to the theory of the Λ-Euler (Green) function.

Lemma 7.2.6. Assume that F : y 7→ F (y), y ∈ F , is bounded, Λ-periodic function that
satisfies a Lipschitz-condition in the neighborhood of a point x ∈ F . Then the function

U(x) =

∫
F
G(∆ + λ;x− y)F (y)dy (7.45)
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is continuously differentiable in R3 and twice continuously differentiable in x, such that

(∆x + λ)U(x) = F (x)−
∑

(∆+λ)∧(h)=0
h∈Λ

∫
F
F (y)Φh(y)dyΦh(x), (7.46)

where the sum on the right side of (7.46) only occurs if λ ∈ Spect∆(Λ).

After these preparatory material, the solvability of the linear (Fredholm) integral equation

H(λ;x) = G(∆− 1;x) +
1√
||F||

∑
(∆+λ)∧(h)=0

h∈Λ−1

1

λ+ 1
Φh(x)

−(λ+ 1)

∫
F
G(∆− 1;x− y)H(λ; y)dy,

(7.47)

motivated by Lemma 7.2.4, can be handled in accordance with the well-known Fredholm
alternative (see [8]). In other words, the Fredholm theory of (weakly singular) integral
equations justifies the existence of all G(∆ + λ; ·). Thus we can state

Theorem 7.2.7. (Existence of the Euler (Green) Function G(∆ + λ; ·))

(ia) If λ is not an eigenvalue, i.e., λ /∈ Spect∆(Λ), then the integral equation (7.47)
possesses a unique solution H(λ; ·).

(ib) If λ is an eigenvalue, i.e., λ ∈ Spect∆(Λ), then the integral equation (7.47) possesses
a unique solution H(λ; ·) under the condition∫

F
H(λ;x)Φh(x)dx = 0, (7.48)

for all h ∈ Λ−1 with (∆ + λ)∧(h) = 0.

(ii) H(λ; ·), as specified by (i) satisfies all defining conditions of the function G(∆+λ; ·),
hence, in light of the uniqueness theorem (Theorem 7.2.3),

H(λ; ·) = G(∆ + λ; ·). (7.49)

7.3 Euler Summation Formula for the Inner Space of a Regular
surface

Next we generalize the Euler summation formula to the three-dimensional case. In fact, we
give its formulation for the (iterated) Laplace operator ∆m, arbitrary lattices Λ ∈ R3 and
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the inner space of a regular surface Σ (cf. Section 2.6.1). The essential tool is the Euler
(Green) function with respect to the Laplace operator and its constituting properties (as
introduced in the previous section).

7.3.1 Euler Summation Formulas for the Laplace Operator

Figure 7.1: Multidimensional Lattice

Let Λ ⊂ R3 be an arbitrary lattice. Let Σint ⊂ R3 is the inner space of the regular surface
Σ. Let F be a function of class C(2)(Σint). Then, for every (sufficiently small) ε > 0, the
second Green theorem gives∫

x∈Σint
x/∈Bε+Λ

(
F (x)(∆)G(∆;x)−G(∆;x)(∆)F (x)

)
dx

=

∫
x∈Σ

x/∈Bε+Λ

(
F (x)

∂

∂ν
G(∆;x)−G(∆;x)

∂F

∂ν
(x)

)
dω(x)

+
∑
g∈Σint

g∈Λ

∫
|x−g|=ε
x∈Σint

(
F (x)

∂

∂ν
G(∆;x)−G(∆;x)

∂F

∂ν
(x)

)
dω(x),

(7.50)

where ν is the outer (unit) normal field, and Bε = {x ∈ R3||x| ≤ ε}. Observing the
differential equation (Condition (ii) of Definition 7.2.1) we get∫

x∈Σint
x/∈Bε+Λ

F (x)∆G(∆;x)dx = − 1

||F||

∫
x∈Σint
x/∈Bε+Λ

F (x)dx. (7.51)

Hence, on passing to the limit ε → 0 and observing the characteristic singularity of the
Λ-Euler (Green) function (Condition (iii) of Definition 7.2.1) we obtain in connection with
Lemma 2.6.3 the following
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Theorem 7.3.1. (Lattice Point Generated Euler Summation Formula for the Laplace
Operator ∆) Let Λ be an arbitrary lattice in R3. Let Σint ⊂ R3 be the inner space of the
regular surface Σ. Let F be twice continuously differentiable on Σint. Then we have∑

g∈Σint

g∈Λ

′
F (g) =

1

||F||

∫
Σint

F (x)dx

+

∫
Σint

G(∆;x)∆F (x)dx

+

∫
Σ

(
F (x)

∂

∂ν
G(∆;x)−G(∆;x)

∂F

∂ν
(x)

)
dω(x),

(7.52)

where ∂
∂ν denotes in the direction of the outer normal ν and∑

g∈Σint

g∈Λ

′
F (g) =

∑
g∈Σint

g∈Λ

F (g)− 1

2

∑
g∈Σ
g∈Λ

F (g). (7.53)

This formula provides a comparison between the integral over the inner space Σint

of the regular surface Σ and the (weighted) sum over all functional values of the twice
continuously differentiable function F in lattice points g ∈ Σint under explicit knowledge
of the remainder term in integral form. Moreover, this formula is an immediate gener-
alization to the three-dimensional case of the one-dimensional Euler summation formula,
where G(∆; ·) takes the role of the Bernoulli polynomial of degree 2.

7.3.2 Euler Summation Formulas for the Iterated Laplace Operators

The Euler summation formula (Theorem 7.3.1) can be extended by use of higher order
derivatives. For that purpose we introduce Λ-Euler (Green) functions to the iterated
operator ∆,m ∈ N.

Definition 7.3.2. The function G(∆m; ·),m ∈ N, defined by

G(∆1;x) = G(∆;x) (7.54)

G(∆m;x) =

∫
F
G(∆m−1; z)G(∆;x− z)dz, (7.55)

m = 2, 3, ... is called Λ-Euler (Green) function with respect to the operator ∆m.

Obviously, for all x /∈ Λ and g ∈ Λ

G(∆m;x+ g) = G(∆m;x) (7.56)
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is satisfied, i.e., G(∆m; ·) is Λ-periodic. In analogy to techniques of potential theory it can
be proved that

G(∆m;x) = O(|x|2m−3), for 2m ≤ 3, (7.57)

while for 2m > 3, G(∆m;x) is continuous in R3. Moreover, the differential equation

∆G(∆m;x) = G(∆m−1;x), x /∈ Λ, (7.58)

m = 2, 3, ...,, represents a recursion relation relating the Λ-Euler (Green) function with
respect to the operator ∆m, to the Λ-Euler (Green) function with respect to the operator
∆m−1. The bilinear expansion of G(∆m;x) in terms of eigenfunctions, which is equivalent
to the (formal) Fourier (orthogonal) expansion, reads for m = 2, 3, ...

1√
||F||

∑
∆∧(h)6=0
h∈Λ−1

Φh(x)

(−∆∧(h))m
, (7.59)

where

∆∧(h) = 4π2h2. (7.60)

Note, for m > 3/2 it follows that there exists a constant C > 0 such that∣∣∣∣∣∣∣∣
∑

∆∧(h)6=0
h∈Λ−1

Φh(x)

(−∆∧(h))m

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1√
||F||

∑
4π2h2 6=0
h∈Λ−1

e2πih·x

(−4π2h2)m

∣∣∣∣∣∣∣∣ ≤ C
∑
h∈Λ−1

1

(1 + h2)m
<∞. (7.61)

Altogether we are able to formulate

Lemma 7.3.3. For m > 3/2, the Λ- Euler (Green) function G(∆m; ·) is continuous in
R3, and we have for all x, y ∈ R3

G(∆m;x− y) =
1√
||F||

∑
∆∧(h) 6=0
h∈Λ−1

Φh(x)Φh(y)

(−∆∧(h))m
. (7.62)

Provided that the function F : Σint → R,Σint ⊂ R3, is of class C(2m)(Σint),m ∈ N, we get
from the second Green theorem by use of the differential equation (7.58) for the Λ-Euler
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7 Integral Discretization Based on Euler Summation

(Green) function with respect to ∆m∫
x∈Σint
x/∈Bε+Λ

G(∆k+1;x)(∆k+1F (x))dx−
∫
x∈Σint
x/∈Bε+Λ

(∆G(∆k+1;x))∆kF (x)dx

=

∫
x∈Σ

x/∈Bε+Λ

G(∆k+1;x)

(
∂

∂ν
∆kF (x)

)
dω(x)

−
∫

x∈Σ
x/∈Bε+Λ

(
∂

∂ν
G(∆k+1;x)

)
∆kF (x)dω(x)

+
∑
g∈Σint

g∈Λ

∫
|x−g|=ε
x∈Σint

G(∆k+1;x)

(
∂

∂ν
∆kF (x)

)
dω(x)

−
∑
g∈Σint

g∈Λ

∫
|x−g|=ε
x∈Σint

(
∂

∂ν
G(∆k+1;x)

)
∆kF (x)dω(x),

(7.63)

for every (sufficiently small) ε > 0 and k ∈ N with k ∈ [1,m− 1]. From classical potential
theory (see, e.g., [51]), we know that the integrals over all hyperspheres tend to 0 as ε→ 0.
This leads us to the recursion formula∫

Σint
G(∆k+1;x)∆k+1F (x)dx

=

∫
Σint

G(∆k;x)∆kF (x)dx

+

∫
Σ
G(∆k+1;x)

(
∂

∂ν
∆kF (x)

)
dω(x)

−
∫

Σ

(
∂

∂ν
G(∆k+1;x)

)
∆kF (x)dω(x).

(7.64)

Consequently we find for F ∈ C(2m)(Σint)

∫
Σint

G(∆;x)∆F (x)dx

=

∫
Σint

G(∆m;x)∆mF (x)dx

+

m−1∑
k=1

∫
Σ

(
∂

∂ν
G(∆k+1;x)

)
∆kF (x)dω(x)

−
m−1∑
k=1

∫
Σ
G(∆k+1;x)

(
∂

∂ν
∆kF (x)

)
dω(x).

(7.65)
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In connection with the Euler summation formula (Theorem 7.3.1) we therefore obtain the
extended Euler summation formula, i.e., the Euler summation formula with respect to the
operator ∆m,m ∈ N (see [22]).

Theorem 7.3.4. (Euler Summation Formula for the Operator ∆m) Let Σint ⊂ R3 be the
inner space of the regular surface Σ. Suppose that F is of class C(2m)(Σint). Then we
have ∑

g∈Σint

g∈Λ

′
F (g) =

1

||F||

∫
Σint

F (x)dx

+

∫
Σint

G(∆m;x)∆mF (x)dx

+

m−1∑
k=1

∫
Σ

(
∂

∂ν
G(∆k+1;x)

)
∆kF (x)dω(x)

−
m−1∑
k=1

∫
Σ
G(∆k+1;x)

(
∂

∂ν
∆kF (x)

)
dω(x).

(7.66)

Replacing the lattice Λ by a shifted lattice Λ + {x} we obtain from the extended Euler
summation formula (Theorem 7.3.4) the following result.

Theorem 7.3.5. Let Λ be an arbitrary lattice in R3. Let Σint ⊂ R3 be the inner space of
the regular surface Σ. Suppose that F is a member of class C(2m)(Σint),m ∈ N. Then, for
every x ∈ R3, ∑

g+x∈Σint

g∈Λ

′
F (g + x) =

1

||F||

∫
Σint

F (y)dy

+

∫
Σint

G(∆m;x− y)∆m
y F (y)dy

+

m−1∑
k=0

∫
Σ

(
∂

∂νy
G(∆k+1;x− y)

)
(∆k

yF (y))dω(y)

−
m−1∑
k=0

∫
Σ
G(∆k+1;x− y)

(
∂

∂νy
∆k
yF (y)

)
dω(y),

(7.67)

where ∑
g+x∈Σint

g∈Λ

′
F (g + x) =

∑
g+x∈Σint

g∈Λ

α(g + x)F (g + x). (7.68)
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7 Integral Discretization Based on Euler Summation

7.4 Discretization of Integrals over the Inner Space of a Regular
Surface

Let Σint ⊂ R3 be the inner space of the regular surface Σ, Λ ∈ R3 be an arbitrary lattice
and let F be of class C(2m)(Σint). Starting from extended Euler summation formula for
the iterated Laplacian ∆m we find for x = 0∑

g∈Σint

g∈Λ

′
F (g)− 1

||F||

∫
Σint

F (y)dy −
∫

Σ
PL

[
F (y), G(m)(∆; Λ; y)

]
dω(y)

=

∫
Σint

G(∆m; Λ; y)(∆mF (y))dy,

(7.69)

where ∫
Σ
PL

[
F (y), G(m)(∆; Λ; y)

]
dω(y)

=
m−1∑
r=0

∫
Σ

(
G(∆r+1; Λ; y)(

∂

∂ν
∆rF (y))dω(x)− (

∂

∂ν
G(∆r+1; Λ; y))∆rF (y)

)
dω(y).

(7.70)

This formula gives a comparison between the integral over Σint and the sum of functional
values of the integrand at the lattice points inside the region.
The following theorem gives an a priori estimate for the error term.

Theorem 7.4.1. Let Σint ⊂ R3 be the inner space of the regular surface Σ and let F be
a function of class C(2m)(Σint), where m > 3/2. Suppose that there exists a constant C,
such that ∫

Σint
|∆mF (x)| dx ≤ C. (7.71)

Then∣∣∣∣∣∣∣∣∣
∫

Σint
F (x)dx− ||F||

∑
g∈Σint

g∈Λ

′
F (g) + ||F||

∫
Σ
PL

[
F (x), G(m)(∆; Λ;x)

]
dω(x)

∣∣∣∣∣∣∣∣∣
≤ ||F||C(2π)−2mζ(2m; Λ−1),

(7.72)

where
ζ(s,Λ) =

∑
|g|6=0

|g|−s, (7.73)

is the (Epstein) zeta function.
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Proof : For m > 3/2 we have

∣∣∣∣∣∣∣∣∣
∫

Σint
F (x)dx− ||F||

∑
g∈Σint

g∈Λ

′
F (g) + ||F||

∫
Σ
PL

[
F (x), G(m)(∆; Λ;x)

]
dω(x)

∣∣∣∣∣∣∣∣∣
≤ ||F||

∫
Σint
|G(∆m; Λ;x)||∆mF (x)|dx

≤ ||F|| sup
x∈Σint

|G(∆m; Λ;x)| · C

≤ ||F|| sup
x∈Σint

∣∣∣∣∣∣∣∣
∑
|h|6=0
h∈Λ−1

Φh(x)

(−4π2h2)m

∣∣∣∣∣∣∣∣ · C ≤ ||F|| · C
∑
|h|6=0
h∈Λ−1

1

(4π2)m|h|2m

= ||F|| · C(2π)−2mζ(2m; Λ−1).

(7.74)

For our purposes of numerical integration over the inner space Σint of a regular surface Σ,
we use the ‘τ -dilated lattice’ τZ3 (τ > 0) and m > 3/2. We then have

∫
Σint

F (x)dx = τ3
∑
g∈Σint

g∈τZ3

′
F (g) + τ3

∫
Σint

G(∆m; τZ3;x)∆mF (x)dx

+τ3
m−1∑
k=0

∫
Σ

(
∂

∂ν
G(∆k+1; τZ3;x))∆kF (x)dω(x),

−τ3
m−1∑
k=0

∫
Σ
G(∆k+1; τZ3;x)(

∂

∂ν
∆kF (x))dω(x).

(7.75)

Theorem 7.4.2. Given a lattice Λ ⊂ R3, τ > 0 and m > 3/2, the following identity is
valid:

G(∆m; τZ3;x) = τ2m−3G(∆m;Z3; τ−1x). (7.76)
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Proof: Using Lemma 7.3.3 we have for m > 3/2 and τ > 0

G(∆m; τZ3;x) =
1

τ3

∑
h6=0

h∈τ−1Z3

1

(−4π2h2)m
e2πih·x

=
1

τ3

∑
l 6=0
l∈Z3

1

(−4π2( lτ )2)m
e2πi l

τ
·x

=
1

τ3

∑
l 6=0
l∈Z3

τ2m

(−4π2l2)m
e2πil x

τ

= τ2m−3
∑
l 6=0
l∈Z3

1

(−4π2l2)m
e2πil(τ−1·x)

= τ2m−3G(∆m;Z3; τ−1x).

(7.77)

This proves Theorem 7.4.2.

This leads us to the following summation formula for the ‘τ -dilated lattice’

∫
Σint

F (x)dx = τ3
∑
g∈Σint

g∈τZ3

′
F (g)

+τ2m

∫
Σint

G(∆m;Z3; τ−1x)∆mF (x)dx

+

m−1∑
k=0

τ2k+2

∫
Σ

(
∂

∂ν
G(∆k+1;Z3; τ−1x))∆kF (x)dω(x)

−
m−1∑
k=0

τ2k+2

∫
Σ
G(∆k+1;Z3; τ−1x)(

∂

∂ν
∆kF (x))dω(x).

(7.78)

For the a priori estimate of the error term in connection to Theorem 7.4.1, we then have
the following

Theorem 7.4.3. Let Σint ⊂ R3 be the inner space of a regular surface Σ and let F be
a function of class C(2m)(Σint), where m > 3/2. Suppose that there exists a constant C,
such that ∫

Σint
|∆mF (x)| dx ≤ C. (7.79)
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Then∣∣∣∣∣∣∣∣∣
∫

Σint
F (x)dx− τ3

∑
g∈Σint

g∈Λ

′
F (g) + τ3

∫
Σ
PL

[
F (x), G(m)(∆;Z3; τ−1x)

]
dω(x)

∣∣∣∣∣∣∣∣∣
≤ τ2mC(2π)−2mζ(2m;Z3),

(7.80)

where
ζ(s,Z3) =

∑
|g|6=0

|g|−s, (7.81)

is the (Epstein) zeta function.

Obviously, the remainder term gives the accuracy of the numerical procedure in the sense
that the denser the lattice, the better approximation to the volume integral under consid-
eration.

7.5 Discretization of the Spline Kernel K

Next we give the estimate for the remainder term in the case of the spline integral. For
more general approach in higher dimensions the reader is referred to [40] and the references
therein.

The essential tool in the spline formulation for the gravitational potential determination,
related to the inner space of a regular surface Σ (as presented in Chapter 5) was the
reproducing kernel given in the form

K (x, y) =

∫
Σint

dz

|x− z||y − z|
. (7.82)

For points in Σext our purpose is to apply Theorem 7.4.1 with m = 2. Denote by G, the
integrand in (7.82), i.e.,

G(z) =
1

|x− z||y − z|
, z ∈ Σint (7.83)

For x, y,∈ Σext, the function G is an element in C(∞)(Σint) and we have chosen the regular
surface Σ (see Section 4.3), so the assumptions of the Theorem 7.4.1 are fulfilled.
We need to prove the existence of a constant C, such that∫

Σint

∣∣∆2
zG(z)

∣∣ dz ≤ C. (7.84)
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Using the formula

∆(H ·K) = H∆K + 2∇H · ∇K +K∆H, for H,K ∈ C(2)(R3), (7.85)

and the harmonicity of 1
|x−z| and 1

|y−z| in Σint we get for the Laplacian ∆zG(z) the following

∆zG(z) = ∇z · ∇zG(z) = ∇z · ∇z
(

1

|x− z|
1

|y − z|

)
(7.86)

= ∇z ·
(

1

|y − z|
∇z

1

|x− z|
+

1

|x− z|
∇z

1

|y − z|

)
= ∇z ·

(
1

|y − z|
∇z

1

|x− z|

)
+∇z ·

(
1

|x− z|
∇z

1

|y − z|

)
=

1

|y − z|
∆z

1

|x− z|
+

1

|x− z|
∆z

1

|y − z|
+ 2∇z

1

|x− z|
∇z

1

|y − z|

= 2∇z
1

|x− z|
∇z

1

|y − z|

=
2(x− z)(y − z)
|x− z|3|y − z|3

.

An elementary calculation yields

∆2
zG(z) = 2

3∑
i=1

∂2

∂z2
i

1

|x− z|
∂2

∂z2
i

1

|y − z|

+ 2

3∑
i=1

3∑
j=1
j 6=i

∂2

∂zi∂zj

1

|x− z|
∂2

∂zi∂zj

1

|y − z|

+

3∑
i=1

∂

∂zi

1

|x− z|
∂

∂zi
∆z

1

|y − z|

+
3∑
i=1

∂

∂zi
∆z

1

|x− z|
∂

∂zi

1

|y − z|
.

(7.87)

For the first summand in (7.87) we find the following estimate∣∣∣∣ ∂2

∂z2
i

1

|x− z|
∂2

∂z2
i

1

|y − z|

∣∣∣∣
=

∣∣∣∣( −1

|x− z|3
+

3(xi − zi)2

|x− z|5

)(
−1

|y − z|3
+

3(yi − zi)2

|y − z|5

)∣∣∣∣
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≤ 1

|x− z|3|y − z|3
+
| − 3(xi − zi)2|
|x− z|5|y − z|3

+
| − 3(yi − zi)2|
|y − z|5|x− z|3

+
|3(xi − zi)2(yi − zi)2|
|x− z|5|y − z|5

≤ 1

|x− z|3|y − z|3
+

3|x− z|2

|x− z|5|y − z|3
+

3|y − z|2

|y − z|5|x− z|3
+

3|x− z|2|y − z|2

|x− z|5|y − z|5

≤ 10

|x− z|3|y − z|3
i = 1, 2, 3.

(7.88)

In similar way find the estimates for the other summands in (7.87)∣∣∣∣ ∂2

∂zi∂zj

1

|x− z|
∂2

∂zi∂zj

1

|y − z|

∣∣∣∣
=
|9(xi − zi)(xj − zj)(yi − zi)(yj − zj)|

|x− z|5|y − z|5

≤ 9
|x− z|2|y − z|2

|x− z|5|y − z|5

≤ 9

|x− z|3|y − z|3
, i, j = 1, 2, 3, i 6= j.

(7.89)

For the last two summands we have∣∣∣∣ ∂∂zi 1

|x− z|
∆z

1

|y − z|

∣∣∣∣
≤ 9|x− z||y − z|
|x− z|3|y − z|5

+
45|x− z||y − z|3

|x− z|3|y − z|7
+

6|x− z||y − z|
|x− z|3|y − z|5

≤ 60

|x− z|2|y − z|4
. i = 1, 2, 3.

(7.90)

Similarly ∣∣∣∣ ∂∂zi∆z
1

|x− z|
∂

∂zi

1

|y − z|

∣∣∣∣
≤ 9|x− z||y − z|
|x− z|5|y − z|3

+
45|x− z|3|y − z|
|x− z|7|y − z|3

+
6|x− z||y − z|
|x− z|5|y − z|3

≤ 60

|x− z|4|y − z|2
, i = 1, 2, 3.

(7.91)
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Moreover, since Σ is a regular surface (cf. Definition 3.1), we have for points p ∈ Σext and
z ∈ Σint

|p| > α, |z| < β, (7.92)

where α and β are as in (3.1).
Now using the triangle inequality, we find for for points p ∈ Σext and z ∈ Σint

1

|p− z|
≤ 1

||p| − |z||
≤ 1

|α− β|
. (7.93)

Thus we can state the following

Theorem 7.5.1. Given the points x, y ∈ Σext and the function

z 7→ G(z) =
1

|x− z||y − z|
, z ∈ Σint, (7.94)

the following estimate is valid: ∫
Σint

∣∣∆2
zG(z)

∣∣ dz ≤ 528 C, (7.95)

where

C = C(Σ) =
||Σint||
|α− β|6

, (7.96)

where α, β are chosen as in (3.1).

Proof: Indeed, from (7.87) we find

∫
Σint

∣∣∆2
zG(z)

∣∣ dz ≤ 2

∫
Σint

3∑
i=1

∣∣∣∣ ∂2

∂z2
i

1

|x− z|
∂2

∂z2
i

1

|y − z|

∣∣∣∣ dz
+ 2

∫
Σint

3∑
i=1

3∑
j=1
j 6=i

∣∣∣∣ ∂2

∂zi∂zj

1

|x− z|
∂2

∂zi∂zj

1

|y − z|

∣∣∣∣ dz
+

∫
Σint

3∑
i=1

∣∣∣∣ ∂∂zi 1

|x− z|
∂

∂zi
∆z

1

|y − z|

∣∣∣∣ dz
+

∫
Σint

3∑
i=1

∣∣∣∣ ∂∂zi∆z
1

|x− z|
∂

∂zi

1

|y − z|

∣∣∣∣ dz.
(7.97)
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Having in mind the estimates (7.88), (7.89), (7.90) and (7.91) we then find∫
Σint

∣∣∆2
zG(z)

∣∣ dz ≤ 2 · 3
∫

Σint

10

|x− z|3|y − z|3
dz

+ 2 · 3 · 2
∫

Σint

9

|x− z|3|y − z|3
dz

+ 3

∫
Σint

60

|x− z|2|y − z|4
dz

+ 3

∫
Σint

60

|x− z|4|y − z|2
dz

= 168

∫
Σint

dz

|x− z|3|y − z|3
dz

+ 180

∫
Σint

dz

|x− z|2|y − z|4

+ 180

∫
Σint

dz

|x− z|4|y − z|2
.

Finally, using the estimate (7.93), we find for given x, y ∈ Σext∫
Σint

∣∣∆2
zG(z)

∣∣ dz ≤ 528 C(Σ), (7.98)

with C defined as in (7.96). This proves Theorem 7.5.1.
Now we can state in connection to Theorem 7.4.1 the following theorem concerning the
discretization of the interpolating kernel K

Theorem 7.5.2. Let Σ be a regular surface and let x, y be a given points in Σext. Then
the integral

K (x, y) =

∫
Σint

dz

|x− z||y − z|
, (7.99)

can be approximated by the expression∑
g∈Σint

g∈Z3

′
G(g) +

∫
Σ
PL

[
G(z), G(2)(∆;Z3; z)

]
dω(z), (7.100)

where G is defined in (7.94), such that∣∣∣∣∣∣∣∣∣
∫

Σint
G(z)dz −

∑
g∈Σint

g∈Z3

′
G(g) +

∫
Σ
PL

[
G(z), G(2)(∆;Z3; z)

]
dω(z)

∣∣∣∣∣∣∣∣∣
≤ (2π)−4ζ(4;Z3)C1(Σ),

(7.101)
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7 Integral Discretization Based on Euler Summation

where
C1 = 528C(Σ), (7.102)

with C defined as in (7.96) and

ζ(s,Z3) =
∑
|g|6=0

|g|−s, (7.103)

is the (Epstein) zeta function.

Going over to the ‘τ -dilated lattice’ τZ3, τ > 0 in connection to Theorem 7.4.3 we find

Theorem 7.5.3. For the approximation procedure the following a priori error is valid∣∣∣∣∣∣∣∣∣
∫

Σint
G(z)dz − τ3

∑
g∈Σint

g∈Z3

′
G(g) + τ3

∫
Σ
PL

[
G(z), G(2)(∆;Z3; τ−1z)

]
dω(z)

∣∣∣∣∣∣∣∣∣
≤ τ4(2π)−4ζ(4;Z3)C1(Σ),

(7.104)

where
C1 = 528C(Σ), (7.105)

with C defined as in (7.96) and

ζ(s,Z3) =
∑
|g|6=0

|g|−s, (7.106)

is the (Epstein) zeta function.

The summation formulas presented here can be used in solving the Dirichlet and the
oblique derivative boundary problem corresponding to data sets for points in Σext. Thus,
combined with a suitable regularization methods, they can also be applied in solving the
SST or SGG satellite problems. Moreover, in the case of the oblique derivative we can
even consider point sets in Σext, i.e., the data sets of points on Σ can be taken into
consideration. Remember that in this case the reproducing kernel is defined with respect
to the inner parallel surface, so for the points on Σ, we have the necessary smoothness
conditions for the integrand.
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8 Summary and Outlook

In this thesis we are trying to make the first modest steps to overcome the problems of
spherical harmonic theory and to push the boundaries of today’s geomathematical ap-
proaches, by finding a suitable way to determine the gravitational potential, with respect
to the actual Earth’s surface. Replacing the sphere by the regular surface and overcoming
the main problems in spherical approach, will benefit to the development of new per-
spectives in all application fields. We have managed to make the first steps towards the
approximations of functions on regular surfaces. The solutions to boundary problems of
potential theory are given with respect to the real Earth surface. We have constructed
the Hilbert space of potentials on and outside a regular surface, with reproducing kernel
defined as Newton integral over the it’s inner space. Thus, proposed spline formulation
reflects the specific geometry of a given regular surface. Moreover, it is shown that the
spline function, i.e., minimum norm interpolant, has the same domain of harmonicity as
the gravitational potential, i.e., it is harmonic outside, and continuous on the Earth sur-
face. This is a step forward in comparison to spherical harmonic spline formulation, where
solution was given as a superposition of reproducing kernels that are harmonic functions
down to a Runge sphere, i.e., the gravitational potential on and outside the Earth sur-
face, was approximated using functions with larger harmonicity domain. Moreover, in the
case of spherical Earth, it turns out that the reproducing kernel we have used, possesses
the representation analogous to spherical harmonic kernels. This means that the repro-
ducing kernel we have constructed, can be considered to be some kind of generalization
to spherical oriented kernels.We have given a constructive way for gravitational potential
determination and also convergence theorems were proven for interpolating functions to
real geometries. However, the closed expression for this kernel seems to be unknown, even
for the spherical case. Thus, considering a practical implementation, we proposed certain
discretization methods for integrals over the inner space of a regular surface, involving
multidimensional Euler summation formula. Also we managed to give a priori estimates
for approximate integration of the interpolating Newton integral. The upcoming research
in the field of Metaharmonic Lattice Point Theory (Geomathematics Group, TU Kaiser-
slautern) raises a great hope for further practical implementation of this research.
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Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit beson-
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