On the Representation of

Mathematical Knowledge in

Frames and its Consistency

Manfred Kerber

Published as: In Michel De Glas and Dov Gabbay, eds., WOC-
FAI 91 — Proceedings of the First World Confer-
ence on the Fundamentals of Artificial Intelligence,

%3921511& France, p.293-301, Angkor, Paris, France,



On the Representation of Mathematical Knowledge in Frames

and its Consistency

Manfred Kerber
Fachbereich Informatik, Universitat Kaiserslautern
D-6750 Kaiserslautern, Germany

Abstract: We show how to build
up mathematical knowledge bases using
frames. We distinguish three different
types of knowledge: axioms, definitions
(for introducing concepts like “set” or
“ecroup”) and theorems (for relating the
concepts). The consistency of such know-
ledge bases cannot be proved in gen-
eral, but we can restrict the possibilit-
ies where inconsistencies may be impor-
ted to very few cases, namely to the oc-
currence of axioms. Definitions and the-
orems should not lead to any inconsisten-
cies because definitions form conservative
extensions and theorems are proved to be
consequences.

Key words: frames, consistency,
mathematical concept, conservative ex-
tension

1 Introduction

Many different forms of representing
knowledge have been developed in artifi-
cial intelligence. Frames, first introduced
by MARVIN MINSKY in [14], are very
popular because of the clarity and the ex-
pressive power in principle. Another ad-
vantage is the possibility to fix the slots
and the types of the admissible slot fillers.
Of course the primitives — in accordance
to the ideas of RONALD J. BRACHMAN
[4] — have to be found. The power of such
a representational approach can be seen
in the CYC project where different kinds
of knowledge are represented in a frame-
like manner [13].

We shall use the frame approach of
knowledge representation and an appro-

293

Das wird nachstens schon besser gehen,
Wenn Ihr lernt alles reduzieren

Und gehorig klassifizieren.

J.W.Goethe, Faust I

priate object language to represent con-
ceptual mathematical knowledge like that
of a mathematical dictionary. Concepts
(like “group” or “field”) are introduced as
axioms or definitions and related by the-
orems. Qur representation is an extension
of standard logic. The knowledge about
concepts consists of definitions, equival-
ent formulations and consequences, ex-
amples and counter-examples; the rela-
tions between different concepts are de-
scribed by theorems. Each axiom, defin-
ition, and theorem is represented in a
frame.

The language in which the mathemat-
ical factual knowledge is expressed plays
a major role. Because first-order predic-
ate logic is too limited to conveniently
express mathematical knowledge we use
higher order logic with sorts. We give no
formal syntax here, but introduce it only
in so far as it is necessary for the purpose
of showing how such a knowledge base can
be built up. The details can be found in
[L1]. How the knowledge can be trans-
lated into first order logic (in order to use
first order theorem provers) can be found
in [10].

When we represent mathematical con-
cepts we have to show what a concept
is and how to represent it. To this end,
we take some introductory examples from
mathematical textbooks. In [9] the con-
ceptual knowledge of elementary axio-
matic set theory [7] and the first part of
[2] is represented.

When proving theorems by an auto-
mated theorem prover (for instance, a res-
olution based one), one has to give to the



Definition: associative property
parameters: C (v —0)
f (CxC—=C)
definition: Va,y,z:C f(f(x,y),2) = f(z, f(y,2))
context: Basic Algebraic Definitions

Figure 1: Definition of “associative”

prover the definitions, axioms, and the-
orems which are necessary for the proof.
One can enter them for each proof anew,
but aside the fact that this is very boring,
each time again one can write something
faulty. By a knowledge base we can avoid
that we use two different definitions of
the same concept, which seem to be the
same but are not (ignoratio elenchi). If
we have made an error we can repair it
once for ever after detecting it. On the
other hand it is very important to have a
consistent knowledge base, because oth-
erwise anything can be derived of it. Be-
cause of KURT GODEL’S second incom-
pleteness theorem [6], the consistency of
sufficiently expressive systems cannot be
proved without using even stronger meth-
ods. But we can try to restrict the im-
portation of contradictions to a few cases:
the notion of axioms and these should
be used relatively rarely. Of course such
an approach cannot guarantee that the
definitions of concepts are correct, that
is, in accordance with the general use of
them. We can define the concept “group”
as something quite different from the gen-
eral use, but because we cannot import
contradictions by a definition other parts
of the knowledge base not using this
concept cannot be concerned of such a
non-standard definition. (The import-
ance of this fact for automated theorem
proving is already noted in [3, p.13].)
Here we develop the ideas for a math-
ematical knowledge base, but the results
are transferable to any one based on logic.

2 Examples

In this section we give an example,
namely the concept “group”. In order to

294

define this concept, we must define the
concept “associative”. This can be done
immediately in a sorted higher order logic
L by
VC:(t — o) Vf:(CxC — ()
associative(C, ) <
Va,y,2:C f(f(x,y),2) = [z, f(y,2)).
(¢ — o) denotes the type of all unary ob-
ject predicates. We adopt the notion of
types from ALONZO CHURCH [5]: ¢ is
the type of individuals and o the type
of truth values. The type itself is also
the top sort of the corresponding type.
We use sorts as abbreviations for corres-
ponding predicates, that means the for-
mula Vn:nat P(n) is an abbreviation for
Vn:¢ nat(n) = P(n). Analogously we
abbreviate by Vf:(C x C — C) ¢(f) the
formula Vf: (¢ x ¢ — ¢) function(f,C x
C,C) = ¢(f). We represent this know-
ledge in frames as above and we shall ex-
plain the newly introduced features of a
frame, when they occur for the first time.
With the different slots we get a descrip-
tion of what a concept is. Not only the
predicate logic definition, but also other
slots have to be filled in order to describe
it in a detailed way. In the case of asso-
ciativity we get the frame of Figure 1.

Here a certain definition is given. This
is indicated by the keyword “Defini-
tion:” in the upper left corner. After
the colon follows the name of the intro-
duced concept. In this case it is “as-
sociative”. Then we give the type of
the concept. The entry “property” means
that the whole concept models a prop-
erty, similarly as predicate symbols model
properties. Therefore a standard transla-
tion of the definition of a “property con-
cept” into predicate logic can be done by
a predicate symbol, but also other trans-



Axiom: set
axioms: Va:Set Class(x)

VX,Y:Class X €Y = Set(X)

VX,Y:Class (Vu:Set ue X <= ueY)=—=X=Y

Va,y:Set Jz:Set (Yu:Set uez < (u=azVu=y)) (z={zy})
consequences: Ve,y:Set ye{z,2} < z=1y <proof-set-cons-1>
signature_ext: Classc(t — o), SetcClass, €: (Set x Class — 0),{.,.} : (Set x Set — Set)
context: Set theory

Figure 2: Some axioms of set-theory

Definition: ex_left_neutral_element property
parameters: C {(t—0)

f (CxC—=0C)
(optional) 0 :C (called neutral_element)
definition: Ve:C f(0,2) ==
context: Basic Algebraic Definitions

Figure 3: Definition of left neutral

lations are possible. A “property con-
cept” represents the relationship between
its parameters. But such a relationship
consists not only of its definition, but
also of consequences, examples, and so
on. The other type of a concept is that of
a “mapping concept”. In this case a new
object is created, for instance the concept
“ordered_pair” is of that type.

The argument of the binary property
associative is given in the slot “paramet-
ers”. The number of parameters corres-
ponds here to the arity of the defining
predicate symbol. In this case we have
an analogy between our parameters and
the parameters in a computer language.
In the slot “parameters” the formal para-
meters and their types are written. When
using the defined object elsewhere they
are bound to the actual parameters.

In the slot “definition” we find a
(higher order) predicate logical definition
of the concept. The slot “context” is
provided for structuring the concepts in
knowledge units. Here a more detailed in-
formation may become necessary, as for

295

example the information what may be
used by another concept and what not.

As example for axioms we choose the
first axioms of GODEL’S set axioms [7]
(see Figure 2).

In the slot “axioms” the correspond-
ing axioms are written. The slot “con-
sequences” contains lemmata (including
a pointer to a proof) that belong imme-
diately to that concept. In the slot “sig-
nature_ext” we state the axiomatized con-
stants. In this case that are the predicates
Class, Set, €, and the function {.,.}.

In the next concept (see Figure 3) we
have an “optional” parameter.

There are two different assertions us-
ing the concept ex_left neutral_element.
“ex_leftneutral_element(C, f)” means
that there exists an element (let us call
it “n”) so that we have the formula
Ve : € f(n,z) = z. But if we say
“ex_leftneutral_element(C, f,0)7, we
want to express that there exists an ele-
ment (say “n”) so that Va:C f(n,z) ==
and that this element n is equal to 0. The
two expressions are closely related, but



Definition: group property
parameters: G (v —0) (called carrier)
+ (G xG—=G) (called operation)
(optional) 0 G (called neutral_element)
(optional) — (G —G) (called inverse)
definition: TRUFE
equivalences: 1) associative(G,+) A
ex_left_neutral_element(G,+,0) A
ex_left_inverse(G,+,0, —) <proof-group-equ-1>
2) associative(G,+) A
ex_right_neutral_element(G,+,0) A
ex_right_inverse(G,+,0,—) <proof-group-equ-2>
examples: 1) (Z,+,0,-) model Integers <proof-group-ex-1>
2) (@,+,0,-) model Rationals <proof-group-ex-2>
3) (Q\{0},,1,71) model Rationals <proof-group-ex-3>
superconcepts: 1) associative(G,+)
2) ex_neutral_element(G,+,0)
3) ex_inverse(G,+,0,—)
context: Basic Algebraic Definitions

Figure 4: Definition of “group”

nevertheless different.

Together with the analogously defin-
able concept “ex_left_inverse” it is now
possible to introduce the concept “group”
(see Figure 4).

The TRUE in the definition slot
means that the concept is fully defined
by the conjunction of its superconcepts.

The slot “equivalences” contains lo-
gical expressions that are necessary
and sufficient to define the introduced
concept. They are logically equivalent
to the definition of the concept. They
belong immediately to that concept and
can be used as an alternative definition of
the concept. For example if one wants to
prove that a certain object is a group, it
is easier to use one of the two equivalent
formulations, because then one has less
to prove. The definition itself is prefer-
able if it is used as a premis, because it is
stronger. This rule could be formulated
as a fact in a meta-system. Here we see
an important difference between our epi-
stemological term “property” and the lo-
gical term “predicate”: The conceptual
representation makes it possible to make
some assertions about the concepts (as for

296

instance to use a certain variant of the
definition in some situation). This would
not be possible if we had mere predicates.
Whether and how this can be used for ac-
tually guiding a theorem prover, will of
course be the ultimate test. In the slot
“examples” we can find a reference to a
model of the corresponding concept. Of
course the equivalent formulations as well
as consequences, examples, and counter-
examples have to be proved before they
can be inserted in the frame.

By the entries of the slot “supercon-
cepts” we get a transitive network of con-
cepts with inheritance. Every concept in-
herits all definitions, consequences, equi-
valences, and counter-examples of its su-
perconcepts.

In the definition and axiom frames we
represent certain theorems which belong
immediately to that concept. But the
most part of all theorems cannot be at-
tached to one single concept (introduced
as axiom or definition). So we need an-
other kind of frames to represent these
theorems. We represent them in the third
type of frames, the theorem frames. For
an example see Figure 5.



Theorem: Name

Theorem

theorem:

status: “proved”

proof: <proof-Cantor>
context: Set theory

Vs:(¢—0) =3g:(t = (¢t —0)) Vf:(t —0) fCs= (Tj:e s(j) Ag(y) = f)*

Figure 5: Cantor’s theorem

3 The Frame Language

In this section we briefly describe the no-
tion of our knowledge units, the frames.
There are three different types: defini-
tion frames, axiom frames, and theorem
frames.

1. Definition: A definition frame (writ-
ten 9) is a list consisting of the following
parts:

— “parameters” is of a list of wvari-
able_symbols with sorts and option-
ally selector names.

— “definition” is either an L-formula
or an L-term corresponding to the
type of the frame (property or map-

ping).
— “main_property” is an L-formula.

— “consequences”, “equivalences”, and
“preconditions” are (possibly
empty) lists of £-formulae.

— “examples” and “counter_examples”
are lists of L-structures.

— “superconcepts” is a list of atomic
L-formulae.

~ “used_in” is a list of axioms, defini-
tions, and theorems.

— “context” is a name of a theory for
modularization.

The slot “consequences” contains theor-
ems that follow from the concept. For
instance if the union of sets is defined,

*In plain text, the theorem states that the
power set of a set has greater cardinality than
the set itself. This formulation is almost that
of PETER B. ANDREWS [1, p.184].

297

we should write into this slot, that
the union is associative, commutative,
and idempotent. The slot “supercon-
cepts” is used for inheritance. For in-
stance “associative” is a superconcept of
“group”. So every consequence in the
“associative”-frame is also a consequence
for the “group”-frame. On the other hand
“group” is consequently a sub-concept for
“associative”. So every example for a
group is in particular an example for an
associative structure. For the slot fillers
there exist some further constraints: for
example if the frame type is “mapping”
then a slot “sort” must be filled.

The semantics of the frames can be
given by translating all parts but the ex-
amples into the underlying logic.** Ex-
amples must be models of the concept and
counter-examples must not. The signa-
ture of a frame ¥ is the set of all extra-
logical symbols in the terms and formulae
in 9.

Analogously one can define axiom frames
and theorem frames. All frames have
a “context” slot and can have a “con-
sequences” slot.

2. Definition: A frame-extension V' of a
frame ¥ is a frame with same name, clas-
sification, parameter list, definition or list
of axioms or theorem and proof, list of su-
perconcepts, preconditions, and context;
the lists of consequences, equivalences,
examples, counter_examples, and used_in
list of ¥ are sublists of the corresponding
lists of ¥'; if the slot main_property of ¥

**That is of course only for having the theoret-
ical notion of semantics. If one translated all
knowledge into the underlying logic one would
loose in practice all structural advantages of
the frame representation.



is not filled, then the main_property of 4’
can contain a formula or can be unfilled
too.

In the next section we discuss the re-
quirements that a set of such frames forms
a knowledge base and when such a know-
ledge base is consistent.

4 Building up a Knowledge
Base

When we build up a knowledge base we
want it to be contradictory free. Unfortu-
nately that cannot be proved in general.
This is a consequence of GODEL’S second
incompleteness result [6]: For every con-
tradictory free formula set that entails
PEANO arithmetic it cannot be proved
(within the system) that it is contradict-
ory free. This means if we restrict the
entries to those which have to be shown
contradictory free, we prune the express-
ive power of the representation facilities
to an extent that is not usable for math-
ematical purpose.

What we can do, is to isolate the cases
where contradictions can be brought in.
So we distinguish between “axioms”,
where every logical formula is writable
and hence contradictions can be written
in the knowledge base, between “defin-
itions” which have to form conservat-
ive extensions of the preceding knowledge
base and so cannot lead to contradictions,
and “theorems”, which have be proved.

For instance the azioms ZFC of
set theory (ZERMELO-FRAENKEL with
axiom of choice) or those of VON
NEUMANN-GODEL-BERNAYS cannot be
proved to be contradictory free. If we add
them to the knowledge base we might im-
port contradictions. On the other hand
the definition of the concept “group” can-
not lead to contradictions (if it is really
a definition). This definition can be re-
garded as an abbreviation for the con-
junction of the concepts “associative”,
“ex_neutral_element”, and “ex_inverse”.
It is important to see that the main part
of mathematical activities is not introdu-
cing new azitoms, but defining new con-
cepts and proving theorems about them.
In [7] GODEL uses 18 axioms to axiomat-
ize set theory; almost all mathematics can

298

be built up on these axioms. Accord-
ing to our calculus we need further logical
axioms as the comprehension axioms in
order to have a complete calculus (with
respect to HENKIN’S general models se-
mantics [8]).

By strict bookkeeping what has been
used for a proof of a theorem one can min-
imize the possibilities that the proof is
based on a faulty assumption and hence
the theorem cannot be taken for sure. For
instance if for the proof no use is made of
ZFC or any theorem that has been proved
with the help of it, the correctness of the
theorem does not depend on the contra-
diction freeness of ZFC. Only axioms can
import contradictions. All other entries
(at least theoretically) cannot. Theor-
ems have to be proved. Definitions should
form conservative extensions.

Now we define what a knowledge base
is. In such a knowledge base there are the
three different kinds of knowledge: ax-
ioms, definitions, and theorems.

3. Definition (Knowledge Base): A
knowledge base A over L is defined in-
ductively:

— as the empty knowledge base Ay, or

— as cons(!, A’) with definition frame
¥ relative to the knowledge base A’
or

— as cons(!, A’) with axiom frame ¥
relative to the knowledge base A/,
or

— as cons(V,A’) with theorem frame
¥ relative to the knowledge base A’
or

— it is equal to a knowledge base A’
for all but one entry and this entry
is a frame-extension of the other.
Formally A\d = A\¢¥ and o is a
frame-extension of ¥’

In all cases (but the first) A is called an
immediate extension of A’. The transit-
ive closure of this relation is called exten-
sion. The signature of a knowledge base
is the union of all signatures of the con-
taining frames.

A frame ¢ is a definition frame relatively
to a knowledge base A’ if it is a defin-
ition frame, the defined concept name



is not in the signature of A, let the
“parameters” be (z1,...,%,), then the
“definition” slot is filled by a formula
o(x1,...,&m), where at most the vari-
ables xy,...,x, occur free and all other
symbols are in the signature of A’. The
signature of A = cons(¥,A’) is the sig-
nature of A’ plus the conceptname of o
as m-ary constant symbol. By L(A) we
denote the logic with the signature of
A. The logical translation of the proper
definition part of a definition frame is
Va1, ..., T, conceptname(y, ..., Tn)
= p(T1,. e T).

A frame ¥ is an aziom frame relatively
to a knowledge base A if it is an axiom
frame, the symbols in “signature_ext” are
not in the signature of A, and no other
symbols than those of the signature of A
and those of “signature_ext” occur in 4.
The signature of cons(?, A) is the union
of these.

Analogously one can define the theorem
frame relatively to a knowledge base.

4. Remark: For the following we need
the notion of derivability. On the lo-
gical level we will assume that we have
a sound calculus by which we can form
a derivation operator . For the follow-
ing it is not of importance how this cal-
culus is defined. We only require it to be
sound. Especially in an extended calculus
the reasoning with examples and counter-
examples could be included. Analogously
to the derivability in AM [12] we can ex-
tend the derivability by the following: Let
A be a knowledge base, ¢ be a formula
then A - ¢ <—

1. AF ¢,

2. ¢ = dr1,..,xn(21,.. ., 2,) and
there is a model entry in a frame

Ve A for ¥(zq1,...,2,), or

3.0 = Fra,..xn0(Tr, ., T0)
and there is a counter-example
entry in a frame ¢ € A for

(T, Ty ).

This form of reasoning is really used in
mathematics. Examples are important
for humans to understand a concept, but
normally they are also given in order to
assure the existence of certain objects
(like “group”). In first approximation

299

one can neglect examples and counter-
examples and replace = by F in the fol-
lowing.

5. Example: If we have defined the con-
cepts “group” and “abelian_group” and
we have a verified entry for examples in
the frame “abelian_group”, namely that
(Z,+,0,—) is an abelian group, then
we can conclude that there are abelian
groups. In addition — if we have repres-
ented “abelian_group” via superconcept
“group” — we can conclude that there
are groups. If we have an example for
groups (like the symmetric group over
{1,2,3,4,5}) which is a counter-example
for commutative groups, then we can con-
clude that there is a non-abelian group.
Or if we define an exponentiation func-
tion T over IN and we claim that this func-
tion i1s non-commutative we can prove
that by giving one example, for instance

2134312

6. Definition: An L-formula ¢ is called
a theorem of a knowledge base A, if the
symbols occurring in ¢ are in the signa-

ture of A and A I .

7. Definition: A knowledge base A is
called contradictory free iff there is no for-
mula ¢ so that A = ¢ and A = —.

8. Definition: An extension A of a
knowledge base A’ is called conservative

iff for all formulae ¢ holds: If ¢ isin L(A")
then A’F @ iff Ak ¢

9. Remark: In particular by a conser-
vative extension we cannot import any
contradiction. If the knowledge base A’
is contradictory-free and A is a conser-
vative extension of A’, then A is also
contradictory-free, because otherwise we
could deduce a formula ¢ and its negation

= and by this any formula in £(A), and
hence any in L(A').

10. Remark: Now we expect the lemma
that definitions as those of the definition
frames form conservative extensions. For
first order logic that is true; unfortunately
not for higher order logic underlying a
very weak semantics as will show the next
example.



11. Example: Let A consist of following

axioms:
—a:t, b, R: (¢ — o)
~VP:(¢ Xt —0) Yo,y

y:
Plz,y) < Ply,x)

— R(a) A —R(b)
These axioms are contradictory free since
we can give a weak model: D, = {1,2},
D(,x.—0) consists only of the binary rela-
tions that map everything to T. J(a) =
L () =2, JR)(1) =T, T(R){2) = F.
This is of course no longer a model when
we “define” a new binary predicate () by
Vae,y Qz,y) : < R(z) A —=R(y) and
add this to our knowledge base. We have
Q(a,b) since R(a) and —R(b). On the
other hand by the commutativity axiom
we get ((b,a), hence ~R(a) and R(b).
That is, now we have a contradiction in
our knowledge base. Hence this higher or-
der logic with weak semantics is not defin-
ition conservative. This cannot happen
when we have all comprehension axioms
in the knowledge base. That are the fol-
lowing formulae [1, p.156]:
For every formula ¢ of which the free
variables are exactly the following dif-
ferent variables x1,...,%,,vy1,...,yx of
type Ti,...; T, 01500, 0 the following
formula is a comprehensmn axiom:
\V/yl \V/yk Elu(ﬁx X Ty —0) \V/"Cl Vzm

(u(z1,. .., 2m) <= @).

12. Lemma: Concept definitions form
conservative extensions, if the language
L is first order, or the Comprehenswn ax-
joms are included.

Proof: Let A’ be a knowledge base and
¥ a definition frame with conceptname
name. In order to build A = cons(d, A’),
logically we have simply to add the for-
mula Ve, ..., &z, name(zy, ..., &,) <
@ where ¢ is the formula in the defini-
tion slot of the frame. But this formula
is an instance of a comprehension axiom
with u called name. Hence if a formula
@ is in L(A’), it is deducible form A iff
it is deducible from A’. Consequently the
extension of A’ by ¥ is conservative. We
do not need such axioms if the language
is first order (since here strong and weak
semantics coincide) or if in the higher or-
der logic A-expressions are allowed (since

300

these expressions guarantee the existence
of sufficiently many objects).

For definitions of the type “mapping” we
can proceed analogously. [ ]

13. Lemma: The empty knowledge Ay
is consistent.

Proof: Since for all formulae ¢ with
Ag E ¢, ¢ is a tautology and ¢ and —¢p
cannot be tautologies at once, Ay must
be consistent. |

14. Theorem: If A is a consistent know-
ledge base containing the comprehension
axioms™* and ¥ is a concept definition with
respect to A then cons(¥,A) is consist-
ent.

Proof: This follows immediately of the
fact that concept definitions form conser-
vative extensions. ]

15. Theorem: If A is a consistent know-
ledge base and ¥ a theorem of A, then
cons(¥, A) is consistent.

Proof: Because the deductive closures of
A and cons(?, A) are the same, the the-
orem holds trivially. [ ]

5 Open Problems, Outlook

We have shown how to build up a know-
ledge base so that the possibilities to im-
port inconsistencies are minimized. The
critical situation is that, where axioms are
introduced: they must not import contra-
dictions and must be rich enough. Then
the consistency of the knowledge base is
not endangered by definitions and the-
orems. Of course the definition facilit-
ies must be stronger than the proposed
ones: implicit definitions, partial defini-
tions, and inductive definitions are neces-
sary. But this should not lead to a new
situation in principle.

In order to use such a system it will be
useful to have the possibility to withdraw
definitions in order to change them. The
question is how to do that with minimal
restructuring efforts.

*As above: or the language is first order or A-
expressions are allowed.



Acknowledgement

I like to thank my colleague AXEL
PRACKLEIN for many discussions and
thorough reading of a draft and my su-
pervisor JORG SIEKMANN for his encour-
agement and for his advice that resulted
in numerous improvements.

References

[1]

Peter B. Andrews. An Introduction
to Mathematical Logic and Type The-
ory: To Truth through Proof. Aca-
demic Press, Orlando, Florida, USA,
1986.

Emil Artin. Galots Theory, volume 2
of Notre Dame Mathematical Lec-
tures.  University of Notre Dame
Press, Notre Dame, London; second
edition, 1942.

Robert S. Boyer and J Strother

Moore. A Computational Logic.
Academic Press, New York, USA,
1979.

Ronald J. Brachman. On the epi-
stemological status of semantic net-
works. In Ronald J. Brachman and
Hector J. Levesque, editors, Read-
ings in Knowledge Representation,
chapter 10, pages 191-215. Morgan
Kaufmann, 1985, Los Altos, Califor-
nia, USA, 1979. also in: Associative
Networks: Representation and Use
of Knowledge by Computers, 3-50,
N. V. Findler, Edt., New York, USA,

Academic Press.

Alonzo Church. A formulation of the
simple theory of types. Journal of
Symbolic Logic, 5:56-68, 1940.

Kurt Godel. Uber formal un-
entscheidbare Satze der Principia
Mathematica und verwandter Sy-
steme 1. Monatshefte fiir Mathematik
und Physik, 38:173-198, 1931.

Kurt Godel. The Consistency of the
Aziom of Choice and of the Gen-
eralized Continuum-Hypothesis with
the Azioms of Set Theory, volume 3
of Annals of Mathematics Studies.
Princeton University Press, Prin-
ceton, New Jersey; eighth printing
1970, 1940.

301

8]

[9]

[10]

[11]

[12]

[13]

[14]

Leon Henkin. Completeness in the
theory of types. Journal of Symbolic
Logic, 15:81-91, 1950.

Manfred Kerber. A frame based ap-
proach to representing mathematical
concepts.  SEKI Report SR-89-20,
Fachbereich Informatik, Universitat
Kaiserslautern, Kaiserslautern, Ger-
many, 1989.

Manfred Kerber. How to prove
higher order theorems in first or-
der logic. SEKI Report SR-90-19,
Fachbereich Informatik, Universitat
Kaiserslautern, Kaiserslautern, Ger-
many, 1990. Short version forthcom-
ing in the proceedings of the 12th 1J-
CAI, 1991.

Manfred Kerber. On the Repre-
sentation of Mathematical Concepts
and their Translation into First Or-
der Logic. PhD thesis, Fachbereich
Informatik, Universitat Kaiserslau-
tern, Kaiserslautern, Germany, 1991,
forthcoming.

Douglas B. Lenat. AM: An Arti-
ficial Intelligence Approach to Dis-
covery in Mathematics as Heuristic
Search. PhD thesis, Al Lab, Stan-
ford University, Stanford, California,
USA, 1976. AIM-286, STAN-CS-
76-570, and Heuristic Programming
Project Report HPP-76-8.

Douglas B. Lenat
and Ramanathan V. Guha. Building
Large Knowledge-Based Systems —
Representation and Inference in the
CYC' Project. Addison-Wesley Pub-
lishing Company, Readings, Mas-
sachusetts, USA, 1990.

Marvin  Minsky. A framework
for representing knowledge. In
Ronald J. Brachman and Hec-
tor J. Levesque, editors, Read-
ings in Knowledge Representation,
chapter 12, pages 245-262. Mor-
gan Kaufmann, 1985, Los Altos,
California, USA, 1981. also in:
Mind Design, 95-128, J. Haugeland,
editor, Cambridge, Massachusetts,
USA, MIT-Press.



