== =

On the Translation of
Higher-Order Problems into
First-Order Logic

Manfred Kerber

Published as: In Tony Cohn, ed., Proceedings of the 11th ECAI p. 145-149,
Amsterdam, The Netherlands, 1994.

© 1994 M. Kerber
ECAI 94. 11th Furopean Conference on Artificial Intelligence Edited by A. Cohn
Published in 1994 by John Wiley & Sons, Ltd.

On the Translation of Higher-Order Problems
into First-Order Logic

Manfred Kerber!

Abstract. In most cases higher-order logic is based on the A-
calculus in order to avoid the infinite set of so-called compre-
hension axioms. However, there is a price to be paid, namely
an undecidable unification algorithm. If we do not use the
A-calculus, but translate higher-order expressions into first-
order expressions by standard translation techniques, we have
to translate the infinite set of comprehension axioms, too. Of
course, in general this is not practicable. Therefore such an
approach requires some restrictions such as the choice of the
necessary axioms by a human user or the restriction to certain
problem classes. This paper will show how the infinite class of
comprehension axioms can be represented by a finite subclass,
so that an automatic translation of finite higher-order prob-
lems into finite first-order problems is possible. This trans-
lation is sound and complete with respect to a Henkin-style
general model semantics.

1 Introduction

First-order logic is a powerful tool for expressing and prov-
ing mathematical facts. Nevertheless higher-order expressions
are often better suited for the representation of mathematical
knowledge and in fact almost all mathematical text books rely
on some higher-order fragments for expressiveness. This frag-
ment can be obtained directly by using a higher-order logic
or indirectly by “implementing” a portion of it in first-order
logic with the help of formal set theory. However, each ap-
proach has its own advantages and drawbacks and the ques-
tion of which approach is better is mainly unanswered. For a
detailed discussion on mathematical logic and set theory see
18, 21].

Perhaps the most promising approach to operationalizing
set theory has been worked out by Robert Boyer et al. [5] and
Art Quaife [20] employing the set theory of von Neumann,
Bernays, and Godel, which enables a finite axiomatization in
first-order logic. The advantage is the possibility to employ
standard first-order theorem provers like Otter [16] for auto-
mated deduction and thereby make the reasoning power of
first-order theorems available for higher-order theorems too.
However, there are some severe drawbacks to using set the-
ory. First, in set theory every term denotes a set: there is
no syntactic distinction between objects, predicates, or func-
tions, or even more structured entities like natural numbers,
planes, or groups. As a consequence, humans as well as auto-
mated theorem provers have no syntactic distinction at hand
as in higher-order or sorted logics. Second, the key concept of
mathematics, namely that of a function, is not a primitive ob-
ject of set theory, but must be defined in terms of sets, namely

1 Fachbereich Informatik, Universitat des Saarlandes, 66041 Saar-
briicken, Germany, e-mail: kerber@cs.uni-sb.de. This work was
supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D2).

© 1994 M. Kerber

as a left-total, right-unique relation, and a relation in turn is
defined as a subset of the Cartesian product of two sets, etc.
Quaife has shown that it is possible to overcome some of these
problems and that it is possible to prove non-trivial theorems
in this set theory; however, it might be questioned whether
there are more adequate approaches.

Higher-order logic in its full strength, in particular higher-
order logic with sorts, is adequate for representing mathem-
atics. Unfortunately one has to pay a price, namely that the
notions of ¢ruth and provability no longer coincide [9]. In or-
der to be able to operationalize higher-order logic Leon Hen-
kin weakened the standard semantics of higher-order logic [11]
and thereby showed the way to complete calculi for higher-
order logic, in particular for Alonzo Church’s simple theory
of types [6]. Nevertheless, it is hard to build a correspond-
ing theorem prover. For instance, an adequate higher-order
theorem prover has to incorporate higher-order unification as
introduced by Gérard Huet, which has unpleasant properties:
For the general case, unification is undecidable and there is
no complete set of most general unifiers. Another problem of
higher-order resolution theorem proving is the necessity to ap-
ply so-called splitting rules (compare [14]). Furthermore the
treatment of the extensionality of functions is not satisfactor-
ily solved. Perhaps the most advanced system for higher-order
logic is the TPS system of Peter Andrews and his group [3].2

A third approach3 is based on a translation of higher-order
expressions into (many-sorted) first-order logic. For second-
order logic this approach was introduced by Herbert B. En-
derton [7]. For general higher-order logic, Lawrence J. Hen-
schen [12] extended the first-order operationalization by con-
structs for handling the so-called comprehension axioms. This
translation is insofar incomplete as it does not handle exten-
sionality. In [15], the author gives a translation into standard
many-sorted first-order logic that is proved to be complete
with respect to a Henkin-style general model semantics. This
translation method cannot be used fully automatically, since
for its completeness it requires a priori infinitely many com-
prehension axioms. That is, the necessary ones must be selec-
ted manually. In this paper we show how the comprehension
axioms can be finitely represented for a finitely typed signa-
ture. That is, (restricted) higher-order logic can be mapped
into (many-sorted) first-order logic. The (only) price that has
to be paid is a finite set of additional first-order formulae.

In the following we introduce the syntax and semantics of

2 For the direct operationalization of higher-order logic there is an
alternative to Church’s A-calculus, namely the calculus of com-
binators, see e.g. [13].

3 In another approach, first-order formulations of a class of second-
order problems can be achieved by eliminating quantified second-
order predicates with the help of the resolution calculus. Compare
e.g. [17, 8].

ECAI 94. 11th Furopean Conference on Artificial Intelligence Edited by A. Cohn

Published in 1994 by John Wiley & Sons, Ltd.

our higher-order logic, then we present the finite represent-
ation of the comprehension axioms, shortly recall the trans-
lation into first-order logic, and present an Otter proof for
Cantor’s theorem, a standard example for a higher-order the-
orem.

2 Higher-Order Logic

The syntax of our higher-order logic is essentially based on
Alonzo Church’s simple theory of types [6]. For details on
higher-order logic the reader is referred to the excellent pres-
entation in [2]. For the finite representability of the compre-
hension axioms the finiteness of the order of the logic is cru-
cial, that is, we can translate problems, formulated in an n-th
order logic £", but not those requiring a higher-order logic
of unlimited order. Since we have to employ a variant of the
standard formalism we will recall our concrete syntax in the
next section.

The Syntax

As usual the types of the higher-order logic are inductively
constructed from the base types (of order 0) ¢, the type of
the individuals, and o, the type of the truth values, by the
construction: if 71,..., T, and T are types (with m > 1 and
7 being unequal to o), then (71 X -+ X 7y, — 7) is a type of
order 1 + maximum of the orders of 71,..., 7m, 7. It denotes
the type of m-ary functions with arguments of type 71, ..., 7,
respectively, and value of type 7.

By this definition we exclude — unlike Church and Andrews
[6, 2] — types such as (o — o). These types give rise to spe-
cial problems in the translation into first-order logic, because
they are essentially on the level of connectives. Therefore and
since we have no A-binder in our restricted language it is not
possible to define the connectives — and A and the quantifier
V, and hence they must be introduced as primitives. Never-
theless we conjecture that the languages £" — defined below —
are adequate for expressing mathematical facts. For instance
we can have predicates like ordered_group(G,+, <) of type
((¢ = 0) x (e x ¢t — 1) x (¢ Xt — 0) — o). In fact in all our
examples from mathematical textbooks, this was no serious
restriction.

The signature S of the logics £2™ or £2"~! consists first of
a finite set of types, called ¥ such that each type in ¥ has an
order of n or less and second for each type in ¥ of a possibly
empty set of constant symbols. That is, § = (%, {S- }rei>
£2"~! is the subset of £2™ such that no variable of order n is
quantified on.

We assume ¥ to be subtype-closed, that is, for instance, if
(¢ = ¢) € T then ¢ € T. Furthermore we assume that there
are infinitely many variable symbols for each type in ¥.

The terms of a logic L™ are defined as usual

1. Every variable or constant of a type 7 is a term of type 7.

2. I firx- tr,, are terms of the type indic-
ated by their subscripts, then fir; x...xrp—r)(tr, .- s try)
is a term of type 7.

)<‘rm—>‘r)at"'1a~'~a

Terms of type o are atomic formulae? Formulae in general
are either atomic or built up by composing them with the

4 We assume fixed binary predicates = of type (7 X T — o) for any

type 7 with the usual fixed semantics. = of type (oX o0 —o0)is
taken synonymous for the connective <.

Automated Reasoning 146

means of connectives and quantifiers, that is, if ¢ and ¥ are
formulae and z is a variable of any type in ¥, then (—yp),
(¢ A1), and (Vzp) are formulae. As long as there is no danger
of confusion we often omit parentheses.

1 REMARK: As usual one can define (on a meta-level) V,
=, &, and 3 in terms of =, A, and V and use formulae con-
taining these symbols as abbreviations. We have excluded all
A-expressions in our logic. If they are included, translations
into first-order logic end up in higher-order theorem proving
with the above mentioned problems of higher-order logic such
as undecidable unification. They are not necessary for formu-
lating mathematics, since we can introduce a name for each
A-expression. The very idea of A-expressions is not to increase
the expressiveness of higher-order logic, but to eliminate the
so-called comprehension axioms in the operationalization. W

The Semantics

The usual way to give a Tarski-semantics is mapping each
term of type 7 into a non-empty universe D, (respecting the
usual homomorphic conditions) such that the universe of a

functional type is just the set of the corresponding functions,5
that is, Dia; x-.. xan—p) = F(Day X -+ X Da,, D). However,
as proved in Kurt Godel’s famous incompleteness theorem [9]
with respect to such a strong (generally intended) semantics
no complete calculus can be found in which it can be calcu-
lated whether a formula ¢ follows from a formula set I', writ-
ten as ['Ee. In order to extend the ideas of compactness, com-
pleteness and soundness from first-order logic to higher-order
logic, Leon Henkin has generalized the semantics to a weak
version that allows for complete calculi and which is generally
taken — in some variant (e.g. [1]) — as the base of higher-order
theorem proving. Henkin’s very idea is to replace the “=” in
the relation of the universes above by a “C”, that is the re-
striction is only Dia;x...xan—pg) € F(Day X --+ X Dq,, Dg).
This leads to a weakened model relation and to a weakened
consequence relation |=, for which holds: if T' = ¢ then I'Ep.
If you make only this one change you get essentially a first-
order semantics for higher-order logic. However, in this form
the semantics is too weak, since it is possible to define func-
tions that have no counterpart in the semantics. In order to
overcome this, a set of comprehension axioms Y is assumed

so that if T U Tg |= ¢ then T'Eep.

2 DEFINITION (COMPREHENSION AXIOMS): The comprehen-
ston arioms YT are the following formulae (a slightly different
set can be found in [2, p.156]):

For every term (or formula) ¢ of type 7 of which the free vari-
ables are at most the different variables z1,...,Zm,v1,..., Y&
of type m1,...,Tm, 01,...,0% (all types 7, 7;, o; being in %),
in particular f does not occur free in t:

Yy . Vyedfior x N f(z1,. ..,

These axioms allow for instance that higher-order variables
such as P in the induction formula VP(L_,O)P(O)/\ (Vr,P(n) =
P(s(n))) = (Vn.,P(n)), the atomic expression P(n) can be
instantiated by a formula like X~ 1i = n-(n+1)/2A0dd(s(n)).

rm—r) VT .. Tm)=t. |

5 By F(A, B) we denote the set of all functions from A to B.

M. Kerber

3 Generator Axioms

Unfortunately the set of comprehension axioms is a priori
infinite, even for a finite signature (that is even for finitely
many types in ¥). Therefore these axioms cannot be given to
an automated theorem prover in total. The idea is to replace
the set T by a finite set GENAX such that T U YT |= ¢ iff
I' U GENAX |= o.

In this section we construct a finite set of axioms GENAX
that can replace the infinite set of comprehension axioms T.
The construction of this set and the argument that these ax-
ioms can replace T is analogous to that of John von Neumann
in the construction of his set theory, where he was able to
eliminate the infinite set of comprehension axioms. Since the
predicate and function symbols in set theory (like € and N) are
all known in advance, a fixed set of 18 axioms is sufficient to
formalize the whole set theory (Compare [10]. The axioms B1
through B8 have just the structure of comprehension axioms.
Nevertheless the possibility to construct the whole theory of
sets on this finite axiomatization is far from being trivial, in
Zermelo-Fraenkel set theory, for instance, an infinite set of ax-
ioms is necessary.) However, in our case the set of types is not
known in advance, therefore we can only calculate the axioms
as a function of the set of types €. Note that ¥ depends not
directly on the occurring function and predicate symbols but
only on the occurring types.

Let § = (%,{S:},c<) be the signature of £". Then it is
sufficient to consider as comprehension axioms the following
set GENAX of axioms.

3 CONVENTION: Since we have to deal a lot with tuples,
we shall use the following notation for the rest of this paper:
Tn =71 X -+ X Tp, VZ, :=Vz1...VZ,, and so on. [|

For each type in ¥ we have four groups of axioms (we as-
sume all terms to be well-typed, but we omit the indexes

where possible in order to avoid a mess of symbols):6

PERM In this class are axioms that allow one to permute the
arguments of parameters (that are function or predicate
symbols)7as in g(z,y) = f(y, z).

Let 7 be given and let = be a permutation on {1,...,n},
such that = permutes two neighbouring elements, that is,
(i) =i+ 1 and (¢ + 1) = i for 1 < n then the following
formula is in PERM:

Vfﬁ_,T/EigTw(l) X XTW(n)_,TVle R

g z"’w(1)" . "zTT(n)) = f(z"'l’ o 'al“l’n)

JOIN In this class two arguments can be identified asin g(z) =
f(z,z).

Let m,...,7, be given with 71 = 7 then the following

formula is in JOIN:
Vfri s xmmor3gr xrs x - xmn—7VE VT, .. . VT,
9(Tr oy, Try) = f(Try, Try, Trgyeny Try)
PROJ By these axioms the projection of a function with re-
spect to one fixed argument can be calculated, as for in-

6 In our description, we keep the number of axioms minimal. In
practical applications it might be preferable to add further ax-
ioms. For instance in the case of the permutations, we take only
such permutations that change the position of two neighbours,
by composition we get all non-trivial permutations. Therefore we
do with n — 1 axioms where elsewhere n! — 1 would be necessary.

7 The axioms PERM correspond to B6, B7, and B8 in [10], for
instance.

Automated Reasoning 147

stance in g(y) = f(z,y).

Let 71, ..., 7 be given, then the following axiom is in PROJ:

Ve, Vfr x xrnor3Grs xrsx-Xmn—7VEry - .. VTr,

9(zryy .o 8r,) = f(Zry, ..., T7,)

NEST By these axioms it is possible to nest parameters. Nest-

ing is a little more complicated than the axioms above. We

would like to add the following axioms: Let 7,7’ be given,

then there is an axiom:

Vf‘rl X Xrn—erhol X X O —T1 3901 XX Oy XTg X+ XTrp—T

VYo, - VY6, YT 7, .. .V ,

g(y', ..y, e?) =
FlR(y', ... ™), 2%, 2™)

However, this axiom is not necessarily in T since the type

of g is not necessarily in ¥. Therefore, we define NEST as

the set of all possible formulae in Tg that can be gener-

ated from the above axioms by projecting variables or by

multiple occurrences of variables as done by the rules JOIN

and PROJ (In the case of 7 = o variables can be eliminated

by axioms from QUANT too). Concretely that means, NEST

is the set:

1 s 1
{Vyl,...,y],:cQ,...,z,f,h g, V@ Tyt e e
g(y]+l ys zl+1 :ET):
R gy @)
f(h(yl’yQ""’y]’y]-l-l""’y]-l-l""’y b "ys)’
12,x3,...,zl,xl+1,...,xl+1,...,xr,...,xr)|7'ECC}

Furthermore we need the following axioms for conjunction,
negation, and quantification:

coNJ Let p and p’ be two n- and m-ary predicate symbols,
then we have an axiom:
Vprr— oV 3 o VTR

4(Tn, Tm) & p(Tn) A P’ (Tm)-

As in the case of the NEST axioms we might fall out of Tg¢
by this axiom, then we take only the corresponding axioms
that can be constructed by the projection of variables or
by multiple occurrences on the right hand side.

NEG Vprr—o3¢7—0Yn ¢(Tn) & —p(Tn)

QUANT Let 75,0 be types then the following formula is in
QUANT:
VpIgVzn ¢(z7) & (Yy p(Tn, y))

We define GENAX :=PERM U JOIN U PROJ U NESTU
CONJ U NEG U QUANT.
By the syntactic structure of the axioms, it is easy to see
that each formula in GENAX is also in T. Hence we have the
following two lemmas.

4 LEMMA: For each finitely typed signature S, the set of gen-
erator axioms GENAX 18 finite. |

5 LEMMA: Fach generator axiom tn GENAX s in 1. |

6 THEOREM: For each aziom v in T, GENAX |= v

Proof: If v is already in GENAX we are done. Else, we show
the assumption by induction on the structure of v. Since v is
in T it has the structure:

VU VEm f(Tm)=t

We make a case analysis on the structure of ¢, and show in-

ductively that v follows from the generator axioms.

o Let t be a composed formula (in particular we have 7 = o).
Let t be a negation, that is, ¢t = =¢. Assume by induction

M. Kerber

hypotheses that the formula Vy_kﬂf('m_w)vm f'(@m)=2¢
follows from GENAX. It is easy to see that then
VIR Vs ()=

(m)iu’l} by in-

follows from GENAXU {Vy_kEl f('ﬁ_)T)VH f

stantiating p to f' in NEG (i.e. VyIfVT f(T)=—f'(Z)). Hence
v follows from GENAX.

In a similar manner we can conclude by structural induc-
tion that for other composed formulae ¢, that is, conjunc-
tions or quantifications, by the application of axioms from
CONJ or QUANT, v follows from GENAX.

e Let ¢t be a non composed term. By the axioms in PERM,
JOIN, and PROJ we can construct all combinations of free
variables occurring in a term t of term depth one. The NEST
axioms allow for successive nesting of terms. |

4 A Standard Translation from
Higher-Order to First-Order Logic

In this section we briefly recall the general translation method
from higher-order to many-sorted first-order logic by employ-
ing a so-called “apply” function that reifies function and pre-
dicate symbols (compare [15]).

7 DEFINITION (STANDARD TRANSLATION ©):

Let S be a higher-order signature, the translation of the cor-
responding higher-order logic into many-sorted logic is given
as follows: every type 7 of higher-order logic is associated to
a sort 7. The sort relation is trivial insofar as all sorts are dis-
joint. Each constant or variable of a certain type is mapped by
a mapping © onto a corresponding constant or variable of the
associated sort (In order to avoid a lot of redundant names,
we use the same names for source and target). Furthermore
we have for each non-base type 6 = (11 x -+ x 7, — 7) in ¥,
a new free function symbol as of sort (& x 71 X -+ X Ty — 7).

For terms we define a mapping © inductively by:

T1 For a term with an m-ary function term f of type 7 as top
expression we define
O(f(t1,-..,tm)) = az(O(f),O(t1),...,0(tm))

For non-atomic formulae we define © inductively by:

F1 For a conjunction we define
O(p1 A g2) = O(p1) A O(p2)

F2 For a negation we define
O(—¢) = ~O(p)

F3 For a quantified formula we define
O(Vzp) =VO(z)O(p)

Zg is the set consisting of the following formulae:
EZg For every non basic type oin ¥ with o = (11 X - X7, — T):
Vfg,Vgg,(Vzl;l yoo, VEi

as(fyzt, .. 2™ =as(g, 2t .., 2™) = f=g W

From [15] follows in combination with lemma 5 and theorem
6 the main result, which allows to translate a finite higher-
order problem into a finite first-order problem.

8 THEOREM: In order to show that a formula ¢ follows from
a set of formulae T' in a higher-order logic with types T with
respect to (the above defined Henkin-style) general model se-
mantics, it is necessary and sufficient that in many-sorted
first-order logics holds

8 The function “must map the types onto new names.

Automated Reasoning 148

O(T') UO(GENAXs) UEs = O(p) m

5 Example

A standard example for showing the behaviour of a theorem
proving system on higher-order theorems is Cantor’s theorem
that there is no surjective mapping from a set A onto its
powerset p(A). Higher-order theorem provers like TPS are
good at proving this theorem. In a previous work we have
shown how this theorem can be proved using a comprehension
axiom [15]. It has also been translated to set theory in [20],
and proved in von Neumann-Bernays-Godel set theory [19,
10, 4] as proposed in [5]. However, in the proof in [15] as well
as in that of [20] the key idea, namely the diagonalization
construct, has been given by the human user.

In the following we give an Otter proof of the theorem
without telling it the key idea. The diagonalization construct
can easily be built up by applying the constructor axioms for
negation and conjunction. Otter is not directly well-suited for
the formulation of such a higher-order problem, since it does
not support any sorts. However, it is not to hard to see that
in this case, the sort information can be omitted, since the
sort of each expression can be fixed by the position of the
expression in an apply function or predicate symbol. This is
possible because of the absence of equality relations. Therefore
we have chosen a formulation in which the extensionality is

already expandeleThe theorem has the following form:

VSL—w_‘ElgL—»(L—»o)VfL—Wf Cs=> (El]L ()/\g(]) =)

The a, x,—o predicate is called in Otter syntax aixito, ana-
logously the other o functions.

set(hyper_res).

.f.o.rmula_list(axioms).
%PERM
(all f (exists g (all x (all y (aixito(g,x,y) <-> aixito(f,y.x)))))).
%two JOIN axioms
(all f (exists g (all x (aito(g,x) <-> aixito(f,x,x))))).
(all f (exists g (ao(g) <-> (all x aito(f.,x))))).
%PROJ axiom
(all x (all f (exists g (all y (aito(g,y) <-> aixito(fx,y)))))).
(all x (all f (exists g (all y (ao(g) <-> aito(fx)))))).
%no NEST axioms
%CONJ
(all x (all y (all p (all pp (exists q (all u (all v (aixito(q,u,v) <->
(aixito(p,u,v) & aixito(pp.x.,y))))))))))-
(all x (all y (all p (all pp (exists q (all u (all v (aixito(q,u,v) <->
(aixito(p,x,u) & a|X|to(pp,v,y))))))))))
(all x (all p (all pp (exists q (all u (all v (aixito(q,u,v) <-
(aixito(p,u,v) & aixito(pp,x x)))))))))
(all x (all p (all pp (exists q (all u (all v (aixito(q,u,v) <->
_ (aixito(p,u,x) & aixito(pp,v,x)))))))))-
(all p (all pp (exists q (all u (all v (aixito(q,u,v) <->
_ (aixito(p,u,u) & aixito(pp,v,v))))))))-
(all p (all pp (exists q (all u (all v (aixito(q,u,v) <->
(aixito(p,u,v) & aixito(pp,u,v)))))))).

9 Tn Quaife’s approach this hint has been given for efficiency
reasons.

10 The translation of unsorted higher-order logic into many-sorted
first-order logic results in a flat sort structure, so a sorted
first-order theorem prover is more adequate. However, since the
sorts are flat, an encoding in standard first-order logic is pos-
sible without the necessity of relativizing the formulae. We have
chosen Otter and not a prover like MKRP for this example, since
we want to relate our work to Quaife’s.

M. Kerber

(all x (all p (all pp (exists q (all y_(aito(q,y) <->
_ (aito(p.x) & aito(pp.y))))))))-

(all x (all p (all pp (exists q (all y_(alto(q,y <->

_ _(aito(p.y) & aito(pp x))))))))-
(all p (all pp (exists q (all y _(alto(q,y) <>

_ (aito(p.y) & aito(pp.y)))))))-
(all p (all pp (exists q (ao(q) <-> (ao(p) & ao(pp))))))-
%NEG

(all p (exists q (all x (all y (aixito(q,x,y) <-> - aixito(p,x,y))))))-
(all p (exists q (all x (aito(q,x) <-> - aito(p,x .

(all p (exists q (ao(q) <-> - ao(p)))).
%QUANT

(all p (exists q (all x (aito(q,x) <-> (all y aixito(p,x,y))))))-
%no EXTENSIONALITY AXIOMS since equality eliminated
%in problem

end_of_list.

formula_list(sos).
%THEOREM
(all s (- exists g (all f ((all x (aito(s,x) -> aito(f,x))) ->
(exists j (aito(s,j) & (all x (aixito(g,j,x) <-> aito(f,x))))))))).
end_of list.
----> EMPTY CLAUSE at 1.04 sec ----> 140 [hyper,135,43,135] .
---------------- 1YoV |
33 [] - aito(f14(x,x20,x21),y) — aito(x21,x).
43] - aito(f18(x27),x) — - aito(x27,x).
49 [] aito(x30,f23(x30,x31)) — aito(x30,f24(x30,x31)).
52 [] - aito(x31,f23(x30,x31)) — aito(x30,f24(x30,x31)).
113 [hyper,52,49] aito(x,f24(x,x)).
135 [hyper,113,33] aito(x,y).
140 [hyper,135,43,135] .

In our formulation the proof of Cantor’s theorem is much
easier to find for Otter than in Quaife’s approach (140 re-
solvents versus 700, 19 axioms versus 352 possibly applicable
theorems, 1 second versus 10 seconds of run time) although we
have not given the hint how to construct the diagonal. There-
fore there is a legitimate hope that the translation method is
advantageous for a whole class of problems, in particular since
refinements such as the employment of sorts are possible. (A
more detailed comparison is in work and will be published as

a SEKI-Report.)

6 Conclusion

We have shown how the comprehension axioms can be finitely
represented. This makes an effective use of first-order theorem
provers for problems formulated in a higher-order logic pos-
sible and sheds some light on the difference between first-order
and higher-order logic with its first-order semantics as intro-
duced by Leon Henkin. Standard first-order theorem provers
can be used by reifying predicate and function symbols by
so-called “apply”-constructs (write a(f,z) instead of f(z)).
In order to be as complete as possible you have to add ex-
tensionality axioms (there are only finitely many for finitely
typed signatures) and comprehension axioms (there are a pri-
ori infinitely many even for finitely typed signature). However,
as seen the infinitely many comprehension axioms can be fi-
nitely represented by the generator axioms GENAX. Thereby
it is possible to employ standard many-sorted first-order the-
orem provers. For cases without equations a first-order the-
orem prover for unsorted logic does as well.

In order to optimize the approach, it would be useful to ex-
tend it to higher-order sorted logics (this should be straight-
forward). The main drawback of the whole attempt, namely
the necessity to add a lot of non-trivial axioms, may be com-
pensated by configuring the first-order theorem prover in such
a way that the generator axioms are only used in a very
reserved manner, for instance, by assigning high weights to

Automated Reasoning

149

them. As practice has shown, for many theorems no compre-
hension axioms are necessary at all, so it is a good idea to try
first whether the theorem can be proved without using any
and only if a proof is not found in a reasonable amount of
time, the generator axioms are added.

I like to thank Dan Nesmith and the anonymous referees
for many useful comments.

REFERENCES

[1] Peter B. Andrews, ‘General models and extensionality’, Jour-
nal of Symbolic Logic, 37(2), 395-397, (1972).

[2] Peter B. Andrews, An Introduction to Mathematical Logic
and Type Theory: To Truth through Proof, Academic Press,
1986.

[3] Peter B. Andrews, Sunil Issar, Dan Nesmith, and Frank Pfen-
ning, ‘The TPS theorem proving system’, in Proc. of the 10th
CADE, ed., M. E. Stickel, pp. 641-642, Kaiserslautern, Ger-
many, (1990). Springer Verlag. LNAT 449.

[4] Paul Bernays, ‘A system of axiomatic set-theory’, Journal of
Symbolic Logic, 6, 1-17, (1941).

[5] Robert Boyer, Ewing Lusk, William McCune, Ross Overbeek,
Mark Stickel, and Lawrence Wos, ‘Set theory in first-order lo-
gic: Clauses for Gédel’s axioms’, Journal of Automated Reas-
oning, 2, 287-327, (1986).

[6] Alonzo Church, ‘A formulation of the simple theory of types’,
Journal of Symbolic Logic, 5, 56-68, (1940).

[7] Herbert B. Enderton, A Mathematical Introduction to Logic,
Academic Press, 1972.

[8] Dov Gabbay and Hans Jiirgen Ohlbach, ‘Quantifier elimini-
ation in second-order predicate logic’, in Proc. of KR’92, eds.,
B. Nebel, C. Rich, and W. Swartout, pp. 425-435, Cambridge,
Massachusetts, USA, (1992). Morgan Kaufmann.

[9] Kurt Godel, ‘Uber formal unentscheidbare Satze der Prin-
cipia Mathematica und verwandter Systeme I', Monatshefte
fir Mathematik und Physik, 38, 173-198, (1931).

[10] Kurt Gédel, The Consistency of the Aziom of Choice and of
the Generalized Continuum-Hypothesis with the Azioms of
Set Theory, Princeton University Press, 1940.

[11] Leon Henkin, ‘Completeness in the theory of types’, Journal
of Symbolic Logic, 15, 81-91, (1950).

[12] Lawrence J. Henschen, ‘N-sorted logic for automatic theorem-
proving in higher-order logic’, in Proc. of the Annual Confer-
ence of the ACM, pp. 71-81, Boston, Massachusetts, USA,
(1972). Association for Computing Machinery, Washington,
DC, USA, ACM Press.

[13] J. R. Hindley and J. P. Seldin, Introduction to Combinators
and A-Calculus, Cambridge University Press, 1986.

[14] Gérard Huet, Constraint Resolution: A Complete Method for
Higher-Order Logic, Ph.D. dissertation, Case Western Re-
serve University, 1972.

[15] Manfred Kerber, ‘How to prove higher order theorems in first
order logic’, in Proc. of the 12th IJCAI eds., J. Mylopoulos
and R. Reiter, pp. 137-142, Sydney, (1991). Morgan Kauf-
man.

[16] William McCune, ‘Otter 2.0’, in Proc. of the 10th CADE, ed.,
M. E. Stickel, pp. 663-664, Kaiserslautern, Germany, (1990).
Springer Verlag. LNAT 449.

[17] John Threecivelous Minor, Proving a Subset of Second-Order
Logic with First-Order Proof Procedures, Ph.D. dissertation,
University of Texas, Austin, Texas, USA, 1979.

[18] Gregory H. Moore, ‘Beyond first-order logic: The historical
interplay between mathematical logic and axiomatic set the-
ory’, History and Philosophy of Logic, 1, 95-137, (1980).

[19] John von Neumann, ‘Die Axiomatisierung der Mengenlehre’,
Mathematische Zeitschrift, 27, 669-752, (1928).

[20] Art Quaife, ‘Automated deduction in von Neumann-Bernays-
Godel set theory’, Journal of Automated Reasoning, 8(1), 91—
146, (1992).

[21] Stewart Shapiro, ‘Second-order languages and mathematical
practice’, Journal of Symbolic Logic, 50(3), 714-742, (1985).

M. Kerber

