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Abstract: Extending existing calculi by sorts is a
strong means for improving the deductive power of
first-order theorem provers. Since many mathemat-
ical facts can be more easily expressed in higher-order
logic — aside the greater power of higher-order logic
in principle —, it is desirable to transfer the advant-
ages of sorts in the first-order case to the higher-order
One possible method for automating higher-
order logic is the translation of problem formulations
into first-order logic and the usage of first-order the-
orem provers. For a certain class of problems this
method can compete with proving theorems directly
in higher-order logic as for instance with the TPS
theorem prover of Peter Andrews or with the Nuprl
proof development environment of Robert Constable.
There are translations from unsorted higher-order lo-
gic based on Church’s simple theory of types into
many-sorted first-order logic, which are sound and
complete with respect to a Henkin-style general mod-
els semantics. In this paper we extend correspond-
ing translations to translations of order-sorted higher-
order logic into order-sorted first-order logic, thus we
are able to utilize corresponding first-order theorem
prover for proving higher-order theorems. We do not
use any A-expressions, therefore we have to add so-
called comprehension axioms, which a priori make
the procedure well-suited only for essentially first-
order theorems. However, in practical applications
of mathematics many theorems are essentially first-
order and as it seems to be the case, the comprehen-
sion axioms can be mastered too.

case.

1 Introduction

First-order logic is a powerful tool for expressing
and proving mathematical facts. Nevertheless higher-
order expressions are often better suited for the repre-
sentation of mathematics and in fact almost all math-
ematical text books rely on some fragment of higher-
order for expressiveness. This fragment can be real-
ized by a higher-order logic itself or by “implement-
ing” parts of it in first-order logic and building it up
by a strong set theory. Mathematicians use a tech-
nical language, which is relatively informal compared
to the formal approaches of logic or set theory. It is
much closer to higher-order sorted logic augmented
by “naive” set theory than to first-order logic. The
adjunct of sorts into higher-order logic has the same
advantages as their usage in first-order logic: clar-
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ity, shorter formulae, and better calculi for proving
theorems.

In this paper we show how expressions formulated
in higher-order sorted logic can be translated into for-
mulae of first-order sorted logic in order to make use
of the strong existing theorem provers for these lo-
gics. Of course it would be possible to relativize the
sorted higher-order formulae to unsorted ones and
then translate these into many-sorted first-order lo-
gic, but this would not be optimal, since the express-
iveness of order-sorted first-order logic would not be
exhausted and the translation would not be structure
conserving. An alternative to the translation tech-
nique is the usage of higher-order theorem provers
like the TPS-system [1] and the extension of Church’s
simple theory of types to the sorted case [11] or to use
a proof development environment like Nuprl [4].

2 Sorted Higher-Order Logics

In this section we introduce formally sorted higher-
order logics £ .. To that end, we adopt the notion of
sorts for the first-order case of MANFRED SCHMIDT-
Scuauss [15]. We will follow concept developed by
MicHAEL KoOHLHASE [11] in order to extend higher-

order theorem proving to the sorted case.

The Syntax

The syntax of our sorted higher-order logic is sim-
ilar to the syntax of the unsorted one, that is,
CHURCH’s simple theory of types [3]. In the sorted
case, however, each type (except the truth values)
may be structured into subsets. In the following we
introduce the basic notions.

S is the set of sorts. S contains the type symbols
¢ and o. Whenever k1,..., K, and g are in S then
(K1 X -+ X Ky — ) is in §. We denote sorts by «,
u, and v.

A simple sort is a sort that does not contain an
arrow “—”. All other sorts are called composed.

A pair (u,v) is called a subsort declaration and
written as puEv. The subsort relation E is the re-
flexive, transitive closure of the relation &, given by
the subsort declarations. We assume E to be closed
under covariance in the range sort, that is, for all
composed sorts the relations: (k; X ---
WE(K] X - x Ky, — ') iff Ky = K,
and pCp'.

X Km —

— !
S Em = Ky,



A sort p1s called a top sort 11 Tor all sorts v with
HEv, v is equal to p.

1 Definition (Admissible Subsort Declaration):
A subsort declaration is called admuissible iff the fol-
lowing conditions are fulfilled:

— if uEv then y is not equal to ¢ or 0 and v is not
equal to o,

— for every simple sort p there is at least one sub-
sort declaration pEv, so that p is subsort of a
composed sort or of a type symbol (i.e. ¢ or o).

in every subsort declaration pEv, g must be a
simple sort and type(p) = type(v) (the function
type calculates the standard simple type of a sort
in the obvious way: type(t) = ¢, type(o) =
type(k1 X -+ X Ky — p) = (type(k1) %
type(km) — type(p)), and for uEv, type(p)
type(v).)

— there are only finitely many subsort declarations.

Q
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Remark: In the following we assume that all sub-
sort declarations are admissible. Therefore we have
in particular that every sort has a type and that
this type is unique. Furthermore we have that every
top sort is either + or o or it is a composed sort
(K1 X -+ X Ky — p) where p is a top sort.

2 Definition (Term Declaration): A term declar-
ation is a pair (¢, k) usually denoted as (¢ : k), where
t is a well-typed term that is not a variable and «k a
sort of the same type ast. If ¢ is a constant (¢ : k) it is
called a constant declaration and otherwise a proper
term declaration. For every constant we require ex-
actly one constant declaration. Variables have fixed
sorts, so they cannot be declared. We denote term
declarations by 6.

3 Definition (Terms of £ .): Let ¥ be an unsor-
ted signature, S be a set of sorts, and 5 be a function,
which indicates the sorts of variables. Then every
variable  with s(2) = &k is a term of sort &, every
term ¢ with term declaration (¢ : k) and every sort
respecting instantiation of ¢ is a term of sort x, and
with f is a term of sort &K = (k1 X -+ X &y — f)
and tx,,...,ts, are terms of the sorts indicated by
their subscripts, fq(tx,,... 1, ) is a term of sort pu.
Furthermore, if ¢ is a term of sort v and vEy, then ¢
is a term of sort p.

Remark: The sort of a term needs not to be unique
in general, only the top sort of a term is unique. For
instance if we have a function f of sort (R — IN)
with INEIRE:, then it has also the sorts (R — IR)
and (R — ¢). The top sort (R — ¢) of f is unique.
However, a function g of sort (R — IN) has neither
sort (N — IN) nor sort (¢ — IN).

4 Definition (Signature of [f:)ort) A sorted signa-
ture s = (X,8,5,E,8) of a logic in £, consist of
an unsorted signature X, which can be structured in
yeonst the constants, and X?%", the variables, a set S
of sorts, a function s : XY*" — &, such that for every
sort k € 8, there exist countably infinitely many vari-
ables € X¥% with s(z) = k. We write variables «
with s(z) = & in the form 2, a (finite) set of subsort
declarations, and a set of term declarations 8.
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9 DJernnition (Admissible sortved signature): A
sorted signature Xg is admissible, iff each subterm ¢;
of every well-sorted term f(t1,...,tn) is also a well-
sorted term. Terms in proper term declarations must
be well-sorted with respect to the constant declara-
tions. In the following we will assume that all signa-
tures are admissible (cp. [15, p.16])

6 Definition (Formulae of £% . ): Formulae are
defined inductively so that every term of type o is
a formula and if ¢ and ¢ are formulae and z is a
variable of an arbitrary sort k, then (=), (¢ A ¢),
and (Vz,p) are formulae. As usual V, =, <, and 3
can be defined in terms of A and V.

The order of terms is defined just as in the unsorted
case and £27%, is defined to be the subset of £¥ .
such that every variable, every constant and every
sort declaration is of order less or equal to n, £2?~!
is the subset of £2? such that no variable of order n
is quantified on. By ord(7) we denote the order of a
type.

A signature Ys is called many-sorted iff all subsort
relations are of the form puEvr where v is a top sort.
Otherwise it is called order-sorted. We denote many-
sorted logics by £}.

The Semantics

Now we define a set-theoretical semantics for the for-
mulae.

7 Definition (Semantics): Let Xg be the sor-
ted signature of a logic L. A frame corres-
ponding to Xg (X,8,5,E,68) is a collection
{D;}x of nonempty sets D,, one for each sort
symbol £ € &, such that D, {T,F} and
Dy xwm—n) S F(DPrys -, Di,,;Dy) for all sorts
ki, p as well as D, C D, for all sorts &, 4 with kEp
(By F(A1,...,An, B) we denote the set of all total
functions from A; x -+ x A, to B). The members
of D, are called truth values and the members of D,
are called individuals.

An interpretation J in {Dy } is a function that maps
each constant of sort «k of £ ,(Xs) to an element of
Dy, that is, for every constant declaration (¢ : k) we
have J(c¢) € Dy
An assignment into a frame {D, }, is a function £ on
the variables such that for all variables &(z,) € D,.
A pair M = ({Dy}x,T) is a weak model (general
model) for £¥ . (Xs) with ¥g = (3,8, 5,E, §) iff there
is a binary function VM so that for every assignment
¢ and for every term t of sort &, ng (t) € Dy, that is,
in particular for every term declaration (¢ : k) in &,
Vg\" (t:k)= (Vg\’l (t) € Dy) and the usual conditions
of homomorphy hold, that is,

1. for all variables z,, V5M (zx) = &(zg)
J(cx)

2. for all constants ¢, Vg\" (ck) =

3. for composed terms
(f(nlx xnm—>,u)(t K1)t -

M (f - XHm_W>M ?A(NJ ~~,¥§ (te,.))
4.V (50/\1/}) ()/\V (¥)
5. Vi () —--ﬂlg (#)
6. VM (Varp) =Vd € DVY _4(9)



Let @ be a Iormula ol L.l Zs ), and Jvi De a weak
model of L2 (Xs). M is a weak model of ¢ iff for

sort

every assignment ¢ into M, V5M (¢) = T. We write
M E .

Remark: In chapter 3 we will give translations of the
order-sorted higher-order logics £, . into the order-
sorted logics £L ;. That is, the order-sorted logics
of ARNOLD OBERSCHELP [13], which have been op-
erationalized by CHRISTOPH WALTHER [16], MAN-
FRED SCHMIDT-SCHAUSS [15], ALaN FRiscH [5] et
al., serve as target logics. Hence we can use theorem
provers like the Markgraf Karl Refutation Procedure

[12] for proving theorems in these logics.

Remark: Normally if we prove mathematical theor-
ems we want to show that a formula set I' entails a
formula ¢ in the strong sense. Because higher-order
logic cannot be completely calculized, weak semantics
has been introduced by LEoN HENKIN [7], which is
in principle a first-order semantics. With respect to
weak semantics it is possible to have sound and com-
plete calculi. If we show T' F ¢ then we have T' = ¢
and by this we can conclude the corresponding strong
model relation. Of course to every calculus there are
higher-order theorems (with respect to the strong se-
mantics) which cannot be proved at all; they cannot
be theorems with respect to the weak semantics. The
weak semantics given so far is rather remote from
strong semantics and we can approximate it to strong
semantics by so-called comprehension axioms, that is,
instead of ' |= ¢ we try to prove T UT | ¢, what
still entails the corresponding strong model relation.
If such axioms are necessary in order to prove a the-
orem, we call it truly higher-order, else essentially
first-order. The comprehension axioms T are:

Y/ For every term t of sort &« # o of
which the free variables are at most the dif-

ferent variables z1,...,2%m,y1,...,yr of sort

Kiy,...sKm, {1, ..., HE:

Yy Vyedfexo xom—r) V21 - VT,
(f(zy,...,zm)=0)

TP For every formula ¢ of which the free
variables are at most the different vari-

ables @1,...,2m,y1,...,yx of sort Ki,...,Km,

1y HES

Vyr- - VYedpe, x- xkm—0) V21 -V
(p(z1,...,2m) & ¥)

In the unsorted case it is possible to represent (for
a finite set of occuring types) the a priori infinitely
many comprehension axioms by a finite set of axioms
for the permutation, projection, and junction of argu-
ments, for nesting and composing formulae (compare
[10]). The axioms are of the following form:

PERM In this class are axioms that allow one to
permute the arguments of parameters (that are
function or predicate symbols) as in g(z,y) =
fly, z).

Let (71,...,7,) be given and let @ be a permuta-
tion on {1,...,n}, such that 7 permutes two
neighbouring elements, that is, #({) =i+ 1 and
w(i 4 1) = i for i < n then the following formula

is in PERM:
Vle><...><Tn_,T/EIgTW(1)><...><T7r(n)_,TV;L‘T1 £
g(J:TT(l) ey ;7:T7r(n)):f(;1371 e &r,) 151

yve think that the procedure ol replacing the 1nin-
ite set of comprehension axioms by a finite one can be
transferred to the sorted case, making the translation
method appropriate for truly higher-order theorems
too.

3 Translations

In this section we define the concepts of a morph-
ism and introduce the soundness and completeness of
such mappings. Furthermore we extend the criterion
of the soundness of such morphisms in the unsorted
case to the sorted case by applying the corresponding
relativizations.

3.1 Logic Morphisms

Now we shall define those concepts that are necessary
to describe the translations between formalizationsin
different logics.

8 Definition (Morphism of Logics): A morphism
O is a mapping that maps the signature ¥ of a logic
FYX) to a signature of a logic F?(0O(X)) and that
maps every formula set in F(X) to a formula set in
FAO(%)).

Let © be a morphism from F' to F2. © is called
sound iff the following condition holds for every for-
mula set I in F': if I has a weak model in F! then
there is a weak model of O(T) in F2.

As expected the soundness of a morphism means: a
proof that the translated problem is unsatisfiable en-
tails that the original problem is unsatisfiable. Com-
pleteness is defined mutatis mutandis.

3.2 Translations of Higher-Order Sorted
Logic

In this section we sketch how to extend the results
of translating unsorted higher-order logic into first-
order logic to the sorted case. The proof of the sound-
ness theorem is reduced to the corresponding unsor-
ted theorem by using relativizations, which can be
done since the translations are structure conserving.
The advantage of the proofs via relativizations is that
they can be used for other kinds of sort structures too,
especially they are easy to transfer to sorted logics
where the semantics is defined by the relativization.
At first we define relativizations and show them to
be sound and complete morphisms. The complete-
ness proof for the standard translation is not lifted,
but worked out directly.

Relativizations and Partial Relativizations

For a formula set of sorted logics it is in general pos-
sible to state an equivalent formula set of an unsorted
logic. In this section we will introduce relativizations
and partial relativizations for the logics £ . to L£"

sort
and Eiort toE/l\.

9 Definition (Relativization): The relativization
R from L2, to L™ is the following morphism:

1. the signature s = (X, 8,5, E, §) is mapped to
(X U S\{7|ris type}, {7|7 is type}, = —
type(z), 0, 0), where the sort symbols & of type 7
are viewed as unary predicate constants of type
(1 — o).



<. A lormula ¢ 1s mapped to the Iormula set Jil )
consisting of:
{R(p)} U
{Va, x(z) = p(2) |
kEp, with type(k) = type(u) =7} U
{universal_closure(x (@( 1)) | (t: k) € 8}, where
R is defined as:

(a) For terms @(t) =t and for atomic formulae:
R(p) = ¢

(b) For conjunctions and negations: §}A?(30/\1/)) =
R(p) AR(E) and R(-p) = ~R(p).

(c) For a quantiﬁcatioil over a variable z of sort
K, type(k) = 1, R(Vegp) = Vo, k(z) =
R(p).

For formula sets T' we have as usual ®(T') =

U R(e).

pel

10 Definition (Partial Relativization): The par-
tial relativization OR from Ll ., where every sort
(except ¢) has a unique upper sort (shortly called
“uus”) immediately below ¢ (with respect to E), to
L} is a morphism defined analogously to a relativiz-
ation, but we translate expressions of the form Vz, ¢
to (Voyus(ryk(z) = 3%( )), that is, we transform an
order-sorted formulation to a many-sorted one. For
details see [9].

11 Theorem: The relativizations R form L2 . to
L™ are sound, complete, and injective; the partial re-
lativizations OR from Ll to L} are sound and com-
plete.

Proof: The proof is straightforward and can be
found in [9]. [ |

A Sufficient Criterion for Soundness

Now we give a sufficient criterion for the soundness
of translations of formulae of L7, . onto formulae of
1 .
Lo, Which is strong enough to cover most require-

ments.

12 Definition (Quasi-Homomorphism): Let
F1(X}) and F2(X%) be two logics. A morphism ©
from F; to Fs is called a quasi-homomorphism from
F1(X}) to Fo(X%) iff the following conditions are sat-
isfied:

1. The sorted signature X% = (X1, 81,81,C1,81) is
mapped to a signature X% = (X3, Ss, 52, C2, 82)
such that,

1.1 ©(X;) € X,, variables are mapped onto
variables and constants onto constants by
o,

1.2 ©(81) C 8y, sort symbols are mapped onto
sort symbols by O,

1.3 O(s1(2)) = O(51)(O(z)) = s2(x) for all vari-
ables z in X397,

1.4 if x C, p, then ©O(k) c,
O(E;) C Eg, and

1.5 for every term declaration (¢ : ) in §; we
have that ©(t) has sort O(k). Especially we
have for every constant ¢ of sort « in ¥ that

O(c) has sort ©(x) in Xs.

O(p), that is,

<. or all composed terms: 11 fitg, ...
of F1(X4) of sort &, then
O(f(t1,...,tm)) = af(O(f),0(t1),...,0(tm)).
The a have to be chosen appropriately out of X5:
they have to be new, that is, there is no element
e of ¥} with af = ©(e). (a stands for apply.)
3. For all formulae ¢1, ¢2 and for all variables z:
3.1 ©(p1 A p2) = O(p1) A O(2)
3.2 ©(-¢) = ~O(p)
3.3 O(Vzyp) = VO(2)0(p)

y bm ) 18 @ Lerm

13 Theorem: If © is an injective quasi-homomor-
phism from L7 (Xs) to L1 (Xs), then O is weakly
sound.

Proof: There is a commutative diagram:

’Cgort En
G} e S)
R
’C;ort ’611\

with a quasi-homomorphism O from £" to L} . Since
AR is complete, R is sound and © is sound by the
corresponding unsorted theorem [8], we can conclude
that © is sound. © can be constructed out of © using
the relation ©(z) = 9% 0 © o R~!(z) on basic terms
and lifting this property to arbitrary terms. [ |

Remark: We can see that the translated formulae
are not essentially more complex then the original
ones and that proofs found in a translated problem
setting O(T') F O(p) can easily be translated back
to a proof for I' F ¢, because the mappings © are
injective.

The Standard Translation From Sorted
Higher-Order Logic to Sorted First-Order
Logic

Now we want to define morphisms ®% from L7 . to
Eiort - (order sorted first-order loglc with equality)
which are not only sound but also complete. We
define the morphisms for odd n, for even n they are
obtained as the restriction the next higher odd num-
ber, that is, ®%* := <I>?S"+1 |L2n . The morphisms ®
are defined as ®(p) = ¥(p) UZS, where ¥(p) is a
quasi-homomorphism and Z$ are special extensional-
ity axioms for the apply functions a.

In the following we have to map the sorts  inject-
ively to new names. Therefore we use a function 7
which can be realized by taking the strings "x". Of-

ten we abbreviate ¢ to o.

14 Definition (Standard Translation @5 ,):
Let 22" ! be the signature of a loglc in £2771

sort In
order to define a morphlsm ® to L} we have to

sort,=>
deﬁnAe the s1§nature ES of the target logic:
Let X5 := (%, 8,5,E,6)
1. ¥ is the union of the following sets:
(a) itconst =U Eionst

(b) Econst

(eX--Xe—1) —
N——

m

{a® |1=(rx - X Ty — 0),0 # 0}



X Tm — 0)}

(¢)
Seonst oy ={aflr = (rx -
N——

with elements a” which are new, that is,
which do not occur in ¥. In addition, for

= 2 we have in Eff;lfio) the equality sign

(d) Zyer = (Jmuer.

® is defined on the signature as the inclusion
mapping Xs — YXg.
2. &8 is defined as the set
{k | ord(k) <n} U
{(RXR1X XBm — 1) | K = (K1 X+ XEm — )}

3. 5 is defined for variables ®(z.), where z, is

mapped to & = (K1 X -+ X Ky, — p) by the
corresponding s-function in higher-order logic, as
5(®(xy)) =K

4. C is defined as
(a)
(b)

5. é is defined as the set of all term declarations:

kEp for all kEpu.
KE. for all top sorts k unequal to o.

(a®(zz,25,,...,2%,, ) : ji) for all K = (k1 x
X K — p)) with type(k) = 7,
for all term declaration (¢ : &) we have a
term declaration (®(%) : &),
((zz=zz) : 0) for all k with ord(k) < n and
K # o.
The morphism ¥ is a quasi-homomorphism on that
behaves on the signature exactly like ®, with the only
exception that = is not in the image of W.
Z5 is the set consisting of the following formulae of
ﬁ}s,é
=5 For every function constant a” with 7 = (7 x
- X Tm — 0), ¢ # o and for all sorts k =

(K1 X -+ X Ky — p) of type 7 we have:
Vf,;Vg,;(Va:}il, . V.Z‘~
a’(f,z1,...,Zm)=a (g,:vl,...,cvm))if:'g
E5P For every predicate constant a” with 7 = (1 x
- X Ty, — 0) and for all sorts & = (k1 X -+ x
Km — 0) of type T we have:
Vngqg(Vx,%l, oL Ve
a’(p,xi,. .., )<:>a (g,21,...,2m)) = p=¢
We define ®(yp) = \Il(go)UE‘z. Analogously for formula
sets ®(T) = Y(T)U =S,

Remark: It is easy to see that ¥y, _1 is an injective
quasi-homomorphism from £2271(X) to L1, (¥(X)).
Therefore it is not to difficult to prove the soundness

of ®.

15 Theorem: ® is weakly complete.

Proof: In the first essential step we define a frame
with the help of which we will define a model for T'.
This frame is defined inductively with the induction

base D, := Dy for all x of type . For top sorts
K = (fjl X o X Ky = u) we define D, as subsets
of F(Dxy,...,Dx,,; D). We cannot take the whole

set, because then we would try to obtain strong com-
pleteness, which cannot be achieved in general. In
a second step we define an interpretation function
J for L2, and show that the inclusion relations in-
duced by the subsort relations hold. In a third step we
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snow Dy 1nduction on the construction or terms and
formulae that the quasi-homomorphism ¥ is com-
patible with the model relation. Formally we show

ho VEM o = VgM In a fourth and last step we

use this property to show that M = ({D,}.,J) is a
model of T
Let I' be a formula set in ﬁfgrt Y(Xs). Let M be a

weak model of ®(T"). Then M is a model of ®(¢p) for
every formula ¢ in T'. Let M be ({Dy}«, J) and £ be
an arbitrary assignment. Then we have VgM (®(p)) =

T. We want to construct a model M of ¢, so that for
all assignments ¢ we have VEM (p)=T.

Step 1: In this step we define a frame for
Lfgrtl(zs). Therefore we define D, := D; and
D, = D; {T,F}. For all other top sorts &
with kK = (k1 X -+ X Km — u) we have to define
D. C F(Dsuy, .. DHM,D ).  We do this by in-
ductively defining injective functions fx from D;
to F(Duyy-- -, ,De. ;D x) and setting D, = bk (Dz).
Hence . is a bijective function from Dz to D,.
For the other sorts x with top sort u we define:
Dy = b,(Dz).

We define fj,; as bijective functions inductively:

1. b, : Dy = D, and i, : D5 — D, as the identity
mappings (These functions are obviously biject-
ive).

2. Let b, and fj, be already defined. We are go-
ing to define a function b, with £ = (k1 x

~><ffm—>,u),u7éofor7)~ For all d €
% let f(d) be defined by h (d)(cz dm) =
h (Vg (a”)(d, b7 (dr),. ... 01 (d ))) for all

dlepnl,.. d EDnm
The following diagram may help to see the in-
volved mappings at a glance:

Vg\/l (af) :Dg X Dgl X Xng—>Dﬂ
! PK Tu;j }1:” Juu
Dy— F(Dxy ,..., Ds,, 5 D)

In order to show the injectivity of fj, we use that
we have in =57 the formula

VfKVgK(V:v~ s, VE
o’ (f 2t .. m) (g, L™ >
f g

Therefore we have in a model that VgM (a¥) is
injective in the first argument, together with the
bijectivity of the mappings b,., and f, the in-
jectivity can easily be seen. Since the surjectiv-
ity is given by definition, we have proved that f,
is bijective.
3. The remaining two cases can be proved analog-
ously.
Hence we have defined D, for all top sorts x. For all

other sorts x with top sort y we define Dy = b,u(Dz).
Thereby we complete our frame {Dy}.

Step 2: In this step we define an interpretation
J in order to complete the definition of a model
({D }es ) We define J := o JoW on the constants.
For all subsort relations kEyu (with same top sort v)
we have D, C DH, because we have KE/L, hence D C

D, consequently D, =1,(Dz) C b, (D) = Du-

Step 3: In thisstep we have to show that for every



assignment ¢ 1n Jvi tnere 1s an assignment ¢ 1n /vi, so
that on all terms (and hence all formulae) ¢ we have:

VgM =fo VgM o W. The proof is straightforward by
induction on the construction of formulae.

Step 4: We notice that the term declarations are
correctly interpreted, because the corresponding term
declarations hold in the translated case.

Now we are going to show that if M is a model of
®(yp), then M is a model of ¢. If M is model of ®(y),
then M is a model of ¥(p). Let ¢ be an arbitrary
assignment and & be defined as = o£ o W1, then we
have VEM (¥(p)) =T, because M is a model of ¥(yp).

Hence we have VgM () = h(VgM (¥(¢))) = T. Recall

that for truth values f is the identity function. ]

Remark: ¥~! provides a calculus for £2 .. If we

add rules that enforce that function symbols and pre-
dicate symbols are equal if they agree in all argu-
ments, we can transform every sound and complete
first-order calculus of £l , . by ® to a sound and
weakly complete calculus for LY ... We can execute
the proof in £} and then lift it to a proof in £, ;.

sort, =

4 Summary

The main goal of this paper was to use the power of an
existing order-sorted first-order theorem provers like
the MKRP system for proving mathematical theor-
ems. Therefore we presented a whole class of trans-
lations from higher-order sorted into first-order sor-
ted logic, which are sound (compare theorem 13).
As stated these translations are bidirectional, that
is, we can map the first-order proofs back to higher-
order logic. In theorem 15 we showed that a partic-
ular translation is not only sound, but also complete
with respect to a weak semantics. In consequence we
can prove in principle everything that is provable in
higher-order sorted logic via translations into first-
order sorted logic. The main drawback is however
the need for the so-called comprehension axioms for
truly higher-order theorems. The distinction between
“truly higher-order theorems” and “essentially first-
order theorems” made explicit the difference between
theorems, which are difficult, because they are higher-
order, and theorems, which are formulated in a
higher-order syntax, but are essentially first-order. Of
course, the comprehension axioms can be translated
too and indeed they can even be represented by fi-
nitely many formulae by adapting methods from [6,
2, 14]. For the unsorted case we have worked it out
[10], we think that the result can be tranferred to
sorted case too. In tests we have compared the beha-
viour of the MKRP system using a sorted formulation
of a theorem with the corresponding relativized one.
The sorted formulation is significantly better.
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