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Part I

I N T R O D U C T I O N





1
I N T R O D U C T I O N

Many applications rely on the quality of the geometric models representing the relevant

object. They vary from special effects in movies to stress analysis during earthquakes,

from medical applications to 3D printers in rapid prototyping. A large branch of Com-

puter Science is engaged with the efficient acquisition, presentation, manipulation,

analysis and reconstruction of 3-dimensional objects in the computer. This opens the

doors for many applications covering a wide area from CAD/CAM, multimedia and

entertainment, to scientific visualization and medical imaging.

There exist many different ways for the representation of those often complex surfaces,

for example using geometric primitives like points or polygons, subdivision surfaces, or

implicit functions.

Today, polygonal models occur everywhere in graphical applications, since they are easy

to render and to compute and a very huge set of tools are existing for generation and

manipulation of polygonal data. But modern scanning devices that allow a high quality

and large scale acquisition of complex real world models often deliver a large set of

points as resulting data structure of the scanned surface. A direct triangulation of those

point clouds does not always result in good models. They often contain problems like

holes, self-intersections and non manifold structures. Also one often looses important

surface structures like sharp corners and edges during a usual surface reconstruction.

So it is suitable to stay a little longer in the point based world to analyze the point cloud

data with respect to such features and apply a surface reconstruction method afterwards

that is known to construct continuous and smooth surfaces and extend it to reconstruct

sharp features.

In this thesis we present such a method and additional algorithms for analysis, surface

reconstruction and also combination of designed and scanned data. Most data used

will be point cloud data as it is received from scanning devices. So all methods and

algorithms presented in this thesis will be point based.
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The main part of this thesis is divided in three chapters.

The first main chapter (Chapter 3) contains a new method for recognition and identi-

fication of sharp features in a point cloud sampled from a scanning device. The new

method introduced does not rely on additional information like normals or connectivity,

but only the spatial locations of the data points. As a complete new approach we use the

gaussian sphere in combination with a clustering algorithm to detect the sharp features.

In addition an iterative refinement of the method is introduced, which makes the method

complete automatic without need for user interaction. Moreover, it improves the results

of the global and user controlled method using local and optimized parameters. To allow

the method to be effective on larger scale data, it is based on local neighborhoods. For

each point in the point set, the local neighborhood around the point is used to determine

a sharp feature. Normals of local approximations are projected onto the gaussian sphere

around the actual point. After this a clustering algorithm analyses the patterns in this

projection and rate these patterns to decide whether the point lies on a sharp feature or

not.

Figure 1: Examples for sharp feature detection

The second main chapter (Chapter 4) is about the reconstruction of surfaces based

on a point cloud and especially the reconstruction of the sharp features identified in

Chapter 3. Here a modification of the popular moving least squares (MLS) method is

used. As the usual MLS is not capable of producing sharp features we decided to modify

and adapt the method to allow a sharp feature reconstruction. We use the property of
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MLS being a combination of local approximations. In a first step we check if the actual

region contains sharp features. We can just do a normal MLS if the regions turns out to

contains no sharp features. Otherwise, we use the modified approach to reconstruct the

sharp feature.

Figure 2: Examples for the sharp feature MLS-reconstruction

For the final sharp feature reconstruction the most important step is the modification

of the neighborhood that we use for the local least squares approximation. Based on

the known positions of the sharp features, the neighborhood can be modified in a way

that the MLS does not blend the sharp feature. During the MLS reconstruction we first

check for the actual local point set if it contains a sharp feature. If this is not the case, the

usual MLS reconstruction is performed. Else the feature points in the local neighborhood
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are used to construct a local feature line that divides the neighborhood along the sharp

feature. Points on the wrong side of the feature line are discarded for the reconstruction.

This way of modification of the local neighborhoods makes sharp feature reconstruction

possible for simple point based datasets without any further information like normals or

neighboring structure.

Figure 3: Examples for blending of a NURBS- and a MLS-surface

The third and last main chapter (Chapter 5) is about the combination of surfaces from

the MLS reconstruction of point clouds and NURBS surfaces from e.g. a CAD design

system. Here the sharp feature reconstruction from Chapter 4 will be used in a new

context. The goal of this chapter is the construction of a smooth blending between the

MLS surface and the NURBS surface. This combination of point based and algebraic

surfaces is not very common and a challenging task since those two types of surface

representation have very less in common. Since we wanted to stay in the world of point

based methods, we sample the NURBS surface to construct a second point cloud as

compatible surface type for the blending step. For the blending we generate a third point

set representing the blending area. To offer flexibility in the design of this blending area,

we use two parameters to control hight and width of the ’collar like’ area constructed

for the blending. During the construction of this blending area, we remove the parts of

the original surfaces that overlap and generate offsets in both surfaces. After we have
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three point sets which we can modify and combine. The original base point set of the

MLS surface, a point set sampled from the NURBS surface and a point set constructed

to blend the other two point sets in a smooth manner.

In the end, the three point sets are combined as global point set and the MLS recon-

struction form Chapter 4 can be applied to generate a global surface for the combined

data. This surface contains the combined NURBS and MLS surfaces blended in a smooth

manner, but due to the characteristics of the sharp feature reconstruction used it will

also conserve the sharp edges and corners of the original data sets.

The main contributions of the thesis are:

• A new method for the detection of sharp features in point cloud data based on

gaussian clustering.

• An adaptive and iterative extension of the sharp feature detection which makes

the method independent from user controlled parameters.

• A moving least squares based method for surface reconstruction of point cloud

data that conserves sharp features.

• A method for blending of point based moving least squares surfaces and NURBS

surfaces.
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Part II

B A S I C S





2
B A S I C S

IIn this chapter we will give an overview and short introduction to concepts definitions

and methods related to the subject of this thesis. We will start with an overview about

point sets since all methods in this thesis are based on point sets. Than we will introduce

Moving Least Squares, our method of choice for the surface reconstruction part in

Chapter 4, and the last basics section will be about NURBS and parametric curves since

we will use these types of curve and surface representation in Chapter 5.

2.1 point sets

The methods presented in this thesis are all based on point set data. Point sets are a

common source of data in computer graphics. Today with emerging scanning technolo-

gies, point set data can be found in a wide range of applications. Although point sets

are over all a quite simple data structure, they demand for several problem solutions.

One is the pure number of data points. Especially regarding the progress of the different

scanning techniques the point sets that are produced become larger and larger. Point sets

of several hundreds of thousands or several millions of data points are getting more and

more common. This demands for special treatment in the used algorithms. Solutions

working on a local basis are always a good way to deal with those large scale problems

by cutting it down to multiple but better manageable problems. The methods used in

this thesis will all be such local methods.

This leads to a second problem. To use a local method one needs to know the data in the

local area of interest. Since most points cloud data is unsorted and not equipped with

information about the structure and neighboring information of the underlying data one

also needs well designed data structure to store and if necessary sort the data.

The data in the point sets, respectively the ’points’ itself can vary in the kind of

information contain. Some of these point types are shown in the next sections.
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2.1.1 Simple points

The most basic type of point data and thus the data type that we apply to our algorithms.

It contains only the pure information about the position in the given space. A point set

of simple points consists only a simple list of coordinates for each space dimension. We

work in the 3-Dimensional space, thus the simple point data for a point P is

P = {x,y, z} with x, y, z ∈ R.

2.1.2 Oriented points

Oriented points are just like simple points, but they contain additional information

about the data they are representing. In the case of a point set representing a surface, an

oriented point contains the normal vector of the given surface at its position.

P = {x,y, z, ~n} with x, y, z ∈ R, ~n ∈ R3.

If the normal information is not available in the data set it can be approximated, for

example like in the work of Alexa [3] or Dey [11]. For a good approximation, the density

of the point cloud has to be high enough. Usually the approximation is done by an

analysis of the neighborhood of the point.

2.1.3 Splats

Splats are the next extension of oriented points. Additional to the coordinates and the

direction those objects also contain a radius, thus forming a disc approximating the local

surface around this point. In a generalization, those discs can be defined as elliptical

splats by two tangential axes and their respective radii.

Figure 4 from [28] shows the aforementioned basic types. The simple point, the

oriented point with its additional normal vector and the two splat types with circular

and elliptical disc.
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Figure 4: From left to right: simple point, oriented point, splat, elliptical splat

2.1.4 Point set algorithms

2.1.4.1 Splatting

Splatting is a common representation technique for point sets. It was proposed first by

Zwicker et. al in 2001 [49]. To close the gaps between the points in the point cloud, the

points are equipped with normal information and a radius, called splat. This generates

circular disks around the point representing a local approximation the underlying

surface. A further improvement of this technique uses not only circular, but elliptical

splats, defined by two tangential axes and their respective radii. If these axes are aligned

to the principal curvature directions of the underlying surface and the radii defined

inverse proportionally to the minimum and maximum curvature, the approximation can

be improved further. For the presentation of sharp edges, one needs to clip the involved

splats against clipping lines in their specific local tangent frames. Often this is done

using two splats sharing the same center but equipped with two normals from the two

surfaces at the sharp edge.

From differential geometry one can conclude that a local ellipse is the best linear

approximant of a smooth surface. They provide the same quadratic approximation order

as triangle meshes. Figure 5 from [28] shows a comparison between rendering of a mesh

and splat representation of an object

One advantage of splats over points or oriented points is, that the point density,

necessary for a good surface representation can be easy adapted. For example it is

better to adapt the density of points to the local properties, so that regions with a

high curvature contain more and smaller splats than flat regions. In contrast, simple
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Figure 5: Different shape approximations from left to right: irregular triangles, regular triangles,
circular splats, elliptical splats. Image taken from [28]

points or oriented points do not have a ’radius’ that can be adapted to the local surface

properties. Although, using splats, one can reduce the number of primitive elements

significantly in comparison to point based rendering. Figure 6 shows an example using

30.000 splats instead of 350.000 points for the given data set. Some more techniques for

the optimization of the splat representation were proposed by Pauly [38] and Kobbelt

[46].

A drawback of splatting, as for most point based representations, is that most of the

current software and hardware is designed for triangle and mesh based representation,

and need to be adapted to the point based splatting approach.
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Figure 6: Comparison: splats and point set. Top row: 350k points, bottom row 30k circular splats,
Image taken from [28]

2.1.5 Generation of unorganized point sets

In this section a short overview about the common generation of point sets will be given.

In general, the point sets are produced by a device, scanning the surface and measuring

the coordinates of multiple positions on a given surface. This can be achieved in several

ways.

mechanical scanners: Scanners based on mechanical measurements usually con-

sist of a needle like probe mounted at the end of a robot arm. During a scanning

process, the probe is moved towards the object until the head of the scanning

probe touches the surface. The exact position is computed from known properties

of the robot arm like length of the arm segments and angles between the arm

segments. The system than stores this position in the point set. Those techniques

are only reasonable for small numbers of sample positions. Since only one point

can be scanned at a single step it is quite time consuming. Although the results

are very exact. This kind of measurement devices is for example used in the car

manufacturing industries. One uses it for example to control the real positions of

fixed features on parts of the car body and check if the produced part meets the
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quality requirements. A exact reconstruction of a complete surface is usually not

possible due to the relative low number of samples. Mechanical scanners may have

problems with the scanning of concave objects, if the robot arm with the probe can

not reach the concave elements. But they have no problems with reflective or glass

like transparent surfaces like laser based systems.

non-contact scanners: Scanners that are not ’touching’ the surface usually use

laser. Most of them are able to measure groups of points simultaneously. Laser

scanners project rays of laser light on the surface. A sensor at the head of the scan-

ning device measures the time until the laser is reflected. With this information,

the system computes the distance between the laser probe and the surface.

By a projection of laser lines on the surface, laser scanners are able to scan groups

of points at one step, making them much faster than mechanical probes. Unfortu-

nately laser scanners have problems dealing with light reflecting or transparent

objects like glass. For those object other methods have to be used, for example

mechanical probes. As for the mechanical scanners, non-contact scanners may also

have problems in scanning concave elements of a surface the laser cannot reach.

Modern laser scanners are almost as accurate as mechanical probes.

There are also non contact scanning approaches that use digital cameras in several

ways to scan a surface. One is done by the projection of a geometric pattern onto

the surface. Through an analysis of the distortion of these pattern in the picture the

three dimensional structure of the surface can be recomputed. Another approach to

compute 3D coordinates using digital cameras on a surface is done using a whole

set of digital cameras watching the scene from different angles. In a combination

of the multiple pictures and the known positions of the cameras, it is possible to

compute the three dimensional reconstruction of an object. The advantage of this

method is that additional color or even texture data for the reconstructed object is

available. This is not the case for the methods using patterns or laser.

A drawback of these image based reconstruction methods is that they are often

not exact enough for an industrial application. Especially not in manufacturing

industries and quality control. Here laser or mechanical scanners are a better

choice.
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2.2 scattered data interpolation and approximation methods

In Chapter 4 we will present a surface reconstruction method based on Moving least

squares. MLS is a common approximation method for scattered data. So, let us give a

overview over some important scattered data interpolation and approximation methods

in this section.

Scattered data interpolation and approximation methods, as the name says, deal with

the reconstruction of an unknown function from given scattered data. The application

areas are quite widespread. They vary from surface reconstruction, terrain modeling,

numerical solutions of partial differential equations, kernel learning, fluid structure

interaction to many more. Many of these applications are used in fields like mathematics,

computer science, engineering, but also in geologies, biology and business studies.

The general problem in scattered data interpolation or approximation is the following:

Given is a set X of n ∈ N data sites X = x1, x2, ..., xn and xi ∈ Rd, (d > 1) with

corresponding data values fi ∈ Rd, (d = 1, 2, ...) and fi = f(xi), i ∈ {1, 2, ...n} in case

of interpolation and fi ≈ f(xi), i ∈ {1, 2, ...n} in case of approximation. The most often

encountered cases are d = 2, 3 where the data sites are 2 or 3-dimensional, or 3D

restricted to a surface and d = 1, 2, 3. Based on the given data, the task is to find

an unknown function f that interpolates or approximates the given data at the data

sites.The approximation case is of special interest if the given data contains noise, since

approximation allows us to smooth the function and reduce the effects of the noisy data.

Let us now review two basic scattered data methods. A complete overview can be found

in [17]

2.2.1 Shepard’s Method

An algorithm known as Shepard’s method [43], which is based on inverse distance

weighting, was one of the first algorithms in this field. It defines a C0-continuous

interpolation function in form of weighted average of the data. The weights are inverse

proportional to the distance. The equation used is as follows:

F(x) =

n∑
i=0

wi(x)fi (2.1)
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where x ∈ Rd, n is the number of data points in the set, fi are the given function values

at the data points, and wi are the weight functions assigned to each data point. The

classical form of the weight function is:

wi(x) =
σi(x)
n∑
j=1

σj(x)

(2.2)

where

σi(x) =
1

di(x)µi
(2.3)

is a power of the Euclidean distance di(x) = |x− xi|. The weighting exponent µ is, in the

classical form recommended to be µ = 2 since this eliminates the computation of the

root and helps to speed up the process.

The advantages of Shepard’s method is that there is no linear system to be solved

as each function value can be evaluated as a weighted sum. Being a global method,

Shepard’s method suffers on problems from influences of points far away from the

actual point. Huge data sets are also a big problem as for almost every method using a

global approach due to the chance of numerical instabilities. Another disadvantage is,

that every weight needs to be recomputed if a single data point is added, removed or

modified.

Later Franke and Nielsons [18] modified Shepard’s approach overcomes most of these

problems. The modified quadric Shepard’s method generates C1-continuous interpola-

tion functions.

2.2.2 Radial Basis Functions

Radial Basis Functions (RBF) are another popular scattered data interpolation technique.

Their origins lies in the field of the neural network community.

The RBF method uses a set of radially symmetric basis functions. Each of the RBFs is

centered at one of the data points xi.

f(x) =

n∑
i=1

αiR(di(x)) + pm(x), pm(x) =

m∑
j=1

βipj(x) (2.4)

The basis functions R(di(x)) are positive radial functions. Usually functions of the

distance di(x) of the point x to the interpolation point xi are used.
{
pj(x)

}
is a set of
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monomials with a maximal degree ofm. The unknown coefficients for the basis functions

are then computed by solving a linear system of equations, using the interpolation

conditions f(xi) = fi and the m side conditions

n∑
j=1

αjpi(xj) = 0, i = 1, · · · ,n (2.5)

During computation, the function is constrained to be zero at the data points, and non

zero on other points, to avoid the construction of the trivial solution. For large data

sets, the coefficient matrix becomes very large and often poor conditioned, making

RBF difficult to handle for large data sets. A popular choice for the basis functions are

Hardy’s multiquadrics [23] due to its condition properties and good results. Hardy used

rotation symmetric basis functions of the form:

R(ri) = (r2i + R2i )
µi
2 , µi 6= 0 (2.6)

that have no polynomial precision with m = 0. Ri and ri are free to be chosen, but the

best choices seem to be ri = r(di) = di(x) and Ri = R. In this case the basis functions

have rotational invariance and translation invariance and the coefficients matrix of the

system of equations becomes symmetric.

Carr et al. [9] developed a multipole extension for polyharmonic functions, which

overcomes some difficulties and lead to good results. But this solution is very complex

and difficult to reproduce. Today RBFs are also used in pattern recognition [27] and

statistical learning .

2.3 an introduction to moving least squares

We use moving least squares as primary tool for the surface reconstruction. Moving

least squares (MLS) creates an implicit surface. According to the parameters, basis- and

weighting-functions used the resulting surface either interpolates or approximates the

original point set. To recapture the basics of moving least squares we start with the

standard least squares method that is the historical basis of MLS.

2.3.1 Standard Least Squares

Least Squares is a mathematical approximation method. It tries to find a function that

approximates a series of given measured data points very close (’best fit’). It does this by
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minimizing the sum of the squared differences respectively distance between the values

of the function and the original data.

Assume to build a function that approximates the values yi ∈ Rd at given points

xi ∈ Rd, i ∈ [1...N] , with f(xi) = yi. To reach this goal, we first suppose the function

to be of a certain form with some parameters, we need to determine. A linear function

of the form f(x) = c0 + c1x has the parameters c0 and c1. According to the definition

of least squares, we have to seek values for c0 and c1 that minimizes the sum of the

squares of the differences yi − f(xi).

min(
∑

(yi − f(xi))
2) (2.7)

2.3.2 Towards Moving Least Squares

The standard least squares approach is based on the minimization of a sum of the

squares of the distances at all data points. So the solution is the defined over the whole

space leading to a global fit. In difference, moving least squares allows the fit to change

locally, and also the solution changes with the value of x.

The original MLS approach was presented by Levin ([33],[32]). Over the time many

variations of MLS where generated. But overall they can be classified in two categories:

projection based MLS surfaces and implicit MLS surfaces.

The projection based surfaces use a two step projection procedure to project a set of

points onto the original surface defined by the point set. The implicit surface in contrary

is defined by the construction of a zero isosurface of a level set function. In this section

we will give a short introduction to the implicit and the projection based forms of MLS.

Our approach we present later in Chapter 4, is an variation of the projection based MLS.

2.3.2.1 Implicit MLS

Implicit MLS is for example used by Shen et al. [42] and Kolluri [30]. To achieve the

’moving’ of the function, the idea is to give the points of the point set being approximated

different contribution to the actual local fit. This is done using a distance weight function

w(r) for each difference r = (‖x− xi‖). This leads us to:

min(
∑

w(x− xi)(yi − f(xi))
2). (2.8)
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For a linear fit using a linear basis function, f(c0, c1) = c0 + c1x, this leads us to

N∑
i=1

w(x− xi) [yi − (c0 + c1xi)]
2. (2.9)

In the end it leads us to an system of equations

c0

N∑
i=1

w(x− xi) + c1

N∑
i=1

w(x− xi)xi =

N∑
i=1

w(x− xi)yi (2.10)

and

c0

N∑
i=1

w(x− xi)xi + c1

N∑
i=1

w(x− xi)x
2
i =

N∑
i=1

w(x− xi)xiyi. (2.11)

Transformed in matrix form, the coefficients c0 and c1 can be computed by inversion

of a matrix. The linear case above has two coefficients and thus requires the inversion of

a 2x2 matrix. A quadratic version would need a 3x3 matrix to be inverted. In general,

implicit MLS with polynomial basis function of degree M− 1 results in a system with

M unknown coefficients to solve and thus the inversion of a (M+ 1)x(M+ 1) matrix to

solve.

The Basis functions used are of big importance and have a huge influence on the result.

This can be seen in Figures 7 and 8. Usually linear polynomial functions are used.

f(x) = c0 + c1x+ c2x
2 + ... + cM−1x

M−1 (2.12)

This is an example of degree M− 1. In a generalized form this one uses:

f(x) =

M−1∑
i=0

cibi(x) (2.13)

with functions b0(x),b1(x), ...,bM−1(x), the basis functions. Usually quadratic f(x) =

c0 + c1x+ c2x
2 or cubic functions f(x) = c0 + c1x+ c2x

2 + c3x
3 are used. But it is also

possible to use a constant function, that means only f(x) = c0 as basis. A linear basis

function leads to the behavior shown in Figure 7.

The usage of higher orders for the basis functions is not always a benefit since the

solving of the equation system needs is more expensive. A good trade off is the use of
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Figure 7: 2D example for an interpolating moving least squares fit with an linear basis function

Figure 8: 2D example for an interpolating moving least squares fit with an quadratic basis
function

cubic or quadratic basis functions. Figure 8 shows an example of a 2D interpolation with

quadratic basis function.

But not only the basis function has an effect on the resulting approximation. The

selection of the weighting function has a large influence on the behavior of the resulting

fit too. The behavior can vary from interpolation to coarse approximation even with a

low order weighting function. Using a weighting function that approaches +∞ at zero

will lead to interpolation of the original data.
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Functions used as weighting functions often belong to the group of inverse distance

functions. One example for such a weighting function is:

w(r) =
1

(r2 + ε2)
(2.14)

This function provides both interpolating and approximating behavior by adjusting

parameter ε. An ε of zero will lead to an interpolation of the data points since in this

situation, the weight w approaches +∞ at the given data points, an non-zero value of

ε leads to approximational behavior. In this case, a larger ε will provide a smoother

approximation while a smaller ε will giver a closer approximation of the original data.

This way, ε can be used to smooth the result in noisy data sets. The figures 9 and 10 show

2 dimensional examples for an interpolation and approximating MLS reconstruction.

Figure 9: 2D example for a moving least squares fit with an approximating weight function,
ε = 0.5

An other group of functions used as weighting functions are Gaussian functions like:

w(r) = a ∗ exp−r2/b2 (2.15)

Here the parameters a > 0 and b are used for the smoothness of the approximation.

Gaussian weight functions do not approach +∞ at zero. So they cannot provide a true

interpolation of the data. But in practice a good combination of the parameters can

achieve nearly interpolating behavior.
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Figure 10: 2D example for a moving least squares fit with an interpolating weight function, ε = 0

2.3.2.2 Projection based MLS

Levin [32] originally supposed an other way to compute the MLS-surface. He introduces

the use of a projection procedure for this step. The main idea is to define a projection

procedure in a way that a given point near the point set is projected onto the surface

defined by the point set. Alexa [1] shows the projection procedure in detail.

For a point set pi ∈ R3, i ∈ {1, ...N} sampled from the original Surface S one projects

a point r ∈ R3 near S onto a the Surface Sp defined by the point set. The surface Sp is

then locally approximated. The projection procedure itself is divided in two steps. In

the first step, one has to find a reference plane for the local polynomial approximation

which is then executed in the second step. Figure 11 shows the projection procedure for

a single point r projected onto the Surface defined by a set of points.

1. The local reference plane

In this first step a hyperplane H = {x| 〈a, x〉−D = 0, x ∈ R3}, a ∈ R3, ‖a‖ = 1, with

origin D and normal a, referring to a point r ∈ R3 is computed. H is computed by

minimization of the local weighted sum of the squared distances of given points pi
to the plane. The weights belonging to pi are a function of the distance of pi to the

projection of r onto the hyperplane H. Let q be the projection of r on H. So H is then

found by minimizing

N∑
i=1

(〈a,pi〉−D)2w (‖pi − q‖) (2.16)
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Figure 11: The basis MLS projection procedure: First, a local reference domain H for the red point
r is generated. The projection of r onto H defines its origin q (green). After this, the
local polynomial approximation g to the heights fi of points pi over H is computed.
The blue point finally is the projection of r onto g.

with w as a smooth monotone decreasing function in R+. As w decreases with the

growing distance of the points, the local reference plane approximates a tangent plane

to S near r.

If we define q = r+ tn for a t ∈ R, 2.16 can be rewritten as

N∑
i=1

〈a,pi − r− tn〉2w (‖pi − r− tn‖) (2.17)

Operator Q(r) = q = r+ tn is defined as local minimum of 2.17 with smallest t and

the local tangent plane H near r accordingly. q can than be used as origin of a local

orthogonal coordinate system on H that forms the local reference domain.

2. The MLS projection

The local coordinate system on H with origin q from step1 is now used to compute a
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local polynomial approximation of the surface in the neighborhood of r. The coefficients

of the polynomial approximation are computed by minimizing

N∑
i=1

(g(xi,yi) − fi)
2
w (‖pi − q‖) (2.18)

In this formula (xi,yi) are the representation of qi in the local coordinate system,

while qi is the projection of pi on H, and fi the height of pi over H. Once more the

distances are used for the weighting function.

In Chapter 4 we modify this projection based approach and introduce a surface

reconstruction method that does not smooth the sharp features in the data set.

2.4 introduction to nurbs

In Chapter 5 we will show a method to combine and blend the point based moving least

squares surfaces with algebraic defined surfaces. We used the popular NURBS surfaces

in our method. Therefore let us give a short introduction into the basics of algebraic and

especially NURBS surfaces at this point.

Being developed in the 1950s and 1960s in the beginnings of CAD in airplane and

car design, these kind of curve and surface representations are today well known and

established. One useful overview of these classical curve and surface methods in CAD is

for example given in [6]. NURBS are a well known and popular approach in computer

graphic and CAD based on parametric functions. For the definition of curves or surfaces

it is common to use sets of parametric functions. That means, one can use a set of

functions and one or more parameters to define a curve. A more detailed definition of

parametric function can be found in [12]. Thus there exists plenty of possible definitions

of curves or surfaces. For example, the coordinates of the points on an curve can be

given as a set of polynomial functions:

x = X(t), y = Y(t), z = Z(t) (2.19)

using polynomial functions X, Y,Z and a parameter t. A simple example for parametric

functions is the definition of a circle in the 2 dimensional case. Here one can use two

functions for the coordinates (x,y) of the curve with x = X(t), y = Y(t) and

X(t) = r cos(t)

Y(t) = r sin(t)
(2.20)
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with t ∈ [0, 2π].

Over time many different approaches where developed, e.g. Bézier curves, Hermite

curves or B-splines, to name a few. See Farin [15] for more details. NURBS-surfaces that

we will use are based on Bézier curves and B-splines. Bézier curves, although being

very popular due to their simplicity, suffer some limitations that B-splines can overcome.

The most important are the non-local character of Bézier curves and the relationship

between degree of the curve and the number of control points. In the global concept

of Bézier curves each polynomial coefficient depends on every control point of the

curve. This leads to the problem that the modification of a single control point changes

the whole curve. Using B-Splines eliminates this problem. B-Splines consist of several

spline segments, each defined by a reduced subset of control points. Changing a control

point thus will only have an effect on the associated segment. B-splines also allow the

generated curve to interpolate the endpoints of the control polygon.

A B-Spline curve of degree n is defined by a set ofm+1 control points {P0,P1, ...,Pm},Pi ∈
R3 m > n consists of m− (n− 1) curve segments. Each segment is only affected by

n control points. This means, changing one of the control points will only have an

effect on the associated curve segment and not the global curve. This makes the design

and manipulation of objects a lot more comfortable than using standard Bézier curves.

In addition, a B-spline has a set of q knots, also called ’knot vector’ that controls the

distribution of the parameters for the segments in the interval [0, 1[. The number of

knots related to the degree and the number of control points, and equals the number

of control points plus the degree of the curve plus one q = n+m+ 1. If the knots are

distributes uniformly within this interval, the B-spline is said to be uniform, otherwise it

is non-uniform. With non-uniform B-splines one can use the knot vector and a multiple

use of single knots to interpolate for example the endpoints of the control polygon. If the

first n knots of a curve are equal and the last n knots are equal, the curve will interpolate

the two end control points of the curve. If one assumes the coordinates of a point (x,y, z)

to be rational polynomials, like

x =
X(t)

W(t)
, y =

Y(t)

W(t)
, z =

Z(t)

W(t)
(2.21)

with W(t) interpreted as a weight added to the according control point. Such a B-spline

is said to be rational, else it is non-rational.

Overall, this leads to 4 different types of B-Splines:

• Uniform Non-Rational B-Splines
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• Non-uniform Non-Rational B-Splines

• Uniform Rational B-Splines

• Non-uniform Rational B-Splines

the last mentioned type is the NURBS. They are the most general case and thus probably

the most powerful and most widely used B-Spline type, especially in CAD applications.

Mathematically a NURBS curve Q(t) of degree n is defined as

Q(t) =

p∑
i=0

Bi,n(t)Piwi

p∑
i=0

Bi,n(t)wi
p
i=0

(2.22)

where Pi ∈ R3 are the control points, wi ∈ R the associated weight, and Bi,n a basis

function defined by

Bi,0(t) =

 1 if ti 6 t < ti + 1

0 else

∀k > 0, Bi,k(t) =
t− ti

ti+k − ti
Bi.k−1(t) +

ti+k+1 − t

ti+k+1 − ti+1
Bi+1,k−1(t).

(2.23)

A NURBS-surface is constructed analog to a NURBS-curve, but with the use of a

control mesh and two parameters u and v. Mathematically three dimensional parametric

surfaces are generated from the Tensor product of two curves, thus we have the two

parameters u and v. A NURBS surface S(u, v) is thus defined by:

S(u, v) =

p∑
i=0

q∑
j=0

Bi,m(u)Bj,n(v)Pi,jwi,j

p∑
i=0

q∑
j=0

Bi,m(u)Bj,n(v)wi,j

(2.24)

Some of their advantages and reasons why they are used widely are as follows.

• They offer a precise mathematical representation of free-form shapes and analytical

shapes (like cones, spheres, etc.)

• The manipulation of the control points leads to a wide flexibility and variety of

shapes
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• NURBS are invariant under scaling, rotation and translation as well as perspective

transformations

• It is easy to construct a NURBS with a desired continuity (C0,C1,C2)

However, NURBS also have drawbacks. Some are mentioned by Piegl in [40]:

• They need extra storage to define some often used curves or surfaces. For example,

the construction of a full circle needs seven control points and 10 knots. A tradi-

tional representation would need only the center, the radius and the normal vector

to the plane of the circle.

• Some techniques, for example surface/surface intersection work better with tradi-

tional forms.

• Some useful algorithms get problems with numerical instabilities.

• A bad setting of the weights of control points can lead to a bad parameterization,

which can lead to additional problems in subsequent surface constructions.
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Part III

D E T E C T I O N O F S H A R P F E AT U R E S I N P O I N T C L O U D S





3
D E T E C T I O N O F S H A R P F E AT U R E S I N P O I N T C L O U D S

3.1 abstract

In this chapter, we are going to present a new method to identify sharp features in a

simple point cloud data set without normal information.

Sharp features are of big importance especially in the manufacturing industries. During

reverse engineering of mechanical components, for example for the evaluation of the

manufacturing process, the possible loss of features like sharp edges is a problem to deal

with. There are already existing concepts and algorithms to identify features in point

clouds. But many concepts are based on creating a triangulation of the point cloud first

and then searching for the features in this triangulation. Creating a triangulation first is

a possible way. But the triangulation step requires additional computational costs and is

itself not trivial.

Also, during the construction of the triangulation the sharp feature can be lost. So we

decided to avoid these ways and worked out a method that searches and finds the

interesting features only by using the information we have in our point cloud data. As

input we use a simple set 3D point coordinates without further information about the

surface (normals, neighbors).

During our feature detection we analyze the point cloud. We iterate through the point

cloud and decide for every single point, if it belongs to a sharp feature or not. The result

is an attributed point cloud showing the position of sharp features.

After the first promising results with the approach we refine the method and replace

a global dataset-dependent parameter for sensitivity by a local one. This improves the

results significantly as we will show later. The local parameter we are going to compute

will be adapted iteratively to a local region depending on the characteristics of the region.

This leads to a higher degree of automation of the feature detection and in addition

improves the results in complex geometries. The following pictures in Figure 13 show

the improvement through the adaptive parameter. The left side pictures show the results

of the first detection of feature candidates, the right pictures show the candidates after

the refinement procedure.
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Figure 12: Tagged Point cloud: the left side of this figure shows the original point cloud data;
The right shows the tagged data.

3.2 problem description

Over the last years scanning technologies have become more and more affordable and

accurate. This increased the availability and usage of these techniques in industry. The

usage of scanning devices covers a wide broadband. During development process of

a new product it can be used to approve and optimize the production process or to

digitize manually designed prototypes. During production it might be used to support

the quality control. In the car manufacturing industries the wear of a production tool

can be measured by controlling the position of some fix points on the product. Today the

number of control points used is relative small and only covers critical sections of the

product. No complete reconstruction of the objects is used for the quality analysis. But

with the development of faster scanning devices and reconstruction techniques also the

reconstruction in detail or of the complete product might get useful for quality analysis.

Common scanning devices usually collect data in form of sampling points either by a

mechanical probe or by laser, see more details in Chapter 2 Section 2.1.5. In consequence

the importance of processing these point clouds has increased.

For modeling applications or quality measurements the preservation of sharp features

is of great concern. Even for different fields of computer graphics like simplification,

smoothing or visualization the knowledge about the positions of sharp features can be

of great help. There exist different approaches to reconstruct a surface from point cloud
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Figure 13: The left side shows examples without the adaption method; the right side examples
use the adaptive method

data. But many of these techniques lead to a loss of detail and foremost a loss of sharp

edges and features due to a smooth (C2-continuous) reconstruction. Techniques allowing

sharp features on the other side often don’t identify sharp features automatically, and the

user has to position or mark the sharp feature manually to reconstruct it properly. Since

a user controlled operation is not always wanted, an automatic identification of sharp

features in a point cloud is an interesting and important step to get better reconstructions

of a given surface.
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3.3 state of the art

Many existing detection methods for sharp features or edges are based on a triangulation

of the point cloud. We achieved to use only the point coordinates to detect the regions

with sharp features in the point cloud. One usual approach is to use the Delaunay-

triangulation and its triangle normals. Other approaches use a Neighboring-Graph based

on the Riemannian graph. This graph contains the edges to the k-nearest neighbors of

every data point. Then the analysis of the neighborhood of a given point delivers the

probability of being a feature.

We differentiate between three groups of feature detection methods. Mesh based methods,

point based methods and reconstruction based methods that detect sharp features during

a surface reconstruction. In the next sections these methods will be shown in more detail.

3.3.1 Mesh based feature detection

There are multiple existing techniques for feature extraction, relying on polygonal meshes

[26, 44, 29, 25, 45]. The following methods represent a group of different approaches.

The list of methods is not intended to be exhaustive.

Hubeli and Gross [26] use a normal based multi-resolution framework and generate a set

of edges with a normal-based classification operator. In a classification phase they assign

a weight to every edge in the input mesh, proportional to the probability of belonging to

a feature. The authors provide different types of operators for different mesh types like

a ’second order difference’ operator for very coarse data sets an ’extended second order

difference’ operator for finer meshes or a computational more expensive ’best for polyno-

mial’ operator which performs well on noisy points sets. After this, in a detection phase

they reconstruct the features from the information gained in the classification phase.

According to the weights, they produce piecewise linear curves from the collections of

edges that are assumed to belong to a feature. For thresholding they use a hysteresis

thresholding. An edge is added as feature if its weight is larger than an upper bound.

If the weight is smaller but still larger than a lower bound the edge is also accepted

if a neighboring edge is already selected as feature. All other edges are discarded as

features. A thinning process then refines the edges to generate clear feature lines. For

the thinning all patch-boundary edges are first inserted to a linked list. A first condition

removes edges that are perpendicular to the mesh feature. A second condition makes

sure, that an edge is only removed if the patch will not become disconnected. If an edge
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is removed, new edges are inserted into the list and have to be analyzed. The process

continues until the list is empty. They also present a multi resolution approach for their

feature extraction to improve the quality further. The process is not fully automatic since

a user has to choose the classification operator and some parameters for the detection

phase.

Hildebrand et al. [25] use anisotropic filtering on third order derivatives of the surface

mesh. The derivatives are approximated by discrete differential geometric approxima-

tions. This way, the authors compute discrete extremalities, which are then smoothed

and used to trace feature lines in regular triangles. Singular triangles need a special

treatment. In this case the adjacent triangles are used to determine the feature line

intersections with the singular triangle. After the first feature line extraction a threshold

filter is used to improve the stability of the feature extraction and to remove small ridges.

The last step is an optional smoothing of the feature lines. Both methods [26, 25] use

extreme triangles to build a set of sharp feature edges.

Watanabe and Belyaev [44] use the so called focal surfaces to detect extreme values

of curvature on dense triangle meshes. If kmax and kmin are the largest and smallest

principle curvature then the principle centers of curvature are points situated at the

surface normal with a distance of 1/kmax and 1/kmin from the surface. These principle

centers form the focal surface. It consists of two sheets, one for the minimal, and one for

the maximal principal curvature. Watanabe now uses the property, that the singularities

of the focal surfaces, called focal ribs, correspond to lines on the original surface where

the principal curvature has an extreme value. They present a method for the estimation

of the principle curvature on a dense triangle mesh and then show how the associated

focal ribs can be used to identify the features. Also here a thinning process of the first

results is necessary to construct a final feature line. The resulting lines show the regions

of maximal curvature. The method is not specialized for the detection of sharp features.

All mesh based techniques use in the one or another way the connectivity information

and normals associated with the underlying mesh. But often surface scanning devices do

not deliver a mesh as raw data, but an unsorted set of point data representing the original

surface. In this case, a mesh based method has to rely on the proper reconstruction of

the features during the mesh generation. So, in order to use these methods one first

needs a surface reconstruction that has preserved the sharp features. Since it is our goal

to use the feature detection later in Chapter 4 for a surface reconstruction with sharp

features these techniques are not of interest in our case. In the end, the negative point of
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all mesh based feature detection methods is the fact that they all depend on the feature

preserving abilities of the used mesh generation method.

3.3.2 Point based feature detection

Very few feature detection methods are dedicated to point-sampled geometry only. The

major problem of these point based methods is the lack of knowledge concerning normal

and connectivity information. This makes feature detection a more challenging task than

in mesh based methods. The usual approach begins with the construction of a local

neighborhood of a potential feature point. The different techniques than mostly differ in

the analysis of these local neighborhoods.

Gumhold et al. [21] present a method that uses the Riemannian tree to build the connec-

tivity information in the point cloud. The Riemannian tree contains all edges to the k

nearest neighbors for every data point. The algorithm first analyzes the neighborhood of

each point via a principal component analysis (PCA). The eigenvalues of the correlation

matrix are then used to determine a probability of a point that belongs to a feature.

The analysis of the ellipsoid formed by the three eigenvectors as basis vectors and their

eigenvalues as associated length allows further conclusions about the underlying feature

type. This way the algorithm can differentiate between line-type features, border and

corner points. The result is a quite dense set of points covering all kinds of features inde-

pendent if the feature is sharp or not. This set of points is then reduced by computing

a minimal spanning tree followed by a branch cutting. This is an elegant way to get a

sparse set of points representing the feature line.

Pauly et al. [39] extended the PCA approach with a multi scale analysis of the neighbor-

hoods. Based on the eigenvalue analysis of the covariance matrix they compute a value

for the surface variation in the local area around a sample point. For the multi scaling,

they vary the size of these neighborhoods to receive additional information. A jump

in the graph of the surface variation during the multi scaling shows the existence of

new surface parts. Especially in noisy datasets, the multi scaling approach enhances the

result of the usual PCA analysis. But since the method analyzes up to 200 neighborhood

sizes for each point in the dataset, it is computationally more expensive. To handle these

relative huge neighborhood sizes of over 200 neighbors, they also show a way to solve

the problem of neighbors not belonging to the same connected region. To estimate that

a neighborhood becomes too large and starts to include a near but unwanted regions,

for example in close curves, they use a heuristic that looks for strong deviations in the
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normal direction. The algorithm recognizes all kinds of visual eminent features including

sharp features as well as most smooth features. But for the identification of only the

sharp features inside the dataset, this method has to be modified. A way to adapt this

approach to sharp features may be achieved with an adjustment of the thresholds used

for the feature recognition. With well chosen lower and upper thresholds the method

may be able to identify only sharp features. But this can lead to problems in case of

sharp features with varying angle. This case would most likely require independent

thresholds for each kind of sharp feature.

Demarsin et al. [10] also searched for sharp features in point cloud data. In contrast

to our work their goal is to produce closed sharp feature lines. They choose a region

growing method, to segment the point cloud into clusters and identify the regions of

sharp features. Based on the analysis of the normals of the points, they segment the

point cloud in clusters with equal normal behavior. From this clusters they build up a

graph that connects the neighboring clusters. The edges in this graph are then used as

indication for the existence of a sharp feature in the related area. The resulting set of

points is a coarse representation of the area where the features are located. Similar to

Gumhold and Pauly, they use a graph approach and construct a minimum spanning tree

of these candidates. This gives them an initial reconstruction for the feature lines. A fixed

parameter for the maximum branch length is then used to cut off the short branches of

the tree. In the next step they close the feature lines. For each open endpoint in their

graph they compute the n nearest neighbors among the other endpoints. The distance

and the length of the paths of the neighboring endpoints is used to determine a good

connection. After this they cut off the branches of the possibly remaining endpoints and

smooth the graph to get their final closed feature lines.

Merigot et al. [35] estimate principal curvatures and normal directions of the underlying

surface from a point cloud using a so-called Voronoï covariance measure and provide

valuable theoretical guarantees. A convolved covariance matrix is computed of a union

of Voronoï cells and returns principal curvatures and principal directions. It can be

applied to feature detection in discrete data via a proposed algorithm that iteratively

computes covariance matrices with varying neighborhoods. Similar to other PCA-based

algorithms, the estimated features form a large band of points near the feature line.

The mentioned techniques for a feature detection in point clouds are mostly used as a

preprocessing step for another processing step, e.g. a surface reconstruction with sharp

features.
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3.3.3 Reconstruction based methods

Several surface reconstruction methods aim to preserve sharp features during the con-

structing of a mesh from an unorganized point cloud.

Amenta et al. [4] reconstruct creases, corners and sharp features in a post processing step,

if the user indicates that the model contains sharp edges. If not, the method smoothes the

corner. They discard regions with sharp features, generating holes in the reconstruction.

These holes are then closed by extending smooth surfaces linearly into the empty region

until they meet. This results in a sharp angle.

Guy and Medioni [22] extract surfaces, feature lines and feature junctions by discretizing

the space into a volume grid. After this, they compute surface votes from the data points

for each of the cells. Saliency functions based on an eigenvalue analysis of the votes and

the use of an adapted marching cubes algorithm allows the computation of the features.

There are also MLS-surface reconstruction methods that are trying to preserve sharp

features in point clouds without a preprocessing step.

Fleischmann et al. [16] use robust statistics to identify sharp features and reconstruct a

piecewise smooth surface. They are searching for outliers that are interpreted as sample

points on another smooth part of the final surface. This way they classify regions of the

point set as outlier free smooth regions. The identification of the sharp features is then

done on an iterative refining process. Starting with a fit for a small subset of the point

set, they increase the number of points for this fit, until the statistical analysis discovers

an outlier. The fitting of the first surface part stops and a new fit on the remaining points

starts. Thus this method generates a set of piecewise smooth surfaces. However, this

method has problems with dense sampling and jagged edges.

Öztireli et al. [37] use kernel regression to extend the moving least squares surface

reconstruction with sharp features. Their method increases the presentation of sharp

features conserving the C2-continuity of the MLS-surface. In some applications however

it would be better to have a real sharp feature with a C0-continuous surface.

3.3.4 Our method

In our method in contrary to most other methods, we try to use as less information

as possible. That means, that the point cloud data we use only needs to contain the
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coordinates of the point data without any additional information or triangulation. We

only work on the local neighborhoods of the points. In the neighborhood of a point, we

analyze the behavior of a sample point using a mapping onto the Gaussian sphere. We

will show the details in the next section. Furthermore, we do not use any additional

global and complex structure created from the dataset that might be hard to generate for

large datasets. The only additional structure we use is a kd-tree as data structure for the

point cloud that allows an efficient nearest neighbor search.

3.4 feature extraction

In this section we present the details of our feature extraction method. It consists of three

steps: We first build the data structure for our points set. In the second step we create

local neighborhoods in the point set. In the third step we analyze these neighborhoods

to identify sharp features. Let us first define point cloud and sharp feature.

A point cloud is a simple set of 3D point coordinates without any normal or connectivity

information. The data points are unstructured, but supposed to belong to a 2-manifold

surface. the point set P is defined as

P = {P1,P2, ...,PN},Pi ∈ R3.

Let N = |P| be the cardinal of the point set.

A sharp feature we want to detect in the point cloud can be of different nature. For

example, a sharp feature can be an edge between two surfaces or a corner where three

or more surfaces meet.

3.4.1 Data structure

To detect the sharp features in this point cloud, we are going to determine for every

point in the point cloud if it is part of sharp feature or not. Like other techniques, we

analyze the neighborhood of each single point, to decide if it belongs to a sharp feature

or not. As neighborhood we use the k-nearest. That means we take the k points in the

point cloud with the shortest distance to the sample point. In a large, unsorted and

unstructured point cloud even this step, the construction of the k-neighborhood, can be

quite time consuming.

Let us first study the problem of searching the nearest neighbor before solving the

problem of searching the k-nearest neighborhood. The neighbor search, especially in
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a large dataset, depends much on the underlying data structure used. That’s why we

have to define an appropriate data structure first. A simple list based data structure for

example is not a good choice since It would be necessary to check every single point in

the list and its distance to the sample point. This will result in huge computational costs

of O (N) for a single point which results in O
(
N2
)

for the whole data set.

So it is important to reduce the number of necessary data accesses and comparisons.

A space partitioning data structure is asymptotically more efficient in case of large

3D-datasets. These structures divide the data space in subsets. In this way huge groups

of possible candidates get eliminated by every single comparison. Usually these data

structures are tree structures. Most common are oct-, quad- and binary-trees, dividing

the space in eight, four and two subspaces at every level. Oct- and quad-trees are of

the same type, but apply to different dimensions. The quad-tree is usually used in 2D,

whereas the oct-tree is used in 3D environments.

We finally choose the more flexible kd-tree [36] as underlying data structure to do an

efficient k-nearest neighborhood search.

The kd-tree is a special case of the binary space partitioning tree (BSP-tree). Every node

in the kd-tree is a k-dimensional point (in our case we work in three dimensions)1.

The non-leaf nodes are used to create splitting planes which divide the space into two

subspaces. The sub trees associated with the node now represent the subspaces on the

left and right side of the splitting plane. In this way, the dataset is sorted with respect to

spatial dimensions.

This allows an efficient search for the k-nearest neighborhood of a point. Since the

algorithm of searching the single nearest neighbor can be easily upgraded to searching

the k-nearest neighbor we will give a short overview of the single nearest neighbor

search for a 3D-point p. A useful feature of the kd-tree is that it is not essentially, that p

is in the point set of the kd-tree.

searching the nearest neighbor in a kd tree: To search the nearest neigh-

bor of a point p, the method starts at the root of the tree. One moves down the left

or right subtree, whether the splitting dimension of the actual level of p is bigger

or smaller than that of the current node. Until now it is the same approach like

inserting a new point to the kd-tree. Once the leaf-level is reached, the leaf node

1 please keep in mind, that the k of the kd-tree and the k of the neighborhood are unrelated, we use k in
booth situations due to the historical naming of the methods
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is used as first candidate for the nearest neighbor. After this the algorithm moves

back and up the tree again. The next steps are performed at each node it traverses.

If the current node is closer to p than the candidate, it becomes the new candidate.

A hypersphere around the search node is than used to check if a point on the other

side of the splitting plane might be closer than the current one. The radius of the

hypersphere is the distance of the current candidate point to p. To determine if a

point on the other side of the plane might be nearer it is enough to check if the

hypersphere crosses the splitting plane. In this case the algorithm has to move

down the other subtree and check it for nearer points as done before. If it does

not intersect the splitting plane the algorithm continues moving up to the next

branch. Thereby the whole subset of the point cloud in the branch not taken can

be ignored as candidate without further testing. When the algorithm reaches the

root node the remaining candidate is identified as the nearest neighbor of p.

Lee [31] has analyzed the worst case for a single nearest neighbor search in a kd-tree

containing N nodes.

tworst = O
(
k ∗N1−

1
k

)
, with k = 3 in our case. (3.1)

This leads to a bad behavior, if the number of points in the tree is only slightly higher

than the number of dimensions. In our case with only three dimensions and N >> 3

the algorithm will not run into this problems and has a worst case of O
(
3N

1
3

)
that is

much better than the O (N) of a list structure. Finding the nearest point in the case of

randomly distributed points in average leads to O (logN).

It is simple to upgrade the algorithm for searching the nearest neighbor of a point

to searching the k-nearest neighbors, by just maintaining the k current best candidates

instead of just the last candidate. In this case, the radius of the hypersphere checking

the neighboring branches has to be the distance of the worst of the current k candidates.

Until k candidates are found, the distance is infinity.
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Figure 14: kd-tree nearest neighbor search: The upper left image shows the kd-tree at the begin-
ning of a nearest neighbor search for a new point; The upper right image shows the
new point (red) and its first nearest neighbor candidate (black) after moving down to
the leaf level of the tree;
In the lower left image the parent of the current candidate (black) is shown. Since
the sphere does not intersect the corresponding splitting plane, the other side can be
ignored (grey area) and the algorithm moves up to the next branch;
In the lower right image the next parent is shown, another branch of the tree is
eliminated, but the other side is intersected by the sphere, tested and a new currently
best candidate is found (green)
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3.4.2 Neighborhood analysis

Having the local neighborhood Np constructed for a point p ∈ P, we now want to

analyze it to decide if the sample point belongs to a sharp feature or not. To do this we

apply a Gauss map clustering.

3.4.3 Discrete Gauss map

Let Np be the neighborhood of p containing the k nearest neighbors, and Ip the index set

of Np. Let T be the set of all possible k · (k− 1) triangulations of p with its neighborhood

points

T = { ∆ij = ∆(p,pi,pj) | i 6= j, i, j ∈ Ip}.

The normal vector of the triangle ∆ij is given by

nij = ppi × ppj. (3.2)

Note that nij = −nji.

The discrete Gauss map of the neighborhood of p can now be defined as the mapping

of T onto the unit sphere S2 centered at p as follows

Gp : T → S2

∆ij 7→ xij := p+
nij
‖nij‖ .

(3.3)

Feature detection is now performed in two steps. A first step discards all points

belonging to a planar region with a simple flatness test. The remaining feature candidate

points undergo than in a second step a more precise selection process, called Gauss

map clustering. Gauss map clustering is usually used for other applications, such as

segmenting a point sampled geometry into connected regions, grouping together points

with same local curvature behavior [34].

FLATNESS TEST

These normal vectors from 3.2 allow us to draw some conclusions about the local surface

behavior of the point cloud at p. If the lines passing through p and spanned by nij with

i < j are all almost parallel, then the underlying surface is nearly flat at p. Note that nij
and nji span the same line. To compare them, we compute the angle between these lines.
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Figure 15: Computation of normal vectors used for feature identification in a local neighborhood

The flatness test consists now in computing the standard deviation of these angles, i.e.

we check the distance that means the angle to the median value of the directions. If it is

lower than a given threshold (we worked with 15%, which corresponds to an angle of

about 13◦) the surface in this neighborhood is assumed to be flat or nearly flat without

having a sharp feature. But the inverse is not true. A high deviation at p does not imply

a sharp feature. It can also appear in a high curvature region without a sharp feature.

GAUSS MAP CLUSTERING

That’s why we also analyze p by computing the Gauss map Gp of the set T =

{∆(p,pi,pj)}. Here we now check the clustering behavior of the normals from 3.2.

This idea is motivated by the fact that in the case of a smooth piecewise C0 surface

the Gauss map of the neighborhood of a surface point is different whether the point is

flat, curved (elliptic, hyperbolic or parabolic) or tangent plane discontinuous. In case

of a nearly flat point the Gauss map of neighbor points will represent one cluster of

points on the sphere. In the case of a curved point (parabolic, hyperbolic, or elliptic) the
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points on the sphere will be spread over a larger region. And in the case of a tangent

plane discontinuity, the points of the sphere will build two distinct clusters. Figure 16

shows these three cases. A flat area on the left side results in one single, respectively

two opposing clusters interpreted as a single one since we know that nij = −nji. The

example with a smooth feature in the middle of Figure 16 shows no clustering at all. In

the a case of a sharp feature, one can see that two clearly distinct clusters are produced.

Figure 16: 2D examples for cases during feature detection

In the case of a point-sampled surface, the difficulty is that we don’t know anything

about the surface nearby. We don’t have a local triangulation nor a normal vector

associated to the neighbor points. For that reason we defined our Gauss map as the

projection of the normals of all possible local triangulations, see Section 3.4.2.

Figure 17: Projection onto the gaussian sphere
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Figure 17 shows an exemplary projection of one of the normals nij onto the gaussian

sphere. The figure also shows how the opposing clusters on the gaussian map are

generated. The resulting Gauss map of a sharp feature point will thus contain some

additional ’noisy’ points which correspond to the triangles that finally don’t belong to

the underlying surface. These noisy points however don’t affect the general clustering

behavior. In practice they will disappear when computing the clusters.

Let us illustrate these assumptions for the common case of two intersecting planes

with p lying on the sharp edge. Half of the k neighborhood points are lying on each

plane, see Figure 18 left. Computing the Gauss map will result in two (opposite) clusters

of O(k2/4) identical points corresponding to the triangles lying entirely in one plane,

and two clusters for the other plane. Note that nij and nji belong to opposite clusters.

All other points on the sphere, the aforementioned ’noisy’ points correspond to triangle

where pi belongs to one plane and pj belongs to the other plane. These points are

sparsely distributed over the sphere. In Figure 18 we show a real example implemented

with Matlab. On the left, the planes and the 16 neighborhood points are shown. On

the right, the Gauss map is shown, where the thick red and blue points represent the

clusters.

Similar clustering behavior can be observed for the non-exhaustive list of sharp features

whose profiles are shown in Figure 19 and Figure 20.

Figure 18: Computation of the Gauss map Gp for feature identification in a local neighborhood.
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Figure 19: Some example of sharp feature profiles.

Figure 20: Examples of sharp corners of valence three and four.

We therefore use the clustering behavior of the projected points on the sphere, called

Gauss map clustering, in order to determine whether the sample point p belongs to a

sharp feature or not.

Regarding the clusters, we have to keep in mind that we can not be sure about the

direction of our normals as mentioned above. That means, we don’t have any information

whether the normals points outside or inside of the surface. But for the identification

of a sharp feature this does not matter at all. We use the fact that each point xij on the

Gauss sphere has it’s counterpart xji on the opposite side of the sphere, since nij = −nji.

This can also be seen in Figure 17. The clustering behavior of one set of points is thus

reproduced identically on the other hemisphere.

Distance measure. An important step in a clustering algorithm is to choose a

distance measure, which decides how close two elements are. The present point set has

two particularities: it is a spherical point set and it consists of pairs of symmetric points,

i.e. points lying on opposite positions on the sphere. An appropriate distance measure

has to take care of this. In order to preserve symmetry in the point set we choose as

distance measure the angle between the lines through pairs of symmetric points. It can

be shown that the angle between two normal vectors of our Gauss map is equivalent to

the geodesic distance between two points on the sphere. The minimal angle between two
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lines spanned by the normal vectors is thus an appropriate distance measure satisfying

the particular requirements mentioned before:

d(xij, xjk) = min{dg(xij, xkl),dg(xij, xlk)}, (3.4)

where i, j,k, l ∈ Ip and

dg(xij, xkl) = arccos(< nij,nkl >)

is the geodesic distance between two points xij and xkl on the unit Gauss sphere.

Clustering. Many clustering algorithms require an a priori specification of the

number of clusters to produce. Our aim however is not to cluster the total point set, but

to distinguish some clusters from other sparsely distributed points in the Gauss map.

We therefore use a hierarchical agglomerative (’bottom-up’) clustering method [24]. It

begins with each point as a separate cluster and merges them successively into larger

clusters. As linkage criterion, which defines the distance between two clusters, we use

the mean distance Dc between elements of each cluster

Dc(S1,S2) =
1

|S1| · |S2|
∑
x∈S1

∑
y∈S2

d(x,y), (3.5)

where S1,S2 are two clusters to be compared and d the distance measure of the Gauss

map defined in (3.4). This is one of the most common criterion [24]. Each agglomeration

increases the distance between clusters by merging the closest clusters. To find the two

closest clusters we have to compute the distances between all clusters. After the merging

of the two closest, we only have to recompute the distances to the new cluster. We

stop the clustering algorithm when the distance between two clusters exceeds a certain

threshold σ ∈ [0, π2 ].

Hierarchical clustering algorithms have complexity of O(n2) with n the number of

elements to be clustered. In our case, the number of elements is k ∗ (k− 1). So in total,

our clustering has complexity of O(k4). The complexity of the clustering thus strongly

depends on the size k of the neighborhoods. Since we use not very huge k in our method

(normally k = 16, at most k = 32), the method overall is still reasonably fast.

Analysis. All clusters containing only a few points are discarded, since they corre-

spond to the noisy points. The remaining clusters are analyzed as follows. Opposite

clusters on the sphere are considered as one cluster. If in the end a single cluster remains

we decide that the current point does not belong to a feature. If two, three or four clusters

remain, we decide that the point belongs to a sharp feature. If more than four clusters
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remain, we decide that the current point does not belong to a feature. The number of

four seems to be a good value, since most data sets generally don’t have more than

four sharp features meeting in one point, see Figure 20 for examples. Even the more

complex vase in Figure 32 does not have sharp feature corners with more than three

edges. However, it can be adapted in presence of a particular data set if necessary.

Let us discuss in more detail, how we choose the parameters and thresholds used

during the clustering in the next section.

3.5 choice of parameters

The decision, to declare a sample point as sharp feature or not, is depending on two

value that we can change: the size of the local neighborhood (k) and the sensitivity

parameter (σ). The next sections will show the influence of these parameters on the

result and behavior of the algorithm and give some advices how the parameters should

be selected. After this, we will show how we could improve the method further.

3.5.1 Size of neighborhood

The size of the neighborhood is user controlled and fixed. It represents the region

tested for a feature and has influences on the computation time. On one hand, a too

small neighborhood will not deliver enough information for a reliable result but will

be computed very fast. On the other hand, a too big neighborhood represents a huge

region and thus even features far away from the sample point would influence the

result. This may lead to false positives, i.e. finding sharp features in flat regions. In

addition, the computation times for a large neighborhood are significantly longer. A too

big neighborhood may also violate the requirement that all points of the neighborhood

belong to the same connected region of the underlying surface. This is a theoretical

problem, which does not occur with the relatively small number of neighbors we choose.

However, this problem has been pointed out by Pauly et al. [39], since their algorithm

loops on the size of the neighborhood varying from 1 to 200. A criterion is proposed to

detect invalid neighborhood sizes.

So there is a trade off needed for the size of the neighborhood. During our tests a

neighborhood with a size of k = 16 performs best. Detection methods for general

features come to a very similar conclusion. [21] propose k = 10 to 16. [47] propose
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k = 12. Sizes of 8 and 32 also deliver acceptable results but were kind of lower and

upper bounds. Let us use Figure 21 to show and explain this. In the left image, the

neighborhood size is k = 8. This generates clearly to not enough information for a good

detection. In the middle with k = 16 the result is just fine, while in the right image at

k = 32 the size of the neighborhood begins to become too large for a good detection

using our method.

Figure 21: Feature detection on the trim star with a different neighborhood sizes and fixed
sensitivity parameter. The neighborhood sizes vary are from left to right 8, 16 and 32.

3.5.2 Sensitivity parameter for Gauss map clustering

Remember that during clustering the distance Dc (3.5) between two clusters is compared

to a threshold value. This threshold value is the sensitivity parameter σ. The clustering

algorithm stops merging the clusters, when the distance between the clusters exceeds

the threshold. σ corresponds therefore the minimal distance between all resulting clusters.

Let us explain the role of this parameter by first recalling the two main requirements

to our method:

1. detection of all points lying on a sharp feature

2. no selection of points which are close to the feature, but not on it.

These requirements will lead our method to detect a relatively sparse set of points

lying on the sharp feature or very close to it. Note that the second requirement is

particular to our method, since in most cases, a sharp feature corresponds to a line. All

previous methods are different in the sense that they aim to detect general features (not
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sharp features). Such a feature often corresponds to surface region with high curvature

variation. Consequently, they compute many points on the feature followed by a post-

processing step, which reduces the number of points and which replaces them by an

approximating line [21, 39].

Figure 22: Feature detection with a global sensitivity value σ. The points are sampled on a
piecewise bilinear surface with a sharp feature line, similar to the example in Fig.23-
left. The angle between the surfaces varies along the feature line from acute (45◦)
to obtuse (140◦). The detected feature points are highlighted by fat red points. σ =

0.05, 0.1, 0.6, 1.0 left to right.

The value fixed for the parameter σ ∈ [0, π2 ] makes the method more or less sensitive

for sharp feature detection. The sensitivity is inverse reciprocal to the value of σ. Let us

first investigate theoretically how the method is expected to behave for big and small

sensitivity values, before studying a numerical example:

A big value of σ corresponds to clusters with a big distance between them obviously

implies that clusters would consist of many points. This would work well for features

which are distinguishable very sharp, i.e. features with a right angle or an acute angle.

But at the same time it would ignore features with an obtuse angle. In this case it is

more difficult to distinguish the noisy points from the correct surface normals. If σ is too

big, one would end with only one cluster containing all points of the Gauss map and the

sample point would not be recognizes as a feature, violating requirement 1.

A small value of σ stops clustering earlier. It would result in clusters which are more

close together corresponding to feature with an obtuse or an acute angle. On one hand

the method becomes thus more sensitive for detection of critical sharp features. On the

other hand it may then be difficult to distinguish feature points from neighbor points,

since their clustering behavior is very similar. It would violate requirement 2.

It seems that there might be some critical features which are difficult to detect. In

practice, the choice of a user-controlled global sensitivity parameter works well for many

examples. But for more complex examples, a global sensitivity parameter does not show
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optimal results in presence of acute and flat angles in the same data set. We already

suspected this behavior in the previous paragraph, so let us study now the limits of

the present method with a particular numerical example. We constructed a piecewise

bilinear surface with a straight feature line where the angle between the surface varies

from acute (45◦) to obtuse (140◦). This data set corresponds to the left example in Figure

23. In Figure 22 is shown the result of feature detection for σ = 0.05, 0.1, 0.6, 1.0. It can be

observed, that a very small value of σ = 0.05 or 0.1 produces many overrates not only

near acute features, i.e. points which are falsely detected. A mean value of 0.6 detects all

features but still produces overrates near acute features. A big value of σ = 1.0 however

fails to detect flat feature points.

Figure 23: Some examples of sharp feature profiles with varying angles.

Obviously, if the point cloud contains features with acute angles and features with

obtuse angles, one global parameter for sensitivity is not sufficient. A good global value

for obtuse angles allows to detect all features, but will probably overrate features in

regions of acute angles. In this case a whole region might get marked as sharp feature

while the exact position of the feature cannot be determined. So a global value always

needs a trade-off between finding all features (requirement 1) and finding the exact

position of the features (requirement 2).

This observation motivated us to develop an extension of the algorithm which is

presented in the next section.

3.6 local-adaptive method

In the previous section it has been demonstrated, that the use of a global sensitivity

parameter σ might not be sufficient in all cases. In the present section we will show

how to make the parameter σ local and adaptive. The aim is to develop a method that

changes the sensitivity value adaptively for different regions of the point cloud. It should

compute automatically an optimal σ value for each feature candidate. Furthermore we

also adapt the neighborhood size k automatically, so that the user is no longer obliged
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to adjust the two parameters manually in order to get good results.

We achieve this by an iterative process. In a first initialization step the method described

in Section 3.4 including flatness test on the whole point set and Gauss map clustering

on the selected points does a feature search using global values for σ and k. In this

first passage, σ will be set to a relatively low value while k will be relatively large. This

delivers a set of many feature candidates. We generate a larger set in order to not miss

any feature points with an obtuse angle, at the cost of also getting overrated acute angle

features (see Figure 24). Since we now have a candidate list with many outliers, we

reduce the number of candidates in the following iteration steps. In these steps the

method checks the number of possible features in the neighborhoods of the feature

candidates.

Figure 24: The two pictures on the left show a non-uniformly sampled point cloud with an
overrated set of feature points obtained with two different parameter settings σ = 0.1,
k = 20 (left), σ = 0.5, k = 16 (middle). The right figure is the result obtained with
the iterative method applied to the overrated examples. σ and k are automatically
adapted for each of the feature candidates.

In the case of a sharp feature e.g. an edge or a curved line, the feature points will lie

on a line dividing the neighborhood in two parts. The percentage of feature candidates

inside this neighborhood will be relatively low. A very high percentage of feature candi-

dates inside a neighborhood indicates that the sensitivity was too high, i.e. value of σ too

low, for this neighborhood. The existence of only one or no other feature candidate in

the neighborhood indicates that the candidate is not a sharp feature but an outlier. Thus

increasing carefully the sensitivity value σ would reduce the number of overrated points,

see Figures 22, and 26. To also get rid of the overrated features at acute angles which

don’t disappear with increasing σ, we also locally reduce the size of the neighborhoods

at every iteration step.
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The algorithm for each iteration step is the following. We raise σ by 10% in the neighbor-

hood of the current candidate and reduce the neighborhood size k by one.

Then only the candidate features inside this neighborhood are tested again for being a

sharp feature using the Gauss map clustering described above. The raised sensitivity

and the smaller neighborhood size lead to a reduction of the number of candidates in

this neighborhood.

This step iterates until either the percentage of features in the neighborhood of the candi-

date reaches a reasonable value (during our experiments a value of 30% of neighborhood

size worked well) or another break condition is reached. These additional breaking

conditions can be chosen among maximum value for the sensitivity (σ = 1.2), a minimal

size for the neighborhood (k = 8) and a maximum number of iteration steps.

The iteration process in pseudo code:

while ( iteration break criteria not reached ) {

for ( Candidate in Feature Candidates ) {

initParameters( n, sigma )
Neighborhood = Candidate.Neighborhood

while (Neighborhood.getNumberOfFeatureCandidates() > threshold ) {

adjustParameters( n, sigma )

//Check Candidate
isFeature=checkforFeature( Candidate, n, sigma )

if ( isFeature == false )
removeFromCandidateList( Candidate )

// Check Neighborhood of Candidate
for ( Neighbor ∈ Neighborhood )
if ( Neighbor.isFeature() ) {

isFeature=checkforFeature( Neighbor, n, sigma )

if ( isFeature == false )
removeFromCandidateList( Neighbor )

}

}

}

}
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The right picture in Figure 24 is the result obtained with the iterative method applied

to the overrated examples. σ and k are automatically adapted for each of the feature

candidates. The two pictures on the left show a point cloud with an overrated set of

feature points obtained with two different parameter settings σ = 0.1, k = 20 (left), and

σ = 0.5, k = 16 (middle).

Adding iterative refinement steps to a process often increases significantly computa-

tional costs. Especially regarding large point clouds, checking the neighborhood of every

data point iteratively is very costly, O(Nk) in the worst case where each point has been

selected as a feature candidate. This scenario is of course unrealistic.

In the present setting, the additional computational costs resulting from the iteration

steps are quite low for two reasons. First, the number of data points checked during

the first iteration is negligible with respect to the initial data set. They correspond to

the feature candidates selected after the first pass using the Gauss map clustering with

a set of not optimal global parameters. In the case of the ’cube with hole’ examples,

they present only 11% of the point cloud. In the case of the simple cube they present

9% and in the planes with the varying angles example 10%. Second, the number of

remaining feature candidates decreases significantly after each iteration. This results

from the fact, that each iteration of a single neighborhood will also eliminate a whole

group of other candidates inside this neighborhood, since the neighborhoods of close

points intersect each other. That means that the neighbors of the candidate, in case of a

being not a sharp feature, are likely to be eliminated from the candidate list before their

own neighborhood has been tested. This reduces the number of candidates very fast and

fewer neighborhoods in the cloud will be tested again.

In a usual scenario after the first step only a small percentage around 10% or less of the

point cloud will be marked as candidate for a sharp feature. This makes the additional

computational costs for the refinement iterations significantly lower than the costs for

the first global feature search.

3.7 results

We have implemented the sharp feature detection pipeline described in the previous

sections. We use points sets sampled from some known geometries, such as the cubes

57



and the bilinear surfaces, as well as more complex models, such as the "fandisk" the

"vase", and the "trim-star". To all models we applied both the basic algorithm described

in Section 3.4 where we tried to find some optimal global parameters by testing many

combinations, and the improved local-adaptive method with an automatic and adaptive

choice of the optimal local parameters. The robustness of the method is tested and

evaluated with respect to two aspects: the variation of the angle of a sharp feature and

noise.

Figure 25: Feature detection on different angles using the local adaptive method.

3.7.1 Robustness w/r to varying angles

Let us first test the robustness of the method with regard to very acute and obtuse angles

by testing two planes connected with a fixed angle between them. The profiles of these

surfaces are shown in Figure 25. >From left to right the angles are 25◦, 45◦, 60◦, 90◦, 110◦,

140◦, 160◦ and 170◦. The method works perfectly for all angles greater then 45◦, even

very obtuse angles don’t cause any problem. The method also allows angles of 45◦ and

less, but with very acute angles the results are no longer very precise. In this case, the

overrated points don’t disappear even when increasing σ and decreasing k. For the three

acute angles the neighborhood was k = 8 for all others we chose k = 10. The problem of

not detected features appears only with very obtuse angles near 180◦, which is negligible.

3.7.2 Comparison between global and local-adaptive method

Let us now compare the performance of both methods (global and local-adaptive) using

three test examples with a known number of sharp feature points. The first example is a
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simple cube with 580 sharp feature points. The second example is a surface containing a

sharp edge with a varying angle having 256 sharp feature points. At one end the angle

is (45◦) at the other end it is (140◦). The third example is cube with a hole with 1350

sharp feature points. We checked the global method with different sets of parameters

and compare it to the local-adaptive method.

Figure 26: the examples used for the study with the global method. For each example 9 sets of
parameters have been tested. The three lines correspond to k = 10, 16, 20, the three
columns correspond to σ = 0.1, 0.5, 0.8.
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3.7.3 Global method

Figure 26 shows the results for the global method. For each example 9 sets of param-

eters have been tested. The three lines correspond to k = 10, 16, 20, the three columns

correspond to σ = 0.1, 0.5, 0.8.

The simple cube example shows, that for a dataset with only one kind of angle it is

possible to find good global values for σ and k. k = 10 gives best results, see Figure 26

(first line). The optimal value of σ = 0.6 was found by trying several times the algorithm.

It not fits into the figure here, but it results in a perfect feature detection of all 256 points

of the cube equivalent to the local-adaptive method in Figure 27.

In the example of two surfaces joining with the varying angle, one can see the problems

of the global method. A global value of σ is not sufficient. On one hand, the feature

points on the right part of the edge, where the angle become obtuse, are not detected

when σ = 0.8 is big (right column) in Figure 26. On the other hand, a small σ can

detect them, but leads to outliers and overrates in acute angle regions. The size of the

neighborhood k has a huge influence on the method too.

The importance of k is best seen in the cube-with-hole example. On one hand, a small

neighborhood k = 10 performs best on the outside edges of the cube, but leads to bad

results in the curved region inside the hole. On the other hand, a big neighborhood

k = 20 performs better in the curved areas, but worse on the outside edges of the cube.

All these examples confirm the conclusion we already did in Section 3.4: a global choice

of the parameters can not detect all features satisfactory.

3.7.4 Local-adaptive method

The local-adaptive method can take a huge advantage on its capability to vary σ and

k. For each feature candidate detected in a first pass, an optimal value of σ and k is

determined and outliers are eliminated. However, the method is not able to add feature

points during the iterations, since the final set of detected features is a subset of the

feature candidates. Therefore, one has to initialize the iteration with a set of parameters,

which won’t neglect possible features. The experiences in the previous paragraph show

that σ = 0.1 and k = 20 are good initial values. The result of feature point detection

using the local-adaptive method is shown in Figure 27. Table 1 resumes the performance

of the algorithm with respect to the three hand-made examples.
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Figure 27: feature detection using the local-adaptive method.

feature

# points points detected % outliers

cube 10250 580 575 99%

planes 6090 256 257 100% 1

hole 58720 1350 1398 100% 48

Table 1: Test results for the local-adaptive method.

3.7.5 Robustness to noise

In order to test and quantify the sensitivity of our local adaptive method to noise, we

compare distances measured between real feature points on a test point cloud and on a

perturbed point cloud. The test example is the cube-with-hole, since it has corner, convex

and concave feature points. All points are lying in a ball of radius R = 8.5. The original

point cloud has 17400 uniformly sampled points. Distance between neighboring points

is 0.25. The perturbed point cloud is obtained by adding to each point a random vector

chosen in a ball whose size is 0.4%, 0.8% and 1.2% of R.

The error induced by the noise is measured using the distances between the set of

feature points in the original point cloud Q = {qi} and the set of estimated feature points

in the perturbed point cloud P = {pi}. The distances δ∞ and δavg are defined similar to

[35]. δ∞ is the maximal distance between an estimated feature point pi and its nearest

feature point in Q. δavg is the average distance between an estimated feature point pi
and its nearest neighbor in Q.

Table 2 summarizes the results of the experiment for different noise radii. The number
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noise δ∞ δavg # features

0.0 % 0 0 839 (+0)

0.4 % 0.25 0.02 862 (+23)

0.8 % 0.26 0.03 875 (+36)

1.2 % 0.31 0.08 984 (+145)

1.6 % 0.75 0.19 1245 (+406)

2.0 % 0.93 0.21 1255 (+416)

Table 2: Distances between estimated features and real features of the cube-with-hole model.
Noise as a percent of the model radius varies. The number of exact features 839 is
compared to the number of estimated features.

Figure 28: Estimated feature points on noisy point clouds. The original cube-with-hole model is
perturbed with random noise.

of detected feature points is also a measure of quality, since our method aims to detect

only feature points or a sparse set of points very close to a feature,
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δ∞ measures the presence of outliers. The experiment shows that in the case of mean

noise (0.8%) the distance of isolated outliers δ∞ = 0.26 is equal to the point distance

(0.25) in the original point cloud. Outliers are thus very close the neighbors of real

features, see Figure 28. For bigger noise of 1.2% the isolated outliers are still very close

to the feature points, but their number increases. Even though the number of so-called

false features increases with increasing noise, the detection method is still stable, since

isolated outliers stay close to real features, even for strong noise.

Figure 29: The global method on the fandisk and the trim-star.

3.7.6 Complex point-sampled surfaces

After these self constructed examples let us show some more real world examples. Here

it is not possible anymore to measure the quality of the output of the algorithm, since the

feature points are not known and generally don’t lie directly on the feature as stated in

[5]. Only a visual control is possible. First we tried the global method on the well-known

fandisk (σ = 0.7,k = 12) and the trim-star (σ = 0.6,k = 12). It can be seen in Figure 29

that no optimal result can be achieved. We then applied the local-adaptive method to

the following three examples. Figure 30 shows the detected sharp feature points on the

fandisk model (41250 vertices). The local method here again delivers good results.

The next examples in Figures 31 and Figure 32 show the trim-star model (25100

vertices) and the vase (896000 vertices) which has some curvy, sharp features. Notice,

that for the vase and the trim-star, the original model is a triangulation, but the points
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Figure 30: Sharp feature detection on the fandisk model.

are NOT lying on the feature. The triangle edges are zig-zagging along the feature lines.

Figure 31: Sharp feature detection on the trim-star model.

Finally we used a scan data set by a CyberwareTM scanner of a drill. Many data is

missing near the sharp features and the precision is quite rough, see Figure 33, but the

feature lines are correctly detected along the sharp lines of the drill.

Concerning computation time, our local-adaptive algorithm runs for the fandisk

example with 41520 vertices in about 19 seconds, for the trim-star with 24444 vertices in
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Figure 32: Sharp feature detection on the vase model.

30 s and for the drill with 23994 vertices 40 seconds. 0.6 seconds pre-processing time

costs the k-nearest computation for the fandisk (PC: Xeon 3.0Ghz). The vase model takes

20 mn because of the time consuming and repeated clustering in the local method. This is

however reasonably fast for most available models up to 100k points, and compares well

to the multiscale PCA method, even though our implementation is not done optimally.

3.7.7 Comparison to PCA methods

The ability of our method to detect sharp feature points is the key characteristic and

can be seen as a supplement to all previous methods. In fact, the notion of ’sharp’ is
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Figure 33: Sharp feature detection on a drill scan by a CyberwareTM scanner. The data set is
very rough and has missing data near the sharp feature.

important here. Previous methods, including [21, 39, 35], aim to detect more general

features in unstructured point clouds such as high curvature or curvature variation

regions. These methods result in large bands of feature points, even in the presence of

sharp features. A post-processing step is then proposed in [21, 39] to make this set of

points more sparse followed by an approximation with a smooth curve. All methods

use variants of a principal component analysis (PCA) of the neighborhood of a point in

order to estimate local curvature values.

In order to compare our local Gauss map clustering to PCA based feature detection

for the special case of sharp features, we implemented the PCA part of the multiscale

feature detection method [39]. It is a powerful method and easy to implement. Without

measuring exactly the differences, Figure 34 makes a visual comparison. As it has been

expected, by tuning several times the parameters of the multiscale method (surface

variation 0.08, neighborhood size varies from 10 to 40, feature weight with lower and

upper border 25 and 30, see [39]), we always end up with a wide band of estimated

feature points which call for a post-processing to reduce the number of candidates to a

small line in contrast to local-adaptive Gauss map clustering. It confirms that PCA-based

methods are not best appropriate for sharp feature detection.
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Figure 34: Comparison of PCA-based feature detection (left) with our local-adaptive Gauss map
clustering method (right). Both methods are applied to the original uniformly sampled
point cloud of the cube-with-hole example (upper row) and to the perturbed data set
with 1.2% of noise (lower row).

3.8 conclusions

In this chapter we presented a new method for sharp feature detection on point-sampled

geometry. The proposed method uses Gauss map clustering for feature detection. It is

fully automatic, without any user interaction. It does not rely on local surface reconstruc-

tions, and no normal information is required. A key contribution is the integration of

an adaptive local sensitivity parameter for the feature identification, which reduces the
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user dependency of the method. Many tests have been performed in order to demon-

strate that the method works very successfully even on very complex geometry in

contrast to algorithms based on global parameters. The resulting point cloud with the

marked sharp features can be used for several applications now (surface reconstruction,

non-photorealistic rendering, mesh generation, MLS-surface modeling). All line-type,

corner-type sharp features are detected. Cone peaks are not treated here, the method

needs to be adapted in order to recognize the particular clustering behavior in this

case. The properties of the resulting feature point set (preciseness, sparseness, very few

outliers) make the method an excellent pre-processing step for a surface reconstruction

with sharp features. We will show this in the next chapter
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4
S H A R P F E AT U R E R E C O N S T R U C T I O N U S I N G M O V I N G L E A S T

S Q U A R E S

In the last chapter we showed a method to identify sharp feature positions in point

cloud data. In this chapter we will use this knowledge for the reconstruction of the sharp

features on the surface defined by the point cloud. As basis for our surface reconstruction

we use the moving least squares approach (MLS) introduced by Levin [33] in 2003. MLS

is a well known method for the surface reconstruction from point cloud data. But the

usual approach produces C2-continuous surfaces, that smoothes out all sharp edges from

the data set. We enhanced the general approach by modifying the local neighborhoods in

the presence of sharp features. The modification allows us to reconstruct sharp features

in the dataset during the surface reconstruction. One advantage of this approach is, that

we only have to manipulate regions with sharp features, while we can conserve the

advantages of usual MLS, e.g. smoothing of noise, in the regions without sharp features.

4.1 abstract

Let’s first give a short description of the method. We use the moving least squares

approach for the surface reconstruction. This is a well known method for point cloud

data but has the disadvantage of smoothing sharp edges in the point cloud. To get this

problem solved, we first need to know the exact positions of the sharp edges in the data

set. For this we use the feature extraction method of the last chapter as pre-processing

step. After this step, we know for every point in the data set if it belongs to a sharp

feature or not. We now use this knowledge for the MLS reconstruction. MLS is based on

local approximations. So, during the projection step of a point onto the surface, we use a

neighborhood of this point in the point cloud. If this neighborhood contains no sharp

feature, we can do a usual MLS-projection. Only in regions containing sharp features, we

need to change the approach. Our basis approach to reconstruct the sharp feature is to

modify the neighborhoods and ignore features on the other side of the sharp edge. We

first construct a local feature line inside the neighborhood that divides this neighborhood

in distinct parts. We can than search for points in the neighborhood of the projected
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point which are on the other side of the feature and just ignore these points during the

MLS.

4.2 moving least squares and sharp features - state of the art

MLS was originally presented by Levin [33, 32]. He also introduced the projection

procedure approach we are using to solve the MLS problem, see Section 2.3.2. Later his

work was improved by Alexa et al. and the construction of their point set surfaces [2],

and Kolluri [30] who introduced a provably good moving least squares. In this work

Kolluri proved the correctness of the approximation using moving least squares. But all

those approaches constructed smooth approximations of the surface defined by the data

set. That means, they cannot deal with and reconstruct sharp features in the underlying

dataset. In the last years a couple of approaches were made to integrate sharp features to

MLS. In this section we will give an overview of some of the most popular approaches

for moving least squares with sharp features.

As one of the first methods Fleischmann et al.[16] presented a MLS approach that

could reproduce sharp features. The robust moving least squares fitting approach is

based on robust statics. The robust statistics is used to search for outliers in the point

set. They assume that the surface consists of several smooth patches connected by sharp

features. The idea is now, that a sample point lying on another smooth patch will be

identified as outlier. As we will see later, our approach is based on a quite similar

principle. An example of the results of this method is shown in Figure 35. The left side

of this figure shows the classical smooth reconstruction, the right side the reconstruction

with sharp features. Instead of using the classical method for fitting a model to data via

linear regression using least squares, they used a method that is more robust in respect

to outliers based on the least median of squares. It estimates the parameters of the model

β by minimizing the median of the absolute residuals, defined as the difference between

measured data and estimated data.

argminβmediani
∣∣fβ(xi) − yi

∣∣ (4.1)

It can handle to fit a model to data that contains up to 50% outliers. Fleischmann et

al. use a random sampling algorithm to solve problem 4.1. First, they select k points of

the input data randomly and fit a model to these points. Then the median of riβ with
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Figure 35: Example for Fleischmanns sharp feature reconstruction (from: [16])

Figure 36: the principle of the iterative refitting (from: [16])

ri = f(xi) − yi of the remaining points is computed. They repeat this process T times to

generate T models. The model with minimal median residual is then selected as final

model. This model is now used as initial model for the iterative refitting shown in Figure

36. Figures (a) and (b) show the interpretation of the data points as piecewise smooth

(a) and smooth (b) surface. To identify the sharp feature in the iterative process they

first robustly fit a surface to a small subset of the points in (c). In the next step they add

points with smallest residual and refit the surface to the updated subset (d). The final

fit of the forward search is shown in (e). The remaining points are regarded as outliers

to the first surface. These points are used in another refitting step to construct another

surface part (f). The result is a surface that is defined as the intersection of the two

surfaces in (g). Finally they reconstruct their piecewise smooth surface by re-sampling of

the intersection of the two surfaces (h).
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Figure 37: Tagging the point cloud with sharp features (from [20])

Gueenebaud [20] presented later APSS, algebraic point set surfaces. He used moving

least squares fitting of spheres instead of planes. This leads to a good stability in

undersampled datasets. The sharp feature extraction itself is done manually by tagging

of the point cloud, or automatic and analogue to Fleischmann’s method.

For n points they use W(x) the n× n diagonal weight matrix and D the n× (d+ 2)

design matrix.

W(x) =


w0(x)

. . .

wn−1(x)

 ,D =


1 pT0 pT0p0
...

...
...

1 pTn−1 pTn−1pn−1


The solution of the algebraic sphere fit at point x ∈ Rd is then:

u(x) = arguminu 6=0

∥∥∥W 1
2 (x)Du

∥∥∥2
Here u has to be constrained by a metric to avoid the trivial solution u(x) = 0. The

authors use Pratt’s constraint. It fixes the norm of the gradient at the surface of the

sphere to unit length 1.

For the sharp feature reconstruction they use the concept of ’sharp points’, that means

points at a sharp feature provide two normals. The user tags the points in the points

cloud witch are meant to be sharp features, see Figure 37.

In the end, they insert samples into groups, and assign lower weights to samples

inserted into other groups than the own one. A parameter α controls the smoothness of

the feature. α = 0 reconstructs a sharp feature, α = 1 completely smoothes the feature,

see Figure 38.
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Figure 38: Sharpness control with α = 0,α = 0.15,α = 0.5,α = 1 (from: [20])

Öztireli et al. [37] use a kernel regression technique to reconstruct sharp features.

They called it RIMLS, Robust Implicit Moving Least Squares. Analogues to Fleischmann

they also use a robust statistic approach to find outliers belonging to different smooth

patches on the surface. This technique has global parameters that can control the global

sharpness of the reconstruction. Another important property if this approach is, that the

resulting surface remains C2-continuous. So the reconstruction does not have a real C0-

continuous sharp feature, but constructs a presentation which is still "C2-continuous but

looks sharp from the distance. Going close up to the surface, one can see the smoothness

of the ’sharp’ edges. Depending on the applications demands, this can be seen either as

advantage or disadvantage.

Local kernel regression is a supervised regression method to approximate a function

f(x) : Rd → R given by its values yi = f(xi) at sampled points xi ∈ R. Core of this

method is to approximate the function around the evaluation point x in terms of a Taylor

expansion:

f(xi) ≈ f(x) + (xi − x)
T∇f(x) +

1

2
(xi − x)

THf(x)(xi − x) + ...

where Hf(x) is the Hessian matrix of f(x). In their paper they show that one can

transform this equation into:

argmins
∑

(yi − (s0 + aTi s1 + bTi s2 + ...))2φ(x)

using a weighted least squares minimization for the unknown parameters s = [s0, sT1 , sT2 , ...]

and φ(x) as symmetric decreasing weighting function. This is in principle equivalent to

the MLS scheme.

A combination of the IMLS surface definition [42] with the local kernel regression

approach yields to the robust IMLS surface they called RIMLS. It is defined by :
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Figure 39: Reconstruction of a sharp feature using RIMLS (from [37])

fk(x) = argmins0

∑
(s0 + (xi − x)

Tni)
2φi(x)w(rk−1

i )

with the residuals rk−1
i = fk−1(x) − (x− xi)

Tni. To increase the accuracy of the sharp

feature reconstruction, they suggest the addition of a second re-weighting term penal-

izing normals far away from the predicted gradient of the surface. The new weight

function they propose is

wn(∆nki ) = e
−

(∆nki )2

σ2n

By iteration they can now get close to the sharp feature and keep the surface C2-

continuous. An example for this can be seen in Figure 39.

They also showed a comparison with non sharp feature techniques, see Figure 40.

Another interesting approach worth to mention in this context is the ERKPA by Reuter

et al. [41] ERKPA stands for Enriched Reproducing Kernel Particle Approximation. In
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Figure 40: Various reconstructions of a noisy fandisk (from [37])

Figure 41: ERKPA Reconstruction of sharp features (from [41])

this approach the user has to tag the sharp features manually. Then Reuter et al. use

a modification of the second step of the MLS projection (the computation of the local

polynomial approximation). Instead of the normal projection, they use a projection

operator based on ERKPA. They add an enrichment function e(x) with discontinuous

derivatives to the approximation function. The enrichment functions are compactly

supported with a user specific support size to control the influence of the sharp feature.

For n Features, n enrichment functions are needed. For the introduction of a sharp

feature in the reconstructed surface, the user can specify a feature curve Λi. Then the

enrichment function can be defined, so that the surface presents a tangent discontinuity

along this curve. The feature splits the corresponding domain Ω ∈ R2into two sub

domains Ω0 and Ω1. Examples for the ERKPA reconstruction can be seen in Figure 41.
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4.3 our method - mls with neighborhood modification

In this section we will describe our method for sharp feature reconstruction and how

we use and modify the usual moving least squares approach to reconstruct a surface

containing sharp features. After presenting the basic idea of our method for sharp feature

reconstruction in Section 4.1, we will go more into the details in the next sections. We

will start with an overview of the algorithm in Section 4.3.1 followed by the details of

the feature line extraction in 4.3.3 and an discussion of the quality of the feature lines

in Section 4.3.4. Then we will describe how our method must be applied in the general

setting 4.3.5 as well as the special case of corner-like features 4.3.6.

4.3.1 An overview of the algorithm

Let us now take a closer look to the details of our sharp feature reconstruction method.

The principle of the whole process is shown in Figure 42. As mentioned before we use

moving least squares for the surface reconstruction. This well known method for point

cloud data in its classical form has the disadvantage of smoothing sharp edges in the

point cloud. To solve this problem, we use the knowledge about the exact positions of

the sharp edges in the data set, taken from the feature extraction method presented in

Chapter 3 as preprocessing step. After the sharp feature detection we know for every

point in the data set if it belongs to a sharp feature or not. This additional knowledge

about the dataset is used to reconstruct the sharp features of the surface during the MLS-

reconstruction. Let P be the point that is currently projected onto the surface. During the

projection of the point P onto the surface, we have to compute the neighborhood of P in

the point cloud. Reusing the kd-tree structure from Chapter 3, this is a simple task. If the

resulting neighborhood contains no sharp feature, we apply the usual MLS-projection to

construct the local approximation of the surface. Only in those regions containing sharp

features, we need to change the classical MLS approach. Our basis approach for the

reconstruction of the sharp feature is in fact not to modify the MLS method itself, but the

neighborhoods used as basis for the reconstruction. If sharp feature points are contained

in the neighborhood of P, we compute all the points in the neighborhood around P that

are not on the same side of the feature than P and remove these points from the current

neighborhood. To do so we approximate the sharp feature by the construction of a local

feature line inside the neighborhood that divides this neighborhood in distinct parts.

After this, we can check, which points inside the neighborhood are on the other side of
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(a) Point P and its neighborhood
NP

(b) Feature points are identified
and local feature line con-
structed

(c) Point that do not belong to
the region containing P are
removed from NP

(d) Additional points are sam-
pled along the feature line

(e) P is projected onto the surface
using MLS projection

Figure 42: neighborhood modification, (a) neighborhood construction; (b) marking the features
and construction of the feature line;(c) removing unwanted points from the neighbor-
hood; (d) computation of points on the feature line to replace deleted points in the
neighborhood; (e) projection of the point onto the surface
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the feature than P and modify the neighborhood accordingly for the reconstruction. Next

we will go through the details of the sharp reconstruction by distinguishing two cases of

sharp features. The first case is the appearance of a line like feature in the neighborhood.

This is the most common case. The second and special case arises if multiple feature

lines meet inside the neighborhood. This is the case of corner like features.

4.3.2 MLS Notations

Before going into the details, let us introduce some notations and basics for the MLS

reconstruction. The notations are also shown in Figure 43. Let P be a set ofN unorganized

points P = {P1,P2, ...,PN} ,pi ∈ R3 sampled from a Surface S. Since we are working on

subsets of the point set, Np describes the neighborhood of a point p ∈ R3 in the dataset.

p itself does not have to be a point of the dataset P. As in Chapter 3 we use the k-nearest

neighborhoods, i.e. Np = {x1, x2, ..., xk} that contains the k ∈ N points of the dataset

with the minimal distance to p. The set of feature points is another important subset

F = {fi |fi ∈ P is feature point} where i ∈ N is an arbitrary index since the features

itself are not sorted.

We are going to use Levin’s classical MLS-projection.

MLS-projection step 1:

In the first step of the classical MLS projection (also see Problem 2.16 in Section 2.3.2.2),

we will use a local reference plane is computed by minimizing

k∑
i=1

(〈a,pi〉−D)2w (‖pi − q‖) (4.2)

where q is the projection of p onto the hyperplane H = {x| 〈a, x〉−D = 0, x ∈ R3},a ∈
R3, ‖a‖ = 1 and pi ∈ Np are the neighbors of the point p. w is a smooth monotone

decreasing weighting function

w(d) = exp−d2/h2 (4.3)

where h can be used as a parameter to adjust the smoothing and interpolation behavior

of the MLS, and d is the euclidean distance ‖pi − q‖.
MLS-projection step 2:

In the second MLS projection step (see Problem 2.18 in Section 2.3.2.2) the polyno-
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mial approximation g of the surface inside neighborhood of p is than computed by

minimizing:

k∑
i=1

(g(xi,yi) − hi)
2
w (‖pi − q‖) (4.4)

In this formula (xi,yi) are the coordinates of the projection of pi on H in the local

coordinate system of the reference plane. hi is the height of pi over H.

Figure 43: Overview of the situation of a single neighborhood.

4.3.3 Local feature line construction

In this section we explain how to modify the neighborhood of a point p for the MLS

projection. In order to reconstruct sharp features we modify the local neighborhood Np
of p which is used in problem (4.2) and (4.4). Let again xj denote the points belonging

to Np i.e. Np = {x1, x2, ..., xk}. We first check if some of the xj belong to the set of

sharp feature points F, we denoted as fi. In a first step, the sharp feature inside Np is

approximated as a smooth curve. Second, all points xj ∈ Np which don’t belong to the
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Figure 44: Feature line in neighborhood near a linear sharp feature along the edge of a cube

same surface part as p are removed from Np.

Let us first focus on the local approximation of the sharp feature. The input for our

feature line approximation are the feature points fi inside the neighborhood Np of

the current point p. The neighborhood sizes we use are quite small. Usually we use a

neighborhood size of k = 20. So the number of feature points, if there are, is usually

small as one can see in Figure 43.

We use the feature points as input for a Bézier curve that approximates the sharp

feature inside the neighborhood. The problem that arises here is the problem of the

sorting of the points fi. Since the data is unsorted we have to order the points for the

curve generation. We decided to use a heuristic approach. We can assume, that the

feature we are approximating is a line like feature, since the neighborhood Np represents

only a small area and thus the feature is locally an almost straight line. Using this

we compute the distances between the feature points. The two points with the largest

distance can be assumed to be the start and end point for the curve that means the

control points b0 and b3 of the curve. One of these points is arbitrary used as the start

point b0. The other points are then ordered according to their distance to the start point.

Now we have to choose the interior points b1 and b2 of the control polygon. If we have
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Figure 45: a) Feature line computation: red points are the feature points fi. A cubic B´ezier curve
F (green) approximates the feature points. The control points b0 and b3 are set to the
extremal feature points. A simple heuristic determines b1, b2. Together they form
the control polygon on F (gray dotted); b) The corresponding situation with a small
number of feature points fi in Np c) Situation with very non uniform sampling of the
point set P

exactly four feature points we can just take these points. If we have more, we divide the

area between the first and end point of the curve into two sectors by the bisector of the

start and end point, and take one arbitrary point from each of those sectors to represent

the interior control points. This process is shown in Figure 45a. With the neighborhood

sizes we use, we usually get four to five feature points in the case of a line though the

neighborhood. There are cases possible, where this way of approximation will fail. For

example, if the dataset consists of points arranged in scanning lines like in Figure 45c

and the sampling density along a single scanning line is much higher than the density

between the scanning lines. In this arrangement of points, the k-neighborhood may

consist only of points form one or two scanning lines, so that the neighborhood itself will

not be a usable template for the surface or feature reconstruction. What remains is the

case of having only a very low number of feature points fi inside the neighborhood for

a feature line approximation. In the case, that the number of feature points is lower than

four, we ignore the feature points and do not approximate the feature since we use a

cubic Bézier curves as approximation and though need at least four points. Also, such a

small number of feature points is just not enough information for a useful interpretation

and is common for situations where the sharp feature is positioned near the border of

the neighborhood, or in a situation of wrong identified single sharp feature points. In

both cases the influence of this neighborhood on the reconstruction of the sharp feature
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is insignificant. Figure 45b represents this situation. If the neighborhood contains enough

feature points, we approximate the feature by a Bézier approximation.

Figure 44 shows the result using data points sampled on a simple cube. The actual

projected point is shown as blue dot. The neighborhood used for the local MLS and

the construction of the feature line is shown in lighter blue, the feature points fi of

the neighborhood in cyan. The constructed feature line, shown in red clearly divides

the neighborhood on a straight line. In the figure the points that are used for the final

MLS projection in this neighborhood are marked in pink. The neglected points of the

neighborhood are shown as white dots. In this simple case with all feature points lying

on a straight line, the approximated feature line exactly matches the original edge.

Figure 46: Feature line in neighborhood near a sharp feature edge in a curvy area of the fandisk

The result of the feature approximation in Figure 44 is made in an optimal scenario.

In the next section we will show and evaluate the sharp feature approximation in the

optimal and two more realistic situations containing curved areas. Examples concerning

noise will be shown in Section 4.4.1.
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Figure 47: Feature line in neighborhood near a curved sharp feature

4.3.4 Feature lines error analysis

To evaluate the quality of our feature approximation we will now give an error analysis

on the constructed feature lines. To measure the quality, we compute the distance of the

reconstruction to the original and known feature lines from the original constructed data

sets. As data set, we use the optimal scenario of the cube, a curved part of the fandisk

model and another curved surface part inside the hole in the cube with hole model. In

Section 4.4.1 we will use a section on the sharp feature of to intersecting curved planes

in a noise free situation and at different levels of noise.

In the next examples, that although the perfect match of the feature line is only the case

in such an optimal scenario, we still produce very good approximations in more common

situations. So, the second example shows the behavior of the feature line generation in

the curved area of the fandisk dataset. Here Figure 46 shows the situation. The feature

line constructed by the method matches the wanted optimal feature line quite good.

The third example in Figure 47 is a neighborhood positioned in the curved area of

the hole in the data set of the cube with hole. Again, the approximated feature line is

of a good quality. The three Figures 44, 46 and 47 show the results of the mentioned

datasets in the noise free situation and one can see that the reconstruction is good
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Cube (edge) Fandisk Cube w hole

Max Error 0.0 0.0740 0.0447

Min error 0.0 0.0 0.0

Average error 0.0 0.0318 0.0206

Table 3: Error analysis of a single feature line. Measure for the error is the distance of the used
feature line to the right feature line

these cases. In Table 3 we summarized the errors of the approximated feature line as

distance to the real known feature line. The average distance of the points in the point

cloud is about 0.125, the maximal error of the feature line in the fandisk example is

about 0.07 for the fandisk and 0.04 for the cube with hole example. Those errors are

on a very low level. The average error with 0.03 is even on a much lower level. This

shows us, that the approximation works well in the noise free environment. For the re-

sults of the feature line generation in noisy data sets see Section 4.4.1 for a closer analysis.

4.3.5 Modification of neighborhood

After having the feature lines constructed and analyzed, we can now return to the

reconstruction of the sharp feature and how we use these feature lines to modify the

neighborhood during the MLS. If a usable feature line lies within a neighborhood, we

have to think of two cases.

The most common case is the occurrence of a sharp feature in form of a curved

line. This means that the local feature line in this neighborhood is a simple curve that

separates the neighborhood exactly into two distinct areas. This matches the situation in

Figure 42a. Let P be the point we want to project onto the surface. As mentioned above,

we use the locally generated feature line to divide the neighborhood along the sharp

edge and use only the points on the same side of the feature line than the current point

P.

Having the feature line constructed like shown in Section , we now have to find and

eliminate the unwanted points inside the neighborhood. These are the points that are

positioned on the other side of the feature line than the currently projected point P. So

we have to cross the feature line if we go from P to the unnecessary point on the surface.
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But since the surface is not constructed yet, we use another criterion for this decision.

We use an angle criterion to decide if another point from the neighborhood Pi is on the

same side of the feature as point P. The principle of this is shown in the next Figure 48.

Figure 48: angle criterion; the angle α shows if P and Pi are on different sides of the feature

We compute the vector vp from the current point P to the nearest point on the feature

line as well as the according vector vi from the other point Pi. After this, we compute

the angle between these vectors.

α = arccos(vp × vi), (4.5)

If α is bigger than a threshold (we use 45°) we decide that it is not on the same side.

This criterion turned out to work well in our situation but there may be situations or data

sets where one has to adapt the threshold for better results. The result of this process

can be seen in Figure 42d. Once the subset of NP containing P has been selected, it

can happen that the cardinal of the neighborhood is reduced significantly. To prevent

problems that may arise through a too small number or neighboring points during the

rest of the projection procedure, we have to replace the points we just removes from Np.

The best replacement for the lost points, especially regarding the reconstruction of the

sharp feature are points that lie on the feature line. So, we check how many additional

points are needed to fill up the neighborhood and than sample them along the local

feature line accordingly. In the end, we receive a modified neighborhood of P, consisting

of the original points on the same side of the sharp feature as P and additional points

on the feature line, that replace the eliminated points (see Figure 42d). This modified

87



neighborhood can now be used in for a standard moving least squares projection of P.

This way the smoothing effect on sharp features, which is a result of the overlapping

of the neighborhoods and the blending of the resulting surface parts can be eliminated.

Also the local approximation itself is closer to the sharp features, due to the elimination

of the ’wrong’ neighboring points and their replacement on the feature line. The whole

principle of the feature handling in the linear situation is shown in Figure 42

4.3.6 Modification of neighborhood in the special case of corner features

Up to now, we have assumed, that only one feature line traverses the local neighborhood

NP of P. But it can happen that several sharp feature lines intersect at a common vertex.

The corner of a cube is a typical example where three sharp features meet. The general

case, where several sharp features meet at a corner is called ’corner-like’ feature. If this

case happens inside the neighborhood we have to change the approach. In fact we can not

represent a corner-like feature, where probably more than two lines meet with a sharp

angle, by a single curve. Using the simple generation of a Bézier approximation as single

feature line inside the neighborhood would lead to a bad and useless approximation of

the feature line. Figure 49 shows this problem for two features in a single neighborhood.

The attempt to generate a single approximation of the features delivers a wrong result.

One way to solve this problem would be to construct several feature lines inside the

neighborhood. Unfortunately the number of detected feature points for the construction

of more than one feature lines inside a single neighborhood is in most cases too small.

And the use of larger neighborhoods however will lead to a worse computation time.

So we decided to reconstruct only the dominating feature line inside the actual neigh-

borhood. This means the nearest feature line to the point P which has to be projected.

This way, the rejected feature lines will not be lost. They will be reconstructed in the

neighborhoods in which they are the dominating feature line. To do so, we first need to

sort the feature points inside the neighborhood according to the feature line they belong

to. For this step, we use a modification of the gaussian clustering algorithm used for the

feature detection in Chapter 3.

The idea is as follows:
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Figure 49: The figure shows the problem of multiple feature lines meeting at a corner. A single
approximation of these feature points can lead to useless results

We compute for every feature point in the dataset the group of other features it is

connected to inside its own neighborhood. We can compute this either on the fly during

the MLS or directly after the feature detection for the complete dataset as preprocessing

for the MLS. We decided to use the second variant, since it has to be computed for every

sharp feature point anyway. We use a modification of the gaussian clustering algorithm

from Chapter 3 to compute a list of the nearest connected features of every feature point

in the data set. Since we do this as preprocessing step, we store the list for each feature

point in a map. So let f1 be the feature for which we want to find the connected feature

points. The algorithm works in three steps. First, we take sets of three points inside the

neighborhood of feature f1: the actual feature point f1, a second feature point f2 and a

non feature point pi, see Figure 50. For each of these sets, we compute the normal of the

resulting triangle. As in Chapter 3 we have to use unoriented normals as we do not know

the orientation of the surface. For an better understanding, we removed the resulting

opposing clusters in Figure 50 and show single clusters. In practice each single cluster

represents two opposing clusters which have to be interpreted as one. We do so for every

combination of the actual feature point f1 with one non feature point and another feature
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Figure 50: Feature clustering. The normals of the triangles of two feature points and one no-
feature point are projected on the gaussian sphere; in the upper case the two feature
points are positioned on the same edge, the clustering produces two clusters; in
the lower case, the feature points are positioned on different edges. The clustering
produces three clusters.

point in the neighborhood of f1. In the second step, we project these normals onto the

gaussian sphere around the actual feature point f1. We apply a clustering analogue to

the sharp feature detection and cluster the points onto the gaussian sphere. But this time

we can use the result of the clustering to decide if the two features are positioned on

the same sharp edge. Step three is the analysis of the clusters to decide if f1 and f2 are

on the same sharp feature. There are different cases. If in the end two clusters remain

on the gaussian sphere, the feature f2 is on the same sharp edge as f1, see Figure 50.

If more clusters exist, like in the second example of Figure 50 they are positioned on

different edges.

This way, we can collect the feature points that belong to the same edge for every

feature point in its own neighborhood and store them in a list for each feature point.
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(a) Starting situation at a corner (b) Clustering of the features (c) The neighborhood of P

(d) The nearest feature and its
connected features are used
to generate the feature line;
points on the ’wrong’ side are
removed

(e) the removed points are re-
placed by points sampled on
the feature line; P is projected
onto the surface

Figure 51: neighborhood modification in corners, (a) situation at a corner; (b) clustering situation
of the feature points; (c) construction of the k-neighborhood; (d) selection of the closest
cluster, generation of the local feature line, deletion of unwanted points (analogue to
linear situation); (e) replacing of the removed points in the neighborhood with points
on feature line, projection of the P onto the surface

Figure 52 shows the result for a feature point near the corner of a cube. The red points in

the figure are the features of the data set. The green dot is the actual feature of interest.

Its neighborhood is presented by the circle. The yellow dots are the result of the gaussian

analysis.
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Figure 52: The result of the gaussian clustering for a feature near the corner of a cube. The green
point is the feature of interest, the yellow points are its identified connected features.

The next step is to use this information and to eliminate feature points from the neigh-

borhood for the feature line generation. Figure 51 shows the whole process. During the

projection step for point P, we select the closest feature point Pf to P like in Figure 51d,

and collect its neighboring features. We now use these feature points for the construction

of the local feature line as in the linear case. The feature points that do not belong to the

same edge are not deleted but treated as usual data points. The generated feature line

is used to divide the neighborhood along the sharp edge and eliminate the points on

the ’wrong’ side of the sharp feature, analogue to the linear case in Section 4.3.5. Again,

we replace the removed data points by new data points sampled along the feature line.

This new generated neighborhood is then used for the MLS projection like the one in

the linear feature case. For the example of the feature line near the corner of a cube see

Figure 53. Here, like in the examples above, the red line shows the feature line, the blue

dot the projected point P and the pink dots, the used neighborhood points.
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Figure 53: Feature line in a the example of the corner of a cube

4.4 results

We implemented the sharp feature surface reconstruction method presented in the

previous sections and tested it with a wide range of datasets. From point clouds, sampled

from known geometries like simple cubes to bilinear surfaces with varying sharp angles,

as well as complex models like the ’fandisk’, the ’trimstar’ or the ’octaflower’. We also

tested the robustness of the method with respect to noise and show some comparisons

to other sharp feature preserving methods. The following Figures show some results of

different data sets. Including a comparison to the smooth reconstruction and the original

data. Figure 54 shows the fandisk. the left side shows a smooth MLS reconstruction,

the middle the result of the feature detection and the right side the result of the sharp

reconstruction.
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Figure 54: Reconstruction of the Fandisk: Left: smooth standard MLS reconstruction. Middle:
feature points detected. Right: sharp reconstruction.

Another examplary reconstruction is shown for the trimstar in Figure 55. As before

the left side shows the smooth reconstruction, the middle the sharp features and the

right side the sharp reconstruction.

Figure 55: Reconstruction of the Trimstar: Left: smooth standard MLS reconstruction. Middle:
feature points detected. Right: sharp reconstruction.

The next figure shows a reconstruction on a noisy real world data set of a scanned

drill. From left to right, Figure ?? shows the original data, the smooth reconstruction, the

sharp feature detection and on the right side the sharp reconstruction.
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Figure 56: Reconstruction of a noisy drill dataset. From left to right, original data, smooth
reconstruction, feature detection, sharp reconstruction

As last example before we go deeper into the analysis of the method let us show some

reconstructions of the octaflower in Figure 57.

Before we take a closer look at the results of the surface reconstruction and the

parameters used, we will check the feature lines and their effect and robustness to noise.

4.4.1 Feature lines: robustness w/r to noise

For this, we will go through some examples that we can use to analyze the behavior of

the feature line in the presence of noise. Like in the previous chapter we add the noise

by moving the points of the dataset arbitrary inside a sphere with a maximal radius of a
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Figure 57: Reconstruction of the octaflower from different angles

given percentage of the size of the data sets bounding box around its original position.

We use three levels of noise in the examples. The levels are low noise with maximal

amplitude of 0.5% of the size of the dataset, medium noise with 1%, and high noise at

2%. As error we measure again the distance of the generated feature line to the correct

feature line used for the construction of the data set like in Section 4.3.4.

Table 4 shows that error for two datasets. First the cube with hole example (see

also Chapter 3, Figure 28) and a neighborhood in the curved area and as second

example a neighborhood along the edge of a data set of two planes meeting in a linear

sharp feature with an varying angle (see also Chapter 3, Figure 27). In Table 4 and

Figure 58 one can see, that the error although rising at higher levels of noise stays at a

reasonable level. Especially in the examples with a low level of noise, the errors stay

comparable to the errors without noise. Figure 58 shows the noisy original data and the

reconstructions planes example with respect to noise. One can clearly see the smoothing

effect inherent to the moving least squares reconstruction especially in the non feature

areas. For the planes example with high noise we added an alternative reconstruction

with increased smoothing parameter of the used MLS weight function and neighborhood

size(h = 0.5,k = 40). The advantages of the smoothing abilities of the MLS are clearly

visible in the figure and will be explained in more detail in Section 4.4.2. The example

with the high noise of 2% of bounding box size gets close the limits, the methods can

handle properly. One can see a beginning loss of the sharp feature reconstruction on

the right side of the data set in the region with the obtuse sharp feature. The acute
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Figure 58: Noise analysis for an example using two planes meeting at varying angle. The left
side shows a triangulation of the original data, the right side the reconstruction. From
top to bottom the noise increases from 0.5% over 1% to 2% on the bottom row.
For the upper three examples, the neighborhood size was k = 20 and the smoothing
parameter h = 0.1. For the high noise example two reconstructions are shown. One
with the usual neighborhood size and MLS smoothness parameter and one with
increased neighborhood size and smoothness parameter of k = 40 and h = 0.5.
As in the former images, the pink dots represent the neighborhood points used for
the MLS. The feature points in the neighborhood are marked with interior dots

part of the feature is still reconstructed quite well. Although, one has to admit, that the

obtuse sharp feature in the high noise data set is already hard to determine at all, in the

noisy data, which can bee seen on the left bottom side of Figure 58. For the alternative

reconstruction of the high noise example we increased the sizes of the neighborhoods
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used for the feature detection and reconstruction from the usual used 20 to 40 neighbors.

The adaption of this parameter in combination with an increased MLS smoothing of

h = 0.5 generates a visible improvement in data sets with high noise, As the smoothness

parameter generates a of course a smoothes surface, the increased neighborhood also

improved the feature lines as Figure 58 shows. But this comes at the costs of higher

computation times.

4.4.1.1 Discussion on an alternative to local feature lines

During the development process, we also thought about the use of a global feature

line for the neighborhood modification. A global feature line would give additional

information about the surrounding area of the neighborhood, but also has several

shortcomings. First, the computation of a global feature line is much more complicated

than a fast local approximation. Second, one could not use a single feature line, but a

set of feature lines what makes the intersection process with the neighborhood more

complex. And third, we are already using a method based on local approximations in

the rest of the method. After all, the additional information, a global feature line would

offer, does not lead to improvements worth the additional costs. The use of a global

feature line would lead to equivalent results, but regarding computational expenses and

the fact that MLS itself is based on local approximations it seems more appropriate to us

to use local feature approximations instead. Since it does not have huge advantages over

the local feature approximations, in the way we would use it, by larger computations

costs and being more complicated, we decided to stay at local feature approximations

for our method.

4.4.2 Choice of Parameters for the MLS

Our method offers us two parameters: The size of the neighborhood and the smoothness

factor of the MLS. This section gives a short overview of the choices of the MLS parame-

ters we have during the surface reconstruction and the influence of the parameters.

Size of neighborhood:

The first parameter we have is the size of the neighborhood. This parameter needs a trade

off between the amount of information and computing complexity since it has a mayor

influence on the computation time. The larger the size of the neighborhoods, the larger

is the number of points we have for the approximation of the surface and the features.
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no noise low noise 0.5% med noise 1% high noise 2% high noise 2%

smoothness h 0.1 0.1 0.1 0.1 0.5

|Np| 20 20 20 20 40

cube w. hole

max Error 0.0447 0.0457 0.0880 0.0785

min error 0.0 0.0052 0.0154 0.0352

average error 0.0206 0.0185 0.0363 0.0591

planes

max Error 0.0620 0.0667 0.0712 0.1042 0.0821

min error 0.0 0.0049 0.0141 0.0442 0.0252

average error 0.0310 0.0474 0.0644 0.0752 0.0657

Table 4: Error analysis of a single feature line along the hole in the cube with hole dataset with
respect to noise on the top and for the two planes dataset on the bottom. Measure for the
error is the distance of the used feature line to the known feature line of the constructed
original data. For the planes example two measurements with increased parameters are
shown.

In our case especially regarding the sharp features we need at least four feature points

inside a neighborhood for the feature line generation. So we have to choose the size

accordingly. In the case of well and almost equally distributed samples in the data set,

the k-neighborhood will be formed like a square of
√
k ·
√
k points. If we assume the

usual case of a line going straight through the neighborhood we need k > 16 to have at

least four feature points. For most examples k = 20 was a good setting. In the unusual

case of bad point distributions where for example the points of a k-neighborhood form

itself a elliptical or almost line like structure this may lead to problems. But in those

situation every reconstruction method based on k-neighborhood gets problems.

Smoothness parameter of MLS:

The other parameter we can influence is the smoothness parameter h of the MLS-weighting

function (4.3). It influences the approximating behavior of the MLS surface. If h gets

closer to 0, the MLS surface gets closer to an interpolating behavior. Thus it makes sense

to increase h especially in the presence of noise. In noise free datasets h has only a minor
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(a) Reconstruction with no noise

(b) Reconstruction with 0.5% noise

(c) Reconstruction with 1% noise

Figure 59: Reconstruction of the cube with hole data set with changing smoothness factor at
different levels of noise ((a): no noise; (b): 0.5% noise; (c): 1% noise; smoothing factor
h from left to right: Original data, h = 0.1, h = 0.5, h = 0.9

influence. In the noise free examples we use h = 0.1, in the dataset with noise will show,

that increasing h can significantly improve the visual quality of the surface. Figure 59

illustrates, how h influences the reconstruction. In the middle image with h = 0.1 the

MLS-reconstruction is close to an interpolation of the original data which is not the best

choice in this noisy case. In the right image with h = 0.5 one can clearly see the increased

smoothing effect. However, the sharp edges in the data set remain well reconstructed.
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4.4.3 Error analysis

As measurement of the quality of the reconstruction, we used the distance between

each point Pmls, projected onto the surface during the MLS and its nearest data point

Pnearest ∈ {P0, ...,Pn} in the original point cloud. In Figure 60 one can see the results of

two constructed datasets, we used for this issue. One dataset is once more the cube with

a hole. This dataset is used since it contains curved, as well as flat areas and of course

sharp edges. The other dataset is a set of two bilinear surfaces meeting at a straight

feature line. The angle of this sharp feature varies from acute (45°) on the left side to

obtuse (140°) on the right in combination with curved surfaces. This way, this dataset

covers a wide range of possible real world situations. In the Figure 60 one can see that

the reconstruction matches the original data very well. Table 5 shows the error of the

reconstruction. The maximum error is only slightly above the average distance between

the original data points. The reason for this is that MLS does not project points exactly

onto the original data points. A large value of multiple times the distance between the

data points would indicate that points were projected far away from the original surface.

The very small average errors are also a strong indication that the reconstruction is quite

exact.

vertices max. error avg. error

cube w hole 60539 0.17 0.018

planes 22442 0.203 0.008

fandisk 39569 0.204 0.003

Table 5: Error analysis of the reconstruction. Measure for the error is the distance of the recon-
struction to the original data

4.4.4 Surface reconstruction: robustness w/r to noise

We use the next tests to evaluate the behavior of the method with respect to noise, which

is often a problem in real life. The test examples we used are:

1.) The cube-with-hole, since it has corners, convex and concave feature points;

2.) The surfaces with the varying angles having curved surfaces and acute and obtuse
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Figure 60: Original data vs. reconstructed surfaces. The left side shows the original data, The
right side the reconstructions.

angles at the sharp edge.

The noise is obtained by adding a random vector to each point. This random vector is

chosen in a sphere whose radius is a given percentage of the diameter of the dataset’s

bounding box. The results can be seen in Figure 61 and 62.

In Figure 61 we compared the reconstruction on the right side with the original noisy

dataset (0.5% noise in the top image, 1% noise in the lower image). The left side shows

the results of the feature detection which is the input of our method. The middle shows a

triangulation of the original data and the right side shows the result of our reconstruction

method. One can see a smoothing effect through the reconstruction that reduces the

102



noise significantly, while still preserving the sharp edges in the data set.

Figure 61: The left side shows result of the feature detection; the middle image the triangulation
of the original noisy dataset; the right image the reconstruction of the noisy data of
the cube with hole data set. The level of noise is 0.5% in the top and 1% in the bottom

Figure 62 shows the reaction to noise on the surfaces with a varying sharp feature.

Also here, the left side shows the original noisy data and the right side the reconstructed

surface. We used three stages of noise from 0.5% in the top, 1% in the middle and 2%

on the bottom. One can see that the reconstruction is always smoother than the original

surface while still preserving the sharp feature area. Even in the 2% noise example the

edge is still clearly visible. But one can also see that the method reaches its limit in this

case. In the region where the sharp edge meets in an obtuse angle the feature detection

in no longer successful. Thus the reconstruction of the sharp edge in this region also fails.

Taking a closer look at the original data one can see that the level of noise is too high to

determine that there is a sharp feature at all even if one tries to search for sharp features

manually. Table 6 shows the maximum and average errors. Again the distances of the

reconstruction to the original data are used as error, similar to Table 5. Of course, in the

noisy case, both the maximum and average error are worse than in the case without

noise. But they are still on a quite low level. One reason for this is the smoothing effect

of the MLS projection. It reduces the noise especially in the areas without sharp features
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but it also increases the distance to the original noisy data points we used as error. So of

course the errors of the noisy reconstruction are worse than in the noise free case, the

reconstruction is still quite good.

Figure 62: The left column shows the result of the feature detection, the middle column triangu-
lation of the original noisy dataset, the right column the reconstruction of the noisy
data

4.4.5 Comparison to known methods

We also compared our method to other reconstruction methods. For the example shown

in Figure 63, 64 and Figure 65 we used the implementations of RIMLS [37] and APSS
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vertices max. error avg. error

cube w hole 1% noise 60539 0.43 0.0307

planes 0.5% noise 22442 0.205 0.0088

planes 1% noise 22442 0.22 0.0168

planes 2% noise 22442 0.23 0.0307

Table 6: Error analysis of the reconstruction with noise. Measure for the error is the distance of
the reconstruction to the original data. The datasets used are the cube wit hole and the
planes that where perturbed with noise.

Figure 63: Comparison of different sharp feature reconstructions. the left side shows RIMLS;
the middle shows APSS; the right side shows our method. (Implementation from
MeshLab used for RIMLS and APSS)

[20] from the free software MeshLab 1. One can see that our method works quite

well in comparison to RIMLS. For RIMLS, we used the parameter settings that were

recommended by the authors for a sharp feature reconstruction. Taking a closer look at

the resulting images, one can see some differences in the sharp feature reconstructions.

Our method reconstructed the sharp edges as real discontinuous sharp edge, while

RIMLS shows a tendency to smooth these features a little. This is intended by the authors

of RIMLS and can be seen especially in regions with obtuse sharp features as in Figure

65 on the right side of the dataset. In this case RIMLS smoothes the feature, while our

method manages to keep them sharp. An even better example can be seen in the close up

on Figure 64. Here the RIMLS constructs a smooth connection between the two surfaces.

Our method constructs a sharp intersection in the same situation. The implementation

1 MeshLab; Visual Computing Lab - ISTI - CNR; http://meshlab.sourceforge.net
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of APSS used in MeshLab unfortunately lacks the ability to reconstruct sharp features.

But it can be used as an example to show the difference between a standard smooth

MLS reconstruction method and reconstructions with sharp feature preservation. The

figures clearly show the differences and advantages of preserving a sharp feature in

these datasets. The implemented version of APSS smoothed the corners of the cube

noticeable, while our method reconstructed clear and sharp edges.

Figure 64: Comparison of the sharp feature reconstruction; the left side shows RIMLS, the right
side our method.
Taken a closer look, one can see the still existing smoothing effect of RIMLS which is a
side effect of its C2-continuous reconstruction.

Another sharp feature reconstruction by Fleischmann et al. [16] was not tested with an

implemented version. His outlier search and iterative surface growing is quite expensive,

since one has to compute multiple local approximations of the surface. But it also leads

to good results. Overall our method is a bit less expensive since most of the work,

feature detection and feature clustering for the local feature lines can be done before the

projection step, while the outlier search and the iterative growing of the surface parts

should slow down the process.
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Figure 65: Comparison of reconstructions to the original data. the left picture shows the original
data, the middle shows RIMLS, the right side shows our method.

4.4.6 Nonuniform sampling

Another prominent problem for reconstruction methods are changes in the density of

the point cloud data. Nonuniform sampling in general is also not a very big problem

of the method as our test shows. Using a nonuniform sampling of the cube with hole

example, the reconstruction had no further problems in a wide range of varying density.

In the example in Figure 66 we changed the density of the sampling of the dataset from

low on the one side to high on the other side. As one can clearly see in the Figure 66 the

quality of the result is still very good. Problems occur, when the nonuniform sampling

leads to regions in the dataset where the point density gets too low to identify a sharp

feature. In this case the sharp feature won’t be reconstructed and smoothed during the

surface reconstruction.

The only form of non uniform sampling that will result in a fail of the reconstruction

is the case of very high sampling in one axis in combination with very low sampling

along another axis. In the extreme form of this scenario, the k-neighborhoods we use for

the feature detection and reconstruction won’t be sphere-like but very long stretched

ellipsoids or even line-like. In these cases the surface reconstruction as well as the

feature detection will fail. An example of this situation was shown in Figure 45c. Most

reconstruction methods based on local surface approximations have problems in these

cases.
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Figure 66: Reconstruction of nonuniform sampled data. the white dots are the original nonuni-
form distributed data points.

4.5 conclusion

This chapter has shown a modified version of the moving least squares approach using

a neighborhood modification to reconstruct a surface with sharp features. The method

produces good results that are comparable or in many cases better than existing methods.

The results are quite robust with respect to noise and nonuniform sampling. A possible

way to solve those extreme cases of nonuniform sampling might be the use another type

of neighborhood, since the properties of the k-neighborhood are the most important

reason for a failure of the reconstruction. There is also remaining potential in the lo-

cal feature line approximation method left, like the use of another approximation scheme.
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B L E N D I N G M L S - S U R FA C E S W I T H N U R B S





5
B L E N D I N G M L S - S U R FA C E S W I T H N U R B S

5.1 abstract

In this chapter we are going to present an approach to combine the usage of NURBS-

surfaces, e.g. from a CAD-application with a point based approach, e.g. from scanning

data. We will blend these two surfaces in a smooth manner and in the end generate

a single surface that combines the source surfaces. To achieve this we will sample the

NURBS-surface in a first step to generate a second point cloud which we can combine

to generate a single point cloud. The area where the two surfaces intersect and have

to be blended will be constructed separately. The final surface is then computed as

the MLS-reconstruction of the combined point clouds and the blending area. The main

challenge lies in finding and generating the area where the two surfaces are blended.

The idea of the blending process is shown in Figure 67.

Figure 67: the blending process: the two surfaces on the left are combined, blended smoothly
and form a new surface
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5.2 problem description

This chapter shows, how to combine a point based reconstruction of a surface via MLS

with other surface types like NURBS surfaces. NURBS surfaces are usually used in CAD,

while the point based reconstruction may come from a scanning device. A combination

of those two data sources can be useful in a reverse engineering process. The combination

of these two unrelated approaches, one being point based, the other being function

based is not trivial. To combine two approaches, one has to find a global basis that

allows us to transform and combine the data from both worlds. We decided to stay in

the point based world, which means, we don’t have to convert both datasets but only

the NURBS-Dataset into a point based. This can be done by a sampling of the NURBS

surface. Another problem is how to blend the two surfaces with each other. We solved

this by the construction of a ’collar’-like blending area that will connect the two surfaces

in a smooth manner. The width and height of the constructed ’collar’ can be controlled

using two parameters.

5.3 some related works

Often the blending between two surfaces in CAD is performed by filleting. In filleting

one defines an intermediate surface, the so called fillet, to blend two surfaces into one

smooth surface. So far our approach is quite similar. Usually filleting techniques are used

to combine algebraic surfaces of the same type during the design and development of a

product, e.g. blending of two B-Spline surfaces or two NURBS surfaces. Filleting between

different types of surfaces like point based MLS surfaces and NURBS surfaces is not very

common. One can classify the filleting methods in two groups, depending on their result.

The first group results in three surfaces defined in three independent parameter domains,

the fillet and the two original surfaces. The disadvantage of these methods is, that they

often do not remove the parts of the original surfaces that are covered by the fillet. Also

the definition as three independent surfaces with three independent parameter domains

can make further designing work on the surfaces difficult. Often these techniques are

referred to as visual trimming since the two original surfaces are not removed, but only

visually covered by the inserted fillet. An examples for such methods can be found in

[19].

The second group constructs a single surface as result that covers the two original

surfaces and the fillet. So, the result is defined over a single parameter domain. This
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makes those methods much more useful for designing purposes, but is also much

more complicated. The two original surfaces have to be trimmed not only visually but

also geometrically, making those methods referred to as geometrical trimming. After the

trimming of the original surfaces, the fillet has to defined and inserted into the gap to

connect the two surfaces. In a last step, the common parameter domain for the complete

surface has to be defined.

Our approach works over all quite similar to the geometrical trimming. We also remove

the overlapping parts of the surfaces, construct a gap and than close this gap with a

constructed ’collar’ blending the two surfaces. However, the main difference of our

approach is that we can use it not only for the blending of to similar surface definitions,

but also for the blending of two completely unrelated surface representations. The point

based MLS-surfaces on the one hand side and the algebraic NURBS surfaces on the other

hand.

Figure 68: Blending of surfaces in the CAD software ’Maya’. Two NURBS surfaces are positioned
to meet each other, then a collar like surface for the blending is added; pictures taken
from www.maya-doc.com

Till now in actual CAD software the problem for NURBS/NURBS intersection and

blending is solved using the before mentioned filleting methods. In a first step, the

two surfaces are positioned in a way that they meet each other. In a second step a new

NURBS surface is constructed, that form a collar around the wanted blending area with

tangential continuity. For the CAD software ’Maya’ 1 this process is shown in Figure 68.

In the recent time, not much has been done in the area of combining and blending

of surfaces based on different surface definitions, like NURBS surfaces blended with a

1 Autodesk: Maya; www.autodesk.com
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point based surface representations. Yang et al. [48] intersect NURBS surfaces and MLS

surfaces. But in contrast to us, they work on a triangle based representation of the MLS

surface. We wanted to stay at a point based level.

5.4 blending nurbs with mls-surfaces

5.4.1 Short description and notations

During the blending process we will use several surfaces, point sets and subsets of those

point sets. So let us first introduce some notations. As input we have two surfaces. One,

is given by an unsorted point set P = {pi} , pi ∈ R3 of NMLS points representing scanned

data of a surface. The second is a NURBS-Surface SNURBS, defined in the parameter

domain Ω.

x(u, v) : Ω ⊂ R2 7→ R3,Ω = {(u, v) ∈ [a,b]× [c,d]} (5.1)

Later we will sample the surface SNURBS to receive a point set S = {xi} , xi ∈ R3, xi ∈
SNURBS, of NNURBS points.

During the blending process we construct a third point set that is responsible for the

blending between S and P. We call this point set, the area for the blending or the ’collar’

C = {ci} , ci ∈ R3.

We will also use some auxiliary point sets that represent the borders of the two point

sets of P and S in the intersection area. We will call these border points αi for the border

points of the NURBS point set S and βi for the point set P. The αi are collected in

A = {αi} ⊂ S, the βi in B = {βi} ⊂ P. In the end C will connect A and B and so close

the gap between S and P.

Another important item is the definition of ’inside’ and ’outside’ of our surface. We will

define the side of a surface as ’outside’, where the blending is performed, also see Figure

70. Since we cannot make assumptions on the surface represented by point cloud P and

how the user wants to blend the point set with the NURBS surface, the user has to define

this. How this is done will be shown later in Section 5.4.2.1.

In the end we, construct a global point set

G = P \ {X} ∪ S \ {Y} ∪ C (5.2)

that will be the basis for the reconstruction of a global surface via MLS. Where X and

Y represent those points that have be removed from P respectively S due to overlapping
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of the datasets and to generate the gap for the construction of the collar used for the

blending.

Two parameters control the properties of the constructed ’collar’ for the blending. The

height of the blending area is controlled by t ∈ R, and the width by w ∈ R. Height and

width are analogue to the height and width of the collar shown in Figure 68 for the

blending of two NURBS surfaces.

To blend the MLS surface with the NURBS surface we first have to decide, if the

resulting surface will be a NURBS or a MLS surface. We decided to construct a MLS

surface as global result. We had several reasons to do so. First, it is not a trivial task to

reconstruct a NURBS surface from simple point set data. And second, and for us most

important reason, the MLS reconstruction has some properties that are quite useful for

the blending. Especially the property, that the resulting surface is smooth and continuous

automatically.

So in the first step, we have to convert the NURBS surface into a representation that

can be used as input for a MLS reconstruction. Since our MLS reconstruction from the

previous chapter is based on point clouds as input we will sample the NURBS surface

and construct a new point cloud that represents the blended surface of the point set P

and the NURBS surface SNURBS. This global point cloud can than be used as input for a

MLS surface reconstruction of the complete input data. We want the blending area to

be smooth and have to take special care about this. Although the properties of the MLS

will result in a smooth surface even if the two point clouds are just combined without

additional actions, an additional construction of the blending area will be more flexible

to designing purposes and visual more appealing, since we can offer parameters that

control the width and height of the ’collar’ being constructed, and so the visual nature

of the blended area. Another problem that occurs during a reconstruction with a simple

combination of the surfaces is, that points which are enclosed by the other surface in

both point sets, can disturb the reconstruction if they are not removed. In our approach

we will remove those points during the blending process.

5.4.2 Blending

Starting with a point cloud P and a NURBS surface SNURBS we have to find the area

where the two surfaces intersect. There we generate an offset and create a gap between

the two surfaces, that will be closed by the construction of a ’collar’ C that blends the
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two surfaces. The algorithm decomposes into five steps.

1. Sampling of the NURBS surface (Section 5.4.2.1)

2. Generation of an offset on the NURBS side (Section 5.4.2.2)

3. Generation of an offset in the point cloud P (Section 5.4.2.3)

4. Construction of the ’collar’ C that blends the two other point sets (Section 5.4.2.4)

5. The MLS-reconstruction of the global point set G = S∪ P ∪C (Section 5.4.2.5).

5.4.2.1 Sampling the NURBS

Before we can sample the NURBS surface, we have to decide on which side of the

intersection the blending should be performed. This must be done by the user and can

not be decided automatically. Think of a simple plane blended with a tube like in Figure

70. It is not clear if the plane should be blended with the part of the tube above or below

the plane. Both way leads to possible and correct results but are perhaps not what the

user intended. So, we let the user decide the starting point for the blending. For this, the

user marks a border of the NURBS surface SNURBS. This marks the part of the surface

being blended with the MLS-surface and so we will sample SNURBS from there to the

intersection with the point cloud P. This side of the plane, respectively the point cloud P

is now defined as ’outside’. Starting from this border, the surface will be sampled along

the parameter curves, until it intersects with the point cloud P. After defining this side

as ’outside’ for the blending surface, the surface parts of the NURBS on the other side of

the plane will be interpreted as ’inside’ the surface and cut off

Without loss of generality, let us assume that the parameter domain Ω is the unit square

and (u, v) ∈ Ω = [0, 1]× [0, 1]. Here the user selects a bounding curve for the NURBS

surface, thus corresponding to the parameters being 0 or 1 at the start of the sampling,

e.g. u = 0. The surface will now be sampled along the parameter curves starting at

(0, v) to (1, v), see Figure 70. The sampling starts at the selected region (blue) along the

parameter lines until it has offset t to the plane intersection. This results in the red curve

as border for the NURBS surface. The dashed parts of the NURBS surface in Figure 70

are cut off.

The figure also shows the offsets that will be used later in Section 5.4.2.3 to generate the

’collar’ for the blending.

Another important characteristic during the sampling is the choice of the density of

the resulting point set. A large difference in the point density of the two point sets that

we want to combine will lead to problems during later reconstruction steps. We decided
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(a) The two surfaces before the
blending process

(b) The point sets P and S (c) Overlapping parts removed
for S, offset for S generated

(d) Offset generated in P, data in P
enclosed by S removed

(e) point sets P and Swith offset and
the borderlines on the NURBS
side (red) and the point set side
(green)

(f) The combined point set with the
constructed blending area, used
as input for the surface recon-
struction

(g) Rendering of the blended final
surface

Figure 69: Blending process
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Figure 70: Example for the sampling of the NURBS surface SNURBS. Starting at the selected
region (blue) in the parameter domain the NURBS surface is sampled along the
parameter lines until it has a distance of t to P, one exemplary parameter line is shown
in cyan. The sampling along a parameter line stops if the distance to P is smaller than
the parameter t. αi is marked as border point on the NURBS side and stored. The
dashed lines represent the parts of the NURBS surface that are ’inside’ P after the
blending and thus will be cut off. The figure also shows the offset generated in P in
Section 5.4.2.3 and an associated border point βi.

to use the average distance between points in point set P as density for the new sampled

point set. Another value, for example the maximum distance, would be more sensitive

to outliers in P.

Let us define the average distance between points in the point set as follows

davg =

NMLS∑
i=1

dist(pi,pnearest)

NMLS
(5.3)

with NMLS is the number of points in point cloud P and

dist(pi,pnearest) = ‖pi − pnearest‖ (5.4)
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is the euclidean distance of the point pi and its nearest neighbor pnearest in P.

In the kd-tree we use as data structure for our point set, the nearest neighbor can be

found in O (logNMLS).

We sample SNURBS regularly with a point distance of davg along the parameter curves.

We do this since the later MLS reconstruction delivers its best results on regular point

clouds.

5.4.2.2 Offset computation on the NURBS side

During the sampling we also have to find an intersection curve between the point sets

P and S. But we do not use the intersection curve directly for the construction of the

blending area. We use a parameter t to construct an offset to the intersection curve. This

way we can generate a gap between the point sets which we can use for the blending.

We also have to remove the overlapping areas of the two point sets. For S this is done

automatically during the sampling, since we stop sampling at the intersection with P.

For the points in P that are enclosed by the intersection curve we have do apply some

more work. But this will be shown in Section 5.4.2.3.

For the further explanation let us use the example of blending a cylindrical surface with

the point cloud of a cube model, see Figure 69. We achieve the identification of the

intersection area on the fly during the sampling of the NURBS surface to compute S.

During this we will also remove the parts of the NURBS surface that get cut off by the

original point cloud P. In Equation 5.2 those points belong to Y. To do so, we check the

minimal distance between the new sampled point and P during the sampling process. If

this distance is smaller than a given threshold, we mark this point as border point αi and

stop the sampling along the actual parameter curve. This threshold is used as parameter

t that controls the height of the ’collar’ and thus generates the offset mentioned earlier.

All points αi are of a distance dist(αi,P) > t to the point cloud P. This generates a gap

between the point sets S and P. The distance to the point cloud can be computed in

O (logNMLS), since the point cloud is stored in a kd-tree. By stopping the sampling

along the parameter curve, we also cut off those parts of the NURBS surface that would

lie inside the surface of point set P. As shown in Figure 70 by inside the surface, we

mean those parts of the NURBS surface that lie on the other side of point cloud P than

the starting area selected by the user.

Special cases can arise. For example in case of a u-shaped tube blended with a surface.

The actual algorithm cuts off all parts of the tube after the first intersection with the

surface. So, if some parts of the NURBS intersect the point cloud a second time and thus
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leave the surface, those parts would be cut off too. A solution to this problem is to allow

the user to mark several regions as starting points of the sampling process. This will

result in two independent sampling and blending processes for two separate parts of the

NURBS surface.

By sampling the NURBS-surface this way, we construct a point cloud, that represents

the original NURBS-surface while cutting off the overlapping parts with the original

point set P. This part is shown as dashed line in Figure 70. Figures 69b and 69c show the

situation before (Figure 69b) and after (Figure 69c) the removal and the offset generation.

The result in Figure 69c, is a point set S that has a minimal distance of t to the point set

P. The gap generated by this offset will be used in Section 5.4.2.4 for the generation of a

’collar’ like surface for the blending.

During the sampling, we also receive a set of border points A = {αi} close to the original

point cloud. Those will become important in the next steps. For smoother results in

the later steps, a set of border points with a higher density will be useful. So, we now

sample some more border points between the existing ones if necessary until we have

reached a wanted density of border points. Since the border points are defined on the

NURBS surface we can compute these points via interpolation in the parameter domain.

The density of the sampling has a large influence on the reconstructed result. For ex-

ample Emmanuel Candès presented some work about the necessary sampling rate for

an exact signal reconstruction in [7], and [8]. Although we do not need a perfect signal

reconstruction, since we want to generate a smooth blending in this area, the same

density as the rest of the point set will not be good enough for a good result in most

cases. So, we doubled the density of the border points in A in respect to the rest of the

point sets P and S to receive better results. Another reason to increase the point density

in the border of the NURBS surface is that this part of the later constructed point set

C, representing a ’collar’ that blend the other two point sets, can be exactly computed

due to its NURBS origin. The other border on the side of the given point set P, that we

construct in the next section, has worse properties. This is also the reason, why we will

later (Section 5.4.2.4) start the construction of the ’collar’ on the NURBS side of the data

and not in point set P.

5.4.2.3 Offset computation in the MLS point cloud

Until now, we prepared only the NURBS surface for the blending. Next we have to

modify the other surface represented by point set P. We have a set of points A that
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represents the border of S, see the red points in Figure 72. In the next step, we have to

identify the green points in this figure. To construct a point set that blends P and S,we

also need the border for point set P, the mentioned green points in Figure 72. So, we

have to find a set of border points B = {βi} in P as counterpart to the set of NURBS

border points A. One way to do this is to compute the nearest neighbors for the αi ∈ A
in P. During the computation of A we used the parameter t as offset to generate a gap

between the point sets. We do the same here but for more flexibility we use second

parameter for this side of the gap. This way we can control the height and width of the

’collar’ C used for the blending independently. So, to generate this offset, we can not just

use those points in P with the nearest distance to the NURBS border points αi. We have

to identify and remove those points in P, which are enclosed by S or closer to S than the

width parameter. In equation 5.2 X represents those points.

Figure 71 shows how we do this. We define spheres around each NURBS border point αi
and eliminate those points in P that are enclosed within these spheres (Figure 71 left side).

The size of the spheres is the parameter that controls the offset for the collar construction

on the side of P and can be interpreted as the ’width’ of the ’collar’, blending the two

surfaces. Thus, we called this parameter the ’width’ w. Next, we have to eliminate points

from the P that are enclosed by the collar curve in P. To eliminate those points, in our

example the points of P inside the tube, we move spheres from one border point to each

other and delete the points that get enclosed by these spheres. On the left side in Figure

71, spheres around the NURBS borderline (red points) are constructed. The points inside

these spheres are marked (cyan points) and deleted. Now the nearest neighbors of the

αi in point set P are identified and used as borderline (green points). The right side of

Figure 71 shows how we delete the interior points. This time, the sphere around one

of the NURBS borderline points (red) is moved through the data of P towards all the

other NURBS borderline points. To move the sphere through the data, we start with a

sphere with the origin at one αi. We compute the line αiαj, i 6= j and compute multiple

spheres along this line until we reach αj. The points in the MLS point cloud that get

enclosed by those spheres are marked and removed. We have to do this ‖B‖− 1 times

with one fix but arbitrary αi and the ‖B‖− 1 αj, j 6= i.

Now, after the construction of a hole in the point set P we can collect the border points

in P. As initial set of border points in P, we take the nearest neighbor of each αi in P.

B = {βi|βi ∈ P, βi is nearest neighbor of αi} , αi ∈ A ⊂ S (5.5)
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Figure 71: The principle of the borderline construction in the MLS point cloud. The left side
shows the construction of the borderline, the right side shows the deletion of interior
points; On the left, spheres around the border points (red, αi) on the sampled NURBS
point set S are constructed and the enclosed points (cyan) in P are removed. After this,
the points enclosed by the αi are removed by moving spheres to the other αj ∈ A and
removing of enclosed points. The border points (green, βi) in P are than found via
nearest neighbor search.

Depending on the properties and quality of P, the initial set for B has to be expanded,

since it may contain gaps and holes. We also did this on the NURBS side by sampling

the NURBS collar with double density, but this time we cannot sample the additional

border points for B from an existing surface. To increase the density in the Border line

of P, we insert points between the initial points in B via linear interpolation. Here we

have to rely on the quality or the collar points αi in A. We can do this because they are

based directly on the NURBS surface and are thus precise and can be sampled as dense

as necessary.

After these steps, we have two unconnected point sets S \ {Y} and P \ {X}, each with a

set of border points A and B. Between the point set, the offset has generated a gap (see

Figure 72 and 69e). The next step is to connect the two point clouds by the construction

of a ’collar’ surface or blending surface that fills up the gap between the border points

in A and B.
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Figure 72: Pictures showing the border lines of the MLS (green) and the NURBS-surface (red)
and the resulting gap between the two surfaces that will be used for the blending. the
left side shows a simple example, the right side a more complex where the blending
area covers a an edged and curved surface

5.4.2.4 Construction of the ’collar’-like blending area

For the construction of the ’collar’ we have to connect the two sets of points representing

the borders of the two point clouds, A and B. While the border set A of the NURBS part

is a point set lying on a smooth and well defined curve, the border set B of point set

P have worse properties and may contain some holes or gaps making the appearance

of this side of the collar a little bumpy. In Figure 72 one can see the quality difference

between the well defined border points in A (red) and the border points in B (green) in

the examples. How we address this problem will be shown later.

To close the gap between A and B we must compute points inside this gap. We start on

the side of A, since those points are exact samples from a smooth surface. For every point

αi in A, we compute the k-nearest neighbors in the border set B of point cloud P, see

Figure 73. Here, k can be chosen very small, a large k will lead to a large oversampling

in this area. We chose k = 3. The nearest neighbors can be computed in O (NB logNB).

Since NB << NMLS is very small in comparison to the whole dataset P this computation

is quite fast. Now we interpolate linearly between αi and its k nearest neighbors in B

to insert points in between that will form the ’collar’. Figure 73 shows this step. The

number of points computed between A and B is related to the size of the gap, and
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Figure 73: Principle of the collar construction; for each α : i, k = 3 neighbors in B are determined
and additional points are interpolated in between.

should be significant higher than the density in the two point clouds. If we do so for

every αi of the NURBS border, we receive a relative large number of points in the gap

area. Those points are collected in a new point set C that will later form the ’collar’ for

the blending.

The distribution of the points in C is not very well at the moment. Due to the linear

interpolation the points on the ’collar’ form line like structures connecting the sets

of border points A and B like in Figure 75 on the left side or in Figure 73. A surface

reconstruction of these points will result in a surface which forms stripes and ripples.

Even a smoothing MLS-reconstruction will not eliminate these artifacts completely but

will only reduce the intensity of these ripples. The final surface will look like in Figure

74.

To eliminate these artifacts, we first oversample the region and then start a thinning

process to reduce the density of the point set to a reasonable level. The goal is to

construct a point set with smoothly distributed points that can be used as a good basis

for a smooth reconstruction. In a first version we only increased the number of points

used to generate the ’collar’ to reduce the problem. However this improved the situation,

but could not eliminate the artifact complete. Although, the large number of points

inside the ’collar’ and the resulting higher point density in this area also produce some

new problems during the MLS reconstruction. One of these problems is, that MLS uses

k-neighborhoods during the reconstruction. So, the neighborhood sizes in number of

points is fixed during the MLS, but the real physical size of the neighborhoods and
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Figure 74: The ripples and artifacts after reconstruction

thus the influence of a single neighborhood on the local MLS approximation would be

smaller in the area of the ’collar’ than in the rest of the point cloud. This leads to a worse

behavior especially in the area where the high density ’collar’ and the normal density

point clouds connect each other. Achieving a smooth and good looking surface in these

regions gets more complicated.

Another problem is that the large number of points also increase the computational

costs without increasing the surface quality significantly. Increasing k to use larger

neighborhoods during the reconstruction in the collar area would reduce and eliminate

most of the quality issues but only at higher additional computational costs. So we

decided to think of another way to solve the ’collar’ problem.

For this we considered what kind of point distribution and preconditions are optimal

for a point set to generate a smooth MLS surface. The result is a point set, where the

points are almost equally distributed over the whole point set. In those cases even a

relative small number of samples can generate a good surface. So, for a high quality,

easy to implement and fast constructed blending surface we need the collar to be almost

uniformly sampled with the density of points being almost similar to the other two point

sets P and S. Now we have two possibilities to achieve this.

The first possibility will be the construction of an equally sampled collar between the

border curves of the two surfaces. The second is a thinning of an oversampled point
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set until the wanted density is reached. Starting only with the point coordinates in A

and B, we decided to use the second possibility and thin out the dense sampled point

set constructed like the ’collar’ mentioned above that is forming the ripples. We even

increased the number of samples inside the collar generating a large oversampling of the

’collar’. The next goals is to remove the unnecessary points from C. First, this reduced

the number of points and thus the computation times, and second, we can achieve a

more suitable distribution of the points in C. In the end we want a point density in C

that is similar to the two other point clouds P and S and almost uniform.

Subsequently we have to start a thinning process. Thinning is a common technique in

computer graphics and often applied to generate coarser meshes for example for level

of detail representations. Some techniques are shown for example by Dyn in [13]. A

mesh free thinning technique is presented by Dyn in [14]. But most of those common

techniques try to keep the error to the original data as low as possible. To achieve this,

those methods remove always those points from the dataset that have a minimal effect

on the original surface. This is not what we want to achieve and has some disadvantages

to what we will do. First the thinning needs an initial reconstruction that is used as basis

to determine the point that has to be removed in the next step. This point is the point

that produces the minimal error in the surface. This means in our case, that the ripples

as ’properties of the original data’ will not be eliminated as we wanted since the error

becomes bigger by the elimination respectively smoothing of the ripples. So, we use a

technique that does not take care of errors in respect to the original data, which would

be the distance of the new surface to the original oversampled surface. We do not want

the final surface to be as close to the original surface as possible and keep the features of

the surface. In fact, we want to increase the error to the original surface and smooth the

features. We only care about the distribution of the resulting points in the collar.

Starting with one random collar point ci ∈ C we remove the other collar points in a

sphere around it. To achieve a distribution of points similar to the other point clouds,

the radius of the sphere must be adapted accordingly. We already know the radius of

this sphere from the average point distance in point set P. It is the same distance we

already used during the sampling of the NURBS surface in Section 5.4.2.1.

This way, we iterate through the list of the ’collar’ points and remove points nearer than

this given distance from C. By removing the points directly from the set of ’collar’ points,

we can not only make sure that those points no longer disturb the surface reconstruction

but also speed up this step, since the number of elements in C gets significantly smaller
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Figure 75: The oversampled ’collar’ and the final ’collar’ points after the thinning process

during each step. After this, we have a nice and relative uniform distribution of points

in the collar leading to a better, smoother result of the MLS reconstruction.

This step also smoothed some of the errors generated by the properties of the border line

of P. The Figure 75 shows the points of the ’collar’ before (left side) and after (right side)

the thinning process. The stripe like point distribution that forms the ripples during the

reconstruction could be eliminated completely using this thinning process.

The result of the MLS-reconstruction after the thinning process can be seen in Figure

76. In comparison to the first results from Figure 74 one can clearly see the improvements

and the elimination of the ripples in the ’collar’.

5.4.2.5 Generation of the surface via MLS

The last step of the blending process is the reconstruction of the global surface G. To

reconstruct this final surface, the point set P, the NURBS point set S and the blending

point set C are combined and a standard MLS reconstruction can be applied on the

combined point set. Although we used only linear interpolation to close the gap between

P and S, the blending area of the global surface will be smooth due to the properties

of the MLS reconstruction. Of course, for a reconstruction without smoothing of sharp

features in P and S we can use our method from Chapter 4. More details on sharp

features will be discussed in Section 5.4.3.
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Figure 76: The result of the method: a smooth blending area without ripples

5.4.2.6 Optimization in ’close curves’

We also added some optimization if some special case appear in the data sets, that

may impair the result. Problems can arise, if the surface of P and the NURBS surface S

intersect in an acute angle. In this case the region used for the blending has to form a

close curve. So the gap might be too small and the result might not look very smooth

after applying a triangulation. So in this case, we use a closer sampling of points for the

reconstruction resulting in smaller triangles in the triangulation. In addition we increase

the parameters t and w that determine the height and width of the blending region. This

leaves us more space to construct a smoother blending. These actions combined result in

a smooth surface even in those special cases. Figure 77 shows the positive effects of this

optimization step. Another example for the blending in a more complicated close corner

can be seen in Figure 79 in a fandisk example the smooth blending in the quite sharp

corner is marked in red.

5.4.3 Combination with sharp features

As mentioned above, the blending procedure can be easily combined with the sharp

feature reconstruction from Chapter 4. In case of a sharp feature reconstruction we

decided, that the blending region C is always reconstructed in a smooth manner i.e. not

as sharp feature. There is no difference in the result, if the order of blending and feature
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Figure 77: Optimization in close curves: The left picture shows the normal approach in a close
corner; the right picture shows the same data after the optimization

detection is changed. Even if the feature detection is applied before the blending and if in

a possible case of a bad dataset some points in the blending region are marked as features

we gave the blending a higher importance than the feature reconstruction. So a sharp

feature point that is also marked as ’blending point’ in C is ignored during sharp feature

reconstruction. This was an efficient way to avoid unwanted sharp reconstructions in the

blending region. The way we finally took was:

First we do the blending step, i.e. the combination with the NURBS-surface and the

construction of the ’collar’ as mentioned above in this chapter. After this we apply the

sharp feature detection from Chapter 3 on the combined blended point cloud. And at

last we perform the sharp feature MLS reconstruction shown in Chapter 4.

5.5 results

Let us now take a look at the results of the blending procedure. As Examples we use

a tube defined as NURBS surface blended with some of the known datasets from the

previous chapters.

5.5.1 Examples

One example is the simple point cloud of the cube. Figure 78 shows the reconstruction

with a smooth blending zone keeping the sharp edges and corners of the original data
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Figure 78: The examples fandisk and box blended with a tube

set. Another example is the fandisk as a more complicated real world example of a

constructed and than scanned surface. The intersection area we choose in this example

is much more complicated and the blending area covers not only a flat area like in the

cube example, but goes around sharp corners and into a smooth area at a relative close

curve. Figure 78 shows the example of the fandisk blended with a tube on the left side

and a simple cube blended with a tube on the right side.

The next figures 79 and 80 show close-ups of the fandisk example from different angles to

show the details of the blending area in the complex intersection area. One can see quite

well the properties of the reconstruction. The red marked areas mark the intersecting

parts of the blending zone of the tube and the fandisk. Especially in the smaller red area

in Figure 79 one can see the smooth blending performed even in close corners following

the optimization in Section 5.4.2.6. The area marked with cyan shows the conservation of

the sharp features and the area of the changeover into a smooth feature. Figure 80 shows

the more complex side of the blending area from a different angle. The tube intersects

the fandisk not only from the top, but also from the front making the smooth blending

more challenging than in the easy case of the cube and the tube. Here the blending has

to covers a sharp edge as well as the smooth and curved part of the fandisk.
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Figure 79: Close-up of the fandisk example. The red areas show the properties of the blending
area between fandisk and tube. The area marked in cyan shows the transition of sharp
and smooth feature during feature detection and reconstruction

5.5.2 Varying the ’collar’

There are several ways to modify the size and the look of the generated collar. Two

parameters t and w control the collar generation. The first is the distance during the

search for the cut of the NURBS-surface and the point cloud. This defines the ’height’ t

of the collar. The other parameter is the offset for the deletion of points in the point cloud

which is equivalent to the diameter of the spheres used in this step. This parameter

controls the offset for the blending area in the point set P on the MLS side. One may

call it the ’width’ w of the collar. In the following figures 81, to 87 different settings for

these values are used to show some of the possible results. One can vary from small

and low ’collar’ (Figure 81) to a wide and high ’collar’ (Figure 87). One can see, that
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Figure 80: Another close-up of the fandisk example showing the complicated blending area over
an sharp edge into a smooth curved wall.

the possibilities have a wide range for a large freedom in the design the user wants to

achieve.

Figure 81: showing different settings for the construction of the ’collar’. Varying the size of the
spheres for the border generation
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Figure 82: showing different settings for the construction of the ’collar’. Varying the size of the
spheres for the border generation

Figure 83: Different settings for the construction of the ’collar’. Varying the size of the spheres
for the border generation

Figure 84: Different settings for the construction of the ’collar’. Varying the size of the spheres
for the border generation
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Figure 85: Different settings for the construction of the ’collar’. Varying the size of the spheres
for the border generation

Figure 86: Different settings for the construction of the ’collar’. Varying the size of the spheres
for the border generation

Figure 87: Different settings for the construction of the ’collar’. Varying the size of the spheres
for the border generation
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5.5.3 Noise

As in the previous chapters we tested the algorithm with respect to noise. Since NURBS-

Surfaces as a constructed surface does not contain noisy data, we applied the noise only

to the point cloud that represents the scanned surface. As noise we once more move the

data points randomly inside a sphere of a given size e.g. 1% of the size of the bounding

box. The noisy point cloud is then used as input for the algorithm and blended with the

NURBS-surface.

Figure 88: Results with noisy data, the upper row shows the result of two levels of low noise and
medium noise; the lower row shows high and very high noise

As expected the behavior of the algorithm regarding noise is similar to Chapter 4.

The results of the examples can be seen in the following pictures. On the upper row

in Figure 88 one can see the result for a low level of noise at 0.1% and 0.5% of the

radius of the bounding sphere of the dataset. At this level of noise, the result is still of

a good quality and even comparable to the result without noise. The lower row shows

the result a medium level of noise, 1.0% and high level of 2.0%. The quality starts to

decrease, but the smoothing effect of MLS can still eliminate some of the noise effects at
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the medium level. Especially the blending area is nearly of the same quality than before.

The reconstruction of the sharp edges is still recognizable but not as good as before. At

least a high level of noise of 2.0% shows that the limits of the method are, as expected,

the same as for the sharp feature reconstruction. This level of noise can not longer be

compensated by the reconstruction and the MLS very well. But the blending itself stays

stable and produces a reasonable blending area. Although, at high level of noise the

quality of the ’collar’ also gets reduced significantly. The main problem for this loss of

quality is the rising noise in the border points on the MLS side, making this side of the

constructed ’collar’ extremely bumpy. Additional smoothing of the border points would

compensate this effect to a certain degree but not solve this problem completely.

5.6 conclusion

In this chapter we have shown a new method to combine the point based MLS with

function-based NURBS-surfaces. We can blend these two unrelated surface types in

a smooth manner providing good control over the behavior and look of the blending

area. In the future one might improve and extend the method more for example by

adding other various surface types to this blending method. There are also some more

improvements conceivable for example to increase the quality with respect to noise even

more by adding some smoothing techniques to the blending area at high levels of noise.
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