Increasing the Concurrency in Estelle

J. Bredereke® and R. Gotzhein®
#University of Hamburg, Vogt-Kolln-Str. 30, D-22527 Hamburg, Germany

bUniversity of Kaiserslautern, Postfach 3049, D-67653 Kaiserslautern, Germany

Abstract

In general, the potential parallelism expressed in a specification should be as high
as possible in order to allow for most efficient implementations. We argue that there
are currently important limitations of expressing concurrency in Estelle. Therefore, we
propose a minor, fully compatible extension of Estelle, which allows a significantly higher
degree of concurrency. The syntactical extension consists of additional module attributes,
which allow to specify that child modules of active modules may behave asynchronously.
We study the semantical implications of this extension, and present the required changes
to the Estelle semantics.

Keyword Codes: C.2.2; D.2.1; D.3.3
Keywords: Network Protocols; Requirements/Specifications; Language Constructs and
Features

1. INTRODUCTION

The software development process is usually modeled as a sequence of activities lead-
ing from the problem to a software solution. In the area of communication protocols
and distributed systems, it is important to consider concurrency (or parallelism) issues
throughout these activities. Here, concurrency is a phenomenon that arises naturally.
Also, concurrency is of interest for the software development in general, since it can lead
to more efficient solutions. In the following, we distinguish the following types of concur-
rency:

e By explicit concurrency, we refer to apparent parallelism. Such parallelism exists, for
instance, in systems with interacting components that may be executed in parallel.
Explicit concurrency can typically be found in constructive descriptions.

e By implicit concurrency, we refer to potential for parallelism that is not immediately
apparent, but has to be discovered. This is typically the case in non-constructive de-
scriptions. But implicit concurrency can also be found in constructive descriptions,
and can occur together with explicit concurrency.

Further types of concurrency can be distinguished along the stages of the software devel-
opment process:

e Problem-inherent concurrency denotes the potential parallelism of the problem.

e Specified concurrency denotes the potential parallelism resulting from the design
phase.

e Implemented concurrency denotes the actual parallelism realized in the final
product.

In each of these stages, we can distinguish between explicit and implicit concurrency.
Problem-inherent explicit concurrency, for instance, exists in distributed applications. A
communication service is an example of problem-inherent implicit concurrency. Specified
explicit concurrency is given by the description of a set of protocol entities. Specified im-
plicit concurrency results, for instance, from input/output assertions allowing for parallel
implementations. Implemented explicit concurrency results from the parallel implemen-
tation of a set of protocol entities. An example of implemented implicit concurrency is a
sequential program for which parallel code executed on a specialized hardware is generated
(pipelining). Thus, the above classifications of concurrency are orthogonal.

Problem-inherent concurrency refers to the maximal parallelism of a problem. This
parallelism can be exploited to obtain an efficient solution and/or may be reduced in later
development stages. For instance, it may be reduced by executing several system com-
ponents on a single processor. Once it is reduced in an intermediate stage, the resulting
specified concurrency becomes the upper bound of parallelism for the following stages in-
cluding the implementation. Thus, design decisions such as a specific system architecture
or even the choice of a particular specification language crucially influence the potential
for an efficient implementation. As mentioned before, we distinguish between explicit and
implicit concurrency in each design stage. By exploiting implicit concurrency, the explicit
concurrency of subsequent design stages may be increased. This means that implicit
concurrency is partially made explicit; however, the total concurrency is not increased.

In this paper, we consider and increase the potential of Estelle to express specified
explicit concurrency in communication protocols and distributed systems. In Section 2,
we describe the current means of Estelle to express this type of concurrency, and we point
out why these means are not sufficient for more complex protocols. In Section 3, we
propose a minor, fully compatible extension of Estelle which increases significantly the
expressible specified explicit concurrency. Also, we list the required changes to the formal
syntax and semantics of Estelle, and we address some implementation issues.

2. CONCURRENCY IN ESTELLE

2.1. A sketch of the Estelle semantics

Estelle ([ISO89]) is an FDT designed for the specification of distributed, concurrent
information processing systems, in particular communication services and protocols of
the OSI Basic Reference Model ([ISO81]). Since 1989, it possesses the status of an inter-
national standard. Introductions to Estelle can be found in [Di*89] and [Tur92].

An Estelle specification describes a system consisting of a number of subsystems. A
subsystem is (like the entire system) hierarchically structured, it consists of a module
instance attributed with SYSTEMPROCESS or SYSTEMACTIVITY. In the following, we will

also refer to such module instances by “system module instance”. The attribute rules de-
termine that the descendants of a system module cannot be system modules themselves.
According to the definition of “subsystem”, a subsystem cannot contain further subsys-
tems. This has an important effect on the explicit concurrency expressible in Estelle, as
we will see.

For the following considerations, two properties of subsystems are relevant. Firstly,
the Estelle execution model does not define any synchronization constraints nor prior-
ity regulations between module instances of different subsystems. This means that the
subsystems can proceed at different speeds, unless the specification itself provides for
synchronization by message exchange between different subsystems. The second property
follows indirectly from the attribute rules. Because the ancestors of a system module
instance are passive (i.e, they only have an INITIALIZE-transition), the set of subsystems
and the connections between them cannot be modified after the initialization phase. This
means that the coarse structure of an Estelle system is static.

Inside a subsystem, fixed priority regulations and additional synchronization constraints
that can be specified by module attributes are in effect. These measures enforce that the
firing of transitions in a subsystem occurs in “rounds” (or “computation steps”, [DeBu89)).
In each round, executable transitions are selected and fired according to certain rules. One
such rule is that each module instance has priority over all its descendants, independent
of its attribute. This means that if in a given round, a module instance has an executable
transition, then all its descendants must not fire any transitions in this round. Whether
this module instance may fire its transition, depends on further constraints.

The attribute of a module instance determines how the right to fire a transition is passed
to child module instances (direct descendants), if it cannot execute a transition of its own.
A process module instance (carrying the attribute PROCESS or SYSTEMPROCESS) passes the
right to fire a transition to all its child module instances. The child module instances may
then fire a transition or pass the right further down the hierarchy. It follows that this
type of attribute enables explicit concurrency. The rules for activity module instances
(carrying the attribute ACTIVITY or SYSTEMACTIVITY) are such that no concurrency is
possible (apart from implicit concurrency, see Section 1).

From the priority rules and synchronisation constraints, it follows that each module
instance of a subsystem can fire at most one transition in a single round. To fire further
transitions, it has to wait until the next round. This means that although the child module
instances of a process module instance may fire their transitions concurrently, they cannot
run at different speeds, as it can, for instance, be the case between subsystems. This
strongly limits the usefulness of a subsystem consisting of several module instances for
expressing explicit concurrency, and thus for parallel implementations.

There are two important reasons for these very restrictive regulations inside a subsys-
tem. Firstly, a module instance may have exported variables, which can be accessed by
itself and by its parent module instance (immediate ancestor). The priority rule ensures
that transitions of these module instances will never be executed concurrently, which
means that the parent module instance can check the value of an exported variable of a
child module instance (using a PROVIDED-clause) to determine an executable transition
and be sure that the child module instance has not modified that value until the transition
is fired. The second reason concerns the dynamic modification of communication links

" "

A ! A !
" "

ittt | " ittt | "
1 |I II 1 |I |I
B S B SYSTEMPROCESS T
. :: i ::

" "

| |

T T I T T I
C 0o C SYSTEMPROCESS 0o
h ! h !

|I | |I |

D 0o D PROCESS 0o
L L

’ " ’ "

_____________ ’ " o _______ ’ "
———————————— - ’ :I el ’ :I

| |I | | |I |

E i n i E PROCESS | by il
i o i o

~ Bl I-l I~ Bl I-l

Figure 1. An abstract protocol architecture Figure 2. Module A specified as inactive

and the release of module instances, which is possible inside a subsystem.

2.2. Limitations of expressing concurrency in Estelle

Consider an abstract protocol architecture as in Figure 1. It shows an arbitrary, but
fixed number of protocol components of type A. Each protocol component of type A
contains a variable number of protocol components of types B and C. We suppose that
the number of these components may change dynamically. Furthermore, each protocol
component of type C contains one protocol component of type D and a variable number
of protocol components of type E. Such an abstract protocol architecture and its side
conditions are in every respect realistic, they may be found, e.g., in the ISO protocol for
distributed transaction processing ([ISO92], see Figure 3). For demonstration purposes,
we will use the simpler Figure 1, but everything said may be related directly to Figure 3
by setting A = open system, B = TPSU, C = TPPM, D = MACF, E = SAOQ.

The hierarchical protocol architecture of Figure 1 can be expressed directly by a hier-
archy of Estelle module instances. But we still have to investigate whether the mentioned
side conditions can be met by an appropriate module attributing, and to what degree this
constrains the expressible explicit concurrency. One possibility is to specify the proto-
col components of type A as inactive, not attributed Estelle module instances. In every
A-module, (active) B- and C-modules could be declared, and then the necessary num-
ber of module instances could be created. To achieve the maximal explicit concurrency
expressible within Estelle, these modules could be attributed SYSTEMPROCESS (see Fig-
ure 2). The disadvantage of this solution is that the resulting Estelle architecture would
be static, while the protocol architecture demands the dynamic creation and release of B-
and C-module instances.

L e - — I
. '.
open system | |
"
|
application process E ! |
| |
—— e
N . : | : | : :
application entity :: :: ¥
[ool
ey ¥ oo
' SIS
" e : I
0o
__________________________________ | : ! : ! : !
| | | |
TPPM | cPu i
0 e !
MACF ! CPM-MACF [

| |
! g
| ! ! |

|

SAO (I SAO i TN
b "y " hy | |
Ht TPASE|| ! |
sack o= | [SACF | L
TPASE| ! |11 CCRSE| | L

| | |
CCRSE|!! || ACSE || L
| | - | | !
AcsE |1l I L
a : : | : | : | :
LF I
I L
et [N
_'- : I : I
SENTH

Figure 3. Conceptual structure of ISO-TP

An alternative would be to attribute the A-module by SYSTEMPROCESS (see Figure 4).
Then, the A-module instances could perform the necessary changes of the Estelle architec-
ture. But this has as a consequence that all B- and C-module instances of an A-module
instance would be part of the same subsystem. They would have to synchronize after
every firing of a transition, even if this would not be necessary with respect to the needs

’ "

A SYSTEMPROCESS ! A ASYNCHRONOUS SYSTEMPROCESS| '
’ "
e el et tT R I ekt I
B PROCESS TRl B PROCESS S
. i: - i:

| |

| |

S I T T I
C PROCESS 0o C ASYNCHRONQUS PROCESS || |!1
Iy ! Iy !

II | II |

D PROCESS SRS D PROCESS v

| |

0o 0o

i it

EEEEEEEEELE o T o T
E PROCESS i N E PROCESS i I
I— (! ’ - ‘! "

~ Bl I.l I~ Bl I.l

Figure 4. Module A specified as system module Figure 5. Solution by extending Estelle

of the protocol. So, this solution would have in general' the disadvantageous consequence
of reducing the problem-inherent explicit concurrency in the specification drastically.

Similar considerations can be made for the mapping of the architecture of the C-com-
ponent into Estelle. Both discussed alternatives would amount in the D- and E-module
instances not to be attributable as system modules, therefore an asynchronous execution
being impossible. Even if the first alternative is taken, at this point a considerable re-
duction of the problem-inherent explicit concurrency would be inevitable, and with it an
irrevocable loss of efficiency for the implementation.

3. A FULLY COMPATIBLE ESTELLE EXTENSION FOR
INCREASED CONCURRENCY

The difficulties in preserving the problem-inherent explicit concurrency during the spec-
ification phase, as discussed in Section 2.2, are of general nature and limit the usability
of Estelle as a specification language for distributed systems. Concurrency lost in the
specification phase cannot be simply reintroduced in the implementation phase, since this
would violate the semantics of Estelle. Also, it is not obvious from the specification text
which constraints are not required by the application and could actually be dropped. As
a consequence, there is the risk of violating the semantics of the application, losing the
benefits of the formal approach. It follows that the search for relief should focus on the
specification language itself.

To increase the concurrency in Estelle, we propose to

1 An exact statement can be made only with respect to a specific protocol. E.g., in an individual case the
synchronization of the above attributing could meet the needs of the protocol.

extend the attributing of an arbitrary module instance by an option to specify
asynchronously parallel child module instances

even if this parent module instance is active and/or dynamically created. These child
module instances will not be part of the transition rounds (see Section 2.1) of their par-
ent. Semantically, the proposed extension leads to an increased set of possible execution
paths, because asynchronously parallel child module instances may run at different speeds.
Concerning the example of Section 2.2, the solution to the discussed problem which be-
comes feasible this way is shown in Figure 5. The details of how such an extension may
be put into work will be discussed in the remainder of this section.

3.1. Technical considerations

Access conflicts

In Section 2.1, we said that the rule of priority of a parent module instance over its
children has been introduced in order to avoid a number of possible access conflicts.
Nevertheless, after reading up to this point, you may suspect that other access conflicts
between module instances can still happen, e.g., if one system module instance reads an
interaction queue and another one writes to it “at the same time”.

With all these kinds of access conflicts, we have to distinguish between two aspects:
how they are resolved in the semantics definition, and how a (parallel, concurrent) im-
plementation can be found that implements this resolution efficiently. Up to now, all
access conflicts are resolved in the semantics definition by two basic concepts: atomicity
of transition firing and interleaving. The concept of atomicity demands that the (visible)
effect of a transition can be observed by other parts of the system either completely or
not at all. Transitions fire in an instant. But this alone is not sufficient. To resolve the
situation when transitions fire “in the same moment”, the concept of interleaving defines
the possible combined effects of those transitions by the set of all arbitrary sequential
orderings of the transition effects.

The concepts of atomicity and interleaving not only resolve all access conflicts in the
existing semantics definition of Estelle, they are so powerful that they will also resolve all
conflicts introduced by a total asynchrony between a parent and its children. A problem
will remain only when an exported variable of a child may change its value after the
parent has read it in a PROVIDED-clause (cf. Section 2.1).

The aspect of an efficient distributed implementation of the semantics is more diffi-
cult. If we drop the parent-child priority for total asynchrony, some additional measures
have to be taken in an implementation (e.g., additional synchronization messages), which
synchronize those components that otherwise might get into a conflict.

Let us suppose we already have got the means to obtain a distributed implementation re-
specting the existing Estelle semantics (e.g., Estelle compilers such as [SiSt90], [KrGo93)]).
Then, besides simply allowing the new child module instances to run asynchronously, an
extended version needs to resolve possible conflicts in

e transmitting interactions between parent and child,
e modifying the communication structure,

e creating or releasing a module instance, and

e accessing exported variables.

Transmitting interactions (and, e.g., preserving atomicity) in a distributed implemen-
tation renders no new synchronization problem. It has to be solved anyway for the
communication between (the implementations of) system module instances. If the im-
plementation of the communication structure is modified, we have to take care that no
collision occurs with the transmission of an interaction. This serialization problem is
similar to the problem of concurrently writing and reading an interaction queue. There-
fore, the same solutions may be applied. The creation of an asynchronous child module
instance renders no problem anyway. The release could necessitate a slightly more com-
plex protocol between the implementations of parent and child to assure the atomicity
of the RELEASE-statement, when it is mapped onto message passing, see [BrGo93] for
more details. But since usually both creation and release of module instances are rather
rare events, this does not affect the overall efficiency significantly. Exported variables
represent the hardest problem. If the distributed implementations of parent and child
can communicate only by messages, the necessary synchronization will lead to ineffiency,
especially if exported variables are used extensively. In summary, it turns out that an
efficient implementation is still possible, except in the case of exported variables.

Therefore, in our extension of Estelle we disallow the declaration of exported variables
for the new asynchronous child module instances.? (Of course, this does not apply to the
old “PROCESS” or “ACTIVITY” child module instances.) By this, we also circumnavigate
the only remaining problem in the semantics definition we discussed above.

Firing of transitions
There is a further consequence if we drop the parent-child priority. Up to now, it
guarantees two properties:

(a) After all conditions on a transition have been checked and after it has successfully
been selected for firing, it may do so without any further conditions.

(b) After a transition has been selected for firing, its module instance cannot be released
(or modified in another way) by its parent until the transition has been fired. (This
assures the implementation of a child module instance to be in a “clean” state when
released. It cannot already have started the computation of the next state.)

The second property is invalidated by dropping the parent-child priority. It could be
reestablished by imposing conditions on the execution of a RELEASE-statement. But this
would invalidate property (a), which is a very basic property of the Estelle semantics. The
semantics divides the entire transition processing into two phases. In the first phase, all
firing conditions are checked, and in the second phase the effects of firing are determined.
Property (b) only relates to implementations. But there are no fundamental problems in
implementing the extension since the implementation of a transition must take care of its
atomicity anyway.
So, we decide to preserve the first property and drop the second.

Atomicity of the output-operation
The output-statement allows a module instance to transmit an interaction, entering it
via an interaction point of its own and sending it to another module instance. Consider-

2This is no substantial loss, since one can use interactions (i.e., message passing) instead.

ing the formal definition of the transmission procedure in [ISO89], and the requirement
that the transmission shall happen atomically, we encounter the need for a technical
adjustment.

In an Estelle specification, the effects of a transition are expressed in a sequential
manner, like in Pascal. For ease in the formal definition of these effects, [[SO89] therefore
uses sub-states which are not visible to the outside world?, thus preserving the atomicity
of transitions. (Also, this kind of definition facilitates sequential implementations.) In the
formal semantics definition, interactions sent via “internal interaction points”, i.e, those
sent inside the same subtree of module instances, are transmitted instantaneously in terms
of the sub-states. Those sent via “external interaction points”, i.e., maybe to modules
progressing concurrently, are first collected. Only at the end of the transition firing, they
are flushed to the concurrent “outside world”. This is necessary since the destination is
determined based on non-local information, which must be accessed atomically only.

Since we drop the parent-child priority principle for asynchronous child module in-
stances, sending to certain internal interaction points now means sending to concurrent
module instances, which cannot be regarded as being “local”. Therefore, the “collecting
of interactions” should also take place for these certain internal interaction points. In
Section 3.4, we will present the details.

3.2. Extended syntax
The definition of Estelle in [ISO89] allows five possible attributings of (parent) modules:
e PROCESS
SYSTEMPROCESS
ACTIVITY
SYSTEMACTIVITY
— without attribute —

We add one keyword and thereby two more possibilities:
e ASYNCHRONQUS PROCESS
e ASYNCHRONQUS SYSTEMPROCESS
Formally, the definition of the non-terminal class must be modified to admit the addi-
tional module attributes. (All changes to [ISO89] are typeset in italic.)

class = [“asynchronous”] “systemprocess” | “systemactivity”
| [“asynchronous”] “process” | “activity”

Furthermore, a trivial modification to the key-words production must be made to add
the new key word, “asynchronous’; we do not record the modified production here.

3.3. Additional constraints

The optional exported-variable-declaration shall not be used in a module-
header-definition closest-contained in a module-body-definition of which
the associated module-header-definition used the keyword asynchronous.

The optional keywords asynchronous systemprocess and asynchronous
process may be used exactly where otherunse the keywords systemprocess

3These sub-states are hidden by existential quantification, see [ISO89, clause 9.5.1].

and process would be admissible, respectively. Likewise, all restrictions im-
plied by the use of the keywords systemprocess and process are also im-
plied by the use of the keywords asynchronous systemprocess and asyn-
chronous process, respectively.

The second paragraph refers to the usual constraints on the use of attributes in Estelle.
(“No subsystem inside of another subsystem”, ...)

In the context of this text insertion, a little more trivial editing is required to add
references to “asynchronous (system)processes’, where only “(system)processes”
are mentioned. Due to space limitations, we leave this editing out here. For more details,
e.g., the exact placement of the added text in the surrounding text, refer to [BrGo93].

3.4. Extended semantics

The proposed extension is not merely a syntactical hint how to generate efficient imple-
mentations. As stated in the beginning of Section 3, inserting one of the new attributes
into an old specification may lead semantically to an increased set of possible execution
paths.

On the other hand, while extending the semantics we took great care to preserve com-
patibility with regard to existing specifications. Their semantics is touched in no way. In
Section 2.1, we already mentioned the execution model of Estelle, i.e., the rules deter-
mining the firing of transitions. We stressed the difference between asynchronous system
module instances on the one hand and their descendants on the other hand, which have
to follow the “rounds” of their respective system module instance. This distinction is
reflected in the structure of the formal definition of the Estelle semantics in [ISO89], too.

There, a set of asynchronous system module instances Sy, ... , S, is defined. This set
is static. And for every (system) module instance P, a global instantaneous description
gidp is defined, which contains, amongst other things, the description of all child module
instances (recursively defining a tree of descendants). Since it is possible in Estelle to
create additional child module instances or to release existing ones, this set of child module
instances is dynamic.

In the heart of the extension, we decouple the transition selection of the (dynamically
created) asynchronous module instances from their parents and add them in this respect
to the set of system module instances Sy, ... , S,. The decoupling is done in a way such
that the rules describing the firing of transitions can be left untouched, e.g., a firing round
remains exactly the same. The asynchrony of the new kind of child module instances is
described by the same means as for the system module instances. In detail, we propose
the following modifications of [ISO89].

In [ISO89, clause 5.3.3], the definition of AS(gidp) is given, i.e., of the set of transi-
tions selected for execution in a certain gidp. We add one more subitem to exclude any
transitions of asynchronous child module instances from this set:

(b)(4) If tp = null and P is an asynchronous process (or asynchronous system-
process), then AS(gidp) is empty.

The case “tp # null” is already handled by subitem (b)(1), which covers parent priority.
Both cases together state that a parent of asynchronous children behaves like a leaf in-

stance. In the surrounding “Remark”s and “NOTE”s, some obvious escorting adjustments
are required, for details see [BrGo93].

In [ISO89, clause 5.3.4], the progress of an entire system is described, i.e., of a set
of system module instances. For a specification module instance SP, the set of system
module instances Sy, ..., S, is defined, where n is static during the lifetime of the system
because of the static structure of the system module instances. We extend this list by
the dynamically created, asynchronous child module instances. The length of the list
becomes dynamic, but otherwise the text of [[SO89] can remain nearly unchanged. (This
is achieved by denoting the entire list by S;, ..., S, from now on and by denoting the
static first part of the list by Sy, ..., Sp.) For example the rule determining the next
global situation remains unchanged.

Only in a few places, a reference to the static set of system module instances must be
substituted for the reference to Sy, ..., S,. In detail, starting from [ISO89, clause 5.3.4,
second paragraph| the text shall be:

Denote these system modules Sy, ..., S,;,, where m > 1, and m may vary
depending on the initial gid of SP.

A module may be specified to run in an asynchronous parallel fashion by at-
tributing its parent asynchronous process or asynchronous systempro-
cess. Denote the module instances created according to these module defi-
nitions by Sy11, ..., Sp, where n > m, and n may vary depending on the
dynamic structure of module instances.

Notice that, for every gidsp, its part rooted at S; i=1, ..., m, ... , n)is a

By a global situation of SP, we mean a tuple: (gidsp; Ay, ..., Am, .. , 4yp),
where each A; is a set of transitions of the component instances of the system
rooted at S;.

A global situation of SP is said to be initial if and only if

gidgp is initial, and
Ai=0fori=1,..., m

In Section 3.1, we discussed two properties that could not be preserved both under our
extension. Accordingly, we perform the following change one paragraph after the last
quote:

The following property is assumed below:

if two transitions t; and t; are selected by S; and S;, respectively, and both
are defined as partial functions for gidsp, then t; is also defined for any
t;(gidsp) and similarly, t; is defined for any ti(gidsp), except if t; releases
Si or t; releases Sj, respectively.

NOTE — For a given gidp, there are only three ways the execution of a transition t; may
make another transition t; undefined: [...] In each of these cases, t; must be a transi-
tion of the parent instance of the module instance P; in gidgp. This is not possible by

the parent/children priority principle of the definition of AS(gidgp) from 5.3.3, except for
asynchronous children.

Later in Section 3.1, we stated that the “collecting” of sent interactions during tran-
sition firing must be applied also to those internal interaction points which transmit to
asynchronous descendant module instances. Therefore, we extend the formal definition
of the output-statement in [ISO89, clause 9.6.6.5] by inserting a test on this condition:

[outpl[lt p].m(El, ., En)lp(s) =
else (i.e,, ip € IIPp)
if asyn-linked(ip, gidps) then
s.out := append (<ip, m, valp(E;)(s), ..., valp(E,)(s)>, s.out)
else
if linked(ip, gidpg) [.. -]

The new predicate “asyn-linked” shall be defined similar to the predicate “linked” in
[ISO89, clause 9.5.3], except that it shall yield true only for internal interaction points
linked to an asynchronous descendant module instance:

asyn-linked(ip, gidps) iff
there exist a sequence ipy, ..., ip; (j > 1) of interaction points and
a module instance P’ such that:
(a) <ip, ipp> € Conn(gidp),
(b) <ip;i_;, ip;i> € Att(gidp), fori =1, ..., 7,
(¢c) ipj—s € IPp:, and
(d) the module definition of P’ is attributed as asynchronous.

3.5. Model

[ISO89, clause 5] describes the general model on which Estelle is based. Here, references
to the additional attributes and to the extended expressive power have to be merged into
the text in some places. Since this merely ends up in trivial editing, we just refer to the
annex of [BrGo93].

3.6. Implementation issues

Prototype compilers

The hitherto existing synchronous parallelism is a special case of the new asynchronous
parallelism. In the set of possible firing sequences, the Estelle execution model does
not preclude any permutation of the transitions of asynchronous child module instances.
(Only constraints specified explicitely may do so.) For synchronous child module in-
stances, only a subset of these permutations is admissible.

An implementation is correct (with respect to “safety”), if, in every execution run, it se-
lects one of the admissible firing sequences. Therefore, any implementation of the hitherto
existing synchronous parallelism also is a correct (with respect to “safety”) implementa-
tion of the asynchronous parallelism! Or, to put it more practically: if we just comment
out the key words ASYNCHRONQUS in a specification text and feed the result into an existing

B SYSTEMPROCESS C SYSTEMPROCESS

®

D PRCCESS G PROCESS H PROCESS

E PROCESS F PROCESS

Figure 6. Example of a communication link in Estelle

Estelle compiler, we obtain a correct (with respect to “safety”) implementation. But of
course, this implementation will probably be quite inefficient.

Up to this point, we used a rather restricted notion of correctness. Essentially, safety
requirements (“nothing wrong may happen”) on their own can be met by just doing
nothing at all. Therefore, one may also put up liveness requirements, i.e., that certain
things must happen under certain conditions. Possibly, such requirements would not be
met anymore by an implementation reduced in the described way.

But the formal definition of Estelle in [ISO89] does not prescribe any liveness require-
ments. Therefore, many “prototype” tools for our extension are available already, namely,
all existing tools for the semantics of [ISO89]. (For generating distributed implementa-
tions, e.g., [SiSt90] and [KrGo93]). Of course, the efficiency advantages of our proposed
extension are achieved only if real asynchronous parallelism is added to the existing com-
pilers.

Implementation optimization

Figure 6 presents a typical communication link between two module instances. Ac-
cording to the Estelle semantics, all interactions must pass through the interaction points
of the module instances which established the link. In a hierarchically structured spec-
ification, the interactions may thus pass far up the hierarchy just to be handed down
again afterwards. As a consequence, the topmost module instance(s) may easily become
a communication bottleneck in a distributed implementation.

Therefore, both the Pet/Dingo toolset for distributed implementations of Estelle speci-
fications ([SiSt90]) and the UHH compiler ([KrGo93]) perform an optimization: Since the
communication structure between system module instances is entirely static, the imple-
mentations of the system module instances are notified of their respective communication
peers once at startup time, enabling them afterwards to address their peers directly. Note

that, for non-system module instances, direct communication would not result in better
performance since synchronization messages have to be passed up and down the hierarchy
anyway to implement the transition rounds, as explained in Section 2.1.

The described optimization is desirable for the new asynchronous child module in-
stances, too. Otherwise, our gain in efficiency is lost again by the need to synchronize
child and parent for just passing through interactions. Of course, this optimization is a
little more difficult, for the communication structure now may change dynamically.

So, we take advantage of the observation that changes of the communication structure
are in most applications less frequent than transmissions of interactions through it. In
these cases, even a relatively expensive synchronization does not impair the overall ef-
ficiency. Such a synchronization becomes necessary in order to preserve the atomicity
of both a sending and a restructuring transition, if the sending transition of the child
circumvents its parent, which in turn may just try to restructure the communication links
used by the child.

Therefore, our Estelle extension allows in distributed implementations for a more effi-
cient communication, too, as a consequence of the ability to specify more explicit concur-
rency.

4. CONCLUSION

In general, the potential parallelism expressed in a specification should be as high as
possible in order to allow for most efficient implementations. We have argued that there
are currently important limitations of expressing concurrency in Estelle. Therefore, we
have proposed a minor extension of Estelle, which allows a significantly higher degree of
concurrency. The syntactical extension consists of additional module attributes, which
allow to specify that child modules of active modules may behave asynchronously. We
have studied the semantical implications of this extension, and have presented the required
changes to the Estelle semantics.

Our extension is fully compatible with already existing Estelle specifications. In ad-
dition to this, there are even a large number of tools supporting the extension. Every
implementation generated by a hitherto existing compiler represents a correct although
inefficient implementation of the extended semantics (after a simple syntactic substitution
in the specification text).

But this does not mean that our extension is merely a syntactical hint how to generate
efficient implementations. Semantically, inserting one of the new attributes into an old
specification may lead to an increased set of possible execution paths.

This additional expressiveness for concurrency renders possible the generation of dis-
tributed implementations which are substantially more efficient in the case of a high degree
of problem-inherent concurrency. This is achieved by removing the need for the transi-
tions of asynchronous child module instances to synchronize after every transition step.
In a distributed implementation, up to now this led to a large number of synchronization
messages. They were neccessary due to the execution model of Estelle, but in many cases
not due to the semantics of the respective application.

Additionally, an optimization in the implementation of the message transfer between
the asynchronous (distributed) child module instances becomes possible. The semantics of

the extension does not neccessarily imply that this message transfer is performed through
the bottleneck of the parent module instance. Up to now, such an optimization was
possible only for the static asynchronous system module instances.

Concerning the complexity of the firing rules for Estelle transitions, our added rule
often opens a choice for more simplicity. If a specifier restricts his use of module attributes
exclusively to those describing asynchronously parallel behaviour, he will obtain a trivial
transition selection scheme which just arbitrarily fires any transition that is enabled at
any time. No (parent-child) priority or synchronization rules have to be obeyed. Up to
now, this restriction meant that other important Estelle features* could not be used.

Currently, the described extension is incorporated into the Pet/Dingo tool set ([SiSt90])
as part of a joint research project at the Universities of Hamburg, Magdeburg, and
Mannheim. Based on the modified tool set, it is planned to develop parallel implemen-
tations of application layer protocols, such as OSI-TP ([ISO92]). Further extensions of
Estelle to enhance the efficiency of these implementations are under investigation.

REFERENCES

[BrGo93| Bredereke, J. and Gotzhein, R. An Estelle extension for increased concurrency.
Tech. Rep. FBI-HH-M-219/93 (in German, Annex in English), University of
Hamburg, Dept. of Comp. Sce. (Feb. 1993).

[DeBu89] Dembinski, P. and Budkowski, S. Specification language Estelle. In Diaz et al.
[Di*89], pp. 35-75.

[Di*89] Diaz, M. et al., editors. The Formal Description Technique Estelle. North-
Holland (1989).

[ISO81] ISO/TC 97/SC 16, ISO 7498. Data Processing — Open Systems Interconnec-
tion — Basic Reference Model (1981).

[ISO89] ISO/TC 97/SC 21, ISO 9074. Information Processing Systems — Open Sys-
tems Interconnection — FEstelle: A Formal Description Technique Based on an
Eztended State Transition Model (1989).

[ISO92] ISO/IEC JTC 1/SC 21, IS 10026. Information technology — Open Systems
Interconnection — Distributed Transaction Processing (1992).

[KrGo93] Kreuz, D. and Gotzhein, R. A compiler for the parallel execution of Estelle
specifications. In Konig, H., editor, “Formale Methoden fiir Verteilte Sys-
teme”, vol. 8 of “FOKUS-Series”, GI/ITG-Fachgesprach June 1992 (1993).
Saur-Verlag.

[SiSt90] Sijelmassi, R. and Strausser, B. NIST integrated tool set for Estelle. In Que-
mada, J., Manos, J., and Vazquez, E., editors, “Third International Conference
on Formal Description Techniques for Distributed Systems and Communication
Protocols — FORTE ’90”, Madrid, Spain (5-8 Nov. 1990). North-Holland.

[Tur92] Turner, K. Using Formal Description Techniques — An Introduction to FEs-
telle, LOTOS, and SDL. Wiley (1992).

“1.e., hierarchical substructuring of modules and dynamic modification of the module and communication
structure.

