
New Solving Techniques
for Property Checking of Arithmetic Data Paths

Neue Beweistechniken
für die Eigenschaftsprüfung von arithmetischen Datenpfaden

Vom Fachbereich Elektrotechnik und Informationstechnik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)
genehmigte Dissertation

von
M.Sc. Evgeny Pavlenko

geb. in Atbasar, Kasachstan

D 386

Dekan: Prof. Dr.-Ing. Norbert Wehn

Gutachter: Prof. Dr.-Ing. Wolfgang Kunz,
Technische Universität Kaiserslautern
Prof. Dr. Bernd Becker,
Albert-Ludwigs-Universität Freiburg

Datum der Disputation: 19 December 2011

ii

Acknowledgments

This thesis is a result of several intensive years spent for PhD research on solving hard
arithmetic decision problems at the Electronic Automation Group in the University of
Kaiserslautern. I wish to thank all those people who contributed to this research. Without
them I could not have completed it and this thesis would not have been possible.

First and foremost, I am greatly indebted to the head of the Electronic Automation
Group, Prof. Wolfgang Kunz. He has provided me not only with a very good opportunity
to conduct my PhD research in an impressive academic environment but also supported
me beginning from my first day I have entered his group. I am especially grateful to
Wolfgang for his patience and his great understanding.

I would like to express my gratitude to Prof. Becker for the interest he has shown to
review my thesis and for the important and helpful feedbacks.

I owe my deepest gratitude to Markus Wedler who not only served as my direct super-
visor but also encouraged and challenged me throughout my PhD research. He has made
available his support in a number of ways. His considerable academic guidance, advice
and suggestions were very helpful for me. Additionally, I would like to thank Alexander
Dreyer and Frank Seelisch for the productive collaboration. Many key ideas presented in
this thesis were born during our fruitful discussions with them.

I am also very thankful to Markus, Alexander and Frank as well as to Dominik Stoffel,
Max Thalmaier, Sacha Loitz and Oliver Marx for the proof-reading and corrections of my
papers or/and this thesis.

I am indebted to my other colleagues at the University of Kaiserslautern, namely
Roland Hecker, Minh Duc Nguyen, Binghao Bao, Bernard Schmidt, Joakim Urdahl, Car-
los Villarraga, Andreas Christmann, Matthias Legrom, Hans Serr and Carmen Vicente-
Fess for friendly atmosphere, interesting talks and support.

Special thanks and appreciation to OneSpin Solutions GmbH, in particular to Raik
Brinkmann and Evgeny Karibaev, for the offered formal verification tool and for the pro-
vided industrial patterns.

Last but not least, I am very thankful to my parents for their constant support, under-
standing and caring, especially at that time when I am very far away from them.

Evgeny Pavlenko Kaiserslautern, December 19th, 2011

iii

To my past and future

Contents

Acknowledgments iii

1 Introduction 1
1.1 Equivalence Checking . 2
1.2 Property Checking . 4

1.2.1 SAT-based Property Checking 4
1.3 Motivation and Thesis Overview . 6

1.3.1 Related Work and Challenges 6
1.3.2 Objective and Outline of this Thesis 8

2 Fundamentals 11
2.1 Relations . 11
2.2 Boolean Algebra . 13
2.3 Graphs . 14
2.4 Representation of Boolean Functions . 15

2.4.1 Truth Table . 15
2.4.2 Binary Decision Diagram . 16
2.4.3 CNF and DNF . 18
2.4.4 Boolean Networks . 19

2.5 Boolean Satisfiability . 22
2.6 Satisfiability Modulo Theory . 24

2.6.1 SMT solving . 27
2.6.2 Fixed-Size Bit Vectors . 28

2.7 Basics of Computer Algebra . 30
2.7.1 Preliminaries . 30
2.7.2 Standard Bases over a Field . 34
2.7.3 Standard Bases over a Ring . 37

3 Arithmetic Bit Level Verification 41
3.1 Arithmetic Bit Level . 41

3.1.1 Partial Products . 42
3.1.2 Addition Networks . 42
3.1.3 Comparators . 44

v

Contents

3.1.4 ABL Description . 45
3.2 ABL in Formal Verification . 46

3.2.1 Equivalence Checking at the ABL 46
3.2.2 Property Checking at the ABL 50
3.2.3 Debugging by means of ABL Description 54

4 Algebraic Approach 57
4.1 Related Work . 57
4.2 Using Computer Algebra to solve Arithmetic Subproblems in Formal Ver-

ification . 58
4.2.1 Algebraic Modeling of Arithmetic Decision Problems 58
4.2.2 Solving Arithmetic Decision Problems by Normal Form Compu-

tations . 62
4.3 Illustrative Example . 63

5 Modeling of Custom-Designed Components at the ABL 67
5.1 Mixed ABL/Gate-Level Problems . 68
5.2 Modeling for ABL Normalization . 69

5.2.1 Synthesis of ABL Descriptions from Gate Netlists 69
5.3 Modeling for Algebraic Approach . 76

5.3.1 Extraction of Arithmetic Bit Level Information 76
5.4 Experimental Results . 78

5.4.1 Industrial Multiplication Design Benchmark 80
5.4.2 Limitation of Reed-Muller-based Extraction 80
5.4.3 Shared Multiplier Design Benchmark 83

6 STABLE: a new SMT Solver 85
6.1 QF-BV SMT Solving . 85
6.2 Experiments . 89

6.2.1 SMT Competition 2009 Benchmark 89
6.2.2 Module Generator Benchmark 90
6.2.3 TriCore Benchmark . 92
6.2.4 Benchmark of Satisfiable Instances 94

7 Summary and Future Work 97
7.1 Summary . 97

7.1.1 Algebraic Approach for Verification of Arithmetic Designs 98
7.1.2 ABL Modeling of Custom-Designed Components 98
7.1.3 New QF-BV SMT Solver . 99

7.2 Future Work . 99
7.2.1 Smart and lazy ABL Extraction 99
7.2.2 ABL Proof Logging . 101

vi

Contents

8 Zusammenfassung 103
8.1 Algebraisches Verfahren . 104
8.2 Algebraische Modellierung für logische Constraints 106
8.3 QF-BV-SMT-Solver . 107

A Examples of Source Codes 109

B Complete Experimental Results for Suite of TriCore SMT Instances 115

vii

Contents

viii

Chapter 1

Introduction

As known from Moore’s law [Moo65,web], the number of transistors placed on a modern
integrated circuit (IC) doubles every two years. Therefore, the complexity of system-on-
chip (SoC) designs increases rapidly. On the other hand, in order to guarantee an error-free
operation of SoCs, chips of high quality have to be designed and fabricated.

As a result, the validation of digital designs – proving them for correctness in par-
ticular – plays a very important role along all steps of a design process. To find bugs
and to ensure correctness of a design, three commonly used approaches are applied for
validation: simulation, emulation, and formal verification.

In case of simulation a software simulation model of a design is considered. To reflect
critical execution traces in this model, input patterns (stimuli) are generated either ran-
domly or with regard to some chosen heuristic. Stimuli are applied to the primary inputs
of the model. Consequently, some values appear at the primary outputs. These values
are observed and checked for equivalence against the expected values. If the produced
values are conflicting with the expected ones then something in the design is erroneously
implemented. Such a design has to be analyzed to find out the cause of the error. As soon
as the error is fixed, the simulation is repeated.

For the case of emulation the overall procedure is almost the same as for simula-
tion. However, the emulation process requires a different design representation. Now,
a physical prototype of the design is needed, e.g., implemented by means of a field-
programmable gate array (FPGA) [BR96].

Simulation-based methods are quite effective. In practice, they are able to detect many
design errors. However, these methods have a very important disadvantage when large de-
signs are examined. The number of all possible input stimuli for a model under test grows
exponentially with the number of primary inputs in this model. For real industrial designs
this number is astronomical. Thus, a simulation of a design with all possible stimuli is
an unrealistic scenario for industrial applications. As a consequence such methods may
still miss errors in designs. Especially, so-called corner case bugs might be overlooked.
A well-known example of a simulation failure is the Intel Pentium bug [Int] encountered
in the floating point unit (FPU) of the Intel P5 Pentium processor. Recently, another bug
overlooked by simulation was identified in some chipsets used for the Intel’s latest Sandy

1

Chapter 1. Introduction

Bridge processors. The total cost to fix and recover this bug is estimated at about 700
millions of US dollars.

In contrast to simulation and emulation, methods of formal verification can prove the
correctness of a design for all possible input values. These methods are implemented on
the basis of mathematical proofs. Due to the tremendous improvements of the formal
methods they may successfully be applied in practice for real designs. However, in spite
of the significant progress made in formal verification within the last few decades, the con-
tinuous growing in complexity of modern digital designs makes verification tasks more
complex and challenging. As a result, in the design process of digital circuits, about 70%
of all costs are nowadays spent for verification. This motivates the research community
to develop new effective methods in the field of formal verification.

Generally, the scope of formal verification can be divided into two main tasks, namely
equivalence checking and property checking which are considered in the following sec-
tions.

1.1 Equivalence Checking

On its way from a concept to the final fabricated chip, a microelectronic design undergoes
different phases. At each phase, the design representation is also different and given at
some level of abstraction like register transfer level (RTL) or logic level.

At every level of abstraction, the design has to be optimized to meet different re-
quirements like timing, power consumption, technology mapping. Moreover, throughout
a digital design process, the design representation is also changed from a description of
a higher level of abstraction to a description of a lower level. As a result of such opti-
mization and synthesis, bugs in a design representation might appear. Typical reasons
for these errors are manual designer’s interventions, encoding mistakes or bugs caused
by EDA software. Therefore, it is extremely important to ensure the correctness of a de-
sign after every step of optimization and synthesis. For purposes like this, equivalence
checking is used.

The primary goal of equivalence checking is a formal proof that two design represen-
tations (potentially of dissimilar internal structure) exhibit identical functional behavior
for all input patterns.

A classical verification model for equivalence checking is called miter and depicted
in Figure 1.1. Here, the functionality of the optimized/synthesized design, also named
implementation, has to be compared against the known functionality of a golden model,
also called specification. The implementation and the specification have common inputs.
However, the outputs O1, O2 of the models are computed separately and, in the sequel,
are used for comparison by a comparator o.

Basically, there are two main possibilities to solve the task of equivalence checking,
namely by means of a structural comparison of two models or by means of reasoning. In
the first case, it is necessary to derive some unique representations for the implementation
and the specification so that a further straightforward comparison becomes available. To

2

1.1. Equivalence Checking

Specification

Implementation

Comparator

1
O

2
O

oI

Figure 1.1: Miter scheme for equivalence checking

fulfill this condition in practice, binary decision diagrams (BDDs) [Ake78,Bry86] or their
modifications [CFM+93, Min93, DBS+94, LS95, BC95, DBR96, SBW98, DB98a, AF07,
AF08] are widely used. For instance, an introduction and examples on applications of
BDDs in formal verification can be found in [Hu97, SB01, GHB01, KDB+03]. Contrary
to a structural approach, the task of equivalence checking can be formulated as a Boolean
satisfiability problem (SAT problem) which can further be solved with a standard SAT
solver [MSS99,MMZ+01,GN02,ES03,Pre]. The SAT problem is generated by converting
the model of a miter into a Boolean conjunctive normal form (CNF). This process is also
know as bit-blasting. It is important to note that the task of equivalence checking is
not so trivial in case of large industrial designs. Fortunately, there are usually a lot of
internal equivalences between the specification and the implementation in a miter model.
Exploiting the fact of such internal equivalences may significantly facilitate performing
of equivalence checking in practice.

Since a digital design may or may not contain memory elements, it is also common to
distinguish between sequential and combinatorial equivalence checking.

For combinatorial equivalence checking, many interesting and effective approaches
were proposed in the past, e.g., see [Kun93,Bra93,JMF95,Mat96,KK97,SK04,KJW+08].

The proposed techniques usually perform well in practice. However, they may lack
robustness as soon as data paths of industrial designs, especially those of them that imple-
ment multiplications, have to be considered. In [SK04] the authors developed a method
based on reverse engineering to identify as many internal equivalences as possible be-
tween a full-custom implementation and its specification. The approach of [KJW+08]
provides a special language for a proper modeling of such specifications in a full-custom
design flow.

In sequential equivalence checking additionally to all possible inputs evaluations, all
reachable states of the design have to be taken into account. In other words, a reachability
analysis is necessary. This might result in a state explosion problem, since the number
of reachable states increases exponentially with the number of memory elements used
in a design. Thus, the techniques of sequential equivalence checking, for example such
as [HCCG96, SK97, vE98, SWWK04], are more complicated and, unfortunately, not yet
mature in industrial practice.

3

Chapter 1. Introduction

1.2 Property Checking
At earlier stages of a design process, a digital hardware design is described in terms of an
informal specification. On the base of this specification, an RTL model of the design is
created. At this point, it is very important to assure that such a model performs correctly in
accordance to the specification requirements. Otherwise, redesigns and, thereby, increase
in costs of the whole design flow become unavoidable.

The primary goal for application of property checking in practice is to prove that a
created RTL model captures all the required properties as defined by the specification.
Also, by doing property checking, a designer gets a better understanding of the design.
Moreover, property checking is commonly used for debugging of a design. For a more
thorough review on application of formal property checking in industry, the reader is
referred to [BJW04].

In fact, to implement property checking, three major components are needed. They are
as follows: a mathematical model of the RTL design in question, an appropriate language
to formulate properties, and a method to efficiently solve the task of property checking.

In the past, fully automatic approaches of model checking [CGP99] were under inten-
sive investigation. In [CE81] computational tree logic (CTL) was proposed to formulate
properties for a Kripke model which is very similar to a state transition graph generated
from a finite state machine (FSM) of the design. For this model every property p is formu-
lated as an CTL formula fp. The set of all states Sf has to be computed where the formula
fp is valid. The property p is then verified if and only if it holds that S0 ⊆ Sf , where S0

forms the set of initial states in the Kripke model under consideration. In this approach
an explicit representation of computed states is used. As a result, this approach suffers
from the state explosion problem in case of large designs. This problem is alleviated in
symbolic model checking (SMC) [McM93], where BDDs are applied to create an implicit
representation for the set of states. As shown in [BCL+94], properties can successfully
be verified for designs with up to 10120 states. However, the number of states in many
industrial designs is even larger so that SMC is not capable to deal with them.

1.2.1 SAT-based Property Checking

Nowadays, so-called SAT-based property checking has become a workhorse in the mod-
ern property checking flow. The basic idea behind this method is to represent the task
of property checking as a SAT problem, i.e., generate a plain CNF by bit-blasting the
model and the property under interest so that a standard SAT solver can be applied. A
SAT solver tries to prove that the CNF is satisfiable, i.e., the solver tries to find a value
assignment which violates the property. If such an evaluation is discovered then, for a fur-
ther analysis why the property fails for this design, a counterexample may be generated
from the satisfiable assignment. On the contrary, if a SAT solver is able to prove that the
CNF is unsatisfiable for all possible evaluations of the CNF then the property holds for
this design. At present, SAT-based techniques are key in modern RTL property checking
flows, see Figure 1.2.

4

1.2. Property Checking

Property holds

Property fails

Property
Design

(VHDL, Verilog)

Front end

Proof

problem

Back end

Counter

example

Figure 1.2: Typical flow for RTL property checking

A significant improvement for property checking was proposed in [BCCZ99]. Ac-
cording to this approach, the combinatorial part of an FSM, also known as a time frame,
is unrolled into an combinatorial instance called iterative circuit array. The unrolled time
frames are successively connected from the initial state up to some k next states so that
the primary outputs of a time frame i feed the primary inputs of the time frame (i + 1).
Further, the iterative circuit array is appended with a combinatorial logic describing a
property. This model is then translated into a SAT instance and handed over to a SAT
solver. This approach is called bounded model checking (BMC). It is a lot more efficient
than the method of SMC. However, BMC has a substantial drawback. BMC may some-
times lead to false positives. This happens if a property p will fail in a state s which is
beyond the maximum time frame k for a bounded model checker.

To overcome this problem, interval property checking (IPC) was introduced. In IPC,
time frames are unrolled starting from an arbitrary state. This approach demonstrated
its high effectiveness in practice, e.g., in an RTL property checker like [One], but here
another problem called false negative might appear. Since the initial state for the unrolled
circuit is unconstrained, this state may not always be reachable from the initial state of
the design. Thus, for the scenario when a property fails in such an unreachable state,
the property checker erroneously proves that the property fails for the design. Therefore,
one has to precisely specify the restrictions on the environment and states of the design
observed for an actual property. The work of [NSWK05] is an approach to compute such
reachability constraints automatically.

5

Chapter 1. Introduction

In modern SoC design flows, it is a common strategy to integrate different modules,
called intellectual property (IP) blocks, on a single chip. Besides functional verifica-
tion for separate IP blocks, it is also necessary to verify communications between these
blocks. The communication issues between IP modules in a SoC are specified with pro-
tocols. Therefore, communicational verification for a SoC is named protocol compliance
verification [NTW+08, NTM+09].

In conclusion to this section it should be noted that in spite of considerable improve-
ments achieved for property checking in the last decades, a formal proof for correctness
of an RTL data-path design with arithmetic circuits like, e.g., multiplier units may still
be a challenging task. In [WSK05,WSBK07] an efficient method was presented to verify
a data path at the arithmetic bit level (ABL). An ABL description of a design can easily
be provided with a front end of a property checker. In industrial practice, however, some
portions of such an ABL description may be missing, since parts of a data path may be op-
timized at the logic level. The aspects of solving hard arithmetic problems with different
approaches in formal verification is briefly discussed in the next section.

1.3 Motivation and Thesis Overview
Modern design flows for SoCs pursue a correctness-by-integration strategy when veri-
fying the functionality of the overall system. This requires high quality designs for the
individual modules that are supposed to be integrated into the SoC. Traditional simulation-
based verification techniques are reaching their capacity limits rapidly. This motivates the
application of highly automated property checking techniques.

A promising approach is called interval property checking (IPC). It is mostly based on
satisfiability solving (SAT) and SAT modulo theory solving (SMT). IPC has the capacity
to handle almost all types of modules that can be found in today’s SoCs. Nonetheless, a
few pathological cases remain that sometimes limit its application in industrial practice.
In particular, data paths are often a challenge. This is true, especially, if not only the
correctness of the control flow but also the correctness of the computed data needs to be
proved.

For complex arithmetic data paths, simulation is, therefore, still prevailing in indus-
trial verification environments. This is due to the inability of standard proving procedures
to handle arithmetic functions. Especially, multiplication – as it is part of nearly all data
paths for signal processing applications – has remained a severe problem for standard
tools. This problem has stimulated a lot of research on specialized proof methods with
focus on arithmetic. The main achievements and challenges of formal methods for verifi-
cation of an arithmetic data path are briefly reviewed in the next section.

1.3.1 Related Work and Challenges

There exists a large variety of techniques tackling arithmetic circuit verification in dif-
ferent ways. Word-level decision diagrams like *BMDs [BC95] have been investigated

6

1.3. Motivation and Thesis Overview

that promise a compact canonical representation for arithmetic functions. By lack of ro-
bust synthesis routines to derive these diagrams from bit-level implementations, *BMDs
are, however, hardly used in RTL property checking. For example, Hamaguchi’s method
for *BMD synthesis [HMY95] suffers from diagram blow-up in case of faulty circuits
as noted by Wefel and Molitor [WM00]. Generating diagrams from bit-level specifica-
tions has remained an unresolved issue also for more recent developments such as Taylor
expansion diagrams (TED) [CZKR02], LTED [AF07], Modular-HED [AF08].

Another intensive research area of the last several decades was SAT solving [MSS99,
MMZ+01, GN02, ES03, Pre]. The techniques of SAT solving play a major role in almost
all modern verification tools. For control-intensive modules of SoC designs SAT solvers
have shown to be adequate proof engines when verifying their correctness. However, data
paths including complex arithmetic blocks such as multiplication still remain a bottleneck
for SAT-based property checkers.

As SAT-based techniques have become the predominant proof methods in formal ver-
ification, significant efforts were made to integrate SAT with solvers for other domains.
The integration of SAT and integer linear programming (ILP) techniques leads to hybrid
solvers like [CK03,ABC+02]. However, ILP turns out to be unsuitable for RTL property
checking because non-linear arithmetic functions need to be handled. Unfortunately, even
simple multiplication falls into this category.

More recently, SMT solvers have gained significant attention [GHN+04]. These
solvers integrate different theories into a unified DPLL-style decision procedure. For
proving functional correctness of arithmetic data paths the theory of fixed-sized bit vec-
tors (BV) becomes a natural choice. The quantifier-free logic over fixed-sized bit vectors
(QF-BV) is a logic that facilitates interpretation of bit vector functions with respect to their
semantics. Different research groups developed SMT solvers for the QF-BV category,
e.g., see [DdM06, dMB07, BH08, BB09, BCF+07, GD07, STP]. These tools demonstra-
ted significantly better performance in comparison to pure SAT. However, they still lack
capacity to prove unsatisfiable formulas as they are derived from arithmetic data-path
verification in industry.

For equivalence checking of arithmetic RTL circuits, especially multipliers, a tech-
nique based on rewriting was proposed in [VVSA07]. A database of rewrite rules is
provided to support a large number of widely used multiplier implementation schemes.
However, for non-standard implementations the approach requires updating the database
manually and is, thus, not fully automatic. Fully automatic techniques for equivalence
checking and debugging of arithmetic data paths are provided in [SK04, STAF09]. These
techniques extract arithmetic bit level information from low level gate net lists. They con-
sider the data path to be clearly separated from control logic which in high performance
RTL designs is often not the case. This renders integration of the techniques into a general
purpose SMT solver with a property checking application scenario exceedingly difficult.

An alternative direction of research focuses on techniques operating at the arithmetic
bit level (ABL) description of a data path. In [SK04] an extraction technique is presented
that automatically extracts ABL information from optimized gate netlists of arithmetic
circuits after synthesis. This approach is mainly designed for application in equivalence

7

Chapter 1. Introduction

checking, and its arithmetic reasoning on the ABL is restricted to a single addition net-
work. For RTL property checking, however, global reasoning over several arithmetic
components is required. In [WSBK07] a generalization of the ABL description is in-
troduced and a normalization calculus for property checking was presented. All ABL
information needed for property checking can usually be obtained directly from the RTL
description. Unfortunately, this may change in full-custom design flows where ABL in-
formation may no longer be available at the RT-level. In order to apply ABL techniques
in a completely full-custom design flow, a description language for arithmetic circuits is
introduced in [KJW+08] that captures the necessary ABL information. The methods used
for the arithmetic proofs are similar to the normalization approach of [WSBK07].

Lately, methods of symbolic computer algebra have gained attention for verification
of arithmetic circuits. In these methods, multivariate polynomials are derived from bit-
vector functions of a data path. For example, Shekhar et al. [SKEG05, SKE06, SKE07]
demonstrated an equivalence test for polynomial representations of arithmetic functions.
Here, a word-level description of a data-path design is required. Unfortunately, such a
description is not always available in practice, since some parts of an RTL design can be
optimized at the gate level. These parts are called custom-designed components. A typical
example of this component in a multiplier unit is a Booth encoder.

In [WHAH07] a technique was proposed that exploits an ABL description to generate
multivariate polynomials and computes a Gröbner basis thereof. For a proof goal – repre-
sented as an additional polynomial – a normal form with respect to this Gröbner basis is
calculated. In summary, this technique shows a good performance for solving arithmetic
verification problems. However, the obligatory computation of a Gröbner basis might be
too expensive for some RTL designs in practice and, thus, not always applicable.

As opposed to [WHAH07], Wienand et al. [WWS+08] proved that a polynomial sys-
tem derived from an ABL description of a design and the property in question is by
construction a Gröbner basis for some chosen monomial ordering. Similar to [SKEG05,
SKE06,SKE07], this approach also requires arithmetic parts of data-path design be avail-
able at the word level or at the ABL. Unfortunately, it is not the case for a custom design
methodology, when some portions of a design are optimized below ABL.

1.3.2 Objective and Outline of this Thesis
The main objective of this thesis is to increase the capacity of the ABL-based techniques
and the approaches of computer algebra that enables more robust and efficient solving
of hard arithmetic problems originating from property checking of a data-path design.
Additionally to that a robust SMT solver for the QF-BV category has to be developed.

This thesis is organized as follows.
Chapter 2 provides the necessary terminology and fundamentals that are related to the

topic of this thesis.
Chapter 3 introduces the concept of the arithmetic bit level. The main ABL compo-

nents such as a partial product generator, an addition network, and a comparator are also
defined in this chapter. Moreover, the ABL-based techniques and their applications in

8

1.3. Motivation and Thesis Overview

domains of formal verification and debugging are reviewed.
Chapter 4 describes an improved algebraic approach based on the theory of Gröbner

basis. This chapter starts with a brief summary of the previous works related to this topic
and continues with a motivation for the improvements of the algebraic approach. Its math-
ematical background is described in the sequel. At first, modeling of arithmetic decision
problems is discussed and illustrated by means of a few examples. Thereafter, a math-
ematical proof is provided for the algebraic approach to solve these decision problems.
This chapter ends with a didactic example demonstrating application of the approach to
solve arithmetic verification problems in RTL property checking.

Chapter 5 proposes two approaches to convert a gate netlist of a custom-designed com-
ponent into a functionally equivalent ABL description or a system of multivariate poly-
nomials over Boolean variables. At the beginning, this chapter familiarizes the reader
with the problem for ABL-based techniques to handle custom-designed components of
an RTL design. This motivation is then followed by the explanations of methods how
an ABL description can be generated from such components. One of these methods
improves robustness of ABL normalization. The next method is considered for the alge-
braic approach. At the end of this chapter, the experimental results are presented. Here,
the ABL normalization technique strengthened with the extraction method is compared
against contemporary SMT solvers for the QF-BV category.

Chapter 6 develops a new QF-BV SMT solver called STABLE. The solver integrates
two recently developed techniques, namely the extraction method and the enhanced ap-
proach of computer algebra. In addition to that, some rewriting and simplification mech-
anisms are designed for the front-end engine of the SMT solver. A standard SAT solver
is used as a back end of STABLE. The performance of STABLE was tested against other
SMT solvers – winners of SMT competitions in the last few years. The experimental data
of the tests close this chapter.

Chapter 7 concludes this thesis and provides discussion on the future research.

9

Chapter 1. Introduction

10

Chapter 2

Fundamentals

This chapter provides some fundamental mathematical concepts which are of relevance
for this thesis. All important symbolic notations used in later chapters will also be de-
fined here. Since this chapter is rather a brief review of underlying notions, then, in case
more detailed explanations are needed, the reader may refer to standard textbooks, e.g.,
on switching theory [AS06], discrete mathematics [GT96], Boolean logic [Bro90], and
algorithms of logic synthesis and verification [Mic94, HS96].

2.1 Relations
This section contains some important definitions for a set of elements and explains some
particular relations over the elements inside a set.

Let lowercase letters denote elements of a set whereas uppercase letters denote a set of
elements. The notation a ∈ A means that the element a belongs to the set A. Conversely,
a /∈ A stands for the case when a is not a part of A. For example, the set of integers is
denoted as Z and expression i ∈ Z is valid for any integer i. If the set B consists of some
elements a0, . . . , an−1 then one writes B = {a0, . . . , an−1}. For finite sets, the number of
elements in the set B builds its cardinality and is denoted as |B| = n. Some important
relations can be defined on sets.

Definition 2.1. (Binary Relation) For sets A and B, a set of pairs of elements (a, b)
defines a binary relation R from A to B if each a ∈ A and each b ∈ B. The expression
(a, b) ∈ R can syntactically also be written as aRb or R ⊇ {(a, b)}.

In this thesis only binary relations are considered. For reason of simplicity the adjec-
tive binary is omitted and just the word relation is used in the sequel. Two extreme cases
are available for relations, namely the so-called universal relation and the empty relation.
The universal relation is the Cartesian product A × B that consists of all possible pairs
(a, b) with a ∈ A and b ∈ B. The empty relation, denoted as ∅ or {}, contains no pairs of
elements.

Definition 2.2. (Inverse Relation) For a relation R from A to B the inverse relation R−1

from B to A is defined by R−1 = {(b, a) : (a, b) ∈ R}.

11

Chapter 2. Fundamentals

A relation R over elements of a single set S may have some interesting properties as
follows:

• reflexivity: (a, a) ∈ R for all a ∈ S,

• symmetry: (a, b) ∈ R implies (b, a) ∈ R for all a, b ∈ S,

• anti-symmetry: (a, b) ∈ R and (b, a) ∈ R imply a = b for all a, b ∈ S,

• transitivity: (a, b) ∈ R and (b, c) ∈ R imply (a, c) ∈ R for all a, b, c ∈ S.

0

21 3

54 6

7

Figure 2.1: Hasse diagram

A relation R on a set S is named an equivalence rela-
tion if and only if (iff) it is reflexive, symmetric and transi-
tive. An equivalence relation R splits elements of the set S
into subsets S0, S1, . . . , Sn−1, called the equivalence classes,
such that S =

⋃n−1
i=0 Si and for any i 6= j it is valid that

Si
⋂
Sj = ∅. In other words, the equivalence relation R

builds the partition π = {S0, S1, . . . , Sn−1} on the set S. In
this case, Si is also known as a block of the partition. If two
elements a and b belong to the same block then one says a is
equivalent to b and writes a ≡ b.

When the relation R on the set S is reflexive, anti-
symmetric and transitive then this is a partial-order relation
which can be also thought as a “less than or equal to” relation. A set S with such a
relation R is called a partially-ordered set and is usually represented in terms of a Hasse
diagram.

Example 2.1. (Hasse Diagram) For the partially-ordered set S = {0, 1, 2, 3, 4, 5, 6, 7},
the Hasse diagram is depicted in Figure 2.1.

In a partially-ordered set S with the relation R, the following essential elements may
be identified:

• the least element is the element a ∈ S, where for any z ∈ S holds (a, z) ∈ R,

• the greatest element is the element b ∈ S, where for any z ∈ S holds (z, b) ∈ R,

• a lower bound of the elements x and y is an element c such that (c, x) ∈ R and
(c, y) ∈ R, where x, y, c ∈ S,

• an upper bound of the elements x and y is an element d such that (x, d) ∈ R and
(y, d) ∈ R, where x, y, d ∈ S,

• the greatest lower bound of two elements x and y is such a lower bound c′ that
(ci, c

′) ∈ R for any lower bound ci of x and y, where x, y, c′, ci ∈ S,

• the lowest upper bound of two elements x and y is such an upper bound d′ that
(d′, di) ∈ R for any upper bound di of x and y, where x, y, d′, di ∈ S.

12

2.2. Boolean Algebra

The operations to calculate the greatest lower bound and the lowest upper bound are
designated with the symbols · and +, respectively. Those partially-ordered sets where
for any pair of elements there exist the greatest lower bound and the lowest upper bound
are called a lattice. Usually, the greatest element is denoted as 1 and the least element is
denoted as 0. For instance, the lattice is represented with the Hasse diagram in Figure 2.1.
A lattice is a mathematical structure on the base of which Boolean algebra can be defined.

2.2 Boolean Algebra
Definition 2.3. (Boolean Algebra) A Boolean lattice or Boolean algebra on the set S is
a complementary and distributive lattice where the following two laws are valid:

• complement: for any a ∈ S there exists an a ∈ S such that a · a = 0 and a+ a = 1,

• distributivity: for any a, b, c ∈ S it holds that a · (b+ c) = a · b+ a · c.

As it was shown by Shannon in [Sha38], the behavior of switching circuits is well
described by means of two-valued Boolean algebra B = {0, 1}. Nowadays, Boolean
algebra plays a very important role in switching theory, digital circuits design and formal
verification where any ai ∈ B is often called as a bit and a concatenated sequence of the
bits (a0, . . . , an) is known as a bit vector.

In addition, a Boolean algebra fulfills the following rules:

• commutativity: a+ b = b+ a; a · b = b · a,

• associativity: a+ (b+ c) = (a+ b) + c; a · (b · c) = (a · b) · c,

• idempotence: a+ a = a; a · a = a,

• absorption: a+ (a · b) = a · (a+ b),

• identities: a+ 0 = a; a+ 1 = 1; a · 0 = 0; a · 1 = a,

• De Morgan’s law: (a+ b) = a · b; (a · b) = a+ b,

• resolution: (a+ b) · (c+ b) = (a+ b) · (c+ b) · (a+ c),

• consensus: a · b+ c · b = a · b+ c · b+ a · c.

Further logic operations which concern this thesis can be defined as follows:

• exclusive or (XOR): a⊕ b = (a+ b) · (a+ b),

• implication: a→ b = (a+ b),

• equivalence: a↔ b = (a⊕ b),

• if then else (ITE): ite(a, b, c) = (a · b+ a · c).

13

Chapter 2. Fundamentals

In the literature, the operations · and + are also referred to as a product and a sum, re-
spectively. Additionally, the complement operation as well as the operations · and + are
frequently designated with logic symbols, namely ¬ (negation or NOT), ∧ (logic AND or
conjunction) and ∨ (logic OR or disjunction).

2.3 Graphs

Relations on a set of elements are well visualized by an abstract representation called
graph. Moreover, graphs are a proper way to formulate, analyze, and solve many technical
problems.

Definition 2.4. (Graph) A graph G is a pair (V,E), where V = {v0, . . . , vn} is a
nonempty set of vertices (nodes) and E = {e0, . . . , ek} is a set of edges. For a given
set of the nodes V , the set of the edges E is defined as a set of pairs of the nodes, where
the edge between the node vi and the node vj is denoted with et = (vi, vj). Here, vi and
vj are called the adjacent nodes. Moreover, vi is named the immediate predecessor of vj
and vj is the immediate successor of vi. Two edges are adjacent if they have a common
node.

Often for the edge (vi, vj), the pair of the elements vi and vj can be considered to be
ordered from vi to vj . If all edges of the graph are ordered then this graph is directed,
otherwise, it is called an undirected graph.

For a graph G we call G′ = (V ′, E ′) a subgraph of G if and only if it holds that
V ′ ⊆ V and E ′ ⊆ E. The degree of a node is the number of edges connected to this
node. In case of an undirected graph, this is the number of all connected edges. In a
directed graph it is distinguished between the incoming edges, also know as a fanin, and
the outgoing edges called fanout. While traversing a graph the following notions become
necessary:

• loop is an edge with the same start and end node, i.e., (vi, vi),

• walk is a finite sequence of adjacent edges, e.g., (v0, v1), (v1, v2), (v2, v3),

• trail is a such walk throughout which each edge appears at most once,

• path is a such walk throughout which each node appears at most once,

• cycle or closed path is such a sequence (v0, v1), . . . , (vn−1, vn), (vn, v0), where
(v0, v1), . . . , (vn−1, vn) is a path.

Hence, an acyclic graph is a graph without any cycles. An important class of the graphs is
a directed acyclic graph or a digraph (DAG). DAGs are widely used in computer science,
e.g., to represent Boolean functions, combinatorial circuits and many others.

14

2.4. Representation of Boolean Functions

2.4 Representation of Boolean Functions
Boolean functions represent a mapping in the Boolean space Bk = {0, 1}k. For n inputs
andm outputs, a Boolean function is formally defined as a mapping F : Bn 7→ Bm, where
n,m ∈ N.

Definition 2.5. (Function) A binary relation F ⊆ A× B is called a function if and only
if the following axioms are valid:

• right-unique (also called right-definite or functional): for all a ∈ A and b, c ∈ B
so that (a, b) ∈ F and (a, c) ∈ F ⇒ b = c,

• left-total: for all a ∈ A there exists b ∈ B so that (a, b) ∈ F.

If the values for all inputs are known, the function is called completely specified.
However, in practice for some inputs, the values might be unknown; this is called don’t
care which is designated with the symbol ∗. In this case, the Boolean function becomes
incompletely specified F : {0, 1}n 7→ {0, 1, ∗}m.

A common way to express a Boolean function is a Boolean formula or a Boolean
expression which depends on a set of Boolean variables X = {x0, . . . , xn}. Let a literal
be a variable or its complement. Formulas can recursively be defined in terms of the
factored form [Mic94].

Definition 2.6. (Factored Form) The factored form is one of the following Boolean ex-
pressions:

• Boolean constant 0 or 1,

• literal,

• conjunction of factored forms,

• disjunction of factored forms.

Boolean expressions are a customary readable mathematical form for humans, how-
ever, they are not always suited well for the applications in specific domains like logic
synthesis, optimization, verification. In fact, there are different ways to represent Boolean
functions, e.g., truth table, Karnaugh-Veitch maps (KV-map), conjunctive normal form
(CNF), disjunctive normal form (DNF), binary decision diagram (BDD), Boolean net-
work, switching circuit and others. Some of these representations are briefly described in
the next sections.

2.4.1 Truth Table
For a function f a truth table is a list of all enumerations of all possible input values
mapped to the output values of this function.

15

Chapter 2. Fundamentals

a0 a1 a2 f(a0, a1, a2)
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Table 2.1: Truth table

Example 2.2. (Truth Table) The truth table of the function f = (a0 ∧ a1) ∨ (a1 ∧ a2) ∨
(a1 ∧ a2) is depicted in Table 2.1.

Here, each line contains a unique assignment for the input variables as well as the
corresponding value for the function. The set of the input assignments when f becomes
1 is known as ON-set of f . Conversely, the OFF-set consists of all the input assignments
when f is 0. With a predefined order of the input assignments in a truth table, this table
becomes a canonical representation. The canonicity of a Boolean data structure is a
very important property as it solves a fundamental problem in formal verification, i.e., a
decision problem whether two Boolean functions are functionally equivalent. However,
since the size of a truth table grows exponentially with the number n of the input variables,
namely 2n, in practice such a representation of Boolean functions can only be applied for
functions of small size.

2.4.2 Binary Decision Diagram
Binary decision diagrams (BDD) are a popular way to manipulate Boolean functions in
computer-aided design (CAD) and verification. BDDs were first introduced in [Lee59],
later studied in [Ake78] and intensively investigated in [Bry86].

The underlying principle for the composition of BDDs from Boolean functions is a
recursive decomposition of these functions based on Shannon’s expansion theorem.

Definition 2.7. (Shannon’s Expansion) A Boolean function f(x0, . . . , xn) can be repre-
sented in the next form:

f = xi · fxi
+ xi · fxi

with any i ∈ [0 : n], where

• fxi
= f(x0, . . . , xi = 1, . . . , xn) is a cofactor of f with respect to xi,

• fxi
= f(x0, . . . , xi = 0, . . . , xn) is a cofactor of f with respect to xi.

A BDD with some predefined order on the variables is called an ordered binary deci-
sion diagram (OBDD).

16

2.4. Representation of Boolean Functions

Definition 2.8. (OBDD) An OBDD is a digraph (V,E) with one root node, i.e., the node
without any predecessors. Each terminal node vj ∈ V has as an attribute value(vj) ∈ B.
Each non-terminal node vi ∈ V has three attributes:

• an index(vi) ∈ {0, . . . , n} mapped to one of the input variables {x0, . . . , xn},

• two immediate successors low(vi), high(vi) ∈ V such that
index(vi) < index(low(vi)) and index(vi) < index(high(vi)).

Definition 2.9. (Semantic of an OBDD) An OBDD (V,E) with the root node v represents
a Boolean function f v as follows:

• if v is a terminal node with value(v) = 0 then f v = 0,

• if v is a terminal node with value(v) = 1 then f v = 1,

• if v is a non-terminal node with index(v) = i then f v = xi · fhigh(v) + xi · f low(v).

It is important to note that an OBDD is not a canonical representation of the func-
tion because for some nodes in the OBDD their subgraphs can be (isomorphic) or even
identical, i.e., they define the same subfunction. However, such OBDDs can be reduced
through the elimination of the isomorphism in the subgraphs. This results in a reduced
OBDD (ROBDD) which is now of a unique representation for the function if the specific
ordering of the variables is fixed.

Example 2.3. (OBDD and ROBDD) For the function f from Example 2.2, the OBDD
and the ROBDD with the variable ordering a0, a1, a2 are depicted in Figure 2.2.

1 0 0 1 1 0 1 0 1

index = 2

index = 1

index = 0 0
a

1
a

1
a

1
a

1
a

0
a

2
a

2
a

2
a 2

a
2
a

Figure 2.2: Example of OBDD and ROBDD

Besides being a compact representation of a Boolean function, binary decision di-
agrams can also be manipulated with effective algorithms as it was shown by Bryant
in [Bry86].

The size of an OBDD, expressed in terms of the number of nodes in the OBDD,
depends not only on the function under the consideration but also on the chosen variable
ordering. For some functions, however, the complexity of BDDs is always exponential
as, e.g., in case of a bit-vector multiplication.

17

Chapter 2. Fundamentals

The Shannon’s expansion is not the only decomposition useful for building BDDs.
For example, ordered functional decision diagrams (OFDD) [KSR92, BD94] are based
on the Reed-Muller decomposition, also known as a positive Davio decomposition.

Definition 2.10. (Reed-Muller Decomposition)

f(x0, . . . , xn) = fxi
⊕ xi · ∂f∂xi

where ∂f
∂xi

= fxi
⊕ fxi

is known as a Boolean derivative of f .

The recursive application of the Reed-Muller decomposition with respect to all vari-
ables {x0, . . . , xn} on some Boolean formula f converts this formula into a so-called
Boolean (also called Zhegalkin) polynomial. In overall, the complexity of OFDDs is
similar to that of BDDs.

In the past, depending on the application domain and the problem of interest to be
solved, many other variants of BDDs were suggested, for instance, MTBDD [CFM+93],
ZDD [Min93,Mis01], OKFDD [DBS+94,BDT95,DBJ98,DB98b], EVBDD [LS95], BMD
[BC95], K*BMD [DBR96], LTED [AF07], Modular-HED [AF08]. As the depth of all
these variants is beyond the scope of this thesis, the interested reader is referred to the
above-mentioned literature.

2.4.3 CNF and DNF
In principle, the conjunctive normal form (CNF) and the disjunctive normal form (DNF)
are Boolean expressions written in special forms. Let us define these forms and their
components for some Boolean function f : Bn 7→ B.

Definition 2.11. (Monomial) A monomial, also referred to as a product term, is one of
the following:

• Boolean constant 1,

• a literal,

• a conjunction of literals such that every variable appears at most once.

Definition 2.12. (Minterm) A minterm is a monomial that contains all variables of the
function f .

Definition 2.13. (DNF) A DNF, also referred to as a sum of products (SOP), is one of the
subsequent formulas:

• Boolean constant 0,

• a monomial,

• a disjunction of monomials.

18

2.4. Representation of Boolean Functions

If a DNF consists only of the minterms of the function f then such DNF is a canonical
representation of f and, therefore, designated as CDNF.

Definition 2.14. (Clause) A clause, also referred to as a sum term, is one of the following
items:

• Boolean constant 0,

• a literal,

• a disjunction of literals such that every variable appears at most once.

Definition 2.15. (Maxterm) A maxterm is a clause that contains all variables of the
function f .

Definition 2.16. (CNF) A CNF, also referred to as a product of sums (POS), is one of the
subsequent formulas:

• Boolean constant 1,

• a clause,

• a conjunction of clauses.

Analogously to a CDNF, there exists a canonical CNF (CCNF) which comprises max-
terms only. Note, both CDNF and CCNF can easily be derived from a truth table. The
OFF-set of the table represents the CCNF, conversely, the ON-set represents the CDNF.

Example 2.4. (CCNF and CDNF) The canonical normal forms for the function f of
Table 2.1 are as follows:

• fCCNF = (a0 ∨ a1 ∨ a2) ∧ (a0 ∨ a1 ∨ a2) ∧ (a0 ∨ a1 ∨ a2),

• fCDNF = (a0∧a1∧a2)∨(a0∧a1∧a2)∨(a0∧a1∧a2)∨(a0∧a1∧a2)∨(a0∧a1∧a2).

Again, the canonicity is a very important property of a CDNF and a CCNF. Unfor-
tunately, the complexity of both is exponential in the number of variables. Nevertheless,
CNFs are used in practice as a fundamental data structure to represent Boolean functions
for SAT solving, see, e.g., Section 2.5.

2.4.4 Boolean Networks
The structural and behavioral representation of a Boolean function can be expressed in
terms of a Boolean network.

Definition 2.17. (Boolean Network) A Boolean network is a DAG N = (V,E, S, F),
where:

• V = {I ∪O ∪ V ′} is a set of the nodes in the graph such that

19

Chapter 2. Fundamentals

∗ I is a set of primary inputs, i.e., nodes without predecessors,

∗ O is a set of primary outputs, i.e., nodes without successors,

• F = {f0, . . . , fn} is a set of Boolean functions such that every fi is mapped to some
node vi ∈ {O ∪ V ′},

• S = {s0, . . . , sk} is a set of variables such that every sj is mapped to some vj ∈ V,

• E is a set of edges such that (vx, vy) ∈ E means that the function fy depends on the
variable sx.

Gate symbol Name Boolean function Truth table

0
a f

NOT f = a0

a0 f
1 0
0 1

0
a

1
a

f

OR f = a0 ∨ a1

a0 a1 f
0 0 0
0 1 1
1 0 1
1 1 1

0
a

1
a

f

AND f = a0 ∧ a1

a0 a1 f
0 0 0
0 1 0
1 0 0
1 1 1

0
a

1
a

f

XOR f = a0 ⊕ a1

a0 a1 f
0 0 0
0 1 1
1 0 1
1 1 0

Table 2.2: Logic gates. Names and semantics

In principle, a Boolean formula may contain any arbitrary Boolean operators, but, in
practice, these operators are fixed by some cell library. Usually, the cells types available

20

2.4. Representation of Boolean Functions

Gate symbol Name Boolean function Truth table

0
a

1
a

f

NOR f = a0 ∨ a1

a0 a1 f
0 0 1
0 1 0
1 0 0
1 1 0

0
a

1
a

f

NAND f = a0 ∧ a1

a0 a1 f
0 0 1
0 1 1
1 0 1
1 1 0

0
a

1
a

f

XNOR f = a0 ⊕ a1

a0 a1 f
0 0 1
0 1 0
1 0 0
1 1 1

Table 2.3: Logic gates. Names and semantics, continued

in a library are dictated by the technology used to fabricate the digital circuit. Sometimes,
the cells are a collection of the primitive Boolean functions. In this case, the cell is
called a gate and the Boolean network is named as a gate netlist or a bit-level description.
There also exist technology independent gate netlists in practice. The symbols for gates
are defined by standards ANSI/IEEE Std 91-1984 and ANSI/IEEE Std 91a-1991 [AIS86].
Some common representations of the symbols, also used further throughout this thesis,
are collected in Table 2.2 and in Table 2.3.

f

0
a

1
a

2
a

Figure 2.3: Example of gate netlist

21

Chapter 2. Fundamentals

Example 2.5. (Gate Netlist) Figure 2.3 shows a gate netlist for the function f(a0, a1, a2)
from Table 2.1.

A Boolean network is often referred to as a combinatorial circuit, i.e., a circuit without
any memory elements, as opposed to sequential circuits. In this thesis, the main focus is
on combinatorial instances which can also be composed from the unrolled sequence of
the combinatorial time frames of a sequential design.

2.5 Boolean Satisfiability
The Boolean satisfiability (SAT) problem is one of the central problems in computer sci-
ence. Many important problems in logic synthesis and verification can be reduced to SAT.
Due to this fact, the SAT problem was actively investigated in the research community in
the last few decades.

Definition 2.18. (Boolean Satisfiability) Let f : Bn 7→ B be a Boolean function. The
Boolean satisfiability (SAT) problem is the decision problem to find such a value assign-
ment (model) for the variables {x1, . . . , xn} that the function f(x1, . . . , xn) becomes sat-
isfiable, i.e., f(x1, . . . , xn) = 1 or prove that such an assignment does not exist, i.e., it
always holds that f(x1, . . . , xn) = 0. In the latter case, function f(x1, . . . , xn) is unsat-
isfiable.

It is worth mentioning that equivalence checking can also be formulated as a SAT
problem. Assume, it is required to check whether two formulas f1 and f2 are functionally
equivalent, then solving the SAT problem for the expression φ = (f1 ⊕ f2) serves the
objectives of equivalence checking. For the situations when φ = 1, the formulas are not
equivalent under the found value assignment. This assignment is also referred to as a
counterexample. From φ = 0 for all possible assignments to the variables of f1 and f2,
it follows that the formulas are always functionally equivalent. In practice, the function
to be analyzed with SAT is represented as a CNF. The process of translating this function
into the CNF is known as bit blasting [KS07] and can be implemented, for example, based
on the Tseitin transformations [Tse68].

Different strategies for SAT solving are available. They can be divided into two cat-
egories, namely incomplete algorithms and complete algorithms. The first category of
algorithms performs a local search for a satisfiable assignment in a function and, there-
fore, it is not capable to prove its unsatisfiability. On the contrary, given enough resources,
complete algorithms can prove unsatisfiability of a function or find a satisfiable assign-
ment if it exists. In this thesis, only complete algorithms are considered.

One possible way to solve a SAT problem is based on an iterative application of the
resolution operation. This algorithm is also known as a Davis-Putman procedure [DP60].
Here, a CNF formula f =

∧k
i=0Ci is taken as an input for the procedure, whereCi denotes

the i-th clause of the formula. At each iteration for the case n 6= m, all clauses Cn and
Cm are considered if there exists a variable a such that a appears exactly once in Cn and
its complement a appears in Cm. Then, the resolvent is generated in the form Cn,m =

22

2.5. Boolean Satisfiability

(Cn\a ∨ Cm\a), where Cn\a denotes the clause Cn without the literal a and Cm\a stands
for the clause Cm without the literal a. As soon as some resolvent results in an empty
clause, it means that the formula is unsatisfiable. Otherwise, if no more new resolvents
can be generated for the function, it is proved that a satisfiable assignment exists for this
function. In the worst case, the number of generated resolvents is exponential. Thus, in
practice, this algorithm is only applicable for small formulas. The algorithm becomes
infeasible for large problems with thousands of variables. Therefore, to deal with real-
world problem instances, a more sophisticated algorithm is needed.

The basis for almost all complete modern SAT solvers is the so-called Davis-Putman-
Logemann-Loveland (DPLL) algorithm that was proposed in [DLL62] and is an extension
of [DP60]. The main idea behind the DPPL procedure is an enumeration of all possible
assignments for the variables of the given CNF formula. In the literature, the set of all
possible assignments for the given CNF formula is also denoted as search space. The
formula is evaluated under each assignment and, by this manner, is iteratively checked
for the satisfiability. Here, one value for each variable in the CNF is tried at a time. In
practice, the choice of the next decision variable depends on a heuristic. The process of
assigning a value for a decision variable is also referred to as branching. It is necessary
to note that the variable assignments can either be chosen by means of a decision or be
implied based on reasoning, due to the application of the following rules:

• pure literal rule (PLR): if the variable a appears only in one form (negative or
positive) throughout the CNF then the value is selected for a such that all clauses
containing a become satisfied,

• unit clause rule: in every unit clause, i.e., a non-satisfied clause with exactly one
unassigned literal b, the value is selected for the variable of b such that the clause
becomes satisfied.

1: DPLL(Φ) {
2: while true {
3: if !make_branch()
4: return SAT;
5: while !bcp() {
6: if !backtrack()
7: return UNSAT;
8: }
9: }

10: }

Figure 2.4: Naive DPLL algorithm

Iterative application of the unit clause rule
is called Boolean constraint propagation (BCP).
Branching, PLR, and BCP can cause conflicts in
a CNF. A conflict is a situation when a clause is
unsatisfiable under the current assignment. In this
case, the algorithm backtracks to the most recently
taken decision, cancels all assignments deduced
in-between, and, thereafter, tries an unenumerated
value. This process is also named chronological
backtracking.

A pseudocode for the naive DPLL algorithm is
sketched in Figure 2.4. SAT solving for a CNF Φ
begins with the routine make_branch() which is re-
sponsible to make an assignment for the next free
decision variable. This routine returns false iff no unassigned variable is left in the CNF
or, in other words, a model for Φ is found. Otherwise, make_branch() ends with true and

23

Chapter 2. Fundamentals

DPLL proceeds with PLR and BCP implemented in bcp(). If a conflict occurs during BCP
then bcp() returns false and backtrack() is invoked. Backtrack() cancels all value assign-
ments up to the recent decision variable, flips the value for this variable and returns true.
However, in case when, at the top level, both values were already tried for the variable
and both assignments led to a conflict in the CNF then Φ is declared unsatisfiable. As a
consequence, backtrack() provides false at its output and DPLL terminates with UNSAT.

In the past, effective improvements for SAT solving have been proposed. One such
advancement is clause learning which is invoked as soon as a conflict occurs. During
conflict analysis, the implication relations, expressed by means of an implication graph,
are analyzed to learn a conflict, and, then, a new conflict clause is generated. This clause is
redundant in the sense that it does not change the function of the CNF formula but avoids
repetition of the same mistake later in the search. In other words, this clause prunes the
search space. Incremental SAT solvers add such a clause on the fly into the CNF database.

Non-chronological backtracking is an example of another efficient enhancement for
SAT solving. Some conflict-learning schemes, like, e.g., the ones based on the concept of
the unique implication point [ZMMM01], make it possible to find the reason for a conflict
on earlier decision levels than the level of the current decision variable. Thus, the search
space can further be reduced because larger unsatisfiable subspaces are cut off.

For the overview on the other optimizations proposed for SAT, as, for instance, two-
watched-literals scheme, restarts, clause deletion and so on, the reader is referred to
[BHvMW09].

In spite of the exponential size in the search space of a SAT instance, the improve-
ments made for SAT solving have significantly enhanced the efficiency of the DPLL algo-
rithm. There was developed and introduced a series of well-implemented SAT solvers, for
example, GRASP [MSS99], Chaff [MMZ+01], BerkMin [GN02], MiniSat [ES03], Pre-
coSAT [Pre], and others. All of them have demonstrated a good performance in practice.
Unfortunately, they usually perform poorly on instances containing bit-blasted arithmetic
operations derived from, e.g., data-path designs.

2.6 Satisfiability Modulo Theory
As mentioned in the previous section, a SAT solver is able to reason only at the bit level.
Thus, if the instance in question is initially described at higher levels of abstraction then
it has to be converted to CNF. In cases like this, however, the information from the higher
levels of abstraction is no longer available for reasoning at the bit level. Let us illustrate
this problem with the help of a small example.

Example 2.6. (High Level of Abstraction vs. Bit Level) Assume the following inequa-
tion:

((a+ b) · c) 6= (a · c+ b · c),

where a, b, c ∈ Zn. Let us further assume that it is required to check whether an satisfiable
value assignment exists for the inequation. At the integer level, after application of a

24

2.6. Satisfiability Modulo Theory

rewrite rule derived from the distributive law, it is easy to conclude that the inequation
has no solution. In contrast to that, consuming resources, a SAT solver will enumerate all
possible assignments first and, then, provides the same result.

Such a loss of high level information as explained above is disadvantageous from the
practical point of view. For example, digital designs are usually implemented at the regis-
ter transfer level (RTL) so that some problems for hardware verification can be formulated
at the word level, i.e., a level of abstraction where operations over bit vectors are used. At
the same time, the RTL semantic defines logic operations over individual bits. This makes
an RTL language more powerful, flexible and precise on the one hand and results in an in-
stance under verification with mixed word-/bit-level functions and operators on the other
hand. So, development of efficient algorithms to use the full potential of SAT solving in
combination with high level information is an active research field at the moment. This
problem is addressed by Satisfiability Modulo Theory (SMT) solvers [BSST09].

Definition 2.19. (SMT Problem) An SMT problem is a decision problem for a logical
formula in combination with some background theory expressed in first-order logic.

Since first-order logic (also called predicate logic) is crucial for understanding the
SMT concept, a brief definition of this logic is given below; for a deeper study, the reader
may refer to standard textbooks like, e.g., [Bar77, And02, KS08].

As it is pointed out in [KS08], the following elements are basis for first-order logic:

• variables,

• logical symbols:

∗ Boolean connectives like, e.g., ¬, ∨, ∧,⇒,⇔,

∗ quantifiers: ∃, ∀.

• non-logical symbols: constants, predicate and function symbols,

• syntax: rules for constructing formulas.

In principle, first-order logic is a formal system for propositions with regard to variables,
fixed functions and predicates. The first-order logic can be thought as an extension of
propositional logic.

The symbols ∃ and ∀ are used to denote quantifications. To be more exact:

• ∃ is an existential quantifier, i.e., ∃a ∈ A : P (a) (usually written as ∃aP (a)) means
that in the set A there exists an element a such that the predicate P (a) holds,

• ∀ is an universal quantifier, i.e., ∀b ∈ B : P (b) (usually written as ∀bP (b)) means
that the predicate P (b) holds for any element b of the set B.

25

Chapter 2. Fundamentals

A set of non-logical symbols is also known as a signature. A predicate is a binary-
valued function which can be defined over non-binary variables as, e.g., an inequation
like f1 ≤ f2, where f1 = (a + b) and f2 = (a ∗ b) are arithmetic functions over integer
variables.

A free variable is a variable which is not connected with a quantifier. Most logics
studied in practice are quantifier free.

In first-order logic, atomic expressions are formulated as follows:

atom := predicate(term1, . . . , termn)
| term1 = term2

whereas every term is defined as

term := function(term1, . . . , termn)
| constant
| variable

More complex expressions like a formula can be generated using non-logical symbols
from a given signature and, in addition to that, using logical symbols. Thus, for a given
signature Σ, a Σ-formula can be derived. A formula without free variables is called a
sentence.

Example 2.7. The following expression is a first-order formula:

∀a∃b∃c(a > 0) ∧ (b > 0) ∧ (c > 0) ∧ (a > b)⇒ (ac > bc),

where a, b, c ∈ Z.

With this basic knowledge about first-order logic, one may define a first-order theory,
e.g., as stated in [KS08]. A first-order Σ-theory T consists of a set of Σ-sentences. More-
over, for a Σ-theory T , a T -satisfiable formula and a T -valid formula can be defined.
More precisely, a Σ-formula φ is T -satisfiable if there exists a structure that satisfies both
the formula and the sentences of the theory T . One says that a Σ-formula φ is T -valid if
all structures that satisfy the sentences of the theory T also satisfy the formula φ. It should
be noted that the set of sentences needed to define a theory is usually large. Therefore, for
the definition of a theory, a set of axioms is used such that all the required sentences can
be inferred from these axioms.

There are numerous theories compatible with SMT. They depend on the domain of
application. Here, some examples are the theory of equality with uninterpreted functions,
the theory of integers, the theory of arrays, the theory of bit vectors, and others. It is also
important to mention that some theories describing real-world problems are undecidable
per se. For instance, the dynamic systems with continuous behaviour can mathematically
be expressed in terms of non-linear arithmetic over the real numbers.

26

2.6. Satisfiability Modulo Theory

2.6.1 SMT solving
Decision procedures for solving SMT formulas are more complex than for propositional
logic, and these procedures can be sorted into two categories:

• the eager approach,

• the lazy approach.

The eager approach concentrates on finding an efficient technique to translate an SMT
formula into an equisatisfiable CNF formula. The implementation of this approach is
quite straightforward and applicable with respect to any decidable satisfiability problem
of the NP class. Moreover, any SAT solver at hand can be used. Such a strategy is
worthwhile in practice up to some extent only, since the sophisticated formula translations
may sometimes result in an exponential blow-up and the theory-specific semantic encoded
in an SMT formula is usually hidden from the reasonings in its propositional counterparts.

The lazy approach is a combination of the DPLL-based algorithm with a solver for
the theory of interest, where the interaction between them is implemented by means of
a well-defined interface. Here, the Boolean space of an SMT formula is explored with
the help of the integrated SAT solver which provides a satisfiable value assignment, if one
exists, for the propositional part of the SMT formula. The theory solver proceeds with this
assignment and checks it for feasibility with regard to the conjunction of the predicates. In
case the assignment does not conflict with the predicates, the SMT formula is satisfiable
and the approach terminates. Otherwise, the theory solver must be able to explain the
conflict and backtrack. After that, the SAT solver continues to search for an assignment
compatible with the theory. If such an assignment is not found then the approach proves
unsatisfiability for the SMT formula. In the literature, it is also common to denote the
lazy approach as DPLL(T) [GHN+04], where T refers to a theory in question.

Recently, a lot of effort was dedicated to the development and refinement of SMT
decision procedures, e.g., [BDL98] [BDS02] [ABC+02] [NO05] [BCF+07] [BKO+07]
[GD07]. At the same time as SMT is investigated, different SMT solvers are introduced.
In practice, many of them perform on quantifier-free fragments of first-order logic, e.g.,
UCLID [SLB03], Yices [DdM06], CVC3 [BT07], Z3 [MB08], Beaver [JLS09], OpenSMT
[BPST10] and so on. The reader may find further information in [RT06].

In this thesis, we are interested in a particular subset of the SMT logic, namely
the quantifier-free logic over the theory of fixed-sized bit vectors or QF_BV for short.
The semantic of QF_BV is expressive enough and suited well to formulate the veri-
fication problems over the bit vector operations as, e.g., in a data-path design. Since
efficient algorithms for solving such verification problems are the main scope of this
work, it is necessary to allude to some QF_BV SMT solvers proposed in the last few
years: Spear [BH08] [Spe], Boolector [BB09] [boo], MathSAT [BBC+05], and simpli-
fyingSTP based on revision 939 of STP [GD07, STP]. Here, the techniques integrated
into the engines were quite successful, so that these solvers demonstrated the best perfor-
mance in the QF_BV division on the SMT competitions 2007 [SMT07], 2008 [SMT08],
2009 [SMT09], and 2010 [SMT10], respectively. However, similar to SAT, solving hard

27

Chapter 2. Fundamentals

SMT formulas with arithmetic operations, like addition and multiplication, is often not
feasible because of very high costs in terms of CPU time and memory resources. In
Chapter 6, we will introduce a new technique based on the algorithms of computer al-
gebra and aimed at improving the efficiency of solving hard QF_BV SMT problems. To
understand the theory of fixed-sized bit vectors, a succinct explanation of it is given in
Section 2.6.2. For a thorough description on the SMT language, please, refer to its stan-
dard specifications of version 1.2 [RT06] and version 2.0 [BST10]. As an example, SMT
formulas for the property checking instances of (2×2) integer multipliers are depicted in
Figures A.1,A.2, A.3, A.4 of Appendix A.

2.6.2 Fixed-Size Bit Vectors
As it was already stated out in Section 2.2, a bit vector a = a[n− 1 : 0] = (an−1, . . . , a0)
is an ordered concatenation of bits. Here, the number n > 0 specifies the length or the
bit width of this bit vector. In practice, if the value of n is known for all bit vectors under
investigation then such bit vectors are of a fixed size. In contrast to that, in non-fixed size
bit vectors, the value of n remains unknown or the extraction of bits at unknown position
is defined. The bit a0 = a[0] is called the least significant bit (LSB) and an−1 = a[n−1] is
the most significant bit (MSB) of the bit vector. The bit vector representation is frequently
used to encode integers in base 2. For numbers it is common to distinguish between an
unsigned and a signed mode. In the latter case, a two’s complement encoding is usually
applied for binary numbers. Here, the MSB is considered as a sign bit. Unless stated
otherwise, we will assume all bit vectors to be of unsigned type.

Moreover, throughout this thesis the following notations are used:

• for a ∈ Z, b > 0 the remainder a mod b of the integer division a/b denotes the
smallest k ≥ 0 with k = a −mb for some m ∈ Z. Often, one says that k is equal
to a modulo b,

• the unsigned integer represented with a bit vector a = (an−1, . . . , a0) is denoted
by Z+(a) =

∑n−1
i=0 2iai, where 2i is called a weight of the i-th bit and Z+(a) is a

weighted sum of a,

• alternatively, the signed integer represented with a bit vector a = (an−1, . . . , a0) is
denoted by Z(a) = (−2n−1an−1 +

∑n−2
i=0 2iai). This is a so-called two’s comple-

ment conversion rule,

• conversely, 〈x, n〉 for n > 0 and x ∈ Z denotes the uniquely determined bit vec-
tor a = (an−1, . . . , a0) with (x mod 2n) =

∑n−1
i=0 2iai, i.e., a is the n-bit binary

unsigned integer representation of x.

Thus, bit vectors are a proper way to model data storage in the digital designs of
a data path and memory. Since any data path must be able to process data, operations
over bit vectors have to be defined. A list of typical bit-vector operations is shown in
Table 2.4. The detailed semantics on them can be found in [RT06]. Here, depending on

28

2.6. Satisfiability Modulo Theory

Name Syntax
Unary

Bitwise negation bvnot a[n : 0] r[n : 0]
Two’s complement minus bvneg a[n : 0] r[n : 0]

Binary
Bitwise OR bvor a[n : 0] b[n : 0] r[n : 0]
Bitwise AND bvand a[n : 0] b[n : 0] r[n : 0]
Bitwise XOR bvxor a[n : 0] b[n : 0] r[n : 0]
Addition modulo 2n bvadd a[n : 0] b[n : 0] r[n : 0]
Two’s complement subtraction bvsub a[n : 0] b[n : 0] r[n : 0]
Multiplication modulo 2n bvmul a[n : 0] b[n : 0] r[n : 0]
Division, undefined if Z(b) = 0 bvudiv a[n : 0] b[n : 0] r[n : 0]
Remainder, undefined if Z(b) = 0 bvurem a[n : 0] b[n : 0] r[n : 0]
Predicate less than bvult a[n : 0] b[n : 0] r[0 : 0]
Predicate equal to = a[n : 0] b[n : 0] r[0 : 0]
Bits concatenation concat a[n : 0] b[m : 0] r[(n+m+ 1) : 0]
Bits slicing, where i, j ∈ Z+ extract i j a[m : 0] r[(i− j) : 0]
Shift left bvshl a[n : 0] b[n : 0] r[n : 0]
Logical shift right bvlshr a[n : 0] b[n : 0] r[n : 0]

Ternary
If then else ite a[0 : 0] b[n : 0] c[n : 0] r[n : 0]

Table 2.4: Bit-vector operations

29

Chapter 2. Fundamentals

the number of the input arguments, all bit-vector functions considered in this thesis can
be classified into three groups: unary, binary, and ternary. For each of these functions
the bit vector r denotes the output argument whereas a, b, and c are the notations for the
first, the second, and the third input argument, respectively. All these operations serve
as a good basis in the practice to implement more complex and sophisticated operations
on demand. The importance of the theory of the bit vectors in a computer architecture
design is well described in [HP02]. The author of [Kor98] provides a good description on
computer arithmetic algorithms over bit vectors.

2.7 Basics of Computer Algebra
This section seeks to familiarize the reader with some basics of computer algebra. Here,
the main topic of interest is the theory of Gröbner bases, also known as standard bases, as
the understanding of this theory is necessary to proceed with the new verification approach
described in Chapter 4 where algebraic techniques are applied.

For the sake of simplicity and a proper introduction to this theory, especially for read-
ers without any background in computer algebra, this section is split into three parts as
follows:

• Section 2.7.1 contains definitions for the central objects of computer algebra: com-
mutative ring, field, polynomial, variety, ideal, base,

• in Section 2.7.2 according to the notions of [CLO07] by considering a particular
case for a polynomial ring k[x1, . . . , xn] over a field k, a typical interpretation for
the concept of Gröbner bases is given,

• in Section 2.7.3, due to the reason that the approach of Chapter 4 is applicable not
to a field but to a ring only, as determined by [BDG+09], the theory of Gröbner
bases is further generalized for the case of a ring R.

Indeed, the scope of this section is limited to the main notions and the underlying
algorithms, thus, for a deeper study of the theory the reader may refer to textbooks like,
e.g., [AL03, CLO07, GP07].

2.7.1 Preliminaries
Definition 2.20. (Commutative Ring) A commutative ring is a set R equipped with two
binary operations, namely addition (+) and multiplication (·), defined on R such that the
following laws hold:

• commutativity: a+ b = b+ a and a · b = b · a for all a, b ∈ R,

• associativity: (a+ b) + c = a+ (b+ c) and (a · b) · c = a · (b · c) for all a, b, c ∈ R,

• distributivity: a · b+ a · c = a · (b+ c) for all a, b, c ∈ R,

30

2.7. Basics of Computer Algebra

• identities: there exist elements 0, 1 ∈ R so that a+ 0 = a · 1 = a for all a ∈ R,

• additive inverses: given a ∈ R, there exists b ∈ R so that a+ b = 0.

A common example of a commutative ring is the set of integers Z where the ordinary
operations of addition, subtraction and multiplication can be applied.

Note that the existence of the element 1 is usually not required. However, in this
thesis, we only consider rings with 1.

Definition 2.21. (Field) A field is a commutative ring k with multiplicative inverses, i.e.,
for each a ∈ k, where a 6= 0, there exists c ∈ k such that a · c = 1.

It is obvious that in addition to the operations of a commutative ring, a field defines
the operation of division. Note that any field is a ring, but the opposite is not true.

Example 2.8. (Field) The set of all real numbers R is a field whereas the set of all integers
Z is not a field as, e.g., (5/3) /∈ Z.

Before the concept of a polynomial will be explained, the notion of a monomial has to
be introduced 1.

Definition 2.22. (Monomial) A monomial in variables x1, x2, . . . , xn is a power product
xα = xα1

1 ·xα2
2 · . . . xαn

n , where α = (α1, α2, . . . , αn) ∈ Nn. The measure |α| = α1 +α2 +
. . . , αn is called the total degree of the monomial.

Definition 2.23. (Polynomial) Given a ring R and the variables x1, x2, . . . , xn, a poly-
nomial f is a finite linear combination of monomials in the following form:

f =
∑
α

aαx
α, aα ∈ R\{0},

where aαxα is called a term of the polynomial and aα is the coefficient of the term. Here,
the maximum |α| among all terms in f is the total degree of f and denoted by deg(f).

A polynomial in one variable is known as a univariate polynomial, and a polynomial
in more than one variable is a multivariate polynomial.

For a ring R, the set of all possible polynomials in the variables x1, x2, . . . , xn is
denoted by R[x1, x2, . . . , xn]. As stated in [GP07], with the usual addition and multipli-
cation, see Formula 2.1 and Formula 2.2, respectively, the structure R[x1, x2, . . . , xn] is
again a ring, called a polynomial ring in n variables over R. Moreover, it is easy to prove
that this structure fulfills, indeed, the conditions of a commutative ring.∑

α

aαx
α +

∑
α

bαx
α :=

∑
α

(aα + bα)α (2.1)

1One should not confuse a monomial used in computer algebra with a Boolean monomial defined in
Section 2.4.3

31

Chapter 2. Fundamentals

(
∑
α

aαx
α) · (

∑
β

bβx
β) :=

∑
γ

(
∑

α+β=γ

aαbβ)xγ (2.2)

Similar to that for the case of a field k, the set of all possible polynomials in the variables
x1, x2, . . . , xn is indicated with k[x1, x2, . . . , xn]. Consequently, k[x1, x2, . . . , xn] also
fulfills the conditions of a commutative ring. Note here that, the multiplicative inverses
do not exist in general, e.g., 1

x1
/∈ R[x1, x2, . . . , xn]. Hence, R[x1, x2, . . . , xn] is no longer

a field and, therefore, named polynomial ring.
Often in computer algebra, it is necessary to have a monomial ordering so that the

terms are sorted inside a polynomial f , e.g., f = aα1x
α1 + aα2x

α2 + . . . aαmx
αm , and

some special elements of f can be identified as follows:

• LT (f) = aα1x
α1: the leading term of f with aα1 6= 0,

• LM(f) = xα1: the leading monomial of f ,

• LC(f) = aα1 : the leading coefficient of f ,

• multideg(f) = α1: multidegree of f .

Usually, a global ordering < on monomials is required. In fact, monomial orderings
must be preserved under multiplication. Additionally, in global orderings for each ring
variable vi, the condition vi > 1 must always be fulfilled.

Example 2.9. (Monomial Ordering) Let us consider two multivariate polynomials p1 =
10xy4 + 15xz9 + 7x5 and p2 = 3x5 + 5xz9. With regard to the lexicographical order
(lex-order), the polynomial p = p1 + p2 has to be written as p = 10x5 + 10xy4 + 20xz9,
with LT (p) = 10x5, LM(p) = x5, LC(p) = 10, and multideg(p) = (5, 0, 0).

A more detailed description of monomial orderings and the examples on that can be
found in, e.g., [AL03, CLO07, GP07].

Any polynomial f may be transformed into a polynomial equation, i.e., an expression
of the form f = 0. In practice, it is common to solve a system of polynomial equations.
The set of all solutions for such a system is called (algebraic) variety and usually denoted
by V .

Definition 2.24. (Variety) For a ring R and the polynomials f1, . . . , fm ∈ R[x1, . . . , xn],
the variety V (f1, . . . , fm) is defined as follows:

V (f1, . . . , fm) = {(a1, . . . an) ∈ Rn : fi(a1, . . . an) = 0, 1 ≤ i ≤ m},

where Rn = {(a1, . . . , an) : a1, . . . , an ∈ R} is the n-dimensional affine space over R.

Moreover, any field k, where every non-constant polynomial p ∈ k has all its roots,
i.e., all solutions for p = 0 in k, is called an algebraically closed field.

While considering a ring R, special subsets of R, known as ideals, can be identified.

32

2.7. Basics of Computer Algebra

Definition 2.25. (Ideal) Given a ring R and a subset I ⊂ R, I is an ideal if the following
conditions hold:

• 0 ∈ I ,

• f + g ∈ I for any f, g ∈ I ,

• f · g ∈ I for any f ∈ I and any g ∈ R.

Since a polynomial ring R[x1, . . . , xn] is considered in Chapter 4 and Chapter 5 of
this thesis, a way to generate an ideal for such a ring is explained with the next lemma.

Lemma 2.1. Given polynomials f1, f2, . . . , fs ∈ R[x1, x2, . . . xn], the set

〈f1, f2, . . . , fs〉 :=

{
s∑
i=1

hifi : h1, . . . , hs ∈ R[x1, x2, . . . xn]

}
is an ideal in R[x1, x2, . . . xn]. We say that this ideal is generated by f1, f2, . . . , fs.
Proof: see Definition 2 and Lemma 3 in §4 of [CLO07] by taking into account the fact
that the ring k[x1, x2, . . . xn] is a special case of the ring R[x1, x2, . . . xn]. 2

For the ideal I = 〈f1, f2, . . . , fs〉, the set of generating polynomials {f1, f2, . . . , fs}
forms a sort of basis of the ideal. Indeed, from a set of equations f1 = 0, f2 = 0, . . . , fs =
0 with fi ∈ R[x1, x2, . . . xn] for 1 ≤ i ≤ s, one may formulate:

h1f1 + h2f2 + · · ·+ hsfs = 0, (2.3)

where hi ∈ R[x1, x2, . . . xn]. It is evident that the left-hand side of Formula 2.3 belongs
to I = 〈f1, f2, . . . , fs〉, i.e., I can be considered as a set of all “polynomial sequences”
from f1 = f2 = · · · = fs = 0.

Based on the leading term of a polynomial, we can define the leading term ideal.

Definition 2.26. Let I ⊂ R[x1, x2, . . . xn] be an ideal such that I 6= {0}. Then:

• LT (I) indicates the set of all leading terms of non-zero elements in I , where:

LT (I) = {cxα : ∃f ∈ I, LT (f) = cxα},

• 〈LT (I)〉 stands for the ideal generated from the elements of LT (I).

Among other objects, an ideal is a very important algebraic structure in computer
algebra. Many mathematical problems can be formulated as a so-called ideal membership
problem, i.e., to check whether a polynomial f belongs to some ideal I = 〈f1, . . . , fs〉
generated from a set of polynomials {f1, . . . , fs}. This problem can efficiently be solved
by calculating the normal form of the polynomial f with respect to a so-called Gröbner
basis G of the ideal I . Section 2.7.2 continues with the discussion on ideals and describes
the background of a methodology towards solving the ideal membership problem with
regard to a field k. Further, in Section 2.7.3, the idea of the methodology is explained for
a ring R.

33

Chapter 2. Fundamentals

2.7.2 Standard Bases over a Field
In this section we continue studying ideals and explain the concept for solving the ideal
membership problem over a field k. At first, we extend the above notion of varieties to
varieties of ideals.

For any nonempty ideal with even infinitely many polynomials, the set of all roots
(V (I)) in this ideal can be determined by a finite set of polynomial equations. This is
stated by the following proposition and subsequent remarks.

Proposition 2.1. Given an ideal I ⊂ R[x1, . . . , xn] with I = 〈f1, . . . , fs〉 and the alge-
braic variety V (I) defined as

V (I) = {(a1, . . . , an) ∈ Rn : f(a1, . . . , an) = 0,∀f ∈ I},

then
V (I) = V (f1, . . . , fs).

Proof: see Proposition 9 in §5 of Chapter 2 in [CLO07]. 2

According to the Hilbert’s Nullstellensatz, see Theorems 1, 2 of §1 in Chapter 4
of [CLO07], for any algebraically closed field k[x1, . . . , xn], it is true that V (I) = ∅
if and only if I = k[x1, . . . , xn]. Thus, to ensure the existence of a nonempty variety for
the ideal I in the polynomial ring k, it is enough to prove that:

• I is not the ring itself,

• the ring is algebraically closed.

On the other hand, as follows from Hilbert Basis Theorem, see, e.g., Chapter 2 of
[CLO07], any ideal in k[x1, . . . xn] is finitely generated, i.e., for each ideal I there is a
generator set f1, . . . , fs such that I = 〈f1, . . . , fs〉. Moreover, there may exist different
generator sets for I . One generator with specific properties, called Gröbner basis, can be
generated for any nonempty ideal I .

Before the concept of Gröbner basis will be defined, it is necessary to introduce the
division algorithm on polynomials. Among all other operations over polynomials, the
importance of this algorithm is crucial in computer algebra.

Theorem 2.1. (Division Algorithm) Given a polynomial ring k[x1, . . . , xn] and a global
monomial ordering <, for any ordered polynomials f1, . . . , fs ∈ k[x1, . . . , xn], every
f ∈ k[x1, . . . , xn] can be expressed in the following form:

f = a1f1 + · · ·+ asfs + r,

where ai, r ∈ k[x1, . . . , xn]. Moreover, either r = 0 or none ofLT (f1), . . . LT (fs) divides
r. Besides that, it always holds that multideg(f) ≥ multideg(aifi) for any aifi 6= 0, where
6= denotes the natural partial order on N.
Proof: see Theorem 3 in §3 of Chapter 2 in [CLO07]. The pseudocode of the division
algorithm is depicted in Figure 2.5. 2

34

2.7. Basics of Computer Algebra

Example 2.10. (Division) Assume the lex-ordered polynomials f = x3− x, f1 = x2− 1,
and f2 = x− y, where f, f1, f2 ∈ k[x1, x2]. It is requested to divide f by f1 and f2. After
all the iterations, the division algorithm results in a1 = x, a2 = 0, and r = 0, thus, one
may write f = x3 − x = x(x2 − 1) + 0(x− y) + 0.

1: DivisionAlgorithm(f, f1, . . . fs) {
2: a1 := 0, . . . , as := 0;
3: r := 0;
4: p := f ;
5: while p 6= 0 {
6: i := 1;
7: is_division := false;
8: while (i ≤ s & !is_division) {
9: if LT (fi) divides LT (p) {

10: ai := ai + LT (p)/LT (fi);
11: p := p− (LT (p)/LT (fi))fi;
12: is_division := true;
13: }
14: else
15: i := i+ 1;
16: }
17: if !is_division {
18: r := r + LT (p);
19: p := p− LT (p);
20: }
21: }
22: return a1, . . . , as, r;
23: }

Figure 2.5: Division algorithm in a polynomial ring k[x1, . . . , xn]

The division algorithm of Theorem 2.1 provides a very nice feature, namely it can be
applied to solve the ideal membership problem. As proved in Chapter 2 of [CLO07] for
an ideal I = 〈f1, . . . , fs〉, if after division f by f1, . . . , fs the remainder r becomes zero
then f is a member of the ideal I . However, the converse is in general not true.

Example 2.11. (Division, continued) Let us again consider Example 2.10. Assume now,
the polynomials f1, f2 ∈ k[x1, x2] form the ideal I = 〈f1, f2〉. According to Chapter
2 of [CLO07], f is a part of I = 〈f1, f2〉 due to the fact that r = 0 after division of
f by f1, f2. However, surprisingly, if the divisors are swapped, i.e., f1 = x − y and
f2 = x2 − 1, then a nonzero remainder is obtained. This time, the division algorithm

35

Chapter 2. Fundamentals

yields a1 = x2 + xy + y2 − 1, a2 = 0, and r = y3 − y, so that f = x3 − x =
(x2 + xy + y2 − 1)(x − y) + 0(x2 − 1) + y3 − y. Thus, it becomes obvious that the
condition r = 0 is sufficient but not necessary to solve the ideal membership problem.

As already mentioned above in this section, there may exist different generator sets
for one and the same ideal. Then, it becomes natural to ask for a set g1, . . . , gn so that for
the case when f ∈ I = 〈g1, . . . , gn〉, the condition r = 0 is always implied, regardless of
the ordering of the gi. Fortunately, such a set exists for any nonzero ideal. It is known as
a Gröbner basis.

Definition 2.27. (Gröbner Basis) Given a polynomial ring k[x1, . . . , xn], a global mono-
mial ordering < and an ideal I ∈ k[x1, . . . , xn], the finite subset G = {g1, . . . , gs} ⊂ I is
a Gröbner basis (also referred to as a standard basis) if

〈LT (I)〉 = 〈LT (g1), . . . , LT (gs)〉.

Proposition 2.2. For a given monomial order, there exist a Gröbner basis G for any
nonempty ideal I ⊂ k[x1, . . . , xn]. Any Gröbner basis of the ideal I generates I .
Proof: see §5 of Chapter 2 in [CLO07]. 2

Proposition 2.3. Given a Gröbner basisG = {g1, . . . , gs} for the ideal I ⊂ k[x1, . . . , xn].
Then f ∈ I iff the remainder r becomes zero when dividing f by G.
Proof: see §6 of Chapter 2 in [CLO07]. 2

The remainder r after the division of f by a Gröbner basisG is also known as a normal
form of f .

Proposition 2.4. Given a polynomial f ∈ k[x1, . . . , xn] and a Gröbner basis G =
{g1, . . . , gs} for the ideal I ⊂ k[x1, . . . , xn]. There exists a unique r ∈ k[x1, . . . , xn]
so that:

• f = g + r for some g ∈ I,

• no term of r is divisible by any of LT (g1), . . . , LT (gs).

In other words, r is the unique remainder of f with respect to division by G.
Proof: see Proposition 1 in §6 of Chapter 2 in [CLO07]. 2

Obviously, since a Gröbner basis has these nice properties, such a basis is especially
useful in practical applications. Therefore, a method to compute this basis is needed.
In [Buc76] Buchberger has proved that a set of generators of any nonempty ideal can
be transformed into a Gröbner basis. To enable this transformation, a special algorithm,
known as the Buchberger algorithm, was developed. A simplified version of this algo-
rithm is depicted in Figure 2.6. Here, the notation S(p, q) means an S-polynomial in-

troduced by Definition 2.28 and the notation S(p, q)
G′

stands for the remainder after the
division of S(p, q) by G′.

36

2.7. Basics of Computer Algebra

Definition 2.28. (S-Polynomial) Given nonzero polynomials f, g ∈ k[x1, . . . , xn], then
the S-polynomial is defined as follows:

S(f, g) =
xγ

LT (f)
· f − xγ

LT (g)
· g,

where xγ is the least common multiple of LM(f) and LM(g), i.e., γ = (γ1, . . . , γn) with
γi = max(αi, βi), where α = multideg(f) and β = multideg(g).

1: GröbnerBasis(F,G) {
2: G := F ;
3: do {
4: G′ := G;
5: for each pair (p, q), where p 6= q ∈ G′ {
6: S := S(p, q)

G′

;
7: if S 6= 0
8: G := G ∪ {S};
9: }

10: }
11: while G 6= G′;
12: return G;
13: }

Figure 2.6: Buchberger’s algorithm to generate a Gröbner basis G = {g1, . . . gt} for an
ideal I = 〈f1, . . . , fs〉 generated by a set of polynomials F = {f1, . . . fs}

Furthermore, it is also possible to compute the reduced unique Gröbner basis.

Definition 2.29. (Reduced Gröbner Basis) Given an ideal I , the reduced Gröbner basis
G of I is a Gröbner basis such that:

• LC(p) = 1 for each p ∈ G,

• no monomial of the polynomial p ∈ G belongs to 〈LT (G− {p})〉.
Thereby, any two ideals can easily be tested for equality. In this case, one computes

the reduced Gröbner bases for both ideals (with respect to the given monomial order). If
the bases are identical then the ideals are equal.

2.7.3 Standard Bases over a Ring
The theory of Gröbner bases over a field k, reviewed in Section 2.7.2, is in this section
extended for the case of a polynomial ring R[x1, . . . , xn], where R stands for a commu-
tative ring with constant 1. Moreover, while considering polynomials, a global monomial
ordering < shall always be assumed.

37

Chapter 2. Fundamentals

Indeed, in this thesis we are interested in polynomials defined over the ring of integers
Z modulo 2n, denoted as Z/2n[x1, . . . , xn]. Such polynomials are suited well to math-
ematically describe an arithmetic part of a data-path design. Thus, a decision problem
to prove correctness of the arithmetic part can be represented and solved by means of a
system of polynomial equations, as shown in Chapter 4.

Here, for a polynomial f with respect to a Gröbner basis G, a calculation of a normal
form NF(f | G) is crucial. A Gröbner basis may be generated in the same manner as
explained in Section 2.7.2. However, in contrast to a field k, where the normal form is
the remainder of division of f by G, a special approach is needed for the case of a ring
R[x1, . . . , xn]. Therefore, for a polynomial f ∈ R, according to [BDG+09], let us give
the definitions of a t-representation and a standard representation first and, afterwards, a
normal form will be defined.

Definition 2.30. (t-Representation) Given a ring R[x1, . . . , xn], a monomial t and some
elements f, g1, . . . , gm, h1, . . . , hm ∈ R so that

f =
m∑
i=1

higi.

The above sum is a t-representation of f w.r.t. g1, . . . , gm if LM(higi) ≤ t for all i with
higi 6= 0.

A polynomial f is in its standard representation w.r.t. {g1, . . . , gm}, if it is a LM(f)-
representation.

Definition 2.31. (Normal Form) For a ring R[x1, . . . , xn], let ℘ be the set of all finite
subsets G of R. Then a map

NF : R× ℘→ R, (f,G) 7→ NF(f | G)

is called a normal form on R, if for all G ∈ ℘ the following conditions hold:

• NF(0 | G) = 0,

• NF(f | G) 6= 0⇒ LT(NF(f | G)) /∈ 〈LT (G)〉 for all f ∈ R,

• r := f − NF(f | G) has a standard representation w.r.t. G.

As already mentioned, a ring R is an algebraically different structure than a field k.
For this reason, the calculation of a normal form in R has to be treated differently than
explained in Section 2.7.2. Figure 2.7 depicts the pseudocode for the computation of a
normal form for a polynomial f in the polynomial ring R[x1, . . . , xn].

In fact, the theory of Gröbner bases and the computations of normal forms in partic-
ular are widely applied in practice. In mathematics, a great number of various important
problems can be formulated and solved in terms of a system of polynomial equations, see,
e.g., [CLO07, GP07].

38

2.7. Basics of Computer Algebra

1: CalculateNormalForm(f,G) {
2: while (f 6= 0) & (LT (f) ∈ 〈LT (G)〉) {
3: J := {j ∈ {1, . . . , s} : LM(gj) | LM(f)};
4: solve LC(f) =

∑
j∈J cj · LC(gj) where cj ∈ C;

5: f := f −
∑

j∈J cj · gj ·
LM(f)
LM(gj)

;
6: }
7: return f ;
8: }

Figure 2.7: Algorithm for a normal form calculation of a polynomial f in a ring
R[x1, . . . , xn] with a Gröbner basis G = {g1, . . . , gs} and a global monomial ordering

Also in the domain of formal verification, different techniques [SKEG05, SKE07,
WHAH07, SKME08, WWS+08, BDG+09] based on symbolic computations in computer
algebra have been proposed.

In this thesis, Chapter 4 provides a detailed explanation of a formal approach to solve
an arithmetic decision problem which is quite typical in practice when it is necessary to
ensure the correctness of an arithmetic data-path design. Here, the arithmetic parts of both
a data path and the property in question are described by means of a set of polynomials
F over the ring R = Z[x1, . . . , xm]/2n with xi ∈ B, where 1 ≤ i ≤ m. For the proof
goal, i.e., the function which compares the design against the property, see Section 3.1.3,
an additional polynomial g ∈ R is derived. As proved in [WWS+08, Wie], the set F can
directly be constructed as a Gröbner basis for the ideal I = 〈{F}〉. From Proposition 2.1 it
follows that the equation V (I) = V (F) is always valid. Therefore, as shown in Chapter 4,
if the variety subset problem V (F) ⊂ V (g) can be solved for all possible roots in G and
g, then the property holds. Actually, the statement V (F) ⊂ V (g) is true if and only if the
condition NF(g | F) = 0 is valid. Chapter 4 provides an example for this approach.

39

Chapter 2. Fundamentals

40

Chapter 3

Arithmetic Bit Level Verification

In Chapter 2 we studied different levels of abstraction suitable for circuit representation
in digital design. In particular, we considered the bit level, the word level, and the register
transfer level (RTL). Depending on the level of abstraction used for the design descrip-
tion, appropriate techniques need to be applied to verify this design against its specifica-
tion. Here, standard verification algorithms are usually based on BDDs, SAT solving, and
their modifications. While considering combinatorial models of circuits, the proposed
techniques lack performance and robustness as soon as arithmetic functions, especially
multiplication, come into play. This fact has motivated the research community to seek
for alternative and more expressive representations of arithmetic circuits such that formal
verification becomes feasible.

This chapter consists of Section 3.1 reviewing the arithmetic bit level (ABL), proposed
in [SK01] for the first time and further actively studied in [WSK05], and of Section 3.2
describing the concepts of ABL-based formal approaches that have shown to be viable
and very efficient for proving correctness in data-path designs. In essence, this chapter
serves as a background for Chapter 4 where the pragmatic approach of ABL normaliza-
tion, reviewed in Section 3.2.2, is replaced by a computer algebra technique with a clean
mathematical foundation. However, also this technique exploits ABL information.

3.1 Arithmetic Bit Level
To understand the concept of an ABL description and the main principle of all ABL-based
techniques, first of all, the arithmetic bit level has to be introduced.

Definition 3.1. (ABL) An arithmetic bit level is a level of abstraction at which a combi-
natorial model of an arithmetic circuit can be described in terms of three components:

• partial products,

• addition networks,

• comparators.

41

Chapter 3. Arithmetic Bit Level Verification

The ABL components of Definition 3.1 form a minimal set of objects required to
compactly formulate and efficiently solve such a decision problem where the absence of
errors in a combinatorial arithmetic circuit has to be proved. By referring to [WSBK07],
let us give a formal definition for each of the ABL components first and, then, define the
ABL description in the sequel.

3.1.1 Partial Products
A partial product bit is a result of a bitwise multiplication. In fact, a partial product
bit might be computed as the Boolean conjunction over separate bits. This can be well
implemented by means of AND-gates defined in Table 2.2. Usually, a set of partial product
bits is generated with a special unit called a partial product generator as, for example, in
the (2×2) integer multiplier depicted in Figure 3.1.

Definition 3.2. (Partial Product Generator) A partial product generator P is a triple
of bit vectors (a, b, p), where a and b are the input operands and p is the output operand
such that every partial product bit is defined as pi = ai · bi.

HA

HA

0

0
b

a

3
p

2
p

1
p

0p

0

1
b

a

1

0
b

a

1

1
b

a

2
r

0
r

1
r

3
r

Addition

Network

Partial

Product

Generator

Figure 3.1: (2×2) unsigned integer multiplier at ABL

3.1.2 Addition Networks
Similar to decimal numbers, the addition of bit vectors always has to be performed with
regard to weights of the individual bits. Here, the carry bits generated in column i with a
weight ŵi have to participate in the calculation of the next column (i+ 1) with the weight

42

3.1. Arithmetic Bit Level

0
a

1
a

0
r

1
r

(a) HA at gate level

HA

0
a

1a

0
r

1r

(b) HA at ABL

Figure 3.2: Half adder (HA)

ŵi+1 = 2ŵi. In other words, the addition over bit vectors results in a weighted sum
over a set of Boolean variables. To enable such a bit-vector addition with the appropriate
manipulation of weighted bits at ABL, an addition network was proposed.

Definition 3.3. (Addition Network) An addition network N is a quadruple (A,w, c, r)
such that

• A = A0 ∪ A1 ∪ · · · ∪ An is a set of input bits called addends, where every addend
aj ∈ A is a Boolean variable. Besides that, for any k with 0 ≤ k ≤ n, each subset
Ak contains all addends for the column k,

• w = (w0, . . . , wn) is a vector of weights mapped to the addends of every column in
the addition network, i.e., wk(am) ∈ Z and ∀am ∈ Ak,

• c = (c0, . . . , cn) is a vector of constant offsets for every column k with ck ∈ Z,

• r = (r0, . . . , rn) is a vector of Boolean variables that stand for the result bits of the
addition network.

Generalizing Definition 3.3, an addition network can mathematically be described in
terms of Equation 3.1

Z(r) = (
n∑
i=0

2i(
∑
aj∈Ai

wi(aj) · aj + ci)) mod 2n+1. (3.1)

Example 3.1. (Addition Network) The most simple representatives of addition networks
at ABL are a half adder (HA) and a full adder (FA). Symbols for them as well as their
gate-level representations are depicted in Figure 3.2 and in Figure 3.3. It is apparent that
these adders are two-column addition networks. For instance, for the FA in Figure 3.3
it holds that A = {a0, a1, a2} with w(ai) = 20 and ∀ai ∈ A, w = (20, 21), c = (0, 0),
r = (r0, r1). Often, r0 is also called a sum bit and r1 is referred to as a carry bit.
Both HAs and FAs are widely used in practice as fundamental building blocks of a bit-
vector-addition circuit. Combinations of these primitive ABL units interconnected in a
proper way make it possible to model more complex addition schemes for the bit vector

43

Chapter 3. Arithmetic Bit Level Verification

2
a

0
r

1
r

1
a

1
t

2
t

3
t

0
a

(a) FA at gate level

FA

0a

1a

2a

0r

1r

(b) FA at ABL

Figure 3.3: Full adder (FA)

arithmetic. As a didactic example, Figure 3.1 demonstrates the addition network over the
partial product bits in a (2×2) unsigned multiplier. Here, the chain of two HAs forms a
so-called ripple-carry adder.

Note that addition network may have multiple implementations by a netlist of FA/HA
like, e.g., carry-save adder (CSA), carry-lookahead adder (CLA), carry-select adder;
see [HP02] for more details.

In Section 3.2.2 it will be shown how structurally dissimilar but functionally equiva-
lent arithmetic circuits can be reduced at the ABL to a common normal form.

It is also important to mention that the addition is an underlying operation of integer
arithmetic. Computer arithmetic algorithms, as for example presented in [Kor98], employ
addition in designing other operations. Thus, in a digital design, arithmetic calculations
are always based on additions. The execution of such calculations is usually implemented
inside an arithmetic logic unit (ALU) which is a substantial part of the central processor
unit (CPU) in any computer.

3.1.3 Comparators

In formal verification, a typical task is to prove correctness of a design with regards to
some specification or property. In the context of arithmetic circuits, it means to check the
design and its specification for functional equivalence. For purposes like this, a compara-
tor is used and, at ABL, it can be defined as follows.

Definition 3.4. (Comparator) A comparator C is a quadruple (c1, c2, o, f) such that:

• c1 = (c10, . . . , c1n) and c2 = (c20, . . . , c2n) are bit vectors under comparison;
they are called input operands,

• f : Bn+1 × Bn+1 → B is a comparison function,

• o is a Boolean variable denoting the result of the comparison.

44

3.1. Arithmetic Bit Level

On the whole, the comparator is a unit that may provide the result for any operation of
comparison: <,>,≤,≥, 6= and =. However, in the following we only consider the case
of equivalence, i.e., when

o = f(c1, c2) =

{
1, if c1 = c2,
0, otherwise.

Example 3.2. (Comparator) Figure 3.4 illustrates a possible bit-level implementation
for the two-bits equivalence comparator with o = f(a, b).

0
a

0
b

1
a

1
b

o

Figure 3.4: Two-bits comparator at gate level

3.1.4 ABL Description
Using the ABL objects introduced above, the ABL description can easily be formulated.
However, before we do so, the meanings of the fanin and the fanout variables have to be
explained.

Definition 3.5. (Fanin/Fanout at ABL) Let F1 be an ABL object with a set I1 of input
variables and a set O1 of output variables. Here, I1 = {i10 , . . . , i1n} and every i1j

is
called a fanin variable of F1. For any o1k

∈ O1, o1k
is a fanout variable of F1 iff there is

another ABL object F2 with I2 and O2, and it holds that o1k
∈ I2.

Example 3.3. (Fanin/Fanout at ABL) Consider p1 in Figure 3.1; this variable is a fanout
of the partial product generator and a fanin of the addition network. Note that Defini-
tion 3.5 prohibits any fanout variables for comparators at ABL.

Definition 3.6. (ABL Description) Assume a set P of partial products, a set N of addi-
tion networks, and a set C of comparators. The ABL description is a DAG G = (V,E)
with the set of nodes V = P ∪N∪C and the set of edgesE such that for every (x, y) ∈ E
there exists a Boolean variable v which is a fanout for x and a fanin for y.

It should be noted that every vertex of an ABL description stands for a Boolean func-
tion. Such a (potentially multi-output) function is defined for fanout variables and in
terms of fanin variables of the vertex. Here, a function of each vertex is, therefore, re-
stricted with the set of fanin variables. Thus, an ABL description consists of vertices with
corresponding Boolean functions.

45

Chapter 3. Arithmetic Bit Level Verification

Due to the reason that topologies of ABL descriptions may differ for one and the same
function, it is necessary to introduce a condition for the equivalence relation at the ABL.

Definition 3.7. (Equivalence Relation at ABL) Two ABL descriptions G1 and G2 are
equivalent with regard to a set S of Boolean variables iff for every si ∈ S, G1 and G2

represent the same Boolean function.

Overall, an ABL description can be considered as a compact representation of arith-
metic functions at the bit level. Apparently, the operations over ABL objects are straight-
forward and of low execution cost. Moreover, the representation of arithmetic functions at
ABL is well suited in practice for a fast and reliable check on equivalence. This property
of ABL descriptions makes them especially attractive for a verification in both equiva-
lence and property checking. Therefore, the next section continues with a brief discussion
on ABL-related approaches proposed in the past.

3.2 ABL in Formal Verification
In practice, the concepts of ABL serve as a good framework for a number of formal
approaches to prove correctness of arithmetic designs in equivalence checking (Section
3.2.1) and in property checking (Section 3.2.2). Besides that, the concept of ABL was
also successfully utilized for debugging of arithmetic circuits (Section 3.2.3).

3.2.1 Equivalence Checking at the ABL
ABL Extraction through a Reverse Engineering

The effectiveness of ABL reasoning with regard to formal verification was initially de-
monstrated in combinatorial equivalence checking to validate the absence of errors in
designs of integer multipliers at the bit level, see [SK01] and [SK04] for thorough expla-
nations on this topic.

The underlying idea of the proposed methods is based on the fact that, in a digital
design flow, the gate-level representation is a synthesized description of the design after
a series of optimizations performed at levels of abstraction lower than the word level or
even lower than ABL. In other words, a functionally equivalent model at higher levels
of abstraction needs to be derived from a given gate netlist. For purposes like this, the
algorithms of [SK01] and [SK04] use reverse engineering guided by a half-adder network
extraction. Here, Boolean reasoning techniques like, e.g., [KS97] are applied first to
identify XOR functions inside the gate netlist. Further, these XORs are appended with
appropriate carry signals detected from the logic elements of the gate-level design. Thus,
the extraction procedure forms a reference circuit through an iterative insertion of the
newly extracted half adders, see Figure 3.5, where the mapping of the output pins in
HAs to the equivalent variables in the netlist is kept memorized. Further analysis of both
the reference circuit and the gate netlist comes up with an extracted ABL model for the
addition network.

46

3.2. ABL in Formal Verification

a

b

c

s

HA

a

b c

s

Gate netlist of implementation

Reference circuit at ABL

X

Y

1
O

X

Y

2
O

Figure 3.5: Mapping of a gate netlist to the reference circuit

However, the overall functionality of a multiplier design is not yet captured with such
a reference circuit since it does not include a partial product generator as, e.g., shown in
Figure 3.1. In practice, the choice of a suitable partial product generator depends on en-
codings used for the product bits in the implementation. The number of such encodings is
not large and the matching of them to the given addition network is not a time-consuming
task. The wrong encodings are usually canceled out in the first steps of the matching. By
this fact, it allows to achieve a straightforward selection of the correct encoding without
getting into any resource overheads for the whole extraction algorithm. Finally, a merging
operation, as described in detail in Section 3.2.2, is applied to the reference circuit at the
bit level. This leads to a straightforward proof that the reference circuit at ABL possesses
all the desired functionality of a multiplier design. As a result, the reference circuit is
well suited for the needs of a specification circuit used in a standard miter scheme of
equivalence checking as depicted in Figure 1.1. Here, a specification circuit is applied to
verify correctness of the gate-level implementation of a design. In other words, if it is
proved that the functions defined at the output pins of the gate-level implementation are
equivalent to the output functions of the specification then the design is correct. In our
case, since the reference circuit contains a lot of internal equivalences with regard to the
gate-level implementation, it is easier to perform the comparison of the output functions.
In a case like this, the overall verification procedure is significantly faster.

As demonstrated in the experimental part of [SK01] and [SK04], the proposed ex-
traction algorithm is quite robust in practice and it is able to tackle different multiplier

47

Chapter 3. Arithmetic Bit Level Verification

designs optimized by commercial synthesis tools. Indeed, the algorithm is targeted at
HA/FA searching inside a gate netlist. Unfortunately, in industrial applications, some
optimizations may severely restructure the gate netlist so that, for some circuit regions,
HA/FA networks cannot be extracted from the gate netlist. Example 3.4 describes this
problem. An advanced approach to tackle problems like this is addressed in Chapter 5
where a more robust extraction algorithm is detailed.

Example 3.4. (Custom-Designed Component) Assume a gate netlist of the full adder
which is optimized because of the don’t care conditions as defined in Table 3.1. In the con-
text of the surrounding circuitry, the optimized FA behaves correctly because the inputs,
for which the functions are don’t care, are never applied to the FA. However, by a sep-
arate consideration of this piece of logic, also known as a custom-designed component,
the extraction algorithm based on reverse engineering is infeasible to find any adequate
ABL model for the optimized gate netlist of the full adder. This problem is illustrated in
Figure 3.6.

a b d s c
0 0 0 0 0
0 0 1 * *
0 1 0 * *
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 * *
1 1 1 1 1

Table 3.1: Truth table for FA with some don’t care conditions

In practice, optimizations caused due to don’t care conditions may frequently occur
in custom-designed components. Industrial RTL designs may contain a lot of diverse
custom-designed entities. For example, a typical custom-designed component of an inte-
ger multiplier is a Booth encoder. This is an optimized at the logic level generator of all
partial product bits. Figure A.6 illustrates the Verilog code of a multiplier design with
such a generator.

Another technique to verify arithmetic circuits with the help of reverse engineering
extraction was proposed in [SAF08]. This technique is in fact very similar to the proce-
dure described above. However, in contrast to the algorithm of [SK01] and [SK04], where
a stepwise extraction of HAs/FAs in a gate netlist is performed, the technique in [SAF08]
aims to extract for each iteration a group of categorized HAs/FAs that forms a bit-level
adder (BLA) in the reference circuit. The experimental part of [SAF08] compares the
BLA technique against the conventional ABL algorithm. The authors of [SAF08] con-
clude with a superiority of the BLA approach. However, this result is experimentally
not well supported because of the two reasons. First of all, for the experiments reported

48

3.2. ABL in Formal Verification

b

a
s

c

d

FA

HA

HA

HA

HA

a

b

d

1
s

1
c

1
ss¹

1
cc¹

Figure 3.6: Custom-designed component problem at the ABL

in [SAF08], the authors used some private domain implementation of the ABL extrac-
tion. In contrast to that, in [SK01] and in [SK04], the ABL extraction algorithm was
implemented as a part of the HANNIBAL tool [KS97]. Secondly, the mode of logic
optimizations applied for the circuits tested in [SAF08] differs from the logic optimiza-
tions used for the benchmarks of [SK01, SK04]. The authors of [SAF08] optimized a
gate netlist by means of Synopsys Design Compiler. However, in [SK01, SK04], the gate
netlists generated by Synopsys Design Compiler were considered. It is evident that the
degree of optimizations and restructuring is considerably higher for a gate netlist in the
latter case. Therefore, the efficiency of the BLA technique with regard to the ABL-based
algorithm still remains a point for discussion. Moreover, the problem of custom-designed
components also seems to be a bottleneck for the approach of [SAF08].

Indeed, the extraction methodology described here is not the only way to obtain the
ABL description from a gate-level representation of a design. As an alternative, the ABL
model in terms of a reference circuit may also be created concurrently to the design and/or
optimization process of a gate-level implementation. This approach is briefly described
in the next section.

ABL Description through a Reference Language

The ABL extraction techniques reviewed in the previous section are based on reverse
engineering. These techniques are applied to extract a reference circuit from a gener-
ated or optimized gate netlist of a design. Here, neither information about optimizations
nor details of the design issues were considered. In reality, however, with knowledge
about the design, such as encoding schemes for partial products or topologies used for
addition networks, a reference circuit may not be extracted but, instead, simply gener-
ated. Such circuit will also expose a high amount of internal equivalences with respect
to the gate-level implementation. This fact was the basic idea for the approach proposed
in [KJW+08]. Here, the authors introduce a special language, called arithmetic reference

49

Chapter 3. Arithmetic Bit Level Verification

description language (ARDL), aiming at two primary goals:

• an appropriate representation of the specification such that it can further serve as a
reference circuit,

• regular updates of the specification to document all the necessary design issues
applied for the gate-level implementation.

This language is syntactically very similar to the widely-used hardware description
languages VHDL [Ash01] and Verilog [Bha99]. The language provides a small but suffi-
cient set of combinatorial functions which allows a multiplier designer to detail the spec-
ification at an abstract level. This level is intended to be more detailed than the word
level and a little more abstract than the gate level. Thus, the designer is able to start with
the specification at earlier stages of the design process and always keep the specification
up-to-date preserving as many internal equivalences as possible.

Finally, the specification is directly used to verify the correctness of the implementa-
tion as follows:

• the arithmetic correctness of the reference circuit is checked at the ABL with the
algorithms as, e.g., described in Section 3.2.2, and in case of any errors they have
to be fixed in the circuit,

• the gate netlist generated from the reference circuit is further used as a specification
in a standard miter scheme of Figure 1.1 where the absence of errors in the gate-
level representation has to be proved.

Due to the existence of internal equivalences between the specification and the im-
plementation, the equivalence checking procedure performs very fast in practice on even
large multiplier instances with input operands of large bit width such as 32, 64 bits.

However, the proposed ARDL-based technique is, in practice, oriented on full-custom
applications. In case of a design with heavily optimized custom-designed components, the
immediate translation of the RTL description into an ABL description for these compo-
nents is impossible. Thus, a more powerful ABL extraction approach is needed such as
the one discussed in Chapter 5.

3.2.2 Property Checking at the ABL
In this section ABL techniques for RTL property checking will be described. It should
be noted that the methods of equivalence checking, reviewed in Section 3.2.1, extract
or generate an ABL description from the gate netlist of a design. However, in standard
RTL property checking, see Figure 1.2, whenever a design at the ABL is considered, the
ABL description can easily be provided with the front-end of an RTL synthesis tool. An
example of such a design is given in Figure A.5 as Verilog code for an integer multiplier.

In practice, an ABL description can be used to speed up property checking. For ex-
ample, as shown in [WSK04,PWSK07], ABL reasoning may be used to prune the search

50

3.2. ABL in Formal Verification

space for SAT solving. Thus, a property checker with integrated DPLL-based algorithms
can greatly be enhanced in solving arithmetic decision problems. In the following section
we review another ABL-based technique, namely ABL normalization. This technique
allows to prove correctness of arithmetic parts in a property checking instance so that the
instance becomes significantly simplified.

ABL Normalization

As it was already mentioned above, SAT solving has de facto become a substantial in-
gredient of any modern RTL property checker. In practice, such tools perform well on
control parts of a design and for detection of bugs. However, they usually fail to prove
correctness of arithmetic functions in large industrial designs.

Problems like this are addressed by the ABL normalization technique proposed for
the first time in [WSK05]. This technique proved to be very powerful; for example, all
arithmetic operations in the data-path design of the industrial processor TriCore were
successfully verified.

This section provides a brief summary on the ABL calculus for ABL normalization.
In [WSBK07] the reader finds a more detailed description of this effective approach.

The underlying principle of the ABL normalization is based on a step-wise calcula-
tion of normal forms for arithmetic expressions. The normal forms are especially well
suited to implement an efficient comparison of two arithmetic expressions. For normal-
ized expressions, the comparison by subtraction of common terms can be applied. This is
demonstrated in the following example.

Example 3.5. (Normalization) Assume an arithmetic logic unit with an addition / mul-
tiplication operation on two input operands a = (a0, a1, a2) and b = (b0, b1, b2). The
result of the operation can be described with the following expression r = a(a + b) =
(a0+2a1+4a2)((a0+2a1+4a2)+(b0+2b1+4b2)). Suppose that the reduced normalized
form of the expression r is assumed to be as follows r′p = a0 + a0b0 + 2a0b1 + 2a1b0 +
4a1 + 4a0a1 + 4a0b2 + 4a1b1 + 4a2b0 + 8a0a2 + 8a1b2 + 8a2b1 + 16a2 + 16a1a2 + 16a2b2.
To enable the test for functional equivalence between r and r′p, it is sufficient to calculate
the normal form rp for r and check whether the equation rp = r′p holds. Since both ex-
pressions rp and r′p consist of a sum of terms, the comparison by subtraction of common
terms becomes trivial for the equation rp − r′p = 0.

In contrast to Example 3.5, unfortunately, a trivial normalization approach is not ap-
plicable for a real design, since the arithmetic functions of the design are implemented
by a network of half adders and/or full adders. Before we start to describe in details the
more sophisticated technique of [WSK05], some additional definitions and explanations
are needed. We will provide them by referring to the notations given in Section 3.1 and
in [WSBK07]. First of all, the normal form for an ABL description has to be defined.

Definition 3.8. (ABL Normal Form) An ABL description ({P ∪N∪C}, E) is expressed
in a normal form iff there is no edge (N,P) ∈ E for any N ∈N and for any P ∈ P .

51

Chapter 3. Arithmetic Bit Level Verification

Definition 3.9. (Reduced ABL Normal Form) A normal form ABL description ({P ∪
N ∪C}, E) is called reduced iff it always holds that:

• two addition networks N1 ∈ N and N2 ∈ N share no common addends if there
exist C ∈ C such that (N1, C) ∈ E and (N2, C) ∈ E,

• there is no edge (N1, N2) ∈ E for any N1, N2 ∈N .

For a more compact representation, the normal ABL form should also be reduced so
that it conforms to Definition 3.9. However, note, such a normal form is not unique.

A normal form calculation would be impossible at the ABL without proper operations
over ABL elements. Intuitively, such operations have to obey arithmetic commutative,
associative and distributive laws. Definitions 3.10 - 3.12 introduce three major operations
that constitute a fundamental basis for the ABL normalization technique.

Definition 3.10. (Merging of Addition Networks) The addition network N3 is a result
of merging an addition network N1 with some addition network N2 if and only if the
ABL description (V,E) = ({N3}, ∅) is equivalent to the ABL description (V ′, E ′) =
({N1, N2}, {(N1, N2)}).

FA

a

b

c

MergingFA

FA

d

e

f

g

0
r

1
r

2
r

3
r

0
r

1
r

2
r

3
r

cba ++

ed +

gf +

Figure 3.7: Merging of addition networks at ABL

Example 3.6. (Merging) Figure 3.7 demonstrates an example of merging at ABL, where
three FAs of the carry-ripple adder, shown on the left-hand side, are merged into the single
four-column addition network on the right-hand side.

Besides the compactness of multi-column addition networks at ABL, Example 3.6
also illustrates another beneficial feature of such an ABL model, namely the carry bits are

52

3.2. ABL in Formal Verification

not explicitly defined, but, they are always implicitly assumed. Moreover, merging of two
addition networks can be done in linear time with regard to a number of addends.

Similar to the merging of addition networks, one may also define a merging of partial
products, see Definition 3.11, which is of linear complexity as well.

Definition 3.11. (Merging of Partial Products) Two partial product generators P1, P2

are merged into a partial product generator P3 if and only if it holds that for any p1i
∈ P1

there exists p3n ∈ P3 with p3n = p1i
and for any p2j

∈ P2 there exists p3m ∈ P3 with
p3m = p2j

.

According to Definition 3.8, a normal form at ABL is not allowed to contain any addi-
tion networks whose result bits are in fanin to partial products. In other words, all partial
products that are in the fanout to an addition network have to be moved in front of this net-
work so that the functionality of the overall ABL description is preserved. For purposes
like this, the operation of partial products distribution is applied, see Definition 3.12.

Definition 3.12. (Partial Products Distribution) Let (V,E) be an ABL description with
an addition networkN and a partial product generator P such that (N,P) ∈ E. It is pos-
sible to distribute P through N iff there exist a partial product generator P ′ and addition
networks N ′1, . . . , N

′
m that add up all the partial products of P ′ so that the substitution of

(N,P) with P ′ and N ′1, . . . , N
′
m results in the equivalent ABL description.

FA

a

b

c

d

FA

a

b

c

d

1
r

0
r

1
r

0
r

Distribution

Figure 3.8: Distribution at ABL

An example of a partial products distribution through a full adder is depicted in Fig-
ure 3.8. In fact, a distribution at ABL generates an m-times replication of the addition
network, where m is the size of that operand in P which is multiplied out with the re-
sult operand of N , see Definition 3.12. Such replications may become computation-
ally costly. In practice, however, the newly generated networks are usually immediately
merged, avoiding CPU time blow-up.

The flow of the ABL normalization is schematically depicted in Figure 3.9. Accord-
ing to the definitions of this section, it can be formulated as follows:

• merging of addition networks,

• merging of partial products,

• distribution of partial products,

53

Chapter 3. Arithmetic Bit Level Verification

N1

N4

CMP

P1

N2 P2

N3 P3

P5 N5

INP
DESIGN (ABL)

PROPERTY (ABL)

1
N

2
N

3
N

1
P

2
P

3
P

4
N

4
P

5
N

C

(a) ABL instance formed from design and property

CMP

N6

N5

P6

NORMALIZED INSTANCE

INP

5
P

5
N

6
N

C

(b) ABL normalized instance

Figure 3.9: ABL normalization flow

• merging of addition networks,

• identification of equivalent partial products,

• deletion of equivalent addends from the addition networks that are in the fanin to
the common comparator.

For a thorough example on the ABL normalization, as well as experimental results,
the interested reader is referred to [WSBK07].

The theory of the ABL calculus, briefly summarized in this section, serves as a back-
ground for the ABL verification method based on the computer algebra technique pre-
sented in Chapter 4.

3.2.3 Debugging by means of ABL Description

Along with a successful application in the domain of formal verification, the principles
of the ABL extraction [SK01] turned out to be useful in the debugging of gate netlists for
arithmetic designs.

For example, the approach [KF02] exploits an ABL reference model to identify bugs
in the erroneous part of a design. Here, the circuit in question is mapped to standard
logic cells. In case of any errors detected in the addition network of the circuit, the
erroneous part is extracted for the further consideration. This part is transformed into
a net of primitive logic gates so that the mapping to a reference model, as described
in [SK01], can be applied. The process of this mapping is divided into two phases, namely
a forward mapping and a backward mapping, i.e., when the circuit is traversed from the
primary inputs towards the primary outputs first and, then, in the opposite direction. Such
a mapping locates bugs by the unmapped piece inside the erroneous circuitry. As soon as
the faulty elements are identified, they are replaced in a proper manner.

54

3.2. ABL in Formal Verification

Recently, Sarbishei et al. proposed another formal approach for the debugging of
gate-netlist descriptions of arithmetic circuits [STAF09]. Again, the key feature of the
approach is based on a reverse engineering that treats a gate netlist as a target to extract
an ABL model for the needs of the debugging. The algorithm for the debugging itself
consists of three major steps:

• initialization of partial products,

• extraction of XOR functions,

• mapping for carry signals.

Like in [KF02], the approach of [STAF09] provides a mechanism for rectification of the
erroneous parts in the circuit of interest.

55

Chapter 3. Arithmetic Bit Level Verification

56

Chapter 4

Algebraic Approach

In this chapter we study a recently developed technique [WWS+08,PWS+11] for solving
hard arithmetic problems. This technique is based on the theory of Gröbner bases over
finite rings. First, we convert the arithmetic parts of a decision problem into equivalent
variety subset problems. Then, we solve these problems by computing normal forms.
Contrary to [WWS+08], we now perform our computations in the quotient ring Q :=
Z/2N [X]/〈x2 − x : x ∈ X〉. We prove that this allows us to omit an otherwise
necessary and expensive zero function test for the normal form.

This chapter consists of three sections. Section 4.1 provides a short review on previous
algebraic techniques used in formal verification of data-path designs. Section 4.2 shows
how the arithmetic subproblems of the instance under interest can efficiently be solved us-
ing computer algebra techniques. In this section, we assume that arithmetic problem parts
are described at the arithmetic bit level or at the word level. However, for cases where
problem parts are specified below ABL, the extraction techniques discussed in Chapter 5
need to be applied first. In Chapter 6 we combine these approaches and provide experi-
mental results. This chapter ends with a representative example discussed in Section 4.3.
Here, using the proposed approach based on computer algebra, the proof of correctness
for a multiplier design is illustrated.

4.1 Related Work
Recently, techniques from symbolic computer algebra have entered the verification arena
[SKEG05, SKE06, SKE07, WHAH07, SKME08, WWS+08, BDG+09, PWS+11]. For in-
stance, in [SKEG05], a procedure is presented that determines whether a multivariate
polynomial with fixed word length operands is vanishing. This allows to compare poly-
nomial representations for bit vector functions. The approach is extended towards multi-
ple word length operands in [SKE06,SKE07]. Both approaches, however, require a clean
word-level representation of the data paths. This limits their applicability, e.g., in RTL
property checking.

In principle, it is possible to transform a circuit-related verification problem into an
algebraic problem over Z/2. Efficient computer algebra systems for this special case are

57

Chapter 4. Algebraic Approach

available [BD09]. In [BD09], polynomials are represented by zero suppressed binary
decision diagrams (ZDDs) [Min93]. As a result, during the algebraic computation, func-
tional decision diagrams (FDDs) [DBS+94] of the original circuitry are generated. FDDs,
however, are known to grow exponentially for multipliers and are, therefore, unsuitable
for the problems considered in this thesis. At the bit level, arithmetic circuitry is typically
specified using arithmetic entities such as half adders and full adders. If such entities can
be identified within the design, we call the resulting netlist an arithmetic bit level (ABL)
description. An approach for verification of such bit level implementations using Gröbner
basis theory is reported in [WHAH07]. This approach requires polynomial specifications
for every building block in the hierarchy of the arithmetic circuit design. After proving
that a block, e.g., a carry-save adder, fulfills its local specification, the polynomial repre-
sentation is used to verify the block in the next level of the hierarchy. However, since the
correctness proof includes a range check, the intermediate results at the block boundary
are required to have sufficient bit width to represent every possible result. For designs
implementing integer arithmetic with fixed bit width, this is often not the case.

A heuristic approach to exploit arithmetic bit level information in RTL designs has
been reported in [WSBK07]. By local equivalence transformation of the arithmetic bit
level description, a reduced normal form is computed that is sufficient to prove the arith-
metic problem parts of a property checking instance and relieves the SAT/SMT solver
from reasoning in structurally different implementations for the same arithmetic func-
tion. This method is subsumed by more general algebraic approaches, e.g., as presented
in [WWS+08, BDG+09, PWS+11], and, further, investigated in the next section of this
chapter. Besides, these approaches also provide a well-understood mathematical basis for
ABL-based verification techniques reviewed in Section 3.2.2.

4.2 Using Computer Algebra to solve Arithmetic Sub-
problems in Formal Verification

This section starts with an overview about mathematical models required to formulate an
arithmetic decision problem for the algebraic technique introduced in [WWS+08]. The
normal form computations for solving such problems are discussed in the sequel.

4.2.1 Algebraic Modeling of Arithmetic Decision Problems

We may assume that the arithmetic decision problem is represented as an acyclic netlist
of bit vector functions. The arithmetic components Gj of this netlist may have multiple
output bit-widths that are denoted by nj in the sequel. In [WWS+08], each of these
components is modeled by nj polynomials over the ring R = Z/2N with appropriate N .
Initially, the size N of the ring is chosen heuristically to be

N := n+ max{nj | j = 1, . . . ,m} ,

58

4.2. Using Computer Algebra to solve Arithmetic Subproblems in Formal Verification

where n is the bit-width of the comparison constraint in the proof goal, m the component
number in the netlist and nj the bit-width of the j-th component. However, this initial
value for N is just a heuristic choice that turned out to be sufficient for many practical
problem instances. During computations, our current implementation detects cases where
a larger ring is required and automatically moves to a sufficiently larger ring with size
N ′ > N .

We can describe each arithmetic component in the cone of influence of a proof goal
in terms of nj equations of the form

G
(t)
j :

t−1∑
i=0

2ir
(j)
i = f

(t)
j (a

(j)
1 , a

(j)
2 , . . . , a(j)

mj
) mod 2t, (4.1)

with t = 1, . . . , nj . Moreover, the variables a(j)
i correspond to the inputs and the vari-

ables r(j)
i correspond to the outputs of the j-th component. The polynomials f (t)

j are
defined as the polynomials with minimal coefficients representing the polynomial func-
tion (Z/2t)mj → Z/2t that specifies the lower most output bits r(j)

i for i = (0, . . . , t− 1)

of the arithmetic component Gj . Furthermore, the condition r(j)
i 6= a

(l)
k is fulfilled by

definition, since the netlist is acyclic.
As the reader might have noticed, the modulo operation used in Equations 4.1 is not

an algebraic operation. In order to apply Equations 4.1 for algorithms of computer alge-
bra, we have to model the modulo semantics of the arithmetic components in bit-vector
netlists. For this reason, artificial variables s(j)

t – so-called slack variables – are addition-
ally introduced. Thus, from Equations 4.1 we generate nj polynomials as follows:

G̃
(t)
j :

t−1∑
i=0

2ir
(j)
i − f

(t)
j (a

(j)
1 , a

(j)
2 , . . . , a(j)

mj
)− 2ts

(j)
t . (4.2)

These polynomials are sufficient to model word-level arithmetic components like
signed-/unsigned multipliers or adders. Likewise, bit-level arithmetic components such
as full adders, half adders, and bit-wise products can be modeled in the same formalism.
We illustrate these definitions by the following examples.

Example 4.1. (Partial Products) Given a non-Booth-encoded (n × m) multiplier with
two bit vectors (a0, . . . , an−1) and (b0, . . . , bm−1) as input operands. The partial products
of such a multiplier can be represented in terms of k equations as defined in Formula 4.3
and, then, be modeled by k polynomials of Formula 4.4, where k = n·m; t = 0, . . . , k−1;
i = 0, . . . , n− 1 and j = 0, . . . ,m− 1.

G(t)
pp : pi,j = aibj mod 2. (4.3)

G̃(t)
pp : pi,j − aibj + 2s1. (4.4)

59

Chapter 4. Algebraic Approach

Example 4.2. (Half Adder) A half adder with inputs x0, x1 and outputs c, s for carry
and sum can be represented by Equations 4.5 and, then, be modeled by the polynomials
of Formula 4.6.

G
(2)
ha : 2c+ s = (x0 + x1) mod 4,

G
(1)
ha : s = (x0 + x1) mod 2.

(4.5)

G̃
(2)
ha : 2c+ s− (x0 + x1) + 4s2,

G̃
(1)
ha : s− (x0 + x1) + 2s1.

(4.6)

Example 4.3. (Full Adder) A full adder with inputs x0, x1, x2 and outputs c, s for carry
and sum can be represented by Equations 4.7 and, then, be modeled by the polynomials
of Formula 4.8.

G
(2)
fa : 2c+ s = (x0 + x1 + x2) mod 4,

G
(1)
fa : s = (x0 + x1 + x2) mod 2.

(4.7)

G̃
(2)
fa : 2c+ s− (x0 + x1 + x2) + 4s2,

G̃
(1)
fa : s− (x0 + x1 + x2) + 2s1.

(4.8)

Example 4.4. (Adder) An unsigned k-bit adder with input variables a = (ai | 0 ≤ i < k)
and b = (bi | 0 ≤ i < k), and result r = (ri | 0 ≤ i < k) can be represented by k
equations G(t)

+ stated with Formula 4.9, where t = 1, . . . , k, and, further, be modeled by
k polynomials G̃(t)

+ of Formula 4.10.

G
(t)
+ :

t−1∑
i=0

2iri =
t−1∑
i=0

2i(ai + bi) mod 2t. (4.9)

G̃
(t)
+ :

t−1∑
i=0

2iri −
t−1∑
i=0

2i(ai + bi)− 2tst. (4.10)

Example 4.5. (Multiplier) An unsigned (n×m)-bit multiplier with input variables a =
(ax | 0 ≤ x < n) and b = (by | 0 ≤ y < m), and result r = (ri | 0 ≤ i < k), where
k = n + m, can be represented by k equations G(t)

× stated with Formula 4.11, where
t = 1, . . . , k, and, further, be modeled by k polynomials G̃(t)

× of Formula 4.12.

G
(t)
× :

t−1∑
i=0

2iri =
n−1∑
x=0

2xax ·
m−1∑
y=0

2yay mod 2t. (4.11)

G̃
(t)
× :

t−1∑
i=0

2iri −
n−1∑
x=0

2xax ·
m−1∑
y=0

2yay − 2tst. (4.12)

60

4.2. Using Computer Algebra to solve Arithmetic Subproblems in Formal Verification

In the polynomials G̃(t)
j , some of the slack variables s(j)

t can be omitted if we know
that the condition defined with Formula 4.13 holds over Z.

0 ≤ f
(t)
j ≤ 2t − 1. (4.13)

For example, the slack variable s1 of Formula 4.4 and the slack variables s2 in For-
mula 4.12 and in Formula 4.6 can be omitted. If the condition of Formula 4.13 cannot be
guaranteed and we need to know the exact value of s(j)

t during the computation, we can
replace s(j)

t by a polynomial in the variables a(j)
1 , a

(j)
2 , . . . , a

(j)
mj , i.e., a subset of the inputs

of Gj . For instance, the polynomial s − (x0 + x1) + 2s1 of Formula 4.6 results in the
polynomial s1 = x0 · x1 for the slack variable. However, often, it is better to introduce
slack variables because, in general, the polynomials for such variables can be very large
even for small polynomials for f (t)

j .
As illustrated in the examples, the above algebraic model utilizes word-level informa-

tion where available and is able to handle bit-level arithmetic information where necessary
as well.

In order to analyze proof goals with algebraic methods, the notion of variety as given
in Definition 2.24 is needed.

Let X be the set of non slack variables in {G̃(t)
j }. A proof goal is modeled by a

polynomial g in {a1, . . . , at} ⊂ X . It vanishes if and only if the proof goal is fulfilled,
i.e., the following condition

g(a1, . . . , at) = 0 mod 2n

holds for all tuples in the variety V ({G̃j}). Note that n, used for the modulo in the above
equation, depends on the bit width of the comparison constraint in the underlying problem
instance.

Example 4.6. (Equality Comparison) A n-bit equality comparison of operands a =
(an−1, . . . , a0) and b = (bn−1, . . . , b0) can be modeled by the polynomial of Equation 4.14.

g =
n−1∑
i=0

2i(ai − bi) . (4.14)

To decide whether the condition g = 0 modulo 2n holds, we have to prove that the
polynomial of Equation 4.14 vanishes modulo 2n for all tuples in the variety V ({G̃j}).
This leads to the variety subset problem:

V ({G̃j}) ⊂ V (2N−ng) . (4.15)

Following, we solve this for R = Z/2N . Our solution replaces the well-known ideal
membership problem of the field case.

Note that the generated variety subset problem can in principle be solved by construct-
ing a Gröbner basis for the ideal I = 〈{G̃j}〉 and using normal form computations with
respect to this basis. Fortunately, it turns out that for certain monomial orderings, the set
{G̃j} is a Gröbner basis for I by construction. This is crucial for the performance of the
presented approach.

61

Chapter 4. Algebraic Approach

4.2.2 Solving Arithmetic Decision Problems by Normal Form Com-
putations

In this section, Proposition 4.1 and Lemma 4.1, defined in [WWS+08] at first, are key
aspects in an effective solution of the variety subset problem introduced in the previous
section.

Proposition 4.1. The set G = {G̃(t)
j } is a Gröbner basis with respect to any global

monomial ordering refining the following partial order:

r
(j)
i is larger than every monomial in the variables a(j)

k , s
(j)
t , r

(j)
l ,

for all i, k, t, j and l < i.
Proof: see [WWS+08]. 2

Indeed, as shown in [WWS+08], Lemma 4.1 serves as a basis to prove that normal
form computation can be used as an effective procedure for solving our variety subset
problems.

Lemma 4.1. Let G be a Gröbner basis of an ideal I ⊂ Z/2N [X], X = (X ′, X ′′), and
assume that for all X ′ there exist X ′′ with f(X ′, X ′′) = 0 for all f ∈ G. Let g be a
polynomial such that the normal form h of g with respect to G is in Z/2N [X ′]. Then, h
defines the zero function if and only if V (G) ⊂ V (g).
Proof: see [WWS+08]. 2

For the given proof goal g ∈ Z/2n[X], the normal form h =NF(2N−ng | G) of 2N−ng
with respect to G can efficiently be computed, e.g., by the algorithm depicted in Fig-
ure 2.7. It holds if and only if h defines the zero function, since we may assume that h
depends on inputs only.

Returning to the final statement of Lemma 4.1, one should note that although h defines
the zero function, it need not be the zero polynomial; cf. [GSW10]. Moreover, h may ini-
tially consist of slack variables, and replacing slack variables by polynomial expressions
in the inputs may significantly increase the complexity, as pointed out above.

Thus, the goal is to move to a modified setting in which Lemma 4.1 will still hold
but slack variables and non-zero polynomials defining the zero function are no longer a
problem. In general, zero function tests over Z/2N [X] are expensive [SKE07].

A positive result in this respect is obtained by using a pure bit-level formulation, that
is, all variables in Equation 4.1 and in Equation 4.2 are modeled to be bit-valued. This
can be enforced by adding extra relations of the form x2 = x, for all variables in X .
Algebraically, this means to compute in the quotient ring Q := Z/2N [X]/〈x2 − x :
x ∈ X〉 rather than in Z/2N [X]. Lemma 4.2 ensures that only the zero polynomial in Q
defines the zero function on Q|X| and renders the zero function test superfluous here.
Hence, the precondition of Lemma 4.1 for concluding V (G) ⊂ V (g) can be effectively
tested.

62

4.3. Illustrative Example

Lemma 4.2. Let m,n ≥ 1 be natural numbers and Q := Z/〈m〉[x1, x2, . . . , xn]/〈x2
1 −

x1, x
2
2 − x2, . . . , x

2
n − xn〉 be a polynomial quotient ring. Moreover, let us denote by

T := {(t1, t2, . . . , tn) | ti ∈ {0, 1}, 1 ≤ i ≤ n} the set of all bit-valued inputs for
polynomials in Q. If f ∈ Q vanishes for all t ∈ T , then f is the zero polynomial.
Proof: We fix some f ∈ Q which vanishes for all t ∈ T , and assume f 6≡ 0 for a
contradiction. Due to special structure of Q, all terms of f are of the form c · xi1 · · ·xik
with mutually distinct indices ij in {1, 2, . . . , n}. We pick a term s of f with k least,
i.e., with the least number of variables. Now, consider the tuple t = (t1, t2, . . . , tn) ∈ T
with tj = 1 if xj appears in s, and tj = 0 otherwise. We claim f(t) 6= 0, yielding the
desired contradiction. Let s′ denote any other term of f , i.e., any term of f − s. By
construction, it is clear that s′ mentions at least one variable which is not present in s.
But then s′(t) = 0, hence, f(t) = s(t) + (f − s)(t) = s(t) = LC(s) 6= 0. 2

4.3 Illustrative Example
In this section we demonstrate an application of the computer algebra method described
above in this chapter. As an example, we show how the design of a (2×2) signed integer
multiplier depicted in Figure 4.1 can be verified. We use the generic computer algebra
tool SINGULAR 3-1-2 [GPS10] to perform the computations.

HA

FA

0

0

b

a

1

0

b

a

0

1

b

a

1

1

b

a

0
p

1
p

2
p

3
p

0
c

1
c

0
r

1
r

2
r

3
r

0
t

1
t

2
t

FA
2
c

Figure 4.1: (2×2) signed integer multiplier

63

Chapter 4. Algebraic Approach

unit functional definition algebraic polynomial(s)
1 AND p0 = a0 ∧ b0 p0 − a0b0
2 AND p1 = a0 ∧ b1 p1 − a0b1
3 AND p2 = a1 ∧ b0 p2 − a1b0
4 AND p3 = a1 ∧ b1 p2 − a1b1
5 HA t0 + 2c0 = (p1 + p2) mod 22 t0 − (p1 + p2) + 2s0,

t0 + 2c0 − (p1 + p2)
6 FA t1 + 2c1 = (t0 + c0 + p3) mod 22 t1 − (t0 + c0 + p3) + 2s1,

t1 + 2c1 − (t0 + c0 + p3)
7 FA t2 + 2c2 = (t0 + c0 + c1) mod 22 t2 − (t0 + c0 + c1) + 2s2,

t2 + 2c2 − (t0 + c0 + c1)
8 OUTPUT r0 = p0 r0 − p0

9 OUTPUT r1 = t0 r1 − t0
10 OUTPUT r2 = t1 r2 − t1
11 OUTPUT r3 = t2 r3 − t2

Table 4.1: Mathematical description of units for multiplier from Figure 4.1 where all
variables are Boolean variables and, moreover, s0, s1, s2 define slack variables

functional definition algebraic polynomials
r′0 + 2r′1 + 4r′2 + 8r′3 = r′0 − a0b0,

(−2a1 + a0)(−2b1 + b0) = r′0 + 2r′1 − (a0b0 − 2a0b1 − 2a1b0) + 4s3,
a0b0 − 2a0b1 − 2a1b0 + 4a1b1 r′0 + 2r′1 + 4r′2 − (a0b0 − 2a0b1 − 2a1b0 + 4a1b1) + 8s4,

r′0 + 2r′1 + 4r′2 + 8r′3 − (a0b0 − 2a0b1 − 2a1b0 + 4a1b1)

Table 4.2: Mathematical description of a (2×2) signed multiplier where all variables are
Boolean variables and, moreover, s3, s4 define slack variables

64

4.3. Illustrative Example

commands comments
1 ring r = (integer, 2, 4), (r3, r2, r1, r0, r

′
3, r
′
2, r
′
1, Define the ring r of integers

r′0, c2, t2, c1, t1, c0, t0, p3, p2, p1, p0, a1, a0, b1, b0, modulo 24 with lexicographical
s4, s3, s2, s1, s0), lp; ordering. Note, the variables are

topologically sorted, see Figure 4.1.
2 ideal I = Generate ideal I from algebraic

p0 − a0 ∗ b0, polynomials of Table 4.1 and
p1 − a0 ∗ b1, Table 4.2.
p2 − a1 ∗ b0,
p3 − a1 ∗ b1,
t0 − p1 − p2 + 2 ∗ s0,
t0 + 2 ∗ c0 − p1 − p2,
t1 − c0 − t0 − p3 + 2 ∗ s1,
t1 + 2 ∗ c1 − c0 − t0 − p3,
t2 − t0 − c0 − c1 + 2 ∗ s2,
t2 + 2 ∗ c2 − t0 − c0 − c1,
r0 − p0,
r1 − t0,
r2 − t1,
r3 − t2,
r′0 − a0 ∗ b0,
r′0 + 2 ∗ r′1 − (a0 ∗ b0−
2 ∗ a1 ∗ b0 − 2 ∗ a0 ∗ b1) + 4 ∗ s2,
r′0 + 2 ∗ r′1 + 4 ∗ r′2 − (a0 ∗ b0 − 2 ∗ a1 ∗ b0

−2 ∗ a0 ∗ b1 + 4 ∗ a1 ∗ b1) + 8 ∗ s3,
r′0 + 2 ∗ r′1 + 4 ∗ r′2 + 8 ∗ r′3 − (a0 ∗ b0

−2 ∗ a1 ∗ b0 − 2 ∗ a0 ∗ b1 + 4 ∗ a1 ∗ b1);
3 reduce(lead(std(I)),std(lead(I))); Check that I is a Gröbner basis.

This is true if the reduction results
in zero for all polynomials of I .

4 ideal J ; Generate ideal J to ensure that
for (int i = 1; i <=nvars(r); i + +) the condition x2 = x holds for
{J = J,ideal(var(i)2−var(i)); }; any variable x of the ring r, i.e.,

x is a Boolean variable.
5 reduce(lead(std(J)),std(lead(J))); Check that J is a Gröbner basis.
6 poly g = Define the proof goal.

r0 + 2 ∗ r1 + 4 ∗ r2 + 8 ∗ r3

−(r′0 + 2 ∗ r′1 + 4 ∗ r′2 + 8 ∗ r′3);
7 reduce(reduce(g, I), J); Compute reduced normal form of

g with respect to I and J .
This computation results in zero.

Table 4.3: Normal form computation with SINGULAR 3-1-2 [GPS10]

65

Chapter 4. Algebraic Approach

As pointed out in Section 4.2, to apply the computer algebra technique, first of all,
it is necessary to derive algebraic polynomials for each unit of the design under investi-
gation. For the net list of the (2×2) signed multiplier from Figure 4.1, the mathematical
definitions and the polynomials for every unit are shown in the second and the third col-
umn, respectively, of Table 4.1. Furthermore, Table 4.2 contains the definition of all
corresponding polynomials for the (2×2) signed multiplier. Note that in the multiplier
of Figure 4.1 the bit vectors (a1, a0) and (b1, b0) are used as primary inputs whereas the
bit vector (r3, r2, r1, r0) serves as primary output. The vector (r′3, r

′
2, r
′
1, r
′
0) stands for

the output function of a word-level (2×2) signed multiplier given in the specification. A
few slack variables s3, s2, s1, s0 are needed. The conversion of logic functions into alge-
braic polynomials is implemented according to the technique described in Section 5.3.1.
The transformation of ABL elements into a set of algebraic polynomials follows to the
modeling approach of Section 4.2.1.

Thus, the proof goal of our example can algebraically be formulated as the polynomial
g = r0 + 2r1 + 4r2 + 8r3 − (r′0 + 2r′1 + 4r′2 + 8r′3). If we prove that g = 0 for all
possible evaluations of the primary input variables then the design of the multiplier in
Figure 4.1 is correct. To enable computations over algebraic polynomials, SINGULAR
3-1-2 [GPS10] is used. All relevant steps of the computations are gathered in Table 4.3.
At first, the ring r of integers modulo 24 is defined. Here, all variables of the created
algebraic polynomials are specified with regard to topological ordering. In the next step,
the ideal I is generated over all the created polynomials. In accordance with the theory
of [WWS+08], the ideal I has to form a Gröbner basis. To check this, it is enough to prove
whether the condition of Definition 2.27 holds. Therefore, a special command of the third
step, shown in Table 4.3, is applied for SINGULAR. For our example, this command
produces zero for all the reduced polynomials of the ideal I . Since all the variables used
for polynomials are Boolean variables, the condition x2 = x has to be always fulfilled
for them, see Lemma 4.2. Due to this, an additional ideal J is generated at the step 4.
Actually, the ideal J is also a Gröbner basis. This is shown in step 5. At the step 6, the
proof goal is specified. Finally, at the step 7, the reduced normal form for the proof goal
is calculated with respect to Gröbner bases I and J . Based on the fact that the computed
normal form is a constant zero, we conclude with the functional correctness for the design
of the multiplier in Figure 4.1.

The computer algebra technique proposed in this section was integrated into the veri-
fication engine described in Chapter 6. We also present experimental data evaluating the
efficiency of the technique.

66

Chapter 5

Modeling of Custom-Designed
Components at the ABL

In this chapter, we increase the level of automation for both RTL property checking and
SMT solving of QF-BV formulas in those cases where, for arithmetic circuits, the ABL
information is missing for certain custom-made components of a design. Such compo-
nents might be, e.g., Booth encoders or sophisticated addition structures that are typically
implemented below the ABL. This is relevant for a large number of industrial applica-
tions where certain arithmetic components are custom-designed and others (especially
array structures such as addition networks) are not. In practice, often, some parts of a
design contain hand-crafted optimizations and include specialized logic such that it be-
comes impossible to translate the RTL description into an ABL description immediately.
In this chapter, we study a method to transform custom-designed components of an arith-
metic circuit into functionally equivalent ABL descriptions. Consequently, this allows to
successfully apply the ABL-based algorithms described in Chapters 3, 4. The proposed
approach fills an important gap in the formal verification flow and ensures that the manual
approach [KJW+08], described in Section 3.2.1, can be reserved for high-end applications
where arithmetic circuits are designed globally by a full-custom methodology.

This chapter is organized as follows. Section 5.1 motivates the need for abstraction
of ABL information from gate-level circuitry using a design for a multiplier with Booth-
encoded partial products as an illustrating example. This is a typical example for designs
with mixed ABL/gate-level representations. Section 5.2 details an approach to synthe-
size an ABL description from a gate netlist so that the full power of the normalization
technique from Chapter 3 may further be used for ABL verification. Section 5.3 extends
the concept of the ABL synthesis from Section 5.2 and presents an approach to compute
normalized polynomials in a ring Z/2n applicable for the computer algebra algorithms
of Chapter 4. Section 5.4 provides experimental results for the ABL synthesis technique.
The experimental data for the technique of Section 5.3 are collected separately. They are
gathered in Chapter 6 where it is also shown how this technique can be integrated into the
algebraic approach of Chapter 4 to solve SMT decision problems originated from formal
verification of arithmetic designs.

67

Chapter 5. Modeling of Custom-Designed Components at the ABL

5.1 Mixed ABL/Gate-Level Problems
As it pointed out in Chapter 3 and Chapter 4, the ABL-based approaches can successfully
be applied whenever ABL information is available for the full RTL description of a de-
sign. Unfortunately, this is not always the case in industrial practice. In order to improve
performance or area, designers, sometimes, describe certain parts of an arithmetic circuit
below the ABL, i.e., at the gate level. In this case, the ABL-based approaches are not
applicable.

For instance, the speed of computations performed by a multiplier is dominated by the
additions of partial products. A widely adopted technique to reduce the number of partial
products is (radix-4) Booth encoding [Kor98]. At the ABL, the Booth-encoded partial
products can be described with the following equation:

pi = (−2a(2i+1) + a(2i) + a(2i−1)) · b · 22i = A · b · 22i, (5.1)

where A ∈ {−2,−1, 0, 1, 2} is a so-called Booth digit.
However, when implementing the logic of a Booth encoder, designers do not construct

a signed (3 × n)-bit multiplier and a ((3 + n) × 2i)-bit multiplier. Instead, they proceed
as follows:

• multiplication with 2j , where j ∈ Z+, is implemented by shifting the corresponding
bit vector by j binary digits to the left,

• multiplication with a Booth digit A ∈ {−2,−1, 0, 1, 2} can be implemented in the
two following steps:

∗ multiplication with |A| = 2 as an additional shift by one digit,

∗ in case A < 0, the transformation A · b = −A · b+ 1 is used.

The conditions for the extra bit shift and the negation are defined as:

shifti = (a(2i+1) ∧ a(2i) ∧ a(2i−1)) ∨ (a(2i+1) ∧ a(2i) ∧ a(2i−1)) (5.2)

cpli = (a(2i+1) ∧ (a(2i) ∨ a(2i−1))) (5.3)

Therefore, the implemented partial products p′i = (pi − 22i · cpli) can be computed as
follows:

• p′i = 0, if a(2i+1) = a(2i) = a(2i−1) = 0,

• p′i = 0, if a(2i+1) = a(2i) = a(2i−1) = 1,

• p′i = ((bn−1 ⊕ cpli, . . . , b0 ⊕ cpli)� shifti)� 2i, otherwise.

Suppose, the addition of the partial products p′i and the complement bits cpli is per-
formed using a tree of carry-save adders (CSA tree). In this case, an ABL description is
generated for the adder tree and for the standard multiplier implementation used in the

68

5.2. Modeling for ABL Normalization

property. However, the Booth-encoded partial products form a custom-designed compo-
nent of the multiplier design. Therefore, they will not be a part of this ABL description.
As a result, e.g., the normalization approach fails to identify equivalent partial products
after merging the addition networks of the implementation and the specification, respec-
tively. This problem is illustrated in Figure 5.1.

INP

DESIGN

PROPERTY (ABL)

ABLGate Level

1
P

2
P

1
N

2
N

C

Figure 5.1: Incompletely normalized instance with a custom-designed component

In the next sections, we provide techniques to generate an ABL description for local
custom-designed gate-level components of arithmetic circuits.

5.2 Modeling for ABL Normalization

This section describes a technique introduced in [PWS+08] to transform a gate netlist into
an ABL model applicable for the ABL normalization presented in Section 3.2.2.

5.2.1 Synthesis of ABL Descriptions from Gate Netlists

In principle, every Boolean function can be synthesized into an equivalent ABL descrip-
tion. Moreover, it is also possible to obtain an ABL description in reduced normal form.
To see this, let us consider the Reed-Muller decomposition stated by Definition 2.10.
Recursive application of this decomposition results in the Reed-Muller form for a given
Boolean function. Sometimes, the Reed-Muller form is also called a Boolean polynomial
(in sum-of-products notation).

69

Chapter 5. Modeling of Custom-Designed Components at the ABL

Example 5.1. (Reed-Muller Forms) Table 5.1 contains Boolean polynomials sketched
for some logic primitives.

Logic expression a a ∧ b a ∨ b (a ∧ b) (a ∨ b)
Reed-Muller form 1⊕ a a · b a⊕ b⊕ (a · b) 1⊕ (a · b) 1⊕ a⊕ b⊕ (a · b)

Table 5.1: Reed-Muller forms for some Boolean primitives

Suppose, a Boolean function is given in a positive Reed-Muller form. The product
terms of the Reed-Muller form can be transformed into equivalent cascades of partial
product generators, and the XOR function can be implemented by a single-column addi-
tion network. This case is illustrated with the next example.

Example 5.2. (Reed-Muller Form to a Single-Column Addition Network) Recall the
function f = (a0 ∧ a1 ∨ a2)⊕ a1 in Figure 2.3. According to the recursive application of
the Reed-Muller decomposition from Definition 2.10, the Boolean polynomial for f is as
follows:

f = 1⊕ a1 ⊕ a2 ⊕ a0a1 ⊕ a0a1a2.

Figure 5.2 depicts the gate netlist and the single-column addition network for the Boolean
polynomial of the function f .

1
0
a

1
a

2
a

f

(a) Gate netlist for Reed-Muller form

f
2101021

1 aaaaaaa ++++

(b) Single-column addition network

Figure 5.2: Transformation of Reed-Muller form to ABL model

However, by calculating also Reed-Muller forms from gate netlists of multi-column
addition networks, the carry bits have to be taken into account. Moreover, the calculation
of Reed-Muller forms for output bits of an arithmetic circuit is not feasible for circuits
with larger bit width as soon as multiplication is involved. Fortunately, the Reed-Muller
form can be built easily for smaller portions of such a circuit that may have been imple-
mented in an optimized way at the gate level.

70

5.2. Modeling for ABL Normalization

There are efficient data structures such as OFDDs [KSR92] and OKFDDs [DBS+94]
to represent and manipulate Boolean functions in Reed-Muller form. As we only gen-
erate local Reed-Muller forms for small portions of a circuit, we do not resort to these
data structures but, instead, represent Reed-Muller expressions explicitly. Starting from
general logic gates, we generate the Reed-Muller form simply by local substitution of
gates followed by application of the distributive law and elimination of duplicated prod-
uct terms.

In the following section, we study how to transform the Reed-Muller form of a Boolean
function into an ABL description that is suitable for the normalization approach reviewed
in Section 3.2.2.

ABL Descriptions for Boolean Functions in Reed-Muller Form

As we have already stated above, we can implement any Boolean function in Reed-Muller
form by means of an ABL description using appropriate partial product generators for the
product terms together with a single-column addition network.

The addition network obtained in this way will always generate a carry in its single
column, unless it consists of a single product term only. If the result of such a single-
column addition network N with more than a single addend is used as an addend in some
other network N ′, merging of N and N ′ is only possible if the result of N is added to
the uppermost column of N ′. This, however, cannot be expected in general since it would
require that only addends to the uppermost column of an addition network implementation
are specified at the gate level. In order to overcome this restriction, we extend a single-
column addition network to an equivalent multi-colum addition network as shown and
proved with the next theorem.

Theorem 5.1. (Multi-Column Extension of Addition Network) Let N be a single-
column addition network with result r. For every n ≥ 1 there is a n-column addition
network N ′ with results (r′n−1, . . . , r

′
0) such that r′0 = r and r′i = 0 for all i > 0.

Proof: Without loss of generality we can suppose N to have a set of addends A =
{a1, . . . , am} with w(ai) = 1 for all ai ∈ A and a constant offset c ∈ {0, 1}. We
need to consider the case c = 0 only. Note that c = 1 can be handled by inserting
a dummy addend a. In the resulting network N ′ we eliminate a by updating the con-
stant offset to c + w(a). In order to transform N , consider the n-column addition net-
works N̂ with r̂ = (r̂n−1, . . . , r̂0) = 〈(

∑m
i=1 ai), n〉 and Ñ with r̃ = (r̃n−1, . . . , r̃0) =

〈(
∑m

i=1 ai −
∑n−1

i=1 2ir̂i), n〉.
Obviously, Ñ has the results r̃0 = r and r̃i = 0 for all i > 0. Moreover, the r̂i can

be expressed as Boolean functions (in Reed-Muller form) in terms of the addends ak.
Therefore, we obtain a single-column addition network N̂i(i > 0) for each of the r̂i . By
induction hypothesis, we can extend N̂i to an (n − i)-column addition network N̂ ′i . By
construction, we can merge the addition networks N̂ ′i with Ñ and obtain an equivalent
network N ′. 2

By means of the above theorem, we can generate ABL descriptions for Boolean func-
tions that are suitable for ABL normalization. This procedure is described in Example 5.3.

71

Chapter 5. Modeling of Custom-Designed Components at the ABL

a

b
c

r

Figure 5.3: Reed-Muller form for f = a⊕ b⊕ c

Example 5.3. (Reed-Muller Form to a Multi-Column Addition Network) Suppose we
want to implement the XOR function of the variables a, b and c, as shown in Figure 5.3,
by a three-column addition network N ′ with results r′ = (r′2, r

′
1, r
′
0). Using the above

variables a, b, c as addends in column 0, we obtain the Reed-Muller forms r̂1 = ab ⊕
ac ⊕ bc and r̂2 = 0 for the results of the intermediate network introduced in the above
proof, see the left side of Figure 5.4. As shown on the right side in Figure 5.4, r̂1 can be
implemented by the two-column addition network N̂ ′1 with the addends ab, ac and bc in
column 0 and the addend abc in column 1, where the result variables for this network are
the following Reed-Muller forms r̂′0 = ab⊕ ac⊕ bc and r̂′1 = 0. Note that the addend abc
corresponds to the carry for the addition of ab, ac and bc. Merging N̂ ′1 with Ñ results in
an addition network specified by the following equation:

r′ = 〈(a+ b+ c− 2(ab+ ac+ bc) + 4abc) mod 8, 3〉

= 〈(a+ b+ c+ 2(ab+ ac+ bc) + 4(abc+ ab+ ac+ bc)) mod 8, 3〉

for the result r′ of the final addition network N ′. This addition network can be imple-
mented by the half-/full-adder netlist depicted in Figure 5.5.

FA

a

b
0
r̂

1
r̂c

0ˆ
2
=r0

(a) Addition network N̂

FA

1

HA

0'ˆ
1
=r

11
ˆ'ˆ rr =

abc

ab
ac

bc

(b) Addition network N̂ ′
1

Figure 5.4: Intermediate ABL models

As a side effect, the above example also demonstrates how to eliminate negative
weights for addends in column i. In this case, the corresponding addends are added to
all columns k ≥ i of an addition network. This effect is explained more precisely by
means of Example 5.4.

72

5.2. Modeling for ABL Normalization

FA

HA

HA

FA

FA

FA

Addition Network

ab
ac

bc

abc

a

b
c

10
ˆ'ˆ rr =

0
r̂

1
r̂

0'

0'

'

2

1

0

=

=

=

r

r

rr

Figure 5.5: Addition network N ′ as a synthesized ABL model

binary notation decimal notation
1st operand ...111111111111 -1
2nd operand ...000000000001 +1

result ...000000000000 ...000000000000

Table 5.2: Elimination of a negative weight in addition

73

Chapter 5. Modeling of Custom-Designed Components at the ABL

Example 5.4. (Negative Weight Elimination) Table 5.2 depicts the addition of two
signed numbers, namely (−1) and 1 encoded in both binary and decimal representation.
The binary value for the decimal number (−1) is nothing else but an infinite sequence of
constant bits 1. On the contrary, the binary value for the decimal number 1 is a vector
of constant bits 0 except the least significant bit where the constant bit 1 is placed. Thus,
the addition of these two bit vectors will always produce a bit 0 as a result of sum for the
current column and a bit 1 as a result of carry for the next column.

Summarizing all studied above in this section, the overall procedure to synthesize
ABL descriptions for local parts of the circuit can be implemented in two steps:

• transformation of local gate-level descriptions into Reed-Muller forms,

• transformation of the Reed-Muller forms into equivalent multi-column addition net-
works applicable for further ABL normalization.

In practice, this procedure is invoked on demand whenever conventional ABL normal-
ization terminates with remaining addends in the compared addition networks. If some
gate-level representations still exist in fanin to the compared addition networks then these
representations are converted into ABL models. Afterwards, normalization is rerun.

The overall flow of this procedure is explained by means of the following example.

Example 5.5. (ABL Model for Booth-Encoder) Suppose we want to verify the design
of a 2x2 unsigned multiplier with (radix-4) Booth-encoded partial products like the mul-
tiplier design described in Figure A.6. We, further, assume that the partial products of the
design are implemented at the gate level. The partial products provided for the addition
tree of the design are listed in the left part of Table 5.3. Furthermore, we annotate the
corresponding Reed-Muller forms in terms of the multiplier inputs ak and bi.

column result Booth-encoded (radix-4) standard multiplier
bit partial products partial products

0 r0 cpl0 = b1 a0b0

p′0[0] = a0b0 ⊕ b1

1 r1 p′0[1] = b1 ⊕ a1b0 ⊕ a0b1 ⊕ a0b0b1 a1b0,
a0b1

2 r2 cpl1 = 0 a1b1

p′0[2] = b1 ⊕ a1b1 ⊕ a1b0b1

p′1[2] = a0b1

3 r3 signext = 1
p′0[3] = cpl0 = 1⊕ b1

p′1[3] = a1b1

Table 5.3: Partial products for unsigned multipliers

74

5.2. Modeling for ABL Normalization

Table 5.3 also corresponds to the addition network NImpl obtained in the normaliza-
tion algorithm after merging the adders in the addition tree of the implementation, i.e.,
the result of NImpl is computed by an addition network for the following equation:

(r3, r2, r1, r0) = 〈(cpl0 + p′0[0] + 2p′0[1] + 4(p′1[2] + p′0[2] + cpl1)

+8(signext + p′1[3] + 1− p′0[3])), 4〉.
The partial products for a standard implementation of a multiplier are depicted in

right part of Table 5.3. It is obvious that normalization cannot establish equivalence
between these addition networks, as the partial products a0b0 and a1b0 do not have an
equivalent counterpart in the implementation network NImpl.

In order to complete normalization, we convert the Reed-Muller forms of the partial
products of the implementation into the corresponding multi-column addition networks.
The result of this computation step is summarized in Table 5.4.

partial product Reed-Muller form addition network
cpl0 b1 (0, 0, 0, cpl0) = 〈b1, 4〉
p′0[0] a0b0 ⊕ b1 (0, 0, 0, p′0[0]) = 〈(a0b0 + b1 − 2a0b0b1), 4〉
p′0[1] b1 ⊕ a1b0 ⊕ a0b1 ⊕ a0b0b1 (0, 0, p′0[1]) = 〈(b1 + a1b0 + a0b1 + a0b0b1

−2(a1b0b1 + a0b1), 3〉
p′1[2] a0b1 (0, p′1[2]) = 〈a0b1, 2〉
p′0[2] b1 ⊕ a1b1 ⊕ a1b0b1 (0, p′0[2]) = 〈(b1 + a1b1 + a1b0b1 − 2a1b1), 2〉
cpl1 0 (0, cpl1) = 〈0, 2〉

signext 1 (signext) = 〈1, 1〉
p′1[3] a1b1 (p′1[3]) = 〈a1b1, 1〉
p′0[3] b1 ⊕ 1 (p′0[3]) = 〈1 + b1, 1〉

Table 5.4: Multi-column addition network for implementation products

Merging the addition networks of Table 5.4 for the partial products with the addition
network NImpl of the implementation results in the addition network N ′Impl with

(r3, r2, r1, r0) = 〈(b1+(a0b0+b1−2a0b0b1)+2(b1+a1b0+a0b1+a0b0b1−2(a1b0b1+a0b1))

+4(a0b1 + (b1 + a1b1 + a1b0b1 − 2a1b1) + 0) + 8(1 + a1b1 + 1 + b1)), 4〉
= 〈(16+16b1 +a0b0 +2a1b0 +2a0b1 +4a1b1)), 4〉 = 〈(a0b0 +2a1b0 +2a0b1 +4a1b1)), 4〉

Obviously, the resulting addition network N ′Impl and the standard addition network
for unsigned multiplication are identical. Therefore, our implementation is proven to be
correct.

The approach presented above in this section was used as a preprocessor for ABL
normalization technique [WSBK07]. The modified version of this technique was success-
fully tested with more than 1000 different examples instantiating arithmetic verification
problems. The detailed report on these experiments is given in Section 5.4.

75

Chapter 5. Modeling of Custom-Designed Components at the ABL

5.3 Modeling for Algebraic Approach
In this section, we adapt the extraction techniques described in Section 5.2 for deriving
compact polynomial representations in a ring Z/2n for those parts of the arithmetic de-
cision problems that are defined using Boolean constraints of the bit-vector logic. We
reformulate this extraction technique as a combination of arithmetic transform computa-
tion and a so-called pre-normalization so that the algebraic approach [PWS+11] presented
in Chapter 4 may further be applied.

5.3.1 Extraction of Arithmetic Bit Level Information
In order to treat non-arithmetic constraints with the algebraic approach discussed in Chap-
ter 4, we need to generate a set of polynomials Z/2n that captures the variable rela-
tions specified by these constraints. We illustrate the extraction process using a custom-
designed circuit component presented in the next example.

Example 5.6. (Adder) Figure 5.6 depicts a gate netlist of a two-bit adder which may be
a possible custom-designed component for the RTL design of an arithmetic circuit.

0
a

c

d

e

f

0
r

1
r

2
r

0
b

1
a

1
b

Figure 5.6: Gate netlist of a two-bit adder

Note that the front-end of a standard property checker, usually, performs a one-to-one
compilation of such a circuit structure into a collection of Boolean bit-level constraints of
the bit vector logic. We consider a set of Boolean constraints that stem from a connected
part of the bit-vector netlists representing an SMT instance. By a topological analysis,
we may identify the variables xj used as inputs and variables yi used as outputs of this
sub-netlist under consideration. Therefore, we propose two phases for our technique to
extract polynomials as follows:

• derive polynomial equations based on the arithmetic transform for each Boolean
constraint,

• pre-normalize the polynomials with respect to the input variables xj.

76

5.3. Modeling for Algebraic Approach

In Table 5.5, we summarize the polynomial equations for a representative subset of
Boolean constraints that may be used in a gate netlist.

Boolean domain ABL domain
o = x⊗ y o = (x+ y − 2xy) mod 2
o = x ∧ y o = (xy) mod 2
o = x ∨ y o = (x+ y − xy) mod 2
o = x o = (1− x) mod 2
where x, y ∈ B

Table 5.5: Polynomial equations based on the arithmetic transform of Boolean gates

For Example 5.6, the first step of the proposed technique results in the set of equations
illustrated in Equation 5.4. In theory, these equations may immediately be used as starting
point for our algebraic models generated in Chapter 4.

r0 = (a0 + b0 − 2a0b0) mod 2
c = (a0b0) mod 2
d = (a1 + b1 − 2a1b1) mod 2
r1 = (c+ d− 2cd) mod 2
f = (cd) mod 2
e = (a1b1) mod 2
r2 = (e+ f − ef) mod 2

(5.4)

However, it is already apparent from the example that this fine-grained modeling of
the non-arithmetic constraints in the cone of influence of an algebraic proof goal will lead
to a fairly large problem instance if multiple such problem parts exist. For instance, the
two bit adder of Example 5.6 may many times be instantiated within a large multiplier.
This unnecessary blowup, both in terms of the numbers of variables as well as in terms of
the numbers of polynomials, can considerably slow down the normal form computation.
Fortunately, the custom-designed components, frequently used within such designs, have
a compact polynomial representation, e.g., as demonstrated with the next example.

Example 5.7. (Compact Representation) Equation 5.5 provides a compact description
of the input-/output behavior for the two bit adder from Example 5.6.

4r2 + 2r1 + r0 = 2(a1 + b1) + (a0 + b0) mod 8 (5.5)

In our extraction technique, we perform a pre-normalization in order to achieve such
a compact representation. This step will be described in the remainder of this section.

We start with the polynomial set P generated from the above equations using the
models of Chapter 4. We consider the subset O ⊂ P of polynomials that depend on the
output variables yi. Recall that we may assume a monomial order that is compatible with
the topological order of the problem netlist. In this case, the polynomials in O have a
variable yi as leading monomial.

77

Chapter 5. Modeling of Custom-Designed Components at the ABL

For each polynomial f ∈ O, we compute the reduced normal form with respect to the
polynomials in P\O. Note that the polynomials g ∈ P used during this computation for
the reduction of the polynomials f or, more precisely, for the reduction of the tails of the
polynomials f can be determined efficiently by backward tracing the problem netlist at
hand. Let us illustrate this process with the example below.

Example 5.8. (Reduced Normal Form Computation) For the circuit from Example 5.6,
let us consider the output variables r0, r1, r2, first, and, then, traverse the circuit back-
wards until primary input variables a0, b0, a1, b1 are reached. All polynomials during this
traversal are immediately used to reduce the polynomials for the ri.

For example, for the output r1, this tracing procedure delivers the following set of
polynomials:

f = r1 − (c+ d− 2cd)
g1 = c− (a0b0)
g2 = d− (a1 + b1 − 2a1b1)

(5.6)

Tail reduction of f with respect to g1 and g2 results in the polynomial:

r1 − (a1 + b1 + a0b0 − 2a1b1 − 2a0a1b0 − 2a0b0b1 + 4a0a1b0b1).

Equation 5.7 lists the complete set of polynomials obtained for the example from Fig-
ure 5.6.

f0 = r0 − (a0 + b0 − 2a0b0)
f1 = r1 − (a1 + b1 + a0b0 − 2a1b1 − 2a0a1b0 − 2a0b0b1 + 4a0a1b0b1)
f2 = r2 − (a1b1 + a0a1b0 + a0b0b1 − 2a0a1b0b1)

(5.7)

These pre-normalized polynomials are, then, used to model the non algebraic problem
part for the normal form computation in Chapter 4.

To conclude this example, it should be noted that the weighted addition 4f2 + 2f1 +f0

of the above polynomials yields the same compact polynomial

4r2 + 2r1 + r0 − ((a0 + b0) + 2(a1 + b1))

as it was defined with Equation 5.5.

The ABL modeling approach of this section will be used as a substantial part in an
RTL-/SMT solving engine described and examined in Chapter 6.

5.4 Experimental Results
In this section, the results of the experimental evaluation are summarized for the tech-
niques proposed in Section 5.2. These techniques were implemented in a property check-
ing environment utilizing SAT and ABL normalization [WSBK07]. The overall flow of
the integrated verification engine is as shown in Figure 5.7.

78

5.4. Experimental Results

UNSAT ?

ABL Normalization

SAT Solver

Gate netlist

in arithmetic

parts?

RTL Property

Checking Instance

(Design & Property)

NO

Synthesis of ABL

desciption from

gate netlist

YES

Figure 5.7: Flow of RTL property checking used in experiments

This verification engine expects a combinatorial netlist as an input instance. Such a
netlist can be derived from an HDL design and a property using the industrial property
checker OneSpin 360 MV [One].

In order to simplify the corresponding SAT instance, it is necessary to normalize an
ABL description generated from the arithmetic bit vector functions in this netlist. This
may result in proven equivalences between arithmetic signals of the design and their spec-
ification given in the property. However, if certain parts of the arithmetic circuit design
are implemented at the gate level, normalization will not succeed. In this case, such non-
arithmetic bit vector functions are determined in the fanin of design signals that are still
present in the normalized ABL description. For these bit vector functions, equivalent
ABL representations are derived and included into the ABL normalization problem.

The process of extending the ABL description followed by normalization is iterated
until either all comparisons for arithmetic signals are proven or no suitable extension of
the normalized ABL description can be generated. In both cases, a SAT solver is called
to prove unsatisfiability of the remaining parts of the problem.

The performance of the prototype implementation was compared against the following
state-of-the-art SMT solvers: Spear-2-7 [BH08, Spe], Boolector 1.4 [BB09, boo], Math-
SAT v. 4.3-smtcomp [BBC+05], and simplifyingSTP based on revision 939 of STP [GD07,
STP]. It should be noted that these solvers or their earlier versions were winners at the
SMT competitions 2007-2010 [SMT07, SMT08, SMT09, SMT10].

All experiments reported in this section were carried out on Intel Xeon CPU E5420
2,5 Ghz 32 GB RAM running Linux. The value of the memory limit (MO) was set to 8 GB
for each instance. Also, the run time for each instance was limited. The time-out limits
(TO) are specified in the captions for the tables and for the figures with experimental data
presented below in this section. The symbol U denotes a case when a tool was not able

79

Chapter 5. Modeling of Custom-Designed Components at the ABL

to treat an instance properly and terminated with the result “unknown”. This, usually,
happens because of some internal errors like, e.g., incorrect parsing or erroneous memory
deallocation.

5.4.1 Industrial Multiplication Design Benchmark
As a first step of the evaluation, experimental data were collected in an industrial setting.
Different multiplier implementations with input bit width in the range from 4 bits to 64
bits were generated by the module generator of an industrial synthesis tool. The total
suite of all instances consists of 1040 implementations. The RTL code of the synthesized
circuits includes Booth-encoded partial products described at the gate level and CSA trees
implementing the addition network at the ABL.

Selected experimental results for signed and unsigned Booth-encoded multipliers of
various bit widths are collected in Table 5.6. A complete view of the experimental results
is depicted in Figure 5.8. This figure represents plots with quotas of instances as they
were solved by the refined ABL normalization technique in comparison to contemporary
SMT solvers. The experimental data for bounds of quotas are shown in Table 5.7.

The experimental results indicate that only SMT solvers used for comparison are ad-
equate to prove the arithmetic properties for small instances. Due to limited computing
resources, they abort for instances of realistic size. However, when the missing ABL
blocks are added to the arithmetic proof problem, the ABL normalization-based tool can
perform the proof of correctness within less than one minute.

multiplier verification approach
design Spear Boolector MathSAT simplifyingSTP ABL

signed 8x8 99.4 13.4 32.14 13.87 0.06
signed 16x16 TO TO TO TO 0.44
signed 23x23 TO TO TO TO 1.4
signed 32x32 TO TO TO TO 2.57
signed 64x64 TO TO TO TO 45
unsigned 8x8 46.14 14.9 21.13 16.65 0.08

unsigned 16x16 TO TO TO TO 0.52
unsigned 23x23 TO TO TO TO 1.4
unsigned 32x32 TO TO TO TO 3
unsigned 64x64 TO TO TO TO 38.6

Table 5.6: Industrial multipliers / CPU times, sec, / TO: 1000 sec.

5.4.2 Limitation of Reed-Muller-based Extraction
The second step of the evaluation explores the capacity limits of the Reed-Muller extrac-
tor. There were generated unsigned multipliers for different input bit-widths and different

80

5.4. Experimental Results

0

20

40

60

80

100

0 200 400 600 800 1000

ABL s&n

simplifyingSTP

MathSAT

Boolector

Spear

CPU time, sec.

Q
u

o
ta

, %

Figure 5.8: Quota of combinatorial instances derived from industrial multiplication de-
signs for property checking and solved by different approaches / TO - 1000 sec.

CPU
times, Spear Boolector MathSAT simplifyingSTP ABL
sec.
< 10 10.8% 13.7% 14.4% 13.4% 98.46%
< 100 19.9% 25.1% 25.9% 21.6% 100%
< 250 23.6% 29.3% 29.5% 23.8% 100%
< 500 24.3% 32.1% 32.3% 26.5% 100%
< 1000 25.3% 33.2% 36.4% 29.5% 100%

TO/MO/U 74.7% 66.8% 63.6% 70.5% 0%

Table 5.7: Quota of industrial multiplier instances solved by different approaches

81

Chapter 5. Modeling of Custom-Designed Components at the ABL

encodings for partial products. The size of the design portion specified at the gate level
was increased step-wise. The ABL part of the design was reduced at the same time. Start-
ing with an initial design where only the partial products are specified at the gate level,
the CSAs were iteratively implemented within the addition network by gate-level compo-
nents. Figure 5.9 visualizes the first two iterations of this experiment. This experimental
setup will end up with instances where the complete multiplier is specified below the ABL
abstraction and, of course, it is not expected that a technique based on the Reed-Muller
form may become efficient in this extreme case.

The results of Table 5.8 show that the proposed techniques are capable of transforming
fairly large regions of circuitry specified at the logic level into equivalent ABL descrip-
tions. In particular, if the borderline between the (optimized) partial product generators
and the addition network is blurred – as is often the case in custom-designed circuits
– the proposed approach is powerful enough to transform the complete partial product
generator as well as at least the first level of addition logic into ABL.

2=i

. . .

Partial

Products

Generator

Addition Network

Gate Level ABL

C
a

rr
y

-S
a

v
e

A
d

d
e

r

1

C
a

rr
y

-S
a

v
e

A
d

d
e

r

2

C
a

rr
y

-S
a

v
e

A
d

d
e

r
n

A

B

P
O

1=i

Figure 5.9: Increasing amount of the gate netlist with one carry-save adder per each iter-
ation i, where 0 < i ≤ n and n is a number of all carry-save adders in the circuit

unsigned standard Booth-encoded
multiplier multiplication scheme multiplication scheme

design i = 1 i = 2 i = 3 i = 4 i = 5 i = 1 i = 2

16x16 0.4 0.42 1.8 165 TO 38.7 TO
24x24 1.86 2 4.4 353 TO 72 TO
32x32 4.9 5.2 8.3 548 TO 103 TO
64x64 143 149 152 TO TO 292 TO

Table 5.8: Multipliers of Figure 5.9 / CPU times, sec. / TO: 1000 sec.

82

5.4. Experimental Results

5.4.3 Shared Multiplier Design Benchmark
To conclude the experimental evaluation of the proposed techniques, experiments were
conducted with a sequential implementation for multiplication of four input values. In
order to perform this operation with a single multiplier, it is used for the three required
multiplication operations within three subsequent clock cycles. A finite state machine
controls the assignment of the operands to the inputs of the multiplier as depicted in
Figure 5.10. The figure also illustrates that the instantiated multiplier consists of a Booth
encoder for the partial products implemented at the gate level and an addition network
implemented at the ABL. The investigated property proves that every four clock cycles
a correct arithmetic result is generated, provided that the reset and enable signals are
triggered by the environment accordingly.

The resulting decision problem after unrolling the design and assumption propagation
is depicted in Figure 5.11. Note that assumption propagation is used to eliminate control
logic from the unrolled problem instance such that the remaining problem can be solved
with the ABL normalization technique described in Chapter 3.

Partial

Product

Generator

(Gate Level)

Addition

Network

(ABL)

Control

Unit

B

C

D

A

CLK

enable

reset

R

Figure 5.10: Shared multiplier

Mult 1

Property: C
o
m
p
a
ra
to
rMult 3Mult 2

AB

C

D

?!1=out

)))(((DCBA ×××

Figure 5.11: Property checking instance

83

Chapter 5. Modeling of Custom-Designed Components at the ABL

The experimental results for different operand bit widths are summarized in Table 5.9.
Again, the ABL-based tool demonstrates good performance and solves the verification
task within reasonable time even for large instances.

input operand verification approach
bit-width Spear Boolector MathSAT simplifyingSTP ABL

10 TO TO TO TO 26
12 TO TO TO TO 75
14 TO TO TO TO 198
16 TO TO TO TO 509
18 TO TO TO TO 1002
20 TO TO TO TO 2366
22 TO TO TO TO TO

Table 5.9: Shared multipliers of Figures 5.10, 5.11/ CPU times, sec. / TO - 3600 sec.

84

Chapter 6

STABLE: a new SMT Solver

This chapter describes a new SMT solver STABLE. This solver combines two recently
developed techniques, namely the computer-algebra-based approach studied in Chap-
ter 4 and the extraction method discussed in Chapter 5. STABLE was initially presented
in [WPD+10, PWS+11] and designed to solve formulas of the quantifier-free logic over
fixed-sized bit vectors (QF-BV).

As primary application domain for the proposed SMT solver, we will target a prop-
erty checking flow for System-on-Chip (SoC) module designs. When verifying data-path
modules for high performance applications, verification engineers frequently face custom-
designed arithmetic components that are specified at the logic level of the respective hard-
ware description language. This results in verification problems where arithmetic problem
parts may include non-arithmetic constraints. Since the proposed verification technique
includes the algorithm to extract arithmetic bit level information for these non-arithmetic
constraints, the integrated algebraic approach becomes applicable to completely solve
arithmetic subproblems. The non-arithmetic problem parts together with the results of
the computer algebra engine are finally bit-blasted and handled by a standard SAT-solver.

This chapter is organized as follows. Section 6.1 provides description of the overall
flow for the proposed SMT solver. Section 6.2 reports on experimental results. The
evaluation of STABLE is shown in comparison to other contemporary SMT solvers on a
large collection of SMT formulas describing verification problems of industrial data-path
designs that include multiplication.

6.1 QF-BV SMT Solving
This section outlines a new SMT solver STABLE [WPD+10, PWS+11] for solving hard
QF-BV decision problems that originate from verification of data paths that include mul-
tiplier components. The basic design flow of STABLE is illustrated in Figure 6.1 and
explained below in this section.

The SMT solver integrates the algorithms studied in Section 2.7 and Section 5.3 for
solving arithmetic subproblems of an input instance in question. A standard SAT-solver
is used as a back end for solving the non-arithmetic problem parts of the input instance.

85

Chapter 6. STABLE: a new SMT Solver

Decision Problem, e.g.,

an SMT-Formula

Preprocessing:

• simplif ication

• constant propagation

• assumption propagations

Identify variables

or branching

(V)

exists new

assignment val(V) to

variables in V

propagate val(V)

Create polynomials G

for arith. constraints

in cone of inf luence

of each proof goal (f)

Compute normal form

NF(f,G) of polynomial f

encoding proof goal

with respect to G

Yes
Extract further

polynomials G’

Learn val(V)àf

Solve bit-blasted

instance with SAT

NF(f,G) = 0

SAT prove

NF(f,G) = 0

G’≠

No Yes

Yes

Yes

No

No

No

SAT / UNSAT

GBABL

G=G G’

ABL Extractor

Figure 6.1: Flowchart of SMT Solver STABLE for solving QF-BV decision problems
with GBABL (Gröbner basis-based ABL) engine and ABL extractor

86

6.1. QF-BV SMT Solving

This SAT solver operates on a bit-blasted version of the instance and also serves as a last
resort in cases where the above mentioned techniques cannot fully solve an arithmetic
subproblem.

In Figure 6.1, the dashed boxes indicate the interface between the computer algebra
library (GBABL engine), the extraction library (ABL extractor), and the solver infrastruc-
ture.

As usual, the SMT solver performs a certain amount of preprocessing as a first step
after parsing the SMT instance. Internally, the instance is represented as a netlist of pre-
defined bit-vector functions. Since interval property checking is the primary application
domain for the proposed technique, one may often face formulas with an implicative
structure (a→ c). In such formulas, a is a conjunction of assumptions that, e.g., may de-
scribe a scenario in which a property is applicable. Likewise, c is a conjunction of proof
goals, also referred to as commitments, that have to be proven under these assumptions.

The SMT-LIB format [RT06, BST10] allows to represent the instances as a collection
of constraints that are implicitly conjoined via the use of common variables. In this case,
a topological analysis of the instances is employed to restore the netlist.

Given the bit-vector netlist, we start to treat the netlist by asserting the assumption
a = 1. Usually, this assignment can be propagated into the netlist and can, thus, be used
to simplify the proof goals in c. In problems for data-path verification, for example, such
a propagation may eliminate control logic from the data path if the assumption implies
a certain configuration of the data path. This may greatly simplify the solution process.
In the optimal case when a unique configuration of the data path can be identified by
propagation, a single pass through the main loop, that analyzes each of the configurations,
is required.

The configurations to be analyzed are determined in the first step after preprocessing.
More precisely, a set of Boolean branching variables V is determined that influence arith-
metic subproblems in c. As branching variables we will consider the select inputs s used
as condition in if-then-else constraints. Note that a careful selection of these variables is
crucial as it is desirable to keep their number small. By topological analysis, we may omit
many if-then-else constraints that do not influence arithmetic proof goals.

Given the set V of branching variables, STABLE enumerates each possible assign-
ment val(V). Note that in case of an empty set V , the loop is entered exactly once. After
constant propagation of the assignment val(V), STABLE analyzes the arithmetic proof
goal f relevant under the respective configuration of the data path with a normal form
computation. Note that an instance with multiple arithmetic proof goals may require an
iteration of these two steps for each of the proof goals. For brevity, this extra loop is
omitted in the flow in Figure 6.1.

To analyze a proof goal f , the proposed SMT solver generates a set G of polynomials
G ⊂ Z/2n modeling the arithmetic constraints in the cone of influence of f . Next, the
GBABL engine computes the normal form (NF) of f with respect to G. If this normal
form is the zero polynomial, STABLE learns the validity of the proof goal f under the
current data-path configuration val(V) and proceeds with the next iteration of the main
loop.

87

Chapter 6. STABLE: a new SMT Solver

However, it is also necessary to consider the case where the normal form of the proof
goal is a non-zero polynomial. This may have the following reasons:

• some portions of the arithmetic problem part under consideration are expressed
in terms of non-arithmetic constraints, e.g., they may originate from a custom-
designed component in the data path of an RTL design,

• Boolean propagation of the assumptions and the assignment to branching variables
val(V) may not have been strong enough to completely eliminate the control logic
separating parts of the data path,

• the proof goal is indeed invalid because it may stem from an invalid property that
detects a bug in the design under verification.

STABLE approaches these issues as follows. First, it analyzes the normal form of the
proof goal NF(f) whether one may extract additional polynomials that determine some of
the remaining variables in the normal form of the proof goal. The resulting polynomials
G′ will have these variables as leading monomials. The SMT solver unifies the resulting
polynomials set G′ with the original set G and continues normal form computation.

In case the extraction process can not identify further polynomials, STABLE conducts
a resource limited SAT check whether the normal form vanishes under the assumptions of
the surrounding input instance. The SMT solver temporarily creates a bit-blasted version
of this check for the SAT engine. Here, the incremental SAT interface of the underlying
solver is used. In a current configuration of an SMT solver, the CPU time spent on each
of these checks should be limited in a proper way. For example, in STABLE the value for
this CPU time limit is set to 2 minutes. Note that the resource limitation is crucial. Some
intermediate proof goals may be extremely hard to proof by SAT before other proof goals
have been proven by the normal form engine.

In case when STABLE succeeds in proving that the normal form is equal to zero then
the SMT solver may learn the constraint val(V) → f . Note that in the frequent special
case when V is empty, i.e., one needs to consider a single configuration of the data path,
this implication only consists of the unit clause f . In this special case, STABLE also
performs an additional propagation step that may considerably simplify other proof goals
as well.

When all configurations of the data path, that are consistent with the assumptions of
the overall input instance, have been analyzed, i.e., all valuations of V have been enumer-
ated, STABLE again bit-blasts the entire instance including the learned constraints and
the corresponding propagation results. Then, the SAT check, conducted on the resulting
instance, may prove non-arithmetic proof goals as well as those proof goals where the
strongly resource limited checks inside the loop have been aborted. As a result of this
SAT check, a satisfying assignment is obtained for the input SMT formula or the formula
is proven to be unsatisfiable.

88

6.2. Experiments

6.2 Experiments

This section provides the results of an extensive evaluation of STABLE. Similar to the ex-
periments reported in Section 5.4, the performance of STABLE is compared against four
alternative state-of-the-art solvers, namely Spear-2-7 [BH08, Spe], Boolector 1.4 [BB09,
boo], MathSAT v. 4.3-smtcomp [BBC+05], and simplifyingSTP based on revision 939 of
STP [GD07, STP]. These solvers or their predecessors have proven to be effective for
the logic QF-BV, more precisely, they won the SMT competitions 2007-2010 in this cate-
gory [SMT07,SMT08,SMT09,SMT10]. Additionally to that, two other well-known SMT
QF-BV solvers – Z3 v. 2.18 [Z3,MB08] and Yices v. 2.0 [Yic,DM06,DdM06] – were also
used for the experimental evaluations.

All experiments reported in this section were carried out on Intel Xeon CPU E5420
2,5 Ghz 32 GB RAM running Linux with a time-out limit (TO) of 1000 sec. and a memory
limit (MO) of 8 GB per instance. Besides the standard reasons for aborting a respective
instance, some instances are indicated as unknown if the solver crashes or aborts with a
result other than SAT/UNSAT. For instance, Spear frequently terminates with a failing
software assertion as soon as the bit width of a variable exceeds 64 bits inside an SMT in-
stance. Thus, the abbreviation MO/TO/U summarizes three possible reasons for aborting
a respective instance in all subsequent tables depicted in the next sections of this chapter.

The experiments are categorized into a few groups in accordance to the used bench-
marks as described in Sections 6.2.1 to 6.2.4.

6.2.1 SMT Competition 2009 Benchmark

The evaluation was started by considering instances of the benchmarks of the 2009 SMT
competition [SMT09]. As many of these benchmarks do not contain complex arithmetic
subproblems with multiplication, it was expected that the specific strength of STABLE
for arithmetic verification may not become visible. This is confirmed by Table 6.1 that
lists quotas of instances solved per time-out limit. Obviously none of solvers were able
to solve the complete suite of all formulas. A more detailed graphical demonstration of
quotas for individual solvers is illustrated by the plots in Figure 6.2.

As expected, STABLE performs slightly slower than its competitors on these bench-

CPU time, sec. Spear Boolector MathSAT simplifyingSTP STABLE
< 10 82,3% 91,4% 97% 88,9% 83,9%
< 100 89,4% 97,5% 98,5% 97% 95%
< 250 89,9% 98,5% 99% 98,5% 96,5%
< 500 90,4% 98,5% 99% 98,5% 96,5%
< 1000 90,9% 98,5% 99% 99% 97%

MO/TO/U 9,1% 1,5% 1% 1% 3%

Table 6.1: Quota of SMT-COMP09 instances solved by different SMT solvers

89

Chapter 6. STABLE: a new SMT Solver

marks. This is mainly due to the fact that many instances contain non-arithmetic prob-
lems. Moreover, STABLE does not yet provide advanced rewriting mechanisms for the
non-arithmetic problem parts. Nonetheless, STABLE is competitive. Besides a few ex-
ceptions, the run time for STABLE and its competitors differs by less then 200 seconds
per instance.

CPU time, sec.

Q
u
o
ta

, %

80

84

88

92

96

100

0 200 400 600 800 1000

STABLE

simplifyingSTP

MathSAT

Boolector

Spear

Z3

Yices

Figure 6.2: Quota of QF-BV SMT formulas from the suite of SMT competition 2009
solved by STABLE and its competitors / TO - 1000 sec.

6.2.2 Module Generator Benchmark
To evaluate the particular strength of STABLE in its primary application domain, experi-
ments were conducted with two extensive sets of benchmarks originating from industrial
verification projects for data paths that include multiplication. The first class of bench-
marks is examined in this section whereas the second class is considered in Section 6.2.3.

The first class of benchmarks proves functional correctness for the outcome of the
module-generator of an industrial synthesis tool. The resulting instances contain mul-
tipliers of different operand bit-width n ranging from 4 up to 64 bits. The instances
include both signed and unsigned multiplication. The synthesized multipliers are highly
optimized and contain a couple of custom-designed components for computing the Booth-
encoded partial products. Moreover, due to the use of some don’t care conditions in the

90

6.2. Experiments

cone of influence of the addition network, also, the logic for some addition steps is opti-
mized at the gate level, and corresponding custom-designed components are instantiated
within the network.

Overall, the suite consists of 1040 SMT instances. The quota of solved formulas
within specific time-out limits is given in Table 6.2. The quota of instances solved by
STABLE and compared against the quotas for other solvers is illustrated with the plots in
Figure 6.3. It should be noted that STABLE is the only solver that can handle instances
of realistic size. To illustrate this, some representative instances were picked with the
detailed results for them as reported in Table 6.3. Here, each name of the instance, also,
indicates the operand width and the data type (Booth-encoded signed/unsigned) in the
first column. The CPU times of the solvers under comparison are listed in the subsequent
columns.

CPU time, sec. Spear Boolector MathSAT simplifyingSTP STABLE
< 10 10,8% 13,7% 14,4% 13,4% 72,7%
< 100 19,9% 25,1% 25,9% 21,6% 98,4%
< 250 23,6% 29,3% 29,5% 23,8% 98,4%
< 500 24,3% 32,1% 32,3% 26,5% 99%
< 1000 25,3% 33,2% 36,4% 29,5% 100%

MO/TO/U 74,7% 66,8% 63,6% 70,5% 0%

Table 6.2: Quota for module generator instances

Instance Spear Boolector MathSAT simplifyingSTP STABLE
mult_ub_8x8 35 15 20 17 0.6

mult_ub_16x16 TO TO TO TO 4.3
mult_ub_32x32 TO TO TO TO 43
mult_ub_64x64 TO TO TO TO 702

mult_sb_8x8 40 13 30 14 0.4
mult_sb_16x16 TO TO TO TO 2.5
mult_sb_32x32 TO TO TO TO 23
mult_sb_64x64 TO TO TO TO 333

Table 6.3: Selected module generator instances, CPU times, sec.

All instances in this experiment require the extraction technique presented in Sec-
tion 5.2 to exploit the power of the algebraic proof engine. The high-level rewriting tech-
niques implemented in the competing solvers are obviously not strong enough to provide
similar results. Thus, the solvers run into the same performance bottleneck as classical
SAT-solvers do on bit-blasted versions of the problems.

91

Chapter 6. STABLE: a new SMT Solver

CPU time, sec.

Q
u

o
ta

, %

0

20

40

60

80

100

0 200 400 600 800 1000

STABLE

simplifyingSTP

MathSAT

Boolector

Spear

Z3

Yices

Figure 6.3: Quota of SMT formulas generated from property checking instances of com-
binatorial multiplier designs and solved by STABLE and its competitors / TO - 1000 sec.

6.2.3 TriCore Benchmark

The second suite of industrial SMT-instances used in the experiments originates from the
formal verification of Infineon’s TriCore micro-processor [Inf]. The instances include
the complete data path of the integer pipeline including the sophisticated control logic
that allows for the execution of hundreds of instruction variants with multiplication on
the same data path. In total, a set of 640 interval property checking (IPC) instances was
generated. The properties used to verify this data path assume a specific instruction in a
specific variant, being decoded in the decode stage of the processor, and prove that the
expected arithmetic result is computed in the subsequent clock cycles. The assumption
implies dedicated customization of the data path such that the arithmetic components of
the data path are connected appropriately to perform the correct computations. For the
resulting instances, the propagation step in preprocessing is crucial because it eliminates
large portions of the control logic and avoids multiple iterations of the main loop in our
solving algorithm.

STABLE solved the complete suite out of 640 SMT-formulas for the TriCore proper-
ties successfully in about five hours. Some selected data-path properties and the run-times
of STABLE on proving these properties are collected in Table 6.4. Tables B.1 - B.6 list

92

6.2. Experiments

complete experimental data for STABLE. In contrast to that, except for Boolector, the
other solvers failed on all of the instances. A closer look at the particular instances re-
veals that Boolector was able to solve those instances which form instructions where one
factor is constant. In this case, the multiplier degenerates to a cascade of adders that
Boolector can handle. However, for proper multiplication, the competitors of STABLE
give up.

The quota of instances solved by each SMT solver is shown in Table 6.5. The plots
comparing quotas of the examined SMT solvers is depicted in Figure 6.4.

Data-path property CPU time, sec.
res[31:0] = op3[31:0]+(op1[31:0]*op2[31:0]) 24
res[63:32] = op3[63:32]+((op1[31:16]*op2[15:0])� 1)[31:0] 27
res[31:0] = op3[31:0]+((op1[15:0]*op2[31:16])� 1)[31:0]
res[63:0] = op3[63:0]+ (op1[31:16]*op2[31:16])� 16 11

+ (op1[15:0]*op2[15:0])� 16
res[63:32] = op3[63:32]+((op1[31:16]*op2[31:16])� 1)[31:0] 23
res[31:0] = op3[31:0]- (op1[15:0]*op2[15:0])� 1)[31:0]
res[63:0] = (op1[31:16]*op2[31:16])� 1 11

+ (op1[15:0]*op2[15:0])� 1
res[63:0] = op1[31:0]*op2[31:0] 24
res[31:0] = rnd16(((op1*op2[31:16])� 1)[31:0]) 12

Table 6.4: Selected results for STABLE over TriCore SMT formulas

CPU time, sec. Spear Boolector MathSAT simplifyingSTP STABLE
< 10 0,5% 12% 0,3% 0% 18,4%
< 100 0,5% 12% 0,5% 0% 96,4%
< 250 0,5% 15,8% 0,5% 0% 100%
< 500 0,5% 17,4% 0,5% 0% 100%
< 1000 0,5% 17,7% 0,5% 0% 100%

MO/TO/U 99,5% 82,3% 99,5% 100% 0%

Table 6.5: Quota for TriCore instances

93

Chapter 6. STABLE: a new SMT Solver

CPU time, sec.

Q
u

o
ta

, %

0

20

40

60

80

100

0 200 400 600 800 1000

STABLE

simplifyingSTP

MathSAT

Boolector

Spear

Z3

Yices

Figure 6.4: Quota of QF-BV SMT formulas generated for data-path verification of pro-
cessor TriCore and solved by STABLE and its competitors / TO - 1000 sec.

6.2.4 Benchmark of Satisfiable Instances
In this chapter, the evaluation of STABLE concludes with the report on performance for
satisfiable instances in formal data-path verification domain. To obtain such instances,
typical bugs such as missing or wrong connections, wrong operators, etc. have been
introduced into the design of the instances derived from the above mentioned sources.

The graphical representation of the actual quotas distribution is illustrated with the
plots in Figure 6.5. The numerical data of quotas for CPU times of different solvers is
given in Table 6.6.

It turns out that most of the instances become rather easy to solve such that both
STABLE and Boolector can solve all of them. Only Spear and MathSAT fail on a few
examples. This is consistent with the industrial experience that SAT quickly finds coun-
terexamples (if they exist) for data-path properties but fails by time-out at proving valid
properties.

94

6.2. Experiments

CPU time, sec.

Q
u

o
ta

, %

50

60

70

80

90

100

0 200 400 600 800 1000

STABLE

simplifyingSTP

MathSAT

Boolector

Spear

Z3

Yices

Figure 6.5: Quota of satisfiable QF-BV SMT formulas solved by STABLE and its com-
petitors / TO - 1000 sec.

CPU time, sec. Spear Boolector MathSAT simplifyingSTP STABLE
< 10 66,7% 88,5% 71,8% 53,9% 84%
< 100 71,2% 100% 84% 76,3% 98,8%
< 250 71,2% 100% 86,5% 96,8% 99,4%
< 500 71,2% 100% 88,5% 96,8% 99,4%
< 1000 71,2% 100% 88,5% 96,8% 100%

MO/TO/U 28,8% 0% 11,5% 3,2% 0%

Table 6.6: Quota for satisfiable instances

95

Chapter 6. STABLE: a new SMT Solver

96

Chapter 7

Summary and Future Work

7.1 Summary
The increasing complexity of modern SoC designs makes tasks of SoC formal verification
a lot more complex and challenging. This motivates the research community to develop
more robust approaches that enable efficient formal verification for such designs.

It is a common scenario to apply a correctness by integration strategy while a SoC
design is being verified. This strategy assumes formal verification to be implemented in
two major steps. First of all, each module of a SoC is considered and verified separately
from the other blocks of the system. At the second step – when the functional correctness
is successfully proved for every individual module – the communicational behavior has
to be verified between all the modules of the SoC.

In industrial applications, SAT/SMT-based interval property checking(IPC) has be-
come widely adopted for SoC verification. Using IPC approaches, a verification engineer
is able to afford solving a wide range of important verification problems and proving
functional correctness of diverse complex components in a modern SoC design. How-
ever, there exist critical parts of a design where formal methods often lack their robust-
ness. State-of-the-art property checkers fail in proving correctness for a data path of an
industrial central processing unit (CPU).

In particular, arithmetic circuits of a realistic size (32 bits or 64 bits) – especially im-
plementing multiplication algorithms – are well-known examples when SAT/SMT-based
formal verification may reach its capacity very fast. In cases like this, formal verification
is replaced with simulation-based approaches in practice. Simulation is a good methodol-
ogy that may assure a high rate of discovered bugs hidden in a SoC design. However, in
contrast to formal methods, a simulation-based technique cannot guarantee the absence
of errors in a design. Thus, simulation may still miss some so-called corner-case bugs in
the design. This may potentially lead to additional and very expensive costs in terms of
time, effort, and investments spent for redesigns, refabrications, and reshipments of new
chips.

The work of this thesis concentrates on studying and developing robust algorithms
for solving hard arithmetic decision problems. Such decision problems often originate

97

Chapter 7. Summary and Future Work

from a task of RTL property checking for data-path designs. Proving properties of those
designs can efficiently be performed by solving SMT decision problems formulated with
the quantifier-free logic over fixed-sized bit vectors (QF-BV). The highlights and achieve-
ments of the work presented in this thesis are briefly summarized in Sections 7.1.1 - 7.1.3.

7.1.1 Algebraic Approach for Verification of Arithmetic Designs

High performance data paths are usually designed at a level of abstraction that is known as
the arithmetic bit level (ABL). Chapter 4 presents an approach to efficiently solve decision
problems at the arithmetic bit level. This approach combines the technique [WSBK07]
with computer algebra algorithms of a Gröbner basis theory over finite rings Z/2n. In
particular, Chapter 4 demonstrates how the ABL decision problems of [WSBK07] can
be transformed into a set of variety subset problems. Under certain monomial orderings,
the set G of polynomials, generated from the ABL components, forms a Gröbner basis
of the ideal I = 〈G〉 generated by these polynomials. This allows to efficiently solve the
variety subset problem and decide problems at the arithmetic bit level. In Chapter 4, it is
assumed that the arithmetic problem parts are specified at the arithmetic bit level or word
level. In case of custom-designed components, i.e., those parts of an arithmetic design
that are specified below the ABL, a sophisticated technique is required to restore all the
necessary arithmetic description from these components. Such extraction techniques are
presented in Chapter 5.

In contrast to other algebraic techniques applied for data-path verification in the past,
the approach of Chapter 4 neither needs to implement a time-consuming generation of a
Gröbner basis nor performs an expensive zero-function test.

7.1.2 ABL Modeling of Custom-Designed Components

The ABL normalization [WSBK07] and the technique of computer algebra [PWS+11]
have been proven viable approaches to formal property checking of data-path designs.
They are applicable where arithmetic components and subcomponents can be identified
on the register-transfer level (RTL) of the design and the property. Chapter 5 extends
the applicability of these approaches to cases where some of the arithmetic components
are custom-designed entities, e.g., specified using Boolean equations or gates. Two tech-
niques are presented for transformation of these entities into arithmetic building blocks.

The first technique is developed to increase capacity of the ABL normalization. This
technique is based on the Reed-Muller expansion and uses Reed-Muller expressions as
intermediate representations for Boolean functions. Section 5.2 describes how Boolean
logic, expressed in such Reed-Muller forms, can automatically be transformed into ABL
components so that such logic blocks can further be treated together with the remaining
ABL components in a subsequent normalization run. As demonstrated with experimental
results in Section 5.4, this extraction technique was successfully evaluated on a number
of industrial designs generated by a commercial arithmetic module generator.

98

7.2. Future Work

The second technique proposed in Chapter 5 is a modification of the extraction algo-
rithm based on the Reed-Muller expansion. The modified version of the technique enables
an efficient creation of functionally equivalent arithmetic polynomials over Boolean vari-
ables for a gate netlist. This technique may greatly enhance the applicability of the alge-
braic approach. As a result, it allows to build a stronger framework to successfully solve
hard arithmetic decision problems in property checking for SoCs of a custom-designed
flow. In practice, this extraction technique was conjoined with the approach of computer
algebra and both were integrated into a common SMT solver as described in Chapter 6.

7.1.3 New QF-BV SMT Solver
The main application domain for the techniques discussed in this thesis is formal verifi-
cation of SoC modules designed for complex computational tasks, for example, in signal
processing applications. Ensuring proper functional behavior for such modules, including
arithmetic correctness of the data paths, is considered a very difficult problem for standard
SAT/SMT-based property checking.

Chapter 6 explains how methods from computer algebra can be integrated into an SMT
solver such that instances can be handled where the arithmetic problem parts are specified
mixing various levels of abstraction from the plain gate level for small highly optimized
components up to the pure word level used in high-level specifications. In Chapter 6,
a new SMT solver STABLE is introduced for the quantifier-free logic over fixed-sized
bit vectors. This solver integrates the proposed algebraic technique of Chapter 4 and
the extraction technique of Section 5.3 to solve hard arithmetic decision problems. In
STABLE, a standard SAT solver is used as a back end for solving the non-arithmetic
problem parts.

The experiments demonstrate high effectiveness and robustness of STABLE in prov-
ing functional correctness for arithmetic designs of a realistic size in comparison with
other contemporary QF-BV SMT solvers.

7.2 Future Work
This thesis concentrated on efficient solving of hard arithmetic decision problems that
are frequently encountered in formal verification of RTL data-path designs. In particular,
the thesis proposed new methodology to effectively tackle such verification problems in
practice. The next sections describe extensions for the proposed methodology and outline
research for the future work.

7.2.1 Smart and lazy ABL Extraction
As follows from Chapter 5, the ABL extraction algorithms are crucial for an appropriate
modeling of arithmetic decision problems in cases when an RTL design, heavily opti-
mized at the logic level, is to be formally verified by means of the algebraic approach

99

Chapter 7. Summary and Future Work

from Chapter 4. Moreover, the number of polynomials and their compactness have a di-
rect impact on the efficiency of the algebraic approach to calculate a reduced normal form
of the proof goal. To be more precise, the more compact a system of polynomial equa-
tions is provided, the faster the approach processes it and the less memory is, thereby,
consumed.

The approaches of Chapter 5 use greedy ABL extractions. For a given gate netlist, at
first, they generate arithmetic polynomials for each gate. As the next step, the polyno-
mials defining the primary outputs of the netlist have to be normalized up to the primary
inputs. The pre-normalized polynomials are, furthermore, analyzed to compute (if possi-
ble) compact ABL models thereof.

0
c

0
r

1
r

2
r

a

b

d

0
o

1
o

0
i

1
i

2
i

3
i

0
c

0
r
0

a

b

1

2

34
6

8 9

7

10

11

5

13

12

Figure 7.1: Example of a gate netlist for an arithmetic custom-designed component

HA1
0
c

0
r

1
r

2
r

a

b

d

0
o

1
o

0
i

1
i

2
i

3
i

HA2

1

2

34

5

Figure 7.2: Result of a lazy ABL extraction for the example of Figure 7.1

The compactness of ABL models may significantly be increased if all arithmetic
functional units are successfully identified throughout the gate netlist under investiga-
tion. This may not always be achieved with a greedy ABL extraction when a gate netlist
consists of logic parts with mixed arithmetic functions, where the bounds between func-
tional units are blurred at the logic level. Figure 7.1 demonstrates this problem. Two

100

7.2. Future Work

half adders, implemented by the gates 6, . . . , 13, are surrounded with other logic ele-
ments designated with 1, . . . , 5. A greedy extraction will miss the adders and simply end
with three long polynomial functions o0 = f0(a, i0, i1, i2), o1 = f1(a, i0, i1, i2, i3), and
r2 = f2(a, i1, i2, i3). Further reduction of these polynomials becomes impossible. There-
fore, in cases like this, an advanced extraction algorithm is needed. It should be a kind of a
lazy approach that considers, at the beginning, pieces of logic circuitry to find exact arith-
metic components, e.g., half adders HA1 : r0 + 2c0 = a+ b and HA2 : r1 + 2r2 = c0 + d
in Figure 7.2. Only after that a greedy extraction may be applied. Note, the example of
Figure 7.2 demonstrates one more potential improvement followed by a lazy extraction.
The successfully identified half adders may later be combined into an addition network of
one polynomial r0 + 2r1 + 4r2 = a + b + 2d. In practice, such reductions might greatly
simplify the overall polynomial system.

s

c

a

b

HA1 HA2

HA3

HA4

(a)

s

c

a

b

HA1 HA2

HA3

(b)

s

ac =

a
HA1 HA2

HA3
1=b

(c)

Figure 7.3: Gate-level optimization of the half adder HA4

The other important issue that an advanced extraction approach must take into account
is the identification of arithmetic entities in a gate netlist when logic optimizations due
to don’t care conditions, internal constant values, internal equivalences, etc. have been
applied. Sometimes, such optimizations may substantially restructure a gate netlist so
that an extraction of individual functional components becomes a very complex task.
For instance, Figure 7.3 depicts refinement steps of the logic circuit for the half adder
HA4 : s+ 2c = a+ b when one of its input operands has the constant value. The reverse
development of this circuit into its ABL model has to be treated in a special manner. For
example, the merging of the reverse engineering approach described in Section 3.2.1 and
the extraction algorithms of Chapter 5 might be a possible solution to fix this problem.

7.2.2 ABL Proof Logging
In designing and implementing of an SMT solver, a lion’s share of all costs and efforts
falls to testing and debugging of the tool. While tests can often be executed automatically,
the debugging is usually a manual, complex and even error-prone task.

Therefore, a certified proof is desired to validate the correctness of algorithmic im-
plementations that are responsible to perform computations inside a solver. For instance,
in an ABL-based SMT solver, the implementation of an underlying ABL engine was not

101

Chapter 7. Summary and Future Work

Algebraic

Approach
Log File Algebraic

Checker

Arithmetic

Decision

Problem

Result

Approach
Result

Checker

Equivalent?
NO YES

Approach has

performed correctly
Debugging of

Approach

Figure 7.4: Flow of ABL proof logging

yet appropriately certified, although, in the last decades, different research groups have
proposed a variety of ABL approaches that experimentally proved to be robust enough
to tackle hard arithmetic decision problems. Indeed, the way for proper semi-/automatic
testing and debugging of such approaches was so far not discussed at all. So, the develop-
ment of techniques that enable efficient testing and debugging in the ABL domain is still
a challenge.

A possible solution might be a technique for ABL proof logging as shown in Fig-
ure 7.4. The idea is the same as with proof traces that may be used for debugging of SAT
solvers. For example, such traces can be generated with the BDD-based SAT solver EBD-
DRES [EBD] that for an input CNF performs an extended resolution proof as described
in [SB06, JSB06]. Similar to EBDDRES, the algebraic approach under test has to be able
to dump a log file with traces of all algebraic calculation steps being made while an input
problem is solved. In the sequel, the data of this file has to be analyzed with an alternative
algebraic checker. For instance, SINGULAR [GPS10] is a suitable candidate to be a good
checker for the QF-BV solver STABLE. If the result produced by such a checker does not
coincide with the result computed by the approach under test then this implementation of
the approach is erroneous and must be debugged correspondingly.

It is apparent that a fully automatic ABL proof logging is not feasible in practice,
since debugging always needs manual interventions of a designer. But still, the rest of the
ABL-proof-logging flow from Figure 7.4 can easily be automated. For this purpose, it is
important to develop a common proof-trace format and to create a well-defined interface
among all the engines that have to be integrated into the proof-logging environment.

102

Chapter 8

Zusammenfassung

Mit zunehmendem Umfang von modernen SoC-Entwürfen (engl.: System-on-Chip desi-
gns) steigt auch die Komplexität der formalen Verifikation von SoC-Entwürfen. Das mo-
tiviert die Forschungsgemeinschaft robustere Verfahren zu entwickeln, die eine effiziente
Verifikation von solchen Entwürfen ermöglichen.

In der Praxis wird bei der Verifikation deshalb häufig eine Strategie angewendet, bei
der Korrektheit durch Integration (engl.: correctness by integration) erreicht wird. Diese
Strategie führt die formale Verifikation in zwei Schritten aus. Zuerst konzentriert man
sich auf die Verifikation einzelner Module in einem SoC-Entwurf. Sobald die Korrektheit
für jedes Modul erfolgreich bewiesen worden ist, beginnt man mit der Verifikation des
ganzen Kommunikationsverhaltens zwischen den einzelnen Komponenten im System.

In industriellen Anwendungen ist die SAT/SMT-basierte Intervall-Eigenschaftsprü-
fung (engl.: interval property checking (IPC)) heutzutage zu einer der meistverwendeten
Techniken der SoC-Verifikation geworden. Mittels IPC kann man ein breites Spektrum
von wichtigen Verifikationsproblemen lösen und darüber hinaus diverse komplexe Ein-
heiten auf ihre funktionelle Korrektheit in einem SoC-Entwurf untersuchen. Es gibt je-
doch kritische Teile in einem RTL-Design (engl.: register-transfer-level design), wo die
Robustheit für formale Verifikationsverfahren noch immer fehlt. So scheitern zum Bei-
spiel moderne Property Checker an formalen Korrektheitsbeweisen für Datenpfade eines
industriellen Prozessors (engl.: central processing unit (CPU)).

Insbesondere arithmetische Schaltungen einer realistischen Größe, beispielweise sol-
che arithmetische Einheiten wie ein Multiplizierer mit Datenwortbreiten von 32 Bits oder
64 Bits, sind wohlbekannte Beispiele, wo die formale Verifikation ihre Leistungsgren-
ze sehr schnell erreicht. In Fällen wie diesen wird die formale Verifikation in der Regel
durch simulationsbasierte Techniken ersetzt. Simulation ist ein praktikabler Ansatz für die
Analyse und das Debugging von RTL-Entwürfen. In der Praxis unter Verwendung von Si-
mulation ist die Anzahl von entdeckten Entwurfsfehlern meistens sehr hoch. Allerdings,
im Gegensatz zu formaler Verifikation, sind simulationsbasierte Methoden unfähig, die
Fehlerfreiheit für große RTL-Designs zu garantieren. Einige Fehler können dabei überse-
hen werden. Die Kosten, die von zu spät entdeckten Fehlern verursacht werden, können
immens sein.

103

Chapter 8. Zusammenfassung

Der Schwerpunkt dieser Arbeit richtet sich auf die Untersuchung und auf die Entwick-
lung robuster Algorithmen, um schwere arithmetische Entscheidungsprobleme effektiv zu
lösen. Solche Probleme entstehen oft bei einer RTL-Eigenschaftsprüfung für industrielle
Datenpfadentwürfe. Eigenschaftsprüfung beruht in der Praxis meistens auf SAT/SMT-
basierten Methodiken. Für die Formulierung derartiger Verifikationsprobleme eignet sich
die nicht quantifizierte Logik mit Bitvektoren fixer Bitbreite (engl.: quantifier-free logic
over fixed-sized bit vectors (QF-BV)) gut. Diese Logik wird unter anderem durch das
SMT-LIB-Format [RT06, BST10] standardisiert.

In letzter Zeit haben verschiedene Arbeitsgruppen spezielle Tools entwickelt, die sich
mit dem Lösen von QF-BV-Entscheidungsproblemen befassen. Es handelt sich dabei um
sogenannte SMT-Solver wie beispielweise Spear [BH08, Spe], Boolector [BB09, boo],
MathSAT [BBC+05], simplifyingSTP bezogen auf die Version 939 von STP [GD07,STP],
Z3 [Z3,MB08] und Yices [Yic,DM06,DdM06]. Wie die Ergebnisse der SMT-Wettbewerbe
[SMT07, SMT08, SMT09, SMT10] zeigen, sind diese Solver im Allgemeinen sehr lei-
stungsfähig mit der Ausnahme der Behandlung schwerer arithmetischer Probleme. Diese
stellen bedauerlicherweise einen Flaschenhals für die vorgeschlagenen SMT-Solver dar.

Der Hauptbeitrag dieser Arbeit ist die Entwicklung eines effizienten Verfahrens, wel-
ches das erfolgreiche Behandeln von schweren arithmetischen Entscheidungsproblemen
ermöglicht. Dazu wurden zwei wichtige Ansätze vorgeschlagen. Der erste Ansatz be-
schreibt ein algebraisches Verfahren, das das Folgende erzielt:

• die Modellierung eines arithmetischen Entscheidungsproblems durch eine Menge
von algebraischen Polynomen im Ring Q := Z/2N [X]/〈x2 − x : x ∈ X〉,

• die weitere Lösung des Problems durch die Normalformberechnung im Ring Q.

Der zweite Ansatz schlägt einen Extraktionsalgorithmus vor und zeigt, wie man die logi-
sche Beschreibung eines arithmetischen Teilproblems in eine Menge arithmetischer Po-
lynome umwandeln kann. Diese Teilprobleme tauchen oftmals in der Praxis auf, haupt-
sächlich wenn ein zu verifizierendes RTL-Design einige Komponenten enthielt, die auf
Boolescher Ebene einer Tiefenoptimierung unterzogen wurden. Beide Ansätze wurden in
einen neuen QF-BV-SMT-Solver integriert, genannt STABLE.

8.1 Algebraisches Verfahren
Leistungsfähige RTL-Datenpfade sind üblicherweise auf einer Abstraktionsebene entwor-
fen, die als arithmetische Bitebene (engl.: arithmetic bit level (ABL)) bezeichnet wird.
Die dabei entstehenden Verifikationsprobleme kann man auch auf dieser Ebene kom-
pakt darstellen. Im Folgenden entwickeln wir eine Verifikationstechnik, die solche ABL-
Informationen ausnutzt. Damit erhalten wir ein formales Verfahren, das eine effektive und
robuste Verifikation erfolgreich gewährleistet.

Kapitel 4 stellt ein Verfahren für die effektive Behandlung von Entscheidungsproble-
men auf der arithmetischen Ebene vor. Das Verfahren kombiniert die Technik [WSBK07]

104

8.1. Algebraisches Verfahren

mit den computeralgebraischen Algorithmen, die auf Gröbnerbasentheorien über endli-
chen Ringen Z/2N basieren. Kapitel 4 zeigt, wie man Probleme der Eigenschaftsprüfung
auf der ABL durch algebraische Polynome modelliert. Dabei wird jede ABL-Komponente
gi in eine Menge Gi von arithmetischen Polynomen im Polynomring Z/2N [x1, . . . , xn]
übersetzt. Unter einer bestimmten Monomordnung bildet die Menge G aller generier-
ten Polynome eine starke Gröbnerbasis für ein Ideal I = 〈G〉. Sei mit g das Polynom
der Zielsetzung bezeichnet. Dann kann man, wie in Kapitel 4 erläutert ist, die ABL-
Entscheidungsprobleme aus [WSBK07] durch eine Menge von Varietätsteilmengenpro-
blemen (engl.: variety subset problems) darstellen. Das heißt, man muss zeigen, dass

V (〈G〉) ⊆ V (g) (8.1)

gilt, wobei V für die Varietät steht. Im Allgemein ist die Varietät eines Polynoms die
Menge aller Nullstellen dieses Polynoms. Auf diese Weise ist es offensichtlich, dass das
vorgestellte algebraische Verfahren sämtliche Wertebelegungen für alle Variablen aus der
MengeG erfasst. Die Bedingung 8.1 ist dann und nur dann erfüllt, wenn die nachstehende
Gleichung gilt:

NF(2N−ng,G) = 0. (8.2)

Das heißt, es muss sich ein Nullpolynom für die reduzierte Normalform von g im Bezug
auf G ergeben. Die Algorithmen der Computeralgebra erlauben eine effektive Normal-
formberechnung und gestatten damit, Probleme auf der arithmetischen Abstraktionsebene
effektiv zu entscheiden.

Im Unterschied zu anderen algebraischen Techniken, die man für die Verifikation von
Datenpfaden benutzt, hat das Verfahren aus Kapitel 4 zwei entscheidende Vorteile:

• keine zeitaufwendige Generierung von Gröbnerbasen,

• kein teurer Nullfunktiontest.

Das Beispiel aus Abschnitt 4.3 demonstriert den Ablauf des Verfahrens durch den vorge-
legten Beweis auf die Korrektheit für den Entwurf eines kombinatorischen Multiplizie-
rers.

In Kapitel 4 wird davon ausgegangen, dass die Teile des arithmetischen Problems auf
der arithmetischen Ebene und/oder auf der Wortebene angegeben sind. Anwendungsspe-
zifische Komponenten (engl.: custom-designed components) werden in der Regel auf der
logischen Gatterebene, also unterhalb der ABL-Abstraktionsebene, entworfen. Dadurch
können noch bessere Optimierungsergebnisse erzielt werden. Man benötigt dann jedoch
eine elegante Technik, um die erforderliche ABL-Beschreibung für eine solche Gatter-
netzliste wieder herzustellen. Eine solche Extraktionstechnik ist in Kapitel 5 detailliert
beschrieben. Wie in Kapitel 6 berichtet ist, kann das neue algebraischen Verfahren zu-
sammen mit der Extraktionstechnik erfolgreich kombiniert werden.

105

Chapter 8. Zusammenfassung

8.2 Algebraische Modellierung für logische Constraints

Mit der ABL-Normalisierung [WSBK07] und deren Weiterentwicklungen mit Techniken
der Computeralgebra [WWS+08, PWS+11] liegen effektive Verfahren für die formale
Eigenschaftsprüfung von Datenpfaden vor. Diese Verfahren sind gut anwendbar, wenn
die arithmetischen Komponenten eines Entwurfs auf der arithmetischen Bitebene oder
auf der Wortebene spezifiziert sind. Kapitel 5 erweitert die Verwendungsmöglichkeit die-
ser Verfahren auf Fälle, in denen einige arithmetische Komponenten auf der logischen
Gatterebene optimiert worden sind, d.h. diese Komponenten sind durch Boolesche Glei-
chungen oder Gatter spezifiziert. Beispiele für solche Komponenten könnten ein Booth-
Encoder oder verfeinerte Additionsanordnungen sein, die üblicherweise unterhalb der
ABL-Abstraktionsebene implementiert werden. In realen industriellen Probleminstanzen
bilden solche anwendungsspezifischen Komponenten zusammen mit ABL-Komponenten
eine monolithische arithmetische Funktionseinheit. Daher enthalten in der Praxis man-
che Bestandteile des Entwurfs handgefertigte Optimierung und beinhalten spezialisierte
Logik, so dass es unmöglich ist, eine RTL-Beschreibung in eine ABL-Beschreibung so-
fort zu übersetzen. Kapitel 5 zeigt eine Methode, um anwendungsspezifische Komponen-
ten einer arithmetischen Schaltung in eine funktionell äquivalente ABL-Beschreibung zu
transformieren. Anschließend lässt sich die Anwendung von den ABL-basierten Algorith-
men, die in Kapitel 3, 4 beschrieben worden sind, erfolgreich durchführen. Somit füllt der
vorgeschlagene Ansatz eine wesentliche Lücke im Ablauf der formalen Verifikation und
stellt damit sicher, dass das manuelle Verfahren [KJW+08] aus Abschnitt 3.2.1 für High-
End-Anwendungsfälle verwendet werden kann. Kapitel 5 präsentiert zwei Techniken, mit
denen man anwendungsspezifische Komponenten in arithmetische Bausteine umwandeln
kann.

Der erste Ansatz wurde entwickelt, um die Leistungsfähigkeit der ABL-basierten
Normalisierung zu verbessern. Er beruht auf der Reed-Muller-Zerlegung und ist in Ab-
schnitt 5.2 dargestellt. Hier werden Reed-Muller-Formen als eine Zwischendarstellung für
Boolesche Funktionen verwendet. Abschnitt 5.2 zeigt, wie Boolesche Logik, die durch
Reed-Muller-Formen ausgedrückt ist, automatisch in ABL-Komponenten umgewandelt
werden kann, so dass solche logischen Blöcke zusammen mit den übrigen ABL-Kompo-
nenten im folgenden Normalisierungsablauf behandelt werden können. Die experimentel-
len Ergebnisse aus Abschnitt 5.4 zeigen, dass das Extraktionsverfahren für etliche Designs
in effektiver Weise angewendet werden kann. Diese Designs wurden mit einem kommer-
ziellen Generator für arithmetische Module erstellt.

Der zweite vorgeschlagene Ansatz aus Kapitel 5 ist eine Modifikation des Extraktions-
algorithmus, basierend auf einer Reed-Muller-Zerlegung. Für eine gegebene Gatternetzli-
ste ermöglicht diese geänderte Variante des Extraktionsansatzes eine effiziente Erstellung
von funktionell äquivalenten arithmetischen Polynomen mit Booleschen Variablen. Ab-
schnitt 5.3 entwickelt das Konzept der ABL-Synthese aus Abschnitt 5.2 weiter und stellt
ein Verfahren dar, um normalisierte Polynome in einem Ring Z/2N zu berechnen, damit
die Algorithmen der Computeralgebra aus Kapitel 4 angewendet werden können. Um die
Bearbeitung von nicht-arithmetischen Constraints mit dem algebraischen Verfahren zu er-

106

8.3. QF-BV-SMT-Solver

möglichen, wurde eine Technik erarbeitet, die arithmetische Polynome generiert, welche
die arithmetische Funktion nicht-arithmetischer Constraints modellieren. Für eine Netzli-
ste von Booleschen Constraints lassen sich solche Polynome mit dieser Technik in zwei
aufeinanderfolgenden Phasen gewinnen:

• zuerst werden Reed-Muller-Formen und arithmetische Umformungen verwendet,
um polynomische Gleichungen für jeden Booleschen Constraint abzuleiten,

• dann werden alle Polynome bezüglich der Eingangsvariablen der Netzliste norma-
lisiert.

Diese Technik erlaubt das algebraische Verfahren auch dann einzusetzen, wenn kei-
ne vollständige arithmetische Beschreibung des Entwurfs existiert. Die experimentellen
Daten für diese Technik sind in Kapitel 6 dargestellt. Hier ist auch erläutert, wie man
diese Technik mit dem algebraischen Verfahren aus Kapitel 4 integrieren kann, um SMT-
Entscheidungsprobleme zu lösen, die in der Praxis bei der formalen Verifikation von arith-
metischen Designs entstehen.

8.3 QF-BV-SMT-Solver
Das Hauptanwendungsgebiet der vorgestellten Techniken ist die formale Verifikation von
SoC-Modulen, die man für die Aufgaben einer hohen Berechnungskomplexität entworfen
hat, wie z.B. bei der Signalverarbeitung. Das korrekte funktionelle Verhalten solcher Mo-
dule zu gewährleisten und insbesondere die arithmetische Korrektheit für Datenpfade zu
beweisen, ist ein schweres Problem für einen Standard-SAT/SMT-basierten Eigenschafts-
prüfer.

Kapitel 6 beschreibt den neuen SMT-Solver STABLE. Dieser Solver kombiniert die
beiden entwickelten Techniken, und zwar das in Kapitel 4 eingeführte computeralgebra-
basierte Verfahren und die in Kapitel 5 diskutierte Extraktionsmethode. Im Hintergrund
von STABLE wird ein normaler SAT-Solver eingesetzt, um das Lösen nicht-arithmetischer
Teilprobleme zu erlauben. STABLE wurde zunächst in [WPD+10, PWS+11] vorgestellt.
Er ist vor allem aufgebaut, um Formeln der nicht quantifizierten Logik mit Bitvektoren
fixer Bitbreite (QF-BV) effizient zu behandeln.

Solche Formeln werden häufig bei der Eigenschaftsprüfung für Module von SoC-
Entwürfen erzeugt. Bei der Verifikation von Hochleistungsdatenpfadmodulen tauchen oft
anwendungsspezifische arithmetische Komponenten auf, die auf der logischen Ebene der
jeweiligen Hardwarebeschreibungssprache spezifiziert worden sind. Dies führt zu Verifi-
kationsproblemen, wo einige arithmetische Teile des Beweisproblems nicht-arithmetische
Constraints enthalten können. Da die vorgeschlagene Verifikationstechnik auch den Algo-
rithmus beinhaltet, der eine arithmetische Bitebeneinformation für diese Boolesche Cons-
traints extrahieren kann, ist das eingebaute algebraische Verfahren gut anwendbar, um
arithmetische Teilprobleme vollständig zu lösen. Die nicht-arithmetischen Teilprobleme
sind letztendlich zusammen mit den Ergebnissen des Verfahrens der Computeralgebra in

107

Chapter 8. Zusammenfassung

Entscheidungsproblem,

bspw. eine SMT-Formel

Vorverarbeitung:

• Vereinfachung

• Konstantenpropagierung

• Annahmenpropagierung

Bestimme Variablen

oder Verzweigung

(V)

Existiert neue

Wertebelegung val(V)

für Variablen in V

Propagiere val(V)

Erstelle Polynome G

für arith. Constraints

im „Cone of Inf luence“

von jeder Zielsetzung (f)

Berechne normale Form

NF(f,G) für Polynom f,

das die Zielsetzung

hinsichtlich G kodiert

Ja Extrahiere zusätzliche

Polynome G’

Lerne val(V)àf

Löse das Problem

mit SAT-Solver

NF(f,G) = 0

SAT-Solver beweist

NF(f,G) = 0

G’≠

Nein Ja

Ja

Ja

Nein

Nein

Nein

SAT / UNSAT

GBABL

ABL-Extraktor

G=G G’

Abbildung 8.1: Das Ablaufdiagramm vom SMT-Solver STABLE für Lösen von QF-BV-
Entscheidungsproblemen mit Hilfe vom GBABL (Gröbner-Basis-basierte-ABL)-Ansatz
und dem ABL-Extraktor

eine CNF übersetzt, die weiter mit einem SAT-Solver bearbeitet wird. Der grundlegende
Ablaufplan von STABLE ist in Abbildung 8.1 dargestellt.

Wie die Experimente in Kapitel 6 zeigen, ist STABLE höchst leistungsfähig und ro-
bust im Vergleich zu anderen modernsten QF-BV-SMT-Solvern wie Spear-2-7 [BH08,
Spe], Boolector 1.4 [BB09,boo], MathSAT v. 4.3-smtcomp [BBC+05], und simplifyingSTP
basierend auf der Revision 939 von STP [GD07, STP]. Als einziger uns bekannter Sol-
ver kann STABLE funktionelle Korrektheit für arithmetische Entwürfe einer realistischen
Größe wirksam beweisen.

108

Appendix A

Examples of Source Codes

(set-logic QF_BV)

(set-info :smt-lib-version 2.0)

(set-info :status unknown)

(declare-fun var2 () (_ BitVec 2))

(declare-fun bvlambda_1_ () (_ BitVec 1))

(declare-fun bvlambda_2_ () (_ BitVec 1))

(assert (let ((?let_k_0 (concat (_ bv0 2) var2)))

(let ((?let_k_1 (bvmul ?let_k_0 ((_ extract 3 0) (bvadd (concat (_ bv0

 1) ((_ extract 3 0) (bvadd (_ bv1 5) (bvnot (concat (concat (_ bv0 3)

 bvlambda_1_) (_ bv0 1)))))) (concat (_ bv0 4) bvlambda_2_))))))

(let ((?let_k_2 (bvmul var2 (concat (_ bv0 1) bvlambda_1_))))

(let ((?let_k_3 (bvadd (concat (_ bv0 2) ((_ extract 0 0) ?let_k_2))

 (concat (_ bv0 2) ((_ extract 2 2) ?let_k_1))))) ((and (not false)

 (not (= (_ bv0 1) (bvnot (ite (= (bvmul ?let_k_0 (concat (concat (_

 bv0 2) bvlambda_1_) bvlambda_2_)) (concat (concat ((_ extract 0 0)

 (bvadd (concat (_ bv0 1) ((_ extract 1 0) (bvadd (concat (_ bv0 2) ((_

 extract 1 1) ?let_k_3)) (concat (_ bv0 2) ((_ extract 3 3)

 ?let_k_1))))) (concat (_ bv0 2) ((_ extract 1 1) ?let_k_2)))) ((_

 extract 0 0) ?let_k_3)) ((_ extract 1 0) ?let_k_1))) (_ bv1 1) (_ bv0

 1)))))))))))

)

(check-sat)

(exit)

Figure A.1: SMT formula defined in accordance with SMT-LIB version 2.0 [BST10] for
property checking instance of (2×2) unsigned integer multiplier represented in Figure A.5

109

Appendix A. Examples of Source Codes

(set-logic QF_BV)

(set-info :smt-lib-version 2.0)

(set-info :status unknown)

(declare-fun bvlambda_1_ () (_ BitVec 1))

(declare-fun bvlambda_2_ () (_ BitVec 1))

(declare-fun bvlambda_3_ () (_ BitVec 1))

(declare-fun bvlambda_4_ () (_ BitVec 1))

(assert (let ((?let_k_0 (concat (_ bv0 2) bvlambda_1_)))

(let ((?let_k_1 (bvnot bvlambda_1_)))

(let ((?let_k_2 (bvand bvlambda_2_ bvlambda_4_)))

(let ((?let_k_3 (bvand bvlambda_1_ (bvnot bvlambda_2_))))

(let ((?let_k_4 (bvand bvlambda_3_ ?let_k_3)))

(let ((?let_k_5 (bvadd (concat (_ bv0 1) ((_ extract 1 0) (bvadd

 (concat (_ bv0 2) ((_ extract 1 1) (bvadd (concat (_ bv0 2) ((_

 extract 1 1) (bvadd ?let_k_0 (concat (_ bv0 2) (bvand (bvnot (bvand

 bvlambda_1_ ?let_k_2)) (bvnot (bvand ?let_k_1 (bvnot ?let_k_2))))))))

 (concat (_ bv0 2) (ite (= bvlambda_1_ (bvand (bvnot (bvand bvlambda_2_

 bvlambda_3_)) (bvnot (bvand bvlambda_4_ ?let_k_3)))) (_ bv1 1) (_ bv0

 1)))))) (concat (_ bv0 2) (bvand (bvnot (bvand bvlambda_1_ ?let_k_4))

 (bvnot (bvand ?let_k_1 (bvnot ?let_k_4)))))))) (concat (_ bv0 2)

 (bvand bvlambda_1_ bvlambda_4_)))))

(let ((?let_k_6 (bvadd (concat (_ bv0 2) ((_ extract 1 1) (bvadd

 ?let_k_0 (concat (_ bv0 2) (bvand (bvnot (bvand bvlambda_1_ ?let_k_2))

 (bvnot (bvand ?let_k_1 (bvnot ?let_k_2)))))))) (concat (_ bv0 2) (ite

 (= bvlambda_1_ (bvand (bvnot (bvand bvlambda_2_ bvlambda_3_)) (bvnot

 (bvand bvlambda_4_ ?let_k_3)))) (_ bv1 1) (_ bv0 1))))))

(let ((?let_k_7 (bvadd ?let_k_0 (concat (_ bv0 2) (bvand (bvnot (bvand

 bvlambda_1_ ?let_k_2)) (bvnot (bvand ?let_k_1 (bvnot ?let_k_2))))))))

 ((and (not false) (not (= (_ bv0 1) (bvnot (ite (= (bvmul (concat

 (concat (_ bv0 2) bvlambda_3_) bvlambda_4_) (concat ?let_k_0

 bvlambda_2_)) (concat (concat (concat (bvnot ((_ extract 0 0) (bvadd

 (concat (_ bv0 1) ((_ extract 1 0) (bvadd (concat (_ bv0 2) ?let_k_1)

 (concat (_ bv0 2) ((_ extract 1 1) ?let_k_5))))) (concat (_ bv0 2)

 (bvand bvlambda_1_ bvlambda_3_))))) ((_ extract 0 0) ?let_k_5)) ((_

 extract 0 0) ?let_k_6)) ((_ extract 0 0) ?let_k_7))) (_ bv1 1) (_ bv0

 1)))))))))))))))

)

(check-sat)

(exit)

Figure A.2: SMT formula defined in accordance with SMT-LIB version 2.0 [BST10] for
property checking instance of (2×2) unsigned integer multiplier represented in Figure A.6

110

(benchmark mult_ub_2x2_abl

:logic QF_BV

:extrafuns ((var2 BitVec[2]))

:extrafuns ((bvlambda_1_ BitVec[1]))

:extrafuns ((bvlambda_2_ BitVec[1]))

:formula

(let (?e2 bv0[2])

(let (?e3 bv0[3])

(let (?e4 bv30[5])

(let (?e5 bv0[4])

(let (?e6 bv0[1])

(let (?e7 (concat ?e2 var2))

(let (?e10 (concat ?e2 bvlambda_1_))

(let (?e11 (concat ?e10 bvlambda_2_))

(let (?e12 (bvmul ?e7 ?e11))

(let (?e13 (concat ?e6 bvlambda_1_))

(let (?e14 (bvmul var2 ?e13))

(let (?e15 (extract[0:0] ?e14))

(let (?e16 (concat ?e2 ?e15))

(let (?e17 (concat ?e3 bvlambda_1_))

(let (?e18 (concat ?e17 ?e6))

(let (?e19 (bvadd (bvnot ?e4) (bvnot ?e18)))

(let (?e20 (extract[3:0] ?e19))

(let (?e21 (concat ?e6 ?e20))

(let (?e22 (concat ?e5 bvlambda_2_))

(let (?e23 (bvadd ?e21 ?e22))

(let (?e24 (extract[3:0] ?e23))

(let (?e25 (bvmul ?e7 ?e24))

(let (?e26 (extract[2:2] ?e25))

(let (?e27 (concat ?e2 ?e26))

(let (?e28 (bvadd ?e16 ?e27))

(let (?e29 (extract[1:1] ?e28))

(let (?e30 (concat ?e2 ?e29))

(let (?e31 (extract[3:3] ?e25))

(let (?e32 (concat ?e2 ?e31))

(let (?e33 (bvadd ?e30 ?e32))

(let (?e34 (extract[1:0] ?e33))

(let (?e35 (concat ?e6 ?e34))

(let (?e36 (extract[1:1] ?e14))

(let (?e37 (concat ?e2 ?e36))

(let (?e38 (bvadd ?e35 ?e37))

(let (?e39 (extract[0:0] ?e38))

(let (?e40 (extract[0:0] ?e28))

(let (?e41 (concat ?e39 ?e40))

(let (?e42 (extract[1:0] ?e25))

(let (?e43 (concat ?e41 ?e42))

(let (?e44 (ite (= ?e12 ?e43) bv1[1] bv0[1]))

(not (= (bvnot ?e44) bv0[1]))

))

Figure A.3: SMT formula defined in accordance with SMT-LIB version 1.2 [RT06] for
property checking instance of (2×2) unsigned integer multiplier represented in Figure A.5

111

Appendix A. Examples of Source Codes

(benchmark mult_ub_2x2

:logic QF_BV

:extrafuns ((bvlambda_1_ BitVec[1]))

:extrafuns ((bvlambda_2_ BitVec[1]))

:extrafuns ((bvlambda_3_ BitVec[1]))

:extrafuns ((bvlambda_4_ BitVec[1]))

:formula

(let (?e1 bv0[2])

(let (?e2 bv0[1])

(let (?e7 (concat ?e1 bvlambda_3_))

(let (?e8 (concat ?e7 bvlambda_4_))

(let (?e9 (concat ?e1 bvlambda_1_))

(let (?e10 (concat ?e9 bvlambda_2_))

(let (?e11 (bvmul ?e8 ?e10))

(let (?e12 (concat ?e1 (bvnot bvlambda_1_)))

(let (?e13 (bvand bvlambda_2_ bvlambda_4_))

(let (?e14 (bvand bvlambda_1_ ?e13))

(let (?e15 (bvand (bvnot bvlambda_1_) (bvnot ?e13)))

(let (?e16 (bvand (bvnot ?e14) (bvnot ?e15)))

(let (?e17 (concat ?e1 ?e16))

(let (?e18 (bvadd ?e9 ?e17))

(let (?e19 (extract[1:1] ?e18))

(let (?e20 (concat ?e1 ?e19))

(let (?e21 (bvand bvlambda_2_ bvlambda_3_))

(let (?e22 (bvand bvlambda_1_ (bvnot bvlambda_2_)))

(let (?e23 (bvand bvlambda_4_ ?e22))

(let (?e24 (bvand (bvnot ?e21) (bvnot ?e23)))

(let (?e25 (ite (= bvlambda_1_ ?e24) bv1[1] bv0[1]))

(let (?e26 (concat ?e1 ?e25))

(let (?e27 (bvadd ?e20 ?e26))

(let (?e28 (extract[1:1] ?e27))

(let (?e29 (concat ?e1 ?e28))

(let (?e30 (bvand bvlambda_3_ ?e22))

(let (?e31 (bvand bvlambda_1_ ?e30))

(let (?e32 (bvand (bvnot bvlambda_1_) (bvnot ?e30)))

(let (?e33 (bvand (bvnot ?e31) (bvnot ?e32)))

(let (?e34 (concat ?e1 ?e33))

(let (?e35 (bvadd ?e29 ?e34))

(let (?e36 (extract[1:0] ?e35))

(let (?e37 (concat ?e2 ?e36))

(let (?e38 (bvand bvlambda_1_ bvlambda_4_))

(let (?e39 (concat ?e1 ?e38))

(let (?e40 (bvadd ?e37 ?e39))

(let (?e41 (extract[1:1] ?e40))

(let (?e42 (concat ?e1 ?e41))

(let (?e43 (bvadd ?e12 ?e42))

(let (?e44 (extract[1:0] ?e43))

(let (?e45 (concat ?e2 ?e44))

(let (?e46 (bvand bvlambda_1_ bvlambda_3_))

(let (?e47 (concat ?e1 ?e46))

(let (?e48 (bvadd ?e45 ?e47))

(let (?e49 (extract[0:0] ?e48))

(let (?e50 (extract[0:0] ?e40))

(let (?e51 (concat (bvnot ?e49) ?e50))

(let (?e52 (extract[0:0] ?e27))

(let (?e53 (concat ?e51 ?e52))

(let (?e54 (extract[0:0] ?e18))

(let (?e55 (concat ?e53 ?e54))

(let (?e56 (ite (= ?e11 ?e55) bv1[1] bv0[1]))

(not (= (bvnot ?e56) bv0[1]))

)))

Figure A.4: SMT formula defined in accordance with SMT-LIB version 1.2 [RT06] for
property checking instance of (2×2) unsigned integer multiplier represented in Figure A.6

112

// generated by: ./gen_mult_adder -a 2 -b 2 -o mult_ub_2x2_abl.v -v 1 -e 2

// unsigned 2x2 Booth-encoded multiplier with primary inputs: a, b

// primary output: r

module mult_ub_2x2(r, a, b);

// The input-vectors of the circuit #0:

 input [1:0] a;

 input [1:0] b;

// The only output-vector:

 output [3:0] r;

// The partial products of the circuit #0:

 wire [3:0] pp_0_0;

 wire [1:0] pp_0_1;

// The adders of the circuit #0:

 wire [1:0] ha_0_0;

 wire [1:0] fa_0_0;

// ***** Partial products *****

 assign pp_0_0 = (-({b[1],1'b0}) + b[0])*a[1:0];

 assign pp_0_1 = b[1]*a[1:0];

// ***** Partial products *****

// ***** Adders *****

 assign ha_0_0 = ({1'b0,pp_0_1[0]} + {1'b0,pp_0_0[2]});

 assign fa_0_0 = ({1'b0,ha_0_0[1]} + {1'b0,pp_0_0[3]} + {1'b0,pp_0_1[1]});

// ***** Adders *****

// *** outputs ***

assign r[0] = pp_0_0[0];

assign r[1] = pp_0_0[1];

assign r[2] = ha_0_0[0];

assign r[3] = fa_0_0[0];

endmodule

Figure A.5: Verilog code of (2×2) unsigned Booth-encoded integer multiplier at the ABL

113

Appendix A. Examples of Source Codes

// unsigned 2x2 Booth-encoded multiplier with primary inputs: a, b

// primary output: r

module mult_ub_2x2(r, a, b);

// The input-vectors of the circuit #0:

 input [1:0] a;

 input [1:0] b;

// The only output-vector:

 output [3:0] r;

// The adders of the circuit #0:

 wire [1:0] ha_0;

 wire [1:0] ha_1;

 wire [1:0] ha_2;

 wire [1:0] fa_0;

 wire [1:0] fa_1;

// ***** Control signals ***** Circuit #0

assign sh0_0_0 = b[0];

assign sh1_0_0 = ~b[0] & b[1];

assign cpl0_0 = b[1];

assign sh0_0_1 = b[1];

// sh1_0_1 is const_0

// cpl0_1 is const_0

// ***** Control signals ***** Circuit #0

// ***** Partial products *****

assign pp0_0_0 = (sh0_0_0 & a[0]) ^ cpl0_0;

assign pp0_1_0 = ((sh0_0_0 & a[1]) | (sh1_0_0 & a[0])) ^ cpl0_0;

assign pp0_2_0 = (sh1_0_0 & a[1]) ^ cpl0_0;

assign pp0_0_1 = sh0_0_1 & a[0];

assign nn0_0 = ~cpl0_0;

assign pp0_1_1 = sh0_0_1 & a[1];

// ***** Partial products *****

// ***** Adders *****

assign ha_0 = ({1'b0,cpl0_0} + {1'b0,pp0_0_0});

assign ha_1 = ({1'b0,ha_0[1]} + {1'b0,pp0_1_0});

assign fa_0 = ({1'b0,ha_1[1]} + {1'b0,pp0_2_0} + {1'b0,pp0_0_1});

assign fa_1 = ({1'b0,fa_0[1]} + {1'b0,nn0_0} + {1'b0,pp0_1_1});

assign ha_2 = ({1'b0,1'b1} + {1'b0,fa_1[0]});

// ***** Adders *****

// *** outputs ***

assign r[0] = ha_0[0];

assign r[1] = ha_1[0];

assign r[2] = fa_0[0];

assign r[3] = ha_2[0];

endmodule

Figure A.6: Verilog code of (2×2) unsigned integer multiplier with (radix-4) Booth-
encoder described at the gate level and addition network described at the ABL

114

Appendix B

Complete Experimental Results for
Suite of TriCore SMT Instances

Instance CPU time, sec. Instance CPU time, sec.
th_madd_1_2.rtp.smt 23.8295 th_madd_2_2.rtp.smt 21.7054
th_madd_3_2.rtp.smt 25.7816 th_madd_4_2.rtp.smt 26.0336
th_madd_h1_2.rtp.smt 11.1487 th_madd_h1n1_2.rtp.smt 11.6047
th_madd_h1n1x8000hi_2.rtp.smt 7.9685 th_madd_h1n1x8000lo_2.rtp.smt 13.7929
th_madd_h2_2.rtp.smt 10.9047 th_madd_h2n1_2.rtp.smt 11.3847
th_madd_h2n1x8000hi_2.rtp.smt 7.81249 th_madd_h2n1x8000lo_2.rtp.smt 13.8209
th_madd_h3_2.rtp.smt 10.9527 th_madd_h3n1_2.rtp.smt 11.4287
th_madd_h3n1x8000hi_2.rtp.smt 7.47247 th_madd_h3n1x8000lo_2.rtp.smt 13.2728
th_madd_h4_2.rtp.smt 10.9647 th_madd_h4n1_2.rtp.smt 11.4047
th_madd_h4n1x8000hi_2.rtp.smt 7.28045 th_madd_h4n1x8000lo_2.rtp.smt 13.3888
th_madd_q1_2.rtp.smt 26.7657 th_madd_q1n1_2.rtp.smt 49.7951
th_madd_q2_2.rtp.smt 10.2326 th_madd_q2n1_2.rtp.smt 21.7774
th_madd_q3_2.rtp.smt 10.2486 th_madd_q3n1_2.rtp.smt 24.0975
th_madd_q4_2.rtp.smt 8.55253 th_madd_q4n1_2.rtp.smt 27.0897
th_madd_q4n1x8000lo_2.rtp.smt 17.7211 th_madd_q5_2.rtp.smt 8.39652
th_madd_q5n1_2.rtp.smt 23.3015 th_madd_q6_2.rtp.smt 25.9976
th_madd_q6n1_2.rtp.smt 49.9951 th_madd_q7_2.rtp.smt 39.4065
th_madd_q7n1_2.rtp.smt 10.5807 th_madd_q8_2.rtp.smt 38.3664
th_madd_q8n1_2.rtp.smt 10.6367 th_madd_q9_2.rtp.smt 8.52053
th_madd_q9n1_2.rtp.smt 30.5059 th_madd_q9n1x8000lo_2.rtp.smt 15.705
th_madd_q10_2.rtp.smt 8.13251 th_madd_q10n1_2.rtp.smt 21.6534
th_madd_u3_2.rtp.smt 25.2536 th_madd_u4_2.rtp.smt 24.5935
th_maddm_h1_2.rtp.smt 10.5567 th_maddm_h1n1_2.rtp.smt 25.2696
th_maddm_h1n1x8000hi_2.rtp.smt 27.7537 th_maddm_h1n1x8000lo_2.rtp.smt 16.297
th_maddm_h2_2.rtp.smt 10.5927 th_maddm_h2n1_2.rtp.smt 32.366
th_maddm_h2n1x8000hi_2.rtp.smt 25.1096 th_maddm_h2n1x8000lo_2.rtp.smt 16.389
th_maddm_h3_2.rtp.smt 10.5487 th_maddm_h3n1_2.rtp.smt 28.0538
th_maddm_h3n1x8000hi_2.rtp.smt 13.4368 th_maddm_h3n1x8000lo_2.rtp.smt 15.805
th_maddm_h4_2.rtp.smt 10.5287 th_maddm_h4n1_2.rtp.smt 32.614
th_maddm_h4n1x8000hi_2.rtp.smt 13.2408 th_maddm_h4n1x8000lo_2.rtp.smt 15.801
th_maddms_h5_2.rtp.smt 10.5807 th_maddms_h5n1_2.rtp.smt 35.4942
th_maddms_h5n1x8000hi_2.rtp.smt 28.7978 th_maddms_h5n1x8000lo_2.rtp.smt 16.145
th_maddms_h6_2.rtp.smt 10.2486 th_maddms_h6n1_2.rtp.smt 26.9537
th_maddms_h6n1x8000hi_2.rtp.smt 24.6655 th_maddms_h6n1x8000lo_2.rtp.smt 15.897
th_maddms_h7_2.rtp.smt 10.3606 th_maddms_h7n1_2.rtp.smt 23.1574
th_maddms_h7n1x8000hi_2.rtp.smt 77.7529 th_maddms_h7n1x8000lo_2.rtp.smt 99.0262
th_maddms_h8_2.rtp.smt 10.2486 th_maddms_h8n1_2.rtp.smt 38.3624
th_maddms_h8n1x8000hi_2.rtp.smt 78.3009 th_maddms_h8n1x8000lo_2.rtp.smt 98.1861

Table B.1: TriCore SMT formulas solved by STABLE

115

Appendix B. Complete Experimental Results for Suite of TriCore SMT Instances

Instance CPU time, sec. Instance CPU time, sec.
th_maddr_h1_2.rtp.smt 10.9527 th_maddr_h1n1_2.rtp.smt 11.3487
th_maddr_h1n1x8000hi_2.rtp.smt 7.82049 th_maddr_h1n1x8000lo_2.rtp.smt 15.749
th_maddr_h2_2.rtp.smt 10.8087 th_maddr_h2n1_2.rtp.smt 11.4887
th_maddr_h2n1x8000hi_2.rtp.smt 7.84449 th_maddr_h2n1x8000lo_2.rtp.smt 15.789
th_maddr_h3_2.rtp.smt 11.0367 th_maddr_h3n1_2.rtp.smt 11.5847
th_maddr_h3n1x8000hi_2.rtp.smt 7.28845 th_maddr_h3n1x8000lo_2.rtp.smt 85.5293
th_maddr_h4_2.rtp.smt 10.8687 th_maddr_h4n1_2.rtp.smt 11.3327
th_maddr_h4n1x8000hi_2.rtp.smt 7.31246 th_maddr_h4n1x8000lo_2.rtp.smt 86.8894
th_maddr_h5_2.rtp.smt 3.62423 th_maddr_h5n1_2.rtp.smt 11.7287
th_maddr_h5n1x8000hi_2.rtp.smt 7.86049 th_maddr_h5n1x8000lo_2.rtp.smt 15.497
th_maddr_q1_2.rtp.smt 8.86855 th_maddr_q1n1_2.rtp.smt 33.7861
th_maddr_q1n1x8000lo_2.rtp.smt 17.8251 th_maddr_q2_2.rtp.smt 8.79655
th_maddr_q2n1_2.rtp.smt 26.1136 th_maddrs_h6_2.rtp.smt 10.8967
th_maddrs_h6n1_2.rtp.smt 11.3527 th_maddrs_h6n1x8000hi_2.rtp.smt 7.74048
th_maddrs_h6n1x8000lo_2.rtp.smt 15.793 th_maddrs_h7_2.rtp.smt 11.0647
th_maddrs_h7n1_2.rtp.smt 11.5207 th_maddrs_h7n1x8000hi_2.rtp.smt 7.90049
th_maddrs_h7n1x8000lo_2.rtp.smt 15.929 th_maddrs_h8_2.rtp.smt 11.1807
th_maddrs_h8n1_2.rtp.smt 11.6287 th_maddrs_h8n1x8000hi_2.rtp.smt 7.28446
th_maddrs_h8n1x8000lo_2.rtp.smt 92.7218 th_maddrs_h9_2.rtp.smt 10.9247
th_maddrs_h9n1_2.rtp.smt 11.3967 th_maddrs_h9n1x8000hi_2.rtp.smt 7.32046
th_maddrs_h9n1x8000lo_2.rtp.smt 100.046 th_maddrs_h10_2.rtp.smt 11.2607
th_maddrs_h10n1_2.rtp.smt 11.6847 th_maddrs_h10n1x8000hi_2.rtp.smt 7.85649
th_maddrs_h10n1x8000lo_2.rtp.smt 15.489 th_maddrs_q3_2.rtp.smt 8.57654
th_maddrs_q3n1_2.rtp.smt 35.4142 th_maddrs_q3n1x8000lo_2.rtp.smt 16.349
th_maddrs_q4_2.rtp.smt 8.16051 th_maddrs_q4n1_2.rtp.smt 23.6135
th_madds_5_2.rtp.smt 30.5499 th_madds_6_2.rtp.smt 21.6334
th_madds_7_2.rtp.smt 26.0456 th_madds_8_2.rtp.smt 26.0136
th_madds_h5_2.rtp.smt 11.2007 th_madds_h5n1_2.rtp.smt 11.4567
th_madds_h5n1x8000hi_2.rtp.smt 7.9845 th_madds_h5n1x8000lo_2.rtp.smt 13.8329
th_madds_h6_2.rtp.smt 11.1327 th_madds_h6n1_2.rtp.smt 11.3847
th_madds_h6n1x8000hi_2.rtp.smt 7.79249 th_madds_h6n1x8000lo_2.rtp.smt 13.8129
th_madds_h7_2.rtp.smt 11.1447 th_madds_h7n1_2.rtp.smt 11.3887
th_madds_h7n1x8000hi_2.rtp.smt 7.50847 th_madds_h7n1x8000lo_2.rtp.smt 13.3048
th_madds_h8_2.rtp.smt 11.1487 th_madds_h8n1_2.rtp.smt 11.5807
th_madds_h8n1x8000hi_2.rtp.smt 7.31246 th_madds_h8n1x8000lo_2.rtp.smt 13.3448
th_madds_q11_2.rtp.smt 27.3897 th_madds_q11n1_2.rtp.smt 50.5272
th_madds_q12_2.rtp.smt 10.2606 th_madds_q12n1_2.rtp.smt 30.5579
th_madds_q13_2.rtp.smt 10.2166 th_madds_q13n1_2.rtp.smt 31.862
th_madds_q14_2.rtp.smt 8.43253 th_madds_q14n1_2.rtp.smt 21.7374
th_madds_q14n1x8000lo_2.rtp.smt 15.717 th_madds_q15_2.rtp.smt 8.38452
th_madds_q15n1_2.rtp.smt 26.4417 th_madds_q16_2.rtp.smt 25.9976
th_madds_q16n1_2.rtp.smt 48.9471 th_madds_q17_2.rtp.smt 10.4967
th_madds_q17n1_2.rtp.smt 10.5207 th_madds_q18_2.rtp.smt 35.4422
th_madds_q18n1_2.rtp.smt 10.5527 th_madds_q19_2.rtp.smt 8.47253
th_madds_q19n1_2.rtp.smt 26.7497 th_madds_q19n1x8000lo_2.rtp.smt 15.729
th_madds_q20_2.rtp.smt 8.09651 th_madds_q20n1_2.rtp.smt 28.5898
th_madds_u5_2.rtp.smt 25.3336 th_madds_u6_2.rtp.smt 22.1174
th_madds_u7_2.rtp.smt 25.2176 th_madds_u8_2.rtp.smt 22.3894
th_maddsu_h1_2.rtp.smt 15.0729 th_maddsu_h1n1_2.rtp.smt 37.7984
th_maddsu_h1n1x8000hi_2.rtp.smt 10.9847 th_maddsu_h1n1x8000lo_2.rtp.smt 15.889
th_maddsu_h2_2.rtp.smt 15.1929 th_maddsu_h2n1_2.rtp.smt 35.9862
th_maddsu_h2n1x8000hi_2.rtp.smt 10.9207 th_maddsu_h2n1x8000lo_2.rtp.smt 15.769
th_maddsu_h3_2.rtp.smt 15.0609 th_maddsu_h3n1_2.rtp.smt 34.4302
th_maddsu_h3n1x8000hi_2.rtp.smt 8.62854 th_maddsu_h3n1x8000lo_2.rtp.smt 72.0885
th_maddsu_h4_2.rtp.smt 15.1889 th_maddsu_h4n1_2.rtp.smt 27.8377
th_maddsu_h4n1x8000hi_2.rtp.smt 10.9647 th_maddsu_h4n1x8000lo_2.rtp.smt 71.1004
th_maddsum_h1_2.rtp.smt 21.8454 th_maddsum_h1n1_2.rtp.smt 41.6546
th_maddsum_h1n1x8000hi_2.rtp.smt 30.8299 th_maddsum_h1n1x8000lo_2.rtp.smt 21.8374
th_maddsum_h2_2.rtp.smt 25.4736 th_maddsum_h2n1_2.rtp.smt 45.8389
th_maddsum_h2n1x8000hi_2.rtp.smt 32.9261 th_maddsum_h2n1x8000lo_2.rtp.smt 22.3654
th_maddsum_h3_2.rtp.smt 25.8136 th_maddsum_h3n1_2.rtp.smt 59.9597
th_maddsum_h3n1x8000hi_2.rtp.smt 136.197 th_maddsum_h3n1x8000lo_2.rtp.smt 22.9494

Table B.2: TriCore SMT formulas solved by STABLE, cont.

116

Instance CPU time, sec. Instance CPU time, sec.
th_maddsum_h4_2.rtp.smt 25.1096 th_maddsum_h4n1_2.rtp.smt 41.0466
th_maddsum_h4n1x8000hi_2.rtp.smt 80.373 th_maddsum_h4n1x8000lo_2.rtp.smt 128.408
th_maddsums_h5_2.rtp.smt 21.2413 th_maddsums_h5n1_2.rtp.smt 43.6987
th_maddsums_h5n1x8000hi_2.rtp.smt 35.8222 th_maddsums_h5n1x8000lo_2.rtp.smt 21.1373
th_maddsums_h6_2.rtp.smt 21.2493 th_maddsums_h6n1_2.rtp.smt 30.0059
th_maddsums_h6n1x8000hi_2.rtp.smt 33.0541 th_maddsums_h6n1x8000lo_2.rtp.smt 25.1056
th_maddsums_h7_2.rtp.smt 21.1693 th_maddsums_h7n1_2.rtp.smt 29.3418
th_maddsums_h7n1x8000hi_2.rtp.smt 114.163 th_maddsums_h7n1x8000lo_2.rtp.smt 86.7494
th_maddsums_h8_2.rtp.smt 21.4213 th_maddsums_h8n1_2.rtp.smt 30.1539
th_maddsums_h8n1x8000hi_2.rtp.smt 94.6939 th_maddsums_h8n1x8000lo_2.rtp.smt 125.408
th_maddsur_h1_2.rtp.smt 14.8889 th_maddsur_h1n1_2.rtp.smt 30.5539
th_maddsur_h1n1x8000hi_2.rtp.smt 10.6767 th_maddsur_h1n1x8000lo_2.rtp.smt 16.109
th_maddsur_h2_2.rtp.smt 15.1369 th_maddsur_h2n1_2.rtp.smt 35.6062
th_maddsur_h2n1x8000hi_2.rtp.smt 10.8207 th_maddsur_h2n1x8000lo_2.rtp.smt 16.169
th_maddsur_h3_2.rtp.smt 15.253 th_maddsur_h3n1_2.rtp.smt 35.1582
th_maddsur_h3n1x8000hi_2.rtp.smt 8.29652 th_maddsur_h3n1x8000lo_2.rtp.smt 71.6285
th_maddsur_h4_2.rtp.smt 14.9609 th_maddsur_h4n1_2.rtp.smt 38.1984
th_maddsur_h4n1x8000hi_2.rtp.smt 8.48853 th_maddsur_h4n1x8000lo_2.rtp.smt 83.5372
th_maddsurs_h5_2.rtp.smt 14.9049 th_maddsurs_h5n1_2.rtp.smt 33.2101
th_maddsurs_h5n1x8000hi_2.rtp.smt 10.6967 th_maddsurs_h5n1x8000lo_2.rtp.smt 16.109
th_maddsurs_h6_2.rtp.smt 15.0889 th_maddsurs_h6n1_2.rtp.smt 32.31
th_maddsurs_h6n1x8000hi_2.rtp.smt 10.7807 th_maddsurs_h6n1x8000lo_2.rtp.smt 16.073
th_maddsurs_h7_2.rtp.smt 15.1969 th_maddsurs_h7n1_2.rtp.smt 25.4776
th_maddsurs_h7n1x8000hi_2.rtp.smt 8.33652 th_maddsurs_h7n1x8000lo_2.rtp.smt 79.385
th_maddsurs_h8_2.rtp.smt 15.1849 th_maddsurs_h8n1_2.rtp.smt 37.4823
th_maddsurs_h8n1x8000hi_2.rtp.smt 8.42853 th_maddsurs_h8n1x8000lo_2.rtp.smt 79.0969
th_maddsus_h5_2.rtp.smt 15.0449 th_maddsus_h5n1_2.rtp.smt 35.6742
th_maddsus_h5n1x8000hi_2.rtp.smt 11.0247 th_maddsus_h5n1x8000lo_2.rtp.smt 15.853
th_maddsus_h6_2.rtp.smt 15.1209 th_maddsus_h6n1_2.rtp.smt 37.7624
th_maddsus_h6n1x8000hi_2.rtp.smt 10.7927 th_maddsus_h6n1x8000lo_2.rtp.smt 15.761
th_maddsus_h7_2.rtp.smt 15.373 th_maddsus_h7n1_2.rtp.smt 29.8579
th_maddsus_h7n1x8000hi_2.rtp.smt 8.64854 th_maddsus_h7n1x8000lo_2.rtp.smt 87.6575
th_maddsus_h8_2.rtp.smt 15.377 th_maddsus_h8n1_2.rtp.smt 34.5062
th_maddsus_h8n1x8000hi_2.rtp.smt 8.36852 th_maddsus_h8n1x8000lo_2.rtp.smt 77.0568
th_msub_1_2.rtp.smt 32.558 th_msub_2_2.rtp.smt 28.5898
th_msub_3_2.rtp.smt 73.8846 th_msub_4_2.rtp.smt 74.2526
th_msub_h1_2.rtp.smt 19.2172 th_msub_h1n1_2.rtp.smt 43.6587
th_msub_h1n1x8000hi_2.rtp.smt 11.1087 th_msub_h1n1x8000lo_2.rtp.smt 18.7772
th_msub_h2_2.rtp.smt 19.1092 th_msub_h2n1_2.rtp.smt 39.7505
th_msub_h2n1x8000hi_2.rtp.smt 11.0447 th_msub_h2n1x8000lo_2.rtp.smt 18.8612
th_msub_h3_2.rtp.smt 19.2292 th_msub_h3n1_2.rtp.smt 28.4738
th_msub_h3n1x8000hi_2.rtp.smt 8.70054 th_msub_h3n1x8000lo_2.rtp.smt 86.9094
th_msub_h4_2.rtp.smt 19.2652 th_msub_h4n1_2.rtp.smt 39.8185
th_msub_h4n1x8000hi_2.rtp.smt 8.60854 th_msub_h4n1x8000lo_2.rtp.smt 79.901
th_msub_q1_2.rtp.smt 17.1371 th_msub_q1n1_2.rtp.smt 17.0011
th_msub_q2_2.rtp.smt 24.0735 th_msub_q2n1_2.rtp.smt 45.1028
th_msub_q2n1tru32_2.rtp.smt 23.4775 th_msub_q2tru32_2.rtp.smt 24.4415
th_msub_q3_2.rtp.smt 24.1575 th_msub_q3n1_2.rtp.smt 42.2346
th_msub_q3n1tru32_2.rtp.smt 23.5215 th_msub_q3tru32_2.rtp.smt 24.5855
th_msub_q4_2.rtp.smt 13.7249 th_msub_q4n1_2.rtp.smt 29.1298
th_msub_q4n1x8000lo_2.rtp.smt 20.8013 th_msub_q5_2.rtp.smt 13.1208
th_msub_q5n1_2.rtp.smt 23.2575 th_msub_q6_2.rtp.smt 76.6888
th_msub_q6n1_2.rtp.smt 99.9182 th_msub_q7_2.rtp.smt 25.9896
th_msub_q7n1_2.rtp.smt 38.4784 th_msub_q8_2.rtp.smt 26.2016
th_msub_q8n1_2.rtp.smt 40.3465 th_msub_q9_2.rtp.smt 20.2533
th_msub_q9n1_2.rtp.smt 37.4543 th_msub_q9n1x8000lo_2.rtp.smt 26.0536
th_msub_q10_2.rtp.smt 19.2452 th_msub_q10n1_2.rtp.smt 41.0786
th_msub_u3_2.rtp.smt 48.551 th_msub_u4_2.rtp.smt 48.579

Table B.3: TriCore SMT formulas solved by STABLE, cont.

117

Appendix B. Complete Experimental Results for Suite of TriCore SMT Instances

Instance CPU time, sec. Instance CPU time, sec.
th_msubad_h1_2.rtp.smt 15.1649 th_msubad_h1n1_2.rtp.smt 14.9969
th_msubad_h1n1x8000hi_2.rtp.smt 8.0925 th_msubad_h1n1x8000lo_2.rtp.smt 18.5772
th_msubad_h2_2.rtp.smt 15.1489 th_msubad_h2n1_2.rtp.smt 15.0369
th_msubad_h2n1x8000hi_2.rtp.smt 8.0365 th_msubad_h2n1x8000lo_2.rtp.smt 18.5892
th_msubad_h3_2.rtp.smt 15.1529 th_msubad_h3n1_2.rtp.smt 14.9849
th_msubad_h3n1x8000hi_2.rtp.smt 7.61247 th_msubad_h3n1x8000lo_2.rtp.smt 75.5487
th_msubad_h4_2.rtp.smt 15.1449 th_msubad_h4n1_2.rtp.smt 15.0649
th_msubad_h4n1x8000hi_2.rtp.smt 7.51647 th_msubad_h4n1x8000lo_2.rtp.smt 81.9291
th_msubadm_h1_2.rtp.smt 14.0009 th_msubadm_h1n1_2.rtp.smt 37.0943
th_msubadm_h1n1x8000hi_2.rtp.smt 28.0858 th_msubadm_h1n1x8000lo_2.rtp.smt 18.9052
th_msubadm_h2_2.rtp.smt 14.0609 th_msubadm_h2n1_2.rtp.smt 30.6819
th_msubadm_h2n1x8000hi_2.rtp.smt 26.3216 th_msubadm_h2n1x8000lo_2.rtp.smt 18.9212
th_msubadm_h3_2.rtp.smt 14.1169 th_msubadm_h3n1_2.rtp.smt 29.4858
th_msubadm_h3n1x8000hi_2.rtp.smt 133.608 th_msubadm_h3n1x8000lo_2.rtp.smt 136.969
th_msubadm_h4_2.rtp.smt 14.1129 th_msubadm_h4n1_2.rtp.smt 32.9461
th_msubadm_h4n1x8000hi_2.rtp.smt 133.712 th_msubadm_h4n1x8000lo_2.rtp.smt 136.993
th_msubadms_h5_2.rtp.smt 14.1769 th_msubadms_h5n1_2.rtp.smt 28.2378
th_msubadms_h5n1x8000hi_2.rtp.smt 25.2816 th_msubadms_h5n1x8000lo_2.rtp.smt 19.0172
th_msubadms_h6_2.rtp.smt 14.0969 th_msubadms_h6n1_2.rtp.smt 35.7342
th_msubadms_h6n1x8000hi_2.rtp.smt 31.45 th_msubadms_h6n1x8000lo_2.rtp.smt 18.9732
th_msubadms_h7_2.rtp.smt 14.1889 th_msubadms_h7n1_2.rtp.smt 27.8337
th_msubadms_h7n1x8000hi_2.rtp.smt 121.684 th_msubadms_h7n1x8000lo_2.rtp.smt 136.949
th_msubadms_h8_2.rtp.smt 14.0889 th_msubadms_h8n1_2.rtp.smt 46.3069
th_msubadms_h8n1x8000hi_2.rtp.smt 126.504 th_msubadms_h8n1x8000lo_2.rtp.smt 136.965
th_msubadr_h1_2.rtp.smt 14.6929 th_msubadr_h1n1_2.rtp.smt 14.4449
th_msubadr_h1n1x8000hi_2.rtp.smt 7.86449 th_msubadr_h1n1x8000lo_2.rtp.smt 18.6812
th_msubadr_h2_2.rtp.smt 14.8369 th_msubadr_h2n1_2.rtp.smt 14.8889
th_msubadr_h2n1x8000hi_2.rtp.smt 7.9285 th_msubadr_h2n1x8000lo_2.rtp.smt 18.6092
th_msubadr_h3_2.rtp.smt 14.8129 th_msubadr_h3n1_2.rtp.smt 14.7489
th_msubadr_h3n1x8000hi_2.rtp.smt 7.37646 th_msubadr_h3n1x8000lo_2.rtp.smt 77.8729
th_msubadr_h4_2.rtp.smt 14.6409 th_msubadr_h4n1_2.rtp.smt 14.6649
th_msubadr_h4n1x8000hi_2.rtp.smt 7.37646 th_msubadr_h4n1x8000lo_2.rtp.smt 93.5658
th_msubadrs_h5_2.rtp.smt 14.5729 th_msubadrs_h5n1_2.rtp.smt 14.4249
th_msubadrs_h5n1x8000hi_2.rtp.smt 7.86049 th_msubadrs_h5n1x8000lo_2.rtp.smt 18.6892
th_msubadrs_h6_2.rtp.smt 14.8729 th_msubadrs_h6n1_2.rtp.smt 14.7849
th_msubadrs_h6n1x8000hi_2.rtp.smt 8.0005 th_msubadrs_h6n1x8000lo_2.rtp.smt 18.7812
th_msubadrs_h7_2.rtp.smt 14.9529 th_msubadrs_h7n1_2.rtp.smt 14.6969
th_msubadrs_h7n1x8000hi_2.rtp.smt 7.34046 th_msubadrs_h7n1x8000lo_2.rtp.smt 74.2886
th_msubadrs_h8_2.rtp.smt 14.8729 th_msubadrs_h8n1_2.rtp.smt 14.8649
th_msubadrs_h8n1x8000hi_2.rtp.smt 7.36846 th_msubadrs_h8n1x8000lo_2.rtp.smt 91.4057
th_msubads_h5_2.rtp.smt 14.8009 th_msubads_h5n1_2.rtp.smt 14.7049
th_msubads_h5n1x8000hi_2.rtp.smt 0 th_msubads_h5n1x8000lo_2.rtp.smt 18.4572
th_msubads_h6_2.rtp.smt 14.7849 th_msubads_h6n1_2.rtp.smt 14.9409
th_msubads_h6n1x8000hi_2.rtp.smt 8.0525 th_msubads_h6n1x8000lo_2.rtp.smt 18.4972
th_msubads_h7_2.rtp.smt 15.0729 th_msubads_h7n1_2.rtp.smt 14.8569
th_msubads_h7n1x8000hi_2.rtp.smt 0 th_msubads_h7n1x8000lo_2.rtp.smt 0.004
th_msubads_h8_2.rtp.smt 14.8129 th_msubads_h8n1_2.rtp.smt 14.7929
th_msubads_h8n1x8000hi_2.rtp.smt 7.53647 th_msubads_h8n1x8000lo_2.rtp.smt 78.5889
th_msubm_h1_2.rtp.smt 28.5818 th_msubm_h1n1_2.rtp.smt 47.363
th_msubm_h1n1x8000hi_2.rtp.smt 33.7581 th_msubm_h1n1x8000lo_2.rtp.smt 25.4936
th_msubm_h2_2.rtp.smt 29.7019 th_msubm_h2n1_2.rtp.smt 50.9352
th_msubm_h2n1x8000hi_2.rtp.smt 31.874 th_msubm_h2n1x8000lo_2.rtp.smt 24.5095
th_msubm_h3_2.rtp.smt 28.7418 th_msubm_h3n1_2.rtp.smt 38.7864
th_msubm_h3n1x8000hi_2.rtp.smt 136.593 th_msubm_h3n1x8000lo_2.rtp.smt 141.689
th_msubm_h4_2.rtp.smt 28.8698 th_msubm_h4n1_2.rtp.smt 45.3108
th_msubm_h4n1x8000hi_2.rtp.smt 136.357 th_msubm_h4n1x8000lo_2.rtp.smt 141.381
th_msubms_h5_2.rtp.smt 29.3898 th_msubms_h5n1_2.rtp.smt 37.4663
th_msubms_h5n1x8000hi_2.rtp.smt 32.234 th_msubms_h5n1x8000lo_2.rtp.smt 25.8856
th_msubms_h6_2.rtp.smt 29.4418 th_msubms_h6n1_2.rtp.smt 44.3788
th_msubms_h6n1x8000hi_2.rtp.smt 33.3061 th_msubms_h6n1x8000lo_2.rtp.smt 24.4935

Table B.4: TriCore SMT formulas solved by STABLE, cont.

118

Instance CPU time, sec. Instance CPU time, sec.
th_msubms_h7_2.rtp.smt 28.4698 th_msubms_h7n1_2.rtp.smt 45.2228
th_msubms_h7n1x8000hi_2.rtp.smt 138.165 th_msubms_h7n1x8000lo_2.rtp.smt 141.229
th_msubms_h8_2.rtp.smt 28.6458 th_msubms_h8n1_2.rtp.smt 39.5305
th_msubms_h8n1x8000hi_2.rtp.smt 137.241 th_msubms_h8n1x8000lo_2.rtp.smt 141.385
th_msubr_h1_2.rtp.smt 18.7412 th_msubr_h1n1_2.rtp.smt 39.2505
th_msubr_h1n1x8000hi_2.rtp.smt 10.7767 th_msubr_h1n1x8000lo_2.rtp.smt 18.9692
th_msubr_h2_2.rtp.smt 18.9332 th_msubr_h2n1_2.rtp.smt 32.49
th_msubr_h2n1x8000hi_2.rtp.smt 10.7847 th_msubr_h2n1x8000lo_2.rtp.smt 18.9332
th_msubr_h3_2.rtp.smt 18.7572 th_msubr_h3n1_2.rtp.smt 37.0183
th_msubr_h3n1x8000hi_2.rtp.smt 8.41653 th_msubr_h3n1x8000lo_2.rtp.smt 88.5335
th_msubr_h4_2.rtp.smt 18.7412 th_msubr_h4n1_2.rtp.smt 29.2778
th_msubr_h4n1x8000hi_2.rtp.smt 8.39252 th_msubr_h4n1x8000lo_2.rtp.smt 83.5732
th_msubr_h5_2.rtp.smt 18.9892 th_msubr_h5n1_2.rtp.smt 32.506
th_msubr_h5n1x8000hi_2.rtp.smt 10.8927 th_msubr_h5n1x8000lo_2.rtp.smt 18.7212
th_msubr_q1_2.rtp.smt 13.4808 th_msubr_q1n1_2.rtp.smt 30.7459
th_msubr_q1n1x8000lo_2.rtp.smt 23.9135 th_msubr_q2_2.rtp.smt 13.0448
th_msubr_q2n1_2.rtp.smt 28.9018 th_msubrs_h6_2.rtp.smt 18.7732
th_msubrs_h6n1_2.rtp.smt 32.8021 th_msubrs_h6n1x8000hi_2.rtp.smt 10.7407
th_msubrs_h6n1x8000lo_2.rtp.smt 18.9652 th_msubrs_h7_2.rtp.smt 18.7132
th_msubrs_h7n1_2.rtp.smt 32.542 th_msubrs_h7n1x8000hi_2.rtp.smt 10.7407
th_msubrs_h7n1x8000lo_2.rtp.smt 18.9332 th_msubrs_h8_2.rtp.smt 18.6812
th_msubrs_h8n1_2.rtp.smt 37.0623 th_msubrs_h8n1x8000hi_2.rtp.smt 8.39653
th_msubrs_h8n1x8000lo_2.rtp.smt 88.9536 th_msubrs_h9_2.rtp.smt 18.7212
th_msubrs_h9n1_2.rtp.smt 29.5698 th_msubrs_h9n1x8000hi_2.rtp.smt 8.38452
th_msubrs_h9n1x8000lo_2.rtp.smt 83.9892 th_msubrs_h10_2.rtp.smt 19.0692
th_msubrs_h10n1_2.rtp.smt 33.5781 th_msubrs_h10n1x8000hi_2.rtp.smt 10.9127
th_msubrs_h10n1x8000lo_2.rtp.smt 18.8052 th_msubrs_q3_2.rtp.smt 13.5968
th_msubrs_q3n1_2.rtp.smt 21.3773 th_msubrs_q3n1x8000lo_2.rtp.smt 20.9133
th_msubrs_q4_2.rtp.smt 13.1008 th_msubrs_q4n1_2.rtp.smt 20.8533
th_msubs_5_2.rtp.smt 72.6725 th_msubs_6_2.rtp.smt 52.7673
th_msubs_7_2.rtp.smt 73.5926 th_msubs_8_2.rtp.smt 52.0273
th_msubs_h5_2.rtp.smt 19.3812 th_msubs_h5n1_2.rtp.smt 30.1739
th_msubs_h5n1x8000hi_2.rtp.smt 11.1487 th_msubs_h5n1x8000lo_2.rtp.smt 18.9292
th_msubs_h6_2.rtp.smt 19.1812 th_msubs_h6n1_2.rtp.smt 38.1024
th_msubs_h6n1x8000hi_2.rtp.smt 11.1007 th_msubs_h6n1x8000lo_2.rtp.smt 18.9172
th_msubs_h7_2.rtp.smt 19.3652 th_msubs_h7n1_2.rtp.smt 45.1228
th_msubs_h7n1x8000hi_2.rtp.smt 8.60454 th_msubs_h7n1x8000lo_2.rtp.smt 70.7684
th_msubs_h8_2.rtp.smt 19.3932 th_msubs_h8n1_2.rtp.smt 41.3546
th_msubs_h8n1x8000hi_2.rtp.smt 8.58854 th_msubs_h8n1x8000lo_2.rtp.smt 86.4014
th_msubs_q11_2.rtp.smt 77.4008 th_msubs_q11n1_2.rtp.smt 104.087
th_msubs_q12_2.rtp.smt 24.4895 th_msubs_q12n1_2.rtp.smt 24.2215
th_msubs_q12n1tru32_2.rtp.smt 24.2135 th_msubs_q12tru32_2.rtp.smt 24.6935
th_msubs_q13_2.rtp.smt 20.5413 th_msubs_q13n1_2.rtp.smt 38.8744
th_msubs_q13n1tru32_2.rtp.smt 23.4495 th_msubs_q13tru32_2.rtp.smt 20.6253
th_msubs_q14_2.rtp.smt 13.6289 th_msubs_q14n1_2.rtp.smt 35.9862
th_msubs_q14n1x8000lo_2.rtp.smt 20.7813 th_msubs_q15_2.rtp.smt 13.1408
th_msubs_q15n1_2.rtp.smt 30.7419 th_msubs_q16_2.rtp.smt 77.1448
th_msubs_q16n1_2.rtp.smt 103.77 th_msubs_q17_2.rtp.smt 25.8616
th_msubs_q17n1_2.rtp.smt 39.1264 th_msubs_q18_2.rtp.smt 25.2536
th_msubs_q18n1_2.rtp.smt 34.5982 th_msubs_q19_2.rtp.smt 20.0173
th_msubs_q19n1_2.rtp.smt 35.2262 th_msubs_q19n1x8000lo_2.rtp.smt 26.3216
th_msubs_q20_2.rtp.smt 19.0132 th_msubs_q20n1_2.rtp.smt 49.7431
th_msubs_u5_2.rtp.smt 47.979 th_msubs_u6_2.rtp.smt 48.295
th_msubs_u7_2.rtp.smt 47.959 th_msubs_u8_2.rtp.smt 48.187
th_mul_1_2.rtp.smt 27.1777 th_mul_2_2.rtp.smt 20.6373
th_mul_3_2.rtp.smt 23.1214 th_mul_4_2.rtp.smt 24.6655
th_mul_h1_2.rtp.smt 24.5055 th_mul_h1n1_2.rtp.smt 11.1527
th_mul_h1n1x8000hi_2.rtp.smt 7.32846 th_mul_h1n1x8000lo_2.rtp.smt 8.28052
th_mul_h2_2.rtp.smt 24.5095 th_mul_h2n1_2.rtp.smt 11.1967
th_mul_h2n1x8000hi_2.rtp.smt 7.30046 th_mul_h2n1x8000lo_2.rtp.smt 8.24851

Table B.5: TriCore SMT formulas solved by STABLE, cont.

119

Appendix B. Complete Experimental Results for Suite of TriCore SMT Instances

Instance CPU time, sec. Instance CPU time, sec.
th_mul_h3_2.rtp.smt 24.5135 th_mul_h3n1_2.rtp.smt 11.7607
th_mul_h3n1x8000hi_2.rtp.smt 7.00844 th_mul_h3n1x8000lo_2.rtp.smt 8.0205
th_mul_h4_2.rtp.smt 24.5135 th_mul_h4n1_2.rtp.smt 11.2247
th_mul_h4n1x8000hi_2.rtp.smt 6.99244 th_mul_h4n1x8000lo_2.rtp.smt 8.41253
th_mul_q1_2.rtp.smt 6.57241 th_mul_q1n1_2.rtp.smt 10.5087
th_mul_q1n1x8000lo_2.rtp.smt 10.9447 th_mul_q2_2.rtp.smt 5.52435
th_mul_q2n1_2.rtp.smt 6.4684 th_mul_q3_2.rtp.smt 8.0605
th_mul_q3n1_2.rtp.smt 8.16451 th_mul_q4_2.rtp.smt 8.0765
th_mul_q4n1_2.rtp.smt 7.48447 th_mul_q5_2.rtp.smt 25.6776
th_mul_q5n1_2.rtp.smt 26.3656 th_mul_q6_2.rtp.smt 9.73261
th_mul_q6n1_2.rtp.smt 9.76861 th_mul_q7_2.rtp.smt 8.29652
th_mul_q7n1_2.rtp.smt 8.38852 th_mul_q8_2.rtp.smt 25.7696
th_mul_q8n1_2.rtp.smt 26.1376 th_mul_u3_2.rtp.smt 24.2775
th_mul_u4_2.rtp.smt 23.5415 th_mulm_h1_2.rtp.smt 10.5847
th_mulm_h1n1_2.rtp.smt 10.6087 th_mulm_h1n1x8000hi_2.rtp.smt 8.64454
th_mulm_h1n1x8000lo_2.rtp.smt 9.38059 th_mulm_h2_2.rtp.smt 10.0486
th_mulm_h2n1_2.rtp.smt 10.0886 th_mulm_h2n1x8000hi_2.rtp.smt 8.14451
th_mulm_h2n1x8000lo_2.rtp.smt 8.90056 th_mulm_h3_2.rtp.smt 10.0526
th_mulm_h3n1_2.rtp.smt 10.0406 th_mulm_h3n1x8000hi_2.rtp.smt 8.40853
th_mulm_h3n1x8000lo_2.rtp.smt 9.02056 th_mulm_h4_2.rtp.smt 10.6767
th_mulm_h4n1_2.rtp.smt 10.7127 th_mulm_h4n1x8000hi_2.rtp.smt 8.24451
th_mulm_h4n1x8000lo_2.rtp.smt 8.91256 th_mulms_h5_2.rtp.smt 9.32858
th_mulms_h5n1_2.rtp.smt 9.37659 th_mulms_h5n1x8000hi_2.rtp.smt 7.24845
th_mulms_h5n1x8000lo_2.rtp.smt 8.45653 th_mulms_h6_2.rtp.smt 9.87262
th_mulms_h6n1_2.rtp.smt 9.96462 th_mulms_h6n1x8000hi_2.rtp.smt 7.79249
th_mulms_h6n1x8000lo_2.rtp.smt 8.88856 th_mulms_h7_2.rtp.smt 9.81261
th_mulms_h7n1_2.rtp.smt 9.91662 th_mulms_h7n1x8000hi_2.rtp.smt 7.66448
th_mulms_h7n1x8000lo_2.rtp.smt 8.24851 th_mulms_h8_2.rtp.smt 9.79261
th_mulms_h8n1_2.rtp.smt 9.79261 th_mulms_h8n1x8000hi_2.rtp.smt 7.33646
th_mulms_h8n1x8000lo_2.rtp.smt 8.62054 th_mulr_h1_2.rtp.smt 10.2766
th_mulr_h1n1_2.rtp.smt 11.8847 th_mulr_h1n1x8000hi_2.rtp.smt 7.34846
th_mulr_h1n1x8000lo_2.rtp.smt 8.82455 th_mulr_h2_2.rtp.smt 10.7687
th_mulr_h2n1_2.rtp.smt 11.9047 th_mulr_h2n1x8000hi_2.rtp.smt 7.39246
th_mulr_h2n1x8000lo_2.rtp.smt 8.87255 th_mulr_h3_2.rtp.smt 10.8767
th_mulr_h3n1_2.rtp.smt 11.9887 th_mulr_h3n1x8000hi_2.rtp.smt 7.07644
th_mulr_h3n1x8000lo_2.rtp.smt 8.54453 th_mulr_h4_2.rtp.smt 10.3286
th_mulr_h4n1_2.rtp.smt 11.3887 th_mulr_h4n1x8000hi_2.rtp.smt 6.62841
th_mulr_h4n1x8000lo_2.rtp.smt 8.11651 th_mulr_q1_2.rtp.smt 6.07638
th_mulr_q1n1_2.rtp.smt 9.91662 th_mulr_q1n1x8000lo_2.rtp.smt 11.0487
th_mulr_q2_2.rtp.smt 9.40859 th_mulr_q2n1_2.rtp.smt 9.50859
th_muls_5_2.rtp.smt 25.2376 th_muls_6_2.rtp.smt 25.2456
th_muls_u5_2.rtp.smt 22.4614 th_muls_u6_2.rtp.smt 21.5253

Table B.6: TriCore SMT formulas solved by STABLE, cont.

120

List of Figures

1.1 Miter scheme for equivalence checking 3
1.2 Typical flow for RTL property checking 5

2.1 Hasse diagram . 12
2.2 Example of OBDD and ROBDD . 17
2.3 Example of gate netlist . 21
2.4 Naive DPLL algorithm . 23
2.5 Division algorithm in a polynomial ring k[x1, . . . , xn] 35
2.6 Buchberger’s algorithm to generate a Gröbner basis G = {g1, . . . gt} for

an ideal I = 〈f1, . . . , fs〉 generated by a set of polynomials F = {f1, . . . fs} 37
2.7 Algorithm for a normal form calculation of a polynomial f in a ring

R[x1, . . . , xn] with a Gröbner basis G = {g1, . . . , gs} and a global mono-
mial ordering . 39

3.1 (2×2) unsigned integer multiplier at ABL 42
3.2 Half adder (HA) . 43
3.3 Full adder (FA) . 44
3.4 Two-bits comparator at gate level . 45
3.5 Mapping of a gate netlist to the reference circuit 47
3.6 Custom-designed component problem at the ABL 49
3.7 Merging of addition networks at ABL 52
3.8 Distribution at ABL . 53
3.9 ABL normalization flow . 54

4.1 (2×2) signed integer multiplier . 63

5.1 Incompletely normalized instance with a custom-designed component . . 69
5.2 Transformation of Reed-Muller form to ABL model 70
5.3 Reed-Muller form for f = a⊕ b⊕ c . 72
5.4 Intermediate ABL models . 72
5.5 Addition network N ′ as a synthesized ABL model 73
5.6 Gate netlist of a two-bit adder . 76
5.7 Flow of RTL property checking used in experiments 79

121

List of Figures

5.8 Quota of combinatorial instances derived from industrial multiplication
designs for property checking and solved by different approaches / TO -
1000 sec. 81

5.9 Increasing amount of the gate netlist with one carry-save adder per each
iteration i, where 0 < i ≤ n and n is a number of all carry-save adders in
the circuit . 82

5.10 Shared multiplier . 83
5.11 Property checking instance . 83

6.1 Flowchart of SMT Solver STABLE for solving QF-BV decision problems
with GBABL (Gröbner basis-based ABL) engine and ABL extractor . . . 86

6.2 Quota of QF-BV SMT formulas from the suite of SMT competition 2009
solved by STABLE and its competitors / TO - 1000 sec. 90

6.3 Quota of SMT formulas generated from property checking instances of
combinatorial multiplier designs and solved by STABLE and its competi-
tors / TO - 1000 sec. 92

6.4 Quota of QF-BV SMT formulas generated for data-path verification of
processor TriCore and solved by STABLE and its competitors / TO - 1000
sec. 94

6.5 Quota of satisfiable QF-BV SMT formulas solved by STABLE and its
competitors / TO - 1000 sec. 95

7.1 Example of a gate netlist for an arithmetic custom-designed component . 100
7.2 Result of a lazy ABL extraction for the example of Figure 7.1 100
7.3 Gate-level optimization of the half adder HA4 101
7.4 Flow of ABL proof logging . 102

8.1 Das Ablaufdiagramm vom SMT-Solver STABLE für Lösen von QF-BV-
Entscheidungsproblemen mit Hilfe vom GBABL (Gröbner-Basis-basierte-
ABL)-Ansatz und dem ABL-Extraktor 108

A.1 SMT formula defined in accordance with SMT-LIB version 2.0 [BST10]
for property checking instance of (2×2) unsigned integer multiplier rep-
resented in Figure A.5 . 109

A.2 SMT formula defined in accordance with SMT-LIB version 2.0 [BST10]
for property checking instance of (2×2) unsigned integer multiplier rep-
resented in Figure A.6 . 110

A.3 SMT formula defined in accordance with SMT-LIB version 1.2 [RT06]
for property checking instance of (2×2) unsigned integer multiplier rep-
resented in Figure A.5 . 111

A.4 SMT formula defined in accordance with SMT-LIB version 1.2 [RT06]
for property checking instance of (2×2) unsigned integer multiplier rep-
resented in Figure A.6 . 112

122

List of Figures

A.5 Verilog code of (2×2) unsigned Booth-encoded integer multiplier at the
ABL . 113

A.6 Verilog code of (2×2) unsigned integer multiplier with (radix-4) Booth-
encoder described at the gate level and addition network described at the
ABL . 114

123

List of Figures

124

List of Tables

2.1 Truth table . 16
2.2 Logic gates. Names and semantics . 20
2.3 Logic gates. Names and semantics, continued 21
2.4 Bit-vector operations . 29

3.1 Truth table for FA with some don’t care conditions 48

4.1 Mathematical description of units for multiplier from Figure 4.1 where
all variables are Boolean variables and, moreover, s0, s1, s2 define slack
variables . 64

4.2 Mathematical description of a (2×2) signed multiplier where all variables
are Boolean variables and, moreover, s3, s4 define slack variables 64

4.3 Normal form computation with SINGULAR 3-1-2 [GPS10] 65

5.1 Reed-Muller forms for some Boolean primitives 70
5.2 Elimination of a negative weight in addition 73
5.3 Partial products for unsigned multipliers 74
5.4 Multi-column addition network for implementation products 75
5.5 Polynomial equations based on the arithmetic transform of Boolean gates 77
5.6 Industrial multipliers / CPU times, sec, / TO: 1000 sec. 80
5.7 Quota of industrial multiplier instances solved by different approaches . . 81
5.8 Multipliers of Figure 5.9 / CPU times, sec. / TO: 1000 sec. 82
5.9 Shared multipliers of Figures 5.10, 5.11/ CPU times, sec. / TO - 3600 sec. 84

6.1 Quota of SMT-COMP09 instances solved by different SMT solvers . . . 89
6.2 Quota for module generator instances 91
6.3 Selected module generator instances, CPU times, sec. 91
6.4 Selected results for STABLE over TriCore SMT formulas 93
6.5 Quota for TriCore instances . 93
6.6 Quota for satisfiable instances . 95

B.1 TriCore SMT formulas solved by STABLE 115
B.2 TriCore SMT formulas solved by STABLE, cont. 116
B.3 TriCore SMT formulas solved by STABLE, cont. 117

125

List of Tables

B.4 TriCore SMT formulas solved by STABLE, cont. 118
B.5 TriCore SMT formulas solved by STABLE, cont. 119
B.6 TriCore SMT formulas solved by STABLE, cont. 120

126

Bibliography

[ABC+02] Gilles Audemard, Piergiorgio Bertoli, Alessandro Cimatti, Artur Ko-
rnilowicz, and Roberto Sebastiani. A SAT-based approach for solving
formulas over boolean and linear mathematical propositions. In Proc. In-
ternational Conference on Automated Deduction (CAD), pages 195–210,
2002.

[AF07] Bijan Alizadeh and Masahiro Fujita. M.: LTED: A Canonical and Com-
pact Hybrid Word-Boolean Representation as a Formal Model for Hard-
ware/Software Co-designs. In The fourth Workshop on Constraints in For-
mal Verification (CFV 2007), pages 15–29, 2007.

[AF08] Bijan Alizadeh and Masahiro Fujita. Modular-HED: A canonical decision
diagram for modular equivalence verification of polynomial functions. In
CFV08, Australia, September 2008.

[AIS86] IEEE Standard for Logic Circuit Diagrams. Corrected Edition. ANSI/IEEE
Std 991-1986, 1986.

[Ake78] S. B. Akers. Binary decision diagrams. IEEE Transactions on Computers,
C-27(6):509–516, June 1978.

[AL03] William Adams and Philippe Loustaunau. An introduction to Gröbner
bases. (Graduate studies in mathematics) AMS, 2003.

[And02] Peter B. Andrews. Introduction to Mathematical Logic and Type Theory:
To Truth through Proof. Kluwer Academic Publishers, Norwell, MA, USA,
2002.

[AS06] Jaakko T. Astola and Radomir S. Stankovic. Fundamentals of Switching
Theory and Logic Design. Springer, 2006.

[Ash01] Peter J. Ashenden. The Designer’s Guide to VHDL. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2001.

[Bar77] Jon Barwise. Handbook of mathematical logic. North-Holland Publ., Am-
sterdam [u.a.], 1977.

127

Bibliography

[BB09] R. Brummayer and A. Biere. Boolector: An efficient SMT solver for bit-
vectors and arrays. In Proc. Intl. Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), 2009.

[BBC+05] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi Junt-
tila, Peter van Rossum, Stephan Schulz, and Roberto Sebastiani. MathSAT:
Tight integration of SAT and mathematical decision procedures. Journal
of Automated Reasoning, 35(1–3):265–293, October 2005.

[BC95] R. E. Bryant and Y.-A. Chen. Verification of arithmetic circuits with bi-
nary moment diagrams. In DAC ’95: Proceedings of the 32nd ACM/IEEE
conference on Design automation, pages 535–541, New York, NY, USA,
1995. ACM.

[BCCZ99] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In Proc. Intl. Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 1999.

[BCF+07] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Grig-
gio, Ziyad Hanna, Alexander Nadel, Amit Palti, and Roberto Sebastiani. A
lazy and layered SMT(BV) solver for hard industrial verification problems.
In CAV, pages 547–560, 2007.

[BCL+94] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill.
Symbolic model checking for sequential circuit verification. IEEE Trans-
actions on Computer-Aided Design, 13(4):401–424, April 1994.

[BD94] Bernd Becker and Rolf Drechsler. OFDD Based Minimization of Fixed
Polarity Reed-Muller Expressions Using Hybrid Genetic Algorithms. In
ICCD, pages 106–110. IEEE Computer Society, 1994.

[BD09] Michael Brickenstein and Alexander Dreyer. PolyBoRi: A framework for
Gröbner-basis computations with Boolean polynomials. Journal of Sym-
bolic Computation, 44(9):1326–1345, 2009. Effective Methods in Alge-
braic Geometry.

[BDG+09] Michael Brickenstein, Alexander Dreyer, Gert-Martin Greuel, Markus
Wedler, and Oliver Wienand. New developments in the theory of Gröbner
bases and applications to formal verification. Journal of Pure and Applied
Algebra, 213:1612–1635, 2009.

[BDL98] Clark. W. Barrett, David. L. Dill, and Jeremy R. Levitt. A decision proce-
dure for bit-vector arithmetic. In Proc. International Design Automation
Conference (DAC), 1998.

128

Bibliography

[BDS02] Clark W. Barrett, David L. Dill, and Aaron Stump. Checking satisfiabil-
ity of first-order formulas by incremental translation to SAT. In CAV ’02:
Proceedings of the 14th International Conference on Computer Aided Ver-
ification, pages 236–249, London, UK, 2002. Springer-Verlag.

[BDT95] Bernd Becker, Rolf Drechsler, and Michael Theobald. OKFDDs ver-
sus OBDDs and OFDDs. In Zoltán Fülöp and Ferenc Gécseg, editors,
ICALP, volume 944 of Lecture Notes in Computer Science, pages 475–
486. Springer, 1995.

[BH08] Domagoj Babić and Frank Hutter. Spear Theorem Prover. In Proc. of the
SAT 2008 Race, 2008.

[Bha99] J. Bhasker. A Verilog HDL Primer, Second Edition. Star Galaxy Publishing,
1999.

[BHvMW09] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh, ed-
itors. Handbook of Satisfiability, volume 185 of Frontiers in Artificial In-
telligence and Applications. IOS Press, February 2009.

[BJW04] R. Brinkmann, P. Johannsen, and K. Winkelmann. Application of property
checking and underlying techniques. Boston, MA, USA, 2004. Kluwer
Academic Publishers.

[BKO+07] Al E. Bryant, Daniel Kroening, Joël Ouaknine, Sanjit A. Seshia, Ofer
Strichman, Bryan Brady, and Eth Zürich. Deciding bit-vector arithmetic
with abstraction. In In Proc. TACAS 2007, pages 358–372. Springer, 2007.

[boo] boolector. http://fmv.jku.at/boolector.

[BPST10] Roberto Bruttomesso, Edgar Pek, Natasha Sharygina, and Aliaksei Tsi-
tovich. The OpenSMT solver. In Javier Esparza and Rupak Majumdar,
editors, TACAS, volume 6015 of Lecture Notes in Computer Science, pages
150–153. Springer, 2010.

[BR96] Stephen Brown and Jonathan Rose. FPGA and CPLD architectures: A
tutorial. IEEE Design and Test of Computers, 13(2):42–57, 1996.

[Bra93] Daniel Brand. Verification of large synthesized designs. In Proc. Interna-
tional Conference on Computer-Aided Design (ICCAD), pages 534–537,
1993.

[Bro90] F. M. Brown. Boolean Reasoning (The Logic of Boolean Equations).
Kluwer Academic Publishers, 1990.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function manipula-
tion. IEEE Transactions on Computers, 35(8):677–691, August 1986.

129

http://fmv.jku.at/boolector

Bibliography

[BSST09] Clark Barrett, Roberto Sebastiani, Sanjit Seshia, and Cesare Tinelli. Sat-
isfiability Modulo Theories, chapter 26, pages 825–885. Volume 185 of
Biere et al. [BHvMW09], February 2009.

[BST10] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard:
Version 2.0. In A. Gupta and D. Kroening, editors, Proceedings of the
8th International Workshop on Satisfiability Modulo Theories (Edinburgh,
England), 2010.

[BT07] Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger
Hermanns, editors, Proceedings of the 19th International Conference on
Computer Aided Verification (CAV ’07), volume 4590 of Lecture Notes in
Computer Science, pages 298–302. Springer-Verlag, July 2007. Berlin,
Germany.

[Buc76] B. Buchberger. Some properties of gröbner-bases for polynomial ideals.
SIGSAM Bull., 10(4):19–24, 1976.

[CE81] E. M. Clarke and E.A. Emerson. Synthesis of synchronization skeletons
for branching time temporal logic. Lecture Notes in Computer Science,
131, 1981.

[CFM+93] E. M. Clarke, M. Fujita, P. McGeer, K. L. McMillan, J. Yang, and X. Zhao.
Multi-terminal binary decision diagrams: an efficient data structure for ma-
trix representation. In Proc. International Workshop on Logic Synthesis,
pages (P6a) 1–15, 1993.

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
London, England, 1999.

[CK03] Donald Chai and Andreas Kuehlmann. A fast pseudo-boolean constraint
solver. In Proc. International Design Automation Conference (DAC), pages
830–835, 2003.

[CLO07] David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algo-
rithms: An Introduction to Computational Algebraic Geometry and Com-
mutative Algebra, 3/e (Undergraduate Texts in Mathematics). Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[CZKR02] M. Ciesielski, Z. Zeng, P. Kalla, and B. Rouzeyre. Taylor expansion dia-
grams: A compact, canonical representation with applications to symbolic
verification. In Proc. International Conference on Design, Automation and
Test in Europe (DATE), pages 285–291, 2002.

[DB98a] Rolf Drechsler and Bernd Becker. Graphenbasierte Funktionsdarstellung
- Boolesche und Pseudo-Boolesche Funktionen. Leitfäden der Informatik.
Teubner, 1998.

130

Bibliography

[DB98b] Rolf Drechsler and Bernd Becker. Ordered Kronecker functional deci-
sion diagrams - a data structure for representation and manipulation of
Boolean functions. IEEE Trans. on CAD of Integrated Circuits and Sys-
tems, 17(10):965–973, 1998.

[DBJ98] Rolf Drechsler, Bernd Becker, and Andrea Jahnke. On Variable Ordering
and Decomposition Type Choice in OKFDDs. IEEE Trans. Computers,
47(12):1398–1403, 1998.

[DBR96] R. Drechsler, B. Becker, and S. Ruppertz. K*BMDs: A new data structure
for verification. In Proc. European Design and Test Conference (EDTC),
pages 2–8, 1996.

[DBS+94] Rolf Drechsler, Bernd Becker, A. Sarabi, M. Theobald, and M. Perkowski.
Efficient representation and manipulation of switching functions based on
ordered Kronecker functional decision diagrams. In Proc. International
Design Automation Conference (DAC), pages 415–419, 1994.

[DdM06] Bruno Dutertre and Leonardo de Moura. A Fast Linear-Arithmetic Solver
for DPLL(T). In Proc. International Conference Computer Aided Verifica-
tion (CAV), volume 4144 of LNCS, pages 81–94. Springer-Verlag, 2006.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine pro-
gram for theorem proving. Communications of the ACM, 5:394–397, 1962.

[DM06] Bruno Dutertre and Leonardo De Moura. The yices SMT solver. Technical
report, 2006.

[dMB07] Leonardo Mendonça de Moura and Nikolaj Bjoerner. Efficient E-Matching
for SMT Solvers. In Frank Pfenning, editor, CADE, volume 4603 of Lec-
ture Notes in Computer Science, pages 183–198. Springer, 2007.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantifica-
tion theory. Journal of the Association for Computing Machinery, 7:201–
215, 1960.

[EBD] EBDDRES. http://fmv.jku.at/ebddres.

[ES03] N. Een and N. Soerensson. An extensible SAT-solver. In Proc. Inter-
national Conference on Theory and Applications of Satisfiability Testing
(SAT), May 2003.

[GD07] Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and
arrays. In Proceedings of the Computer Aided Verification Conference,
pages 524–536. Springer, 2007.

131

http://fmv.jku.at/ebddres

Bibliography

[GHB01] Wolfgang Günther, Andreas Hett, and Bernd Becker. Application of lin-
early transformed BDDs in sequential verification. In Proc. Asia and South
Pacific Design Automation Conference, 2001, pages 91–96, 2001.

[GHN+04] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
DPLL(T): Fast decision procedures. In Proc. International Conference
on Computer Aided Verification (CAV), pages 26–37, July 2004.

[GN02] Eugene Goldberg and Yakov Novikov. Berkmin: A fast and robust SAT
solver. In Proc. International Conference on Design, Automation and Test
in Europe (DATE), pages 142–149, 2002.

[GP07] G.-M. Greuel and G. Pfister. A SINGULAR Introduction to Commuta-
tive Algebra. Springer Verlag, Berlin, Heidelberg, New York, 2nd edition,
2007. 705 pages.

[GPS10] G.-M. Greuel, G. Pfister, and H. Schönemann. SINGULAR 3-1-2 — A
computer algebra system for polynomial computations. http://www.
singular.uni-kl.de, 2010.

[GSW10] G. M. Greuel, F. Seelisch, and O. Wienand. The Groebner basis of the ideal
of vanishing polynomials. Journal of Symbolic Computation, page 14, To
be published 2010.

[GT96] W. K. Grassmann and J.-P. Tremblay. Logic and Discrete Mathematics.
Prentice Hall, 1996.

[HCCG96] S.Y. Huang, K.T. Cheng, K.C. Chen, and Uwe Glaeser. An ATPG-based
framework for verifying sequential equivalence. In Proc. International Test
Conference (ITC), 1996.

[HMY95] Kiyoharu Hamaguchi, Akihito Morita, and Shuzo Yajima. Efficient con-
struction of binary moment diagrams for verifying arithmetic circuits.
In Proc. International Conference on Computer-Aided Design (ICCAD),
pages 78–82, November 1995.

[HP02] John L. Hennessy and David A. Patterson. Computer architecture: a quan-
titative approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2002.

[HS96] Gary D. Hachtel and Fabio Somenzi. Logic Synthesis and Verification Al-
gorithms. Kluwer Academic Publishers, Boston, 1996.

[Hu97] Alan J. Hu. Formal Hardware Verification with BDDs: An Introduction. In
IEEE Pacific Rim Conference on Communications, Computers, and Signal
Processing (PACRIM), pages 677–682, 1997.

132

http://www.singular.uni-kl.de
http://www.singular.uni-kl.de

Bibliography

[Inf] Infineon Technologies AG. Tricore 2 architectural manual, doc v1.0.
http://www.infineon.com/tricore.

[Int] Intel Pentium FDIV bug. http://www.cs.earlham.edu/
~dusko/cs63/fdiv.html.

[JLS09] Susmit Jha, Rhishikesh Limaye, and Sanjit Seshia. Beaver: Engineering
an efficient SMT solver for bit-vector arithmetic. In Computer Aided Veri-
fication, pages 668–674. 2009.

[JMF95] J. Jain, R. Mukherjee, and M. Fujita. Advanced verification techniques
based on learning. In Proc. International Design Automation Conference
(DAC), pages 420 – 426, 1995.

[JSB06] Toni Jussila, Carsten Sinz, and Armin Biere. Extended resolution proofs
for symbolic sat solving with quantification. In In: Proc. of SAT. LNCS
4121, pages 54–60. Springer, 2006.

[KDB+03] Martin Keim, Rolf Drechsler, Bernd Becker, Michael Martin, and Paul
Molitor. Polynomial formal verification of multipliers. Formal Methods in
System Design, 22(1):39–58, 2003.

[KF02] M. Kubo and M. Fujita. Debug methodology for arithmetic circuits on
FPGAs. pages 236 – 242, dec. 2002.

[KJW+08] U. Krautz, C. Jacobi, K. Weber, M. Pflanz, W. Kunz, and M. Wedler.
Verifying full-custom multipliers by boolean equivalence checking and an
arithmetic bit level proof. In ASP-DAC ’08: Proceedings of the 2008 con-
ference on Asia and South Pacific design automation, pages 398–403, Los
Alamitos, CA, USA, 2008. IEEE Computer Society Press.

[KK97] Andreas Kuehlmann and Florian Krohm. Equivalence checking using cuts
and heaps. In Proc. International Design Automation Conference (DAC),
pages 263–268, November 1997.

[Kor98] I. Koren. Computer Arithmetic Algorithms. Brooside Court Publishers,
1998.

[KS97] W. Kunz and D. Stoffel. Reasoning in Boolean Networks - Logic Synthesis
and Verification Using Testing Techniques. Kluwer Academic Publishers,
Boston, 1997.

[KS07] D. Kroening and S. A. Seshia. Formal verification at higher levels of ab-
straction. In Proc. International Conference on Computer-Aided Design
(ICCAD), 2007.

133

http://www.infineon.com/tricore
http://www.cs.earlham.edu/~dusko/cs63/fdiv.html
http://www.cs.earlham.edu/~dusko/cs63/fdiv.html

Bibliography

[KS08] Daniel Kroening and Ofer Strichman. Decision Procedures: An Algorith-
mic Point of View. Springer Publishing Company, Incorporated, 1 edition,
2008.

[KSR92] U. Kebschull, E. Schubert, and W. Rostenstiel. Multi-level logic based
on functional decision diagrams. In Proc. European Design Automation
Conference (EDAC), pages 43–47, 1992.

[Kun93] W. Kunz. An efficient tool for logic verification based on recursive learn-
ing. In Proc. International Conference on Computer-Aided Design (IC-
CAD), pages 538–543, November 1993.

[Lee59] C. Lee. Representation of switching circuits by binary-decision programs.
Bell Systems Technical Journal, 38:985–999, July 1959.

[LS95] Yung-Te Lai and Sarama Sastry. Edge-valued binary decision diagrams
for multi-level hierarchical verification. In Proc. International Design Au-
tomation Conference (DAC), pages 254–260, 1995.

[Mat96] Y. Matsunaga. An efficient equivalence checker for combinational circuits.
In Proc. International Design Automation Conference (DAC), pages 629–
634, June 1996.

[MB08] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In
Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), 2008.

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
Boston, 1993.

[Mic94] Giovanni De Micheli. Synthesis and Optimization of Digital Circuits.
McGraw-Hill, 1994.

[Min93] Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in combi-
natorial problems. In DAC ’93: Proceedings of the 30th international De-
sign Automation Conference, pages 272–277, New York, NY, USA, 1993.
ACM.

[Mis01] Alan Mishchenko. An introduction to zero-suppressed binary decision di-
agrams. Technical report, in Proceedings of the 12th Symposium on the
Integration of Symbolic Computation and Mechanized Reasoning, 2001.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang,
and Sharad Malik. Chaff engineering an efficient SAT solver. In Proc.
International Design Automation Conference (DAC), 2001.

134

Bibliography

[Moo65] Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8), April 1965.

[MSS99] P. Marques-Silva and K. A. Sakallah. GRASP: A search algorithm for
propositional satisfiability. IEEE Transactions on Computers, 48(5):506–
521, May 1999.

[NO05] Robert Nieuwenhuis and Albert Oliveras. Decision procedures for SAT,
SAT Modulo Theories and beyond. The BarcelogicTools. In LPAR’05,
LNCS 3835, pages 23–46. Springer, 2005.

[NSWK05] M. D. Nguyen, D. Stoffel, M. Wedler, and W. Kunz. Transition-by-
transition FSM traversal for reachability analysis in bounded model check-
ing. In Proc. International Conference on Computer-Aided Design (IC-
CAD), San Jose, USA, November 2005.

[NTM+09] M.D. Nguyen, M. Thalmaier, M.Wedler, D. Stoffel, and W. Kunz. A re-use
methodology for formal soc protocol compliance. In Proc. Forum on Spec-
ification & Design Languages(FDL), Sophia Antipolis, France, September
2009.

[NTW+08] Minh D. Nguyen, Max Thalmaier, Markus Wedler, Jörg Bormann, Do-
minik Stoffel, and Wolfgang Kunz. Unbounded protocol compliance ver-
ification using interval property checking with invariants. IEEE Transac-
tions on Computer-Aided Design, 27(11):2068–2082, November 2008.

[One] Onespin Solutions GmbH. Germany. OneSpin 360MV. http://www.
onespin-solutions.com.

[Pre] PrecoSAT 236. http://fmv.jku.at/precosat/.

[PWS+08] E. Pavlenko, M. Wedler, D. Stoffel, W. Kunz, O. Wienand, and E. Karib-
aev. Modeling of Custom-Designed Arithmetic Components for ABL
Normalization. In GI/ITG/GMM Workshop Methoden und Beschrei-
bungssprachen zur Modellierung und Verifikation von Schaltungen und
Systemen (MBMV), 2008.

[PWS+11] Evgeny Pavlenko, Markus Wedler, Dominik Stoffel, Wolfgang Kunz,
Frank Seelisch, Gert-Martin Greuel, and Alexander Dreyer. STABLE: A
new QF-BV SMT solver for hard verification problems combining Boolean
reasoning with computer algebra. In Proc. International Conference on
Design, Automation and Test in Europe (DATE), 2011.

[PWSK07] E. Pavlenko, M. Wedler, D. Stoffel, and W. Kunz. Arithmetic Constrains
in SAT-based Property Checking. In 10. GI/ITG/GMM Workshop Meth-
oden und Beschreibungssprachen zur Modellierung und Verifikation von
Schaltungen und Systemen (MBMV), 2007.

135

http://www.onespin-solutions.com
http://www.onespin-solutions.com
http://fmv.jku.at/precosat/

Bibliography

[RT06] Silvio Ranise and Cesare Tinelli. The Satisfiability Modulo Theories Li-
brary (SMT-LIB). http://www.SMT-LIB.org, 2006.

[SAF08] O. Sarbishei, B. Alizadeh, and M. Fujita. Arithmetic circuits verification
without looking for internal equivalences. pages 7 –16, jun. 2008.

[SB01] Christoph Scholl and Bernd Becker. Checking equivalence for partial im-
plementations. In Proceedings of the 38th annual Design Automation Con-
ference, DAC ’01, pages 238–243, New York, NY, USA, 2001. ACM.

[SB06] Carsten Sinz and Armin Biere. Extended resolution proofs for conjoining
bdds. In In: Proc. of the 1st Intl. Computer Science Symp. in Russia (CSR
2006). LNCS 3967, pages 600–611. Springer, 2006.

[SBW98] C. Scholl, B. Becker, and T.M. Weis. Word-level decision diagrams, WL-
CDs and division. In Proc. International Conference on Computer-Aided
Design (ICCAD), pages 672–677, 1998.

[Sha38] C. Shannon. A symbolic analysis of relay and switching circuits. Transac-
tions AIEE, 57:713–723, 1938.

[SK97] D. Stoffel and W. Kunz. Record & play a structural fixed point iteration
for sequential circuit verification. In Proc. International Conference on
Computer-Aided Design (ICCAD), pages 394–399, November 1997.

[SK01] D. Stoffel and W. Kunz. Verification of integer multipliers on the arithmetic
bit level. In Proc. International Conference on Computer-Aided Design
(ICCAD), pages 183–189, San Jose, CA, November 2001.

[SK04] D. Stoffel and W. Kunz. Equivalence checking of arithmetic circuits on
the arithmetic bit level. IEEE Transactions on Computer-Aided Design,
23(5):586–597, May 2004.

[SKE06] N. Shekhar, P. Kalla, and F. Enescu. Equivalence verification of arithmetic
datapath with multiple word-length operands. In Proc. International Con-
ference on Design, Automation and Test in Europe (DATE), 2006.

[SKE07] Namrata Shekhar, Priyank Kalla, and Florian Enescu. Equivalence ver-
ification of polynomial datapaths using ideal membership testing. IEEE
Transactions on Computer-Aided Design, 26(7):1320–1330, July 2007.

[SKEG05] Namrata Shekhar, Priyank Kalla, Florian Enescu, and Sivaram Gopalakr-
ishnan. Equivalence verification of polynomial datapaths with fixed-size
bit-vectors using finite ring algebra. In Proc. International Conference on
Computer-Aided Design (ICCAD), 2005.

136

http://www.SMT-LIB.org

Bibliography

[SKME08] Namrata Shekhar, Priyank Kalla, M. Brandon Meredith, and Florian
Enescu. Simulation bounds for equivalence verification of polynomial dat-
apaths using finite ring algebra. IEEE Trans. Very Large Scale Integr. Syst.,
16:376–387, April 2008.

[SLB03] Sanjit A. Seshia, Shuvendu K. Lahiri, and Randal E. Bryant. A hy-
brid SAT-based decision procedure for separation logic with uninterpreted
functions. In Proc. International Design Automation Conference, 2003.

[SMT07] SMT-COMP 2007. http://www.smtcomp.org/2007/, 2007.

[SMT08] SMT-COMP 2008. http://www.smtcomp.org/2008/, 2008.

[SMT09] SMT-COMP 2009. http://www.smtcomp.org/2009/, 2009.

[SMT10] SMT-COMP 2010. http://www.smtcomp.org/2010/, 2010.

[Spe] Spear. http://www.domagoj-babic.com.

[STAF09] O. Sarbishei, M. Tabandeh, B. Alizadeh, and M. Fujita. A formal approach
for debugging arithmetic circuits. IEEE Transactions on Computer-Aided
Design, 28(05):742–754, May 2009.

[STP] STP. http://sites.google.com/site/stpfastprover/
STP-Fast-Prover.

[SWWK04] D. Stoffel, M. Wedler, P. Warkentin, and W. Kunz. Structural FSM-
traversal. IEEE Transactions on Computer-Aided Design, 23(5):598–619,
May 2004.

[Tse68] G. S. Tseitin. On the complexity of proof in prepositional calculus, vol-
ume 8 of Studies in constructive mathematics and mathematical logic.
Part II, pages 234–259. "Nauka", Leningrad. Otdel., Leningrad, 1968.

[vE98] C. A. J. van Eijk. Sequential equivalence checking without state space
traversal. In Proc. International Conference on Design, Automation and
Test in Europe (DATE), pages 618–623, Paris, France, March 1998.

[VVSA07] Shobha Vasudevan, Vinod Viswanath, Robert W. Sumners, and Jacob
A.Abraham. Automatic verification of arithmetic circuits in rtl using step-
wise refinement of term rewriting systems. IEEE Transactions on Comput-
ers, 56(10):1401–1414, 2007.

[web] Excerpts from a Conversation with Gordon Moore: Moore’s Law.
ftp://download.intel.com/museum/Moores_Law/
Video-transcripts/Excepts_A_Conversation_with_
Gordon_Moore.pdf.

137

http://www.smtcomp.org/2007/
http://www.smtcomp.org/2008/
http://www.smtcomp.org/2009/
http://www.smtcomp.org/2010/
http://www.domagoj-babic.com
http://sites.google.com/site/stpfastprover/STP-Fast-Prover
http://sites.google.com/site/stpfastprover/STP-Fast-Prover
ftp://download.intel.com/museum/Moores_Law/Video-transcripts/Excepts_A_Conversation_with_Gordon_Moore.pdf
ftp://download.intel.com/museum/Moores_Law/Video-transcripts/Excepts_A_Conversation_with_Gordon_Moore.pdf
ftp://download.intel.com/museum/Moores_Law/Video-transcripts/Excepts_A_Conversation_with_Gordon_Moore.pdf

[WHAH07] Yuki Watanabe, Naofumi Homma, Takafumi Aoki, and Tatsuo Higuchi.
Application of symbolic computer algebra to arithmetic circuit verification.
In Proc. International Conference on Computer Design (ICCD), pages 25
– 32, October 2007.

[Wie] O. Wienand. Standard Bases over Ring and Applications. PhD Thesis. To
appear in 2011.

[WM00] Sandro Wefel and Paul Molitor. Prove that a faulty multiplier is faulty!? In
GLSVLSI ’00: Proceedings of the 10th Great Lakes symposium on VLSI,
pages 43–46, New York, NY, USA, 2000. ACM Press.

[WPD+10] Markus Wedler, Evgeny Pavlenko, Alexander Dreyer, Frank Seelisch, Do-
minik Stoffel, Gert-Martin Greuel, and Wolfgang Kunz. Solving Hard In-
stances in QF-BV Combining Boolean Reasoning with Computer Algebra.
In Algorithms and Applications for Next Generation SAT Solvers, num-
ber 09461 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2010.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

[WSBK07] M. Wedler, D. Stoffel, R. Brinkmann, and W. Kunz. A normaliza-
tion method for arithmetic data-path verification. IEEE Transactions on
Computer-Aided Design, 26(11):1909–1922, November 2007.

[WSK04] M. Wedler, D. Stoffel, and W. Kunz. Arithmetic reasoning in DPLL-based
SAT solving. In Proc. International Conference on Design, Automation
and Test in Europe (DATE), Paris, France, February 2004.

[WSK05] M. Wedler, D. Stoffel, and W. Kunz. Normalization at the arithmetic bit
level. In Proc. International Design Automation Conference (DAC-05),
June 2005.

[WWS+08] Oliver Wienand, Markus Wedler, Dominik Stoffel, Wolfgang Kunz, and
Gert-Martin Greuel. An algebraic approach for proving data correctness in
arithmetic data paths. In Proc. International Conference Computer Aided
Verification (CAV), pages 473–486, Princeton, NJ, USA, July 2008.

[Yic] Yices. http://yices.csl.sri.com/.

[Z3] Z3. http://research.microsoft.com/en-us/um/
redmond/projects/z3/index.html.

[ZMMM01] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and Sharad
Malik. Efficient conflict driven learning in Boolean satisfiability solver.
In Proc. International Conference on Computer-Aided Design (ICCAD),
pages 279–285, 2001.

http://yices.csl.sri.com/
http://research.microsoft.com/en-us/um/redmond/projects/z3/index.html
http://research.microsoft.com/en-us/um/redmond/projects/z3/index.html

Lebenslauf

Name: Evgeny Pavlenko
Geburtsort: Atbasar, Kasachstan

Ausbildung

09/1986 - 06/1997 Schulbidung
Atbasar, Kasachstan

09/1997 - 06/2001 Bachelor
Polytechnische Universität Tomsk, Russland

07/2001 - 06/2002 Diplom
Polytechnische Universität Tomsk, Russland

04/2004 - 09/2006 Master
Technische Universität Kaiserslautern

10/2006 - 12/2011 Promotion
Technische Universität Kaiserslautern

Berufstätigkeit

10/2002 - 02/2004 Ingenieur Messtechnik
“LipezkElektroKommunikation” AG, Lipezk, Russland

04/2004 - 06/2011 Wissenschaftliche Hilfskraft
Technische Universität Kaiserslautern
Lehrstuhl Entwurf Informationstechnischer Systeme

	Acknowledgments
	Introduction
	Equivalence Checking
	Property Checking
	SAT-based Property Checking

	Motivation and Thesis Overview
	Related Work and Challenges
	Objective and Outline of this Thesis

	Fundamentals
	Relations
	Boolean Algebra
	Graphs
	Representation of Boolean Functions
	Truth Table
	Binary Decision Diagram
	CNF and DNF
	Boolean Networks

	Boolean Satisfiability
	Satisfiability Modulo Theory
	SMT solving
	Fixed-Size Bit Vectors

	Basics of Computer Algebra
	Preliminaries
	Standard Bases over a Field
	Standard Bases over a Ring

	Arithmetic Bit Level Verification
	Arithmetic Bit Level
	Partial Products
	Addition Networks
	Comparators
	ABL Description

	ABL in Formal Verification
	Equivalence Checking at the ABL
	Property Checking at the ABL
	Debugging by means of ABL Description

	Algebraic Approach
	Related Work
	Using Computer Algebra to solve Arithmetic Subproblems in Formal Verification
	Algebraic Modeling of Arithmetic Decision Problems
	Solving Arithmetic Decision Problems by Normal Form Computations

	Illustrative Example

	Modeling of Custom-Designed Components at the ABL
	Mixed ABL/Gate-Level Problems
	Modeling for ABL Normalization
	Synthesis of ABL Descriptions from Gate Netlists

	Modeling for Algebraic Approach
	Extraction of Arithmetic Bit Level Information

	Experimental Results
	Industrial Multiplication Design Benchmark
	Limitation of Reed-Muller-based Extraction
	Shared Multiplier Design Benchmark

	STABLE: a new SMT Solver
	QF-BV SMT Solving
	Experiments
	SMT Competition 2009 Benchmark
	Module Generator Benchmark
	TriCore Benchmark
	Benchmark of Satisfiable Instances

	Summary and Future Work
	Summary
	Algebraic Approach for Verification of Arithmetic Designs
	ABL Modeling of Custom-Designed Components
	New QF-BV SMT Solver

	Future Work
	Smart and lazy ABL Extraction
	ABL Proof Logging

	Zusammenfassung
	Algebraisches Verfahren
	Algebraische Modellierung für logische Constraints
	QF-BV-SMT-Solver

	Examples of Source Codes
	Complete Experimental Results for Suite of TriCore SMT Instances

