
Translating SHIM to Guarded Actions

Jens Brandt1, Klaus Schneider1, and Stephen A. Edwards2

1 Department of Computer Science, University of Kaiserslautern,
lastname@cs.uni-kl.de

2 Department of Computer Science, Columbia University, New York,
sedwards@cs.columbia.edu

Abstract. SHIM is a concurrent deterministic programming language for
embedded systems built on rendezvous communication. It abstracts away
many details to give the developer a high-level view that includes vir-
tual shared variables, threads as orthogonal statements, and deterministic
concurrent exceptions.
In this paper, we present a new way to compile a SHIM-like language into
a set of asynchronous guarded actions, a well-established intermediate
representation for concurrent systems. By doing so, we build a bridge to
many other tools, including hardware synthesis and formal verification.
We present our translation in detail, illustrate it through examples, and
show how the result can be used by various other tools.

1 Introduction

Describing and programming concurrent systems challenges developers. The
state space of such systems is generally large and developers can rarely imagine
every situation a system might encounter. Compounding the problem, system
models often employ low-level communication and synchronization primitives
such as threads and locks expressed with a sequential programming language,
where experience has shown that non-trivial programs are very hard to ana-
lyze. Extensive and expensive testing is commonly used to improve assurances
of safety and liveness. Given that today’s embedded systems are generally par-
allel, this problem is growing more pernicious because the correctness of such
systems is often a matter of life and death.

Adopting a model of computation, a meta-model targeted at a class of appli-
cations that defines general rules for communication and computation, is one
may to deal with the problem. Employing such a model restricts the complexity
of a system and thus the difficulty of validating it. This raises the level of ab-
straction, providing both the programmer and automated tools an easier way
to gain insight into a system.

Edwards and Tardieu’s SHIM language [7] is based on such a model of
computation targeted at the domain of embedded systems. It provides many
features aimed at integrating hardware with software. Its imperative program-
ming style makes it accessible to many developers, but it resolves many issues
that usually arise in such a setting. Specifically, its restriction to rendezvous-
style communication ensures parallel execution remains deterministic, i.e., so

that repeated runs of a program with the same input always produce the same
output. Furthermore, its state space remains finite to enable simpler hardware
synthesis [16]. It hides communication behind virtual shared variables, present-
ing developers with a simple high-level view. Additionally, it has direct support
for running statements (and hence threads) in parallel and support for concur-
rent exceptions that remain deterministic.

Creating the compiler infrastructure for new programming languages is a
difficult, time-consuming task that requires experts in the source language, pro-
gram analysis, and target architectures. A classical solution is to use a common
intermediate format that bridges the gap between powerful programming lan-
guages with complex semantics and the low-level description of the target code.
Such an intermediate representation also allows designers to share common
components of the compiler infrastructure: new input languages can be added
by simply implementing the front-end; additional back-ends support new tar-
get architectures.

A common solution to divide these tasks is to define an intermediate repre-
sentation that is independent of the target architecture on the one side but does
not contain the complexity of the source language on the other side. For tradi-
tional sequential programming languages, control-/data-flow graphs are such
a model. As they are generally bound to the program structure, they are rarely
suitable for concurrent models, although there are some exceptions.

In this paper, we propose the use of asynchronous guarded actions as an
intermediate format. They are a well-established concept for the description of
concurrent systems. With a theoretical background in term rewriting systems,
they have been used in many specification and verification formalisms (e.g., Di-
jkstra’s guarded commands [5], Unity [3], Murϕ [6], DisCo [12]) and they have
also shown their power in hardware and software synthesis (e.g., Concurrent
Action-Oriented Specifications [11]).

Our core technical contribution is a translation algorithm that takes a SHIM-
like program and generates asynchronous guarded actions for it. By translat-
ing SHIM to guarded actions, we leverage many existing techniques for hard-
ware/software codesign and formal verification. The approach presented in
this paper complements existing compilation techniques for SHIM, which focus
on software generation. Furthermore, by using the conflict analysis presented
by Brandt et al. [2], the SHIM approach can harness all the implementation and
verification techniques developed for the synchronous world.

As mentioned above, related work focused mainly on software generation.
Edwards and Tardieu introduced initial ideas [7,15,14] and later refined them.
For example, Edwards and Tardieu [8] showed how threads can be statically
scheduled to minimize the synchronization overhead in generated code. Later,
Edwards, Vasudevan, and Tardieu [9] use Pthreads as a target for software syn-
thesis. Edwards and Tardieu [7] sketch a rudimentary hardware generation, but
only cover a subset of the language. While deadlock detection [17] and buffer
sharing [18] has been considered for SHIM, much work remains to be done on
formal verification and static analysis.

This paper is structured as follows: In Section 2, we present our source
language—a SHIM dialect called Emerald. Then, in Section 3, we describe our
intermediate representation. We describe the translation between these two
models in Section 4. In Section 5, we show how using our translation enables
the use of existing hardware synthesis and symbolic model checking tools. We
conclude in Section 6.

2 The Description Language Emerald

2.1 Overview

We translate Emerald, a clone of the SHIM language [15]. As in SHIM, system
descriptions are a set of concurrently running processes that only exchange
data by rendezvous-style communication. Emerald supports the same set of
orthogonal statements, deterministic best-effort exceptions and virtual shared
variables to hide lower-level communication.

To a SHIM base, Emerald adds support for built-in assertion-style verifica-
tion and different kinds of preemption. Emerald’s type system includes fixed
bit-width integers with a complete set of arithmetic operations, which is the
foundation for hardware synthesis and formal verification. All of this was bor-
rowed from the synchronous programming language Quartz[13], enabling de-
velopers to integrate components written in either languages to only consider
temporal aspects. Such borrowing also enabled us to reuse infrastructure from
the Averest system, which provides support at the front-end for the general
program structure, expressions and type checking and synthesis tools at the
backend, which will be used for the experiments in Section 5. However, the
techniques in this paper do not rely on these additional features; our compila-
tion technique can be applied directly to SHIM programs.

Below, we give a brief overview of the core of the Emerald language. For
lack of space, we do not describe its semantics in detail; instead see Edwards
and Tardieu [7,15]. The Emerald core consists of the statements listed below,
where S, S1, and S2 are also core statements, x is a variable, e an exception, σ is
a Boolean expression, and α is a type.

nothing Empty statement
halt Stop this thread
x = τ Assignment
pause(x) / pause Synchronization
if (σ) S1 else S2 Conditional
S1;S2 Sequence
do S while(σ) Iteration
S1 ‖ . . . ‖ Sn Concurrency
throw e Throw exception
try S1 catch(e)S2 Catch exception
{α x; S} Declare x of type α in scope S

module Parallel02
(bool x) {

int a = 0;
int b = 0;
int c = 0;

{
a = 1;
pause(a);
a = 2;

} || {
b = b+a;
pause(a);
b = b+2∗a;

} || {
c = a+b+c;
pause(a);
c = a+2∗b+3∗c;

}

}

module Parallel02:
init :

True => a.1 = 0
True => b.1 = 0
True => c.1 = 0
True => a@1 = a.1
True => b@1 = b.1
True => c@1 = c.1
True => next(pc’thr000) = 1
True => ec’thr001 = 0
True => a.2 = 1
True => next(pc’thr001) = 1
True => ec’thr002 = 0
True => b.2 = a@1+b.1
True => next(pc’thr002) = 1
True => ec’thr003 = 0
True => c.2 = c.1+a@1+b@1
True => next(pc’thr003) = 1
True => next(a) = a.2
True => next(b) = b.2
True => next(c) = c.2

rules :
a: when(

pc’thr001==1 &
pc’thr002==1 &
pc’thr003==1)

True =>
a@1 = a

pc’thr001==1 =>
a.1 = 2

pc’thr001==1 =>
next(a) = a.1

pc’thr002==1 =>
b.1 = b+a@1∗2

pc’thr002==1 =>
next(b) = b.1

pc’thr003==1 =>
c.1 =→

a@1+b@1∗2+c∗3
pc’thr003==1 =>

next(c) = c.1

Fig. 1. Example Parallel02

nothing is the empty statement; halt stops, but does not terminate the thread
in which it resides. The assignment x = τ evaluates the expression τ in the
current environment and assigns its value to x. pause(x) forces the current
thread and all others that know about the shared variable x to synchronize. Ad-
ditionally, there is a pause statement without parameters, which corresponds
to internal transitions in CSP [10]; we use it to denote clock cycle boundaries
in hardware synthesis. Conditional, sequence and iteration work as in any se-
quential program. Concurrency is added by the statement S1 ‖ . . . ‖ Sn, which
forks statements S1, . . . , Sn as parallel threads. The parent thread is immedi-
ately suspended and resumes when all children have terminated. The execution
of parallel threads is only constrained by synchronizations pause(x) on shared
variables x as explained below. try S1 catch(e) S2 declares and exception e in
scope S1. If it is thrown by throw e, the statement tries to catch it and calls the
handler S2.

In the next section, we discuss in more detail the behavior of shared vari-
ables and exceptions—two important aspects of the language semantics upon
which the compilation algorithm hinges.

2.2 Shared Variables and Synchronization

The underlying model of computation in Emerald is a restricted form of com-
municating sequential processes. However, communication is hidden in the

source language by virtual shared variables and synchronization on them. A
variable can be declared at an arbitrary point in the program and accessed in
several concurrently running threads. To avoid race conditions, which make
the overall behavior generally nondeterministic, a variable x can be only writ-
ten by a single thread. If a thread forks several subthreads, it hands over the
write access to a single child. Only this thread has access to the current value of
a variable x; all other threads can only read the value that the variable has had
at the last common synchronization point. For concurrent threads accessing x,
this is either the fork point or a point where all of them executed a pause(x)
simultaneously. Thereby, the order in which concurrent threads advance does
not have an effect on the functional behavior of the program.

If a thread synchronizes on x by calling pause(x), the underlying rendezvous-
like communication requires all concurrently running threads reading or writ-
ing x to synchronize on x. The thread blocks and does not participate in any
other communication until all others also reach a pause(x) or terminate. Al-
though the possibility of a thread synchronizing on several variables introduces
the danger of deadlocks, it is the key to guaranteeing determinism. Note that
due to this synchronization, the parallel operator ‖ is not associative and there-
fore, the language core contains the general variant for creating n threads in-
stead of simply two. Thus, S1 ‖ (S2 ‖ S3), S1 ‖ S2 ‖ S3, and (S1 ‖ S2) ‖ S3

may exhibit different behaviors because of different synchronization on shared
variables.

The left column of Figure 1 illustrates this. After initializing variables a, b,
and c, the program starts three threads that share all the variables. Since a is
written by the first thread, the other two threads can only read it. These readers
use a = 0 in their first assignments, since the update a = 1 is made accessible
to them only by pause(a) statement. Since b is never communicated, the last
thread still uses b = 0 in its last assignment. Hence, the example terminates
with a = 2, b = 2, and c = 1.

2.3 Best-Effort Exceptions

State-of-the-art sequential programming languages provide exceptions to deal
with uncommon situations in a structured way. Once such an exception is thrown
at an arbitrary point in the program, it can be caught and control can be handed
over to dedicated handler, which is responsible for dealing with the situation.
The benefits of exceptions in sequential programs are indisputable, so follow-
ing the concept is also interesting in a parallel programming language such as
Emerald. However, making them deterministic in a concurrent context is very
challenging.

Edwards and Tardieu tackled the problem by so-called best-effort preemp-
tion [7], in which catching exceptions might fail. Their design decision leads to
programs that may get stuck instead of producing a nondeterministic behav-
ior, which is generally the better alternative for testing and verifying parallel
programs.

module Exception02 (bool x) {
int a; int b; int c;
try {

{
throw e; // thread exits here
pause(a);
a = 1;

} || {
b = 2 + a;
pause(a); // thread exits here
b = 3 + a;
pause(b);

} || {
c = 4 + b;
pause(b); // thread exits here
c = 5 + b;

}
} catch(e) { a = b + c; }

}

Fig. 2. Example Exception02

Similar to the design of shared variables, the fact that an exception is thrown
in a thread is not immediately propagated to other threads because there is no
good definition for “immediately” in an asynchronous setting such as Emerald.
One choice would be to notify threads at an undefined point, a source of non-
deterministic behavior. Instead, exceptions in Emerald are only propagated to
other threads communicating with the emitter of the exception. In this case, the
other thread immediately becomes a repeater of that exception. Finally, a set
of concurrent threads is only aborted if all concurrently running threads have
terminated.

The example shown in Figure 2 illustrates deterministic preemption. The
first thread throws the exception e and aborts immediately. The other threads
proceed until they communicate with a “poisoned” thread. The second thread
will abort at pause(a), which will cause the third thread to abort at pause(b).
When all subthreads have exited, their parent will also exit so the exception
handler can be called. Hence, a = 6 at the end.

3 Asynchronous Guarded Actions

Our translation process expresses Emerald programs as groups of asynchronous
running guarded actions. They are defined over a set of explicit variables V ,
which represent the state of the modeled component. The behavior is described
by a set of rules, which are guarded atomic actions of the form rule riwhen(γi)Bi,
where γi is the guard and Bi the body of rule ri. The body of a rule Bi is a set
of synchronous guarded actions of the form 〈γ ⇒ x = τ〉 (for an immediate

assignment) or 〈γ ⇒ next(x) = τ〉 (for a delayed assignment). Both kinds
of assignments evaluate the right-hand side expression τ in the current macro
step. Immediate assignments x = τ write the obtained value of τ immediately
to the variable x (so that other actions see the effect), whereas delayed ones
next(x) = τ write the value for the following macro step.

For the interaction with the environment, the target model makes use of so-
called methods, which are parameterized rules of the form method m(pi1, . . .)
when(γi) Bi. In addition to the local variables, the actions of a method have
access to the variables specified in its parameter list. These parameter lists may
contain inputs and outputs. In the concrete syntax, we use the prefix ? to mark
a parameter as an input and ! to mark a parameter as an output.

The semantics of the asynchronous guarded actions is rather simple. After the
initialization of all variables, the following two steps are repeated forever: first,
the guards of all actions are evaluated with respect to the current state. Among
the actions whose guards evaluate to true, an arbitrary one is chosen and its
body is executed. Inside the body, there are multiple synchronous actions, which
are considered to execute in parallel. We consider this model as an asynchronous
one because there is no notion of synchronous execution of multiple rules in the
semantics. Rules execute one by one as their guards become true, in an arbitrary
order. Since the execution generally modifies the system state, other actions will
be possibly activated in the following iteration. If no action is activated, the loop
may be also aborted, since no further state change will ever occur.

Let q0 be the initial state of the system, and q
S−→ q′ indicate that action S

transforms the system in state q to state q′. Then, a run of a model is a sequence

of system states 〈q0, q1 . . .〉 where qi
Sx−→ qi+1 and when(γx) Cx is an arbitrary

action which is activated in state qi, i.e., qi(γx) = true. Obviously, the system
description is nondeterministic: even in the presence of the same inputs, which
lead to the same activation of guards, the system can produce different out-
puts by choosing different activated actions. Hence, models consisting of asyn-
chronous guarded actions are generally intended to be specifications, which
describe a set of acceptable implementations.

4 Compilation

This section presents the core of our contribution: the translation of Emerald
programs to asynchronous guarded actions. First, we give an overview of the
translation process in the following section before we highlight some particular
aspects, which we discussed in Section 2: synchronization on shared variables
and best-effort exceptions.

4.1 Overview

We divide the translation of Emerald programs into several stages. After pars-
ing the program, the abstract syntax tree is checked and enriched with the fol-
lowing information.

x = 1;
if (a)

pause(x);
y = 1;
pause(x);
z = 1;

x = 1;
if (true)

pause(x);

y = 1;
pause(x);
z = 1;

x = 1;
if (false)

pause(x);
y = 1;
pause(;)

z = 1;

Fig. 3. Surface and Depth

– For each thread t, a fresh integer pct variable is created, which serves as
its program counter. Furthermore, for each position where the control flow
can rest (namely the synchronization pause(x), the break-down halt and
the parallel statement) integer labels are fixed for the program counter. This
information is added as parameters to the corresponding program state-
ments (e.g., `1 : pause(x)), in the presentation below as well as in our actual
implementation. Thereby, the label 0 always refers to the initial place, and
label −1 indicates that a thread has exited due to an exception.

– For each thread t, an additional variable ect is created, which stores its cur-
rent error code. For each exception e, a unique integer code is fixed, which
will be stored in the error code of its thread if the exception is thrown. Oth-
erwise, the error of of a thread is set to 0, which indicates that no exception
has been thrown.

The actual compilation of the program is performed by two recursive functions,
which are responsible for the surface and the depth of a statement. Intuitively, the
surface consists of the actions that are executed when the statement is started,
i.e., all the parts that are executed before reaching one of the next labels (at-
tributed to synchronization, halt, and parallel statements). Thus, the surface
refers to the part that can be executed within a single rule (recall that the body
of a rule generally contains several actions). The depth contains the statements
that are executed when the program resumes execution for the next rules, i.e.,
when the control is already inside the program and proceeds with its execu-
tion. It is important to see that surface and depth overlap, since labels may be
attributed to conditionally executed statements. Consider the example in Fig-
ure 3: while the action x = 1 is only in the surface and the action z = 1 is only
in the depth, the action y = 1 is both in the surface and depth of the sequence.

This compilation scheme [1] has the advantage that branches of the pro-
gram can be compiled depending on the label from where they have been
reached. As we will show below, this technique for Emerald compilation pro-
vides many benefits over a straightforward single recursive traversal over the
program structure.

The surface compilation is implemented as a recursive traversal over the
program structure, e.g., for a loop we first compile the loop body and then add
the loop behavior. While descending in the recursion, the compilation algo-
rithm passes down the following parameters:

– t is the ID of the current thread

– S is the statement to compile
– ϕ is the activation condition of S
– ρ is a substitution mapping program variables to variables in the interme-

diate code
Each call returns the following intermediate result:

– I is a Boolean condition describing when the statement is instantaneous
(i.e., when the next label is not reached)

– R is the set of synchronous guarded actions extracted from the surface of
the statement

– ρ is a substitution reflecting the current variable context after the execution
of S

The surface compilation of the primitive statements is straightforward. nothing
is always instantaneous and it does not produce any actions. In contrast, halt is
not instantaneous and creates an action which moves the control flow to a dead-
end position. The assignment x = τ is instantaneous. It updates ρ as described
in Section 4.2 and creates an action that performs the assignment. The statement
` : pause(x) always concludes the surface and creates an action that moves the
control flow to the synchronisation position ` (which has been generated in the
preprocessing step). For all the actions generated by the primitive statements,
the current start condition ϕ is used as the guard.

Throwing the exception e is compiled to a movement of the control flow
to the exit position −1. The exit code of the current thread is updated if the
currently thrown exception is of higher precedence than the previously stored
one (for details see Section 4.4).

For the compilation of the sequence statement, the compile algorithm pro-
cesses both parts of the sequence and concatenates their actions. The second
statement is added under the condition that the first one is instantaneous. The
compilation of the conditional is straightforward: its guard σ is added to the
recursive calls of the compilation algorithm, and it is used for the combination
of the partial results. The iteration statements follows the same principle and
simply compiles its body. Thereby, it is assumed that the loop body is not in-
stantaneous (i.e., that there is no statement with a label in the loop). If this were
the case, this loop would immediately restart leading to an infinite empty loop
with a potential lack of reactivity. Programs that contain such loops are consid-
ered to be ill-formed, and the compiler rejects them.

The surface of the parallel statement contains the actions for the fork, which
initialize the program counter, exit code and local variable copies of the sub-
threads, in addition to the actual surfaces of its subthreads. Obviously, the
whole parallel statement is instantaneous if all its subthreads are so.

Finally, the compilation of the try-catch statement and the compilation of the
scope of a local variable simply compile the inner parts. For the local variable,
an action initializing the variable to its default value is prepended to the com-
piled actions.

The depth compilation is implemented in a similar way as a recursive traver-
sal over the program structure. Thereby, depth compilation makes use of the
following parameters

– t is the ID of the current thread
– S is the statement to compile
– ρ is a substitution reflecting the current variable context (similar to the ρ

used in the surface compilation)

and returns a structure containing the following information:

– A is a Boolean condition that holds when the statement is active
– T are Boolean conditions indicating when the current set of rules terminate
– E is a Boolean condition that holds when all subthreads have exited due to

an exception
– Y stores for each shared variable the condition when a synchronization on

them is requested by the program threads
– R is the current set of rules extracted from the statement

Since nothing does not have a depth part, it returns an empty result, where
the set of rules is empty, and the A and T conditions are set to false. The same
holds for the assignment x = τ and the throw statement. For ` : halt, we do
not produce any rules either but set the T condition to its label `.

The statement ` : pause(x) creates a new rule. Its position ` is also used as
the synchronization condition for x in the map Y . The same condition is used
for the predicates A and T .

For the compilation of the sequence statement, the compile algorithm has
to make three recursive calls, since the depth of the whole statement generally
consists of the depth of the first part, the surface of the second part and the
depth of the second part. The rules and synchronization maps of the depth
parts are simply merged, and the actions from the surface call are appended to
all open rules of the first statement (which is given by the T conditions). The
compilation of the conditional simply compiles both branches and assembles
the results. In the depth, the guard σ does not play any role, since it has been
already checked in the surface. The iteration statements basically follows the
same principle as the sequence. First, the depth of the body is compiled. Then
the surface is appended to all open rules, with σ as an additional condition that
holds for reentering the loop body. By splitting the compilation into surface and
depth, the reenter condition for the loop can be computed before it is used so
that acyclic descriptions are generated by construction. Similar to the surface
compilation of the loop, we check that the loop body is not instantaneous if the
loop is reentered.

The most challenging statement for the compilation algorithm is the depth
of the parallel statement since it must combine all information about the sub-
threads and their interaction. First, the depth parts of all substatements are
compiled and their compilation results are merged. The rules and activation
conditions can be combined by a simple union and disjunction, respectively. In
contrast, the termination condition is not just the conjunction but it must also
consider that the subthreads terminate at different points of time. Therefore, ter-
mination happens when the last thread (all others are not active (A) anymore)
terminates. Furthermore, new rules are generated that handle the propagation
of exceptions (see Section 4.4).

module→
Communication01

(int ?x, int !y) {
pause(x);
if (x > 0) {

y = 2 ∗ x;
pause(y);

} else {
pause(x);
y = 3 ∗ x;

}
}

module Communication01:
methods:

method_x:
external ’x: input int
when: pc’thr000==1|pc’thr000==3

True => x = external ’x
pc’thr000==1&0<x => y.1 = x∗2
pc’thr000==1&0<x => next(pc’thr000) = 2
!(0<x)&pc’thr000==1 => next(pc’thr000) = 3
pc’thr000==1 => next(y) = y.1
pc’thr000==3 => y.1 = x∗3
pc’thr000==3 => next(y) = y.1

method_y:
external ’y: output int
when: pc’thr000==2

True => external’y = y

Fig. 4. Example Communication01

The depth of the variable scope is transparent for the compilation. Finally,
the try-catch statement is compiled by first compiling its body and the exception
handler. The exit condition of the body is used to trigger a new rule, which
contains the surface of the exception handler. For details, also see Section 4.4.

After compiling the surface and the depth of the program, the results are
assembled in a post-processing step, before they are finally written to a file in
our intermediate format. In this step, the Y map is used to synchronize the
rules R: for each local variable x, all rules starting at a pause(x) are merged to
a single rule so that their execution is synchronized. For each variable x which
is contained in the system interface, a method (see Section 3) is created, which
additionally handles the communication with the environment.

Figure 4 gives an example. For the interface variables x and y the com-
piler creates two methods. Each one exchanges data with the environment. The
method for x is called at the first and third pause statements (pct0 = 1∨pct0 = 3),
and the method for y is called at the second one.

4.2 Synchronous Actions

All synchronous guarded actions within a rule are executed simultaneously.
However, the compilation algorithm presented in the previous section has to
put several assignments to the same variable in a single rule. This is a problem
since there can only be a single action in a rule writing a variable. Furthermore,
there is another problem related to the control-flow conditions ϕ and T . The
naive collection of conditions over the whole body of a rule does not consider
intermediate updates to variables. For example, consider the I condition for the
statement if (x) x = false; else pause(); if (x) pause() would be x ∧ ¬x =
false in this case, which is obviously wrong. To handle both problems, several
updates within a single rule must be prevented.

module RuleBody01
(int ?x, int !y) {

int a;
pause;
a = 101;
if (a == x) {

a = a + 102;
if (a == 2∗x)

a = a + 103;
else

a = a + 104;
} else

a = a + 105;
y = a;

}

module RuleBody01:
init :

True => next(a) = 0
True => next(pc’thr000) = 1

rules :
pause001: when(pc’thr000==1)

True => a.1 = 101
x==a.1 => a.2 = a.1+102
x==a.1&a.2==x∗2 => a.3 = a.2+103
!(a.2==x∗2)&x==a.1 => a.3 = a.2+104
!(x==a.1) => a.2 = a.1+105
True => next(a) = x==a.1?a.3:a.2
True => next(y) = a.4

Fig. 5. Example RuleBody01

A general solution to this problem is the static-single assignment (SSA) form
of a program [4], where each variable is only written once. Transforming a pro-
gram to SSA involves the replication of variables and the introduction of so-
called phi-functions, which determine the current value of a variable in the case
that several assignments to it have been executed before. The surface compi-
lation algorithm generates an SSA-like form for each rule on the fly. Thereby
it makes use of the substitution ρ, which stores the current mapping of pro-
gram variables to incarnations. Each time an assignment is compiled in the sur-
face, a new variable incarnation is created, and the new mapping is stored in
ρ. Thereby, the different values for a variable in the course of a rule can be dis-
tinguished. Since the SSA form is generated for the body of the rule, the final
update must be written back to the original variable at the end of the step so
that the next rule can access it. Our compiler accomplishes that by adding a de-
layed assignment of the original variable. The additional intermediate variables
have no impact on the performance of the final implementation: since they only
need to store values within a step, hardware synthesis can map them to wires
and software synthesis to local variables.

However, the body of the rule is generally not generated from its beginning
to its end, e.g., if the rule starts in a branch of an if statement and ends outside.
In this case, two parts are created separately, and the depth compilation of the
sequence assembles them. It increases all incarnations of the second part to the
highest one of the first part so that no collisions occur.

Figure 5 gives an example. For the program on the left-hand side, the rules
shown on the right-hand side are generated. Since the program variable a has
several values within the same step, the compiler generates several additional
incarnations (namely a.1, a.2 and a.3) to distinguish them. The final value is
written back to a by a delayed action at the end.

Our algorithm takes all actions between two consecutive synchronization
points and combines them into a single rule. Therefore, the size of the rules
may become larger than desired, and code duplication occurs since actions after
control-flow joins of the program appear in several rules (the resulting code is
quadratic in the worst case). This effect could be avoided by adding a pause

statement without parameters (internal transition), which does not change the
behavior of the program but causes a split up of the rules.

In principle, by adding implicit pause statements at the control-flow joins,
any code duplication could be avoided. In an extreme version, these addi-
tional positions can be introduced after each assignment so that the whole SSA
computation would not be needed anymore. In the compiler, this could be ac-
complished by returning the instantaneity condition false at the desired points.
Then, a new position is created, where the control flow can resume in the next
step. We finally decided against the introduction of these implicit pause state-
ments since they may make the program more sequential than desired, and
only an additional and possibly expensive analysis [11] can reconstruct the lost
parallelism. However, the programmer can use them in the source code to ex-
plicitly split up steps.

4.3 Shared Variables and Synchronization

As already pointed out in Section 2.2, only a single thread has write access to
the current value of a variable x. In order to avoid race conditions, all other
threads only know the value that the variable had at its previous synchroniza-
tion point. Hence, our translation also needs several variables in the generated
code to store the different values that a program variable x has in the individual
threads.

Obviously, the first question is how many variables are needed for a pro-
gram variable x. For a set of parallel threads on the same level, two variables
suffice: the first one is attributed to the writer, and it stores the current value of
x. In addition, we need a copy, which stores the value known at the last syn-
chronization point and which is the same for all threads on the same level. In
the general case, we need n copies, where n is the maximum nesting of parallel
statements.

Thus, we always create an additional copy when a new parallel statement
starts. Note that we do not need to create copies for all variables but only for
variables which are written by some thread and read by another one. In the
translation shown above, the surface part of the parallel initializes the copies,
while the depth part forwards the mapping to the subthreads via their param-
eter ρ.

The copies are updated at each synchronization point. This is accomplished
by a post-processing step in our translation algorithm, which merges all rules
starting at synchronization points for a given variable x, and generates the ap-
propriate copy actions.

The right-hand side of Figure 1 shows the rules for the given program,
which has already been explained in Section 2.2. For the shared variable a, a

module Exception03
(bool ?x) {

int x1; int x2;
int i ;
try {

{
x1 = i ;
throw T;

} || {
try{

{
x2 = i ;
throw U;

} || {
pause(i) ;

}
} catch(U)

{nothing;}
i = i + 1;
pause(i) ;
i = i + 1;

}
} catch (T)

{nothing;}
}

module Exception03:
init :

ec’thr000==0 | ec’thr000>1 => next(ec’thr000) = 1
ec’thr000==0 | ec’thr000>1 => next(pc’thr001) = −1
ec’thr002==0 | ec’thr002>2 => next(ec’thr002) = 2
ec’thr002==0 | ec’thr002>2 => next(pc’thr003) = −1
...

rules :
pause001: when(pc’thr004==1)

True => next(i) = i+1
True => next(pc’thr002) = 2

prop003: when(
pc’thr003==−1 & pc’thr004==1)

True => next(pc’thr004) = −1
exit004 : when(

pc’thr003==−1 & ec’thr003==0 &
& pc’thr004==−1 & ec’thr004==0)

True => next(pc’thr002) = −1
catch005: when(pc’thr002==−1&2==ec’thr002)

True => next(i) = i+1
True => next(pc’thr002) = 2

pause006: when(pc’thr002==2)
True => next(i) = i+1

prop008: when(pc’thr001==−1 & pc’thr002==2)
True => next(pc’thr002) = −1

catch010: when(pc’thr000==−1 & ec’thr000==1)

Fig. 6. Example Exception03

copy a@1 is created in the pre-processing step, which is used by the reading
threads (as the second last action of rule a shows). The compilation of surface
and depth generates a separate rule for each pause(a) statement. In the post-
processing step, these rules are merged to a single rule a. In this rule, the current
value of a is transmitted (first action of rule a) to the copy a@1 so that all other
threads have access to the new value.

4.4 Best-Effort Exceptions

Finally, the last problem that the compiler has to tackle is the compilation of
exceptions. Basically, this task is to generate code for three situations: (1) excep-
tions are thrown by some thread (2) they are propagated to other threads run-
ning in parallel and to their parent thread, and (3) they must be finally caught.

Part (1) is handled by the compilation of the throw e statement. In the sur-
face compilation, the program counter of the current thread is set to the exit po-
sition−1. The code ect is examined, where t is the thread in which the exception
e is declared (not necessarily the same thread as the emitter). It is overwritten
(and set to e) if e is of higher priority than the currently scheduled exception

(where exceptions with greater scope have higher priority). Thereby, the excep-
tion gets scheduled, and its handler will be invoked when/if its body is finally
aborted.

Part (2) is handled by the depth compilation of the parallel statement. There,
actions are generated, which cause that concurrent subthreads exit if they com-
municate with a thread that has already exited. They basically state that when-
ever a thread has exited and another one, which terminates normally or tries to
synchronize with it over a common variable, the latter one will also exit. Ad-
ditionally, an exit rule is created that causes an exit of the current thread if all
subthreads have exited.

Part (3) is finally handled by the compilation of try S1 catch(e)S2. The
exception handler S2 will be invoked if the body S1 has exited and if the exit
code ect of the current thread t is the given exception e.

Figure 6 gives an example for the compilation of the exceptions. The dif-
ferent kinds of rules that are generated can be distinguished by their names.
The prop rules are responsible for the propagation of exceptions between con-
current threads, while exit rules forward the exit of subthreads to its parent. As
expected, the catch rules implement the trigger of the exception handler. In the
example, prop003, exit004 and catch005 implement exception U , while prop008
and catch010 are responsible for exception T . For example, rule prop003 han-
dles the case where the first thread of the inner parallel statement has exited
(pct3 = −1) and the second one is at the pause statement (pct4 = 1, where
1 is the label automatically assigned to the first synchronization point in the
thread): then, the second thread also exits (pct4 = −1). Rule exit004 checks
whether these both subthreads have exited and no exception can be caught in
their contexts (ect3 = 0 and ect4 = 0). In that case, the parent thread also exits.
Rule catch005 finally catches the exception. If the corresponding thread has ex-
ited and its exit code matches the one of the exception (2 represents exception
U in our case), the exception handler is executed.

5 Experimental Results

The compilation algorithm presented in the previous section generated asyn-
chronous guarded actions for a given Emerald program. In the following, we
show how this result can be used by other backends. Thereby, we focus on two
targets, which have not been considered for SHIM before, namely hardware
synthesis and model checking of program properties by SMV.

For both targets, we first translate the asynchronous guarded actions to
synchronous ones as described in [2]. This step includes the generation of a
scheduler, which fires a subset of the activated guarded actions. Since our asyn-
chronous guarded actions are scheduling independent (as already exploited in
[17,18]), we can skip the conflict analysis described in [2] and add a simple
ASAP scheduler, which immediately fires all activated actions. However, in or-
der to optimize the system according to a given metric, another scheduler could
be added, which is the core of the BlueSpec approach3 [11].

3 http://www.bluespec.com/

Example Emerald IR Verilog FPGA Implementation

threads .emd .aif .v FFs LUTs DSP48s BUFGs

ProdCons 3 20 loc 19 kB 8 kB13 24 0 1
Lattice 7 59 57 17 28 187 4 1
TokenRing 17 110 108 35 28 106 0 1
Eratosthenes 23 338 403 113 138 660 20 0
Green 11 199 611 168 1358 2949 0 1

Fig. 7. Experimental Results: Hardware Synthesis

For both targets we used the following set of examples (see Figure 7): Prod-
Cons is a simple producer-consumer system, where the producer terminates
after 256 elements so that the consumer is blocked. Lattice is a naive parallel
implementation of a lattice filter. TokenRing is a model of token ring consisting
of 16 stations. Eratosthenes is a pipelined parallel prime searching algorithm.
Finally, Green is a straightforward implementation of Green’s parallel sorting
network.

For the hardware synthesis, we used the Verilog backend of our Averest
toolset to generate structural HDL code. We use the balanced synthesis strategy
of Xilinx’s ISE Design Suite to synthesize the examples for a Xilinx Virtex-4
XC4VLX15 board.

The table in Figure 7 gives the name and the size of the orignal Emerald
source file and the size of the XML-based intermediate code generated by our
translation. The middle part shows the size of the generated Verilog code, and
the resources needed to implement the design on the FPGA board (flip-flops,
look-up tables, arithmetic units and global buffers). Apparently, all examples
can be implemented with a modest amount of resources. It can be also noticed
that the AIF and Verilog files are bigger than the original source and the fi-
nal design. Since the current version of our compiler structurally translates the
source programs without much optimization, it may contain dead code. For
example, exception propagation rules are generated even if no exception can
be thrown. Nevertheless, the constant propagation and logic pruning steps of
the hardware synthesis detect and eliminate these parts so that no hardware is
generated for them.

As a second backend, we connected SMV for a formal verification of pro-
gram properties by symbolic model checking. Again, we use the existing infras-
tructure of our Averest toolset to transform the synchronous guarded actions
into a transition system read by SMV. From the technical side, we can translate
the complete data-flow of the program (since we used Averest expressions in
Emerald programs) and handle all SMV specifications. However, as we want to
check properties of the original SHIM program, only scheduling independent
properties make sense, e.g., we canot combine variables of concurrent threads
in a propositional formula or use X in specifications.

Example Emerald IR SMV

threads .emd .aif .smv states nodes time

ProdCons 3 20 loc 19 kB 50 kB179 14,849 0.72 s
Lattice 7 59 57 148 136 129,242 8.13
TokenRing 17 110 108 111 587 14,910 48.26
Eratosthenes 23 338 403 346 1329 5,544,291 115.28
Green 11 199 611 443 534 151,008 1915.73

Fig. 8. Experimental Results: Model Checking

In contrast to previous work [17], we do not create designated model for
a specific analysis but a general one that can be used to verify all properties
SMV can handle. We verified for the given programs the properties described
in the following. As already presented in [17], deadlock detection is an inter-
esting static analysis for CSP-based programs. We can mimic this analysis by
generating an assertion that checks whether there will be at least one activated
rule as long as the program is not terminated. Let γi be the guards of all asyn-
chronous guarded actions and `T the termination position of the main thread
t0 determined by our compilation algorithm, then we check

AG

(
(pct0 = `T) ∨

∨
i

γi

)
Another analysis that is very useful in the context of Emerald is to check whether
a program throws exceptions. In that case, another interesting property is whether
thrown exceptions are eventually caught (thus, whether best-effort preemption
is successful). In our model, an exception is thrown by writing its error code to
ect. Eventually, thread tmust either catch this exception or another exception of
higher priority (its exit code is greater) is thrown. For an exception e declared
in t with error code i and a handler at program position p, this can be encoded
as follows (U is the strong until operator):

A [ect = i U ect > i ∨ pct = p]

The table in Figure 8 summarize the results for verifying these properties on a
recent MacMini. In order to verify all properties, we abstracted the data-flow
of the given program as much as possible in order to restrict the state space
to a manageable size. The size of the SMV input files, as well as its memory
consumption and run-time is given. It can be seen that the properties can be
verified for the given examples with reasonable effort.

6 Conclusions

In this paper, we presented a translation of Emerald programs to asynchronous
guarded actions. The translation reduces the complex semantics on the source

code level to a relatively simple model on the intermediate level, which still
allows efficient analysis and synthesis. By using asynchronous guarded actions
as a target, many existing techniques and tools can be applied to SHIM and
Emerald programs. In particular, hardware synthesis and verification based on
temporal logics become possible. An interesting project for the future might be
the port of the old design flow to asynchronous guarded actions so that the
other existing compilation approaches can be validated and tighter coupled to
the new one.

References

1. Brandt, J., Schneider, K.: Separate compilation for synchronous programs. In: Falk,
H. (ed.) Software and Compilers for Embedded Systems (SCOPES). ACM Interna-
tional Conference Proceeding Series, vol. 320, pp. 1–10. ACM, Nice, France (2009)

2. Brandt, J., Schneider, K., Shukla, S.: Translating concurrent action oriented specifi-
cations to synchronous guarded actions. In: Lee, J., Childers, B. (eds.) Languages,
Compilers, and Tools for Embedded Systems (LCTES). pp. 47–56. ACM, Stockholm,
Sweden (2010)

3. Chandy, K., Misra, J.: Parallel Program Design. Addison-Wesley, Austin, Texas, USA
(May 1989)

4. Cytron, R., Ferrante, J., Rosen, B., Wegman, M., Zadeck, F.: Efficiently computing
static single assignment form and the control dependence graph. ACM Transactions
on Programming Languages and Systems (TOPLAS) 13(4), 451–490 (October 1991)

5. Dijkstra, E.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Communications of the ACM (CACM) 18(8), 453–457 (1975)

6. Dill, D.: The Murphi verification system. In: Alur, R., Henzinger, T. (eds.) Computer
Aided Verification (CAV). LNCS, vol. 1102, pp. 390–393. Springer, New Brunswick,
New Jersey, USA (1996)

7. Edwards, S., Tardieu, O.: SHIM: a deterministic model for heterogeneous embed-
ded systems. In: Wolf, W. (ed.) Embedded Software (EMSOFT). pp. 264–272. ACM,
Jersey City, New Jersey, USA (2005)

8. Edwards, S., Tardieu, O.: Efficient code generation from SHIM models. In: Irwin,
M., De Bosschere, K. (eds.) Languages, Compilers, and Tools for Embedded Systems
(LCTES). pp. 125–134. ACM, Ottawa, Ontario, Canada (2006)

9. Edwards, S., Vasudevan, N., Tardieu, O.: Programming shared memory multi-
processors with deterministic Message-Passing concurrency: Compiling SHIM to
Pthreads. In: Design, Automation and Test in Europe (DATE). pp. 1498–1503. IEEE
Computer Society, Munich, Germany (2008)

10. Hoare, C.: Communicating Sequential Processes. Prentice Hall (1985)
11. Hoe, J., Arvind: Operation-centric hardware description and synthesis. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems (T-CAD)
23(9), 1277–1288 (September 2004)

12. Järvinen, H., Kurki-Suonio, R.: The DisCo language and temporal logic of actions.
Technical Report 11, Tampere University of Technology, Software Systems Labora-
tory (1990)

13. Schneider, K.: The synchronous programming language Quartz. Internal Report 375,
Department of Computer Science, University of Kaiserslautern, Kaiserslautern, Ger-
many (December 2009)

14. Tardieu, O., Edwards, S.: R-SHIM: deterministic concurrency with recursion and
shared variables. In: Hoe, J., Palsberg, J. (eds.) Formal Methods and Models for
Codesign (MEMOCODE). pp. 202–202. IEEE Computer Society, Napa, California,
USA (2006)

15. Tardieu, O., Edwards, S.: Scheduling-independent threads and exceptions in SHIM.
In: Min, S., Yi, W. (eds.) Embedded Software (EMSOFT). pp. 142–151. ACM, Seoul,
South Korea (2006)

16. van Berkel, K.: Handshake Circuits. Cambridge University Press, Cambridge, Great
Britain (1993)

17. Vasudevan, N., Edwards, S.: Static deadlock detection for the SHIM concurrent lan-
guage. In: Formal Methods and Models for Codesign (MEMOCODE). pp. 49–58.
IEEE Computer Society, Anaheim, California, USA (2008)

18. Vasudevan, N., Edwards, S.: Buffer sharing in CSP-like programs. In: Bloem, R.,
Schaumont, P. (eds.) Formal Methods and Models for Codesign (MEMOCODE). pp.
151–160. IEEE Computer Society, Cambridge, Massachusetts, USA (2009)

