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1 Introduction

1 Introduction

To every algebraic number field K a finite abelian group - the class group - can be associ-
ated. This group helps to describe the isomorphism classes of finitely generated modules
over the ring of integers of K and if it is trivial one can multiply in these integers as
in the rational integers. These are just two examples why class groups are interesting.
But only few is known about the distribution of the class groups for a given sequence
of number fields. The Cohen-Lenstra heuristic [C-L] is an about 30 years old conjecture
which tries to describe those distributions. For a deterministic sequence of number fields it
defines good primes (all but finitely many) and gives a probability distribution on the set
of isomorphism classes of finite abelian groups of order just divisible by good primes such
that the distribution of the good part (maximal subgroup of order just divisible by good
primes) of the class groups of the fields of this sequence corresponds to the probability
distribution. The idea behind this procedure is the following. The probability distribu-
tion on the groups should be most natural and a prime p should be good if there is no
structural property which prevents the p-parts of the class groups to be distributed in the
most natural random way. Only little parts of the Cohen-Lenstra heuristic are proven (see
[D-H] or [F-K] for example), but one believes this heuristic to be correct, because being
most natural is a good argument and because the numerical data suits very well to the
heuristic.

For a number field K class field theory gives a number field K1 - the Hilbert class field
- such that K1/K is a Galois extension with group isomorphic to the class group. The
Galois group of the Hilbert class field K2 of K1 over K is isomorphic to an extension of
the class group of K1 by the class group of K. This group is called second class group of
K and it is a finite meta abelian group.

The aim of this thesis is to do the same for the second class groups of real quadratic number
fields as Cohen-Lenstra did for the class groups. Therefore the mathematical standard
procedure: do some lemmas, give a theorem and then prove it, is replaced by: do some
lemmas, give a conjecture and then some numerical data which fits to the conjecture.

The structure of the thesis is as follows: Chapter 2 recalls some basic facts about the part
of mathematics which is needed here. Chapter 3 defines the good part of second class
groups for real quadratic number fields and gives properties of these good parts which
are necessary for concrete calculations. So far all statements are proven. But in chapter
4 this is not the case any more. Chapter 4.1 explains the Cohen-Lenstra heuristic and
chapter 4.2 gives a conjecture about the distribution of the good parts of the second class
groups of real quadratic number fields. Finally chapter 5 compares the prediction from
4.2 with the numerical data, describes how the data have been calculated and it contains
information about a number field database program which has been made to present some
of the numerical data of second class groups on the internet. This program can also be
used to create and present other number field databases.

My own contributions are the definition of the good part of second class groups, the
conjecture how second class groups of real quadratic number fields could be distributed,
the calculation of second class groups for a lot of fields and a number field database
program which allows to present different number field tables on the internet.
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2 Notations and Background

2 Notations and Background

In this chapter very basic facts about algebra, which are used more than once in the fol-
lowing, are explained. Mainly this has notational purpose, and should give an impression,
which part of mathematics is used. A lot of statements, which are on the same level as
those mentioned here, are used without reference in the following.

2.1 Finite Groups

This chapter gives some notations related to a finite group G. The characteristic subgroup
G′ := 〈g · h · g−1 · h−1 | g, h ∈ G〉 of G has the property that G/G′ is abelian and that it is
contained in every normal subgroup N ≤ G with G/N is abelian. It is called the derived
subgroup of G. Another important characteristic subgroup is the Frattini subgroup
F (G) of G. It is defined as intersection of all maximal subgroups of G, and if G is a
p-group, then G/F (G) is elementary abelian and a set of elements of G forms a minimal
system of generators of G, if and only if the set of their images in G/F (G) is a basis over
Fp.

If G is abelian, then DG denotes a group isomorphic to C2 ninv G, where the generator
of C2 acts by inversion on every element of G. G is identified as normal subgroup of DG.
Every subgroup of G is therefore a normal subgroup of DG. If G is of odd order, then
every proper normal subgroup of DG is contained in G and all complements of G in DG
are conjugate.

The number of elements of a finite set S is denoted by |S|, and for a prime p the p-part
of |S| is denoted by |S|p. For a finite abelian group A and a prime p, if nothing else is
specified, the notion Ap denotes the p-Sylow subgroup of A, and for an integer n, one
defines A 6=n :=

⊕
p-nAp and An :=

⊕
p|nAp.

2.2 G-modules

This chapter recalls some basic facts for finite G-modules. They are either adaptations of
more general theorems or modifications of theorems about modules over a finite dimen-
sional algebra over a field, where the proofs carry over word for word.

Every ring which will appear here is associative with 1. For a commutative ring R and
a group G the group ring RG is the free R-module on the elements of G, where the
multiplication on RG is induced by the multiplication of G. A G-module A is a right
module over the ring ZG (if it shall be a left module, then this is mentioned explicitly).
A G-module can be defined by a homomorphism: G → Aut(A), where A is an abelian
group. In the following G is always a finite group, and A always a finitely generated G-
module. The main objects of interest are finite G-modules and the G-modules are written
multiplicatively here in general. Let A be a G-module. If A is finite, then it is also a
module over S−1ZG, where S−1Z is the localization of Z at all integers coprime to |A|
and if p is a prime and A a p-group of exponent e, then A is a Z/peZ-module, too. An
irreducible G-module is a non trivial G-module with no non trivial proper submodules.
The G-endomorphisms of such modules are described by the lemma of Schur:

Lemma 1. Let A be an irreducible G-module. Then EndG(A) is a skew field.

6



2.2 G-modules

Proof. [Su] chapter 2.5

A non trivial G-module, which is not the direct sum of two of its non trivial submodules
is called indecomposable. Since only finite G and A are used, the theorem of Krull-
Remak holds (in general one needs much weaker finiteness conditions on A; see [Su]
chapters 2.3, 2.4):

Lemma 2. Let A be a finite G-module. Then A is the direct product of a finite number
of indecomposable submodules. If A = A1 ⊕ · · · ⊕ An = B1 ⊕ · · · ⊕ Bm with Ai, Bj ≤ A
indecomposable, then n = m and after a suitable reordering of the Bi one has Ai ∼= Bi as
G-modules for all i = 1, ..., n.

Proof. This is a consequence of [Su] theorem 2.4.8, because a finite G-module possesses a
composition series.

The symbol ⊕ is used as notation for internal direct sums with = and for external direct
sums with ∼=. The Fitting lemma is the analogue to the lemma of Schur and describes
the G-endomorphisms of indecomposable G-modules:

Lemma 3. Let A be a finite and indecomposable G-module, and ϕ be a G-endomorphism
of A. Then ϕ is bijective or nilpotent.

Proof. [Be] lemma 1.4.4.

Let R be a commutative ring, G a finite group and H a subgroup of G. A finitely
generated RG-module A is called relatively projective to H, if whenever there are
finitely generated RG-modules B, C, an RG-homomorphism g : A→ C, a surjective RG-
homomorphism f : B → C and an RH-homomorphism h : A → B such that f ◦ h = g,
then there exists an RG-homomorphism ĥ : A→ B with f ◦ ĥ = g ([Be] definition 3.6.1).
The notion relatively projective means relatively projective to H = {1}. If A, B are
RG-modules, then the map

TrGH : HomRH(A,B)→ HomRG(A,B) : f 7→ (x 7→
∏
g∈L

(f(xg))g
−1

)

is called trace map ([Be] definition 3.6.2). L is a left transversal of H in G. Some criteria
for an RG module to be relatively projective to H are given by the following lemmas:

Lemma 4. Let G be a finite group, H ≤ G a subgroup, R a commutative ring and A a
finitely generated RG module, which is relatively projective to H. Then the following hold:

(a) If I ≤ AnnR(A) is an ideal of R, then the (R/I)G-module A is relatively projective
to H, too.

(b) If A is projective as RH-module, then A is projective as RG-module.

Proof. This is obvious.

Lemma 5. ([Be] proposition 3.6.4) Let G be a finite group, H ≤ G a subgroup, R a
commutative ring and A a finitely generated RG module. Then the following are equivalent:

(a) A is relatively projective to H.
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2 Notations and Background

(b) If i : A → M is an RG-monomorphism into any RG-module M such that i(A) has
an RH-complement, then i(A) has an RG-complement in M .

(c) There is an RH-endomorphism f of A such that idA = TrGH(f).

Proof. This is a selection of the statements of [Be] proposition 3.6.4.

This lemma will be called theorem of Maschke here, because (c ⇒ b) with f = 1
(G:H)

results in the following corollary:

Corollary. Let G be a finite group with subgroup H. Let A be a finite G-module such that
(G : H) and |A| are coprime. If A = B ⊕ C as H-modules and if B is a G-module, then
there exists a G-module D such that A = B ⊕D.

Let A be a finitely generated G-module of a finite group G and

X = · · · d3−−→ X2
d2−−→ X1

d1−−→ X0
d0−−→ X−1

d−1−−−→ X−2
d−2−−−→ · · ·

be an exact sequence of projective G-modules such that there is an injective G-homomor-
phism µ : Z→ X−1 and a surjective G-homomorphism ε : X0 → Z with d0 = µ ◦ ε (here G
acts trivially on theG-module Z). The n-th cohomology group of the complex HomG(X,A)
is called n-th Tate cohomology group of the G-module A and one writes Ĥn(G,A) for it
(n ∈ Z). They exist, are well defined and they are finite abelian groups, which are unique
up to isomorphism (see [Ne1] for this definition and the immediate consequences). The
Tate cohomology is comparable with the ordinary (co-)homology, know from homological
algebra: Ĥn(G,A) ∼= ExtnZG(A,Z) for n > 0 and Ĥn(G,A) ∼= Tor−n−1

ZG (Z, A) for the
integers n < −1. The next lemma gives properties of the Tate cohomology groups, like
the inf-res-sequence:

Lemma 6. Let G be a finite group and A, B be finitely generated G-modules. Then the
following hold:

(a) Ĥn(G,A⊕B) ∼= Ĥn(G,A)⊕ Ĥn(G,B) for all n ∈ Z, in particular Ĥn(G,A) = {1},
if A = {1}.

(b) |G| · Ĥn(G,A) = {1} for all n ∈ Z, in particular Ĥn(G,A) = {1}, if A is finite and
|G| and |A| are coprime.

(c) If N is a normal subgroup of G, n a positive integer and Ĥr(N,A) = {1} for all
r = 1, ..., n − 1, then there are homomorphisms of abelian groups inf, res such that
the following sequence (the so called inf-res sequence) is exact:

{1} → Ĥn(G/N,AN )
inf−→ Ĥn(G,A)

res−−→ Ĥn(N,A).

Proof. Statement (a), (b) and (c) are theorem 3.7, 3.16 and 4.7 from [Ne1] chapter 1.

Let G be a finite group and A a finite G-module. An exact sequence of groups (and group

homomorphisms) {1} → A
f−→ H

g−→ G → {1} is called an extension of the G-module A
by G, if the action of G on A induced by the conjugation of a transversal of G under g in
H coincides with the G-module structure. In the literature the definition of an extension
is a bit more general (see [Su] chapter 7). If the sequence splits, the extension is called
split. In this case, H is isomorphic to the semidirect product G n A, where the action
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2.2 G-modules

comes from the module structure. Properties of extensions of abelian groups are related
to the cohomology groups. In particular, on has the following lemma, which is a version
of the Schur-Zassenhaus theorem:

Lemma 7. Let G be a finite group, A a finite G-module and {1} → A→ H → G→ {1}
be an extension of A by G. Then the following hold:

(a) If Ĥ2(G,A) = {1}, then the extension is split.

(b) If the extension is split and Ĥ1(G,A) = {1}, then all complements of A in H are
conjugate.

Proof. Statement (a) is explained in [Su] chapter 2.7 and statement (b) is [Su] theorem
2.8.8.

With the help of the standard resolution (see [Ne2] chapter 1.2), one can calculate the
cohomology groups. The results are not very nice, but in low degrees or for cyclic G one
gets easy formulas. Define AG := {a ∈ A | ag = a∀g ∈ G} to be the submodule of A of
all fixed points and IGA :=

{
ag−1 | a ∈ A, g ∈ G

}
the augmentation submodule of

A (the notation ag−1 means ag · a−1). For a finite cyclic group of order m, the notation
Cm is used.

Lemma 8. Let G be a finite group, A be a G-module and nG : A → A : a 7→
∏
g∈G a

g be

the norm map of G. Then Ĥ0(G,A) ∼= AG/Im(nG) and Ĥ−1(G,A) ∼= Ker(nG)/IGA.

Proof. [Ne1] chapter 1.2, page 25.

Lemma 9. Let A be a Cm-module and ϕ ∈ Aut(A) the action of a generator of Cm. Then

Ĥn(Cm, A) ∼=

{
Ker(ϕ− 1)/Im(1 + ϕ+ · · ·+ ϕm−1), n ∈ Z even
Ker(1 + ϕ+ · · ·+ ϕm−1)/Im(ϕ− 1), n ∈ Z odd.

If in addition A is finite, then Ĥ0(Cm, A) ∼= Ĥ−1(Cm, A).

Proof. [Ne1] chapter 1.6.

In general it is difficult to construct direct summands of G-modules, therefore the following
lemma which uses this description of Ĥ−1 and Ĥ0 is helpful. It is a special case of a
decomposition induced by idempotents.

Lemma 10. ([Su] 2.5.17) Let A be a finite G-module over a finite group G and N ≤ G
be a normal subgroup such that |N | and |A| are coprime. Then the following hold:

(a) A = AN ⊕ INA is a direct decomposition into G-modules.

(b) If K ≤ A is a G-submodule with A = AN ⊕K, then K = INA.

(c) If T ≤ A is a G-submodule with A = INA⊕ T , then T = AN .

(d) If M ≤ A is a G-submodule with A = AN ·M , then INA ⊆M .

(e) If S ≤ A is a G-submodule with A = INA · S, then AN ⊆ S.

9



2 Notations and Background

Proof. Since |A| and |N | are coprime the normalized norm map of N

nN : A→ A : a 7→ 1

|N |
∑
g∈N

ag

is an idempotent N -homomorphism and even G-homomorphism, because N is normal in
G. Therefore one has the decomposition A = Ker(nN ) ⊕ Im(nN ) of G-modules. Because
of lemma 8 and 6 (b) one can replace Ker(nN ) by INA and Im(nN ) by AN . This shows
statement (a). The remaining parts are a consequence of the following obvious fact: If
B ≤ A is a G-submodule, then BN ≤ AN and INB ≤ INA. Hence KN ≤ AN ∩K = {1}
and by (a) one has K = INK ≤ INA. But |INA| = |K| and (b) follows. Statement (c) is
proven in the same way. The assumption A = M ·AN implies A = AN ·MN · INM , hence
A = AN · INM and therefore INA = INM ≤M . This is a proof for (d), and (e) is proven
analogously.

Let G be a finite group. Two G-modules A, B are called conjugate, if and only if there
is an automorphism φ ∈ Aut(G) such that B ∼= φA as G-module. The module φA has
the same underlying group as A and g ∈ G acts on φA by a 7→ aφ

−1(g). Some obvious
properties of conjugate modules are listed in the following lemma:

Lemma 11. Let G be a finite group, A and B be G-modules and φ ∈ Aut(G). Then the
following hold:

(a) A ∼= B if and only if φA ∼= φB

(b) φ(A⊕B) ∼= φA⊕ φB

(c) If N is the kernel of the action of G on A, then φ(N) is the kernel of its action on
φA.

(d) A is irreducible (respectively indecomposable, resp. faithful), if and only if φA is
irreducible (resp. indecomposable, resp. faithful).

(e) If φ ∈ Inn(G), then φA ∼= A.

(f) Out(G) acts from the left on the set of isomorphism classes of G-modules by
ψ.A := ψA for any representative ψ.

(g) Conjugacy of G-modules is an equivalence relation and the equivalence classes re-
garding conjugacy are the orbits of the action from (f).

Proof. If φ is the left conjugation with some h ∈ G, then the map A→ φA : a 7→ ah is an
isomorphism of G-modules. This shows (e). The other statements are obvious.

For a set S of isomorphism classes of G-modules, which the theorem of Krull-Remak
holds for and which is closed under direct sums, indecomposable direct summands and
conjugacy, one can build the representation module. It is an Out(G)-module, where
the group is the free Z-module over all isomorphism classes of indecomposable G-modules
from this set S and the action is described in lemma 11. To express the representation
module in terms of the representation modules of faithful modules, the following notation
is needed:

Let G be a finite group. Two normal subgroups N , M are called Kronecker equiva-
lent, if and only if there is an automorphism φ ∈ Out(G) such that φ(N) = M . Define
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2.3 Algebraic Number Theory and Class Field Theory

UN := {φ ∈ Out(G) | φ(N) = N}. The group UN is the stabilizer of N and the Kronecker
equivalence class is the orbit of N under the action of Out(G) on the set of normal sub-
groups of G. So Kronecker equivalence is an equivalence relation on the normal subgroups
of G, the size of the class of N is (Out(G) : UN ) and UN is a subgroup of Out(G).

Lemma 12. Let G be a finite group and S be a set of isomorphism classes of finite
G-modules, which is closed under direct sums, indecomposable direct summands and con-
jugacy. Let R be the representation module corresponding to S and let for a normal
subgroup N ≤ G the group RN be the free Z-module over all classes of indecompos-
able modules A from S such that the kernel of the action of G on A equals N and let
UN := {φ ∈ Out(G) | φ(N) = N}. Then the following is true:

(a) For any normal subgroup N ≤ G, the group RN is a UN -submodule of R.

(b) R ∼=
⊕

N∈LRN ↑
Out(G)
UN

as Out(G)-module, where L is any system of representatives
for Kronecker equivalence.

Proof. As sum of abelian groups one has R =
⊕

NEGRN . If φ ∈ Out(G), then one has

Rφ(N) = φ(RN ) by lemma 11. This shows (a). If R̃N is the direct sum of all RM , where

M runs through the Kronecker equivalence class of N , then R̃N is an Out(G)-module and
R =

⊕
N∈L R̃N as Out(G)-modules, where L is a system of representatives for Kronecker

equivalence. Let N be any element of L and let φ1, ..., φr be a left transversal of UN in
Out(G). Then the Kronecker equivalence class [N ] of N equals [N ] = {φ1(N), ..., φr(N)}.
If {Aλ | λ ∈ Λ} is the set of isomorphism classes of indecomposable G-modules with kernel
N , then

{
φiAλ | λ ∈ Λ

}
is the set of indecomposable G-modules with kernel φi(N). Hence

R̃N =
r⊕
i=1

⊕
λ∈Λ

Z( φiAλ),

where Out(G) acts by left multiplication. This shows R̃N ∼= RN ↑Out(G)
UN

by definition of
induced action.

Here the following convention is used: If an abelian normal subgroup N of a group G is
viewed as G-module or G/N -module without further information about the module struc-
ture, then this module structure is always one of these which are induced by conjugation
on the right.

2.3 Algebraic Number Theory and Class Field Theory

Most of the following statements can be found in the first three chapters of [Ne2].

A number field K is a finite field extension of Q. In the following an algebraic closure
Q of Q is fixed and all number fields are considered to be subfields of Q. An embedding
of K is one of the (K : Q) different injective homomorphisms of fields from K to C and
it is called real, if its image is contained in R. A number field is called totally real, if all
of its embeddings are real. Fields of the type Q(

√
d), where the positive integer d is not a

square are called real quadratic number fields for example. The elements of K, which
are integral over Z form a Dedekind domain, called OK . The ring OK and all of its ideals
A 6= 0 are free Z-modules of rank (K : Q). The fractional ideals of OK form an abelian

11



2 Notations and Background

group IK , which contains the subgroup HK of principal fractional ideals. The quotient of
these groups Cl(K), which is a finite abelian group, is called class group and its order
hK is called class number of K.

If L is another number field containing K, one can define transfer mappings from structures
belonging to K to structures belonging to L and norm mappings in the other direction.
For example one calls the group homomorphism j : IK → IL : A 7→ A · OL transfer and
the group homomorphism NL/K : IL → IK , which is defined by mapping a prime ideal

Q 6= 0 to (Q∩OK)(OL/Q:OK/(OK∩Q)), is called norm. Since principal ideals are mapped to
principal ideals and p-groups to p-groups, these homomorphisms induce for every prime
p group homomorphisms N : Clp(L) → Clp(K) and j : Clp(K) → Clp(L). The extension
L/K of number fields is called unramified if and only if every embedding of L, which
coincides under restriction to K with a real embedding of K is real and if every prime
ideal P 6= 0 of OK is unramified in the extension L/K. A prime ideal P of K is called
ramified in the extension L/K, if and only if there is a prime ideal Q of OL such that
P ⊆ Q2.

If L/K is an extension of number fields, then the trace T : L×L→ K : (x, y) 7→ Tr(x · y)
defines a non degenerate bilinear map. The ideal generated by the determinants of the
Gram-matrices of any K-basis of L from OL is called discriminant dL/K of L/K. If
K = Q, then the determinant of the Gram-matrix of a Z-basis of OL is called absolute
discriminant dL (this basis exists; see before). The prime ideals of OK , which ramify in
the extension L/K are exactly the prime divisors of dL/K .

For a number field K one defines the Dedekind zeta function by

ζK : {s ∈ C | Re(s) > 1} → C : s 7→
∑
I

1

N(I)s
,

where N is the absolute norm and I runs through all non zero integral ideals of OK . It is
a holomorphic function and for s with Re(s) > 1 one has the Euler product

ζK(s) =
∏
p

1

1−N(p)−s
,

where p runs through all prime ideals of OK ([Ne2] chapter VII.5).

If K is a number field, then a number field K1 ≤ Q, which is unramified and abelian over
K and contains all other subfields of Q with these properties, is called the Hilbert class
field of K. The following lemma is an important result from class field theory:

Lemma 13. Let K be a number field. Then the Hilbert class field K1 of K exists and
Gal(K1/K) ∼= Cl(K).

Proof. [Ne2] Satz VI.6.9.

The Hilbert class field K2 of the Hilbert class field of a number field K is called the second
Hilbert class field. It is a finite meta abelian extension of K and if K/F is a Galois
extension of number fields, then Ki/F is Galois for i ∈ {1, 2}. For a Galois extension L/K
of number fields, the maximal unramified extension M of L such that M/L is Galois and
Gal(M/L) is contained in the center of Gal(M/K) is called central class field of L over
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2.3 Algebraic Number Theory and Class Field Theory

K. The central class field is well defined, it is an intermediate field between L and L1 and
if K = L, then M = K1.

If L/K is a Galois extension of number fields, the Galois group Gal(L/K) acts naturally
on Clp(L) for all primes p. Since Clp(L) is abelian it becomes a Gal(L/K)-module. The
action is defined as follows: Let c be an ideal class in Clp(L) and AE OL a representative.
Gal(L/K) may be identified with a subgroup of Aut(L), so set cσ to be the class of σ(A)
for each σ ∈ Gal(L/K). This is well defined since σ maps (principal) ideals to (principal)
ideals and endomorphisms of finite abelian groups decompose to all prime parts. One can
choose an identification Gal(L1/L) ∼= Cl(L) according to lemma 13 such that this action
corresponds to the conjugation from the left in Gal(L1/K) (see [Ne1] chapter 2 theorem
1.11).

For a number field K the notation K̂ is used for the Galois closure of K over Q contained
in Q.

13



3 The Group Gal(K2/Q)

3 The Group Gal(K2/Q)

This chapter describes properties of the group Gal(K2/Q), where K is a quadratic number
field and K2 is the second Hilbert class field of K that is the Hilbert class field of the Hilbert
class field of K. But not this general situation is of main interest here, but only a special
situation. Instead of the number field tower Q ⊆ K ⊆ K1 ⊆ K2, one considers the tower
Q ⊆ K ⊆ K1,f ⊆ K2,f . The fields K1,f and K2,f are called first and second non central
coprime Hilbert class field of K in the following and they are Galois extensions of Q, which
are unramified over K. These class fields are just chosen in a way such that consecutive
steps in the class field tower have coprime degrees, and that the non coprime part does
not occur later. For the definition see chapter 3.5. The group Gal(K2,f/Q) coincides with
Gal(K2/Q), if Cl(K) is cyclic of odd prime power degree, and it is a proper factor group
of it, if Cl(K) is of even order or non cyclic (see chapter 3.5).

The philosophy of Cohen-Lenstra distinguishes between good and bad primes (see chapter
4), and these factor groups shall be a generalization of the good part of class groups to the
second class groups of real quadratic number fields. Not everything what is known about
the group Gal(K2/Q) in the bad case is given here. See for example [No] or [BP]. The
group theoretic statements given in this chapter also hold true for imaginary quadratic
number fields, but one gets additional problems, when trying to describe the distribution
of their second class groups (see chapter 4).

This chapter has two aims. At first it gives information how to calculate the group
Gal(K2,f/Q) for concrete real quadratic number fields. This is done by the propositions 2
and 8 and prepared by chapter 3.1. Second it gives information about the structure of the
group Gal(K2,f/Q). This is done by pure group theoretic argumentation in the chapters
3.3 and 3.4 and summarized by proposition 7 in terms of number fields.

The group Gal(K2,f/K1,f ) is a finite G := DGal(K1,f/K)-module, which behaves as if |G|
and |Gal(K2,f/K1,f )| would be coprime and the group Gal(K2,f/Q) is the correspond-
ing semidirect product (see proposition 7). It does not matter if one studies the group
Gal(K2,f/Q) or the group Gal(K2,f/K) because they uniquely determine each other (see
proposition 7).

3.1 Class Group Relations

Calculating class groups of polynomials of high degree is a difficult task for a computer
and waiting for the result is a difficult task for a human. The following formulas may be
used to reduce these calculations to fields of smaller degree and they are also useful for the
description of the group Gal(K2/Q). There are a lot of very similar formulas in the litera-
ture (see [Lem1] chapter 1, [Lem2] chapter 5, [Ho], [C-M] chapter 7 or [C-R1] for example).
In this chapter, a class group relation for a Galois extension L/K of number fields is a
formula, which expresses a connection between the p class groups of the intermediate fields
of L/K for all primes p - (L : K). That means, in the following just the “coprime case” is
considered (with some exceptions). In this case class group relations correspond to certain
relations of fixed points (see lemma 1). The class number formula of Brauer [Br] gives a
connection between the vanishing of products of class numbers of intermediate fields of
L/K times some factors depending on their units on one hand and sums of the characters
of Gal(L/K), which are induced by the principal characters of Gal(L/M), where M runs
through the intermediate fields of L/K, on the other hand. In the coprime case the unit

14



3.1 Class Group Relations

factors disappear and Brauers formulas demonstrate the reduction to the orders in a class
group relation (see [Wa]). All formulas given in this chapter correspond to relations on
the induced principal characters and Honda mentions this connection for his formula in
[Ho].

The following Lemma gives a link between the modules of fixed points and the class groups.
It is Lemma 3 in [C-R1] and explains the name “class group relation” for the following
relations on fixed points, but other versions which concentrate on the group Gal(K2/Q)
and which include some not coprime cases will be given later.

Lemma 1. ([C-R1]) Let L/K be a Galois extension of number fields with group G of
order n, p a prime not dividing n and j : Clp(K) → Clp(L) the transfer of ideal classes.
Then j is injective and Im(j) = Clp(L)G, where G ≤ Aut(OL) acts in the natural way on
Clp(L).

Proof. (see [Lem1] chapter 1) If N : Clp(L)→ Clp(K) is the norm and I is a representative
of an ideal class of Clp(K) then (N ◦ j)(I) = In, hence N ◦ j is an isomorphism by the
assumption on p, j is injective and N is surjective. Therefore Im(j) = Im(j ◦ N). But
j ◦ N =

∑
g∈G g ∈ End(Clp(L)) and Im(

∑
g∈G g) = Clp(L)G by lemma 2.8, because

Ĥ0(G,Clp(L)) = {1} by the assumption on p.

Lemma 2. ([Wa] theorem 1.2) Let G be a finite group, A a finite G-module of order
coprime to |G| and let aU ∈ Z such that there is a relation

∑
U≤G aU · 1GU = 0 on the

induced principal characters. Then:⊕
U≤G

(AU )aU ∼= {1} .

Remark: This statement is well defined because of the theorem of Krull-Remak. Walter
[Wa] shows a more general statement. His proof reduces the problem to the following fact
from integral representation theory: If G is a finite group and M and N are ZG-modules
which are finitely generated and free Z-modules such that Q ⊗Z N ∼= Q ⊗Z M as QG-
modules, then R ⊗Z N ∼= R ⊗Z M as RG-modules, where Z ≤ R ≤ Q is a ring, which
contains |G|−1. In the special case here, this reduction is just the Frobenius reciprocity:
for a finite G-module A and non negative integers aU for every subgroup U ≤ G one has:⊕
U≤G

(AU )aU ∼=
⊕
U≤G

(HomU (Z, A))aU ∼=
⊕
U≤G

(HomG(Z ↑GU , A))aU ∼= HomG(
⊕
U≤G

(Z ↑GU )aU , A).

Lemma 3. Let A be a DG-module, where A and G are finite abelian groups of coprime
order. Then there is a decomposition

A =
⊕
N≤G

AN

of DG-modules such that N acts trivial on AN and every element of G \N acts fixed point
freely on AN . The AN are unique up to isomorphism and have the properties:

(a) AM =
⊕

M≤N≤GAN for every subgroup M of G.

(b) AN = {1}, if G/N is not cyclic.

15
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(c) If G/N 6= {1} is cyclic of prime power order and M is the minimal subgroup in
G/N , then AN ∼= AN/AM and AN ∼= AN/AM ⊕AM .

(d) AG = AG.

Proof. Since for every g ∈ G the subgroup 〈g〉 is a normal subgroup of DG, the de-
composition A = I〈g〉A ⊕ A〈g〉 of lemma 2.10 is a decomposition of DG-modules. Let
A = A1 ⊕ · · · ⊕ Ar be the decomposition of A into indecomposable DG-modules. Then
each g ∈ G acts trivially or fixed point freely on each of these summands. The set of
all elements of G which act trivially on a fixed indecomposable Ai form a subgroup Ni

of G. Now set AN to be the sum of all indecomposable Ai where Ni = N . Then AN is
unique up to isomorphism by the theorem of Krull-Remak. For a subgroup M of G one
has AM =

⊕
N≤G(AN )M . If M ⊆ N , then every element of AN is fixed by every element

of M and (AN )M = AN follows. In the other case there is an m ∈ M \ N , which acts
fixed point freely on AN and (AN )M = {1}. Hence it suffices to consider the subgroups
containing M : AM =

⊕
M≤N≤GAN . This shows property (a) which implies also the prop-

erties (d) and (c), because cyclic p-groups have unique minimal subgroups. If B 6= {1} is
an irreducible G/N -submodule of AN , then B and AN are faithful modules of the finite
abelian group G/N , because every element of G \ N acts fixed point freely on AN and
therefore it can not fix a subgroup B of AN . By the lemma of Schur G/N is isomorphic
to a finite abelian subgroup of the unit group of a skew-field and hence cyclic (see [Su]
2.5.21), so the property (b) follows.

Remark: This lemma is a generalization of [Su] 2.5.23 and [C-R1] proposition 4 and the
proof is similar to the one in [C-R1]. The lemma is used for reductions to the cyclic case,
and for most of the questions in the following, such a decomposition is fine enough (one
does often not need indecomposables). The conclusion of the lemma holds true if one
replaces DG by a finite group H such that G ≤ H and every subgroup of G is a normal
subgroup of H, for example H = G or G = Z(H).

Lemma 4. Let A be a Cnp -module such that |A| < ∞, p a prime and p - |A|. Let

U1, U2, ..., Um with m = pn−1
p−1 be the subgroups of Cnp of index p.

Then (AC
n
p )m−1 ⊕A ∼= AU1 ⊕ ...⊕AUm as Cnp -modules.

Proof. By lemma 3 there are isomorphisms of Cnp -modules

A ∼= AU1/AC
n
p ⊕ · · · ⊕AUm/ACnp ⊕ AC

n
p

and AUi/AC
n
p ⊕ ACnp ∼= AUi for every i ∈ {1, ...,m}. The group AC

n
p can be added m − 1

times on both sides and one gets the lemma.

Lemma 5. Let G be a finite abelian group of odd order and A be a DG-module such that
|A| <∞ and |G| and |A| are coprime. Let ϕ ∈ DG be an arbitrary involution.
Then ADG ⊕ADG ⊕A ∼= A〈ϕ〉 ⊕A〈ϕ〉 ⊕AG as groups.

Proof. Case 1: (see [Ho] theorem 4) G = 〈σ〉 is cyclic: Because |A| and |G| are coprime
lemma 2.10 shows that there is a decomposition A = AG⊕IGA of DG-modules. So assume
A = IGA and AG = {1} (the case A = AG is obvious). This gives the possibility to
identify DG with a subgroup of Aut(A) (if A is not faithful, there is no problem). Since G
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is cyclic, AG = {1} and A is abelian, the endomorphism σ − 1 ∈ End(A) is bijective and
a calculation shows that 1− ϕ and ϕ+ 1 are conjugate as elements of End(A):

ϕ − 1 = − (ϕ + 1)σ
n−1
2 (σ−1),

where n = |G|. Hence Ker(ϕ − 1) ∼= Ker(ϕ + 1). For τ ∈ G one has A〈ϕ
τ 〉 = (A〈ϕ〉)τ and

ϕ and ϕ · τ are conjugate in DG. Therefore

A〈ϕ〉 ∩A〈ϕσ〉 = ADG ≤ AG = {1}

so

|A| ≥ |A〈ϕ〉| · |A〈ϕσ〉| = |A〈ϕ〉|2.

On the other hand

|A| = |Ker(ϕ− 1)| · |Im(ϕ− 1)| ≤ |Ker(ϕ− 1)| · |Ker(ϕ+ 1)| = |Ker(ϕ− 1)|2 = |A〈ϕ〉|2.

So A = A〈ϕ〉 ⊕A〈ϕ·σ〉 ∼= A〈ϕ〉 ⊕A〈ϕ〉 as groups.
Case 2: Reduction to the cyclic case: By lemma 3 the DG-module A has a decomposition
of DG-modules such that DG acts as dihedral group on every summand. Since taking fixed
points commutes with direct sums, the general case reduces to the cyclic case.

Remark: If G is cyclic the condition |G| coprime to |A| of the lemma can be replaced by
A ∼= AG ⊕ IGA.

Lemma 6. Let G be a finite abelian group of odd order and ϕ ∈ DG be an involution. Let
1HU denote the induced principal C-character of a subgroup U ≤ H in a group H.
Then

1DG{1} + 2 · 1DGDG = 2 · 1DG〈ϕ〉 + 1DGG .

Proof. Let 1, a1, ... ,a |G|−1
2

denote representatives of the conjugacy classes of DG contained

in G. Use the definition 1HU (x) = 1
|U | · |

{
g ∈ H | g−1xg ∈ U

}
| for all x ∈ H to calculate

the following table of character values:

1 ϕ a1 ... a |G|−1
2

1DG{1} 2 · |G| 0 0 ... 0

1DGDG 1 1 1 ... 1

1DG〈ϕ〉 |G| 1 0 ... 0

1DGG 2 0 2 ... 2

The formula follows by inspection.

Lemma 7. Let G be a finite abelian group with n subgroups. Denote a basis of Qn by
(eM )M , where M ranges over the subgroups of G. Let f denote the linear map of Qn,
which is represented by the matrix ((G : M) · χ{N⊆M} · χ{N cyclic})N,M in this basis and
define K := Ker(f). Here χ is the characteristic function. Then the following is true:

(a) If (aM )M≤G ∈ Qn, then
∑

M≤G aM · 1GM = 0 if and only if (aM ) ∈ K.
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(b) Let H1, ...,Hr be the subgroups of G for which G/Hi is not cyclic and let V1, ..., Vr
be any subgroups of G such that there are primes pi with Vi/Hi

∼= Cpi × Cpi.
Let Mi,1, ...,Mi,pi+1 be the subgroups of G between Hi and Vi. Define the vectors
v1, ..., vr ∈ Qn by viVi = −pi, viHi = −1, viMi,j

= 1 for all j = 1, ..., pi + 1 and viM = 0

for all other subgroups M ≤ G. Then v1, ..., vr is a basis of K.

(c) If G is not cyclic, then K contains an element (aM )M with a{1} 6= 0 and aN = 0 for
all {1} 6= N ≤ G with G/N not cyclic.

Proof. Since G is abelian 1GM (x) = 1
|M | · | {g ∈ G | x

g ∈M} | = (G : M) · χ{x∈M} for

all x ∈ G, where χ is the characteristic function. So for (aM )M≤G ∈ Qn one has the
equivalence:

∑
M≤G aM · 1GM = 0 if and only if

∑
M≤G aM · (G : M) · χ{x∈M} = 0 for all

x ∈ G, if and only if (aM )M ∈ K. This implies (a). Let M1, ...,Mn be the subgroups of G
and let these groups and H1, ...,Hr be ordered in a way that i < j implies Hj * Hi and
Mj * Mi, then the matrix representation of f in the basis (eMi)i is an upper triangular
matrix with n− r non zero entries on the diagonal. Hence dimQ(K) ≤ r. Because viHi 6= 0

and viHj = 0 for all j < i the vectors v1, ..., vr are linear independent. If a cyclic subgroup
N ≤ G is contained in Vi but not in Hi, then there is exactly one j such that N ≤ Mi,j .
Therefore for a cyclic subgroup N ≤ G the sum

∑
M≤G v

i
M · (G : M) · χ{N≤M} can take

the three values 0, if N * Vi,

(G : Vi) · (−(Vi : Hi) + (pi + 1)(Vi : Mi,1)− pi) = (G : Vi) · (−p2
i + (pi + 1)pi − pi) = 0

if N is contained in Hi or (G : Vi) · ((Vi : Mi,1) − pi) = 0. This shows that vi ∈ K and
implies statement (b). The vectors v2, ..., vr can be used to cancel out every component
of v1 corresponding to a subgroup H different from H1 = {1} with G/H not cyclic. This
shows (c).

Remark: This lemma gives the well known description of the relations on the induced
principal characters for an abelian group G. By duality of abelian groups (see [Bae]) one
can calculate that the kernel of the linear map of Qn which is described by the matrix
(χ{M⊆N} ·χ{G/N cyclic})N≤G,M≤G also equals K. Together with lemma 3 this gives a proof
of lemma 2 in the case of abelian G.

Corollary. Let L/K be an abelian extension of degree n of number fields and p be a prime
not dividing n. Then there is always a class group relation which reduces the calculation
of Clp(L) to the calculation of Clp(M) for all the number fields M with K ≤ M ≤ L and
cyclic Galois group Gal(M/K).

Proof. Let G := Gal(L/K) and let U1, ..., Ur be the subgroups of G such that G/Ui is
cyclic. If G is cyclic the statement is empty, so assume G to be non cyclic, therefore
Ui 6= {1} for all i. By lemma 7 c there are a, a1, ..., ar ∈ Q such that a · 1G{1} =

∑
i ai · 1GUi

with a 6= 0. By taking the common denominator one may assume a, a1, ..., ar to be integers.
Lemma 2 shows that

Clp(L)a ∼=
⊕
i

(Clp(L)Ui)ai .

Because of lemma 1, one has Clp(L)Ui ∼= Clp(L
Ui). Since a 6= 0, this implies the corollary.
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3.2 The Group Gal(K1/Q)

This chapter summarizes well known facts about the Galois group Gal(K1/Q) of the
Hilbert class field K1 of a real quadratic field K.

Proposition 1. Let K1 be the Hilbert class field of a quadratic number field K.
Then Gal(K1/Q) ∼= DCl(K).

Proof. By definition K1 is the maximal unramified and abelian field extension of K, so each
conjugate of K1 over Q is also an abelian and unramified extension of K, hence contained
in K1 and so K1/Q is Galois. By a theorem of Minkowski (see [Ne1] chapter III) Q
has no extension which is unramified at all finite primes, hence Q must coincide with its
extension L which is unramified at all finite primes and maximal in K1 with respect to this
property. By Hilberts ramification theory (see [Ne1] chapter I) Gal(K1/Q) = Gal(K1/L)
is generated by the inertia subgroups of the finite primes in K1/Q. But these groups
have order 2 at most and can not be contained in Gal(K1/K) since K1/K is unramified.
Furthermore Gal(K1/K) ∼= Cl(K) by class field theory. So Gal(K1/Q) ∼= C2 n Cl(K)
and is generated by involutions outside Cl(K). If ϕ is the generator of a complement of
Cl(K) and if {ϕ · xi} with xi ∈ Cl(K) are these involutions, then 1 = ϕxi · ϕxi = xϕi · xi.
Every element of Gal(K1/Q) is of the form

∏
i yi or ϕ ·

∏
i yi where yi ∈

{
xi, x

−1
i

}
satisfies

yϕi = y−1
i . Hence ϕ inverts every element of Cl(K) and Gal(K1/Q) ∼= DCl(K).

Corollary 1. The group Gal(K1/Q) is uniquely determined by the group Gal(K1/K).

Corollary 2. If K is a quadratic number field with odd class number, then
Gal(K1/Q)′ = Gal(K1/K).

Remark: If K is a quadratic number field and L/K an unramified extension of num-
ber fields with L/Q Galois, then the same argumentation as in the proof of the Lemma
shows Gal(L/Q) ∼= C2 n Gal(L/K) and Gal(L/Q) is generated by involutions outside
Gal(L/K).

Since Hasse [Ha] a lot of authors (like Kondo [Ko] for example) proved theorems of the
following type: If G is a finite group, U a fixed subgroup of G, N a fixed normal subgroup
of G and L a number field with Galois closure L̂ such that Gal(L̂/Q) ∼= G and L̂U = L.
Then L̂/L̂N is unramified if and only if dL is minimal in a certain sense depending on G,
N and U .

The following proposition is such a theorem for the group DG and for the proof this lemma
about Artin representation is needed:

Lemma 8. ([Se]) Let L/K be a Galois extension of totally real number fields with group
G := Gal(L/K). Let

∑
U≤G aU1GU = 0 with aU ∈ Z be a relation on the induced principal

characters. Then
∏
U≤G(dLU )aU = 1.

Proof. Proposition 6 and Corollary 1 of [Se] on page 104 show the equation∏
U≤G

(dLU/K)aU = 1.
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In the totally real case, one does not have to distinguish, between dK/Q and dK . So taking
the norm yields ∏

U≤G
(dLU )aU =

∏
U≤G

(dK)aU ·(L
U :K) = d

∑
U≤G aU ·(G:U)

K = 1,

because deg(1GU ) = dimC(CG⊗CU C) = (G : U).

Proposition 2. Let G be a finite abelian group of odd order and N a totally real number
field of degree |G| such that Gal(N̂/Q) ∼= DG. Let K denote the unique quadratic subfield

of N̂ . Then N̂/K is unramified if and only if dN = d
|G|−1

2
K .

Proof. Lemma 8 shows that a relation on the induced principal characters of the subgroups
of the Galois group of a Galois extension gives the same relation among the discriminants
of their fixed fields. Hence using lemma 6 one has dN̂ · d

2
Q = d2

N · dK . Since all occurring
fields are totally real and dQ = 1, one has the following equivalences:

N̂/K is unramified ⇐⇒ dN̂ = d
|G|
K ⇐⇒ d2

N · dK = d
|G|
K ⇐⇒ dN = d

|G|−1
2

K .

3.3 Coprime Modules

Let M denote the countable infinite set of isomorphism classes of all DG-modules A with
the following properties:

• G and A are finite abelian groups.

• |G| is odd, and |G| and |A| are coprime.

• AG = {1}.

The notation (G,A) ∈M is used for a DG-module A from M. By proposition 1 the Galois
group Gal(K2/K1) for a quadratic number field K is a DCl(K)-module. But as mentioned
in the introduction to chapter 3 in stead of K1 and K2 certain fields K1,f and K2,f are of
interest. They will be defined at the beginning of chapter 3.5. The group Gal(K2,f/K1,f )
is a Gal(K1,f/Q)-module from M (see proposition 7) therefore this chapter deals with
properties of modules from M. This connection of modules from M and Gal(K2,f/Q) will
be explained in chapter 3.5.

Lemma 9. Let (G,A), (G,B) ∈M and let C be a DG-submodule of A.
Then (G,C), (G,A/C), (G,A⊕B) ∈M.

Proof. It has to be shown that (A/C)G = {1}. By lemma 2.6 b the G-modules A and
A/C have trivial Tate cohomology and hence by lemma 2.8 one has AG = nG(A) and
therefore (A/C)G = nG(A/C) = (nG(A) · C)/C, where nG are the norm maps (the G-
homomorphisms induced by the action of

∑
g∈G g ∈ ZG on the corresponding G-modules).

The assumption on the G-module A implies AG = {1} and therefore nG(A) = {1} and
(A/C)G = {1}.

Lemma 10. Let G be a finite group, A a finite G-module and B a finite DG-module such
that G is cyclic or |G| is coprime to |A| and |B|. Then the following hold:
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(a) AG = {1} if and only if IGA = A.

(b) If AG = {1}, then Ĥ i(G,A) = {1} for every positive integer i.

(c) If BG = {1}, then Ĥ i(DG, B) = {1} for every positive integer i.

Proof. Assume first G to be cyclic. Let x denote a generator of G and let σ denote the
automorphism of A induced by x. One has AG = Ker(σ − 1) and IGA = Im(σ − 1). This
shows statement (a). Statement (b) follows by lemma 2.9. The inf res sequence from
cohomology (see lemma 2.6) shows that there is an exact sequence of abelian groups

Ĥ i(DG/G,BG)→ Ĥ i(DG, B)→ Ĥ i(G,A)

for all integers i > 0. By assumption BG = {1}, which implies (c). If |G| and |A| are
coprime, by lemma 2.10 one has A = AG⊕IGA and by lemma 2.6 one has Ĥ i(G,A) = {1},
for all integers i. This shows (a) and (b). The proof of statement (c) is the same as in the
cyclic case.

Corollary. Let (G,A) ∈M. Then IGA = A, Ĥ1(DG, A) = {1} and Ĥ2(DG, A) = {1}.

Lemma 11. Let (G,A) ∈M and let ϕ ∈ DG \G be any involution. Then:

(a) A = A〈ϕ〉 ⊕K as group, where K ∼= A〈ϕ〉 as subgroup of A.

(b) If τ, σ are elements of DG such that 〈τ · σ−1〉 = G, then A = (A〈ϕ〉)τ ⊕ (A〈ϕ〉)σ.

(c) If G = 〈σ〉 is cyclic, B the external direct sum of two copies of A〈ϕ〉, f : A→ B the

group isomorphism which maps a · bσ to (a, b) ∀ a, b ∈ A〈σ〉, Φ =

(
1 σ + σ−1

0 −1

)
and

Σ =

(
0 −1
1 σ + σ−1

)
, then the following diagrams are commutative:

A

ϕ

��

f // B

Φ
��

A

σ
��

f // B

Σ
��

A
f // B A

f // B

Proof. This is a corollary to the proof of lemma 5.

Remark: This lemma still holds true, if A is a finite DG-module, where G is a finite cyclic
group of odd order such that AG = {1} (see remark after lemma 5).

For every (G,A) ∈M, the C2-module structure of complements of G in DG on A is unique
and independent of the G-module structure of A. It is described by the next lemma. It

always corresponds to the representation

(
0 1

1 0

)
respectively to the module (AC2) ↑C2

{1}.

Lemma 12. Let A be a finite C2-module such that A ∼= AC2⊕AC2 as groups and AC2 is a
(group theoretic) direct summand of A. Let ϕ ∈ Aut(A) denote the action of the generator
of C2. Then A has trivial Tate cohomology and there is a subgroup M ≤ A such that
A = M ⊕Mϕ and M ∼= AC2 as group. In particular the module structure is unique.
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Proof. The module A decomposes as C2-module into components of prime power order and
cohomology is compatible with direct sums. This allows the restriction to the following
two cases:
Case 1: 2 - |A|: Because |C2| and |A| are coprime, A has trivial Tate cohomology as
C2-module and one has A = AC2 ⊕ IC2A (see lemma 2.10). The automorphism ϕ of A
is trivial on the first summand and inverts every element of the second summand. By
the assumption A ∼= AC2 ⊕ AC2 the theorem of Krull-Remak implies that there is an
isomorphism of groups f : AC2 → IC2A. Set M := 〈a · f(a)|a ∈ AC2〉. Since 2 - |A| any
element of A is a square a2 · f(b2) with a, b ∈ AC2 . One has a · f(a) · (a · f(a))ϕ = a2 and
b · f(b) · (b−1 · f(b−1))ϕ = f(b2) and therefor A = M ·Mϕ. Since |A| = |AC2 |2 = |M | · |Mϕ|
one has A = M ⊕Mϕ.
Case 2: A is a 2 group: By assumption AC2 has a group theoretical complement M ≤ A
which is isomorphic to AC2 by the theorem of Krull-Remak. Let x ∈M ∩Mϕ and suppose
x 6= 1. Let 2n denote the order of x. Then n > 0 and y := x(2n−1) is an element of order 2
such that yϕ ·y−1 is contained in M . But because the order of y is 2 this is also an element
of AC2 and so yϕ = y. Since y ∈ M , y = 1 follows. This is a contradiction. Because
|A| = |M | · |ϕ(M)|, one has A = M ⊕Mϕ. Since A is finite and Im(ϕ+ 1) ≤ Ker(ϕ− 1),
by lemma 2.9, it remains to show that |Ker(ϕ − 1)| ≤ |Im(ϕ + 1)| to prove the Tate
cohomology to be trivial. But A = M · Mϕ = M · Mϕ+1 = M · Im(ϕ + 1) implies

|Im(ϕ+ 1)| ≥ |A|
|M | = |Ker(ϕ− 1)|.

Lemma 13. Let (G,A) ∈M. Then A is relatively projective (to {1}) as DG-module.

Proof. Let ϕ be the generator of a complement of G in DG. By lemma 5 the assumptions
of lemma 12 are fulfilled and there is a subgroup M ≤ A such that A = M ⊕Mϕ as group.
Let f : A → A be the projection on the first summand. Because of lemma 2.5, it suffices
to show: TrDG{1}(

1
|G| · f) = idA (since (G,A) ∈ M, the orders |A| and |G| are coprime and

multiplication with 1
|G| is a well defined isomorphism). For this let x ∈ A. Then one has:

TrDG{1}(
1

|G|
· f)(x) = (

∏
g∈DG

f(xg)g
−1

)
1
|G|

= (
∏
g∈G

(f(xg) · f(xgϕ)ϕ)g
−1

)
1
|G|

= (
∏
g∈G

x)
1
|G|

= x.

In the following the modules from M will be classified. This is not difficult, because these
modules behave like principal indecomposable modules, known from rings with minimal
condition.

Let R be a ring and G be a finite group. A finitely generated RG-module is called
relatively hereditary if and only if every module M , which arises from A by taking
submodules or quotients iteratively, is relative projective. A finite DG-module A has this
property, if (G,A) ∈M or if 2 · |G| and |A| are coprime for example. In the first case this
is an obvious consequence of the lemmas 9 and 13 and in the coprime case this statement
is implied by lemma 2.5.
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The next lemma is an adaptation of standard methods from representation theory (like
“idempotent refinement”) to the special case which is of interest here. The proofs of
statements (c) and (e) of lemma 14 and of proposition 3 (c) are almost word for word the
same as in [Bau], Sätze 3.6, 3.8, 3.9, although these theorems show different statements.

Lemma 14. Let G be a finite group and A be an indecomposable finite relatively hereditary
G-module. Then the following hold:

(a) There is a prime p and integers e and r such that A ∼= (Cpe)
r as group.

(b) A is projective as (Z/peZ)G-module.

(c) For any submodule F of A the G-module A/F is indecomposable.

(d) If F is the Frattini-subgroup of A, then A/F is an irreducible and projective FpG-
module.

(e) If B is another indecomposable finite relatively hereditary G-module with Frattini-
subgroup E such that |B|=|A| and B/E ∼= A/F , then A ∼= B.

Proof. (see [Bau], [Go]) Statement (a) can be proved as lemma 5.2.1 and theorem 5.2.2 in
[Go] which uses the assumption that |G| has to be coprime to |A|. But the assumptions
of this lemma are sufficient by lemma 2.5, because Gorenstein [Go] uses the coprimeness
assumption just to ensure that submodules with group theoretic complement also have
module theoretic complements. The underlying group (Cpe)

r of A is a free Z/peZ-module,
so statement (b) follows by lemma 2.4. Assume that A/F is not indecomposable. Therefore
there exist submodules M,N ≤ A with F ( N and F (M such that A/F = M/F ⊕ N/F .
Define the surjective R-homomorphism τ : A → A/M ∼= (A/F )/(M/F ) ∼= N/F where
R := Z/peZG, the first map is the residue-map and the last two maps are any R-
isomorphisms. If i : N → A is the inclusion, then τ ◦ i : N → N/F is a surjective R-
homomorphism. By (b) there exists an R-homomorphism ϕ : A→ N such that τ ◦i◦ϕ = τ .
Since τ 6= 0 the Fitting lemma (lemma 2.3) shows that i ◦ ϕ is an automorphism of A.
This is a contradiction to |N | < |A| and shows (c). If F is the Frattini-subgroup of A,
then F is a G-submodule of A and A/F is an Fp-vector space and G-module. By the
assumption on A, the abelian group A/F is relatively projective as G-module and ob-
viously it is projective as Fp-vector space. Therefore A/F is projective as FpG-module
by lemma 2.4. By (c) A/F is an indecomposable FpG-module. Since A/F is elementary
abelian, a non trivial proper submodule of A/F would have a group theoretic complement
and therefore (by the assumption on A) a module theoretic complement. This shows that
A/F is irreducible and statement (d) follows. By (a) one has B ∼= A ∼= (Cpe)

dimp(A/F ) as
groups and A, B are projective R-modules by (b). Let πA : A→ A/F and πB : B → A/F
be surjective R-homomorphisms. Then there exist R-homomorphisms fA : A → B and
fB : B → A such that πA = πB ◦ fA and πB = πA ◦ fB. Therefore πA ◦ fB ◦ fA = πA and
πB ◦ fA ◦ fB = πB. Because πA, πB 6= 0, the Fitting lemma shows that fA ◦ fB and fB ◦ fA
are isomorphisms and hence A ∼= B as G-modules. This implies statement (e).

Remark: The assumption that A is a projective indecomposable Z/peZG-module is suf-
ficient for statement (c).

Proposition 3. Let G be a finite abelian group of odd order.

(a) Let (G,A) ∈M. Then A is a finite direct sum of indecomposable DG-modules Ai, with
(G,Ai) ∈M. The DG-modules Ai are (after reordering) unique up to isomorphism.
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(b) Let (G,A) ∈M such that A is an indecomposable DG-module. Then there is a prime
p not dividing |G| and integers e and r such that A ∼= (Cpe)

r as group. If F is the
Frattini-subgroup of A, then A/F is an irreducible and projective FpDG-module with
(A/F )G = {1}.

(c) If p is a prime not dividing |G|, e an integer and M an irreducible and finite FpDG-
module with MG = {1}, then there is (up to isomorphism) exactly one indecompos-
able DG-module A with (G,A) ∈ M, |A| = |M |e and A/F ∼= M , where F is the
Frattini-subgroup of A.

Proof. (see [Bau]) Statement (a) is a consequence of the theorem of Krull-Remak and of
lemma 9, and (b) and the uniqueness-part of (c) are implied by lemma 14, because if
(G,A) ∈M, then the DG-module A is relative hereditary by lemma 13 and lemma 9.
It remains to show the existence part of (c): Set R := (Z/peZ)G and let be 0 6= m ∈ M .
The R-homomorphism f : R → M : x 7→ m · x is surjective. If R = A1 ⊕ · · · ⊕ An is a
decomposition of R into indecomposable R modules, then there is a summand (without loss
of generality) A1 =: A such that the restriction of f to A is surjective (because surjective
means non zero since M is irreducible). Because MG = {1} and because of lemma 2.10,
one has AG = {1} and hence (G,A) ∈ M. Let F be the Frattini-subgroup of A. Because
M is an elementary abelian group F ≤ Ker(f |A) and because A/F is irreducible by (b),
one has F = Ker(f |A), which shows the existence part of (c).

This proposition reduces the classification of indecomposable modules from M to the clas-
sification of the irreducible FpDG-modules A with AG = {1}, where p is a prime and G
is a finite abelian group such that 2 · p - |G|. This classification is well known (see [I]
chapters 6, 9) and will be done by the next two lemmas. The methods are similar to those
in [Lem1], where Lemmermeyer gives a generalization to the p-rank theorem.

Let χ1, χ2 be two characters of irreducible representations of a finite group G over the
algebraic closure K of a field K. The characters χ1 and χ2 are called Galois conjugate
over K if and only if there is a K-automorphism σ of K such that χ1(g)σ = χ2(g) for all
g ∈ G. Galois conjugacy is an equivalence relation on a set of representatives of irreducible
KG-representations.

Lemma 15. Let p be a prime and n > 1 an integer such that 2, p - n. Let

Dn = 〈x, y | x2 = yn = 1, yx = y−1〉

be a dihedral group and let ξ0 = 1, ξ1, ..., ξn−1 ∈ Fp, with r = n−1
2 and ξ−1

i = ξi+r for
i = 1, ..., r, be the n-th roots of 1. Let ap be an integer and let Y1, ..., Yap be a system of
representatives of the irreducible faithful Dn-representations over Fp. Then the following
hold:

(a) If p = 2, then 1Fp and Xi = (x 7→
(

0 1
1 0

)
, y 7→

(
ξi 0

0 ξ−1
i

)
) for i ∈ {1, ..., r} form

a system of representatives of all irreducible Dn-representations over Fp. If p 6= 2,
then there is in addition the irreducible representation (x 7→ −1, y 7→ 1). The Xi

with ξi primitive are the irreducible faithful representations.

(b) The 1-dimensional irreducible representations from (a) are their own Galois conju-
gacy class, and two representations Xi and Xj are Galois conjugate, if and only if

24



3.3 Coprime Modules

there is an integer k such that ξp
k

i = ξ±1
j . Over Fp every Yi is the sum of the repre-

sentations in a Galois conjugacy class. Every Galois conjugacy class with a faithful
representative occurs in that way, different Yi belongs to different conjugacy classes
and a Yi is faithful, if and only if every FpG-representation of the conjugacy class
belonging to Yi is faithful, if and only if one FpG-representation of the conjugacy
class belonging to Yi is faithful.

(c) Let fp := mink(p
k ≡ 1(n), k > 0) be the order of p mod n. If −1 is a power of p mod

n, set dp := fp, else define dp := 2 · fp. Then the ap non similar irreducible faithful
Dn-representations over Fp all have degree dp.

Proof. a: The polynomial xn − 1 is separable over Fp and ξi + ξ−1
i = ξj + ξ−1

j if and

only ξi = ξ±1
j . All given representations have different characters and are non-equivalent

therefore. The irreducible representations of the normal subgroup 〈y〉 ≤ Dn over Fp are
given by x 7→ (ξi) for i = 0, ..., n − 1. If X is an irreducible Dn-representation over Fp,
then by the theorem of Clifford ([I] theorem 6.5) there is a basis such that the restriction

to 〈y〉 is X(y) =

(
ξi 0

0 ξ−1
i

)
for a suitable i ∈ {1, ..., n− 1} or X(y) = 1. With the Ansatz

X(x) = (a) or X(x) =

(
a b
c d

)
, using X(x)2 = 1 and X(x)·X(y)·X(x) = X(y)−1, one can

calculate the possible values for X(x). For the one dimensional case, this is X(x) = 1 and

if p - 2 in addition X(x) = −1. In the two dimensional case the result is X(x) =

(
0 1
1 0

)
or X(x) =

(
0 −1
−1 0

)
. Both representations are similar via

(
−1 0
0 1

)
.

b: By [I] corollary 9.22 non-similar irreducible representations have different characters,
therefore all representations in a Galois conjugacy class have the same kernel. Because of
[I] theorem 9.14 and theorem 9.21, it just has to be shown that the two representations Xi

and Xj are Galois conjugate, if and only if there is an integer k such that ξp
k

i = ξ±1
j . But

this is a consequence of the fact that ξi + ξ−1
i = ξj + ξ−1

j if and only ξi = ξ±1
j and that all

Galois groups of finite extensions of Fp are generated by the Frobenius automorphism.
c: The size li of the Galois conjugacy class of the faithful irreducible representation Xi is

the smallest integer k > 0 such that ξp
k

i +ξ−p
k

i = ξi+ξ
−1
i . By the previous li is the smallest

k > 0 such that ξp
k

= ξ±1. Therefore li =
fp
2 if −1 is a power of p mod n and li = fp in

the other case. Since all the faithful irreducible Dn-representations are two dimensional
by (a), statement (c) follows.

Lemma 16. Let G 6= {1} be a finite abelian group and p be a prime such that 2, p - |G|.
Let A be an irreducible FpDG-module with AG = {1} and let N ≤ DG be the kernel of the
action of FpDG on A. Then the following hold:

(a) N is a proper subgroup of G and G/N is cyclic.

(b) If n = (G : N), then A is a finite, faithful and irreducible Dn-module.

(c) If 1 < m is an odd integer coprime to p and B is a finite, faithful, irreducible FpDm-
module, then for every subgroup M of G such that G/M ∼= Cm, there is an (up to
isomorphism) unique FpDG-module A with AG = {1} and kernel M . One has A ∼= B
as FpDm-module via G/M ∼= Cm and different choices of M lead to non isomorphic
FpDG-modules.
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3 The Group Gal(K2/Q)

Proof. Statement (a) is a consequence of lemma 3 and implies (b). Part (c) is obvious.

So the classification of modules from M for a fixed finite abelian group G of odd order
works as follows. Two modules from M are isomorphic if and only if their indecomposable
DG-module summands are isomorphic (after reordering). The indecomposable summands
are also from M and every indecomposable module (G,A) ∈M can be constructed by the
following steps. Different choices in one of the steps lead to non isomorphic modules:

1.) Choose a subgroup N ≤ G such that Cn ∼= G/N is cyclic.

2.) Choose a prime p with p - |G|.

3.) Let φn be the n-th cyclotomic polynomial over Q. Choose an irreducible factor of
φn mod p modulo the following equivalence relation on the factors of φn: f ≡ g if
and only if there is a primitive n-th root ξ ∈ Fp of 1 such that f(ξ) = 0 and either
g(ξ) = 0 or g(ξ−1) = 0.

4.) Choose a positive integer e.

Then there is a unique irreducible faithful FpDn-module C belonging to step 3.) according
to lemma 15. The choice in step 1.) gives by lemma 16 a unique irreducible FpDG-module
B with BG = {1} belonging to C and step 4.) gives a unique indecomposable DG-module
A with (G,A) ∈M, |A| = |B|e and A/F (A) ∼= B, because of proposition 3.

Corollary 1. Let (G,A) ∈ M and let A denote also the abelian group underlying
the module A. If n := |G| = 1, just A = {1} is possible. Otherwise A is any finite
direct sum of the groups (Cpe)

r, where p is any prime not dividing n, e any positive
integer (independent from all other choices) and r is any of the integers lcm(2, fp,q), where
fp,q := mink(p

k ≡ 1(q), k > 0) and q goes through the prime divisors of n.

Proof. Denote fp,n := mink(p
k ≡ 1(n), k > 0), where p is a prime and n an integer with

p - n. If q is another prime and divides n, then fp,q divides fp,n. The unit group of Z/qZ is
cyclic. Therefore there is an m such that pm ≡ −1 (q), if and only if fp,q is even. Lemma
15 c implies that the degrees of the faithful irreducible Dq-representations over Fp are
exactly the sums of the lcm(2, fp,q), where q is a prime dividing n. Hence the statement
is a consequence of the classification.

Remark: The similar question, which class numbers of number fields with certain Galois
group can (possibly) occur, is treated in [K-N], and [Lem1] also answers similar questions
about the ranks of class groups with certain Galois-modules structures.

Let G 6= {1} be a finite abelian group of odd order. On page 10 two DG-modules A, B
have been called conjugate, if and only if there is an automorphism φ ∈ Aut(DG) such
that B ∼= φA as DG-module. Lemma 2.11 defines an action of Out(G) on the set of
isomorphism classes of G-modules. The set of isomorphism classes of DG-modules from M
is closed under this action. Since G is a characteristic subgroup of DG and all complements
of G in DG are conjugate, one has Aut(DG) = Inn(DG) ·U and U ∩ Inn(DG) = 〈inv〉, where
U ∼= Aut(G) is the subgroup of Aut(DG) which fixes one complement of G in DG, and inv
is the automorphism which inverts every element. Therefore Out(DG) ∼= Aut(G)/〈inv〉
and after choosing a complement of G in DG, one gets a left action of Aut(G)/〈inv〉 on
the isomorphism classes of DG-modules from M. Hence the representation module R (see
page 10) of DG-modules from M is an Aut(G)/〈inv〉-module.
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Corollary 2. Let G 6= {1} be a finite abelian group of odd order and R be the representa-
tion module of DG-modules from M. Let S be the set of primes not dividing |G|, L be a sys-
tem of representatives of Kronecker equivalence for proper normal subgroups N of G such
that G/N is cyclic, let UN := {φ ∈ Aut(G)/〈inv〉 | φ(N) = N}. Define an Aut(G)/〈inv〉-
module R̃ by R̃ :=

⊕
e≥1

⊕
p∈S

⊕
N∈L(Z(Aut(G/N)/〈inv, x 7→ xp〉)) ↑Aut(G)/〈inv〉

UN
, where

UN acts on Aut(G/N)/〈inv, x 7→ xp〉 in the natural way by left multiplication and e runs
through all positive integers. Then R ∼= R̃ as left Aut(G)/〈inv〉-modules.

Proof. By lemma 14 and by lemma 2.11 the representation module R equals
R =

⊕
e≥1

⊕
p∈S Re,p, where Re,p is the representation module of the DG-modules from

M, which as groups are homocyclic p-groups of exponent e. By proposition 3 one has
Re,p ∼= R1,p for all p ∈ S and for all integers e ≥ 1. Because of lemma 2.12 one has

R1,p
∼=
⊕

N∈LR1,p,N ↑Aut(G)/〈inv〉
UN

, where R1,p,N is the free Z-module over all isomorphism
classes of irreducible FpDG-modules from M with kernel N . By definition of M, N has
to be a proper subgroup of G and by lemma 3 the factor group G/N has to be cyclic. If
for an integer n the module Tp,n is the representation module of the faithful irreducible
FpDn-modules, then after any identification of C(G:N) with G/N , Tp,(G:N) is also an UN -
module in the natural way and as such it is isomorphic to R1,p,N . Because of lemma
15, the group Aut(G/N)/〈inv〉 acts transitively on Tp,(G:N) and each fixed group equals
〈inv, x 7→ xp〉/〈inv〉. Therefore R1,p,N

∼= Tp,(G:N)
∼= Z(Aut(G/N)/〈inv, x 7→ xp〉) as UN -

modules.

Example: This example shows how these corollaries allow to calculate the number of
DC9×C3-module structures from M on C6

2 : The group G := C9 × C3 has three Kronecker
equivalent subgroups N1, N2, N3 with G/Ni

∼= C9 and two Kronecker equivalence classes
M0 and {M1,M2,M3} of subgroups such that G/Mi

∼= C3. One has the isomorphisms
Aut(C3)/〈inv, x 7→ x2〉 ∼= Aut(C9)/〈inv, x 7→ x2〉 ∼= {1} since 2 is a primitive root mod 3
and mod 9, and there is one irreducible faithful F2D3-module and it has degree 2 and one
irreducible faithful F2D9-module and it has degree 6. With the notation of the proof of

corollary 2, one has R1,2
∼= Z ⊕ Z ↑Aut(G)/〈inv〉

UM1
⊕Z ↑Aut(G)/〈inv〉

UN1
. The last two summands

are free Z-modules of rank three, which are permuted by Aut(G)/〈inv〉 as by S3. By the
second corollary to the classification every DC9×C3-module structure on C6

2 corresponds to
an element of R1,2

∼= Z7 (as group) where all components are non negative integers and
where the sum of the dimensions of the corresponding modules adds to 6. The following
table shows the 23 module structures from M of DC9×C3 on C6

2 . Each row represents one
module-structure. The first 4 columns count how many of its indecomposable summands
are isomorphic to the two dimensional faithful indecomposable F2D3-module with kernel
M0, M1, M2 and M3 and the last three columns do the same for the faithful F2D9-module
of dimension 6 with kernel N1, N2 and N3. By horizontal lines the module structures are
grouped into 8 sections of conjugate modules:

3 0 0 0 0 0 0

2 1 0 0 0 0 0
2 0 1 0 0 0 0
2 0 0 1 0 0 0

1 2 0 0 0 0 0
1 0 2 0 0 0 0
1 0 0 2 0 0 0
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1 1 1 0 0 0 0
1 1 0 1 0 0 0
1 0 1 1 0 0 0

0 1 1 1 0 0 0

0 3 0 0 0 0 0
0 0 3 0 0 0 0
0 0 0 3 0 0 0

0 2 1 0 0 0 0
0 2 0 1 0 0 0
0 1 2 0 0 0 0
0 0 2 1 0 0 0
0 1 0 2 0 0 0
0 0 1 2 0 0 0

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

Example: The same as in the previous example can be done for the DC5-module struc-
tures from M on C4

11 × C2
121. All these modules are faithful DC5-modules and one has

Aut(C5)/〈inv, x 7→ x11〉 = Aut(C5)/〈inv〉 ∼= C2. Hence there are two non isomorphic irre-
ducible faithful F11DC5-modules, both of degree 2. Therefore (with notation of the proof
of corollary 2) R1,11 ⊕ R2,11

∼= ZC2 ⊕ ZC2, where Aut(C5)/〈inv〉 acts as C2. So one has
the following six DC5-module structures from M on C4

11 × C2
121, which are grouped into

three conjugacy classes by horizontal lines again. The rows and columns of this table have
analogous meaning as in the previous example.

2 0 1 0
0 2 0 1

2 0 0 1
0 2 1 0

1 1 1 0
1 1 0 1

If G is a finite abelian group of odd order and A a finite G-module such that AG = {1} and
(|A|, |G|) = 1, then (G,A) /∈ M in general. But if it does, then the DG-module structure
is uniquely determined by the G-module structure (see [Bos] for similar questions):

Lemma 17. Let (G,A1), (G,A2) ∈ M. Then A1 and A2 are isomorphic as DG-modules
if and only if they are isomorphic as G-modules.

Proof. Assume that A1 and A2 are isomorphic as G-modules. Let A be the underlying
group of A1 and A2 and let ρ, τ ∈ Hom(DG,Aut(A)) be the homomorphisms which define
the DG-module structure on A corresponding to A1 and A2. Without lost of generality
ρ|G = τ |G. Let ϕ and ϕ̃ denote the image of a complement of G in DG under ρ and τ . It
will be shown that there is an h ∈ CAut(A)(ρ(G)) such that h ◦ ϕ = ϕ̃ ◦ h.

1. Case: G = 〈g〉 is cyclic: σ := ρ(g). By lemma 11 one has A = A〈ϕ〉 ⊕ (A〈ϕ〉)σ. This is a
decomposition into σ+ σ−1 ∈ End(A) invariant subgroups which are σ+ σ−1 isomorphic.
The same holds true for ϕ̃. By the theorem of Krull-Remak there is a σ+σ−1 isomorphism
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f : A〈ϕ〉 → A〈ϕ̃〉. Define f̂ : A → A by f̂(a · b) = f(a) · (f(bσ
−1

))σ for a ∈ A〈ϕ〉 and
b ∈ σ(A〈ϕ〉). f̂ is a σ + σ−1 automorphism of A. If a, b ∈ A〈ϕ〉, then

f̂((a · bσ)σ) = f̂(aσ · b(σ+σ−1)·σ−1)

= f̂(b−1 · (a · bσ+σ−1
)σ)

= f(b−1) · f(a · bσ+σ−1
)σ

= f(a)σ · f(b)−1 · f(b)σ
2+1

= (f(a) · f(b)σ)σ

= (f̂(a · bσ))σ

f̂((a · bσ)ϕ) = f̂(a · bσ−1
)

= f̂(a · bσ+σ−1 · b−σ)

= f(a) · f(b)σ+σ−1 · f(b)−σ

= f(a)ϕ̃ · f(b)σ·ϕ̃

= (f̂(a · bσ))ϕ̃

So h := f̂ is an automorphism of A with commutes with each element of ρ(G) and fulfills
h ◦ ϕ = ϕ̃ ◦ h.
2. Case: Reduction to cyclic case: The 〈ρ(G), ϕ, ϕ̃〉-module A satisfies the assumptions of
lemma 3 (see the remark after that lemma). So one can apply case 1 to every summand
in the decomposition described in lemma 3.

3.4 Factor Groups

Let G denote the countable infinite set of isomorphism classes of all groups G with the
following properties:

• |G| <∞

• G/G′ ∼= C2

• G′′′ = {1}

• |G′/G′′| and |G′′| are coprime or G′/G′′ is cyclic.

This chapter derives properties of these groups. It studies at first G′, then the C2-extension
of G′′ contained in there and puts both together at the end. The groups from G occur as
factor groups of Gal(K2/Q) of a real quadratic number field K, because Gal(K2,f/Q) ∈ G
(see proposition 7; the field K2,f will be defined at the beginning of chapter 7). In the case
that |G′/G′′| and |G′′′| are coprime, these groups are just the extensions of A by H for a
(H,A) ∈ M. This case is enough to cover the groups Gal(K2,f/Q), but the other case is
described by the same group theory and obviously Gal(K2/Q) ∈ G for a real quadratic
number field K with odd cyclic class group.

Lemma 18. (see [C-R2]) Let G be a finite group with an abelian normal subgroup N such
that G/N is abelian. Assume that G/N is cyclic or that (G : N) and |N | are coprime.
The group N can be interpreted as a G-module and G as an extension of N by G/N . The
following hold:
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(a) IGN = G′.

(b) N = G′ if and only if IGN = N if and only if NG = {1}.

(c) If N = G′, then Ĥ i(G/N,N) = {1} for every i ∈ Z, the extension splits and all
complements of N in G are conjugate.

Proof. a: Assume at first G/N to be cyclic. Let m+ 1 be the order of G/N , 1, x, ... , xm

be a system of representatives of G/N in G such that the class of x generates G/N and
let a, b ∈ N . Then every commutator of G is of the form

xiaxjba−1x−ib−1x−j = ax
−i·(1−x−j)bx

−j ·(x−i−1)

where i, j ∈ {1, ...,m}. Hence G′ = 〈axi−1|a ∈ N, 1 ≤ i ≤ m〉 = IGN . Now suppose |G/N |
and |N | to be coprime, so the extension has trivial cohomology, is split and all complements
are conjugate (see lemma 2.7 and lemma 2.6). It remains to show IGN = G′, which is a
similar calculation as in the cyclic case if one chooses a complement of G′ as system of
representatives of G/G′ in G (see remark after this lemma).
b: This follows from (a) by lemma 10.
c: This is a consequence of (a), lemma 10 and the theorem of Zassenhaus (lemma 2.7).

Remark: If (in the situation of the lemma) G/G′ is cyclic a calculation with the commu-
tators shows that IG/G′G

′ = G′. One does not need to assume that the G/G′ extension of
G′ splits. But in general one can not use a system of representatives of G/G′ that vanishes
in the commutators and therefore has to assume that this extension splits in order to have
IG/G′G

′ = G′.

With the orbit stabilizer theorem the following corollaries can be deduced from the previous
lemma. The second one is called Theorem of Taussky:

Corollary 1. Let G be a finite group such that G′′ = {1} and G/G′ is a p-group. Then
|G′|q ≡ 1(p) for every prime q 6= p.

Corollary 2. Let G be a finite group such that G′′ = {1} and G/G′ is a cyclic p-group.
Then p - |G′|.

The following lemma recalls some basic facts from group theory, which are needed in
lemma 20 (see [C-R2] and [Su]).

Lemma 19. Let G be a group and N a normal subgroup. Then the following hold:

(a) (G/N)′ = (G′ ·N)/N .

(b) If H is a normal subgroup of G containing N and {1} → H → G→ G/H → {1} is
split, then {1} → H/N → G/N → G/H → {1} is split.

(c) Let G be a finite p-group and N 6= {1}. Then G has a normal subgroup U $ N such
that N/U ⊆ Z(G/U).

(d) Let G be a finite p-group such that G′′ = {1}. Then the natural exact sequence
{1} → G′ → G→ G/G′ → {1} is split if and only if G′ = {1}.
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3.4 Factor Groups

Proof. a: A calculation with the definition shows the equation:

(G/N)′ = 〈gNhNg−1Nh−1N |g, h ∈ G〉 = 〈ghg−1h−1N |g, h ∈ G〉 = (G′N)/N.

b: If U is a complement of H in G then (U ·N)/N is a complement of H/N in G/N since
U ·N ∩H ⊆ N .
c: The Frattini subgroup F of N is a normal subgroup of G. There is an integer n > 0 such
that N/F ∼= Cnp and G acts by conjugation on the set of p

n−1
p−1 ≡ 1(p) maximal subgroups of

N/F and hence has a fixed point U , which is a normal subgroup of G and a proper normal
subgroup of N of index (N : U) = p. Because G/U is a p-group Z(G/U) ∩ N/U 6= {1},
hence N/U ≤ Z(G/U).
d: Suppose the sequence is split and G′ 6= {1}. By (c) G′ contains a normal subgroup U
of G with (G′ : U) > 1 such that G acts trivially on G′/U . By (b) the exact sequence
{1} → G′/U → G/U → G/G′ → {1} also splits. As both G′/U and G/G′ are abelian,
this implies G/U is abelian; contradiction to (G′ : U) > 1.

Lemma 20. (see [C-R2]) Let G be a finite abelian group with the properties G′′ = {1}
and G ∼= G/G′ nG′. Then p - |G′/U ′p| for all primes p, where G′ ≤ Up ≤ G are subgroups
such that G/Up ∼= Sylp(G/G

′).

Proof. Suppose p | |G′/U ′p| for some prime p. U ′p is a characteristic subgroup of a normal
subgroup of G and hence a normal subgroup of G. Let A respectively B denote the
subgroups of Up respectively G′ containing U ′p such that Up/A ∼= Sylp(Up/U

′
p) respectively

G′/B ∼= Sylp(G
′/U ′p). For the same reason as for U ′p they are normal subgroups of G and

B ≤ A.
A

G
p

Up

p

B
p′

p′

U ′p {1}

G′
pp′

By assumption (G′ : B) > 1 and by lemma 19

{1} → G′/B → G/B → G/G′ → {1}

is split, so without loss of generality B = {1}. Let H ≤ G be any complement of G′. Then

|A|p′ = |G|p′ ≥ |H ·A|p′ =
|H|p′ · |A|p′
|A ∩H|p′

=
|A|2p′

|A ∩H|p′

and H contains A. Because Up = G′ ⊕ A lemma 19 shows (G/A)′ = Up/A ∼= G′ 6= {1}.
G/A is a p group and a split extension of (G/A)′ by G/Up, because H/A is a complement
of (G/A)′. This contradicts lemma 19.

Lemma 21. Let G be a C2-extension of a finite abelian group A with the module structure
described in lemma 12. Let x denote an involution outside A and M ≤ A a subgroup
corresponding to x as described in lemma 12 (that means A = M ⊕ Mx). Then the
following hold:

(a) G ∼= C2 nA and all involutions of G outside A are conjugate.
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3 The Group Gal(K2/Q)

(b) G ∼= M o C2.

(c) G′ =
{
m−1 ·mx | m ∈M

} ∼= A〈x〉 as group.

(d) G/G′ ∼= C2 ×A〈x〉 as group.

(e) H := 〈G′, x〉 ∼= DA〈x〉 as group and H = 〈y | y ∼ x〉.

(f) H is a normal subgroup of G and G/H ∼= A〈x〉 as group.

(g) 1G{1} + 2 · 1GH = 2 · 1G〈x〉 + 1GG′

Proof. By lemma 12 the Tate cohomology of the C2-module A is trivial, in particular
Ĥ2(C2, A) ∼= Ĥ1(C2, A) ∼= {1}. This shows (a), and (b) follows from the definition of
wreath products. Properties (c), (d), (e) and (f) can be calculated from (b), and if one
observes that {1}, H and G′ are normal subgroups of G and the conjugacy class of x in G
is xG′, then (g) is a consequence of the definition 1VU (x) = 1

|U | · |
{
g ∈ V |g−1xg ∈ U

}
|.

Lemma 22. Let G be a group from G and x ∈ G \G′ a generator of G/G′. Then:

(a) |G′/G′′| is odd, G/G′′ ∼= DG′/G′′ and G′′G
′/G′′ = {1}.

(b) If ((G′ : G′′), |G′′|) = 1, then (G′/G′′, G′′) ∈M.

(c) G ∼= DG′/G′′ nG′′, all complements of G′′ are conjugate.

(d) G ∼= C2 nG′ and all involutions from G \G′ are conjugate.

(e) There is a subgroup M ≤ G′′ such that G′′ = M ⊕Mx. As group: M ∼= G′′〈x〉 and
G′′〈x〉 is a direct summand of G′′.

Proof. a: Let ϕ ∈ Aut(G′/G′′) be the automorphism induced by x. By lemma 18 one has
G′′G

′/G′′ = {1}, (G′/G′′)G/G
′

= {1}, Im(ϕ − 1) = G′/G′′ and Ĥ i(G/G′, G′/G′′) = {1}, so
G/G′′ ∼= G/G′ nG′/G′′ by the theorem of Zassenhaus. Because of the second corollary to
lemma 18 the index (G′ : G′′) is odd and lemma 2.9 implies G′/G′′ = Ker(ϕ+1). Therefore
G/G′′ ∼= DG′/G′′ .
b: This is the definition.
c: This is a consequence of (a), lemma 10 and the theorem of Zassenhaus.
d: This follows with (a) and (c), because all involutions in DG′/G′′ are conjugate.
e: This is implied by (a), lemma 11 (see remark after it) and lemma 12.

To calculate with concrete groups from G in [GAP] one could use the classification of
the modules from M, but the description in the following lemma is more useful. One can
search the SmallGroupLibrary or calculate semidirect products according to this lemma.

Lemma 23. Let G be a finite abelian group and A be a finite DG-module such that G is
cyclic or |G| and |A| are coprime. Let U = DG nρ A be the split extension of A by DG
corresponding to this module structure. Then the following are equivalent:

(a) U ∈ G.

(b) AG = {1} and |G| is odd.

(c) IGA = A and |G| is odd.

(d) U ′ = Gnρ A and U ′′ = A.
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3.4 Factor Groups

Proof. Statement (d) implies (a) by definition and (a) implies (b) and (d) by lemma 22.
The statements (b) and (c) are equivalent because of lemma 10. It remains to show
(c)⇒ (d): For g ∈ G and a ∈ A as a commutator one has g−1aga−1 = ag−1 and since G is
abelian (GnA)′ = A. If x ∈ DG is an involution and g ∈ G then xgxg−1 = g−2. Because
|G| is odd the remaining part follows.

Lemma 24. Let G ∈ G, let U be a complement of G′′ in G, let K ≤ G be the subgroup
of all elements of G acting trivial on G′′ and let be M :=

⋂
n∈G′′ U

n. Then M = Z(G′) is
the largest subgroup of U which is normal in G, one has K = M ⊕G′′ and M is contained
in U ′. The center of G is trivial.

Proof. By definition M is the largest subgroup of U which is normal in G. Therefore M is
normal in U and contained in U ′ because U ∼= DH for some finite abelian H of odd order
by lemma 23. A subgroup of U is normalized by G′′ if and only if it is centralized by G′′,
hence K = M ⊕G′′. Since M ≤ U ′, one has K ≤ G′. Because G′′G

′
= {1} and U ′U = {1}

by lemma 18, one has CG(G′) = M and that implies Z(G′) = M and Z(G) = {1}.

Some class number formulas hold true in the non “coprime case”. The class group relations
from before can be extended such that the connection to the fixed point relations remains
for the 2-part of a DH -module A, where H and A are finite abelian groups of coprime order
and |H| is odd ([C-M] theorem 7.8). In this chapter some relations on the commutator
factor group of subgroups of groups from G are considered and the connection to class
groups (analogous to lemma 1) is given in chapter 3.5. This motivates the following
notation, which is well defined by lemma 22 d:

Notation: Let G be a group from G and U ≤ G be a subgroup. Then define

C(U) := U/〈U ′, T ∩ U | T complement of G′ in G〉.

Lemma 25. Let G be a group from G, U a subgroup of G with G′′ ≤ U ≤ G′ and x a
involution of G \G′. Then

(a) C(U) ∼= U/G′′ ⊕G′′U ,

(b) C(〈U, x〉) ∼= G′′〈U,x〉,

(c) G′′U ∼= G′′〈U,x〉 ⊕G′′〈U,x〉.

Proof. The extension {1} ≤ G′′ ≤ G′ is split by lemma 22 and since U ′ ≤ G′′ the extension
{1} ≤ G′′/U ′ ≤ U/U ′ is also split. Therefore C(U) ∼= U/U ′ ∼= U/G′′ ⊕ G′′/U ′, because
every complement of G′ in G has trivial intersection with U . A calculation as in lemma 18
shows U ′ = IUG

′′ and using lemma 2.10 one has G′′ = IUG
′′⊕G′′U . This proves statement

(a).
The extension {1} ≤ G′′ ≤ 〈U, x〉 is split, so without loss of generality there is an abelian
subgroup V ≤ U such that 〈x, V 〉 ∼= DV is a complement of G′′ in 〈U, x〉 (otherwise
change x to one of its conjugates). By the previous 〈U, x〉 = 〈V, x〉 n (G′′U ⊕ U ′). The
involutions of 〈U, x〉 \ G′ are the elements x · u · g · a with u ∈ V, g ∈ G′′U , a ∈ U ′ and
1 = xugaxuga = gx+1 · axu+1. If A is the subgroup of 〈U, x〉 generated by U ′ and all these
involutions, then A = 〈V, x〉 n (M ⊕ U ′), with M :=

{
g ∈ G′′U | gx+1 = 1

}
. Therefore

C(〈U, x〉) ∼= G′′U/M ∼= G′′〈U,x〉 by lemma 21 and statement (b) follows. Statement (c) is a
consequence of lemma 5 and lemma 23 applied to the DG/U -module G′′U .
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3 The Group Gal(K2/Q)

For every group U ∈ G with (|U ′/U ′′|, |U ′′|) = 1 one has (U ′/U ′′, U ′′) ∈ M by lemma 22.
Since DU ′/U ′′ is viewed as an abstract group, this module structure is not unique, because
there is not just one way to name the elements of DU ′/U ′′ . With help of the methods from
[R], this connection can be described. Let H be a finite group and let A be an H-module.
One can define different equivalence relations on the set Hom(H,Aut(A)).
Let ρ, τ ∈ Hom(H,Aut(A)). Then

(I) τ ≡ ρ :⇔ ∃ψ ∈ Aut(A) such that ψ ◦ ρ(g) ◦ ψ−1 = τ(g)∀g ∈ H.

(II) τ ≡ ρ :⇔ ∃ψ ∈ Aut(A) and ∃φ ∈ Aut(H) such that ψ ◦ρ(g)◦ψ−1 = τ(φ(g)) ∀g ∈ H.

(III) τ ≡ ρ :⇔ the subgroups Im(ρ) and Im(τ) are conjugate in Aut(A).

Lemma 26. Let V and U be split extensions of a finite group A by a finite group H
defined by ρ, τ ∈ Hom(H,Aut(A)). Then the following hold:

(a) The H-module structures on A corresponding to ρ and τ are isomorphic if and only
if ρ ≡ τ by (I).

(b) ρ and τ are equivalent by (II) if and only if there is an isomorphism f : V → U such
that f(A) = A and f(H) = H.

(c) If U and V are groups from G such that V ′′ ∼= U ′′ ∼= A and U/U ′′ ∼= V/V ′′ ∼= H,
then V ∼= U if and only if ρ ≡ τ by (II).

(d) If ρ or τ is injective, then they are equivalent by (II) if and only if they are equivalent
by (III).

(e) If each isomorphism between factor groups of H can be lifted to an automorphism of
H, then (II)⇔ (III). (This is the case if H is dihedral or cyclic but not if H ∼= C4×C2

for example.)

Proof. a: This is an immediate consequence of the definitions.
b: One may suppose that the underlying set of U and V is H ×A and identify the groups
H and A with the subgroups H × {1} and {1} ×A of V and U . If ρ and τ are conjugate
by (II) with ψ and φ (which means ψ ◦ ρ(g) ◦ ψ−1 = τ(φ(g))∀g ∈ H), then the bijective
map f : H ×A→ H ×A : (g, a) 7→ (φ(g), ψ(a)) is an isomorphism from V to U , because

f(g, a) ·τ f(h, b) = (φ(g), ψ(a)) ·τ (φ(h), ψ(b))

= (φ(g · h), τ(φ(h))(ψ(a)) · ψ(b))

= (φ(g · h), ψ((ψ−1 ◦ (τ ◦ φ)(h) ◦ ψ)(a) · ψ(b)))

= (φ(g · h), ψ(ρ(h)(a) · (b)))
= f((g, a) ·ρ (h, b))

If on the other hand an isomorphism f : V → U restricts to A and to H (that means
f(H) = H and f(A) = A), then the same calculation shows that φ := f |H and ψ := f |A
define an equivalence (II) between ρ and τ .
c: If f : V → U is an isomorphism, then f(U ′′) = V ′′. One may assume that V and U
possess the same set, which contains H, and as consequence of lemma 22 (c) one may
assume f(H) = H.
d, e: The statements (d) and (e) follows from H/Ker(ρ) ∼= Im(ρ) and H/Ker(τ) ∼= Im(τ).
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3.4 Factor Groups

Proposition 4. Let (G,A), (G,B) ∈M. Then the following hold:

(i) DG nA,∈ G.

(ii) There is an isomorphism of groups DGnA ∼= DGnB if and only if the DG-modules
A and B are conjugate according to the notation on page 10.

Proof. The first statement follows from lemma 23 and the second one is a consequence of
lemma 26 (c).

Example: Let A be a finite abelian group. Then there is a group G ∈ G such that A ∼= G′′

and G′/G′′ ∼= C3 if and only if |A| and 3 are coprime and there is an abelian group B such
that A ∼= B ⊕B. G is uniquely determined by B in this case.

Proof. Without lost of generality one may assume A 6= {1}.
“⇒”: Corollary 2 of lemma 18 shows that |A| and 3 are coprime and by lemma 22 (e) the
second statement follows.

“⇐”: If A = B ⊕ B̃ with B ∼= B̃, then H := 〈ϕ =

(
1 −1
0 −1

)
, σ =

(
0 −1
1 −1

)
〉 defines a

subgroup of Aut(A) isomorphic to S3 and makes A into an S3-module. Let (a, b) be a fixed
point of σ. Then a = b−1, b = a · b−1 and therefore b3 = 1. This shows that a = b = 1 and
by lemma 23 one has G := H nA ∈M.
Uniqueness: If τ is any fixed point free automorphism of an abelian group of order 3, then
τ3 − 1 = 0 and τ − 1 is an automorphism. Therefore τ + τ−1 = −1. Because of lemma
11 (c) it is sufficient to show the following: Let ϕ, ϕ̃, σ, σ̃ be automorphisms of the abelian
group A such that there are subgroups B, B̃ of A with A = B ⊕ Bσ = B̃ ⊕ B̃σ̃. Let(
1 −1
0 −1

)
be the matrix representations of ϕ and ϕ̃ on the corresponding decompositions

and

(
0 −1
1 −1

)
the matrix representations of σ and σ̃. Then there is an automorphism f

of A such that σ̃ ◦ f = f ◦ σ and ϕ̃ ◦ f = f ◦ ϕ: By the theorem of Krull-Remak there is
an isomorphism g : B → B̃. Define f : B ⊕ Bσ → B̃ ⊕ B̃σ̃ : a · bσ 7→ ag · bg·σ̃. Since all
components in the representations of ϕ, ϕ̃, σ, σ̃ are central, a calculation similar to that in
lemma 17 shows that f is suitable.

Examples: The groups G ∈ G with G′′ = {1} are C2 and DA for a finite abelian group
A of odd order. The following table shows their identification as SmallGroup from [GAP]
for some examples.

G′/G′′ Id(G) Id(G′)

{1} [2,1] [1,1]

C3 [6,1] [3,1]

C5 [10,1] [5,1]

C7 [14,1] [7,1]

C9 [18,1] [9,1]

C3 × C3 [18,4] [9,2]

C15 [30,3] [15,1]

C9 × C3 [54,7] [27,2]

Table 1: small groups from G
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The other tables below show some examples of groups from G with G′′ 6= {1}. They have
been calculated using [GAP] and lemma 23. In the later chapters, it will be counted how
often these groups and the groups from table 1 are related to Gal(K2,f/Q) for certain real
quadratic number fields K. The tables contain all groups of G up to order 2000 where
G/G′ is isomorphic to a group in {C3, C5, C7, C9, C3 × C3, C15, C9 × C3}. As mentioned
before, the classification of the modules from M would give a more extensive description
of the groups from G (at least in the case that (G′ : G′′) and |G′′| are coprime), but it
is not useful to work with this description and only the groups in the following tables
occur often enough in the number field context. Id(G) respectively Id(G′) again denotes
the identification as SmallGroup according to [GAP] and Ker the kernel of the action
of G′/G′′ on G′′. Let U be a subgroup of G/G′′ which is contained in G′/G′′, and x
an involution of G outside G′. Then C̃(U) denotes the isomorphism class of the group
C(〈Û , x〉), where U is the subgroup of G with G′′ ≤ Û ≤ G′ corresponding to U . The
question mark in the Id(G)-column indicates that there is no identification as SmallGroup
in [GAP] for the corresponding group.

G′/G′′ G′′ Id(G) Id(G′)

C3 C2 × C2 [24,12] [12,3]

C3 C4 × C4 [96,64] [48,3]

C3 C4
2 [96,227] [48,50]

C3 C5 × C5 [150,5] [75,2]

C3 C7 × C7 [294,7] [147,5]

C3 C8 × C8 [384,568] [192,3]

C3 (C4 × C2)2 [384,18123] [192,1020]

C3 C6
2 [384,20164] [192,1541]

C3 C10 × C10 [600,179] [300,43]

C3 C11 × C11 [726,5] [363,2]

C3 C13 × C13 [1014,7] [507,5]

C3 C14 × C14 [1176,243] [588,60]

C3 C16 × C16 [1536,408544632] [768,1083477]

C3 (C8 × C2)2 [1536,408569052] [768,1083725]

C3 C4
4 [1536,408568994] [768,1083578]

C3 (C4 × C2
2 )2 [1536,408640850] [768,1084956]

C3 C8
2 [1536,408641062] [768,1085321]

C3 C17 × C17 [1734,5] [867,2]

C3 C19 × C19 [2166,15] [1083,5]

C3 C20 × C20 ? [1200,384]

C3 C23 × C23 [3174,6] [1587,2]

C3 C25 × C25 ? [1875,16]

C3 C29 × C29 [5046,6] [2523,2]

C3 C31 × C31 [5766,15] [2883,5]

C3 C35 × C35 [7350,109] [3675,18]

C3 C37 × C37 [8214,8] [4107,5]

C5 C4
2 [160,234] [80,49]

C5 C4
3 [810,101] [405,15]

C5 C11 × C11 [1210,7] [605,6]

C5 C4
4 ? [1280,1116309]

Table 2: small groups from G
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G′/G′′ G′′ Id(G) Id(G′)

C5 C19 × C19 [3610,6] [1805,2]

C5 C8
2 ? [1280,1116356]

C5 C29 × C29 [8410,6] [4205,2]

C5 C31 × C31 [9610,8] [4805,6]

C7 C6
2 [896,19344] [448,1394]

C7 C13 × C13 [2366,6] [1183,2]

C7 C29 × C29 [11774,8] [5887,7]

Table 2: small groups from G

G′/G′′ G′′ Id(G) Id(G′) Ker C̃(C3)

C9 C2 × C2 [72,15] [36,3] C3 C2

C9 C4 × C4 [288,67] [144,3] C3 C4

C9 C4
2 [288,836] [144,111] C3 C2

2

C9 C5 × C5 [450,11] [225,3] C3 C5

C9 C7 × C7 [882,17] [441,7] C3 C7

C9 C8 × C8 [1152,153931] [576,3] C3 C8

C9 (C4 × C2)2 [1152,154457] [576,1445] C3 C4 × C2

C9 C6
2 [1152,157450] [576,8266] C3 C3

2

C9 C6
2 [1152,157853] [576,8661] {1} {1}

C9 C10 × C10 [1800,301] [900,66] C3 C10

C9 C11 × C11 [2178,12] [1089,3] C3 C11

C9 C13 × C13 [3042,18] [1521,7] C3 C13

C9 C14 × C14 ? [1764,91] C3 C14

C9 C17 × C17 [5202,12] [2601,4] C3 C17

C9 C17 × C17 [5202,21] [2601,6] {1} {1}
C9 C19 × C19 [6498,27] [3249,9] C3 C19

C9 C19 × C19 [6498,59] [3249,15] {1} {1}
C9 C35 × C35 [22050,225] [11025,30] C3 C35

Table 3: small groups from G

Because a page is small the next table uses the elementary divisor notation for abelian
groups (e.g. [4, 2, 2] for C4×C2×C2) and the last four columns give C̃(U1), C̃(U2), C̃(U3)
and C̃(U4), where U1, U2, U3 and U4 are the proper subgroups between G′′ and G′.

G′/G′′ G′′ Id(G) Id(G′) Ker C̃ C̃ C̃ C̃

C3 × C3 C2 × C2 [72,43] [36,11] C3 [2] [] [] []

C3 × C3 C4 × C4 [288,401] [144,68] C3 [4] [] [] []

C3 × C3 C4
2 [288,1026] [144,184] {1} [2] [2] [] []

C3 × C3 C4
2 [288,1036] [144,194] C3 [2,2] [] [] []

C3 × C3 C5 × C5 [450,21] [255,5] C3 [5] [] [] []

C3 × C3 C7 × C7 [882,39] [441,12] C3 [7] [] [] []

C3 × C3 C2
8 [1152,154139] [576,1070] C3 [8] [] [] []

C3 × C3 (C4 × C2)2 [1152,155474] [576,5127] {1} [4] [2] [] []

Table 4: small groups from G
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G′/G′′ G′′ Id(G) Id(G′) Ker C̃ C̃ C̃ C̃

C3 × C3 (C4 × C2)2 [1152,157128] [576,7440] C3 [4,2] [] [] []

C3 × C3 C6
2 [1152,157861] [576,8663] {1} [2,2] [2] [] []

C3 × C3 C6
2 [1152,157862] [576,8664] {1} [2] [2] [2] []

C3 × C3 C6
2 [1152,157874] [576,8678] C3 [2,2,2] [] [] []

C3 × C3 C10 × C10 [1800,579] [900,98] {1} [5] [2] [] []

C3 × C3 C10 × C10 [1800,691] [900,141] C3 [10] [] [] []

C3 × C3 C11 × C11 [2178,23] [1089,5] C3 [11] [] [] []

C3 × C3 C13 × C13 [3042,57] [1521,12] C3 [13] [] [] []

C3 × C3 C14 × C14 ? [1764,167] {1} [7] [2] [] []

C3 × C3 C14 × C14 ? [1764,219] C3 [14] [] [] []

C3 × C3 C17 × C17 [5202,26] [2601,7] C3 [17] [] [] []

C3 × C3 C19 × C19 [6498,86] [3249,21] C3 [19] [] [] []

C3 × C3 C35 × C35 [22050,304] [11025,35] {1} [7] [5] [] []

C3 × C3 C35 × C35 [22050,427] [11025,39] C3 [35] [] [] []

Table 4: small groups from G

G′/G′′ G′′ Id(G) Id(G′) Ker C̃(C3) C̃(C5)

C15 C2 × C2 [120,38] [60,9] C5 [] [2]

C15 C4 × C4 [480,258] [240,32] C5 [] [4]

C15 C4
2 [480,1201] [240,204] C5 [] [2,2]

C15 C4
2 [480,1195] [240,199] C3 [2,2] []

C15 C5 × C5 [750,27] [375,6] C5 [] [5]

C15 C7 × C7 [1470,14] [735,5] C5 [] [7]

C15 C8 × C8 [1920,237224] [960,216] C5 [] [8]

C15 (C4 × C2)2 [1920,239647] [960,9667] C5 [] [4,2]

C15 C6
2 [1920,240395] [960,11366] {1} [2,2] [2]

C15 C6
2 [1920,240413] [960,11390] C5 [] [2,2,2]

C15 C4
3 ? [1215,69] C3 [3,3] []

C15 C10 × C10 ? [1500,166] C5 [] [10]

C15 C11 × C11 [3630,42] [1815,6] C3 [11] []

C15 C11 × C11 [3630,45] [1815,8] C5 [] [11]

C15 C13 × C13 [5070,32] [2535,6] C5 [] [13]

C15 C14 × C14 ? [2940,174] C5 [] [14]

C15 C17 × C17 [8670,12] [4335,3] C5 [] [17]

C15 C19 × C19 [10830,19] [5415,5] C3 [19] []

C15 C19 × C19 [10830,40] [5415,8] C5 [] [19]

Table 5: small groups from G

Let x, y denote generators of G′/G′′ ∼= C9 ×C3 of order 9 and 3. One can choose them in
such a way (for every group a new choise) that the kernel of the action of G′/G′′ on G′′ is
always contained in

{
{1} , 〈y〉, 〈x3〉, 〈x〉, 〈x3, y〉

}
. In the following table G′/G′′ ∼= C9×C3.
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G′′ Id(G) Id(G′) Ker C(〈x3, y〉) C(〈x〉) C̃(〈xy〉) C̃(〈xy2〉)
C2 × C2 [216,93] [108,18] 〈x〉 [] [2] [] []

C2 × C2 [216,94] [108,20] 〈x3, y〉 [2] [] [] []

C4 × C4 [864,696] [432,99] 〈x〉 [] [4] [] []

C4 × C4 [864,700] [432,101] 〈x3, y〉 [4] [] [] []

C4
2 [864,3994] [432,525] 〈x3〉 [] [2] [2] []

C4
2 [864,3995] [432,524] 〈x3〉 [2] [2] [] []

C4
2 [864,4020] [432,551] 〈x〉 [] [2,2] [] []

C4
2 [864,4021] [432,553] 〈x3, y〉 [2,2] [] [] []

C5 × C5 [1350,44] [675,8] 〈x〉 [] [5] [] []

C5 × C5 [1350,45] [675,10] 〈x3, y〉 [5] [] [] []

C7 × C7 ? [1323,39] 〈x〉 [] [7] [] []

C7 × C7 ? [1323,41] 〈x3, y〉 [7] [] [] []

C8 × C8 ? [1728,1285] 〈x〉 [] [8] [] []

C8 × C8 ? [1728,1289] 〈x3, y〉 [8] [] [] []

(C4 × C2)2 ? [1728,12470] 〈x3〉 [2] [4] [] []

(C4 × C2)2 ? [1728,12471] 〈x3〉 [] [4] [2] []

(C4 × C2)2 ? [1728,12474] 〈x3〉 [4] [2] [] []

(C4 × C2)2 ? [1728,18304] 〈x〉 [] [4,2] [] []

(C4 × C2)2 ? [1728,18316] 〈x3, y〉 [4,2] [] [] []

C6
2 ? [1728,46126] 〈x3〉 [2,2] [2] [] []

C6
2 ? [1728,46127] 〈x3〉 [2] [2,2] [] []

C6
2 ? [1728,46128] 〈x3〉 [] [2,2] [2] []

C6
2 ? [1728,46133] 〈x3〉 [2] [2] [2] []

C6
2 ? [1728,46134] 〈x3〉 [] [2] [2] [2]

C6
2 ? [1728,46176] 〈x〉 [] [2,2,2] [] []

C6
2 ? [1728,46178] 〈x3, y〉 [2,2,2] [] [] []

C6
2 ? [1728,47903] 〈y〉 [] [] [] []

Table 6: small groups from G

Corollary. Two groups G and H from table 1-6 are isomorphic if and only if G′/G′′ ∼=
H ′/H ′′, H ′′ ∼= G′′ and if there is an isomorphism f : G/G′′ → H/H ′′ such that C̃(U) ∼=
C̃(f(U)) for every subgroup U ≤ G′/G′′. If the tables contain a group G, then they contain
all groups H ∈ G with G′/G′′ ∼= H ′/H ′′ and H ′′ ∼= G′′.

Proof. This can be calculated with [GAP].

Remark: The fact that G′/G′′, G′′ and the C̃(U)′s determine G is not typical for groups
from G. The reason is that the G’s from the table are so small that the DG′/G′′-module
G′′ has only one indecomposable summand or different indecomposable summands have
different kernel of DG′/G′′-action.

3.5 The Group Gal(K2,f/Q)

Let K be a quadratic number field. This chapter expresses the results from before in
terms of number fields. Recall from chapter 2 that K1 and K2 denote the first and second
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Hilbert class field of a number field K.

Proposition 5. Let K be a quadratic number field with odd class number. Then the
following hold:

(a) ([No]) If rkp(Cl(K)) > 1 for an odd prime p, then p | hK1.

(b) The extension Gal(K2/Q) of Gal(K2/K1) by Gal(K1/Q) splits if and only if Cl(K)
is cyclic.

Proof. Theorem 2 from [No] shows that an odd prime p divides the class number of the
p-class field of K, if rkp(Cl(K)) > 1. This is statement (a).
Denote G := Gal(K2/Q), H := Gal(K2/K), A := Gal(K2/K1) and define Up ≤ H to be
the normal subgroup of H corresponding to the p-class field of K for an odd prime p. One
has G′ = H and H ′ = A by proposition 1. Suppose that the extension from (b) splits.
Then lemma 20 together with theorem 2 from [No] shows that Sylp(H/A) is cyclic. This
holds for all odd primes p and hence H/A ∼= Cl(K) is cyclic. If on the other hand Cl(K)
is cyclic, then G ∈ G by definition, and the extension splits by lemma 22.

Remark: Bond [Bon] proves this proposition for imaginary quadratic number fields. The
proof given here is a combination of methods from [C-R2] and [No] and similar to his
one.

Let L/F be a Galois extension of number fields and M be the subfield of L1 containing
L such that Gal(L1/M) ∼= Cl(L:F )(L). Then M/F is a Galois extension and Gal(M/L)
is a finite Gal(L/F )-module. Define the non-central coprime Hilbert class field N
of L over F to be the fix field N = MG by the group G := Gal(M/L)Gal(L/F ). Then
as immediate consequence N/F is Galois and N/L is abelian and unramified. One does
not use M to avoid summands of Cl6=(L:F )(F ) to appear in Gal(N/L) and by lemma 2.10
using N is the only way to do so. In the notation of Cohen-Lenstra the field N should
correspond to the good part of the relative class group Cl(L/F ) (see chapter 4.1).

Let K be a quadratic number field. Then K1,f denotes the non-central coprime Hilbert
class field of K over Q and K2,f denotes the non central coprime Hilbert class field of K1,f

over K, which is also called second non-central coprime Hilbert class field of K.

Remark: For every abelian number field L one gets a tower

L ≤ L1,f ≤ L2,f ≤ L3,f ≤ · · ·

this way and one can show (similar as it will be done in proposition 7) that Li,f/Q is
Galois, Gal(Li,f/Lj,f )′ ∼= Gal(Li,f/Lj+1,f ) and that the extensions

{1} → Gal(Lk,f/Li,f )→ Gal(Lk,f/Lj,f )→ Gal(Li,f/Lj,f )→ {1}

are split for all −1 ≤ j < i < k with L0,f := L and L−1,f := Q.

Proposition 6. Let K be a quadratic number field and set G := Gal(K1,f/Q). Then the
following is true:

(a) Gal(K1,f/K) ∼= Cl6=2(K)

(b) G′ = Gal(K1,f/K)

(c) G ∼= DCl 6=2(K)
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(d) K1,f = K1, if and only if the class number of K is odd.

Proof. This is a consequence of proposition 1 and the definition of K1,f .

Proposition 7. Let K be a quadratic number field and set G := Gal(K2,f/Q), set
H := Gal(K2,f/K) and set A := Gal(K2,f/K1,f ). Then the following is true:

(a) K2,f/Q is a Galois extension of number fields.

(b) G′ = H, G′′ = A, G′′′ = {1}.

(c) G is a factor group of Gal(K2/Q), H is a factor group of Gal(K2/K) and A is
isomorphic to a factor group of Gal(K2/K1).

(d) G ∈ G and (H/A,A) ∈M.

(e) Gal(K2,f/Q) ∼= DGal(K1,f/K) n Gal(K2,f/K1,f ) and Gal(K1,f/K) acts on the group
Gal(K2,f/K1,f ) without any common fixed point (except 1).

(f) The group Gal(K1,f/K) is finite abelian and of odd order n and the Galois group
Gal(K2,f/K1,f ) is a finite direct sum of groups (Cpe)

r, where e is any integer, p is
a prime not dividing n and r is any of the integer lcm(2, fp), where fp is defined
by fp := mink(p

k ≡ 1(q), k > 0) and q runs through the prime divisors of n. In
particular Gal(K2,f/K1,f ) is the direct product of two isomorphic abelian groups.

(g) If L is another quadratic number field, then Gal(K2,f/K) ∼= Gal(L2,f/L) if and only
if Gal(K2,f/Q) ∼= Gal(L2,f/Q).

(h) If L 6= K is another quadratic number field, then K2,f ∩ L2,f = Q (remember from
chapter 2 that all number fields are understood to be subfields of a fixed algebraic
closure of Q).

(i) If Cl(K) ∼= Cpe for an odd prime p, then K1,f = K1 and K2,f = K2.

(j) If Cl(K) is not cyclic or if hK is even, then K2,f is a proper subfield of K2.

Proof. a: This is true, because Gal(K2,f/K1,f ) is also a Gal(K1,f/Q)-module (see argu-
mentation in the proof of lemma 2.10).
b: By lemma 18 and by the definition, one has H ′ = A, A′ = {1} and H/A = (G/A)′,
so H/A = (G′A)/A, which implies H = G′A and hence H = G′H ′. Since H ′ ≤ G′, this
shows H = G′.
c: The first two statements of (c) are obvious because K2,f is a subfield of K2. If
U := Gal(K2/K) and N := Gal(K2/K2,f ), then A ∼= (U/N)′ ∼= (U ′ ·N)/N ∼= U ′/(N ∩U ′)
and U ′ ∼= Gal(K2/K1).
d: By (b) one has G ∈ G and by lemma 22 one has (H/A,A) ∈M.
e: This is a consequence of (d) and lemma 22.
f: This follows from the first corollary to the classification of the modules from M on page
26.
g: Suppose that Gal(K2,f/K) ∼= Gal(L2,f/L). Define B := Gal(L2,f/L1,f ) and define
U := Gal(K1,f/K). Then by assumption one can choose an isomorphism of groups
such that U ∼= Gal(L1,f/L) and therefore the conjugation in Gal(K1,f/Q) respectively
in Gal(L1,f/Q) makes the abelian groups A and B into DU -modules. By the assumption
and by lemma 26, these modules are conjugate as U -modules according to the notation
on page 10. That means, there is an automorphism φ of U such that the modules A and
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φB are isomorphic as U -modules. Let x ∈ DU \ U be an involution and y be any element
of U . If one defines φ̂ ∈ Aut(DG) by x 7→ x and y 7→ φ(y), then φB is the restriction of

the DU -module φ̂B to U and by lemma 17 one has φ̂B ∼= A as DU -modules. With lemma
26 one gets statement (g).
h: The intersection M := K2,f ∩ L2,f is a solvable Galois extension of Q. The maximal
abelian subextension of M/Q is contained in K ∩ L = Q by (b). This implies (h).
i: Since p is odd, one has K1 = K1,f . By assumption Gal(K2/Q) ∈ G and by a corollary
to lemma 18 one has p - hK2 and therefore (Cl(K),Gal(K2/K1)) ∈M. If N is the central
class field of K1 over K, then also (Cl(K),Gal(N/K1)) ∈ M, because of lemma 9. This
means in particular Gal(N/K1)Cl(K) = {1}, and hence N = K1 and K2,f = K2.
j: K2,f is a subfield of K2 by definition. If hK is even, then by genus theory the factor
group Gal(K2/Q)/Gal(K2/Q)′ is not isomorphic to C2. Hence K2 6= K2,f by (b). If Cl(K)
is non cyclic but hK is odd, then K1 = K1,f by proposition 6 and by proposition 5 the de-
grees (K1,f : K) and (K2 : K1,f ) are not coprime. But by (d) (K1,f : K) and (K2,f : K1,f )
are coprime.

Remark: Statements (f) or (d) do not imply that all such groups occur for a suitable real
quadratic number field K. For conjectures concerning this question, see chapter 4.

Proposition 7 lists the important properties of the field extension K2,f/K for a real
quadratic number field K. The following lemma and the propositions give information
for the computation of Gal(K2,f/Q) for concrete real quadratic number fields. The propo-
sition 8 is a summary of all class group relations from before in the context of the field
extension K1,f/Q.

Lemma 27. Let K be a real quadratic number field and N ≤ K1,f be a non Galois subfield.
For a number field M , let M̃1 be the maximal unramified abelian extension of M such that
(M̃1 : M) is coprime to n := (K1,f : K). Then Ñ1 ≤ K2,f .

Proof. The field N1 is contained in (K1,f )1 and therefore Ñ1 is contained in ˜(K1,f )1.

The field K1 is also a subfield of ˜(K1,f )1. One may assume that NK = K1,f . Define

G := Gal(( ˜K1,f )1/Q), H := Gal(( ˜K1,f )1/K) and A := Gal(( ˜K1,f )1/K1,f ). Then by
lemma 2.10 one has the decomposition A = IHA ⊕ AH of G-modules and by the theo-
rem of Zassenhaus, there is an abelian subgroup U of odd order n = (K1,f : K) such
that H = U n (AH ⊕ IHA) = (U n IHA) ⊕ AH . By lemma 18 one has the equation
Gal(( ˜K1,f )1/K1) = H ′ = IHA and by definition Gal(( ˜K1,f )1/K2,f ) = AH . Because of the
remark after proposition 1, there is an involution x ∈ G \H such that G = 〈x〉nH. Since
all non Galois subfields of K1,f , whose composition with K equals K1,f , are conjugate, one
may assume that 〈x,A〉 is the fix group of N in G. If T1 = 〈xu1a1b1〉, ..., Tr = 〈xurarbr〉
with ui ∈ U, ai ∈ IHA, bi ∈ AH are the inertia subgroups of the ramified primes of

˜(K1,f )1/Q, then also by that remarkG = 〈T1, ..., Tr〉. By proposition 1, modulo IHA the in-

volution x inverts every element of U . Hence (xuiaibi)
(u
n−1
2 ) = xcibi for a suitable ci ∈ IHA

and Si := 〈xcibi〉 is an inertia subgroup of ˜(K1,f )1/N . Since elements of AH commute with
elements of U and IHA, one has A = AH · IHA = 〈S1IHA, ..., SrIHA〉 = 〈S1, ..., Sr〉IHA.
Using lemma 2.10, this implies AH ≤ 〈S1, ..., Sr〉 and therefore the maximal unramified
extension of N in ˜(K1,f )1 is contained in K2,f .

Corollary. Let K be a real quadratic field, N a non Galois subfield of K1,f and let Ñ
be the maximal unramified abelian extension of N such that (Ñ : N) and (K1,f : K) are
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coprime. Let G := Gal(K2,f/Q) and V := Gal(K2,f/N).
Then Gal(K2,f/Ñ) = 〈V ′, T ∩ V | T complement of G′ in G〉.

Proof. Since all the complements T of G′ in G are conjugate by lemma 22, they all are
inertia subgroups in the extension K2,f/Q, because K2,f/K is unramified. Therefore
W := Gal(K2,f/M) = 〈V ′, T ∩ V | T complement of G′ in G〉, if M is the maximal
unramified abelian extension of N in K2,f . By lemma 25 V/W is isomorphic to a subgroup
of G′′ and so (V : W ) is coprime to (K1,f : K). Hence Ñ = M .

Proposition 8. (see [C-M] chapter 7) Let K be a real quadratic number field, N ≤ K1,f a
non Galois subfield such that K1,f = N ·K and define n := (K1,f : K). Then the following
hold:

(a) If A := Gal(K2,f/K1,f ), V is a non normal subgroup of Gal(K2,f/Q) containing A
and U := V ∩Gal(K2,f/K), then Cl6=n(KV

2,f )⊕ Cl6=n(KV
2,f ) ∼= AU .

(b) Cl 6=n(N)⊕ Cl6=n(N) ∼= Gal(K2,f/K1,f ).

(c) If H := Gal(K1,f/K) and
∑

M≤H aM · 1HM = 0 with aM ∈ Z is a relation on induced

principal characters and LM ≤ K1,f is a non Galois subfield such that K ·LM = KM
1,f ,

then
⊕

M≤H Cl6=n(LM )aM ∼= {1}.

Proof. Since the maximal unramified abelian extension of degree coprime to n of KV
2,f

is contained in K2,f by lemma 27, lemma 25 and the corollary to lemma 27 show that
AV ∼= Cl6=n(KV

2,f ) and AU ∼= AV ⊕ AV . This implies (a), and (b) is a special case (a).

By lemma 2 one has
⊕

M≤H(AM )aM ∼= {1}, where A is an H-module in the obvious way.
Therefore (a) implies (c).

Remark: This is a special case of a more general phenomenon which is explained in
chapter 7 of [C-M].

Remark: This proposition together with proposition 2 helps to calculate the isomorphism
type of the group Gal(K2,f/Q) by calculating class groups of certain dihedral number fields
(see chapter 5).

Proposition 9. Let K be a real quadratic number field such that (K2,f : K1,f ) = m2 > 1

and let M be one of the fields of degree (M : Q) = m2 such that K2,f = M ·K1,f . Let M̂

be the Galois closure of M over Q. Then Gal(M̂/Q) ∼= Gal(K2,f/Q)/Z(Gal(K2,f/K)), M

is totally real and dM = d
m·(m−1)

2
K .

Proof. A field M with (M : Q) = m2 and K2,f = M ·K1,f exists, because of proposition 7.
As subfield of K2,f it is totally real and the statement about the Galois group follows by
lemma 24. Denote n := (K1,f : K) and let N be a non Galois subfield of K1,f such that
K1,f = K · N . Since (Gal(K1,f/K),Gal(K2,f/K1,f )) ∈ M, the group G := Gal(K2,f/N)
has the structure described in lemma 21, because of lemma 11a and lemma 12. If Ñ
denotes the maximal abelian unramified extension of N such that (Ñ : N) is coprime to n
and T a subfield of K2,f of index 2 containing Ñ , then d2

T · dKÑ = d2
Ñ
· dK2,f

by lemma 21
and lemma 8. Because of the ramification, dKÑ = dm·nK and dN̂ = dmN and by proposition

2, one has dN = d
n−1
2

K . Hence
dK2,f

d2T
= d−mK . If T̃ is a subfield of K2,f of index 2 containing
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M , then by lemma 8 and lemma 6 one has
dK2,f

d2
T̃

· dKM = d2
M . The extension KM/K is

unramified, therefore dKM = dm·mK and since all subfields of K2,f of index 2 are conjugate

by lemma 22, one has dT = dT̃ and hence d2
M = d

m·(m−1)
K .

Remark: This proposition is the analogue for K2,f of one direction of proposition 2. I
suppose the other direction holds true, too. A theorem from [Ko] for example implies that
if K is a real quadratic number field and M a field of degree 4 with dM = dK , then the
Galois closure M̂ is an unramified extension of K and Gal(M̂/K) ∼= A4.
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4 The Heuristic

The aim of this chapter is to give conjectures not theorems. The first part recalls the
Cohen-Lenstra heuristic ([C-L]), its generalization by Cohen-Martinet [C-M]) and a con-
jecture of Malle ([M2]) which tries to describe the behavior of the p-parts of the class groups
for some primes which seem to be bad for the Cohen-Lenstra heuristic by numerical data.
The second part gives a conjecture for the distribution of the groups Gal(K2,f/K) for real
quadratic number fields which is based on the heuristics mentioned above and needs some
further (not proven) assumptions. As defined in chapter 2 every number field is supposed
to be a subfield of one fixed algebraic closure Q of Q.

4.1 Cohen Lenstra Heuristic

The following notations are needed (see [C-L], [M2]). Let n, k be positive integers.
Then

(n)k :=

k∏
i=1

(1− n−i)

and

(n)∞ :=
∞∏
i=1

(1− n−i).

If K is a set of number fields (all contained in one fixed algebraic closure) and f : K → R
is any map, then the density function d(f) : N≥n0 → R is a map depending on K and f
which is defined by

x 7→
∑

K∈K,|dK |≤x f(K)

| {K ∈ K | x ≥ |dK |} |
and the density of M(f) is defined by

M(f) = lim
x→∞

d(f)(x),

if it exists. The integer n0 has technical reason and shall avoid zero denominator. An
important type of functions are characteristic functions χ{P (K)} for a property P of number
fields. This is defined as follows:

χ{P (K)} =

{
1, K fulfills P

0, else

A situation Σ = (G, e,K0, σ) consists of a transitive permutation group G of degree
n ≥ 2, a central idempotent e of QG which is orthogonal to 1

|G|
∑

g∈G g, a number field K0

and a signature σ, which may occur as signature of an extension K/K0 of number fields
such that Gal(K̂/K0) is permutation isomorphic to G. The field K̂ denotes the Galois
closure of K over K0 here. The set K(Σ) denotes the set of all number fields K (contained
in a fixed algebraic closure of K0) which are extensions of K0 with permutation group G
and signature σ of K/K0. If G is just a group, then this implies K̂ = K. To every situation
one can attach a finite set S of bad primes and for every central irreducible summand
e′ of e over Q a rational number (in general not an integer) u′ the unit ranks. How S
and the u′ are calculated is described in [C-M] chapter 6. Just the following situations are
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needed here: K0 = Q and K/K0 is a totally real Galois extension with Galois group G
isomorphic to C2 or DH for a finite abelian group H of odd order. In the C2 = 〈g〉-case
e = 1

2 −
g
2 and otherwise e = 1− 1

|H|(
∑

g∈H g). One always has u′ = 1 and the set of bad
primes are the primes which divide the order of G.

Remark: In the second case there are no group theoretic reasons why 2 should be bad
(see [C-M]), but the existence of p-th roots of unity in K0 makes the prime p bad, see
[M2].

As defined before the class group of an algebraic number field K is the factor group of the
group of fractional ideals of the ring of integers OK by the principal fractional ideals of OK .
In theory the computation of class groups is easy (essentially one just calculates relations
between the classes of all integral ideals with norm up to a certain bound depending on
the number field by principal ideal tests). But it is difficult to answer any interesting
questions about the distribution of class groups. Only little is known about the
distribution of class groups of number field and the following list gives some examples of
results for quadratic number fields.

• Every integer occurs as 2-rank of the class group of a quadratic number fields (well
known by genus theory; see [Na], page 447).

• Every integer occurs as divisor of the class number of a suitable real quadratic number
field (see [Y], page 66).

• Every abelian group occurs at most a finite number of times as class group of an
imaginary quadratic number field (by the Brauer-Siegel theorem; see [Na], page
434). For example hK = 1 exactly for those imaginary quadratic fields K whose
discriminant dK is contained in {−3,−4,−7,−8,−11,−19,−43,−67,−163}.

• The theory of Davenport-Heilbronn allows some statements about the distribution
of 3-class groups of quadratic number fields (see [D-H]).

• Let r be any integer, rk4(A) the 4-rank of the finite abelian group A (e.g. the number
of elementary divisors of A which are divisible by 4) and f : K → R be the map
defined by f(K) = χ{rk4(Cl(K))=r}. Then

M(f) = 2−r
2 · (2)∞

((2)r)2
,

if K is the set of imaginary quadratic number fields, and

M(f) = 2−r(r+1) · (2)∞
(2)r · (2)r+1

,

if K is the set of real quadratic number fields (see [F-K] theorem 3).

But for most abelian groups A it is unknow how M(χ{Cl(K)∼=A}) looks like, even in the
case where K is the set of real quadratic number fields. For example it is unknown if there
are infinitely many real quadratic number fields K with class number 1 (e.g. K such that
OK is a unique factorization domain).

If K is the set of all number fields which belong to a situation and f : K → R a “nice”
map (see [C-M] chapter 5) just depending on the class group of K ∈ K (and some module
structure on it), then the Cohen-Lenstra heuristic ([C-L]) is a conjecture which suggests
values for M(f). A particular example is the following conjecture:
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For a finite set S of primes ZS denotes the smallest localization of Z such that all the
elements of S becomes units and for an extension of number fields K/K0 with Galois
closure K̂ of K over K0 the group Cl(K̂/K0) denotes the relative class group of K̂/K0.
This is the kernel of the norm map from Cl(K̂) to Cl(K0). Its subgroups Clp(K̂/K0)
and ClS(K̂/K0) are the p-Sylow subgroup and largest subgroup of order coprime to all
elements from S.

Conjecture 1. ([C-M] chapter 6) Let Σ = (G, e,K0, σ) be a situation with unit rank
u = (u1, ..., um) and set of bad primes S. Let Ap be any finite eZ〈p〉G-module, A any finite

eZSG-module and fp, f : K(Σ) → R be maps defined by fp(K) = χ{eClp(K̂/K0)∼=Ap} and

f(K) = χ{eClS(K̂/K0)∼=A} . Let e1, ..., em be the central irreducible summands of e in QG
and let

cp := (
∑
B/∼=

1

|AutG(B)| ·
∏m
i=1 |eiB|ui

)−1,

where the sum runs through all isomorphism classes of finite eZ〈p〉G-modules. Define c by

an analogous sum over the isomorphism classes of all finite eZSG-modules. Then

M(fp) =
cp

|AutG(Ap)| ·
∏m
i=1 |eiAp|ui

and
M(f) =

c

|AutG(A)| ·
∏m
i=1 |eiA|ui

.

Remark:

• All the values cp and c always exist and the cp are all non zero. The value c is non
zero in those situations where all components of the unit rank are positive ([C-M]
theorem 5.6 ii).

• The structure of eClp(K̂/K0) as eZ〈p〉G-module is not uniquely defined but the
conjecture gives the same values for M(f) for all possibilities.

• One can choose the idempotent e of a situation (G, e,K0, σ) such that the group
eClp(K̂/K0) is isomorphic to Clp(K/K0) ([C-M] chapter 7).

• If K0 = Q or K0 is any number field with class number 1, then Cl(K/K0) = Cl(K).

If Σ = (G, e,K0, σ) is a situation conjecture 1 defines a probability distribution prp on the
countable set of isomorphism classes of all finite eZ〈p〉G-modules. This is called the local
Cohen-Lenstra probability for the situation Σ. If all components of the unit rank u
corresponding to Σ are positive, then this conjecture describes a probability distribution
pr on the countable set of isomorphism classes of the finite eZSG-modules, the global
Cohen-Lenstra probability. A very interesting explanation about the philosophy behind
the Cohen-Lenstra probability and connections to other areas of mathematic is contained
in chapter 2 of [Len].

The following example from the number field context is not about class groups. But it is
easy to calculate, shows the same problems with global probability as the Cohen-Lenstra
heuristic and the same automorphism weighting factors.

Example: Let G, H be non trivial cyclic groups and

a(x,G) =
| {K ≤ Q(ζp) | p ≤ x prime, G ∼= Gal(K/Q)} |

| {K ≤ Q(ζp) | p ≤ x prime} |
.
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Then

lim
x→∞

a(x,G)

a(x,H)
=
|Aut(H)|
|Aut(G)|

and lim
x→∞

a(x,G) = 0.

Proof. This is an application of Dirichlet’s theorem on prime numbers in arithmetic pro-
gressions.

If the global probability does not exist (e.g. the c-value from the conjecture is zero) one
can restrict the probability measure to proper σ-subalgebras of the power set of the set
of the isomorphism classes of eZSG-modules (see [Len] chapter 5). This can be done in a
way which includes interesting examples in the number field context.

The conjecture also claims the distribution of the different p-parts of the class groups of
number fields to be independent:

Lemma 1. ([C-M]) Let Σ = (G, e,K0, σ) be a situation with bad primes S and unit rank
u such that the global Cohen-Lenstra probability pr exists. Let prp be the local probabilities

and let A be a finite eZSG-modules with localizations Ap at the prime p ∈ N. Then

pr({A}) =
∏
p/∈S

prp({Ap}).

Proof. This is part of [C-M] theorem 3.6.

For concrete calculations the formulas in conjecture 1 are inconvenient. Therefore:

Lemma 2. ([C-M]) Let Σ = (G, e,Q, σ) be a situation with bad primes S and unit rank
(u1, ..., um). Let e1, ..., em be the central irreducible summands of e in QG. For every i
let ϕi be one of the Galois conjugate absolute irreducible constituents of the irreducible Q-
character corresponding to ei. Let Ki be the number field of values of ϕi and hi := deg(ϕi).
Suppose that the rational prime p decomposes in ri(p) prime ideals with inertia degree fi(p)
in the abelian extension Ki/Q. Assume that all ϕi have Schur index 1 and that all ui > 0.
Define

cp =

m∏
i=1

(
(pfi(p))(hi·ui)

(pfi(p))∞
)ri(p)

and

c = (
m∏
i=1

∞∏
j=1

ζKi(ui · hi + j)) ·
∏
p∈S

c−1
p .

Then the following is true:

(i) If A is any finite eZ〈p〉-module and p any prime outside S, then

prp(A) =
c−1
p

|AutG(A)| ·
∏m
i=1 |eiA|ui

.

(ii) If B is any finite eZSG-module, then

pr(B) =
c−1

|AutG(B)| ·
∏m
i=1 |eiB|ui

.
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Proof. [C-M] proposition 3.10.

Remark:

• The c-values in this lemma differ from those of conjecture 1.

• The calculations of the denominator for concrete modules can be done with [GAP]
and the calculations of the c-values with [PARI].

Examples: This example uses the notation of lemma 2 and gives the numerators of the
formulas from this lemma for the global Cohen-Lenstra probability for some example situa-
tions, which are needed in the next chapter. In the situation (C2 = 〈g〉, 1−g

2 ,Q, totally real)
one has m = 1, S = {2}, u1 = 1 and c−1 ≈ 0.7544581722. The following table gives
the corresponding data for some finite abelian groups H of odd order in the situation
(DH , 1− 1

|H|(
∑

g∈H g),Q, totally real). All components of the unit rank equal 1 and:

H m S c−1

C3 1 {2, 3} 0.9847258786

C5 1 {2, 5} 0.9962675558

C7 1 {2, 7} 0.9982325660

C9 2 {2, 3} 0.9835218667

C3 × C3 4 {2, 3} 0.9402891079

C15 3 {2, 3, 5} 0.9921182811

C9 × C3 7 {2, 3} 0.9368442843

Table 7: c-values for global Cohen-Lenstra probability

Although [C-M] would allow to handle 2 in the DH cases as good prime, the 2-parts are
believed to behave according to a different distribution which is defined in [M2]. The next
conjecture gives a special case of [M2], conjecture 2.1.

Conjecture 2. ([M2]) Let H be a non trivial finite abelian group of odd order,
(G = DH , e = 1 − 1

|H|(
∑

g∈H g),Q, totally real) be a situation, A be any finite eZ〈2〉G-

module and f : K(Σ) → R : K 7→ χ{eCl2(K)∼=A}. Let e1, ..., em be the central irreducible
summands of e in QG. For every i let ϕi be one of the Galois conjugate absolute irreducible
constituents of the irreducible Q-character corresponding to ei. Let Ki be the number field
of values of ϕi and Oi its ring of integers. For every prime p dividing 2 in Oi denote
rp,i := 1

2 · dimOi/p eiA/(p · eiA). Let fi be the inertia degree of 2 in Oi. Let ci be constants
such that

pr2,H,i(eiA) = ci ·
∏
p|2

2fi
rp,i(rp,i−1)

2 · f rp,ii ·
(2fi)rp,i+2

(2fi)2
· 1

|eiA| · |AutG(eiA)|

defines a probability distribution on the set of finite eiZ〈2〉G-modules and define

pr2,H(A) :=
m∏
i=1

pr2,H,i(eiA).

Then M(f) = pr2,H(A).
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Remark: The formula in [M2] uses (Ki : Q)rp,i instead of f
rp,i
i and it contains a misprint:

the factor
∏r+u
i=1 (pi−1) should be

∏r+u
i=u+1(pi−1). In all the following cases just one prime

divides 2 in Oi, therefore in the following cases rp,i = 1
2fi
· rk2(eiA) where rk2(eiA) is the

2-rank of eiA as abelian group. The ci values can be calculated with theorem 6.1 (ii) from
[C-L] and corollary 2.2 from [A].

Examples: Here the notations of the previous conjecture are used.

• If A is a finite eZ〈2〉S3 module and r = rk2(A)
2 , then

pr2,C3
(A) ≈ 0.7864170783 · 2(r2−r)/2 · (2)r+2

(2)2
· 1

|A| · |AutS3(A)|
.

• If A is a finite eZ〈2〉D5 module and r = rk2(A)
4 , then

pr2,C5
(A) ≈ 0.9596794718 · 2r2 · (4)r+2

(4)2
· 1

|A| · |AutD5(A)|
.

• If A is a finite eZ〈2〉D7 module and r = rk2(A)
6 , then

pr2,C7
(A) ≈ 0.9933431984 · 8(r2−r)/2 · 3r · (8)r+2

(8)2
· 1

|A| · |AutD7(A)|
.

• If ei is the central irreducible summand of e over Q which corresponds to the faithful
irreducible QD9-module, A is a finite eiZ〈2〉D9 module and r = rk2(A)

6 , then

pr2,C9,i(A) ≈ 0.9933431984 · 8(r2−r)/2 · 3r · (8)r+2

(8)2
· 1

|A| · |AutD9(A)|
.

• If ei is the central irreducible summand of e over Q which corresponds to the faithful
irreducible QD15-module, A is a finite eiZ〈2〉D15 module and r = rk2(A)

8 , then

pr2,C15,i(A) ≈ 0.9989593535 · 4r2 · (16)r+2

(16)2
· 1

|A| · |AutD15(A)|
.

4.2 Heuristic for Gal(K2,f/K)

All the conjectures above concern distributions of abelian groups. This chapter looks at
the non-abelian case. It proposes a conjecture about the distribution of Gal(K2,f/K) for
real quadratic number fields K.

The idea behind this conjecture should allow to describe the distribution of the groups
Gal(Li,f/L) for integers i, where L runs through all number fields of a totally real Galois
situation over Q. It works as follows: Set L0,f := L. The factor group Gal(Li,f/L) of
Gal(Li/L) should be a generalization of the good part of class groups to higher class
groups and it is chosen in a way such that Gal(Li,f/Li−1,f ) is the good part of the
Gal(Li−1,f/Q)-module Gal((Li−1,f )1/Li−1,f ) according to Cohen-Martinet. If H0 := G0,
Gi := Gal(Li,f/Q) and Hi := Gal(Li,f/Li−1,f )), then the Gi-modules Gal(Li+1,f/Li,f )
should essentially be distributed as the Cohen-Lenstra heuristic proposes for the situa-
tion (Gi, 1− e,Q, totally real), where e is the central idempotent of QGi corresponding to
1GiHi .
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In the general case the group theory becomes difficult and it is not possible to give nu-
merical calculations. Therefore the following detailed description refers just to the case
of real quadratic fields. In this case K1,f is the 2′-class field of K by proposition 3.6,
which is the good part of K1 according to Cohen-Lenstra. If G := Gal(K1,f/Q), then
Gal(M/K2,f ) = Gal(M/K1,f )G

′
, where M is maximal abelian unramified extension of K1,f

such that (M : K1,f ) is coprime to (K1,f : K) by the definition on page 40. Hence one has
the isomorphism of G-modules Gal(K2,f/K1,f ) ∼= e ·ClS(K1,f ) where S is the set of prime
divisors of (K1,f : K) and e = 1− 1

|(K1,f :K)|(
∑

g∈G′ g) (see lemma 2.10). The set S is the set

of bad primes (according to Cohen-Martinet) of the situation Σ = (G, e,Q, totally real).
The following conjecture supposes that the G-modules e·ClS(K1,f ), where K runs through
the real quadratic number fields, are distributed in the same way as e · ClS(L), where L
runs through all fields of K(Σ). In addition it supposes that e · ClS∪{2}(L) and e · Cl2(L)
are distributed according to conjecture 1 and conjecture 2 independently of each other.

Let prquad be the Cohen-Lenstra probability on finite abelian groups of odd order defined by

the situation (C2 = 〈g〉, 1−g
2 ,Q, totally real). Let H be any finite non trivial abelian group

of odd order, let SH be the set of primes dividing |H| and let eH := 1− 1
|H|(

∑
g∈H g). Let

prCL,H be the Cohen-Lenstra probability on finite eZSH∪{2}DH -modules which belongs to
the situation (DH , eH ,Q, totally real) and pr2,H the probability distribution of conjecture
2 on finite eZ〈2〉DH -modules for the same situation. If A is any group, set

pr2,{1}(A) = prCL,{1}(A) =

{
1, A ∼= {1}
0, else

Let G0 := {U ∈ G | (U ′ : U ′′), |U ′′| are coprime} (G is defined at the beginning of chapter
3.4). If U ∈ G0, then U corresponds to a conjugacy class of finite eU ′/U ′′ZSU′/U′′DU ′/U ′′-
module structures on U ′′ by proposition 3.4 (here module structure means module struc-
ture up to isomorphm). Let kU be the size of this conjugacy class. Then the equation

prG0
(U) := kU · prquad(U

′/U ′′) · pr2,U ′/U ′′(U
′′
2 ) · prCL,U ′/U ′′(U

′′
6=2)

defines a probability distribution on G0 (pr2,U ′/U ′′(U
′′
2 ) and prCL,U ′/U ′′(U

′′
6=2) are in-

dependent of the representative of the conjugacy class). Since by proposition 3.7 one has
Gal(K2,f/Q) ∈ G0, Gal(K2,f/Q)′ = Gal(K2,f/K) and Gal(K2,f/Q) is uniquely determined
by Gal(K2,f/K) the following conjecture could make sense.

Conjecture 3. Let U ∈ G0, let K be the set of real quadratic number fields and let the
map f : K → R be defined by f(K) = χ{Gal(K2,f/K)∼=U ′}. Then M(f) = prG0

(U).

Remark: (bad case) The part of Gal(K2/K1,f ) which is not coprime to (K1,f : K)
is excluded from the considerations as bad part. Proposition 3.5 shows that this part
is distributed in a different way. N. Boston, M. Bush and F. Hajir define a probability
distribution on certain pro-p-groups which should describe the higher p-class field towers
of imaginary quadratic number fields for an odd prime p (see [B-B-H]). It is difficult to
calculate higher p-class field towers of real quadratic number fields, so there are almost no
numerical data. Those which are available show that under the first 235 real quadratic
number fields K with Cl(K1) ∼= Cl(K) ∼= C3×C3 one has 73 fields with second class group
Gal(K2/Q) ∼= SG(162, 19), 97 fields have Gal(K2/Q) ∼= SG(162, 20) and 65 fields have
Gal(K2/Q) ∼= SG(162, 22) (SG(i, j) denotes the SmallGroup [i, j] of [GAP]).
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Remark: Let (G,A) ∈M, let U := GnA be the semidirect product corresponding to the
module structure and let kU be the number of isomorphism classes of DG-modules which
are conjugate to A. It is an easy calculation with the methods used in lemma 3.26 to
show:

kU =
|A| · |AutDG(A)| · |G| · |Aut(G)|

|Aut(U)|
.

Therefore
prG0

(U)

prG0
(V )

=
|Aut(V )|
|Aut(U)|

,

if U, V ∈ G0 are groups such that |U ′′| and |V ′′| are odd and U ′/U ′′ ∼= V ′/V ′′. But this is
just coincidence and gives a wrong idea about prG0

.

Remark: It is possible to define something like local parts of the good part of higher class
groups. Instead of K1,f , one just considers the maximal p extension L of K contained in
K1,f and for the second step the maximal q extension in L1,f , where p and q are distinct
primes and p is odd. But the problem is that the group Gal(K2,f/K) is not uniquely
determined by those local parts. The real quadratic field K with dK = 568097 for example
has Cl(K) ∼= C15 and Cl(K1) ∼= C8

2 , but all proper immediate fields of K1/K have class
number 1. In the case of imaginary quadratic number fields no global Cohen-Lenstra
probability exists and therefore one can also not give a global heuristic for Gal(K2,f/K)
for imaginary quadratic fields K.

In chapter 5.2 conjecture 3 is compared with the number field data (tables 20 to 45). The
accordance between both is good for large discriminants (that means dK > 1014 where K
is the real quadratic field) if there are many fields and it is not good otherwise. But if
there are only few fields, then there is not just variation between the numerical data and
the heuristic but also between the distributions in different discriminant areas and if one
believes that all the density functions are of type

∑
i>0 ai · xbi · log(x)ci with real ai and

rational bi, ci such that xbi+1 · log(x)ci+1 = o(xbi · log(x)ci) for x → ∞, one also should
believe that small discriminants do not tell the truth. For small discriminants especially
groups with high rank occur less frequently.
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The previous chapter describes unproven conjectures. Instead of a proof, this chapter
gives numerical data which may give a hint that the conjectures are correct. Chapter
5.1 describes how the numerical data has been computed and in chapter 5.2 the result
of the computations is compared with the heuristic from before. In many cases one has
K2,f = K2. Information about those fields are presented in an internet database at
http://www.mathematik.uni-kl.de/~numberfieldtables/KT_K2Q/doc.html. Chapter
5.3 explains how to use this database. The program which has been made to construct
this database can also create other number field databases. Chapter 5.4 shows how this
program works.

5.1 Calculations

This chapter formulates how the group Gal(K2,f/Q) is calculated for a real quadratic
number field K. In theory this procedure is simple. At first on computes the Hilbert class
field K1 of K and its subfield K1,f . Secondly one computes the class group of K1,f and
thirdly one calculates information, which subgroup of Cl(K1,f ) corresponds to K2,f and
how Gal(K1,f/Q) acts on Gal(K2,f/K1,f ). Basically this is the way the calculation is done
in practice and it shows the three problems which occur.

First the calculation of class fields: To avoid these calculations, which are very time
consuming, one searches through number field tables for fields, which suitable properties
to be contained in the class field of K and calculates Cl(K), to know if one has found
enough fields. The source are the tables from [M1] of totally real number fields N of
degree n = (N : Q), such that the Galois closure of N over Q has Galois group isomorphic
to Dn. For n = 3 very extensive tables are available, for n = 9 and n = 5 the tables contain
a lot of number fields and a few number fields are in the tables also for n = 7. For all other
odd n there are (if at all) just examples, not tables. These tables have been calculated
by different methods. For n = 3 the Belabas algorithm is used. It applies the theory
of Davenport-Heilbronn, which relates cubic number fields with binary cubic forms, to
enumerate all the fields up to a certain discriminant (see [C] chapter 8). Another method
is given by Hunter’s theorem ([C] theorem 9.3.1). From this theorem one can deduce
effective bounds for the coefficients of normalized polynomials over Z, depending on the
degree and discriminant of a number field K, such that there is a primitive element for
K, whose minimal polynomial satisfies those bounds (see [C] chapter 9.3). The problem
with this method is that the resulting fields almost always have Galois closure Sn. For
calculation of dihedral fields of degree 5, Malle used the parametric polynomial

X5− 2vX4− u(5u2− 10uv+ 4v2)X2 + 2u2(5u− 4v)(u− v)X − 4u3(u− v)2−X2(X − u)t.

The problem of this method is that the parameters of polynomials which generate a number
field with small discriminant may be large, such that one does not get complete tables
and the incomplete one may show some special behavior. It is also not known if all
dihedral number fields of degree 5 are represented by a suitable specialization of this
polynomial. Another way of calculating dihedral number fields is given by class field
theory and Kummer theory (see [C] chapters 10.1, 10.2). A Galois dihedral extension N̂
of Q is an abelian extension of a quadratic number field K contained in N̂ and therefore
contained in a ray class field M of K, whose conductor is bounded, depending on the
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discriminant dN̂ of N̂ (M is the Hilbert class field, if one is just interested in such N that

N̂/K is unramified, but in [M1] there is no restriction to special ramification). Subfields
of M/K can be calculated using Kummer theory. The problem of this method is that it
only works for small n in reasonable time.

As consequence of this method in practice the group Gal(K1,f/Q) is limited to be an
abelian group with exponent dividing 9 ·5 ·7 and the discriminant dK of the real quadratic
field K must be in a region which is covered by the tables from [M1].

The second problem with the calculation is that computing class groups for number fields
with large degree or large discriminant is time consuming. With the help of class group
relations, one can reduce these calculations to fields of smaller degree. So the cases of
Gal(K1,f/Q) considered in practice reduce to abelian groups of exponent 9, 7, 5 and the
group C15.

Since one is interested in tables, just the frequently occurring cases are helpful. This
means just the cases, where Gal(K1,f/Q) ∈ {C3, C5, C7, C9, C3 × C3, C15, C9 × C3} and
Gal(K2,f/Q) is one of the groups listed in the tables between page 36 and page 39 are
considered.

In detail the procedure of calculating Gal(K2,f/Q) for a real quadratic number field, which
returns either the description of a group of those tables or the string “other” or the string
“can not calculate”, works as follows:

1.) Calculate Cl(K).

2.) If Cl 6=2(K) = {1}, then return C2.

3.) If Cl6=2(K) /∈ {C3, C5, C7, C9, C3 × C3, C15, C9 × C3}, then return “can not calcu-
late”.

4.) Search in [M1] for all totally real non Galois dihedral number fields N1, ..., Nr of odd

degree (Ni : Q) = ni | hK and discriminant dNi = d
ni−1

2
K .

5.) Set N = N1 · · ·Nr and set N̂ to be the Galois closure of N over Q. If there is no
isomorphism Gal(N̂/K) ∼= Cl6=2(K), then return “can not calculate”.

6.) Set n := (N : Q) and calculate for all subfields M ≤ N such that Gal(M̂/K) is
cyclic the class group Cl 6=n(M).

7.) Choose a class group relation in Cl6=2(K) according to lemma 3.7 to calculate
Cl6=n(N) by proposition 3.8 and the results of 6.).

8.) If Cl 6=n(N) = {1} return DCl6=2(K), else search in the tables between page 36 and page
39 for a group G with G′/G′′ ∼= Cl6=2(K), G′′ ∼= Cl6=n(N) ⊕ Cl6=n(N) and where G

fulfills the following condition: There is an isomorphism f : Gal(N̂/Q)→ G/G′′ such
that Cl 6=n(M) ∼= C̃(f(Gal(N̂/M))) for every subfield M of N such that Gal(M̂/K)
is cyclic.

9.) If 8.) has found a group return it, else return “other”.

Proposition 1. Let K be a real quadratic number field such that this procedure returns
the group G (and not one of the strings “other” or “can not calculate”).
Then G ∼= Gal(K2,f/Q).
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5.2 Tables

Proof. If the procedure returns at step 2, then proposition 3.6 proves the statement. Let
otherwise N be the field constructed in step 5. By the propositions 3.2 and 3.6 the field
N̂ equals K1,f . By proposition 3.7, the group H := Gal(K2,f/Q) is from G and hence
H ′/H ′′ ∼= Cl6=2(K) ∼= G′/G′′ by proposition 3.6 and H ′′ ∼= Cl6=n(N) ⊕ Cl6=n(N) ∼= G′′

by proposition 3.8. This proposition and lemma 3.25 also imply that there is a group
isomorphism g : Gal(N̂/Q) → H/H ′′ such that Cl6=n(M) ∼= C̃(g(Gal(N̂/M))) for every

subfield M of N such that Gal(M̂/K) is cyclic. Hence there is an isomorphism of groups
h : G/G′′ → H/H ′′, such that C̃(U) ∼= C̃(h(U)) for every subgroup U of G/G′′ contained
in G′/G′′ such that (G′/G′′)/U is cyclic. Therefore G ∼= H by the corollary to the tables
1-5 on page 39.

Remark: The description of this procedure is not detailed enough to call it algorithm
and if the tables [M1] contain no information about dihedral extensions of Q containing
the real quadratic field K, then it does not calculate Gal(K2,f/Q). Therefore the name
procedure is used.

This procedure has been implemented in [PARI] and leads to the tables and the database
of the next sections. The class group calculation in [PARI] uses discriminant bounds,
which depend on the generalized Riemann hypothesis (GRH). Therefore (if GRH fails)
the class groups may be larger and the groups calculated here may be just factor groups
of Gal(K2,f/Q).

5.2 Tables

Tables 8 to 19 shall indicate that the groups Gal(K2,f/K1,f ) where K runs through all
real quadratic number fields such that Gal(K1,f/Q) ∼= DH for a fixed finite abelian group
H of odd order are distributed in the same way as the good parts of the class groups
corresponding to the idempotent eH := 1− 1

|H|(
∑

g∈H g) of all the totally real fields L with

Gal(L/Q) ∼= DH . The columns labeled with 1, 2, 3, 4, 5 show the class group distribution
of totally real fields N of degree |H| with Galois group Gal(N̂/Q) ∼= DH . Let K be the
unique quadratic subfield of N̂ . The column 1 considers those N with N̂ = K1, column
2 those with N̂ = K1,f but N̂ 6= K1, column 3 those fields where N̂ is the maximal
unramified abelian extension M of K such that (M : K) is just divisible by the prime
divisors of |H| and which do not appear in a previous column, colum 4 those fields where
N̂/K is unramified and which do not appear in a previous column, and finally column 5
considers those fields N where N̂/K is not unramified. The fields N in the first 4 columns
fulfill eHClS(N̂) ∼= ClS(N)×ClS(N) as group where S is the set of primes dividing |H| by
proposition 3.8. But this fact is also true for the N in column 5 (see [C-M] chapter 7).

dN area number of fields 1 2 3 4 5

up to 108 6246698 0.8271 0.8506 0.8410 0.8432 0.8474

about 108 1000000 0.8196 0.8401 0.8334 0.8357 0.8374

about 109 1000000 0.8103 0.8245 0.8211 0.8241 0.8228

about 1010 1000000 0.8036 0.8136 0.8112 0.8121 0.8112

about 1011 1000000 0.7980 0.8055 0.8033 0.8041 0.8039

about 1012 1000000 0.7937 0.7995 0.7988 0.7966 0.7985

about 1013 1000000 0.7923 0.7963 0.7955 0.7947 0.7945

Table 8: proportion of totally real S3-fields N of degree 3 with 2-class group isomorphic
to {1}
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dN area number of fields 1 2 3 4 5

about 1014 1000000 0.7895 0.7928 0.7917 0.7931 0.7939

about 1015 1000000 0.7875 0.7911 0.7921 0.7906 0.7921

about 1016 1000000 0.7860 0.7893 0.7879 0.7887 0.7888

about 1017 1000000 0.7886 0.7882 0.7892 0.7888 0.7880

Table 8: proportion of totally real S3-fields N of degree 3 with 2-class group isomorphic
to {1}

dN area number of fields 1 2 3 4 5

up to 108 6246698 0.1456 0.1275 0.1349 0.1337 0.1313

about 108 1000000 0.1507 0.1354 0.1407 0.1397 0.1384

about 109 1000000 0.1572 0.1470 0.1497 0.1464 0.1483

about 1010 1000000 0.1612 0.1541 0.1569 0.1540 0.1561

about 1011 1000000 0.1644 0.1597 0.1612 0.1607 0.1609

about 1012 1000000 0.1672 0.1633 0.1640 0.1661 0.1648

about 1013 1000000 0.1692 0.1656 0.1655 0.1673 0.1672

about 1014 1000000 0.1698 0.1681 0.1684 0.1671 0.1665

about 1015 1000000 0.1704 0.1696 0.1673 0.1690 0.1682

about 1016 1000000 0.1722 0.1698 0.1697 0.1706 0.1704

about 1017 1000000 0.1702 0.1711 0.1708 0.1699 0.1708

Table 9: proportion of totally real S3-fields N of degree 3 with 2-class group isomorphic
to C2

dN area number of fields 1 2 3 4 5

up to 108 6246698 0.0169 0.0150 0.0159 0.0153 0.0143

about 108 1000000 0.0181 0.0162 0.0170 0.0161 0.0157

about 109 1000000 0.0191 0.0177 0.0177 0.0181 0.0178

about 1010 1000000 0.0197 0.0188 0.0182 0.0192 0.0192

about 1011 1000000 0.0205 0.0196 0.0196 0.0195 0.0200

about 1012 1000000 0.0213 0.0204 0.0206 0.0205 0.0205

about 1013 1000000 0.0207 0.0206 0.0209 0.0208 0.0207

about 1014 1000000 0.0215 0.0211 0.0218 0.0208 0.0212

about 1015 1000000 0.0212 0.0209 0.0219 0.0212 0.0210

about 1016 1000000 0.0217 0.0216 0.0224 0.0216 0.0216

about 1017 1000000 0.0220 0.0213 0.0211 0.0217 0.0215

Table 10: proportion of totally real S3-fields N of degree 3 with 2-class group isomorphic
to C4

dN area number of fields 1 2 3 4 5

up to 108 6246698 0.0067 0.0042 0.0051 0.0048 0.0044

about 108 1000000 0.0076 0.0050 0.0058 0.0056 0.0054

about 109 1000000 0.0088 0.0068 0.0075 0.0078 0.0073

Table 11: proportion of totally real S3-fields N of degree 3 with 2-class group isomorphic
to C2 × C2
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dN area number of fields 1 2 3 4 5

about 1010 1000000 0.0103 0.0087 0.0088 0.0098 0.0087

about 1011 1000000 0.0113 0.0100 0.0101 0.0103 0.0100

about 1012 1000000 0.0120 0.0110 0.0112 0.0115 0.0108

about 1013 1000000 0.0119 0.0117 0.0121 0.0115 0.0117

about 1014 1000000 0.0124 0.0121 0.0124 0.0126 0.0125

about 1015 1000000 0.0140 0.0122 0.0121 0.0127 0.0126

about 1016 1000000 0.0132 0.0129 0.0134 0.0129 0.0129

about 1017 1000000 0.0129 0.0127 0.0125 0.0131 0.0131

Table 11: proportion of totally real S3-fields N of degree 3 with 2-class group isomorphic
to C2 × C2

dN area number of fields 1 2 3 4 5

up to 108 6246698 0.9870 0.9867 0.9871 0.9872 0.9884

about 108 1000000 0.9862 0.9861 0.9864 0.9864 0.9875

about 109 1000000 0.9855 0.9853 0.9848 0.9857 0.9863

about 1010 1000000 0.9853 0.9853 0.9851 0.9848 0.9857

about 1011 1000000 0.9850 0.9848 0.9847 0.9849 0.9850

about 1012 1000000 0.9846 0.9847 0.9858 0.9847 0.9847

about 1013 1000000 0.9849 0.9849 0.9839 0.9849 0.9845

about 1014 1000000 0.9842 0.9847 0.9846 0.9836 0.9847

about 1015 1000000 0.9848 0.9846 0.9849 0.9852 0.9849

about 1016 1000000 0.9850 0.9845 0.9848 0.9839 0.9845

about 1017 1000000 0.9851 0.9847 0.9845 0.9849 0.9851

Table 12: proportion of totally real S3-fields N of degree 3 with 6′-class group isomorphic
to {1}

dN area number of fields 1 2 3 4 5

up to 108 6246698 0.0086 0.0086 0.0085 0.0084 0.0079

about 108 1000000 0.0090 0.0089 0.0089 0.0087 0.0084

about 109 1000000 0.0094 0.0095 0.0102 0.0092 0.0088

about 1010 1000000 0.0095 0.0095 0.0094 0.0097 0.0093

about 1011 1000000 0.0095 0.0095 0.0095 0.0099 0.0097

about 1012 1000000 0.0098 0.0099 0.0092 0.0098 0.0098

about 1013 1000000 0.0096 0.0097 0.0106 0.0096 0.0101

about 1014 1000000 0.0101 0.0100 0.0102 0.0106 0.0098

about 1015 1000000 0.0101 0.0099 0.0097 0.0096 0.0098

about 1016 1000000 0.0094 0.0100 0.0098 0.0105 0.0102

about 1017 1000000 0.0097 0.0099 0.0098 0.0100 0.0095

Table 13: proportion of totally real S3-fields N of degree 3 with 6′-class group isomorphic
to C5
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dN area number of fields 1 2 3 4 5

up to 108 6246698 0.0029 0.0030 0.0028 0.0029 0.0025

about 108 1000000 0.0030 0.0031 0.0030 0.0029 0.0028

about 109 1000000 0.0031 0.0032 0.0031 0.0033 0.0030

about 1010 1000000 0.0034 0.0033 0.0033 0.0037 0.0031

about 1011 1000000 0.0036 0.0035 0.0038 0.0035 0.0034

about 1012 1000000 0.0033 0.0032 0.0030 0.0033 0.0034

about 1013 1000000 0.0034 0.0034 0.0032 0.0034 0.0034

about 1014 1000000 0.0037 0.0033 0.0036 0.0034 0.0034

about 1015 1000000 0.0032 0.0034 0.0033 0.0033 0.0033

about 1016 1000000 0.0035 0.0034 0.0035 0.0034 0.0034

about 1017 1000000 0.0033 0.0032 0.0033 0.0032 0.0034

Table 14: proportion of totally real S3-fields N of degree 3 with 6′-class group isomorphic
to C7

dN area number of fields 1 2 3 4 5

up to 1016 806309 0.9823 0.9843 0.9833 0.9839 0.9852

1016 to 1018 2019477 0.9775 0.9786 0.9779 0.9782 0.9795

about 1027 833458 0.9592 0.9585 0.9587 0.9585 0.9591

Table 15: proportion of totally real D5-fields N of degree 5 with 2-class group isomorphic
to {1}

dN area number of fields 1 2 3 4 5

up to 1016 806309 0.0175 0.0154 0.0165 0.0159 0.0145

1016 to 1018 2019477 0.0220 0.0210 0.0216 0.0212 0.0202

about 1027 833458 0.0398 0.0402 0.0400 0.0400 0.0400

Table 16: proportion of totally real D5-fields N of degree 5 with 2-class group isomorphic
to C2 × C2

dN area number of fields 1 2 3 4 5

up to 1016 806309 0.9966 0.9966 0.9966 0.9962 0.9963

1016 to 1018 2019477 0.9962 0.9963 0.9963 0.9960 0.9963

about 1027 833458 0.9963 0.9961 0.9962 0.9959 0.9962

Table 17: proportion of totally real D5-fields N of degree 5 with 10′-class group isomorphic
to {1}

dN area number of fields 1 2 3 4 5

up to 1016 806309 0.0015 0.0016 0.0016 0.0020 0.0017

1016 to 1018 2019477 0.0017 0.0017 0.0017 0.0017 0.0017

about 1027 833458 0.0017 0.0017 0.0017 0.0018 0.0016

Table 18: proportion of totally real D5-fields N of degree 5 with 10′-class group isomorphic
to C11
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dN area number of fields 1 2 3 4 5

up to 1016 806309 0.0013 0.0013 0.0013 0.0013 0.0014

1016 to 1018 2019477 0.0016 0.0015 0.0015 0.0017 0.0014

about 1027 833458 0.0016 0.0016 0.0015 0.0018 0.0018

Table 19: proportion of totally real D5-fields N of degree 5 with 10′-class group isomorphic
to C3 × C3

The following tables compare conjecture 4.3 with the number field data which has been
calculated. If Gal(K1,f/K) ∼= C3 or Gal(K1,f/K) ∼= C3 × C3 there are complete number
field tables. Therefore the conjecture can be compared with the data directly. This is done
in tables 20 to 29. The column “number of fields” shows how many real quadratic fields
are in the examined discriminant range. The last four columns show the proportion of
quadratic fields K in the corresponding discriminant range with Gal(K2,f/K) ∼= SG(i, j)
where [i, j] is the heading of the column and SG(i, j) a SmallGroup of [GAP].

dK area number of fields [1,1] [3,1] [12,3] [48,3]

up to 108 30396325 7.7275E-1 9.6940E-2 1.5223E-2 1.7819E-3

about 108 4774207 7.6873E-1 9.6902E-2 1.6179E-2 1.9337E-3

about 109 4645345 7.6373E-1 9.6989E-2 1.7644E-2 2.1314E-3

about 1010 4557478 7.6021E-1 9.7475E-2 1.8689E-2 2.2813E-3

about 1011 4503762 7.5833E-1 9.7381E-2 1.9462E-2 2.3949E-3

about 1012 4459930 7.5673E-1 9.7356E-2 1.9991E-2 2.5079E-3

about 1013 4441829 7.5627E-1 9.7440E-2 2.0363E-2 2.5195E-3

about 1014 4420949 7.5584E-1 9.7377E-2 2.0696E-2 2.5965E-3

about 1015 4397540 7.5505E-1 9.7618E-2 2.0964E-2 2.5869E-3

about 1016 4406448 7.5505E-1 9.7248E-2 2.0979E-2 2.6613E-3

about 1017 4396820 7.5474E-1 9.7540E-2 2.1173E-2 2.6424E-3

conjecture 7.5446E-1 9.7376E-2 2.1301E-2 2.6626E-3

Table 20: distribution of Gal(K2,f/K) for real quadratic fields K in SmallGroup notation
of [GAP]

dK area number of fields [48,50] [75,2] [9,2] [36,11]

up to 108 30396325 5.6142E-4 8.5767E-4 5.1763E-4 3.1895E-4

about 108 4774207 6.5959E-4 8.7742E-4 5.6282E-4 3.4205E-4

about 109 4645345 8.5419E-4 9.3169E-4 5.6207E-4 4.2107E-4

about 1010 4557478 1.0890E-3 9.3517E-4 6.0143E-4 4.3511E-4

about 1011 4503762 1.2379E-3 9.4166E-4 6.0971E-4 4.8293E-4

about 1012 4459930 1.3657E-3 9.6997E-4 6.1301E-4 5.1481E-4

about 1013 4441829 1.4386E-3 9.5726E-4 6.1168E-4 5.1645E-4

about 1014 4420949 1.4974E-3 9.8848E-4 6.2046E-4 5.2161E-4

about 1015 4397540 1.5395E-3 9.8532E-4 6.4377E-4 5.3917E-4

about 1016 4406448 1.5961E-3 9.7879E-4 6.0911E-4 5.3286E-4

about 1017 4396820 1.5748E-3 9.9117E-4 6.1840E-4 5.2038E-4

conjecture 1.6641E-3 9.7376E-4 6.2809E-4 5.4958E-4

Table 21: distribution of Gal(K2,f/K) for real quadratic fields K in SmallGroup notation
of [GAP]
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dK area number of fields [192,3] [147,5] [192,1020] [300,43]

up to 108 30396325 2.1203E-4 2.9556E-4 9.4880E-5 1.2623E-4

about 108 4774207 2.3690E-4 3.0309E-4 1.1374E-4 1.4893E-4

about 109 4645345 2.6026E-4 3.1193E-4 1.6425E-4 1.6877E-4

about 1010 4557478 2.7669E-4 3.2364E-4 2.0955E-4 1.8168E-4

about 1011 4503762 2.9464E-4 3.4238E-4 2.2803E-4 1.8651E-4

about 1012 4459930 3.0965E-4 3.1301E-4 2.5337E-4 2.0180E-4

about 1013 4441829 3.1046E-4 3.3635E-4 2.7196E-4 2.0239E-4

about 1014 4420949 3.2165E-4 3.3002E-4 2.7664E-4 2.0697E-4

about 1015 4397540 3.3018E-4 3.3974E-4 2.9607E-4 2.0443E-4

about 1016 4406448 3.3996E-4 3.3269E-4 3.0001E-4 2.0810E-4

about 1017 4396820 3.2660E-4 3.1932E-4 3.1682E-4 1.9833E-4

conjecture 3.3283E-4 3.3121E-4 3.1203E-4 2.1301E-4

Table 22: distribution of Gal(K2,f/K) for real quadratic fields K in SmallGroup notation
of [GAP]

dK area number of fields [144,184] [363,2] [588,60] [144,68]

up to 108 30396325 7.3759E-5 7.1160E-5 4.3558E-5 3.7044E-5

about 108 4774207 8.8811E-5 6.7027E-5 5.2365E-5 3.9378E-5

about 109 4645345 1.0893E-4 7.9004E-5 6.0275E-5 4.6929E-5

about 1010 4557478 1.2222E-4 7.3506E-5 6.1657E-5 5.2880E-5

about 1011 4503762 1.5276E-4 8.1265E-5 7.2384E-5 5.6175E-5

about 1012 4459930 1.6390E-4 8.1391E-5 6.9284E-5 6.2109E-5

about 1013 4441829 1.6705E-4 7.5870E-5 6.6864E-5 6.7315E-5

about 1014 4420949 1.6241E-4 7.8942E-5 7.5323E-5 5.7228E-5

about 1015 4397540 1.8169E-4 8.0500E-5 6.8220E-5 6.2308E-5

about 1016 4406448 1.7066E-4 7.4209E-5 7.4436E-5 7.1486E-5

about 1017 4396820 1.7808E-4 8.9838E-5 6.8913E-5 6.6412E-5

conjecture 1.8033E-4 8.0476E-5 7.2452E-5 6.8698E-5

Table 23: distribution of Gal(K2,f/K) for real quadratic fields K in SmallGroup notation
of [GAP]

dK area number of fields [192,1541] [507,5] [576,5127] [144,194]

up to 108 30396325 2.5661E-6 4.1518E-5 1.7436E-5 1.1087E-5

about 108 4774207 5.4459E-6 4.4196E-5 2.2412E-5 1.3615E-5

about 109 4645345 9.4718E-6 4.6713E-5 2.5832E-5 2.2603E-5

about 1010 4557478 1.9748E-5 5.0467E-5 3.3791E-5 2.7427E-5

about 1011 4503762 2.3980E-5 4.7738E-5 3.7524E-5 3.1085E-5

about 1012 4459930 3.8341E-5 4.5741E-5 3.5202E-5 3.6772E-5

about 1013 4441829 3.8047E-5 4.8854E-5 3.8047E-5 3.6021E-5

about 1014 4420949 4.0715E-5 4.7275E-5 4.2525E-5 3.9810E-5

about 1015 4397540 4.5025E-5 5.0710E-5 4.4343E-5 4.0932E-5

about 1016 4406448 5.1288E-5 5.0608E-5 3.9261E-5 4.0168E-5

about 1017 4396820 5.1856E-5 4.3213E-5 4.7534E-5 3.7300E-5

Table 24: distribution of Gal(K2,f/K) for real quadratic fields K in SmallGroup notation
of [GAP]

60



5.2 Tables

dK area number of fields [192,1541] [507,5] [576,5127] [144,194]

conjecture 5.7576E-5 4.8016E-5 4.5083E-5 4.2936E-5

Table 24: distribution of Gal(K2,f/K) for real quadratic fields K in SmallGroup notation
of [GAP]

dK area number of fields [768,1083477] [768,1083725] [576,8663] [1200,384]

up to 108 30396325 2.3950E-5 1.1218E-5 4.9677E-6 1.4245E-5

about 108 4774207 2.6392E-5 1.3405E-5 5.4459E-6 1.8432E-5

about 109 4645345 2.9061E-5 1.8298E-5 1.3347E-5 2.1957E-5

about 1010 4557478 3.6424E-5 2.6769E-5 1.2946E-5 2.1503E-5

about 1011 4503762 4.0411E-5 3.0419E-5 1.6875E-5 2.1760E-5

about 1012 4459930 3.9014E-5 3.0494E-5 2.0180E-5 2.6458E-5

about 1013 4441829 4.0299E-5 2.9492E-5 2.7466E-5 2.2964E-5

about 1014 4420949 4.3656E-5 3.2798E-5 2.3298E-5 2.6917E-5

about 1015 4397540 3.9568E-5 3.9795E-5 2.8425E-5 2.9562E-5

about 1016 4406448 4.1530E-5 3.3814E-5 2.7460E-5 2.7687E-5

about 1017 4396820 4.3895E-5 4.1848E-5 2.6610E-5 2.8202E-5

conjecture 4.1604E-5 3.9003E-5 2.8177E-5 2.6626E-5

Table 25: distribution of Gal(K2,f/K) for real quadratic fields K in SmallGroup notation
of [GAP]

dK area number of fields [576,8664] [255,5] [867,2] [900,98]

up to 108 30396325 6.5139E-6 1.7469E-5 1.8621E-5 8.1260E-6

about 108 4774207 9.6351E-6 2.0946E-5 1.9270E-5 7.9594E-6

about 109 4645345 1.3993E-5 1.7006E-5 2.2603E-5 1.0763E-5

about 1010 4557478 1.7992E-5 2.1942E-5 1.7334E-5 9.8739E-6

about 1011 4503762 2.1093E-5 2.1760E-5 2.5090E-5 1.5765E-5

about 1012 4459930 2.1525E-5 2.6682E-5 2.7130E-5 1.5695E-5

about 1013 4441829 2.5440E-5 2.1613E-5 2.1613E-5 1.7785E-5

about 1014 4420949 2.1941E-5 3.0763E-5 1.9679E-5 1.9227E-5

about 1015 4397540 2.6378E-5 2.1830E-5 1.9784E-5 1.4554E-5

about 1016 4406448 2.1786E-5 2.4736E-5 2.4283E-5 1.5205E-5

about 1017 4396820 2.5473E-5 2.6838E-5 2.3426E-5 1.6148E-5

conjecture 2.6298E-5 2.5124E-5 2.1059E-5 1.6487E-5

Table 26: distribution of Gal(K2,f/K) for real quadratic fields K in SmallGroup notation
of [GAP]

dK area number of fields [1083,5] [768,10834956] [576,1070] [441,12]

up to 108 30396325 1.1876E-5 7.2377E-7 4.0136E-6 5.9218E-6

about 108 4774207 1.6338E-5 1.0473E-6 3.7703E-6 7.3311E-6

about 109 4645345 1.3347E-5 2.1527E-6 4.9512E-6 8.1802E-6

about 1010 4557478 1.2507E-5 3.9496E-6 7.2408E-6 7.2408E-6

Table 27: distribution of Gal(K2,f/K) for real quadratic fields K in SmallGroup notation
of [GAP]
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dK area number of fields [1083,5] [768,10834956] [576,1070] [441,12]

about 1011 4503762 2.0205E-5 5.5509E-6 8.6594E-6 9.3255E-6

about 1012 4459930 1.5023E-5 7.3992E-6 5.6055E-6 6.7266E-6

about 1013 4441829 1.6885E-5 9.4556E-6 5.6283E-6 6.3037E-6

about 1014 4420949 1.4477E-5 1.0631E-5 7.6907E-6 7.4645E-6

about 1015 4397540 1.5236E-5 1.0460E-5 8.4138E-6 1.0915E-5

about 1016 4406448 1.4524E-5 9.7584E-6 9.3045E-6 7.7160E-6

about 1017 4396820 1.2509E-5 1.3646E-5 9.7798E-6 9.3249E-6

conjecture 1.4986E-5 1.2595E-5 8.5872E-6 8.5455E-6

Table 27: distribution of Gal(K2,f/K) for real quadratic fields K in SmallGroup notation
of [GAP]

dK area number of fields [1587,2] [576,7440] [1875,16] [768,1083578]

up to 108 30396325 7.3035E-6 2.3029E-6 5.0993E-6 1.1186E-6

about 108 4774207 6.4932E-6 1.8851E-6 5.8648E-6 1.8851E-6

about 109 4645345 6.8886E-6 2.7985E-6 8.6108E-6 2.7985E-6

about 1010 4557478 7.2408E-6 5.0467E-6 5.7049E-6 3.5107E-6

about 1011 4503762 7.1052E-6 4.2187E-6 9.1035E-6 4.6628E-6

about 1012 4459930 8.7445E-6 6.7266E-6 9.6414E-6 5.6055E-6

about 1013 4441829 7.8796E-6 4.9529E-6 9.0053E-6 4.0524E-6

about 1014 4420949 8.5954E-6 7.0121E-6 6.3335E-6 6.3335E-6

about 1015 4397540 9.5508E-6 8.8686E-6 7.7316E-6 5.2302E-6

about 1016 4406448 9.5315E-6 7.0351E-6 7.9429E-6 4.5388E-6

about 1017 4396820 8.1877E-6 7.5054E-6 6.1408E-6 5.2311E-6

conjecture 8.3671E-6 8.0505E-6 7.7901E-6 6.5006E-6

Table 28: distribution of Gal(K2,f/K) for real quadratic fields K in SmallGroup notation
of [GAP]

dK area number of fields [900,141] [2523,2] [2883,5] [3675,18]

up to 108 30396325 2.3687E-6 2.3358E-6 2.1384E-6 2.0068E-6

about 108 4774207 2.9324E-6 3.7703E-6 3.1419E-6 4.3986E-6

about 109 4645345 1.2916E-6 4.3054E-6 2.7985E-6 3.0138E-6

about 1010 4557478 3.7301E-6 3.0719E-6 2.8525E-6 3.9496E-6

about 1011 4503762 3.5526E-6 5.1068E-6 3.9967E-6 2.8865E-6

about 1012 4459930 5.3813E-6 3.5875E-6 4.4844E-6 3.8117E-6

about 1013 4441829 5.8534E-6 4.7278E-6 3.1519E-6 3.8273E-6

about 1014 4420949 3.3929E-6 4.2977E-6 2.0358E-6 3.1667E-6

about 1015 4397540 7.5042E-6 3.8658E-6 2.5014E-6 2.2740E-6

about 1016 4406448 6.1274E-6 4.5388E-6 5.2196E-6 3.1772E-6

about 1017 4396820 5.4585E-6 4.0939E-6 3.1841E-6 2.7292E-6

conjecture 5.4958E-6 4.1352E-6 3.3776E-6 3.3121E-6

Table 29: distribution of Gal(K2,f/K) for real quadratic fields K in SmallGroup notation
of [GAP]
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The following tables contain distribution data of the group Gal(K2,f/K) for real quadratic
fields K where Gal(K1,f/K) ∼= C5, C7, C9, C15, C9 ×C3. Since the number field tables are
not complete in these cases they just count the proportion of Gal(K2,f/K) where K
runs through all real quadratic fields with one fixed group Gal(K1,f/K). Hence the data
for the group U ′ with U ∈ G0 is not compared with conjecture 4.3 directly but with
prG0

(U)/prquad(U
′/U ′′). Apart from that table 30 to 45 have the same structure as table

20. Except in the case Gal(K1,f/K) ∼= C5 the discriminant of K is very small and there
are just a few fields in the number field tables, so following tables rather examples.

dK area number of fields [5,1] [80,49] [405,15]

up to 108 569572 9.8042E-1 1.5921E-2 1.2922E-3

108 to 109 1414415 9.7468E-1 2.1140E-2 1.5017E-3

about 1013.5 587974 9.5490E-1 3.9983E-2 1.5494E-3

conjecture 9.5610E-1 3.9215E-2 1.4755E-3

Table 30: distribution of Gal(K2,f/K) for real quadratic fields K with Gal(K1,f/K) ∼= C5

in SmallGroup notation of [GAP]

dK area number of fields [605,6] [1280,1116309] [1805,2]

up to 108 569572 1.5801E-3 2.2824E-4 2.7389E-4

108 to 109 1414415 1.6226E-3 3.2664E-4 3.0189E-4

about 1013.5 587974 1.6123E-3 6.7010E-4 3.1294E-4

conjecture 1.5803E-3 6.1273E-4 2.9427E-4

Table 31: distribution of Gal(K2,f/K) for real quadratic fields K with Gal(K1,f/K) ∼= C5

in SmallGroup notation of [GAP]

dK area number of fields [1280,1116356] [4205,2] [4805,6]

up to 108 569572 2.6336E-5 5.7938E-5 5.4427E-5

108 to 109 1414415 9.9688E-5 7.2822E-5 6.6459E-5

about 1013.5 587974 5.7656E-4 8.3337E-5 7.1432E-5

conjecture 3.2551E-4 8.1204E-5 6.6327E-5

Table 32: distribution of Gal(K2,f/K) for real quadratic fields K with Gal(K1,f/K) ∼= C5

in SmallGroup notation of [GAP]

dK area number of fields [7,1] [448,1394] [1183,2] [5887,7]

up to 108 10793 9.9666E-1 1.9457E-3 9.2653E-4 4.6326E-4

conjecture 9.9159E-1 6.6389E-3 1.4668E-3 1.2633E-4

Table 33: distribution of Gal(K2,f/K) for real quadratic fields K with Gal(K1,f/K) ∼= C7

in SmallGroup notation of [GAP]

dK area number of fields [9,1] [36,3] [144,3]

up to about 15 · 106 17133 8.2525E-1 1.3850E-1 1.4825E-2

Table 34: distribution of Gal(K2,f/K) for real quadratic fields K with Gal(K1,f/K) ∼= C9

in SmallGroup notation of [GAP]
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dK area number of fields [9,1] [36,3] [144,3]

conjecture 7.6831E-1 1.6807E-1 2.1008E-2

Table 34: distribution of Gal(K2,f/K) for real quadratic fields K with Gal(K1,f/K) ∼= C9

in SmallGroup notation of [GAP]

dK area number of fields [144,111] [225,3] [576,8661]

up to about 15 · 106 17133 5.0196E-3 6.4204E-3 1.1673E-3

conjecture 1.3130E-2 7.6831E-3 5.1349E-3

Table 35: distribution of Gal(K2,f/K) for real quadratic fields K with Gal(K1,f/K) ∼= C9

in SmallGroup notation of [GAP]

dK area number of fields [576,3] [441,7] [576,1445]

up to about 15 · 106 17133 1.5759E-3 2.6265E-3 7.5877E-4

conjecture 2.6261E-3 2.6133E-3 2.4619E-3

Table 36: distribution of Gal(K2,f/K) for real quadratic fields K with Gal(K1,f/K) ∼= C9

in SmallGroup notation of [GAP]

dK area number of fields [15,1] [60,9] [240,199] [240,32]

up to 108 47436 8.0390E-1 1.4407E-1 1.4462E-2 1.6464E-2

conjecture 7.4798E-1 1.6362E-1 3.0679E-2 2.0453E-2

Table 37: distribution of Gal(K2,f/K) for real quadratic fields K with Gal(K1,f/K) ∼= C15

in SmallGroup notation of [GAP]

dK area number of fields [240,204] [960,11366] [960,216] [735,5]

up to 108 47436 6.5773E-3 2.8670E-3 2.0449E-3 2.3611E-3

conjecture 1.2783E-2 6.7110E-3 2.5566E-3 2.5442E-3

Table 38: distribution of Gal(K2,f/K) for real quadratic fields K with Gal(K1,f/K) ∼= C15

in SmallGroup notation of [GAP]

dK area number of fields [960,9667] [1815,6] [1815,8] [960,11390]

up to 108 47436 1.0751E-3 1.2438E-3 5.2703E-4 8.4324E-5

conjecture 2.3968E-3 1.2363E-3 6.1817E-4 4.4226E-4

Table 39: distribution of Gal(K2,f/K) for real quadratic fields K with Gal(K1,f/K) ∼= C15

in SmallGroup notation of [GAP]

dK area number of fields [27,2] [108,18] [108,20] [432,525]

up to 108 1387 4.5854E-1 2.1629E-1 8.8681E-2 4.4701E-2

conjecture 3.5122E-1 2.3049E-1 7.6829E-2 5.0419E-2

Table 40: distribution of Gal(K2,f/K) for real quadratic fields K with Gal(K1,f/K) ∼=
C9 × C3 in SmallGroup notation of [GAP]
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dK area number of fields [432,524] [432,99] [432,551] [1728,12471]

up to 108 1387 3.6049E-2 1.6583E-2 6.4888E-3 1.3699E-2

conjecture 5.0419E-2 2.8811E-2 1.8007E-2 1.2605E-2

Table 41: distribution of Gal(K2,f/K) for real quadratic fields K with Gal(K1,f/K) ∼=
C9 × C3 in SmallGroup notation of [GAP]

dK area number of fields [1728,46133] [675,8] [432,101] [1728,46128]

up to 108 1387 1.0094E-2 1.5862E-2 9.3727E-3 2.1629E-3

conjecture 1.1029E-2 1.0537E-2 9.6036E-3 7.8780E-3

Table 42: distribution of Gal(K2,f/K) for real quadratic fields K with Gal(K1,f/K) ∼=
C9 × C3 in SmallGroup notation of [GAP]

dK area number of fields [1728,47903] [1728,12470] [1728,12474] [432,553]

up to 108 1387 2.8839E-3 6.4888E-3 2.8839E-3 2.1629E-3

conjecture 7.0419E-3 6.3024E-3 6.3024E-3 6.0023E-3

Table 43: distribution of Gal(K2,f/K) for real quadratic fields K with Gal(K1,f/K) ∼=
C9 × C3 in SmallGroup notation of [GAP]

dK area number of fields [1728,46127] [1728,46126] [1728,1285] [1323,39]

up to 108 1387 2.1629E-3 7.2098E-4 2.8839E-3 3.6049E-3

conjecture 3.9390E-3 3.9390E-3 3.6014E-3 3.5839E-3

Table 44: distribution of Gal(K2,f/K) for real quadratic fields K with Gal(K1,f/K) ∼=
C9 × C3 in SmallGroup notation of [GAP]

dK area number of fields [675,10] [1728,18304] [1323,41] [1728,18316]

up to 108 1387 6.4888E-3 1.4420E-3 7.2098E-4 7.2098E-4

conjecture 3.5122E-3 3.3763E-3 1.1946E-3 1.1254E-3

Table 45: distribution of Gal(K2,f/K) for real quadratic fields K with Gal(K1,f/K) ∼=
C9 × C3 in SmallGroup notation of [GAP]

5.3 Database

Some example data of second Hilbert class fields K2 of real quadratic number fields is pre-
sented on http://www.mathematik.uni-kl.de/~numberfieldtables/KT_K2Q/doc.html.
Which fields exactly is described on this internet page. This number field table is part of
the number field database http://www.mathematik.uni-kl.de/~numberfieldtables/.
The number field tables belonging to this database may have different content, but the
internet access to those tables always is the same and will be explained now at the example
of the table of the K2 fields.

Apart from http://www.mathematik.uni-kl.de/~numberfieldtables/KT_K2Q/doc.html
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also http://www.mathematik.uni-kl.de/~numberfieldtables/KT_K2Q/download.html
and http://www.mathematik.uni-kl.de/~numberfieldtables/KT_K2Q/suche.html be-
long to the table of the K2 fields. It is obvious how to use the first two pages (at least
with a browser). The third page is a search form, which is useful if you do not want to
download the whole table (which may be large). It consists of two field sets. The first one
gives the search criteria. For example you could enter there that you are just interested
in those K2 fields where dK > 1015 and hK = 3. If you do not enter anything here, all
data would fulfill the search criteria. At the second field set you can choose how the result
should be presented. show examples gives some records on an html-page which fits to
the search criteria and download starts to download all those records. They are stored in a
[PARI] readable list (at least after decompressing them) and if you do not know how large
the result of a search request is, you should always download the compressed data. The
other possibilities in this field set tell the search script to make a statistic. Therefore you
have to specify a component and the search script counts which entry appears how often
in this component of those records which fits to the search criteria of the first field set.
The meaning of the components is explained on doc.html and depending on the search
criteria making statistic may take some minutes. So wait for the browser to present the
result and just use this search form if you know what you are doing.

5.4 The Database Program

This chapter explains the database program which has been used to create web-interface of
the number field database http://www.mathematik.uni-kl.de/~numberfieldtables/.
It can be downloaded from this page. If you have number field tables and an http-server,
and you want to present the tables in an internet database you can use this database
creation program to generate it.

The internet database consists of three main html-pages and any number of single tables.
These three pages are index.html, tab.html and links.html. The first should be used
to give general information about the database, the second gives links to the single tables
of the database and the third is a possibility to give links to other internet-pages. Each
single table consists of three html-pages again (doc.html, download.html, suche.html),
a search script and any number of files containing number field tables. The single tables
are independent of each other and the content of the database is grouped into these single
tables. On doc.html you should present the documentation of the content of the single
table, on download.html you should give direct download-links for the number field table
files and suche.html is a search form which is created by the program and allows to search
in all of the number field tables of the corresponding single table. To enable the search
script to search in the number field tables, they all have to have the same structure (see
below).

The database creation program gets the information how the html-pages should look
like and how the search script should search from the following text files which can be
modified with any notepad program: mainlist.txt, pagelayout.txt and one txt-file for
every single table. pagelayout.txt specifies the look of all database-pages, mainlist.txt
describes the content of index.html, links.html and tab.html, and the txt-file of a
single table describes the content of the html-pages of the single table and how the search
script should work.
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Installation of database creation program If you have downloaded the program, you
should have a folder database with the content:

dblogo.jpg

readme.pdf

pagelayout.txt

mainlist.txt

erznfdb.cpp

nfdbfkt.h

nfdberzfkt.h

nfdbsuchfkt.h

nfdbfkt.cpp

nfdberzfkt.cpp

nfdbsuchfkt.cpp

KT_example.txt

example_table

To install it you need a c++ compiler like gcc with STL and zlib. The following description
refers to gcc. At first you have to modify the strings L_DB, L_CGI, P_WWW, P_DB, P_CGI,
TMP_LOG_DAT in the first 50 lines of nfdbfkt.h for configuration. L_DB gives the http-path
of the database pages, L_CGI gives the http-path of the cgi-files of the search scripts and
P_WWW is the directory where the cgi-files try to open the number field tables. These strings
should depend on the configuration of your http-server. P_DB and P_CGI are the directories
which the database program writes the html-pages of the database and the source code
of the search scripts to (if there is no direct access to P_WWW without administrator then
P_DB and P_WWW can differ). TMP_LOG_DAT is a temporary file, the search scripts (and only
them) must be able to write and delete.

After that you can compile the database creation program, for example:
g++ -static nfdbfkt.cpp nfdberzfkt.cpp erznfdb.cpp -o erznfdb.out.

Creation of database This paragraph describes how to create the database. If you want
to modify, remove or add single tables the procedure is very similar. At first you have
to know how you group your number field tables into the single tables of the database.
Then you modify mainlist.txt and create the single table-description files (see below).
If you just want to see how the program works, you can generate the prepared example
database which contains one single table: KT_example. In this case you do not have to
make changes in mainlist.txt, and you can use the file KT_example.txt as single table
description file.

If mainlist.txt is modified and if you have created all single table description files, move
them in the database folder and execute erznfdb.out. This program creates the html-
pages and directories of the database in the root directory P_DB. Then it waits until you
have copied the number field tables into corresponding directories in P_DB. For the example
database example_table has to be copied to
P_DB/KT_example/Tabellen/example_table.
If this has been done the program may check if the tables which should be accessible by the
search script have correct structure (see below). The search script can not detect errors in
this tables, so if you are not sure if their structure is correct, you should test them which
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can take a long time. After that the program writes the source code of the search scripts
and information how to compile them (the file komp) to the directory P_cgi.

Now you should ask an administrator to copy the content of P_DB to P_WWW and to compile
the search scripts (execute ./komp) and install them such that they can be accessed via
L_CGI, can open files in P_WWW and can write and delete TMP_LOG_DAT.

Adaptation of mainlist.txt The easiest way to understand how this file affects the cre-
ation of the database is to create the example database (see before) and see what of its
content has which effect. If you want to create a new mainlist.txt use the one from
the example database and modify it. mainlist.txt consists of three sections of content
which are separated by #-sections. The #-sections help the program to identify the con-
tent, so #-sections may not be separated, assembled, created or removed and if a #-section
should not be taken into account, use a blank line. In the content part you only should
use ASCII-symbols between 0-127, or you make sure that it is not stored as unicode. The
first section is a list of lines. Each line has to start with n: , a: , or u: (after the
colon there has to be a space). These lines describe the table with the links to the single
tables on tab.html. After u: there is a heading on the list, after n: or a: there has
to be the name of the single table description file. If it is a: , then there will be a link
to the single table on tab.html, but the search script and the html-pages for this single
table will not be created (again), otherwise it will be done. The second part describes
the content of index.html. It has to be written in html, but you can deal with it as if
this html-text would be enclosed by <html><head><title></title></head><body> and
</body></html>. The third section describes the links.html-page as the second does for
index.html.

Creation of single table description files The easiest way to understand how this file
affects the creation of the database is to create the example database (see before) and see
what of the content of KT_example.txt has which effect. If you want to create a new
single table description file use KT_example.txt and modify it. A single table description
file consists of 14 sections of content which are separated by #-sections. The #-sections
help the program to identify the content, so #-sections may not be separated, assembled,
created or removed and if a #-section should not be taken into account, use a blank line.
After the last #-section there has to be a blank line. In the content part you only should
use ASCII-symbols between 0-127, or you make sure that it is not stored as unicode. The
following list gives a description about the content of the 14 sections. For examples see
KT_example.txt.

1. A short description of the title of the single table (about 10 symbols) has to be here.

2. A description of the single table on the list at tab.html (about one sentence) has to
be here.

3. html-text which appears on the doc.html-page of the single table has to be here.

4. html-text which appears under Tables on download.html has to be here.

5. html-text which appears under Statistics on download.html has to be here. Use a
blank line if you do not want this section to be used.
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6. html-text which appears under Scripts on download.html has to be here. Use a
blank line if you do not want this section to be used.

The remaining sections are necessary to give information how the search script should
work:

7. This section describes how the search form of the single table under suche.html

looks like. It is a list of lines of the structure

text left # name of condition # text right.

It creates a text input form on the search form. Left of this input box is text left
and on the right text right. The names erg, stko, true, stpr can not be used as
names for conditions. The name of a condition should only contain English letters
digits and the symbol _ . If the internet user starts a search, then he uses these
input boxes to communicate with the search script.

8. This section is a vector in [PARI]-style which tells the search script the structure
of the number field tables. Its components are vectors which are generated by the
same grammar or data types such that this vector coincides with every record of a
number field table of this single table if one replaces the content of the records by
their data-types (see structure of tables below).

9. Here has to be a decimal integer which tells the maximal length of a record of the
database in byte (or more precisely in sizeof(char) of the c++ compiler which
generates the search scripts). The database creation program can correct this value,
if you let it check the tables.

10. There are two kinds of conditions under point 7. Table conditions and component
conditions. In this section the table conditions are specified. Therefore this sec-
tion consists of a list condition#value#table 1#table 2# .... condition is the
name of a condition of section 7 and if the internet user inputs value, the search
script opens table 1, table 2,... table 1, table 2, ... are the names of the
files which belong to this single table and contain the information about the num-
ber fields. If you do not want to use specific table conditions you have to write
true##table 1#table 2# ... such that the search script knows which tables it
should open.

11. Here it is described how the component conditions are used in the search script. Each
condition which appears in the search form under 7 and is not a table condition is a
component condition and has to appear here. This section consists of a list of

component#search function# condition 1(#condition 2(#condition 3)).

A search function takes one component (the component component) of a vector of
a record of the database and up to three values specified by the internet user as
input and returns true or false. The search script returns a record of the database if
all functions listed here return true. The possible search functions are listed below
and the components of a vector are counted starting with 0 ignoring the depth. For
example a is in component 0 of both of the vectors [a, b, c], [[a, b], c]. At component
0 you have to use the function <=s<=.
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12. The internet user has two possibilities how he wants to use the search script. He
can get all records which fulfill his search criteria, or he can select a component and
the search script counts how the values of this component are distributed among all
records which meet the search criteria. Here has to be a 0-1-sequence which deter-
mines for which component the internet user is allowed to make statistic. Again the
components are counted beginning at 0 and ignoring the depth, so b is in component
1 of all of the following vectors: [a, b, c], [a, [b, c], [[a, b], c].

13. The records of each file of a single table have to be ordered according to component
0 (see structure of tables below). If they should be ordered by absolute value enter
betrag in this section, otherwise enter normal.

14. This section must consist of a blank line.

Adaptation of layout This can be done by modifications in the pagelayout.txt file.
pagelayout.txt consists of six section of content which are separated by #-sections. The
#-sections help the program to identify the content, so #-sections may not be separated,
assembled created or removed. They contains the html-code of the internet-pages of the
database with 6 placeholders. The database creation program replaces them by other
strings. 1###1, 3###3, 4###4 are always replaced by HTMLTITEL, HTMLTITELRECHTS and
BILDCHEN defined in the first lines of nfdbfkt.h. 2###2 becomes database on the pages
index.html, tab.html and links.html and otherwise it becomes the name of the single
table the corresponding html-page belongs to. 6###6 is replaced by the actual content of
the corresponding page, and 5###5 is build from the other sections in pagelayout.txt to
give links to the other pages of the database.

Structure of tables In the single table description file, you can specify files which can be
accessed through the search-script. For every single table that can be an arbitrary number
of files, but each of those files must not be larger then 2GB and it must be an ASCII

encoded list of lines (see example_table). A line is terminated by Windows or Linux line
termination symbol and it represents a record of the single table of the database. A record
is stored as a vector in [PARI]-style, that means components are separated by a comma
and the vector starts with [ and ends with ]. Each entry is again a vector or it is one of
the data-types z, i, s, c, g, f, a, which are explained in the following table.

data-type description example

z number string of any length -1234567

i number string which is short enough to be of c++ -1234567

type long long int on the system where the search
scripts are compiled

s string without spaces, commas, ], [, ”, and line X^2-5

termination symbols; more precisely: a string which
contains just ASCII symbols between 33 and 126

except 34, 44, 91 and 93

c abelian group in descending elementary divisor [12,2,2]

notation; each elementary divisor has to be of type i

g IdSmallGroup of [GAP]; both [4,2] for C2 × C2

entries have to be of type i
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data-type description example

f prime factorization of a non zero integer [] for 1
[2,1] for 2

[-1,1;2,2;3,1]

for -12

a string in quotation marks; more precisely a string "[67[,77"

with char(34) as first and last element, where the
other elements are ASCII symbols between 32 and

126, except 34.

A new entry of the vector starts directly after [ or a comma, so there must not be spaces
after the commas which separate the entries. The structure of the records which belongs
to the same single table, has to be identical and it can be described by a vector, whose
entries are the data-types. The first entry of every vector has to be of type z or i and
the records of every file of a single table have to be ordered according to this component
(here first entry of [[a, b], c] means a, not [a, b] for example). There are two possibilities
to order them, but it has to be the same for all files belonging to the same single table.
The records always must rise up, but they can be ordered in the usual way or by absolute
value: −2 < −1 < 0 < 1 < 2 < 3 or 0 < 1 = −1 < 2 = −2 <. The following vectors are
correct examples for the structure-type [z,s,i,c]:

[5,X^2-X-1,1,[]]

[8,X^2-2,1,[]]

[12,X^2-3,"$","$"]

Every entry of a record which is not the first can also be equal to "$". This is independent
of the data type of the entry and allows to indicate unknown entries.

All vectors of this type especially every output of the search script can be read with [PARI],
but the data-type f differs a bit form the [PARI]-factorization of integers.

Search functions This gives a list of all search functions which can be used in the search
scripts to test components. The first column shows how the function has to be named
in the single table description files, the second column describes of which data-type the
component of the records which is tested by this function has to have, third column gives
the number of user arguments which the function expects and in the last column there is
a description how this function works. The first argument given by the user is called a1 in
this table, the second and third (if they exist) a2 and a3. The content of the component
which should be tested is denoted by c.

function data-types description

x== i,z,s,a,c,g 1 This function returns true if a1 is the empty string or
if a1 = c, otherwise it returns false.

<=x i,z,c 1 This function returns true if a1 is the empty string or
if a1 ≤ c, otherwise it returns false.
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function data-types description

x<= i,z,c 1 This function returns true if a1 is the empty string or
if c ≤ a1, otherwise it returns false.

<=x<= i,z,c 2 This function returns true if a1 and a2 are empty
strings. If a1 is the empty string it works like x<=

and if a2 is the empty string it works like <=x.
If both a1 and a2 are non empty strings then it
returns ( a1 ≤ c ≤ a2).

p== i,c 2 This function returns true if a2 is the empty string.
If a1 is the empty string it returns (c = a2),
otherwise it returns true if the a1-part of c equals
a2 and false if they differ.

<=p i,c 2 This behaves to p== as <=x to x==.

p<= i,c 2 This behaves to p== as x<= to x==.

<=p<= i,c 3 This behaves to p== as <=x<= to x==.

r== c 2 This function returns true if a2 is the empty string.
If a1 is the empty string it returns rk(c) = a2,
otherwise it returns rka1(c) = a2. Here rk
is the rank of the abelian group c and rka1 is
the a1-rank of c (the number of elementary divisors
of c which are divisible by a1).

<=r c 2 This behaves to r== as <=x to x==.

r<= c 2 This behaves to r== as x<= to x==.

<=r<= c 3 This behaves to r== as <=x<= to x==.

o== g 1 This function returns true if a1 is the empty string,
otherwise it returns true if the first component of c
equals a1 or false if they differ.

<=o g 1 This behaves to o== as <=x to x==.

o<= g 1 This behaves to o== as x<= to x==.

<=o<= g 2 This behaves to o== as <=x<= to x==.

teilt i,z 1 This function returns true if a1 is the empty string
or a divisor of c.

prim f 1 If a1 equals 1, yes or y and c is a prime or if
a1 is the empty string, this function returns true,
otherwise it returns false.

primpotenz f 1 If a1 equals 1, yes or y and c is the power of a
prime or if a1 is the empty string, this function
returns true, otherwise it returns false.

primteiler f 1 If a1 is the empty string or a prime divisor of c
this function returns true, otherwise it returns false.

quaddisk f 1 If a1 is the empty string or if c is an a1-th
power of a fundamental discriminant this function
returns true, otherwise it returns false.

quadrat f 1 If a1 equals 1, yes or y and c is a square or if
a1 is the empty string, this function returns true,
otherwise it returns false.
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