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Abstract

This paper addresses analogy-driven auto-
mated theorem proving that employs a source
proof-plan to guide the search for a proof-plan
of the target problem. The approach presen-
ted uses reformulations that go beyond symbol
mappings and that incorporate frequently used
re-representations and abstractions.  Several
realistic math examples were successfully pro-
cessed by our analogy-driven proof-plan con-
struction. One challenge example, a Heine-
Borel theorem, is discussed here. For this ex-
ample the reformulaitons are shown step by
step and the modifying actions are demon-
strated.

1 Introduction

Analogy in theorem proving has received little attention
despite its importance in mathematics and the claims
made for its usefulness in theorem proving [Polya, 1957;
Bledsoe, 1986; Wos, 1988]. Reasons for this situation
are manifold: Firstly, different from simple AT domains,
minor changes in theorems or proof assumptions may
cause major changes in proofs. Hence, the retrieval of a
source problem is more difficult than usually. And, since
previous approaches to analogy always tried to transfer
proofs analogically, those minor changes of the problem
caused a break down of the analogy of the proofs or at
least imposed unsolved problems on the modification.

Secondly, it is a well known fact that constructing an
analogy in mathematics often amounts to first finding
the appropriate representation which brings out the sim-
ilarity of two problems, that is, finding the right con-
cepts and the right level of abstraction. Previous ap-
proaches to analogy in theorem proving [Kling, 1971;
Munyer, 1981; Owen, 1990], however, used symbol map-
ping only rather than employing re-representations or
abstractions. Hence, their results were highly depend-
ent on the actual representation of the theorems and of
proof assumptions.

Thirdly, previous approaches were able to handle only
examples that are very simple compared to real maths
examples (except Woody Bledsoe and his students in
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[Brook et al., 1988; Bledsoe, 1995] who worked on debug-
ging analogies). They, hence, failed to produce worked
compelling examples.

Our approach [Melis, 1995b] contributes to over-
coming this situation by working at the proof-plan
level, by offering reformulations that correspond to re-
representations or abstractions of problems, and by pro-
cessing real maths examples. This paper first introduces
the new approach and presents a challenge example af-
terwards.

2 Analogy-Driven Proof-Plan
Construction

Proof-plans, introduced in [Bundy, 1988], are high level
representations of proofs that consist of methods. We
postulate that the transfer of proof-plans by using and
transforming their methods is an appropriate level of ab-
straction at which to draw analogies. The power of such
an analogical transfer stems from the given proof-plan,
from transferring proof strategies encoded into subplans,
and from reformulating proof-plans which may include
the reformulation of methods.

Besides, often proof-plans are better suited for ana-
logical transfer than formal proofs which are often too
brittle to apply a transformation in general. But still,
proof-plans contain enough information to construct a
concrete proof for a given problem.

As discussed in section 4 our analogy model is gen-
eral enough to work for different proof planning sys-
tems. The methods and reformulations, however, may
vary between these systems. Since we shall present the
worked example in the planning framework and with the
operators designed for Q-MKRP [Huang et al., 1994a],
we start with a brief review of how these operators and
plans are defined, introduce reformulation and discuss
the analogy procedure.

Operators
Sequenis P = (A F F), are pairs of a set A of formulas
and a formula F' in an object language that i1s extended
by meta-variables for functions, relations, formulas, sets
of formulas, and terms.

Proof-plan operators, called methods, were first intro-
duced in [Bundy, 1988]. The methods used here are
frame-like structures defined in [Huang et al., 1994b].
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An example of a method is Indirect Proof in which
IP is a composite ND rule.

More specifically, methods M have the following
slots: parameter, preconditions (pre(M))!, postcondi-
tion (post(M)), constraints, proof schema and proced-
ure. pre(M) is a set of sequents from which the applic-
ation of the method derives post(M) which is a sequent
as well. pre(M) and post(M) both are needed for plan-
ning. The constraints are formulated in a meta-language
and serve to restrict the search during planning, e.g., re-
strictions of pre(M), post(M), or of the parameters. The
proof schema i1s a declarative schematic representation
of proofs in the object logic, relying on the Natural De-
duction (ND) calculus and on invoking an automated
theorem prover (atp) such as OTTER [McCune, 1990].
The standard program in the slot procedure executes
the application of the proof schema.

Our methods mainly differ from those in [Bundy, 1988]
in that the tactic slot is replaced by a declarative proof
schema and a procedure interpreting this schema?. The
intention behind this difference is to enable reformula-
tions of methods that change the underlying tactic as
well.

A method is wverifiable if, given pre(M), then the
method yields a correct proof of post(M). For verifying
a line with an atp-call, a time limit is set for the atp to
prove the sequent.

Proof Plans

Since in general maths proofs are constructed top down
and bottom up, we consider backward and forward
search in proof planning and define plan operators to
be an f-method or a b-method respectively. f-methods
work with their preconditions as input and postcondition
as output; b-methods work vice versa. For instance, the
method corresponding to the ND-rule A-elimination is a
typical f-method, whereas the method A-introduction is
a typical b-method. f- and b-methods will be treated
differently by the analogy procedure. (Yes, ND-rules
correspond to basic methods in this framework but com-
pound methods are predefined and can be constructed
by the user. Essentially, the analogy procedure manip-
ulates a given source plan and does not care about the

!Note the remnaming of slots compared with Bundy’s
methods.

?Besides, the slots are renamed, e.g., our preconditions
are named input there.

level of methods. As shown in the example, the source
proof-plan encodes chunks of proofs.)

Goals and assumptions are sequents, and a proof-
plan 1s a forest the trees of which consist of sequent
nodes and method nodes that satisfy the “link condi-
tion”: A method node M follows a sequent node g and
precedes the sequent nodes gi,...,g, if o(post(M)) =
g and o(pre(M)) = {g1,...,8n} for a substitution o of
parameters.

Proof planning starts with a goal g and assumptions
(0 - F;), where F; are proof-assumptions, axioms, defin-
itions, or lemmas. The proof planning proceeds by in-
serting methods and sequents: A b-method follows a
goal and yields new (sub)goals as its successors. An f-
method precedes assumptions and yields a new preceding
assumption. Planning aims at reducing the gap between
leaf goals and assumptions. Leaf goals that are not equal
to an assumption are called open goals. As soon as a goal
g; equals an assumption, the two nodes collapse. Then
g; 1s no longer an open goal but satisfied. The planning
terminates if there are no open goals.

The source proof-plans are trees with the source prob-
lem at the root, with no open goals, and with verifiable
methods. For the analogy procedure we use linearised
proof-plans ordered by the sequence in which the nodes
have been added to the plan. The analogy follows a lin-
earised plan because the sequence of introducing meth-
ods can be important for the mapping and reformulation,
particularly in case of forward end backward planning.
As in [Veloso, 1994] justification structures, used to en-
code justifications for the decision made, annotate the
plan nodes. These justifications capture the dependency
structure of a plan and point to reasons for the choice,
such as application conditions of a method?® user-given
guidance, or pre-programmed control knowledge.

2.1 Reformulation

The reformulations included into our analogy, change
proof-plans.  That 1is, in general they can remove
methods, replace a method/subplan by another given
method/subplan or by a method/subplan that is con-
structed by the reformulation. Reformulations are
triggered by the aim to match source goals/assumptions
with target goals/assumptions and to satisfy justifica-

®FE.g., its verifiability or the existence of a certain
definition



tions. Reformulations are mappings p of a proof-plan
to a proof-plan which usually but not necessarily pre-
serve the verifiability of methods in a plan. They encode
mathematical heuristics on how a proof-plan changes de-
pendent on certain changes of the theorem and assump-
tions. Reformulations may change the plan, methods,
sequents, and justifications of nodes.

The reformulations used in the worked example be-
low are Symbol-Mapping and Add-Arguments (see, e.g.,
[Melis, 1995c]). We advocate high-level reformulations
and pretty general ones in order to obtain just a small
number of reformulations. Add-Arguments seems to be
general and used in maths more often than not. (Kolbe
and Walther [Kolbe and Walther, 1995] discovered a sim-
ilar procedure in the context of instantiating and patch-
ing generalised proofs.)

Reformulations are carried out by meta-methods
which are represented by data structures with the slots
parameters, application-condition, effect, program. The
purpose of the slots application-condition, effect is to
meta-plan a sequence of reformulations. program ex-
ecutes the reformulation dependent on parameters.

2.2 Construction

Our analogy-driven proof-plan construction is a deriv-
ational analogy (see, e.g., [Carbonell, 1986; Mostow,
1989]). Tt is a control strategy for proof planning that
extends the derivational analogy of [Veloso, 1994] by re-
formulation and bidirectional planning. The general idea
of our analogy model is to use the linearised source proof-
plan together with its justifications as a guide for con-
structing an analogous target proof-plan and to transfer
methods (and sequents) of a reformulated source proof-
plan to the target proof-plan.

Table 1 shows the top-level procedure of our analogy-
driven proof-plan construction. Given a parametrized,
linearised source proof-plan, target assumptions, and a
target goal (the first open goal), the output of the pro-
cedure is a target proof-plan.

Step 4 is relevant for a planner with backward search
only. Steps 5-6 cover the transfer of f-methods. The
former matches a source goal and transfers a b-method
whereas the latter matches as many source assumptions
as possible to target assumptions and transfers an f-
method. |missing(p’M)| < m means® that less than
m preconditions of the currently treated reformulated f-
method M do not match a target assumption. Hence, m
is a parameter that expresses the confidence on a suc-
cess of analogy despite missing target assumptions. The
sequents of missing(p'M) become new open goals if p’ is
an acceptable reformulation.

The first goal of the linearised source plan, usually the
source problem Pg, is chosen in 3. If Pg can be refor-
mulated by a p such that it matches the target problem
Pr, then p will be applied to the (current) source plan.
The method M with post(M) = pPg will be transferred
to the target if its justifications hold in the target.

In the example below the check of a method’s justifica-
tions amounts to the check of its verifiability. The latter

*For missing(M) := set of preconditions of M that do not
match a current target assumption.

input: linearised source plan, (open) target goal
output: (linearised) target plan

1. while there are open target goals do

2. if source plan is exhausted, then base-level
plan for the open goals, else

3. Get next sequent P from source plan. The se-
quent is either an assumption or a goal. if P
is an assumption, then go to 5.

4. if there is a reformulation p, such that pP
matches an open target goal gp for which jus-
tifications hold, then

o reformulate source plan by p and link
g to source plan.

e if g7 is an open goal, then

e Select from the reformulated
source relevant b-method M.

o if M’s justifications hold,
then transfer M to the target
plan and update open goals.

e if justifications do not hold,
then choose suitable action:
o Try to establish justifica-

tions by other means.

e Or base-level plan.

5. Select from the reformulated source the relev-
ant f-method M.

6. if there is a reformulation p’ left such that
|missing(p’'M)| < m and such that justifica-
tions hold for the matched target assumptions
then

e reformulate source plan by p’ and link
the matched target assumptions to
source plan.

o if p'M’s justifications hold, then
transfer the method to the target and
update open goals and assumptions.

e if justifications do not hold, then
choose suitable action as above.

Table 1: Outline of the analogy-driven proof-plan con-
struction

test 1s necessary because reformulations of the presented
methods do not necessarily preserve verifiability. If pM;
is not verifiable, then an action i1s chosen to establish
the verifiability: possible actions are either a decomposi-
tion of pM; in order to obtain a verifiable submethod or
the calculation of additional preconditions of the method
yielding verifiability.

The analogy procedure is repeated, first testing ter-
mination conditions (1.,2.). Base-level planning is ac-
tivated when the guidance by the source proof-plan is
exhausted in order to prove the remaining open goals.
Source methods that become redundant in the target
are skipped. This procedure yields a target plan with
verified methods. The target plan may have open goals
which eventually have to be closed by base-level plan-
ning.



3 Example

Woody Bledsoe [Bledsoe, 1994] provided the Heine-Borel
example as a challenge problem for theorem proving by
analogy that could not be solved by previous approaches.

THEOREM: Heine-Borel-1 (HB1) If a closed interval [a,b]
of R is covered by a family G of open sets (in R'), then
there is a finite subfamily H of G which covers [a,b].5

Formalised:
{a e RAbE RANa <b,VYB(B € G — open(B)),[a,b] C UG}
F3H(H C G A finite(H) A[a,b] C UH)

THEOREM: Heine-Borel-2 (HB2) If a closed rectangle
[a,b,c,d] of R? is covered by a family G of open sets (in
R?), then there is a finite subfamily H of G which covers
[a,b,c,d]. [ ]

Formalised:
{a e RAbERAcERANDERNa<IANc<IVB(BeG —
open(B)),la,b,c,d] C UG}
F3H(H C G A finite(H) Aa,b,c,d] C UH)

To give an idea, a (nontrivial) mathematical proof of
HBI1 by contradiction goes like this (using lemmas listed

below):
A sequence g(i) is defined by
9(0) = [a, 0]
oy = O Uf(g(), mid(g(2))] (*)
9(”1)—{ [mid(g(i)), rt(g(i))] : otherwise
where (*)= if no finite subset of G covers

[1/(g(i)), mid(g(i))] and
mid(g(i)) = 1£(g(1)) + (Lf(g(0)) — rt(g(i)))/2°. By in-
duction on i (which we deliberately circumvent in our
proof-plan) it is shown that g(7) is a nested sequence of
closed intervals and that for each i € IN no finite subset
of G covers g(i) and (rt(g(i)) — If(g(i))) = (b — a)/2".
Since g(7) is a nested sequence of non-empty closed in-
tervals, by the Nested Interval Lemma (Nitl) there is a
2 for which z € g(¢) for each i € N. Thus, z € [a,b] and
since [a,b] C UG, it follows by Lemma6 that z € B for
some B € (. Since B is open, LemmaT yields that there
is a closed interval [u,v] for which u < v,[u,v] C B,
and z = mid([u,v]). By Lemma8 choose i such that
(b—a)/2 < (u—v)/2. By Lemma9 follows then that
g(i) C [u,v] C B and thus g(i) C U({B}) by Lemmal2,
where {B} is a finite subset of G.

This example has been proceeded in detail in [Melis,
1995a). Here we cannot go into detail and just explain
the bottom line. Figure 1 shows the proof-plan for HB1
which, in fact, yields a proof of HB1 when executed. One
of its methods, method-111, is shown below.

3.1 Proving HB2 by Analogy
L1, 12, L6, L8, L10, L12, L13, L14, L17 in Figure 1

are potential lemmas for HB2 because they contain only
symbols not specific for R'. The parameter m of the

°R! denotes the set of sets of real numbers and R? denotes
the set of sets of ordered pairs (x,y) of real numbers x and y.

61f,rt, and mid denoting the lower, upper bound and the
middle of an interval
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Figure 1: The proof-plan of HB1 with annotated se-
quence of method nodes

analogy procedure is set to a large number because many
lemmas are missing for HB2.

The reformulations are assisted by a connection-
table CT, which contains connections of the kinds,
(-, =1l=,—,—, =1, (clsdint clsdrect), and (R'R?),
where [—,—] is a function that maps two real num-
bers z,y to the real interval [z,y] and [—,—, — —]
maps four real numbers to the two-dimensional interval
[z,y,w,z] 7. CT restricts the search for reformulations
and reduces the number of parameters that have to be
instantiated to be able to prove suggested target lemmas
after the analogy procedure. CT is a permanent connec-
tion table, which contains information for a large area of
mathematics, and can be used for other analogy theorem
proving problems as well.

The source proof-plan is reformulated stepwise along
with a step by step transfer of methods to the interme-
diate plan.

1. The source goal HB1 has to be reformulated such
that it matches HB2. The reformulation con-
sists of the Symbol-Mapping instantiating the para-
meters a, b, G, clsdint, open, finite to the constants

b, G, open, finite of HB2 and of Add-Arguments.
The latter reformulation changes the binary func-
tion [[—, —] to the 4-ary function [—,—, —, —] (see,

g., [Melis, 1995c]). The indirect proof method and
some subgoals and assumptions stay unchanged but
all other methods are changed by the reformulation:

"XzAy.[z,y] and Azdydwdz.[z,y, w, 2] respectively.

D goal/assumption



For instance, it changes lines in proof schemas such
as

AFa€e RAbE R — clsdint([a,b]) to

A'"ra€ RAbe RAce RAd € R — clsdint([a, b, c,d])
and an assumption

clsdint([a,b]) A=FH(H C G A finite(H) A

[a,b] CUH) ALf([a,b]) < rt([a, d]) to

clsdint([a,b,c,d]) A =3H(H C G A finite(H) A
[a,b, c,d] C UH)ALf([a,b]) < rt([a, b)) ALf ([a, b, c,d]) <
rt'([a,b, ¢,d]).® The indirect proof method is verifi-
able and, thus, is transferred to the target.

2. Next, the source assumption L3 (reformulated in
step 1) leads the f-method method-111". No
lemmas corresponding to L3, L4 are given for
the target, since the parameter m of the ana-
logy procedure is large, this does not matter.
clsdint, lf vt,If' rt’ occur in the reformulated
I.3,1.4, thus the Symbol-Mapping clsdint = clsdrec
is forced by CT. The parameter If, rt,[f’, rt’ cannot
be instantiated and remain parameters. method-
111 1s reformulated to method-111" by the reformu-
lations of step 1 and 2 (See below.). method-111"is
verifiable and is transferred to the target plan.

3. The next (previously reformulated) source sequent
is (A',=Th" + F4') and this sequent is related
the f-method method-11"in the reformulated source
plan. No lemmas corresponding to the (reformu-
lated) source assumptions L5’, CIA’ are given in
the target which does not matter because of the
large parameter m. No reformulations are neces-
sary. method-11’, shown below, is verifiable and 1s
transferred to the target plan.

4. Essentially the same is true for the next assumption
and method-1".

5. Now it is method-2’s turn. center occurs in the
preconditions of method-2’ and remains a parameter
since no lemma to match is given in the target. No
reformulation takes place.

e Checking the justifications of method-2’
we find that method-2’ is not verifiable be-
cause line2’-5
A =Th +
3i(i € NA(rt([a, b, ¢, d]) = 1f([a,b, ¢, d]))/2" <
(rt([u, v, s,t]) = 1f ([u,v,s,1]))/2 A
(Tt/([aa b’ Cy d]) - lfl([aa ba ¢ d]))/zl <
(rt'([u, v, s,8]) = Uf'([uw, v, 5,1]))/2)(...) is not.
In order to establish the verifiability
method-2’ is decomposed into a plan con-
sisting of the verifiable method-21" with
post(method-2’) = post(method-21"), the
subgoal g's, which is in pre(method-
2%), and a not verifiable method-22" with
post(method-22°) = g's, .

e method-21" can be transferred and g's, re-
mains an open goal.

6. After method-21" is transferred to the target plan,
(A',=Th' - F2) is the next source assumption and

8pdd-Arguments does not introduce introduce additional
subplans in the Heine-Borel example.

leads to method-0’. No further reformulation hap-
pens in this step. method-0’ is verifiable and can be
transferred to the target plan.

3.2 The Resulting HB2 Proof Plan

The analogy procedure yields the copy of the source
plan, shown in Figure 2, with reformulated goals, as-
sumptions and verifiable methods. The target plan for
HB2 looks exactly like that for HB1 except that some
new lemmas L3’... replace L3 ... and all methods but
method-2 are replaced by the corresponding reformu-
lated methods. method-2 1s replaced by its reformu-
lated submethod method-21’. Actually this proof-plan
has been produced by interactively choosing the refor-
mulations but applying it automatically. The analogy
procedure suggests open goals (lemmas) L3’, L4’ L5,
L7, L9, L11°, Nit2, CIA’, TA’, g5, which are left to be

proved.

refutation

A,-Th |- false

method-0’

[ | method
C D sequent

method-1'

&
method-11’
method-111'

T ()

Figure 2: The proof-plan of HB2

Usually one has to find an appropriate interpretation
of the parameters not instantiated yet, i.e., the symbols
not occurring in the target theorem or target assump-
tions, nor in CT in order to be able to accomplish the
proofs of the open goals. In the Heine-Borel example an
appropriate interpretation of [ f by If, of vt by rt, of I f’
by bot, of rt' by top, of center by center in R? makes the
open goals true. Assuming the open goals as proof as-
sumptions of HB2, the proof-plan actually yields a proof
of HB2 when executed.



method: -111

parameter a,b,G,clsdint,open, rt,lf,[—, —], finite
preconditions | L3,L4
postcondition | (A, ~Tht F4)
constraints
1A F acRALERAGZD (AYP)
1. A F ac RAbER (AE,0-1)
2. A F a€ RAbE R — clsdint([a,b]) (VE;L3)
3. A F  clsdint([a, b)) (—E1,2)
5. A F 1f([a,b]) < rt([a, b]) (OTTER;L4
1)
6. A F [a,b] CUG (HYP)
7. A,-Th + F4 (AL3,4,5,6)
procedure schema-interpreter
method: -111
parameter rt, If, vt 1f
preconditions | L3’ L4’
postcondition | (A/,=Th' - F4')
constraints type(rt)=type(rt’), type(lf)=type(lf")
0-1.A7 F aeRAbERANa<bAcERAIERANc<d (HYP)
1. A F aeRAbERANcCERANIDER (AE,0-1)
2. A/ F a € RAb € RAc € RAd € R — clsdrec([a, b, ¢, d]) (VE;L3’)
3. A F clsdrec([a,b, ¢, d]) (—>E,1,2)
proof Schema 4 {ﬁTh/} }_ ﬁElf{(f{ g G A fmzte(H) A [a, b, C, d] C UH) (HYP
5. A F 1f([a,b,c,d)) < rt([a, b, c, d]) (OTTER;L4
Alf'([a, b, c,d]) < rt'([a, b, c,d]) 1)
6. A Fo[a,b,c,d] C UG (HYP)
7. A -Th + F4' (AL3,4,5,6)
procedure schema-interpreter
method: -
parameter b, G, clsdint,open, rt,lf, [—, —], finite, g
preconditions | (A,-~ThF F4),L5,CTA
postcondition | (A, ~Tht F3)
constraints
1. A—Th F Fi (LEMMA)
2. A,=Th F 3g(g(0) = [a, b] /\Vz(z €N — (OTTER;L5,
proof schema P(g(2)) A Q(g(1), g(i + 1)))) CIAT)
3. A,-Th + F3 (3E;2)
procedure schema-interpreter
method: -11°
parameter rt, If, vt 1f
preconditions | (A’,=Th'F F4') L5 ,CIA’
postcondition | (A’,=Th'F F3')
constraints type(rt)=type(rt’), type(lf)=type(lf)
T A =Th F F& (LEMMA)
2. A -Th' F 3g( (0) = [a,b,c, d] AVi(i € N — (OTTER;L5’
proof schema 9(i)) A Q' (9(i), g(i +1)))) CIA’1)
3. A -Th F F3 (3E;2)

procedure

schema-interpreter




4 Discussion

The robustness of the analogy-driven proof-plan con-
struction to different formulations of theorems and pos-
sible improvements have to be investigated. Actually,
we looked at three different formulations when we were
dealing with the Heine-Borel examples®:

1. Let the two theorems Heine-Borel-1 and Heine-
Borel-2 be formalised by HB1:
... F clsdint(I) — AH(H C G A finite(H) A D C UH)
and HB2:
...Fclsdrec(I) — 3H(H C G A finite(H)AND C UH),
and the some source assumption
0 FVD(clsdint(D) — Jz,y(D = [z,y] Az € RAy € R))
and the target assumption
0 F VD(clsdrec(D) — Fz,y, z,w(D = [z,y,z,w] Az €
RAyeR)AzERANWER.
When the function [—, —] occurs first in the proof-
plan, the connection table forces its mapping to
[-,—,—,—] and this triggers the reformulation
Add-Arguments only later than in the first analogy
step. The first occurrence of the function [—, —] de-
pends, however, on the actual proof of HBI1.

2. If HB1 is formalised as
...clsdint(I) F 3H(H C G A finite(H)AD C UH) and
HB2 as
...F3H(H C GA finite(H) Aa,b,e,d] CUH),
then a normalising reformulation (not discussed in
this paper), has to be applied to the source plan in
order to match HB1 with HB2. Such a normalisa-
tion introduces an additional method at the top of
the source proof-plan that applies the definition of
elsdint(X) and yields a postcondition that can be
matched with HB2.

3. We ran into problems when we tried to use
length(D) instead of rt(D) — [f(D) in the assump-
tions, because, for instance, a target lemma
L9’= 0 F VeVuVoVsViVeVdVeVf(u € RAv € RAs €
RAte RAce RAde RAhNee RAfeE RAu<wvAs<
thc<dAhe < f— (center(z,[u,v,s,t])Az € [c,d, e, fIA

length([c,d, e, f]) < length([u,v,s,1])/2 A
length([c,d, e, f]) < length([u,v,s,t])/2 — [c,d,e, f] C
[u,v,3,1]))

was suggested for which we did not know how to
interpret length in order to satisfy the lemma.

More work is necessary to find powerful and general
reformulations that can depend on the actual context,
particularly normalising and abstracting reformulations.
Presumably, meta-planning with meta-methods is neces-
sary to automate the choice of sequences of reformula-
tions. The HB1-methods have been user supplied and
encode partial proof strategies themselves. Taking into
consideration that the actual OTTER procedure can,
of course, not be reformulated, the resemblance to plans
from other planners, such as CIAM [van Harmelen et al.,
1993], becomes more obvious. That means, our concept
of reformulations is not bound to the presented type of
methods.

?These examples were not proceeded in detail though.

The approach seems to be general enough to be ap-
plicable in another proof planner C'IAM. Ongoing ex-
periments with C'TAM for efficiency reasons use match-
ings that are be restricted by domain-specific heurist-
ics (i.e., for induction) and they have shown that many
but not all reformulations are dependent on the domain
and its heuristics. Since usually little search for meth-
ods 1s necessary in C'TAM because of the encoded strong
heuristics of inductive theorem proving, the main ad-
vantage of analogy cannot be to save search for methods
in CIAM . However, the justifications are elaborate for
CIAM’s methods and the actions to establish justifica-
tions play a major role for the usefulness of analogy in
this framework.

5 Conclusion

We surely did not solve all problems that occur in prov-
ing theorems by analogy but we made considerable pro-
gress because the new approach succeeded with analogy
problems that previous approaches were not able to cope
with. The success of proving the Heine-Borel-2 theorem
by analogy is mainly due to the application of reformu-
lations.

Previous approaches to analogy in theorem proving
basically used just symbol mapping and did not attempt
to re-represent, abstract, or elaborately reformulate the
source problem or the target problem and, hence, their
results were highly dependent on the actual represent-
ation of theorems and proof assumptions. In contrast,
our analogy employs reformulations that go beyond sym-
bol mapping and benefits of certain normalising and ab-
stracting reformulations that re-represent and abstract
the source problem and change the source proof-plan ac-
cordingly.

The need to incorporate re-representations and ab-
straction into analogy was also pointed out, e.g., by In-
durkhya [Indurkhya, 1992; Indurkhya and O’Hara, 1993]
and Plaisted [Plaisted, 1981; Giunchiglia and Walsh,
1992; Villafiorita and Sebastiani, 1994], respectively.
Since re-representations and useful abstractions are at
least domain-dependent it is a problem to incorporate
these general ideas into an analogy system. In order
to avoid this problem, abstractions are user-supplied in
[Villafiorita and Sebastiani, 1994] or frequently needed
normalisations and abstractions are predefined as in our
model.

The reformulation and transfer at the proof-plan level
turned out to be better suited for analogy in theorem
proving than that at the level of calculus proofs.
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