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Abstract

CIAM is a proof planner, developed by the Dream group in Edinburgh,
that mainly operates for inductive proofs. This paper addresses the question
how an analogy model that I developed independently of C'IAM can be
applied to C'IAM and it presents analogy-driven proof plan construction as a
control strategy of C TAM . This strategy is realized as a derivational analogy
that includes the reformulation of proof plans. The analogical replay checks
whether the reformulated justifications of the source plan methods hold in
the target as a permission to transfer the method to the target plan. Since
CIAM has very efficient heuristic search strategies, the main purpose of
the analogy is to suggest lemmas, to replay not commonly loaded methods,
to suggest induction variables and induction terms, and to override control
rather than to construct a target proof plan that can be built by C'IAM
itself more efficiently.

1 Introduction

Analogy is a heuristic problem solving strategy that guides the problem solving of
a target problem, which is similar to a source problem, by using the source prob-
lem solving. There are at least two different paradigms for analogy: derivational
analogy [Carbonell 86] and transformational analogy [Carbonell 83]. Derivational
analogy guides the target solution by replaying decisions of the source problem
solving process, and it uses information available during this process only, e.g., the
justifications for the decisions made. Transformational analogy transforms only
the final source solution to satisfy the constraints of the target problem.

The analogy-driven proof plan construction in [Melis 95] was originally developed
for the Q-MKRP environment [Huang et al 94a, Huang et al 94b] with its method
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data structures and planner. Now a question was whether this analogy model
can be applied in another proof planner as well and which of its purposes and
techniques are dependent on the actual planner.

Because of the huge search space in general (proof) planning, usually the main
purpose of analogy is to guide the search for methods. C'IAM’s search for methods,
however, is quite restricted already because inductive theorem proving is a rather
goal-directed type of mathematical reasoning and C'IAM uses efficient search heur-
istics such as rippling. Therefore analogy might be helpful or efficiently used only
if CIAM’s proof planning breaks down. Hence, the focus of applying analogy in
C'IAM will be different, although we shall use the model of theorem proving by
analogy in [Melis 95].

This paper is organised as follows. First, I briefly review the proof planning in
C'IAM and the model of analogy-driven proof plan construction. In section 4
the purposes of analogy in C'IAM are discussed. In section 5.1 the matchings
underlying the reformulations and the reformulations themselves are described. In
section 5.3 the analogical replay is introduced along with the justifications of C'IAM
methods. A comprehensive appendix contains examples referred to throughout the
whole paper.

I assume the reader to be familiar with proof planning and notations of C'IAM.
For a comprehensive introduction see [Bundy et al 91a].

2 Proof Planning in C'IAM

A proof plan is an abstract representation of a proof that consists of methods
corresponding to tactics. A tactic executes a number of logical inferences. In the
proof planning context a method is a (partial) specification of an available tactic
[Gordon et al 79]. Proof planning exploits the information encoded in methods to
build tactics tailored for the goal at hand. Proof planning constructs proof plans
that are trees! of method nodes which are connected by sequents, called goals?.
The execution of a complete plan, i.e. without open goals, yields a proof of the
top goal.

Proof planning has been introduced in [Bundy 88] in order to restrict the search
in theorem proving. Proof planning has been applied successfully to inductive
theorem proving by the Edinburgh proof planner CIAM [Bundy et al 91b]. This
required to analyze families of inductive proofs and to identify common patterns
in them which provide proof plans that can guide future proofs from the same
family.

Fortunately, inductive theorem proving is itself goal-directed and inductive proofs
reveal a certain pattern. Furthermore, strong domain-specific heuristics have been

Lor more generally, forests
2in backward planning
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discovered for inductive proofs, such as rippling [Hutter 90, Bundy et al 93], that
restrict the search for methods. Rippling systematically uses so-called wave-rules
to eliminate differences between the induction hypothesis and the induction con-
clusion. To that end it considers goal expressions which are annotated by so-called
wave-fronts (indicated by boxes), i.e. terms that appear in the induction conclu-
sion but not in the induction hypothesis. So-called wave-holes are indicated by
underlining. If, for instance, the induction hypothesis is

(r+y)+z=2+(y+2),

then the induction conclusion is

(s(z)|+y)+2z=|s(z) |+ (y + 2).

If we remove the structure of the not underlined parts of the boxes, then we
obtain the skeleton which equals the induction hypothesis. Rippling systematically
applies wave-rules that move or remove the wave-fronts in order to obtain an
expression that matches the induction hypothesis. Wave-rules are rewrites with
the same kind of annotation that encode terminating annotated rewriting.

The methods of CIAM have the form (see [vanHarmelen et al 93])

method (name(...Args...), % name slot: Prolog term
H==>G, % input slot: sequent,
H hypotheses, G goal
[...Preconditions...], % precondition-slot: list of conjuncts
[...Postconditiomns...], % postcondition-slot: list of conjuncts
[...Outputs...], % output slot: list of sequents
tactic(...Args...) % tactic slot: Prolog term

Version3 of C'IAM, to which I refer throughout this paper, works with the following
methods:

¢ ELEMENTARY applies if current method is easily provable using some pro-
positional and equational reasoning, and very elementary facts

e EQUAL checks whether there is any equality Term=Var among the hypo-
theses. If so, it uses the equality to rewrite all hypotheses and the goal in a
definite order @j.

® EVAL_DEF symbolically evaluates a term in the goal by applying one of its
defining equations.

® FERTILIZE uses the induction hypothesis to rewrite the current goal or match
the current goal with the induction hypothesis.
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e GENERALISE replaces a common subterm in both halfs of an equality, or
implication, or inequality by a new variable.

¢ NORMAL removes the implication from an implicational goal and appends
the antecedens to the hypotheses.

e WAVE finds a subexpression to which a (conditional) wave-rule applies, where
the condition of the rule is required to hold already.

e INDUCTION chooses induction variables and an appropriate induction scheme.
Its output are the subgoals for the base case and the step case (induction
conclusion).

C'IAM3 constructs a proof plan as a set of nodes which are data structures with
the following slots:

e PlanName: the name of the conjecture being planned.

e Address: the address of the node within the plan tree.

e Hypotheses: the goal hypotheses.

e Conclusion: the goal conclusion.

e Status: the status of the goal sequent, open or closed.

e Subst: list of substitutions generated for meta variables in the goal sequent.
e Method: the method chosen by the planner at that node

e Preconds: successful and failed method preconditions tested at that node.

e Count: number of subgoals.

Backward proof planning starts with the conjecture as an open goal g. It searches
for a method M applicable to an open (sub)goal ¢ and introduces M into the proof
plan. The subgoals ¢g; produced by the application of M become the new open
subgoals whereas ¢ gets the status “closed”. The planning continues to search for
a method applicable to one of the open goals. C'IAM plans backward only.

3 Analogy-Driven Proof Plan Construction

The analogy in [Melis 95] works at the proof plan level and employs both the de-
rivational and the transformational paradigm by reusing control knowledge (justi-
fications) from the source planning process and by transforming the source proof
plan via reformulations.
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Some proof plans can be transferred even if the formal proofs cannot be trans-
ferred. For instance, an Q-MKRP method calling an automated theorem prover
can provide different formal proofs in the source in the target when executed.
Similarly, the ELMENTARY method can yield different formal proofs for source and
target when executed; and WAVE or EVAL_DEF may have to remove a different
number of quantifiers which causes different formal proofs when the plan is ex-
ecuted. Even more obvious is the advantage of analogically replaying proof plans
if a transfer of hierarchically superior methods is possible only and the transfer of
details fails.

Reformulations do more than just instantiate variables. They are mappings of
a proof plan to a proof plan®. Reformulations encode mathematical heuristics
on how a proof plan changes depending on certain changes of the problem to be
proved or of the proof assumptions. In general, reformulations may insert, replace,
or delete methods, may change methods, sequents, and justifications of proof plan
nodes. A reformulation can be triggered by the match obtained between a source
(sub-)goal with a target (sub-)goal or between source assumptions and target
assumptions.

The analogy-driven proof plan construction in [Melis 95] assumes that a source
proof plan is given. It follows the parametrized source proof plan* in order to con-
struct a target plan. The source plan is linearised, i.e., ordered by the sequence
in which the nodes have been added to the source plan. As in [Veloso 94], jus-
tifications, that encode reasons for the decisions made, annotate the source plan
nodes. These justifications capture the subgoaling structure (the tree structure)
of a plan and point to reasons for the decisions, such as application conditions
of a method, user-given guidance, hierarchical information, or pre-programmed
control knowledge.

Analogy-driven proof plan construction works as a control strategy for proof plan-
ning and replays planning decisions of a reformulated source proof plan if their
justifications are satisfied in the target (see Table 1). Otherwise, the analogical re-
play tries to establish certain justifications or interleaves analogy with to base-level
planning. Base-level planning is proof planning that is not guided by analogy.

The analogical replay skips a source method if the status of the corresponding
target goal g 1s closed rather than open, that is, if ¢ is an instantiation of an
assumption. Then the next source goal is considered, i.e., a source method that
became redundant in the target is skipped. New subgoals can be introduced by
the analogical replay to establish justifications and proof assumptions.

3Reformulations usually, but not necessarily, preserve the verifiability of methods in a plan.
In the Q-MKRP environment a method M is called verifiable if given the preconditions of M,
the method yields a correct proof of the postconditions of M in case the constraints of M are
satisfied. Note that the method slot names are different from those in CTAM

4in which instantiated parameters are replaced by a certain kind of variables
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input: linearised source plan, (open) target goal
output: target plan

1. while there are open target goals do

2. if source plan is exhausted, then base-level plan for the open goals.

3. Get next (sub)goal P from source plan.

4. if there is a reformulation p, such that pP matches an open target goal gr
for which the justifications hold, then

e reformulate source plan by p and link g7 to source plan.
e if g7 is an open goal, then
o Select from the reformulated source the relevant
method M. Apply an appropriate reformulation
triggered by the justifications of M.
e Check M’s justifications. If they hold, link M to the
source plan and update open goals.
o if a justification does not hold, then choose suitable
action:
o Try to establish the justifications by other
means.
e Or base-level plan.

Table 1: Simplified analogy-driven proof plan construction

4 Purposes of Analogy in C'I'M

What can analogy buy for inductive theorem proving with CIAM? I briefly discuss
some advantages and refer to examples (written in typewriter font) given in the
appendix of this paper. There A-B denotes the example with the source A and the
target B. Roughly, inductive theorem proving by analogy can:

e provide a plan for a conjecture for which base-level planning does not succeed
with a plan, e.g., for div3term (from div3-div3term)and doublehalf (from
halfdouble-doublehalf), and for times2right (from plus2right-times2right),

e obtain a proof plan for the target theorem that is considerably shorter than a
plan built by base-level planning, e.g., for halfplus from comp-halfplus?2.

In more detail, analogy in C'IAM offers the following features:

1. The analogy suggests an induction in the target case, i.e.,

a) the analogy can suggest induction variables and existentially quantified
g gg
variables to be instantiated (/F-variables) (all examples),
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(b) the analogy can suggest induction terms (all examples),

2. The analogy can suggest lemmas in the target case, e.g., in assp-assm,
halfplus2-lenapp,

3. The analogy can avoid the application of critics as defined in [Ireland & Bundy 94]:

The analogical replay can suggest lemmas and thus avoid the application of
the lemma discovery critics in the target, e.g., for lenapp-halfplus?2.
Since the analogy can suggest an induction term, it can avoid the application
of the induction revision critic in the target, e.g., in

halfplus2-lenapp,

4. The analogy can guide non-inductive subproofs, e.g., in div3-div3term.

5. The analogy may suggest plan islands for proof planning which can then be
tackled by reasoning backward from the next transferred subgoal. Example:
assp-assm in case the distributivity axiom is not given for assm,

6. Analogy may find generalisations via analogy, e.g., for assapp-assplusi,
where variables are generalised apart guided by analogy mapping constraints,

7. Analogy can suggest the application of a not commonly loaded method, e.g.
NORMAL, if this method was loaded for the source planning and is transferred
to the target, for instance, for div3-div3term,

8. Analogy can guide the application of a method even if a heuristic precon-
dition does not hold as, e.g., for zerotimesi-zerotimes3. Analogy is a
control strategy for planning that can overwrite heuristic preconditions.

5 Analogy in CIAM

In order to use the analogy-driven proof plan construction for C'IAM we have to
consider analogical transfer for backward planning situations only. This yields the
simplification of the procedure already assumed in Table 1.

For analogy, the structure of the plan nodes, as presented above, has to be aug-
mented by a justification slot containing different kinds of justifications which
are explained in detail below: 1-justifications, e-justifications, p-justifications, and
[F-equations.

A somewhat elaborate analogy must allow for mappings that map a function
symbol at different positions in the source theorem (or in the source rewrites) to
different target functions (i.e., lambda terms)®. For this purpose, source function
symbols at different positions are differentiated by additional indices. Because of

®Even more elaborate mappings are conceivable that map arbitrary functions (lambda terms),
to functions
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the rippling heuristic in C'ITAM, the functions that belong to the skeleton of a wave-
rule have the same index on both sides of the wave-rule. Dealing with indexed
function symbols while running C'IAM yields additional information relevant for
the replay of methods, namely a sequence of IF-equalions of the form f; = f;. In
the source planning process these IF-equations result from matching an expression
from a goal with a rewrite or with a hypothesis, or from equalities used by the
method ELEMENTARY. The [F-equations can be obtained by slightly extending the
matching in C'IAM. The [F-equations belong to the justifications of the respective
method and restrict the analogical mappings.

C'IAM 3 does not work with hierarchical methods and, hence, hierarchy information
will not be included into the justifications throughout this paper. Potentially,
however, hierarchy information has to be part of the justifications if available.

After parametrizing the source plan nodes, the analogy in C'IAM consists of the
subprocesses

1. Find the best® match of the source conjecture with the target conjecture and
of the source rewrites with target rewrites, restricted by heuristics”.

2. Replay the source plan which includes to apply reformulations.

3. Base-level plan for any open goal.

These subprocesses are explained in the following sections. As discussed in section
5.2, certain matchings determine reformulations of the proof plan which go beyond
a pure mapping. Reformulations of the source proof plan are an important part
of the analogical replay. Here, I consider reformulations that change the proof
plan but do not change single methods. 1 shall first discuss the matchings and
their restrictions, then suggest corresponding reformulations, and finally present
the analogical replay in C'TAM.

5.1 Matching

First a basic mapping my is constructed that matches the source and the target
conjecture. The basic mapping is then expanded by an extended mapping m,. of
source with target rewrites.

5.1.1 Basic Matching

The theorem tree ts is the parse tree of the source theorem. A ripple tree ts, of
a source theorem is the subtree of its theorem tree ts that contains the successful

6 “Best” will consider heuristics such as as many IF-equations as possible should be satisfied.
“Actually, the matching and derivational replay should be interleaved. The separation is for
efficiency reasons but it may turn out not to work well.
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rippling paths with all the induction variables and existentially quantified variables
to be instantiated, jointly denoted as IE-variables. The example in Figure 1 shows
the theorem trees of lenapp and halfplus2 with the ripple paths as bold lines.
In the figure the source IE-variable is  and the target [E-variable is z.

P 7 N
aj: | rjljs pll S
SN LN

y

Figure 1: Parse trees of lenapp and halfplus2

A basic match establishes the basic mapping m; in order to match the paramet-
rized source theorem with the given target theorem. m; has to be a second-order
substitution because source function symbols can be mapped to target functions.

mp maps the source theorem tree ts to the target theorem tree ¢t and thereby it
maps the ripple-subtree s, of the source theorem tree ts to a subtree #¢, of the
target theorem tree tt. In order to successfully transfer the methods of the source
plan, in particular from the step case subplan, the rippling paths in the target tree
should be similar to the rippling paths in the source tree. That is, ¢, should be a
target ripple-subtree.

Labelled Fragments

Therefore we propose constraints for m, that heuristically preserve the ripple
paths. Such a heuristic makes the analogy dependent on the rippling used in
the source proof and, thus, it is tailored for transferring the step case of a proof
plan. We could buy more generality for less restriction of the mapping.

Since labelled fragments, introduced in [Hutter 94], heuristically determine the
successful rippling paths we require m; to preserve labelled fragments or to change
labelled fragments in a controlled way that leads to similar successful rippling
paths. Figure 2 displays labelled fragments of some functions. Labelled fragments
provide an abstract representation of wave-rules and allow for reasoning about
the whole ripple process. The labelled fragments of function/relation nodes in a
theorem tree heuristically determine the ripple paths and the set of IE-variables.
The ripple paths in a theorem tree abstractly encode the consecutive application of
the wave-method relying on the wave-rules the labelled fragments are built from.

According to [Hutter 94], labelled fragments are rather insensitive to missing lem-
mas. This means that if a function f has a labelled fragment, constructed from
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Figure 2: Labelled fragments
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f’s definition or other rewrites, that contributes to an abstract ripple path in the
theorem tree, and if a particular lemma is missing for the concrete rippling at a
node N, then a lemma can likely be proven that can be used for rippling at N of
the theorem tree. This heuristic is highly desirable for analogies because analogy
should work despite missing lemmas.

It 1s even more sensible to base m; on labelled fragments if the INDUCTION
method determines the IE-variables by reasoning about fragments (as, e.g., in
INKA [Hutter 94]). Then the relevant fragments are computed anyway.

Match Constraints

If the tree structure and the labelled fragments are preserved by m;, then the
abstract reasoning about the ripple process is the same for source and target and
yields corresponding IE-variables and corresponding ripple paths. Then my(ts,) =
tt, heuristically constitutes a ripple subtree in the target in which the images of
[E-variables of the source are [E-variables of the target.

my 1s a second-order substitution of the indexed source theorem with the target
theorem that maps IE-variables to target terms and functions/terms to target
functions/terms. We restrict my by the following constraints (for controlled ex-
ceptions see section 5.2).

bl my preserves the labelled fragments of the nodes of t¢s,.

b2 IE-variables are mapped to target terms. Those target terms occur in the
subtree tt, of the target theorem tree only. This ensures that target rippling
cannot take place outside my(ts,).

b3 If an image ¢; of an [E-variable also occurs at position P in an image of
a source term which does not belong to the IE-variables, then ¢; has to be
renamed at position P. This ensures that target IE-terms are images of
source IE-variables only. This constraint may generalise variables apart® in
the target as in the example assapp-assplusi.

8That is, generalise a conjecture by replacing variables with several occurrences by new
variables in places.
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The problem of generalizing variables apart is a difficult one (see, e.g.,
[Hesketh 91].). In some cases, i.e., if an appropriate source is available,
the generalisation can be guided by analogy as a byproduct of b3. ?

b4 We get into trouble if in the source a universally quantified variable z is
actually used as a sink in rippling and ms(z) is an existentially quantified
target variable which cannot be used as a sink. Hence we do not allow m;
to map a universally quantified variable to an existentially quantified one.
Maybe this constraint can be loosened later on.

b5 In order to reduce the search for mappings, the largest terms outside ts, are
mapped to corresponding largest terms outside tt,.

For non-inductive source proof plans these constraints do not apply. b1l - b5 restrict
the analogical mappings and restrict the search space of source problems for a given
target problem. More heuristics, e.g., one that prefers identical mapping, will be
necessary for the basic and extended matching.

5.1.2 Extended Matching

The extended matching creates the extended mapping m. that maps source re-
writes to target rewrites. For examples see section 10. Extended mappings are
applied in order to instantiate method justifications in the target, such as “A
rewrite source_def is recorded as a definition”.

Note that the mapping of source rewrites is to some extent restricted by IF-
equations and by my. Take, for instance, lenapp-halfplus?2 with

[F-equations: appy = apps, leny = lens, 1:3=:11, leny = leny,

81 = 2, leny = leny, app, = appa, apps = appy ,

my @ lenyg — half, and my : apprp — +,

with the source rewrites

app2: apps((vo 12 @), b) = vg ::3 (appa(a,b)) and

length2: lens(vo 1 a) = si(leny(a)), and with the target rewrites

plus2: +(s(a),b) = s(+(a,b)) and

half2: half(s(s(a))) = s(half(a)).

m, maps app2 to plus2 because of my and apps = apps, apps = apps, and similarly
m, maps len2 to half2. In general, however, this restriction does not uniquely
determine the rewrite to be matched.

Different extended mappings have to be constructed for the target step case
and for the target base cases because different sets of IF-equations belong to

9Other examples are source z * (y * y) = (z * y) * y
target  + (z 4+ ) = (z + ) + z, and
source app(rev(z), rev(y)) = rev(app(y, x))
target app(rev(z), rev(z)) = rev(app(z, x)).
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the step and base cases, respectively and different rewrites are used, see, e.g.,
plus2right-doubleplus2right or lenapp-halfplus2.

According to the paradigm of derivational analogy, the extended mappings should
actually be constructed stepwise while following the source plan as mentioned in
a footnote above. This may be quite inefficient because backtracking may cause
an annulment of work done during the analogical replay. Hence, we propose to
find the mapping first and to replay the source plan afterwards.

5.2 Reformulation

The matchings trigger the application of a reformulation that carries out the map-
pings and may execute some other changes of the source proof plan. Three proced-
ures perform the reformulations dependent on the basic matching, the extended
matching, and the IF-equations, respectively.

5.2.1 Basic Reformulation

First of all, the basic reformulation procedure applies the substitution m;. Some
basic matchings may require additional changes of the source proof plan as de-
scribed in the following.

shrink If my maps f; — Aw.w, then the WAVE method for f; becomes redundant and
can be removed from the proof plan. Example: plussumsum-plus2right.'’

blow If mj maps a source function symbol f to a function A\Z.g1(g2(T) that has the
same (combined) labelled fragment as f, then m,. suggests a corresponding
target rewrite with my(f) in its skeleton.

An alternative not considered yet, is to introduce two WAVE methods ( for
g1 and g2) instead of one source WAVE method for f.

Example: plus2right-doubleplus2right

A special case of blow is the introduction of a function that has the same
fragment as the identity function.

reduce A normalizing reformulation'! adds a method M (or subplan) on top of the
proof plan for which output(M) — input(M) holds. The first option of the
reduce reformulation introduces a method REDUCE, for which the input is
(V)f(t1) = f(t2) and its output is ¢; = 3. REDUCE utilizes the equality
axiom scheme

10This is a special case of AZf1(f2(Z)) — Awg(w) which is, however, not a second-order
substitution.

1A normalising reformulation introduces a method or subplan on top of the source proof
plan. Normalising reformulations resemble the initial-segment concatenations in Carbonell’s
transformational analogy [Carbonell 83].
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symm

condt

Vo Vao(ry = 29 — f(x1) = f(z2)), where f is a function or relation. The
method REDUCE could eventually have other parameters (or submethods)
that guide its actual work.

reduce can be applied if the source theorem is (V)t; = {5 and the target
theorem is (V) f(z1,...,t), ..., 2n) = fl21,...,t5,...,2,) and my @ t; —
11,1ty — t,. In order to trigger reduce, the matching procedure has to be
extended slightly.

reduce can ease the analogy that otherwise might suggest difficult to prove
lemmas. It can also shorten target proof plans substantially'?. reduce should
be preferred to other reformulations at least in cases where t; = #],t, = 1},
because it yields a very simple analogy. In other cases we may need a
heuristic in order to decide which reformulation to prefer: reduce or blow,
e.g., prefer reduce to blow if the mapping my : t; — t{, 15 — t, maps function
symbols to function symbols only.

If the second-order match of a source theorem with a target theorem per-
mutes arguments of f for my(f), then the labelled fragment of f and my(f)
have to be permuted in the same way.

For instance, in apprev-plussumsum

my : appr (W, we) — Awy Awg.plus(wq, wy) requires a labelled fragment of
plus that is symmetric to the labelled fragment of app,. Those symmetric
labelled fragment of app and plus are provided by the rewrites assapp and
plus2 here.

The corresponding reformulation changes, apart from the substitutions of
m;, only position parameters of methods in the source plan. For a detailed
example see apprev - plussumsum in section 10.

If the source theorem is T'h, and the target theorem is Cy — Thy, and if we
can find a basic mapping m with my(Th,) = Th; that meets the constraints,
then a condt reformulation of the proof plan replaces (weak) FERTILIZE
by Kraan’s VERY (WEAK) FERTILIZE [Kraan 94]. In the step case'® condt
introduces into the target planning the instantiated antecedents’ C'y; of the
target base cases as an additional subgoal and introduces subplans for their
proof or disproof into the plan. condt transfers the source base case if Cy;
can be proven, and it terminates a base case if Cy; is disproved. '* For a
detailed example see halfdouble-doublehalf in section 10.

12E.g., this reformulation yields a plan of halfplus with 13 methods, as opposed to base-level
planning that comes up with a plan with 57 methods and lemma calculation.

I3VERY (WEAK) FERTILIZE produces the additional lemma C} — C; to be proved, where (] is
the antecedents of the induction conclusion and C} is the antecedents of the induction hypothesis.

1Gince this reformulation is a foreseeable heuristic change of the proof plan we don’t have to
rely on a modification during the replay that would establish preconditions which are not satisfied
in the target. Such a modification could replace weak FERTILIZE by VERY WEAK FERTILIZE for
those specific cases because the precondition partial_induction hypmatch does not hold in
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add-args If m; maps a function f to an my(f) and duplicates arguments, then the

source subplans for treating this argument has to be duplicated. Put more
technically, if m;(f) has k occurrences of a variable w; at positions i1, ...,
in the target and the fragment of m;(f) agrees at positions 1,...,7; with
the fragment of f at position 7 in the source and is the same everywhere
else, then the source subplan for treating the zth argument of f has to be
introduced k times (for each occurrence of w;) into the target plan (see for
a more general reformulation Add-Args [Melis 95]).

As opposed to a mapping m; that adds a constant argument and does not
cause any changes of the plan structure, for add-args the ¢th argument of f
in the source may contain IE-variables.

5.2.2 IF-Reformulation

As the basic reformulaton was guided by the basic match, the IF-reformulation is
guided by IF-equations. This procedure can apply the reformulationsito2 or 2tol:

1to2 If the mapped IF-equations require m(f;) = m(f;), where f; stems from

2tol

a wave-rule, but m(f;)(m(f;)) = m(f;) actually holds in the target, then
change a primitive induction to a two step induction in the target and double
the steps between INDUCTION method and the occurrence of the [F-equation.

This reformulation could be extended later to composing wave-fronts more
generally. The reformulation removes the [F-equation from the justification.
Example: lenapp-halfplus?2

If the mapped IF-equations require m(f;) = m(f;), where, f; stems from a
wave-rule, and m.(f;)(m.(f;)) = m.(fi), then the reformulation changes a
two step induction to a primitive induction in the target and collapses the
corresponding double steps to single steps between the INDUCTION method
and the occurrence of the IF-equation. Again, this reformulation can be ex-
tended later to more general compositions of wave-fronts. The reformulation
removes the TF-equation from the justification.

Example: halfplus2-lenapp

5.2.3 Extended Reformulation

First of all, the extended reformulation procedure applies the substitution m..
Certain features of m. require additional changes of the source proof plan:

abs If m. maps a function symbol f to a lambda term with an unspecified non-

constant argument o that can have different instantiations, then a replayed

the target.
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source plan would treat the abstract symbol o as if it were absent. In the
target, however, this amounts to an abstraction.

For each new occurrence of 0 a new meta-variable o; has to be introduced.
The instantiations of the o; have to be computed by running the methods
M; that first introduce o; into a subgoal'®. From the target plan node of M;
the substitution of the meta-variable o; has to be stored. Very likely a target
proof plan branch will have to be completed by base-level planning because
a method-justification wont be satisfied.
Example: assp-assm with m. : s — Aw. + (w,0).'°

case Let Rr be the target rewrite that belongs to a set of conditional target

rewrites for which the disjunction of all the conditions is a valid formula.

If m, maps a source wave-rule Rg to rewrite R, then additionally introduce
a case split into the source proof plan where Rg was applied. Introduce the
remaining source subplan as the Ry branch of the plan and declare the other
subgoals of the case split open goals (to be proved by base-level planning).
Example: The extended mapping maps

plus2: plus(s(z),y) = s(plus(z,y)) to

uniond: —~member(xz,y) — unton(h :: x,y) = h :: union(z,y)

by m. : plus — union etc.

5.3 Analogical Replay

The analogical replay is the core of the analogy-driven proof plan construction
that applies the reformulations, checks the justifications, and reacts to failures of
justifications in the target.

Ideally, the matching that triggers the reformulations and the analogical replay
should be integrated. Currently, however, the matching is accomplished before the
replay for pure efficiency of the match procedure. After the basic and extended
mappings have been found, the source proof plan is replayed analogically. Ac-
cording to Table 1, the analogical replay follows the (linearised) source plan and
applies the reformulations, triggered by the mappings, to the source plan and its
nodes.

At an INDUCTION method node, the reformulation instantiates the induction hy-
pothesis, the induction variables, and the induction term. The INDUCTION method
runs with these instantiated parameters, checks whether the induction term is a
proper one (terminating order), and yields the step case and base case subgoals.
The target base case terms, such as 0 or nul, have to be matched with a base case

15]atest when the instantiation is relevant to satisfy a method justification
16The name abs might be misleading because actually the source is an abstraction of the target
here.
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term in the source. There can be more target base cases than source base cases
or vice versa.

The replay checks the justifications of the respective (reformulated) source plan
node and transfers the source method to the target plan if its justifications hold in
the target. If a justification does not hold in the target, a suitable action is taken.
The actions to be taken depend on the actual justification that is not satisfied.
They are described in section 5.3.2.

If the attempt to establish a justification fails, the source method cannot be trans-
ferred and a gap remains in the target proof plan. That is, the target plan node
has an empty method slot and a conclusion that contains a special meta variable, a
gap variable 7;. The gap variable is a place holder for the unknown subexpression
of the sequent in the (current) target node that corresponds to the source subex-
pression that was changed by the source method which could not be transferred.
See, for an example, assp-assm or lenapp-halfplus2 (base case). The status of
this target plan node remains open. The replay stops as soon as no subexpression
other than a gap variable occurs in the target node conclusion (see the base case
of plus2right-doubleplus2right).

The actual replay may result in a proof plan that has open goals of different
origins: If the replay stopped, i.e., the gap is open-ended, the open goals have
to be closed by base-level planning. For gaps between two proper plan nodes
elaborate techniques have to be developed in the future that aim at closing these
gaps, e.g., by forward reasoning, abduction. So far we can close gaps by base-level
planning only if gap variables can be instantiated during the analogical replay. As
the example assp-assm shows, the transfer of following source methods may force
an instantiation of a gap variable or at least provide information about possible
instantiations. In this case, the gap variable can be (partially) instantiated which
assists a subsequent base-level planning for the gap.

5.8.1 Justifications

In C'IAM justifications exist in a bigger variety and play a more important role than
they do in Q-MKRP, so far. The reason is that C'[AM’s methods, in particular their
preconditions, have been polished for a long time in order to restrict the search
for methods. Hence, a variety of reasons for the application and applicability of a
C'IAM method exist. I analyse how justifications can be constructed for nodes of

C'IAM’s proof plans.

Some preconditions of methods yield justifications that have to be checked by the
analogical replay. Preconditions of methods can be classified into

| legal preconditions the failure of which causes a failure of the transfer of the
source method,
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e legal preconditions which the analogical replay first should try to establish
if they are not satisfied in the target,

p legal preconditions that involve the proof of some formula,
h heuristic preconditions that can be overridden, and

i preconditions that are mere instantiation conditions.

Some current C'IAM methods have hybrid preconditions, e.g., trivial (H==>C)
that is classified h,p. The actual classification of the preconditions of C'IAM3
methods is given in the first appendix (section 9).

The justifications of the node N consist of goal dependencies, the relevant TE-
equations, and of the following justifications provided by the successful precondi-
tions of the method applied in N:

e l-preconditions become l-justifications. In C'IAM3, e.g., an l-precondition of
the method EQUAL is that an equation occurs in an hypothesis.

e e-preconditions yield e-justifications. In C'ITAM3 those justifications state,
e.g., that a wave-rule or definition is stored in the library.

e h-preconditions are ignored and do not yield any justification. In C'TAM3,
e.g., a heuristic precondition of the method EQUAL is that the replacement
for a term is a free variable. This precondition could be dropped, thus
allowing for another analogous replacement of a target term. Note, that
dropping a h-precondition without the guidance from analogy might not be
a good idea.

e h.p-preconditions are weakened to p-justifications. In CIAM3, e.g., a p-
precondition of the method WAVE is that the condition of a conditional wave-
rule is in the hypotheses already (trivially provable). This is weakened to a
justification that requires that the condition is provable from the hypotheses.

5.3.2 Actions if Justifications Do not Hold

The analogical replay chooses an action or base-level plans if a justification of the
method to be transferred does not hold in the target, as shown in Table 1. In the
following the actions are described. Base-level planning is choosen if no transfer
takes place, either because an action failed or because no action was possible at

all.
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Wrong Goal Dependencies

The goal dependencies are represented by the address of a plan node. The source
node has to be in the same branch (base or step case) of the proof plan as the
target node considered by the replay. This may be not the case if a target branch is
complete (no more open goal) whereas the corresponding source node has subgoals.
Then selecting the “next” node in the source cannot yield a jusitified transfer.
Therefore, if the source goal dependencies do not hold for the selected open target
goal, then do not transfer the method.

Violated IF-equations

If an IF-equation does not hold in the target, then produce an open target goal
by replacing the subexpression that resulted from the last rewriting of the source
goal by a gap variable 7; in the target. Record a gap, i.e., no method in the target
node.

In case a source rewrite corresponds to two or more different target rewrites, e.g.,
in assp-assm with given distr, each alternative may be considered by m, using
additional indices. This amounts to different copies of the same source rewrite.
An appropriate copy of the rewrite has to be chosen by the replay in order to
satisfy the IE-equations.

Violated Justifications originated in Preconditions

If a precondition-justification is not satisfied in the target, the analogical replay
takes the following actions specific for particular justifications.

1. If an l-justification cannot be satisfied and does not contain a gap-meta-
variable 7;, then the source method is not transferred. If an l-justification
contains a gap-meta-variable 7;, then the replay suggests satisfying the jus-
tification by instantiating ?; in a controlled way.

For the justification of the method FERTILIZE(strong), e.g., that requires to
match the induction hypothesis H: [hs = rhs with the goal G: o(lhs) =7,
the replay can instantiate ? by o(rhs).

If the justification induction hyp match(Var, H, G, SubstL) of FERTIL-
1ZE(strong) with G: o(lhs) = 7 and H: [hs = rhs, then the replay instanti-
ates 71 by o(rhs). See, for instance, assp-assm.

The replay suggests the same kind of instantiation for the method ELEMENT-
ARY by assuming G: [hs = rhs. (With a more elaborate suggest-procedure a
gap-meta-variable in the justifications of other methods could be partially in-
stantiated, e.g., for methods GENERALISE, NORMAL, and FERTILIZE(weak).
This is, however, beyond our current scope.)
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2. Base-level planning is invoked in order to establish a p-justification.

For instance, the replay tries to establish (H==>C) by base-level planning
(with a time limit) . If this fails, the source method is not transferred. If it
succeeds, the method is transferred. Example: div3-div3term.

. If an e-justification does not hold in the target, the replay suggests a target

rewrite by mapping the rewrite in the justification. The suggested target
rewrite may contain meta-variables for the function variables of the para-
metrized source that have not yet been mapped by m; and m. (For an
example see plus2right-doubleplus2right.). The suggestion of rewrites
should be accompanied by a disprove procedure'”. (See, e.g., base case of
example plus2right-doubleplus2right) which avoids a waste of effort for
the analogical replay in case a false lemmais suggested. Only if the suggested
rewrite is proved, the method can be transferred.

In the following, some examples are given for the effect of the analogy as a control
strategy that can override the default control

¢ When the plan of

zerotimesi: x = 0 — times(z,y) = 0 is replayed for the target
zerotimes3: times(z,y) = 0 — times(times(z,y),y) = 0, then the h-
precondition of the EQUAL method freevarinterm(G,Var) that holds in
the source with Var = z does not hold for my(z) = times(z,y). Since this
precondition is ignored for the justifications, the replay transfers the EQUAL
method nevertheless.

The same holds for the class of cnc_examples such as
source: cnc_times: x =y — app(z,z) = app(y, z)
target: cnc_termplus: *(u,z) = *(v,y) — +(*(u, ), z) = +(*(v,y), z)

If we took the precondition trivial (H==>C) as a justification, the analogical
replay of the following example would not work:

source: div3:—y =0 — div(+(y, z),y) = s(div(z,y))

target: div3term:—* (y,z) =0 — div(+(y,z),y) = s(div(z,y)).

The h,p-precondition trivial (H==>C) of the method EVAL_DEF yields the
source p-justification (-y = 0 — —y = 0) which is mapped to the target
justification (= * (y,2z) = 0 — —y = 0). This target justification can be
established by base-level planning for (= * (y,z) = 0 — =y = 0). Since the
planning succeeds, the replay transfers the method EVAL_DEF.

1

Tavailable in C'TAM 3.2 that can prove many wrong suggestions to be false
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6 Related Work

Villafiorita [Villafiorita & Sebastiani 94] tries to incorporate user-supplied abstrac-
tions into analogy in inductive theorem proving. For the purpose of program op-
timisation Madden [Madden 91] investigated a reformulation of proof plans that
replaces a course-of-values induction by a stepwise induction.

Kolbe and Walther [Kolbe & Walther 94] reuse equational proofs by second-order
substitutions of a “schematic shell” including the used axioms and the conjecture.
They calculate equational constraints by a separate calculus. By second-order
matching the “schematic shell” with the target conjecture (induction conclusion)
and target rewrites they obtain the instantiated rewrites which are relevant in
the target. Similar to [Kolbe & Walther 94] we store IF-equations used during
source planning. The presented reformulation add-args is similar to a patch in
[Kolbe & Walther 95]. Their paradigm, however, is different to analogy because
they generalise and re-instantiate. Further differences are:

e The analogy can suggest [E-variables and induction conclusion, they need
the target induction conclusion to be given.

e The analogy may result in a proof plan with gaps and does not necessarily
provide an exact replay with a full match of all axioms which is, however,

required in [Kolbe & Walther 94].

o The generalization approach aims at providing the target rewrites only, while
the analogy finds a target proof plan.

e The analogy in C'IAM does not use the analogical replay if the proof planning
goes through with little search.

e Both approaches can suggest lemmas from (partially) instantiated constraints
and source rewrites. In addition, analogy can suggest lemmas by replaying
lemma-critics results.

7 Conclusion and Future Work

The analogy-driven proof plan construction has been applied within the C'TAM
environment. Not surprisingly, the particular procedures of reformulation turned
out to be dependent on the data stuctures for methods and plans. Some refor-
mulations that encode frequently used domain specific heuristics depend on the
scope of the planner. For instance, constraint bl encapsulates a heuristic specific
for inductive theorem proving and can be exploited for inductive proofs only. For
each planner several types of justifications are needed. The actual justifications,
however, depend on the means for search control in the planner.
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The main contribution of this application of analogy-driven proof plan construc-
tion has been to identify match heuristics, reformulations, justifications, and ac-
tions to be taken if the justifications are not satisfied in the target for C'IAM.
Thereby we have been able to show with some relatively simple examples what
analogy has to offer even for a planning system with little average search for
methods.

The power of the analogy-driven proof plan construction stems from the given
source plan, from the reformulations, and from the actions taken in order to es-
tablish justifications. There is, of course, a tradeoff between the power and the
costs of the matching and reformulation.

The analogical replay may construct proof plans with gaps that cannot be closed
by base-level planning. Furthermore, reformulations encode heuristics that can
fail, which is only natural for any analogy process.

The work on analogy in C'IAM will be continued and will examine more challenging
examples that C'IAM cannot solve without analogy. More elaborate techniques for
closing gaps in target proof plans have to be investigated. Hierarchical information
will be included into the justifications.
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9 Appendix I

The classification of preconditions, as it follows for C'IAM3 methods, has to be
done manually, as far as I can see.

elementary

equal

eval_def

fertilize

generalise

h,p

o H R B

h,p

1

He He H B e e

OR

elementary (H==>G,I)

((hyp(HName:Term=Var in T,H), Dir=left)

v
(hyp (HName:Var=Term in T,H), Dir=right)
),
(not freevarinterm(Term,_)
orelse

(atomic(Var), not atomic(Term))

orelse

(atomic(Var), atomic(Term), Term @< Var)
),

freevarinterm(G,Var)

not contains_meta_variables(G),
expression_at (G,Pos,Exp),
not wave_fronts(_, [_|_], Exp),

function_defn(Exp,Rule:C=>Exp:=>R),
trivial (H==>C)

induction_hyp_match(Var, H, G, SubstL)
partial_induction_hyp_match(Var, H, G,NG,SubstL)

matrix(Vs,M1,G),

sinks(M,_,M1),

member (M, [(L=R in _),(L=>R),geq(L,R),leq(L,R) ,greater(L,R),less(
exp_at(L,_,Exp),

not atomic(Exp),

not constant(Exp,_),

not oyster_type(Type, _, Exp),
object_level_term(Exp),
exp_at(R,_,Exp),

type_of (Exp,Type) ,

append (Vs,H,VsH),
hfree([Var],VsH),
replace_all(Exp,Var,G, NewG1l),
\+ disprove([Var:Type]==>NewG1)
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normal matrix(Binds, Cond => Body, G),

not wave_occ(Binds, Cond, _, _),
not sinks(_, [_I_], G),

not wave_fronts(_, [_I|_], G),

member(Body, [_ = _ in _, _ => _])

H O

-]

wave_occ_at(G,Pos,L),
wave_rule_match(Rule,long(Dir),C=>L:=>R,[]),
h,p trivial (H==>C)
OR
wave_occ_at(G,Pos,L),
wave_rule_match(Rule,trans(Dir),C=>L:=>R,[]),
h,p trivial (H==>C),
1 sinkable(R)

wave

-]

induction 1 wave_occ(H, G, VarTyps, IndTerms)

matrix(Vars, Matrix, G),
exp_at(Matrix, MatPos, L),
wave_rule(_,_,[_|_1=>LL:=>_),
copy(LL,L),
correct_wave_vars(LL, L),
condition_set(LL, CConds, _)

casesplit

O H H O H R

10 Appendix II: Examples

10.1 comp-halfplus2

This is an example for the application of the reformulation reduce
source theorem: +(a,b) = 4(b,a)
target theorem: half(+(a,b)) = half(+(b,a))."®

Source plan

induction([s(b)], [b:pnat]) then
[eval_def([2,1],plusl) then
induction([s(a)], [a:pnat]) then
[eval_def([1,1],plusl) then
elementary(...),

18We do not index the function symbols of the source theorem because it is not necessary in
this case.
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wave([1,1], [plus2,equ(left)]) then
fertilize(weak(v0)) then
elementary(...)
1,
wave([1,1], [lemmal,equ(left)]) then
wave([2,1], [plus2,equ(left)]) then
fertilize(weak(v0)) then
elementary(...)

An analogical transfer using the reformulation blow with
mapping my @ + +— AaAb.half(+4(a, b)) rather than reduction would not succeed

24

with a transfer of the base case and would cause a lot of effort to transfer the step

case.

In terms of analogy it is a good guess, to reduce the proof of halfplus2 to a source

proof of comp because the latter is available already. Besides, the proof plan that
results by introducing an additional method REDUCE(EQUALITY) into the plan of
comp is much shorter than one that would result from base-level planning even if all

necessary wave-rules and definitions for plus and half were given'®. The resulting

target proof plan deviates from the common pattern though. The resulting target

plan is

reduce(equality) then
induction([s(b)], [b:pnat]) then
[eval_def([2,1],plusl) then
induction([s(a)], [a:pnat]) then
[eval_def([1,1],plusl) then
elementary(...),
wave([1,1], [plus2,equ(left)]) then
fertilize(weak(v0)) then
elementary(...)
1,
wave([1,1], [lemmal,equ(left)]) then
wave([2,1], [plus2,equ(left)]) then
fertilize(weak(v0)) then
elementary(...)

9plan time halfplus2 119.116 compared with plan time 4.283 for comp which does not even

have to be planned again
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10.2 assp-assm

This is an example for the application of the reformulation abs and for handling
gaps and gap variables.

source theorem: +1(z, +2(y, 2)) = +a(+3(z,y), 2)

target theorem: *(z,*(y, z)) = *(x(x,y), 2),

where the distributivity axiom is not given as a rewrite. The source proof plan is

induction([s1(x)], [x:pnat]) then
[eval_def([1,1],plusl) then
eval_def([1,2,1],plusl) then
elementary(...),
wave([1,1], [plus2,equ(left)]) then
wave([1,2,1],[plus2,equ(left)]) then
wave([2,1], [plus2,equ(left)]) then
fertilize(weak(v0)) then
elementary(...)

e The labelled fragments of + and * are equal and, hence, my : +1.2.3.4 > *.
Since the source induction variable is x, the induction variable in the target
is identified as my(z) = =.

e The only source wave-rule is plus2:
+5([s1(z) |, y) = |s2(+5(x,y))| and the only given target rewrite is

#(s(z),y) = +(x(z,y),y).

The IF-equations of the source are:

+1 =45
+3 = +5
+4= 45
$1 = S3.

m. maps s — s(wq) and sy — +(w,0) for an abstract symbol o that may
have different instantiations.

e The first method is INDUCTION(s1(x)), justified by plus2.

e The step case goal in the source is: +1(|s1(z) |, +2(y, 2)) = +a(+s((s1(2) |, y), 2)
which yields a target goal
*(s(x),*(y,2)) = *(x(s(x),y), z) because of m, : s1 — s.

e The next method, WAVE(plus2), has as justifications the source wave-rule
plus2 and +; = +5 which requires m. : +5 — *.
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e The next source goal is:

sa(+s(x, +2(y,2)))| = ... and the corresponding target goal is

+(*(x,*(y,2)),01) = .... The instantiation *(y, z) of the meta-variable o is
obtained by running the wave method and it is stored.

e The next method, WAVE(plus2), has as justifications the source wave-rule
plus2 and +3 = 45 which hold in the target as well.

e The next source goal is:
so(+s(x, +2(y,2))) | = +al| s2(+5(z,y)) |, z). The corresponding target goal

is +(x(z,*(y, 2)),01) = *(+(*(x,y),02), z). The instantiation y of the meta-
variable o0y 1s obtained by running the wave method and it is stored.

e The next method, WAVE(plus2)(*), has as justifications the source wave-rule
plus2 and +4 = 45, and s; = s;. The mapped version of the latter does not
hold in the target because s(w) # +(w,0). Hence, the method cannot be
transferred to the target. The replay yields a gap and produces an island
node with no method and with the conlusion

I 4 (x(z, *(y, 2)),01) =7.

e The next source method, FERTILIZE(weak), has +5 = + as a justification
which holds in the target. An l-justification of the node is
partial_ind_hyp_-match(_, [+1(z, +2(y, 2)) = +a(+3(2, ), 2)], [s2(+5(2, +2(y, 2))) =
s2(+s(+s5(2,9)), 2)],-). The corresponding target justification
partial ind_hyp_match(_, [*(z,*(y,2z)) = *(*(z,y),2)],[+(x(z,*(y,2)),01) =7],-)
holds. The method yields the subgoal +(x(*(x,y),z),01) =7.

e The next source method, ELEMENTARY, has the justifications +43 = +s;,
which holds in the target, and true(+(*(*(z,y), 2),01) =7). The latter jus-
tification needs an instantiation of 7 to be satisfiable. A possible instantiation

is 7= +(x(x(z,y),2),01).

e The instantiation of 7 together with the substitutions of 0; and 0, can be used
to close the gap in the target proof plan that remains after the analogical
replay: Closing the gap requires a target method and justification that pro-
duces ... = +(x(x(x,y), 2), *(y, 2)) from ... = *(+(*(x,y),y), z). The WAVE
method justified by the distributivity rewrite (distr) can close this gap. In
fact, the justification s; = sy of wave(plus2)(*) is mapped to +(-,0) = (-, 0)
in case m, maps plus2 to distr: *(+(z,2),y) = +(x(z,y), *(z,y)).

If distr was given as a target rewrite, the source rewrite plus2 might have two
different images under m,, namely times2 and distr. In such a situation the
extended matching provides m, : 4351 — *,511 — §,821 — +(,0) (for plus2 —
times2) and

me @ +352 — %, 812 —= +(-,0), S22 — +(-, 0) (for plus2 — distr). In order to satisfy
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the IF-equation s; = s3 at plan node N, the image distr of plus2 has to be
chosen for the transfer of the method at N.

The source base case conjecture is +1(0, +2(y,2)) = +4(+3(0,y), z) and

the target base case conjecture is (0, *(y, z)) = *(*(0,y), z), where 0 is introduced
by the INDUCTION method.

The source rewrite is plusl: +7(01,2) = z.

The given target rewrite is timesl: *(0,z) = 0.

The base case IF-equations are:

+1 = +7,
0 - 01,

+3 = +7,
+2 = +4.

m, : 47— *,0; — 0. This mapping suggests a target rewrite *(0,2) = 0 which
can be disproved. Therefore the target base case has to be completed by base-level
planning.

The target proof plan becomes

induction([s(x)], [x:pnat]) then
[ %BASE-LEVEL yields
eval_def([1,1] ,times1) then
eval_def([1,2,1],times1) then
eval_def([2,1],times1),then
elementary(...), hth

wave([1,1], [times2,equ(left)]) then
wave([1,2,1],[times2,equ(left)]) then
wave([2,1],[distr,equ(left)]) then
fertilize(weak(v0)) then
elementary(...)
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10.3 apprev-plussumsum

This 1s an example for the application of the reformulation symm and it shows
that step case and base case replay have to be handled separately and depending
on different m, and sets of IF-equations.

Source theorem: appy(rev(y), rev(x)) = rev(appz(z,y))
Target theorem: +(sum(z), sum(y)) = sum(app(z,y))

Source rewrites:

rev2: reve(h i3 1) = apps(revqy(l), b 14 nil)

app2: GPPS(h i Uy, 12) =h iy aPPa(ll, 12)

assapp: appe(l, appr(m,n)) = apps(apps(l,m), n).
The TF-equations of the source planning are:
appi = appe

appz = apps

apps — appr — apps

rev = revy

Iy =iig=ii3.

The source proof plan is

induction([vO::m],[m:int 1list]) then
[eval_def([1,2,1],appl) then
eval_def([2,1,1],revl) then
generalise(rev(l),v0:int list) then
induction([v1::v0],[vO:int 1list]) then
[eval_def([1,1],appl) then
elementary(...),
wave([1,1], [app2,equ(left)]) then
fertilize(weak(v2)) then
elementary(...)
1,
wave([1,2,1], [app2,equ(left)]) then
wave([2,1], [rev2,equ(left)]) then
wave([2,1,1], [rev2,equ(left)]) then
wave([1,1], [assapp,equ(left)]) then
fertilize(weak(v1)) then
elementary(...)

]

Given target rewrites are:

app2: app(h = b 1) = b < app(h, o)
sum2: sum(h 2 1) = +(h, sum(l))
plus2: +(s(z),y) = s(+(z,y)).
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The basic mapping is

my = appy(wi, wy) = app(wy, wy),

appi (w1, wa) > +(wz, w1)

rev(w;) — sum(w).

my : appr(wy, w2) — Awg Adwsy.plus(wsy, wy) requires a labelled fragment of plus that
is symmetric to the labelled fragment of app; that originates in assapp. plus2
provides such a symmetric labelled fragment.

The extended match yields m.: ::y—::, g (wy, wy) — Awg Awq.wq, apps(wy, we) —
+(wsz,w1) matches rev2 with sum2 and app2 with app2. assapp can not be
matched consistently with plus2 but mj and m, suggest a target lemma assplus:
+(+(n,m),l) = +(n,+(m,1)).

m, has been constructed following the sequence app2, rev2, assapp, in which
the rewrites were used in the source planning. If the m. was not established in
the same sequence as prescribed by the sequence in which the source rewrites had
been employed in the source planning process, we could have obtained a target
lemma which is wrong. E.g., with the order app2, assapp, rev2, we obtain

m, : apps — Aw;Aws.s(w;) mapping assapp to plus2. Then a target lemma
sum(h :: 1) = s(sum(l)) corresponding to rev2 would be suggested which is wrong

since it yields s(sum(l)) = +(h, sum(l)).

The source base case conjecture is

appi(rev(l),rev(nil)) = rev(appa(nil, 1)) and the target base case conjecture is
+(sum(nil), sum(l)) = sum(app(nel,1)).

The source rewrites in the base case are

appl: appi0(nils,[) =1

revl: revy(nil) = nily

sumi: sum(nil) = 0,

The TF-equations in the source base case are

appi1 = apps
app1 = app4
L=l

The base case replay of the apprev-plussumsum has the following steps:

e The first method, eval def(app1) can be transferred to method eval _def(app1)
because the IF-equation and preconditions are satisfied by m. : nil — nal.

e The next method, eval_def(rev1), can be transferred to method eval _def(sum1)
because the justifications are satisfied.

o The next method, generalise, can be transferred and the term to be gener-
alized is sum(l) instead of the source term rev(l).
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e The resulting subgoal is +(0,v,) = vy which is an instance of the target
rewrite plus1. Thus the rest of the branch is skipped because of redundancy.

(Otherwise the next method, induction justified by app2, could be trans-
ferred only if its justification reformulated by my : app; — AwiAw,. +
(wq, w1), apps — Awy Awsy. + (wz,wy) to

+(ly, Fi(h, 1)) = Fi(h,+(l3,11))*® could be instantiated to a valid lemma.
Such an instantiation is Fi(z,y) — AxzAy.s(y) which is not provided by a
mapping. Then the suggested lemma became +(lz, s(l1)) = s(+(l2,11)). Us-
ing the suggested lemma the rest of the source proof could be transferred.)

The resulting target proof plan is

induction([v0::x],[x:pnat 1list]) then
[eval_def([1,2,1],appl) then

eval_def([1,1,1],suml) then #POSITION CHANGED by symm

generalise(sum(y),v0:int) then

%SKIP, BASE-LEVEL yields:

eval_def([1,1],plusl) then
elementary(...), hhh

wave([1,2,1], [app2,equ(left)]) then
wave([2,1], [sum2,equ(left)]) then
wave([1,1,1], [sum2,equ(left)]) then %POSITION CHANGED
wave([1,1], [assplus,equ(left)]) then
fertilize(weak(v1l)) then
elementary(...)

app2 which is not yet instantiated by my or m..

by symm
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10.4 halfdouble-doublehalf

This is an example for the application of the reformulation condt.

source theorem halfdouble: half(double(n)) =n
target theorem doublehalf: even(n) — double(half(n)) = n.
The source plan is

induction([s(n)], [n:pnat]) then
[eval_def([1,1,1],doublel) then
eval_def([1,1],halfl) then
elementary(...),
wave([1,1,1], [double2,equ(left)]) then
wave([1,1],[half3,equ(left)]) then
fertilize(weak(v0)) then
elementary(...)

]

The basic mapping my : double — half, half — double
The extended mapping m, : half; 3 — double
doubley 5 — hal f

S14— Axr.s(s(x))

Az.$9(s2(x)) — s

Az.s3(s3(x)) — s.

The reformulation condt replaces FERTILIZATION(weak) by VERY WEAK FERTIL-
IZATION in the plan node with the conclusion

even(s(s(n))) — s(s(double(half(n)))) = s(s(n)). VERY WEAK FERTILIZATION
results in the (transferred) subgoal s(s(n)) = s(s(n)) and in the additional subgoal
lemmal: even(s(s(n))) — even(n).

The target base case for s(0) is terminated because of even(s(0)) = false. The
target base case for z = 0 is transferred because of even(0) = true.

The resulting target proof plan is

induction([s(s((n))], [n:pnat]) then
[eval_def([1],evenl) then %ADDITIONAL EVALUATION
eval_def([1,1,1,2],half1) then
eval_def([1,1,2],doublel) then
elementary(...),
[eval_def([1],evenl) then %ADDITIONAL EVALUATION
elementary(...),
wave([1,1,1,2],[half2,equ(left)]) then
wave([1,1,2],[double3,equ(left)]) then
fertilize(very_weak(v0),lemmal) then  %REPLACED METHOD
elementary(...)
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10.5 div3-div3term

source theorem: div3: -y = 0 — div(plus(y, z),y) = s(div(z,y))
target theorem: div3term: —times(y,z) = 0 — div(plus(y,x),y) = s(div(z,y)).
div3 can be planned by C'IAM3 and has the proof plan

normal (imply_intro) then
eval_def([1,1],div3) then
elementary(...)

This is an example for which the not commonly loaded method NORMAL can be
transferred. div3term can not be planned by C'IAM3. 1t can, however, be planned
by analogy to div3. The reason is that eval_def’s preconditions are not satisfied.
The basic mapping maps: y +— times(y, z) in the antecedents. Everything else is
mapped identically by m;. Note: for noninductive proofs the match constraints
do not apply.

In order to establish the p-justification true(—* (y,z) = 0 F =y = 0) base-level
planning has to be invoked.

10.6 cnc_theorems

A class of examples for which the not commonly loaded method NORMAL can be
transferred is the class of cnc.. theorems. For instance,

source theorem: cnc_plus: @ =y — plus(z, z) = plus(y, z)

target theorem: cnc half: @ =y — half(x) = half(y).

All the plans (also for cnc_times etc.) have the structure

normal (imply_intro) then
equal(v0,left) then
elementary(...)

and the planning fails without the method NORMAL.

cnc_termplus: times(u,z) = times(v,y) — plus(times(u, ), z) = plus(times(v,y), z)
is a more complicated target for which the source can be transferred analogically.

10.7 zerotimesl-zerotimes3

This is another example for which the not commonly loaded method NORMAL can
be transferred.

source theorem: zerotimes1: x = 0 — times(z,y) =0
target theorem: zerotimes3: times(z,y) =0 — times(times(z,y),y) = 0.

The source plan is
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normal (imply_intro) then
equal(v0,right) then
eval_def([1,1] ,timesl) then
elementary(...).

The target plan is

normal (imply_intro) then
equal (vO,right) then
eval_def([1,1] ,timesl) then
elementary(...).

As opposed to a plan produced by base-level planning, the resulting target plan
does not start with a GENERALISE method. m; and the analogical replay do
the job necessary. The analogical replay does not consider the precondition
freevarinterm(G,{imes(z,y) because it has no corresponding justification.

10.8 assapp-assplusl

source theorem: z <> (y <> z) = (z <>y) <>z
target theorem: = + (z + 2) = (v + z) + .

This 1s an example in which target variables are generalized apart in order to meet
the b4 constraint of m;. The result is the reformulated target assplus2, given
below, for which the analogical replay works. app is not indexed because all apps
are mapped to +.

The extended mapping maps for the step case app2 to plus2 and appl to plusi
by m. :::1 o— s and for the base case app1 to plusi by m, : nil — 0. The source
plan is

induction([v0::1],[1:pnat 1list]) then
[eval_def([1,1],appl) then
eval_def([1,2,1],appl) then
elementary(...),
wave([1,1], [app2,equ(left)]) then
wave([1,2,1], [app2,equ(left)]) then
wave([2,1], [app2,equ(left)]) then
fertilize(weak(v1l)) then
elementary(...)
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Source mp Target

After the renaming of variables

app(l, app(m,n)) = app(app(l,m),n) app = + +Hx,+(y,y)) = +(+(z,y),y)

source rewrites m, target rewrites
app — +
app2:app(h ::y m,n) = h 3 app(m,n) g +(s(x),y) = s(+(z,y))

Step case replay:
source goals source justif. target goals

app(vg 11 [, app(m,n)) =

applapp(vo 1, m)n) app2 +s(2), +(y,9)) = +(+(s(2), ), y)
vo ti2 app(l, app(m, n)) = ... app2 s(+(z, +(y,9))) = - ..
-+ = app(vo 312 app(l,m), n) app2 = (s (2, 9) )
= v 52 applapp(l, m), n) e o= s(H (. y).y)
vo 2 app(app(l,m),n) = ... part_ih.match  s(+(+(z,y),y)) = ...
true true
Base case replay:
source rewrites m, target rewrites
appl: app(nil,l) =1 nil — 0 +(0,y) =y
source goals source justif. target goals

ot - 0t o0
app(m,n) = ... appl +(m,n) =...
... =app(m,n) appl oo =+(m,n)

true true
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The resulting target proof plan is

induction([s(x)], [x:pnat]) then
[eval_def([1,1],plusl) then
eval_def([1,2,1],plusl) then
elementary(...),
wave([1,1], [plus2,equ(left)]) then
wave([1,2,1],[plus2,equ(left)]) then
wave([2,1], [plus2,equ(left)]) then
fertilize(weak(v0)) then
elementary(...)

35
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10.9 halfplus2-lenapp

This is an example for the application of the reformulation 2tol. part_ih match is short for

the justification partial ind hyp match(...).

Source

halfi(z 41 y) = halfo(y +2 x)

The step case replay
source rewrites

half3: hal f3(s1(s1(2))) = sa(hal f3(z))

plus2: s3(x) +3y = sa(z +3y)

lemma:z+153(s3(y)) = ss(se(z+1y))

source goals

mp
halfy.5 — len
‘|’1;2 =<>

sl(srlrte)) — g i

s2() = ()
half3 — len

F3 <>
83:.4 = Vg il

source justif.

Target

len(z <> y) = len(y <> z)
target rewrites
len(vg :: ) = s(len(x))

(o) <>y=w:(z<>y)

target goals

hal f(x 41 s3(s3(y))) =
hal fy(s3(s3(y)) 42 )

.= hal fa(sa(s3(y) +5 @)

... = hal fy(s4(s4(y +3 7))

o= So(hal f3(y +3 )

hal fi(s5(se(z +1y))) = - ..

sa(halfs(z +1y)) = ...

So(halfo(y +22)) = ...

true

The source lemma provided by a critic is @ 41 s3(s3(y)) = ss(se(x +1 y)). Suggested target
y) = v i (z <> y).

lemma is: <> (vg ::

plus2

plus2

+o = +3
plus2

half3

halfy = halfs3
S4 = S1
(causes 2tol)

lemma

half3

halfy = halfs
85 = &1

S6 = 51
part_ih_match
hal fs = hal f,

halfy, = halfs
+2o = +3

after 2tol reformulation
len(z <> (vo 1 y)) =
len((vo i1 y) <> x)

after 2tol collapsed 2 methods
o= len(vg i (y <> 1))

collapsed method

o= s(len(y <> x))

by suggested lemma
len(vg :: (z <>y))=...

s(len(z <>y))=...

s(len(y <>=z)) =...

true
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10.10 halfplus2-evenplus

source theorem: halfi(x 41 y) = halfy(y +2 x)
target theorem: even(z + y) < even(y + ).
This is an example, where the matching constraint b1l has to be relaxed and in which the
application of a lemma discovery critic can be avoided by analogy.

Source
halfi(z 41 y) = halfo(y +2 x)

step case replay:
source rewrites

s1(z) 43y = s2(x +3y)
hal f3(ss(s3(x))) = sa(hal f3(z))

source goals

mgp

hal f1,5 — evn

+12 — +

me
+3 = +
half3 — even
81;2;3 = S

S4 > -

source justif.

37

Target

even(z + y) < even(y + )

target rewrites

s(z) +y=s(z+y)

even(s(s(x))) « even(z)

target goals

halfi(s ( ())+1y)=
hal fay +2 s1(s1(2)))

hal fi(s2(s1(2) +3y)) =

hal fi(s2(s2(z +3y))) =

sq(halfs(z +5y)) =

= sa(hal fs(y +3 z))

sa(halfs(x+sy)) = sa(hal fs(z+3y))

true

+1 = +3
+3 = +3
S9 = 83

halfy = halfs

lemma

ith_match
hal fs = hal f,
hal fs = hal f
+3=+1;2

even(s(s(z)+y) « even(y+ s(s(x))

even(s(s(z)+y)) <
even(s(s(z+y))) <«
even(z +y) <

by suggested lemma
.. even(y + )

even(y + x) < even(y + x)

true

The source lemma, introduced by a critic, is halfo(y +2 s1(s1(x))) = sa(halfs(y +5 x)).
Correspondingly, the suggested target lemma is even(y + s(s(z))) « even(y + z).
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10.11 1lenapp-halfplus2

Source theorem: lens(a <>1 b) = leny(b <>3 a)
Target theorem: half(a 4 b) = half(b+ a)

This is an example for the application of the reformulation 1to2 that avoids the
application of the induction revision critic in the target. The replay can transfer
the source base case b=0, a=0 to the target base case b=0, a=0. It replays
the step case of b=0 as shown below. It breaks down for the target base case
b=0,a=s(0) because of the IF-equation nil; = nily which is mapped to s(0) = 0.
As shown below the replay of the source base case b=0 for the target base case
b=s(0) yields a gap at the first method eval_def(appl) because of the IF-equation
nil = nuly (nel is introduced by the target induction) which is mapped to s(0) = 0.
It produces the island conclusion half(+(a,s(0))) =?. With this island the replay
can be continued yielding a final subgoal s(?) =??7. The instantiation of the gap
variable by half(s(a)) allows to complete the replay of this step case of b=s(0).
The source base cases b=0, a=0 can be replayed for the target base case b=s(0),
a=0 if the island is instantiated. The replay of the base case b=0, a=0 for the
target base case b=s(0), a=s(0) fails because of the IF-equation nil; = nil; which
is mapped to s(0) = 0.
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Source

leny(a <>y b) = leny(b <>3 a)
source rewrites
app2:

(vg iz a) <>3b=wg 3 (a <>3b)
len2:lens(vg 11 a) = s1(lens(a))

The step case replay:
source goals

mgp

leny,o — half

<>+

me
lens — half
= s(s())
S$1 S
<>z +
3k S

source justif.

39

Target
half(a+ b) = half(b+ a)

target rewrites

s(a)+b=s(a+0b)
half(s(s(a)) = s(hal f(a)

target goals

leni(a <>1 vg 112 b) =
leng(vg 112 b <>3 a)
o= leng(vg i3 (b <>3 a))

..o = s1(leng(b <>3 a))

so(leng(a <>3 b)) = ...

si(leny(b <>3 a)) = ...

true

app2

app2
<>o=<>3

len2
leny = lens

(*) 3=
lemma
lens = len

<>3=<>q

S1 = 89
leng = lens
<>o=<>3

After 1to2 ref. because of (*)
half(a+s(s(b))) = half(s(s(b))+a)

double wave method because of 1t02
.= half(s(s(b+a)))

s(half(b+ a))

by suggested lemma
s(half(a+0))=...

s(half(b+a)) = ...

true

Source lemma: leni(a <>1 vg 113 b) = sy(lens(a <>3 b)).

Suggested target lemma: half(a + s(s(b))) = s(half(a + b)).
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The source base case b = 0 (step case) replay for the target case base b = 0 (step case):

source rewrites
appl: apps(nily,z) =z
lengthl: lens(nils) =0

app2
length?2

source goals

me
apps — +
nil +— 0
3k 8
i s(s())
lens — half

source justif.

target rewrites

+(0,2) ==
half(0) =0
plus2
half3

target goals

lenq(appi(a,nil)) =
leng(appz(nil,a))

lenq(appi(a,nil)) = len(a)

induction on a
lenq(appi(vo 2 a,mel)) =
leng(vg iz a)

step case:

lenq(vo i3 appa(a,nil)) = ...

s1(lens(appa(a,nil))) = ...

.. = s1(len(a))

s1(leng(a)) = ...

true

appl
apps = apps
nil = nily

app2

app2
apps = appy

length?2
leny = lens

3=

(causes 1to2)

length?2
leny = lens

e |

leny = lens
apps = app

half(+(a,0)) = half(+(0,a))

half(+(a,0)) = half(a)

hal f(+(s(s(a)), 0)) = half(s(s(a)))

double wave[plus2] because of 1to2
half(s(s(+(a,0)))) = ...

s(half(+(a,0))) = ...

... =s(half(2))

s(half(a)) = ...

true
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The source base case b=0 replay for the target base case b=s(0):

source rewrites m, target rewrites
appl: appe(nily, ) = x i +(0,2) =z
lenl: lens(nils) = 0 Zil :Séo) half(0) =0
etc. * half(s(0) =10
source goals source justif. target goals
lenq(app(a,nil)) = half(+(a,s(0))) =
leng(appz(nil,a)) half(+(s(0),a))
appl
appz = app
-+ = lena(a) wil = nily =7

(causes failure)

induction on a .

leny (app(vo 2 a,nil)) =
leny(vg 2 a)

step case:

app2 half(+(s(s(a)),s(0))) =7

app2 double wave[plus2] because of 1to2

len(vo 25 appa(a, nil)) = .. apps = appr - half(s(s(+(a,s(0))))) =?

length?2
leny = lens

s1(lens(appa(a,nil))) = ... s(hal f(+(a,s(0)))) =7

3=
(causes 1to2)

length2
.. = s1(len(a)) leny = lens =7
9=l
= ?7) =77
Sl(leng(a)) = .. len, = leng s(7) =17

apps = appy replay stopped
10.12 plus2right-doubleplus2right

Source theorem: +1(z,s1(y)) = s2(+2(z,y))
Target theorem: double(+(x,s(y))) = s(s(double(+(z,y))))

This is an example for the application of the reformulation blow.

In the step case m, maps s4 to Az.s(s(z)) because of the IF-equation sy = s4 in
the justification of ELEMENTARY. In the base case m, maps 0; to 0 because of the
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IF-equation 0; = 0. S3 remains a meta-variable which is introduced because no
target lemma corresponding to plus2 is available.

At the first WAVE(plus2) node the replay suggests the target lemma
double(+(S3(z),y) = s(s(double(+(x,y)))) corresponding to the source rewrite
plus2. This lemma contains the meta variable S5 that has to be instantiated (e.g.,
to s).

The replay of the base case suggests the target rewrite double(+(0,z)) = x based
on the source rewrite plusi and the IF-equations +; = 44,0 = 0;. The transfer
of the base case x = 0 fails because the suggested lemma double(+(0,z)) = z is
disproved. The replay stops as soon as 7 = 77 occurs. Besides, the IF-equation
s1 = s in the elementary node of the case base contradicts the basic mapping but
this reason for the replay failure is not even considered.
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Source

+1(2,51(y)) = s2(+2(z,y))
source rewrites
plus2:43(s3(z),y) = sa(+3(z,y))

The step case replay:
source goals

my

+1,2 —
double(+)

S1H— S

s2 — s(s())

me
33'—>53

sq— 5(s())

source justif.

43

Target

double(+(z,s(y))) =
s(s(double(+(z,y))))

target rewrites

nothing for double(+())

target goals

double(+(S5(2), s(y))) =

s(y))) = -

) =

_ )
+1(sa(z), s1(y)) = sa(+1(sa(x),y))  plus2 s(s(double(+(Sa(2), 1))
_ plus2 by suggested lemma
sa(+s(z,81(y))) = ... - s(s(double(+(z.
lus2
= 52(s4(+3(2, 1)) - = s(s(s(s(double(+(x,9)))))
+1=+3
sa(s2(+2(z,y))) = part-ih-match s(s(s(s(double(+(x
+3=+1
S9 = S4
true 4y = 44 true
Base case replay:
source rewrites me target rewrites
plusl: +4(0,2) = & 0, = 0 suggested rewrite

source goals

+1(0, 51(y)) = s2(+2(0,y))

si(y) = ...

o= 82(y)

true

source justif.

plusl
+1 = +4
0 — 01

plusl
+o = +4
0 - 01

double(+(0,x)) = x disproved

target goals
double(+(0, 5(y))) =

s(s(double(4(0,y))))

no transfer

? = s(s(double(+(0,v))))

no transfer
7="77

S1 = S9
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