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Abstract

The goal of PANDA is to provide an environment for
parallel and distributed programming in C++. The system
consists of a small operating system kernel, and a runtime
package located in user space. In this paper, the concepts
of PANDA are outlined with focus on the system
architecture.

1 Introduction

Many research activities on new operating system architec-
tures concentrate on using the object-oriented paradigm.
Such systems focus on an object-oriented programming
language and class libraries rather than on system call
interfaces. An increasing number of operating system
mechanisms is provided in non-privileged user space; they
are not distinguishable from operations provided by the
user. Thus, the system functionality can easily be tailored
according to specific application requirements. The use of
the system interface is facilitated by language dependency,
since there is no impedance mismatch between an applica-
tion and the operating system. In particular, compiler
support is not lost at that interface.

For the development of operating systems, the major
challenge imposed by the current hardware trends concerns
handling parallelism and distribution. Advanced applica-
tions require a platform allowing an efficient use of multi-
processors connected by a high-speed network.
Furthermore, support for persistent language-level objects
is an issue of particular interest. Ideally, concepts for
dealing with parallelism, distribution, and persistence
should be integrated into a programming language.
However, languages in general use today lack the desired
functionality. A pragmatic approach is to support distrib-
uted programming within the context of these languages
[Chase et al.89, Shrivastava et al. 91].

The goal of PANDA  is to provide an environment for
parallel and distributed programming in C++, imposing as

few as possible restrictions on the use of the language.
PANDA ’s basic library consists of classes which address
the issues of parallelism, distribution, and object persis-
tence. These classes can be used directly for building an
application, or, alternatively, as a basis for more specialized
programming systems, since the user is free to define new
abstractions by customizing the PANDA  classes.

The PANDA  architecture consists of a small operating
system kernel, and a runtime package located in user space.
The kernel provides only those functions that are relevant
with respect to protection and monopolization. All other
services are realized in non-privileged mode. Our operating
system kernel is calledpico-kernel to emphasize its
reduced functionality.

The paper is structured as follows. In Section 2,
PANDA ’s application interface is described. The design
rationales underlying our system architecture are discussed
in the subsequent section. Finally, the pico-kernel realiza-
tion is outlined.

2 Application level support

PANDA  aims at providing the programmer with an object-
oriented programming interface based on a C++ class hier-
archy. The system supports standard C++; no extensions to
the original language are required. This decision was influ-
enced by our goal to remain compatible to existing stan-
dards. PANDA  has been carefully designed to preserve the
high efficiency that C++ offers as an implementation
language. Its interface centers around the following
abstractions:

• threadsas units for parallel activity,
• aglobal virtual addressspace for shared objects,
• object andthreadmobility to deal with distribution,
• persistence of objects for permanent storage.

An important objective of the PANDA  project has been to
develop a unifying framework which realizes all the above
abstractions in a consistent manner [Assenmacher
etal. 93].
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Threads

In an ordinary C++ program there exists only one thread of
control. To introduce parallelism into C++, PANDA
provides a base classUSER_Thread containing a virtual
member functioncode() which defines the thread’s
behavior. The programmer has to supply this function.
Creating a new object of base classUSER_Thread will
implicitly start a parallel thread of execution performing the
object’scode() method.

Conceptually, threads and objects are complementary to
each other. One may think of a thread as an entity that visits
objects, enters them by method invocation, and leaves them
on return from the call.

PANDA’s object and thread abstractions are both mapped
on C++ classes. In particular, thread properties are acquired
by inheritance from classUSER_Thread. As an alterna-
tive, one might consider to support asynchronous method
invocations, as has been done, for example, in the PRESTO
system [Bershad et al. 88]. However, PRESTO’s approach of
passing a method pointer together with appropriate parame-
ters to a specialized asynchronous call operation violates the
static type safety of C++, at least in the absence of additional
compiler support.

The crucial issue in providing multithreading is perfor-
mance. The cost of parallelism determines its grain and has
thus a strong influence on the programming style. There-
fore, PANDA  threads have been realized in user space. The
underlying operating system kernel is completely unaware
of user space parallelism. In particular, thread scheduling is
done in non-privileged mode, yielding so-calleduser-level
threads [Bershad et al. 88, Marsh et al. 91]. Our implemen-
tation offers very fast thread management. Creation and
deletion of threads is highly efficient, causing an overhead
within only one order of magnitude compared to a procedure
call, see Table 1 at the end of this section.

As several threads may concurrently enter the same
object, mechanisms for synchronization are required. It is
the programmers responsibility to ensure proper parallel
object access. PANDA offers synchronization objects such
as locks, distributed read/write semaphores, and signals.
Being subject to its target language C++ and a conventional
compiler, PANDA can hardly support more sophisticated
synchronization paradigms that would require language
extensions [Gehani and Roome88, Nierstrasz and
Papathomas90, Saleh and Gautron91].

Global virtual address space

Typical C++ applications follow the spirit of the C program-
ming language in that they rely heavily on pointer refer-
ences. This yields a rather “impure” object model due to the
lack of encapsulation, but offers maximum efficiency.

Restricting the use of pointers would be a major deviation
from what is regarded as a C++ standard.

In order to retain the expressiveness of C++, the PANDA
system has been based on the abstraction of a global virtual
address space spanning a distributed system of homoge-
neous processors. As a consequence, every pointer
throughout an application denotes a uniquely defined
memory location on some node participating in the compu-
tation. Therefore, pointers may be passed freely across node
boundaries as parameters; they have the same “meaning”
everywhere in the system. That does, of course, not mean
that arbitrary memory addresses can actually be accessed by
a local thread. Instead, PANDA statically divides the global
virtual address space in several partitions. Whether an
object is currently accessible depends on the memory parti-
tion in which it resides. On the one hand, there are local
partitions whose memory locations can only be addressed
by local threads. All local partitions comprise disjoint
address spaces, and any attempt to access an address
belonging to a remote partition will be flagged out by hard-
ware as an access violation. On the other hand, PANDA
offers shared partitions which denote identical address
ranges mapped on each node. Whenever a shared partition
is accessed, the runtime package ensures that an up-to-date
memory image will be presented to the application (see
object mobility below). At the language level, there is no
difference between an access to a local object, and an object
which is remote but resides in a shared partition. Therefore,
ordinary, sequential application code may be executed in a
distributed environment essentially without any modifica-
tion. This location transparency is highly desirable with
respect to the portability of existing programs, and also for
debugging purposes.

When creating a new object in heap memory, the
programmer can choose an appropriate memory partition
according to his needs by simply specifying a partition name
as an additional parameter to thenew operator. If no such
specification is provided, then the object is created in a local
partition by default.

Note that a static partitioning of virtual addresses is only
feasible if the address space is sufficiently large. With the
advent 64-bit architectures which is the emerging tech-
nology, populating the address space sparsely in order to
obtain a simpler and more efficient realization of the
memory management mechanisms seems reasonable
[Chase et al. 92, Chase et al. 92b, Garrett et al. 92].

Object and thread mobility

Recall that one of our main goals was to support program-
ming in a distributed environment. As mentioned above, in
C++ the most natural solution to the distribution problem is
to create the illusion of a single, global object and thread
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space, i.e., to hide the node boundaries from the application
programmer.

A popular approach to location transparency is to redirect
object accesses via communication stubs [Birrell and
Nelson 84], or proxy objects [Shapiro 86] to the location
where the physical representation of the object resides.
However, such “software routing” requires one additional
level of indirection. This entails overhead, even when a
global object resides locally. Besides efficiency consider-
ations, such an explicit communication interface requires
extensive compiler support to make it user-friendly, and
even then it generally restricts location transparency to
method invocations. In C++ where encapsulation is
provided only to a limited degree, following a pointer refer-
ence can potentially cause a remote object access. There-
fore, PANDA employs object and thread mobility based on
hardware surveillance to separate location transparency
issues from the method invocation mechanism.

Remote object accesses are handled as follows. If a refer-
ence to a remote object is encountered by the memory
management hardware, a page fault interrupt occurs. Next,
the runtime package takes a decision to either migrate the
thread to the location where the object currently resides, or
to attract the object (or a read copy thereof) to the local node.
The first alternative is only allowed if the respective thread
is willing to migrate (there might be good reasons for a
thread to refuse to migrate because it depends on dedicated
local hardware devices). The second alternative may only be
chosen if the corresponding object resides in a shared
memory partition. If neither of these conditions is met, the
page fault is treated as a semantic error, and an access viola-
tion exception is raised.

Our approach to object mobility is generally known as
shared virtual memory or distributed shared memory
(DSM) [Nitzberg and Lo 91]. As it is based on hardware
support by a memory management unit, it completely
avoids overhead as long as objects are locally accessible.
This should be by far the most common case in a well-
structured distributed application. It has, however, the
disadvantage that DSM is provided on a per-page basis,
disregarding any object boundaries. Thus, it may suffer
from false sharing if objects are allocated too carelessly.
Nevertheless, we strongly believe that it is important not to
penalize fine-grained local accesses in a language like C++.
Measurements which confirm our claim have also been
reported from other environments, see, for example, the
figures presented in [Levelt et al.92].

An alternative to object mobility is thread migration —
i.e., function shipping instead of data shipping. Actually,
both object and thread mobility have proved their value in
practical implementations [Bennett et al.90, Chase et
al. 92b, Dasgupta et al. 91, Garrett et al.92, Jul et al.88]. A
programmermay explicitly migrate a thread to a target host,

but typically migration is triggered by page faults as
described above. Note that in PANDA  thread migration is
not subject to false sharing. Furthermore, threads are copied
in a “lazy” fashion, i.e., only the relevant parts of the execu-
tion stack are transferred by default. Additional local data of
the thread is only migrated on demand, i.e., if it is actually
referenced during the execution.

By managing threads at user level, and by applying data
compression techniques to both thread and object transmis-
sion, PANDA  is able to support mobility very efficiently.
Some preliminary performance measurements are listed in
Table 1. The measurements were carried out on Sun

SPARC-2 workstations connected by a 10Mb/s Ethernet on
top of SunOS 4.1.1. Although we expect to substantially
improve our DSM access times in the future, the measure-
ments show that thread migration is still a reasonable alter-
native to object migration. Whether it is better to transfer the
thread or the object (provided that both is feasible) is a
matter of a particular migration policy, and the decision is
taken by the PANDA  page-fault handler at user level.

Our solution is very attractive from a programmer’s point
of view. In principle, a program could be completely
unaware of node boundaries. In most application domains,
this view is, of course, too optimistic — efficiency consid-
erations typically preclude a thoughtless distribution and
require a careful decomposition of the system into (rela-
tively independent) components. Nevertheless, location
transparency is at least a first step in the direction of this
ideal, and it helps to reduce the complexity of the applica-
tion code.

Persistence

In conventional environments, persistence is typically real-
ized with the help of file systems or database interfaces.
Unfortunately, traditional file or database systems suffer

Benchmark operation Time

Thread creation, null execution, deletion
(with / without lazy stack allocation)

15.1µs/10.7µs

Context switch 17.7µs

Local memory allocation and deletion 1.5µs

Remote distributed shared memory access
(page at origin, page not at origin) 5.3ms / 9.6ms

Thread migration and reactivation 8.9ms

Null procedure call
(with / without register window overflow) 7.1µs / 0.31µs

Tab. 1. Performance of the P ANDA  prototype
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from impedance mismatch. Object-oriented database
systems are currently being developed which address this
issue [Lamb et al. 91, ODeux et al. 91]. The integration of
persistence mechanisms into the run-time environment of
the language seems to be a reasonable alternative. In partic-
ular, such an approach has been pursued in systems
designed for fault tolerant computing [Ahamad et al. 90,
Liskov 88, Shrivastava et al. 91].

In PANDA , a persistence mechanism has been realized. In
essence, PANDA  provides a dedicated, shared memory parti-
tion which is kept persistent, even in the presence of fail-
ures. The content of the persistent partition is mirrored on a
stable storage device. Persistent objects are created within
that partition and they are globally accessible. From the
programmers perspective, persistent objects are accessed in
the same way as ordinary, transient objects. The instrumen-
tation required to support object persistence is added by
simple preprocessor macros. To indicate persistence, the
new operator has to be invoked with an appropriate param-
eter. Symbolic names can be assigned to persistent objects,
and PANDA  provides operations to retrieve objects by their
names.

One major problem concerning persistent objects is how
to maintain their consistency in the case of concurrent
access or node failure. PANDA  offers distributed transaction
support, restricted to persistent objects. Currently, nested
transactions are not supported; nested invocations are, of
course, feasible. If a failure occurs, always the outermost
transaction bracket is aborted. Only persistent objects are
restored.

3 System architecture

The PANDA  architecture consists of an operating system
kernel and a runtime package (RTP). The kernel comprises
a fundamental set of privileged functions, described in more
detail in the subsequent section. Two basic notions —
virtual processorandprotection domain — are provided to
abstract from the available processors and from memory. On
top of the kernel, the RTP implements all those functionality
that may run in non-privileged mode. Application software
is based on the RTP interface. Both application and RTP
execute in user mode (Figure1).

The RTP is realized as a hierarchy of C++ classes. They
are divided into several class families reflecting the main
entity types which constitute our distributed system model.
For example, there are hierarchies for persistent or garbage-
collectable objects. Another hierarchy — the thread family
— models the different kinds of system and user activities
such as migratable and immobile threads. Yet another inher-
itance tree comprises synchronization classes for concur-
rency control. The strength of PANDA ’s object-oriented
approach is that a well-chosen collection of these classes is

made available at the application level which may be
tailored to the needs of the user by means of derivation.

There is a one-to-one mapping between virtual proces-
sors and runtime packages. A distributed application spans
several RTPs. Since only one virtual processor executes
within each RTP, the user-level thread scheduler is simpli-
fied. Moreover, a substantial performance gain is achieved
because there is no need to synchronize scheduling activities
[Anderson et al89]. On the other hand, if an application
wants to exploit the processing power of a multiprocessor
platform, several RTPs sharing the same protection domain
must be employed on each node, one for each physical
processor. Since each RTP operates on its private system
objects, frequent cache invalidation caused by system activ-
ities such as thread scheduling is avoided. Maintaining only
a loose coupling between the processing units of a multipro-
cessor is a key to exploit its full computational power
[Misra 91]. In order to achieve multiprocessor scheduling,
threads have to be migrated, either explicitly or by a load
balancer. If an application decides to run on top of a single
RTP, true parallelism is not exploited, even on multipro-
cessor machines.

Performance can be increased by scheduling threads in a
non-preemptive fashion. By interrupting activities at well-
defined points during execution, only a small fraction of the
thread context need to be saved. In comparison, preemptive
scheduling implies storing the complete thread context and
hence slows down context switches. An even more serious
problem occurs if a thread holding a lock which is central to
the computation is preempted. In this case, all succeeding
threads are likely to be blocked immediately after their
continuation — the computation is starved by the preempted
lock holder. This is a common scenario in applications
consisting of closely cooperating threads. In PANDA , a
preemptive as well as a non-preemptive user-level scheduler
may be supplied. We prefer the non-preemptive strategy
because of its efficiency. Furthermore, experience has
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Fig. 1. The PANDA  system architecture
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shown that in our applications threads are rather fine-
grained, and would be preempted at a rate of less than one
percent.

Most PANDA  services are realized at user level. Services
handling unique resources shared by several applications
must not be included into any of the user RTPs. They have
to operate in the context of a private runtime package.
Consequently, calling such services requires interaction
between local RTPs which entails kernel intervention. In
particular, this applies to the remote communication handler
which is responsible for network access. Therefore, sending
or receiving messages requires one additional context
switch at kernel level compared to a highly optimized
communication service integrated into the kernel. On the
other hand, our approach has several advantages. By sepa-
rating services from the kernel, better modularity is
achieved, and thus extending and maintaining the system is
facilitated. Moreover, service implementation can profit
from PANDA  functionality. Currently, the implications of a
user-level service realization are being studied, and we are
trying to devise means to further reduce the potential perfor-
mance penalties of the current scheme.

4 pico-Kernel architecture

PANDA  employs a small operating system kernel. One of
our main design goals was to reduce the frequency of kernel
calls. As a consequence, the kernel interface offers only
those abstractions which are critical in respect to protection
and monopolization considerations. All other functionality
usually found in operating system kernels has been moved
into user space. By minimizing the amount of kernel inter-
vention, the overhead induced by the need to cross the trap
boundary can be kept very low. The kernel interface is
“skinny” and intended to be used only by system program-
mers. We chose the namepico-kernel to stress the character-
istics of our approach.

The hardware abstractions provided by the kernel are
protection domain and virtual processor. A protection
domain offers functionality to control access to address
spaces on a per-page basis. A virtual processor is an abstrac-
tion of the processor and has the functionality to deal with
interrupts, exceptions, and to communicate with other
virtual processors on the same node. Every virtual processor
is assigned a protection domain, but a single domain may be
shared by several processors.

Kernel interface

The kernel interacts with the runtime package in three
different ways. First, the functions of the kernel interface are
accessed via traps from user space into privileged mode.
Second, the kernel informs the runtime package about
exceptions and certain interrupts using an upcall mechanism

(software interrupt). Third, read-only access from user
space to dedicated kernel data allows efficient information
flow without crossing the trap boundary.

All kernel calls are non-blocking. No thread will ever
block within the kernel, thus stopping the whole runtime
package. Alternative approaches to prevent user-level
threads from blocking the thread package may be found in
[Anderson et al.92, Draves et al.91, Marsh et al.91].

Interrupt handling

The kernel provides an interrupt forwarding facility. All
interrupts are passed to user space. Interrupts are classified
into immediateanddelayed interrupts. These notions indi-
cate whether an interrupt should be handled instantly after
its occurrence, or whether it should be recorded and
processed later. Synchronous program exceptions — e.g.
page fault or division by zero — are always treated as imme-
diate interrupts, while asynchronous events — such as timer
or I/O interrupt — may be labelled either as immediate or
delayed.

Handling of an immediate interrupt is depicted in
Figure2. First, the kernel saves the execution context of the
virtual processor in a dump area in kernel memory (1). Next,
an upcall to the runtime package is issued, transferring inter-
rupt type and a pointer to the saved context region as param-
eters (2). Interrupt handling — e.g. acquiring pages after
page faults — is done in user space (3). Finally, the context
which is identified by the dump area pointer may be restored
by a kernel call, if the runtime package wants to resume the
interrupted thread (4).

Delayed interrupts are delivered via shared data structures.
The runtime package has read-only access to a table main-
tained by the kernel. This table contains counters which are
incremented whenever a delayed interrupt occurs. By
comparing these counters with private copies, a runtime
package may identify new interrupts. This method is very

Fig. 2. Immediate interrupt handling
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efficient because it avoids context switching and kernel
traps.

Migration support

As described above, PANDA  is capable of migrating threads
between runtime packages that may reside on different
nodes of a network. Since the kernel has no knowledge of
threads, this must be done completely under control of the
user-level thread system. Provided a thread issues a
synchronous migration request, no kernel intervention is
needed. If, however, a thread that is interrupted — e.g. due
to a page fault — has to be migrated asynchronously to a
different runtime package, kernel support is required. The
execution context controlled by the kernel has to be made
accessible at the user level for transmission. To this end, two
kernel calls are available:SaveUserContext() extracts
the relevant data from the dump area in a user-readable data
structure;RestoreUserContext() generates a new
dump area on the basis of a given context data and returns a
pointer to this region. To continue an interrupted thread after
migration, the normal handling of immediate interrupts
applies.

Local communication

The pico-kernel offers communication primitives to enable
interaction between different virtual processors. Kernel-
level message passing is only possible between virtual
processors on the same node (note that remote communica-
tion is handled by a communication server). Virtual proces-
sors are directly addressed. Incoming messages generate a
logical interrupt (MessageInterrupt). Two arbitrary

parameters can be passed; they typically denote address and
size of a memory region. Virtual processors running in the
same protection domain share all data so that message
exchange is straightforward. Virtual processors in different
protection domains can share data based on capabilities
(Figure3). Virtual processors may grant or revoke capabili-
ties for memory access. Capabilities are used on a per-page
basis, allowing efficient data sharing with support of the
memory management unit. Therefore, passing data in a truly
secure fashion requires page alignment.

Fig. 3. Virtual processor communication

Virtual Processor #1 Virtual Processor #2

Send(#2, adr, size) logical interrupt received

Receive(&from, &adr, &size)

AllowAccess(#2, adr, size)

MapPages(from, adr, size)
…
access to message

// pass capability:

5 Conclusions

The PANDA  design was driven by our intention to provide
as much as possible system functionality in user space. Such
an architecture has definite advantages with respect to flex-
ibility and performance. The pico-kernel approach requires,
however, somewhat more effort to ensure timely and fair
access to critical devices compared to architectures where
device drivers such as communication links are an integral
part of the kernel. Evaluating the trade-offs of our design,
and optimizing the interplay between external device
drivers and the kernel is an area of our particular interest.

The class hierarchy of the runtime package has proved its
usefulness and flexibility in a number of system extensions.
PANDA  has the capability to serve as a base for various
concurrent and distributed programming models. For
example, we implemented a runtime support layer for COIN

[Buhler90], a programming language especially designed
for parallel and distributed applications. As expected, no
major performance penalties had to be payed due to inter-
face mismatch.

There is an increasing demand for environments
supporting parallelism and distribution compliant with stan-
dard C++. By meeting this requirement, PANDA  attracted
the interest of an industrial partner who is employing it as a
platform for telecommunication software. Thus, we are able
to obtain valuable feedback regarding our design choices.

In distributed systems, partial malfunction and tempo-
rary disconnection have to be taken into account. In respect
to these characteristics, an important goal of our current
work is to enhance our environment in the direction towards
increased robustness.
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