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CHAPTER 1

Introduction

We consider a system of the form
(1.1) Mi+Dzx+Kr = 0, xzeR",

with a positive definite mass matrix M, a symmetric damping matrix
D and a positive definite stiffness matrix K. If the equilibrium in (1.1)
is unstable, a small disturbance is enough to set the system in motion
again. The motion of the system sustains itself, an effect which is called
self-excitation or self-induced vibration. The reason behind this effect
is the presence of negative damping, which results for example from dry
friction, see [1], [5], [18]. Another example is the Van der Pol Oscillator
(see[13], p. 9), which due to a non-constant damping coefficient, locally
has negative damping. This example will be further examined below.
Negative damping implies that the damping matrix D is indefinite or
negative definite. Throughout our work, we assume D to be indefinite,
and that system (1.1) possesses both stable and unstable modes and
thus is unstable.

It is now the idea of gyroscopic stabilization to mix the modes of a
system with indefinite damping such that the system is stabilized with-
out introducing further dissipation. This is done by adding gyroscopic
forces Gz with a suitable skew-symmetric matrix GG to the left-hand
side (see e.g. [16]).

DEFINITION 1.1. We call G = —GT € R™" a gyroscopic stabilizer
for the unstable system (1.1), if

(1.2) Mi+ (D+G)i+ Kz = 0

is asymptotically stable. In this case the system is gyroscopically sta-
bilizable. We will even call G a gyroscopic stabilizer if

Mi+ (D+~1G)t+ Kz = 0

for some v € R is asymptotically stable, thus making the definition
independent of the scaling of G.
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As mentioned above, an example for the occurrence of negative damp-
ing is given by the Van der Pol Oscillator (see[13], p. 9),

(1.3) i—p(l—a*)i+x=0

with ¢ > 0. For x close to zero, the damping coefficient in (1.3) is
negative, thus self-excitation occurs. The trajectories of the system
tend towards a limit cycle (see Figure 1.1), since the damping coefficient
becomes positive when x is sufficiently far away from zero. It follows
that here self-excitation is a local effect depending on z. We now
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FIGURE 1.1. Solution of (1.3) with initial conditions x(0) =

0.2 and #(0) = 0.1 plotted versus time on the left; phase
portrait on the right

stabilize system (1.3) by coupling it via a conservative, gyroscopic term
with two damped harmonic oscillators. We put p = 3 and consider the
system

@ —3(1—2%) —g3 @ @ 1 x

g |+ B 2 —; g |+ : y

Z —32 [0 1.5 Z 1 z
(14) =i+ (D(v)+G)i+Kv=0.

For g1 = g5 = g3 = 0 the above system is still decoupled. Thus x tends
towards the limit cycle, while y and z will tend to zero.

By choosing (g1, g2, g3) = (4.5, 4.5, 4.5) and inspecting the eigenval-
ues, we see that the linearized system @ + (D(0) + G)o + Kv = 0 is
asymptotically stable. According to (|20], §29, IX), it is implied that
the equilibrium of the nonlinear system is at least locally asymptoti-
cally stable.

In Figure 1.2, the solution of the coupled nonlinear system (1.4) with
initial conditions (x(0) £(0) y(0) (0) 2(0) 2(0)) = &£(212121)is
plotted versus time and in the phase space. In contrast to the non-
coupled Van der Pol oscillator (1.3), the solution for z now tends to
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(d/dt) x
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FIGURE 1.2. Solution for z in (1.4) with initial conditions
(z(0) &(0) y(0) §(0) 2(0) 2(0)) = 5(2 1 2 1 2 1) plottet
versus time on the left; phase portrait of (x(t),2(t)) with
t € [0,100] on the right

Z€ero.
Figure 1.3 shows the solutions for y and z of (1.3). They behave very
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time t time t

FIGURE 1.3. Solution for y and z in (1.4) with initial condi-
tions (z(0) #(0) y(0) #(0) z(0) 2(0)) = 15(2121 2 1) plottet
versus time

similar to the solution for x, the gyroscopic term aligns the behavior
of ,y, 2.

This example demonstrates that a gyroscopic stabilization may even
be applied for certain nonlinear systems.

The problem we will analyze in our work is: under which circumstances
does a gyroscopic stabilizer exists, and how can it be constructed?
Let M be the unit matrix. A well-known necessary condition for gy-
roscopic stabilizability is that the traces of D and K~!'D are both
positive, see [14] or [15]. In the recent paper [15], the authors ask
whether this condition is also sufficient. In the case n = 2 they give an
affirmative answer. For n > 2 gyroscopic stabilizability so far has only



been shown under additional conditions.

We will use results on eigenvalue and eigenvector perturbation in order
to derive a new sufficient condition for gyroscopic stabilizability. Our
method is formulated as an inverse eigenvector problem, see chapter 2.
We then show in chapter 3 how our method can be applied to systems
of the form (1.1) in space dimension 2 and 3 and thereby show that the
conditions tr D, tr QD) > 0 are sufficient conditions for stabilizability.
The two-dimensional case is known already and can be found in the
literature, while the solution to the three-dimensional case so far was
not known. An easily applicable construction method for a gyroscopic
stabilizer GG is shown, and we derive a visualization of the set of GG in
three dimensions for a given system of the form (1.1).

We also apply our construction method to space dimension 4 and 5.
Actually, the construction in both cases is fairly similar. At least in
dimension 4, we are again able to show the sufficiency of the conditions
tr D, tr QD@ > 0 for gyroscopic stabilizability. Finally, we show how
in some cases, the problem of constructing a gyroscopic stabilizer can
be reduced to spaces of lower dimension.

Parts of chapters 2, 3 and 4 have already been published in a joint
paper with Tobias Damm [7].



CHAPTER 2

Necessary and Sufficient Conditions

2.1. Necessary Condition
Since in the system
(2.1) Mi+(D+G)i+ Kz = 0, zeR"

we assume M > 0, there exists the unique positive definite square root
of M, thus we may define P > 0 with P~2 = M. By multiplication
from the left and with z = P~ 1z, (2.1) becomes

PMPP i+ P(D+G)PP i+ PKPP 'z =
PMP:Z+ P(D+ G)P:+ PKPz =
Ii+(D+Q)z:+Kz = 0,

where I denotes the unit matrix, K = K7 > 0, G = —=GT and D = DT.
Thus, without loss generality, from now on we assume that in (2.1) we
have M = I. Then, the second-order system can be written in first
order form as

it o] [H] i)

It is asymptotically stable if and only if o(Ag) € C_, which implies
tr A < 0, i.e. tr D > 0. Moreover, since 0(Ag) C C_ if and only if
o(Ag') € C_, where

(22) agh = | TR A

we conclude that also 0 < tr K~1(D + G) = tr K~'D. These necessary
criteria are well known (e.g. [14]), but their first appearance is difficult
to track down. In the literature, [17] is often cited as the source, but
actually, these conditions are not mentioned in the article.

We asked Prof. Dr. P. C. Miiller about the origin of these criteria, which
are well known to him for a long time, and he referred to Prof. Dr. K.
Magnus. Miiller was also so kind to provide us with his method to de-
rive the conditions, which directly uses the characteristic polynomial p

10
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of (1.2). Consider
m—1
p(A) =det(NT+ MDD +G)+ K) ="+ ) a; X,
i=0
where a,, 1 = tr D. For asymptotic stability, it is necessary that a; > 0
for all 7, we immediately get the condition tr D > 0.
Define ¢ via

p(\) = A'det K det(p*] + puK (D + G)) = \"det K q(u)
m—1
= X'det K (u™+ ) by')
i=0
where pu = % If p is asymptotically stable, then so is ¢, where ¢ is
actually the characteristic polynomial of (2.2). The condition b; > 0
then implies b,,_; = tr(K~'D) > 0.

2.2. An Inverse Eigenvector Problem

To analyze sufficiency of the conditions tr D, tr K~'D > 0 we first
reformulate the gyroscopic stabilization problem as an inverse eigen-
vector problem. According to the spectral mapping theorem [12, Prop.
A.1.16], the matrix A is asymptotically stable if and only if the matrix

_ KWD+G) K —1
1 _
—Ao—de = [ K-1 = D+G

is positive stable (i.e. has all eigenvalues in C,). Let @ denote the
positive definite square root of K. A similarity transformation with

0 : _
T = [ %2 I } brings —(Ag + Ag') to the form

71 e _ | QD+G)Q Q-Q7

T (Ac+ AT = { O1-Q D+G
_ | QGR 0 QDR Q-Q"

2. - [95 a]+[o2% 4]
By a perturbation argument we can formulate a stabilizability criterion
as an inverse eigenvector problem.

PROPOSITION 2.1. Let 7 > 0 and D, = D — 7P for some positive
definite P.
For system (1.2) to be gyroscopically stabilizable it is sufficient that
there exists a skew-symmetric matriz G = —GT with the following
properties:

(a) Both G and QGQ only have simple eigenvalues.
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(b) If v is an eigenvector of G then v*D,v > 0.
(¢) If w is an eigenvector of QGQ then w*QD,Quw > 0.

PROOF. Instead of (2.3) consider the matrix

| QGQ 0 QDQ Q-Q7!
Mé‘{ 0 G}“{Ql—g D

We show that for small ¢ > 0 this matrix is positive stable, which
implies that e71G is a gyroscopic stabilizer.

Note that all eigenvalues of M. are perturbations of the imaginary
eigenvalues of My. We will show that for each eigenvalue \g € o(My) =
0(G)Uo(QGQ) C iR of multiplicity k the perturbed matrix M, has
k eigenvalues with positive real part in a neighbourhood of ).

(i) Assume Ay € o(G) \ 0(QGQ). Then G has an eigenvector
v € C", so that ||v]| = 1 and Gv = A\gv. Condition (a) implies
that \g is a simple eigenvalue of My. A unit eigenvector of
My is given by vy = [0,v]T. For small ¢ > 0 a standard
perturbation result (e.g. [19, Thm. IV 2.3|) gives that M, has
a simple eigenvalue A\, = A\g + ev*Dv + O(€?).

Since v*Dv > 0 by (b), we have A\, € C,.

(ii) Assume Ay € 0(QGQ)\ o(G). For a corresponding unit eigen-
vector wy = [w,0]7 of My, an analogous argument as in the
first case shows that M, has a simple eigenvalue A\, = A\g +
ew*QDQuw + O(e?) € C,.

(ili) Assume A\g € o(QGQ) N o(G). Then A is a double eigen-
value of My. The corresponding two-dimensional invariant
subspace is spanned by vectors vy and wy as in the first two
cases. For small ¢ > 0 the perturbed matrix M, also has a
two-dimensional invariant subspace, which depends smoothly
on ¢ and coincides with Span{wvg, wo} for ¢ = 0. The restric-
tion of M, to this subspace has the representation (e.g. [19,
Thm. V 2.8])

[vo, wo* M [vg, wo] + O(e?)
v*Dv v Q7 - Q)w
wi(Q—-Q v  wDQuw

The 2 x 2-matrix in the previous term is positive stable, since it
has positive trace and positive determinant. Thus M. has two

positive stable eigenvalues (counting multiplicity) in a neigh-
bourhood of Ag.

— ol + +0O() .

O
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tr D tr QDQ
If n < tr Q2

we consider 7 = 22,
trD, = 0
tr@QD.Q > 0.

Otherwise, if % > trt?Q%Q, we consider the system defined via Aal in
(2.2) as

2] = [ KT

or equivalently
(2.4) 0=§+Q*(D+G)y+Q%

We put 2 = Q 'y and multiply from the left with Q! then (2.4)
becomes

0=:+Q(D+G)Q:+ Q2.
We set D = QDQ, Q =Q ' and G = QGQ, i. e.
(2.5) 0=3+D+G)+Q 2.
System (2.5) is stable if and only if the original system (1.1) is stable.

Note that from %2 > trtQé)QQ it follows that tr tr%lz -
For system (2.5) we get with 7 = trtrq}lz? and P = Q2
tr D _
tr( - tI’Q QQ ) - O 9
T tr D A—2\) A A trf
tr(Q(D — m@ )Q) = t1(QDQ) =

= tr(QDQ) —tr D rg_ >0.

Also, if G is such that 0; *D,7; = 0 for all eigenvectors of G and
W] *QD,Qw; > 0 for all elgenvectors w; of QDQ, then for the skew-
symmetric G = Q'GQ! we have viDv; > 0 for all eigenvectors
v; = w; of G and w;QDQw; > 0 for all eigenvectors w; = v; of QDQ).

Hence from now on we always consider tr D, = 0 and tr QD,Q > 0;
for simplicity, we write again D, Q instead of D, Q.

Throughout the following chapters, we will show that a solution to the
following problem exists.

PROBLEM 2.2. For symmetric matrices D,(Q € R™" satisfying Q > 0,
trD =0 and tr QDQ > 0 find G = —G* such that

(a) both G and QGQ only have simple eigenvalues,
(b) if v is an eigenvector of G then v*Dv = 0,
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(c) if w is an eigenvector of QGQ then w*QDQw > 0.

REMARK 2.3. Consider the characteristic polynomial p of the system
Z+ (D+ G)x + Kx = 0. We have

p(A) = det (NI +A(D+G)+K)
— det (NT+AD+G)+K)"
= det W+ XD —-G)+K) .

Thus it follows that G is a gyroscopic stabilizer if and only if —G is a
gyroscopic stabilizer.

2.3. Traces And Indefinite Scalar Products

The conditions v*Dv = 0,w*QDQw > 0 from problem 2.2 can be
considered in context of indefinite scalar products. Thus, we will in
short give some background on the subject and introduce some notation
that we will use in the subsequent chapters.

As before, by tr A we denote the trace of a square matrix. We will
extend this notion now and define the trace of a matrix on a subspace.
It is well-known that tr BC' = tr CB if the product BC' is a square
matrix. Hence, if U = [uy, ..., u,] € C"" is unitary then

trA=trAUU* =tr U*AU = ZU;AU;]‘ )

=1

More generally, if the matrix U = [uy, ..., u;] € C"** has orthonormal
columns, we write Y = Span{uy,...,u;} and P, = UU* for the or-
thogonal projection onto U. Then P, AP, is the projection of A to U
and

k
try A = tr(PyAPy) = tr(UTAU) = Z u; Au,
j=1

is the trace of the projected matrix. It is important that tr;, depends
continuously on U, or, equivalently, on the orthogonal projector F.
A matrix D = DT € R™" is positive definite, if tr; D > 0 for all
non-zero subspaces U C C". If D is indefinite, there exists a vector
u € R" with " Du = 0.

If G is skew-symmetric then tr G = 0. Moreover, if P = QQ7 is positive
definite then also tr PG = tr QTGQ = 0.

Note that the eigenvalues of a skew-symmetric matrix G are either
zero or complex conjugate pairs of purely imaginary numbers and a
set of eigenvectors of a skew-symmetric matrix can be chosen as an
orthonormal basis of C". The complex eigenvectors can be chosen as
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conjugate pairs. If v,w is any pair of normalized complex conjugate
orthogonal vectors, we have

1
v*Dv =w"Dw = 3 trspan{v,wy D

1 1, . .
(26) = 5 trspan{bl’bz} D — §(leb1 + bQDb2>

for any orthonormal basis {b1, by} of Span{v, w} and any matrix D of
suitable size, a fact we use freqently.

DEFINITION 2.4. An indefinite scalar product ( . ,.)p induced by an
indefinite matrix D in the vector space V = C" is a bilinear form with
(1) <5E,y>D = <ya$>7:) for all T,y € Va
(ii) (ax + by,2)p = alx,2)p + bly,z)p for all x,y,z € V and
a,b e C.

If D is singular and x € ker(D), then we have (z,y)p = 0 for all
y € C". In [11], a brief introduction on indefinite scalar products and
Krein spaces can be found.

DEFINITION 2.5. A vector x € V is said to be

- D-positive if (z,z)p > 0,

- D-neutral or D-isotropic if (z,z)p =0,

- D-negative if (x,z)p < 0.
Accordingly, we call a subspace U C V D-positive if (x,z)p > 0 for
all z € U; a D-negative subspace is defined analogously. In addition,
we call a subspace indefinite if it contains both positive and negative
vectors.

For a finite-dimensional subspace U = Span{uy,...,u,} C V, we de-
fine the gramian
(ur,ur)p ... (u1,um)p
Ry = : : :
<um7u1>D cee <umaum>D

Since D is hermitian, the gramian Ry, is hermitian as well.

LEMMA 2.6. [11] Let uy,...,u, €V be linearly independent. Then
U = Span{uy, ..., uy,} is a positive subspace of V if and only if Ry is
positive definite.

PROOF. Since uq,...,u,, are linearly independent, any x € U has a
unique representation x = [uq, ..., u,|y with y € C™. Since (z,x)p =
*Dx = y*uy, ..., up| D[us, ..., uyly > 0, it follows that Ry is posi-
tive definite if and only if I/ is positive. U
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The idea of the proof for indefinite and negative definite subspaces is
similar. Note that an indefinite real subspace contains at least one
nonzero real isotropic vector, a fact that we will use extensively.

We now recall a well-known fact about quadrics (see for example Prop.
14.3.1 in (3], [9]).

PROPOSITION 2.7. Let D € R™"™ with n > 3 be a symmetric matrix.
Then the set M = {x € R" | 2*Dx = 0} is path-connected.
Furthermore, the set My = {xz € R" | ||z|| =1, z*Dx = 0} consists of
at most two path-connected components.

Let z,y € R", n > 3, with ||z|| = ||y|]| = 1 be given. Then by proposi-
tion 2.7 it follows that with some arbitrary a,b € R", a < b, there exists
a continuous mapping z : [a,b] — R™ with the properties ||z(¢)]] = 1
for all t, z(a) = x and either z(b) =y or z(b) = —y.

For further use we define the numerical range of a symmetric matrix.

DEFINITION 2.8. Let D € R™" be symmetric. Then the numerical
range of D is defined as

nr D :={z"Dzx |z e R" | ||z| =1}.

2.4. A Special Case

Here we present a special case for which the existence of a gyroscopic
stabilizer is already known, see for example [15]. We apply Problem
2.2 and show how to actually construct a gyroscopic stabilizer G.

PROPOSITION 2.9. ([15]) Let tr D = 0 and Q = cI with ¢ > 0 be a
multiple of the unit matriz. Then there exists a gyroscopic stabilizer.

PROOF. We write down the proof only for odd n = 2m + 1, the proof
for even n is analogous.

Since @ = c¢l, conditions (b) and (c) from problem 2.2 are identical.
Thus, we just need to make sure that (b) is satisfied.

Given a symmetric matrix D with tr D = 0, it is known (|8], [10]), that

there exists a real orthogonal matrix U = [u4,...,u,] such that the
diagonal elements of U* DU are all identically zero. Define
G = Udiag(0, ;1Go, ..., pmGo)U™,

0 1
GO—(—1 0)’

where p; # 0 for all ¢ and p; # p; for ¢ # j. Then u, is an eigenvector
for the eigenvalue zero of G and we have ujDu; = 0 by construction.
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Now consider the pair of eigenvalues +ip; and let x,y be a pair of
orthonormal eigenvectors for +ip;. Then we have

Span{z,y} = Span{ug;, ugi+1} -
By construction,
trSpan{ugi,u2¢+1} D = uzzDqu + u;i+1Du2i+1 = O )
thus it follows that with (2.6) that *Dxz = y*Dy = 0. O



CHAPTER 3

Space Dimensions Two and Three

3.1. Existence of G in Space Dimension Two

The existence of a gyroscopic stabilizer in space dimension two is well
known ([2]). Here we demonstrate that also our newly derived sufficient
condition implies the existence of a gyroscopic stabilizer.

PROPOSITION 3.1. Let D, Q € R*? with Q > 0 and tr D = 0. Then
01
=(0)

PROOF. Let vy, vy be a pair of normalized eigenvectors of G. By (2.6),
we have v Dv; = v3Dvy = %trD = 0. Analogously, let wq,ws be a
pair of normalized eigenvectors of GG, then wjQQDQw; = w;QDQw, =
% trQDQ > 0. U

solves problem 2.2.

Since there is basically only one gyroscopic stabilizer GG, the more in-
teresting question is whether we can actually compute the coefficient -,
such that with tr D, tr QD@ > 0, the system & + (D +~7G)t + Kx =0
is stable. We use the approach from |2, p. 196 ff|, where the Hurwitz
criterion [12, Cor. 3.4.71] is applied. The result can also be found in
[14].

LEMMA 3.2. [12, Cor. 3.4.71], [14] Let D,Q € R*** be given with
tr D, trQDQ > 0 and let &+ Di+ Kx = 0 with K = Q=2 be unstable.
Then & 4+ (D + vG)& + Kx = 0 with G as in proposition 3.1 is stable
if and only if

trDdet K trK—'D

tr K—1D * tr D

7? > —tr K —det D +

18
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PROOF. Let p()\) = det(A\I + A\(D +~G) + Q~2). Direct computation
shows that
p(A) = M4+trDN+ (tr K +det D + )N + tr(K D)X + det K
4
=0
For stability, it is necessary and sufficient that all principal minors of
the associated Hurwitz matrix M (p) are positive. Here we have

as ap 0
M(p)=| as az ao
0 a3 ap
With the criterion of Liénard-Chipart [12, Th. 3.4.73] it is even neces-
sary and sufficient for stability that a; > 0 for all ¢+ and the principal
minors of odd order are positive, which in this case gives us the condi-
tion det M (p) = az(ajas — apas) — a?ay > 0.
By asumption, ay,as,as,aq > 0, thus if det M(p) > 0 then ay > 0.
Here, we get
det M(p) = trD(tr K~'Ddet K(tr K ++* + det D) — det K tr D)
—(trK'Ddet K)*> >0 .

Solving for 72 yields

trDdet K tr K—'D
25 _tr K —detD .
Ve ok At D ey T uD
O

Note that if ¥+ Dz + Kx = 0 is already stable, it follows that adding a
gyroscopic term in R? never destabilizes the system, since G only plays
a role in ag and M (p), and both terms become larger by adding G. We
can even conclude that in R?, the conditions of Proposition 2.1 are not
only sufficient, but also necessary for gyroscopic stabilizability.

3.2. Existence of G in Space Dimension Three

PROPOSITION 3.3. Let D,Q € R¥*® with Q > 0 and trD = 0.
Choose w € R\{0} and an orthonormal basis {u;,us,us} of R® so
that uiDuy = 0. Then

0O 0 O
(31) G = [ul,u2,u3} 0 0 w [u17u27u3]T
0 —w 0

solves Problem 2.2.
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PROOF. By construction, v; = u; is an eigenvector for the eigenvalue
0 of G, and we have vi Dv; = 0. Since G is skew-symmetric, the eigen-
vectors are orthogonal and the eigenvectors vy, v3 for the imaginary
eigenvalues can be assumed to be complex conjugate and normalized.
From (2.6) it follows that it suffices to show that trgpanfus,ws} D > 0.
From Span{uvs,v3} = Span{us, us} one has

trSpan{vz,U3} D = trSpan{ug,u;;} D
= trD— trspan{us} D=0.
Since QGQQ v, = 0, it follows that w; = Q7 v g an eigenvector for

Q= vl
the eigenvalue 0 of QGQ. Since wiQDQw; = 0, we have trgpanw, D =

0. Let wq, w3 denote the other eigenvectors of QDQ. We use (2.6)
again and get

tI‘Spam{wzﬂua;} QDQ = tr QDQ - trw1 QDQ
= tr@DQ =0,

which completes the proof. O

As seen in the previous section, in R?, any gyroscopic stabilizer satis-
fies the conditions provided by Proposition 2.1, basically there is just
one. In R3, the situation is already different, there exist gyroscopic
stabilizers whose eigenvectors do not satisfy the mentioned conditions,
as the following example shows. But still, as shown with proposition

EXAMPLE 3.4. Consider the system
—2

-4 =2 3 5 00
0 = 2+ -2 8 =12 Jz+ (| 0 1 0 T .
3 —12 4 0 05

We have tr D = 8 and tr QD() = 8, and the system is unstable, since
the maximum of the real parts of the eigenvalues is 6.5803. Now, there
exists a gyroscopic stabilizer

0 —1 —11
G=| 1 0 -26 |,
11 26 0

such that the largest real part of the eigenvalues of & + (D + G)& +
Q %z = 0is about —0.000032. But for the eigenvector v = (26, —11, 1)
with eigenvalue zero, we have v*Dv = —168 < 0. Thus, the matrix G
does not result from our construction in Proposition 3.3. This shows

that in R3, not every gyroscopic stabilizer satisfies the conditions given
by Problem 2.2.
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3.3. The Set of Gyroscopic Stabilizers in R3

We first investigate the solutions of the shifted problem 2.2, which
themselves are a subset of the gyroscopic stabilizers that satisfy the
conditions of Proposition 2.1. Thus, at first we consider pairs D, Q)
such that tr D = 0,tr QD@ > 0.

The construction of GG in Proposition 3.3 actually just depends on find-
ing an isotropic vector with respect to D. Let

0 ¢ —b
(3.2) G=| —c 0 a
b —a 0

be a skew symmetric matrix. Then g = (a,b,c)’ is an eigenvector of G
for the eigenvalue zero. This shows that the specific choice of {usg, us}
in Proposition 3.3 does not play any role in the construction of G. The
actual form of G is already completely determined just by u;, but the
question of how to scale G’ remains open.

The question of how to scale G with a suitable v such that the sys-
tem actually becomes stable is still open, we just know that v exists.
Therefore, here we consider g to be normalized, and instead of speaking
about the matrix GG, we now just talk about the associated vector g.
For a given symmetric D with tr D = 0, we define the sets

Sy=A{g91g"Dg >0, |g|| =1},
S_={g|9"Dg <0, |g||=1}.

Throughout our work, a quadric {g | ¢*Dg = 0}, where D is sym-
metric, will be referred to as the cone generated by D. Clearly Sy C
{9 | g*Dg = 0}. If g € Sy, then the associated G satisfies the condi-
tions of problem 2.2. The shape of the sets Sy, S, S_ is determined by
the eigenvalue structure of D. Let v_(D), vo(D), vy (D) denote the
number of eigenvalues of A counting algebraic multiplicities that are,
respectively, negative, zero, and positive. Define the inertia of D as
In(D) = (v_(D) v(D) v-(D)).

We assume D to be nonzero, then from tr D = 0 it follows that In(D)
takes either the form (2,0,1) or (1,1,1) or (1,0, 2).

The set Sy is the intersection of the cone defined by {z | z*Dz = 0}
and the unit sphere, and according to [9], the set {z | 2*Dx = 0} is
path-connected. The intersection with the unit sphere consists of one
connected component in the case that In(D) = (1,0,1), or two con-
nected components if either In(D) = (2,0, 1) or In(D) = (1,0, 2).
Figure 3.1 shows the cone which is determined by the isotropic vectors
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FIGURE 3.1. Intersection of unit sphere with cone S

FIGURE 3.2. Sets S (blue) and Sy (red)
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0.5

FIGURE 3.3. Set S, for different D

of the matrix D = diag(l 1 — 2). Exactly one eigenvalue is negative
and two are positive, thus each of the sets S_ and S; splits into two
connected components, while S consists of exactly one connected com-
ponent. Figure 3.2 shows the set S visualized by blue dots, and the
set Sy in red; the latter is the intersection line of the cone in Figure 3.1
with the unit sphere.

In Figure 3.3, several possible shapes for S; depending on the given
D can be seen. The red set is for D = diag(1 1 — 2), the green set
for D = diag(6 1 — 7) and the black set for D = diag(l1 0 — 1).
While the first two sets in green and red are given by intersections of
actual cones with the unit sphere, the black set arises from the de-
generate case, where Sy consists of exactly one connected component.
We now come to the original problem and consider pairs D, () with
tr D > 0,tr QD@ > 0, as in Proposition 2.1. Consider the pair D, Q)
with

13 0 0 730
D= 013 o0, Q=342
0 0 —17 026

While in the situation tr D = 0 it was enough to identify the g with
g*Dg = 0 in order to find the gyroscopic stabilizers, we now have
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FIGURE 3.4. x with 0 < z*Dzx < tr(D)

to consider the conditions v*Dv > 0 for all eigenvectors of G and
w*QDQw > 0 for all eigenvectors of QG separately.
Consider a g such that 0 < g*Dg < tr(D). Let vy, v3 be a normalized
pair of eigenvectors for the complex eigenvalues of the associated G.
Then since viDvy = viDvs and ¢*Dg + v Dvy + v5Dvs = tr(D) it
follows that 0 < v3Duvy, v;Dvs < tr D. Figure 3.4 shows in blue the
set of g such that the conditions on the eigenvectors of the associated
G are satisfied. The boundaries of the blue set are determined by the
cones defined by 2*Dx = 0 and z*(D — tr(D)I)x = 0.
The two red lines show those g for which g*(D — “£I)g = 0, thus
they are the solutions to the shifted problem as formulated in 2.2 and
coincide with the set Sy as in Figure 3.2. By construction, the red set
is completely contained in the blue set.

Now consider the eigenvectors of QG@Q. As in Proposition 3.3, we

know that w; = H8+1ZH is an eigenvector for the eigenvalue zero of QGQ,
and we denote normalized eigenvectors for the complex eigenvalues with
way, ws. Let 0 < wjQDQuw; = Mgi—?ggw < tr(QDQ). With wiQDQwy =
w3 DQuws and

w;QDQuw, + w3QDQuy + wiQDQus = tr(QDQ)
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FIGURE 3.5. x with 0 < wgf—?j”Q < tr(QDQ)

it follows that

0 < wi;QDQuws, wi;QDQuws < tr QDQ) ,

satisfying the eigenvector conditions on QGQ. In Figure 3.5, the set
of the g such that the eigenvector conditions for QGQ are satisfied,
is shown in blue. The boundaries of the blue set are determined by
the two cones defined by z*Dxz = 0 and z*(QDQ — tr(QDQ)I)x = 0.
The red set is the same as in the previous figures and again completely
contained in the blue set by construction.

Since the eigenvector conditions on G' and QG (@) need to be satisfied
simultaneously, the set of the gyroscopic stabilizers is given by the
intersection of the sets in Figures 3.4 and 3.5. This intersection is the
blue set in Figure 3.6, and it is non-empty, as can be seen by the fact
that the red line, consisting of those g for which ¢*(D — trgD Ig =0,
is contained in the intersection. Altogether, in Figure 3.6 all g such
that the conditions in Proposition 2.1 are satisfied, are plotted in blue.
This blue set is bounded by exactly three cones given by ¢g*Dg = 0,
(D —tr(D)I)x = 0 and 2*(QDQ — tr(QDQ)I)z = 0.

But Proposition 2.1 just provided a sufficient condition for the existence
of a gyroscopic stabilizer G (or g), thus one can assume that actually
there are more gyroscopic stabilizers than we constructed so far.
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FIGURE 3.6. ¢ with 0 < z*Dzx < tr(D) and 0 <

ek < u(QDQ)

Figure 3.7 shows again in blue the ¢ that result from Proposition 2.1
and in red the g such that our sufficient conditions are violated but

still the associated G is a gyroscopic stabilizer. The red g were found
using Matlab: we directly computed the eigenvalues of the matrix

[ o I
| =K —-D —1G

with coefficients 7 in the range from zero to 2000; in the case the matrix
was stable, the associated g was plotted.

M
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FIGURE 3.7. g resulting from Proposition 2.1 (blue),
other stabilizing ¢ (red)



CHAPTER 4

Space Dimension Four

In the three-dimensional case, we exploited the fact that the skew-
symmetric matrices G, QGQ € R**3 both have a zero eigenvalue, and
the corresponding eigenvectors are related via multiplication with Q1.
Now we construct G € R*** with a double eigenvalue zero, allowing
us to identify spaces containing eigenvectors of QG(). Then we use a
perturbation argument to move the zero eigenvalues along ¢ R.

4.1. Perturbation of Eigenvalues and Eigenvectors

PROPOSITION 4.1. For some § € R and an orthogonal matriz Z =
(21, 20, 23, 24] € RY? let

085 00

B 50 00| p

(4.1) G=72| 0o o1 l|%
00 —10

If for some 7 > 0 we have

(i) trspanfzr,zo} Dr > 0 and trspan(zy,-41 Dr > 0,

(ii) tro-1span{z1,z} @D+Q > 0 and trgspan{zs,-y @D-Q > 0,
then there exists § # 0 so that (a), (b), and (c) in Proposition 2.1 hold
for Gs and 7/2.

The idea behind the above statement is as follows. The matrix Gy is
constructed such that after a small perturbation ¢ of the double zero
eigenvalue of G, the conditions (a), (b) and (c) in Proposition 2.1 are
satisfied, which is ensured by the assumptions (i) and (ii).

Then, by changing the value of § by a tiny amount, the space associated
with the zero eigenvalues of QG5 is changed a bit as well, but still
the conditions posed on the eigenvectors of (QGs() remain satisfied as
long as the change in ¢ remains sufficiently small.

PROOF. By continuity of eigenvalues, it is clear that (a) in Proposi-
tion 2.1 holds for small |§] # 0.

Using (2.6) and the structure of G5 we conclude that assumption (b)
is equivalent to trspan{z,z) Dr = 0 and trspan{z;,z,y Dr = 0 for all

28
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5 € R\{0}.

To verify (c), note that QGs@Q has two conjugate pairs of imaginary
eigenvalues, which we denote by +\s and +pus. These depend continu-
ously on ¢ (where Ay = 0). The same is true (e.g. [19]) for the invariant
subspaces

VA(0) = Ker ((QG:Q)* +[X[*])
V() = Ker ((QGsQ) + msl’I) -
By assumption for 6 = 0 and n = 7 we have with D = D, + 7P:

try, (5) QDQ > N try, (s) QPQ >0,
try, 5 QDQ > ntry, QPQ > 0.

By continuity, the same holds for n = 7/2 and sufficiently small 4.
Together with (2.6) this completes the proof. O

Thus, we can relax the conditions in Problem 2.2 slightly and refor-
mulate it, such that it relates to two-dimensional spaces containing
pairs of complex conjugate eigenvectors instead of relating directly to
eigenvectors.

PROBLEM 4.2. For symmetric matrices D, Q € R** satisfying Q > 0,
tr D =0 and tr QDQ > 0, find Gy as in (4.1) such that trgerc, D = 0
and tr QDQ Z trKerQGoQ QDQ Z 0.

Let {uq, ug, us, us} denote an orthonormal set of eigenvectors of ¢ with
corresponding eigenvalues \; > 0. We consider the numbers u} Du;,.
Since tr D = 0 we either have u; Du,; = 0 for all ¢ or some of these num-
bers are positive and some are negative. In the following propositions,
we make a complete distinction between all possible cases.

4.2. Construction Of G Via Eigenvectors Of @

PROPOSITION 4.3. Assume that for some ordering of the u; the spaces
Uio = Span{uy, us} andUsy = Span{us, us} are both D-indefinite or D-
singular. Then there exists a skew-symmetric Gy solving Problem 4.2.

The idea of the following proof is to construct a two-dimensional space
via identifying a basis consisting of D-neutral vectors. Note that a D-
neutral basis does not imply that each vector in the space is D-neutral.
The fact that U5 and Usy are orthogonal and remain orthogonal under
multiplication with Q! is used.

PROOF. By our assumptions on U, and Usy, there exist normalized
vectors z; € Uy and zo € Usy with (z1,21)p = (29,20)p = 0. Let
7 = [21, 29, 23, z4} € R** be orthogonal and define Gy as in (4.1).
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Then Span{zj, 22} = Ker Gy and trge, ¢, D = 0.
Again by construction, {Q7'z;,Q 125} is an orthogonal basis of the
space Ker QGy@Q and

(Q'21,Q ' 21)opo = (Q 'z, Q_lz2>QDQ = (z1,21)p = (22,22)p = 0.
Hence triergco0 @QDQ = 0, i.e. G solves Problem 4.2. O

Note, that the assumptions of Prop. 4.3 may only fail, if three of the
numbers u; Du; are positive and one is negative, or vice versa.

PROPOSITION 4.4. Assume that u;Du; < 0 for exactly one fived i €
{1,2,3,4} and ujDuy > 0 for all k # i.
Assume further that
wy, Dy, wr Duy,
Ko = ( w) Dy, ul Duy, )
be nonnegative definite for any choice of distinct m,n € {1,2,3,4}\{i}.
Then there exists a skew-symmetric Go solving Problem 4.2.

REMARK 4.5. We can fix j,m,n arbitrarily provided that we have
{i,5,m,n} ={1,2,3,4}. Thus we may assume A;, A\,,, A, to be ordered
arbitrarily. For any such choice,

K, — ( ui Du;  uiDug )

ujDuZ ujDu]

necessarily is indefinite. If K,,, was not nonnegative definite, then it
would be indefinite or singular, and we could apply Prop. 4.3.

PROOF. (of Proposition 4.4) We denote the eigenvalues of K;; by p;,
w; and those of K., by p, and p,, where in accordance with our
assumptions p; < 0, p; > 0, and ft,, > pty, > 0. Since tr D = p; + 1 +
W + i = 0, we have p; < —pi — -

Thus [, ti] D [—fem, —tin], 1.€. (e.g. [4, Ex. 1.2.9])

{w1 Ky | loall =13 D {25 Kpnws [ |22 = 1} .

Thus, for each normalized z; € Span{u,,,u,} there is a normalized
21 = z1(22) € Span{u;, u;} so that

(4.2) 21Dz = —25Dz .
We can choose z; = f(a) = cos(a)u;+sin(a)t; with a € [0, 7/2], where
@;, u; are orthonormal and [u,4;]*D[u,; u;] = diag(u, ;). Then the

mapping g : a« — f(«)*D f(«) is continuous and strictly monotonically
increasing and therefore continuously invertible. Since the mapping
29 + 23Dz is also continuous, we can assume the mapping zo —
21(29) = 21(g7 (25 D2,)) to be continuous.
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We now consider three different cases.
(i) Assume \; = maxy A;. Since

4
0 < trQDQ=> u;QDQuy,
k=1

4 4
= Z/\ZUZDuk < )‘?ZUZDW =0,
k=1 k=1
it follows that A\; = A\, for all k£, i.e. Q = A\,I. But this case is solved
by Proposition 2.9.
(ii) Let ming A\ < A; < maxy Ay and assume without loss of generality
that )\m S )\Z’, )\j S >\n Then
A =10l > 1@ 21 (un) ]l
N =17 ]l < Q7 a(un) -
By the mean value theorem there exists a normalized zo = cos(8)u,, +
sin(f8)u,, € Span{u,, u,} so that
(4.3) Q7 2l = Q7 2i(2)] -
We extend z; = 21(22) and 2, to an orthogonal matrix Z = [z, ..., 2z4]
and define Gy as in (4.1).
Then Span{z;, 22} = Ker Gy and trge,g, D = 0. Moreover, we have

that {Q7'z;,Q 2} is an orthogonal basis of Ker QGoQ and (using
(4.2) and (4.3)) we have

trKerQGoQ QDQ =

Hence G solves Problem 4.2.
(iii) Let A; = ming A\; and assume A, > A;. Let 2o = u,, and 2z; =
21(2z) € Span{u;,u;}. Then

AP ZNQ a2 A7 = A = 1Q 7 =

With Gy again as in (4.1), we have trge.g, D = 0 and
271Dz 25Dz >0,

trKer D@ =
e Gue @PQ = 1A e p =

because —z7 Dz = 25Dz = u), Du,,. On the other hand

23 Dzo

D
tkegae @DQ = RITE + T
< ul,Duyn (M, — X2)

m

271Dz 25Dz

+ =0.
Q7 =zl 1@ 2|

IA

4
Z Nt Duy = tr QDQ .
k=1
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Again G solves Problem 4.2. O

Finally we consider the case where three of the numbers u}Du; are
negative and one is positive.

PROPOSITION 4.6. Assume that u;Du; > 0 for exactly one fized i €
{1,2,3,4} and upDuy <0 for all k # i. Assume further that

Ko uy, Duy,  wr, Duy,
mn —
ur Duy,  w) Duy,

be nonpositive definite for any choice of distinct m,n € {1,2,3,4}\{i}.
Then there is a skew-symmetric Gy solving Problem 4.2.

The proof is essentially the same as in Proposition 4.4.

PrOOF. We denote the eigenvalues of K;; by p;, pt; and those of K,,,
by ., and p,, where in accordance with our assumptions wu; > 0,
p; < 0, and po, < pi, < 0. Since tr D = p; + pij + fom, + f1, = 0, we have
| T Vi

Thus g, ;] D [—pm, —pn], 1€, (e.g. [4, Ex. 1.2.9])

{#1Kijzy | ||loo]] =1} D {—a5Kmnza | ||22]| = 1} .

Thus, for each normalized z; € Span{u,,,u,} there is a normalized
21 = z1(22) € Span{u;, u;} so that

(44) ZTDZl = _Z;DZQ .

We can choose z; = f(a) = cos(a)u; + sin(a)u; with o € [0,7/2],
where 4;,u; are orthonormal and [, @;|*D[u,; u;] = diag(u; pt;), where
f; > 0 > ;. Then the mapping g : o — f(a)*D f(«) is continuous and
strictly monotonically decreasing on [0, /2] and therefore continuously
invertible. Since the mapping 2z, — 25Dz, is also continuous, we can
assume the mapping 2o — z1(22) = 21(¢7'(25D25)) to be continuous.
We now consider three different cases.

(i) Assume \; = ming A;. Since

4
0 < trQDQ =) u,QDQu;

k=1
4 4
= Z Nout Dug < N2 ZUZDuk =0,
k=1 k=1

it follows that \; = A, for all k£, i.e. Q = ;1. But this case is solved
by Proposition 2.9.
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(ii) Let ming A\ < A; < maxy Ay and assume without loss of generality
that )\m S )\Z’, )\j S >\n Then

At = QM umll > Q21 (um)l
At =1 ]l < QT A (ua) -

By the mean value theorem there exists a normalized zo = cos(8)u,, +
sin(f)u,, € Span{u,, u,} so that

(4.5) Q" 2 = Q@ z ()l -

We extend z; = 21(22) and z; to an orthogonal matrix Z = [zy, ..., 2z4]
and define Gy as in (4.1).

Then we have Span{z;, 22} = Ker Gy and trge,¢, D = 0. Moreover,
{Q7'21,Q7 23} is an orthogonal basis of Ker QGoQ and (using (4.4)
and (4.5)) we have

2t Dz 25Dz
tI‘Ker G QDQ = - + =0.
wone Qa7 Q=]
Hence G solves Problem 4.2.
(iii) Let \; = max; Ay and assume A, < \;.
Let 29 = u,, and 21 = 21(22) € Span{u;, u;}. Then
A Q Al < AT <A =1
With Gy again as in (4.1), we have trge.g, D = 0 and
“D D
trKerQGoQ QDQ = S ek >0 )

1@~z 1@~ 2> —
because —z7 Dz = 25Dz = u), Du,,. On the other hand
1D ;D
trKerQGoQ QDQ = ||51—1;11H2 + ”52—1522“2
< up, Dugp (A, = A))
= M u’ Du,, — \2u’, Du,,

= M u’ Du,, + M (ufDu; + u;Duj + uy, Duy,)

4
< Z Muj Duy, = tr QDQ .

k=1
Again G solves Problem 4.2. O

Since all appearing cases have been considered, we have the following
result.

THEOREM 4.7. Let D and Q > 0 be in R** with tr D, tr QDQ > 0.
Then there exists a gyroscopic stabilizer.
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4.3. Examples

Here, we provide examples for some of the cases discussed in the pre-
vious section and show how to do an explicit construction. Since @) is
positive definite and therefore diagonalizable, for simplicity we directly
take examples where () is diagonal. All computations are performed in
Matlab.

EXAMPLE 4.8. We construct an example as in Proposition 4.3. Con-
sider the system & + Di + Q22 = 0, where

1 -3 0 =2 1 000

-3 -2 -1 -3 0200

D= 0o -1 -3 3 €= 0030
-2 -3 3 8 00 0 4

The system is unstable since there is an eigenvalue with positive real
part 4.7740. We have 22 =1 < 2 = 29D " thus we take 7 = 1 and

tI‘Q2 Y
P = I according to Proposition 2.1 and get
0 -3 0 =2
-3 -3 -1 -3
Dr = 0 -1 —4 3
-2 -3 3 7

Now Span{ey, es} and Span{es, e4} are both either D-indefinite or sin-
gular, thus in each of them there exists a D-isotropic vector.

In Span{ey, eo}, a normalized isotropic vector can be taken as z; = e;.
We diagonalize K34 = [63 64]*D[€3 64] = U34‘/34U§4 and get

s — —0.9690 0.2471 Vo = —4.7650 0
34— 0.2471 0.9690 | > "3 0 7.7650 | 7

thus an isotropic vector is given by

0

oy V7650 22 = [eg e -2 = [es ed] 0
2T —vAaTe50 ) T s T Y —0.9152
—0.4030

We complete 21, 25 to an orthonormal basis and according to Proposi-
tion 4.1 we put

06 00
=50 00 .,
Gs=Z1 g0 01 |% >

00 -1 0
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I\

J

-6 i

real parts of eigenvalues

FIGURE 4.1. Plot of the real parts of the eigenvalues of
4 (D + aGopo01)* + Kx = 0 with « on the horizontal
axis

where the matrix Z is chosen as

1 0 0 0
0 01 0
0 —0.9152 0 -0.4030
0 —04030 0 0.9152

According to our construction, we just know that aGs stabilizes our
system for small 6 and large . We put 6 = 0.0001 and plot the real
parts of the eigenvalues of the system versus o. Via Matlab we find that
the system is stable for all as > 11.7564 as can be seen in Figure 4.1.
While our construction is independent of the scaling or norm of @, it
should we noted that the actual as does depend on it.

Figure 4.2 shows the dependance of a on §: the green area signifies the
parameter combinations («,d), for which the system is unstable, the
blue area signifies stability. Our construction just predicted that small
0 and large « yield stability, but the actual stability domain (the blue
area) appears to be a lot larger.

Also interesting is the fact that the stability domain as computed via
MATLAB is not symmetric around the horizontal axis, which means
that replacing o by — might alter the stability properties of the system,
a fact which cannot be deduced from our construction. Note that
Gs # —G_g, since only in one eigenvalue block the sign is changed.



36 CHAPTER 4. SPACE DIMENSION FOUR

-2

4

-6

0 20 40 60 80 100 120 140 160 180 200

FIGURE 4.2. The blue area indicates parameter combi-
nations (a, d) that result in stability of &+ (D +aGys)i +
Kx = 0, the green area indicates instability

EXAMPLE 4.9. Here we will do a construction as in Proposition 4.4
(iii). Consider the system # + D + Q 2z = 0, where

~13 -1 2 2 1000
-1 9 25 020 0
D= 5 29921 ®=10030
2 51 6 000 4

The largest real part of the eigenvalues of the system is 13.5055, so the

system is unstable. With % =1< 13%7 = 29D we put 7 = 1 and

tr Q2
P = I according to Proposition 2.1 and get
-14 -1 2 2
-1 8 2 5
Dr = 2 211
2 515

The space Span{es,e;} is D-indefinite for any j = 2,...,4 while for
any p,q # 1 the space Span{e,, e,} is D-positive definite. In particular,
e;De; is negative and \; is the smallest eigenvalue of @), thus we are
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in the case (iii) of Proposition 4.4.

We fix, according to the construction in the proposition, ¢ = 1 and j = 2
and put zo = e4. A normalized z; = z1(22) such that z{ Dz;+25Dzy = 0
can be constructed as follows. Consider a normalized vector y € R?*?
such that

Y Koy = —25D2 .
Then
Y (K2 + 25Dzl)y =0,

so as in the example before we need an isotropic vector of the matrix
T = Ky3 + 25 D2z1. We diagonalize T'= UV U* and obtain

i —0:9990 —0.0453 (90454
~\ —0.0453 09990 ) VT 13.0454 |

thus an isotropic vector of T' is given by

—0.7387
§_U<MBMM) Z_ke]a _ke]-ﬂmm
In fact, we have 25Dz = 5 = —z7Dz. We complete 21,2, to an

orthonormal basis and according to Proposition 4.1 we define

0 —0.7387 0 0.6741
0 —0.6741 0 —0.7387
0 01 0 ’
1 00 0

Gs = Z 7z

|
oo > o
coc o>
_—o oo
o~ oo

With § = 0.0001, the system & + (D + aGs)i + Q 2%z = 0 is stable for
a > 69752. Note that in this case, the coefficient o needed to stabilize
the system is a lot larger than in the previous example, the eigenvalues
of the system & + (D + aGoo1)® + Kx = 0 are less sensitive with
respect to the parameter « as can be seen in Figure 4.3. One of the
reasons of this effect is, as already mentioned, the scaling of Q).

Figure 4.4 shows again the dependance of a on 9, where the green
area signifies the parameter combinations («, d), for which the system
is unstable, the blue area signifies stability. It can be seen that the
higher o gets, the smaller the absolute value of § can be chosen, such
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real parts of eigenvalues
o

FIGURE 4.3. Plot of the real parts of the eigenvalues of
T+ (D + aGoo01)E + Kx = 0 with « on the horizontal
axis

that the pair «, ¢ yields stability. In contrast to the previous example,
the value 0 = 0 does not seem to be admissible.

EXAMPLE 4.10. Here, we construct a stabilizer for the case of Propo-
sition 4.4 (ii). The main difficulty is the construction of the mapping
29 + 21(22). Consider the system i + Di + Q 2z = 0, where

9 -1 25 1000
1 —-13 2 2 020 0
D= ) o921l Q=100 3 0
5 21 6 000 4

The largest real part of the eigenvalues of the system is 13.5055, the
system is unstable. With % =1< %7 = 2QDQ we put 7 = 1 and

tr Q2
P =TI in Proposition 2.1 and get
8§ —1 25
-1 —-14 2 2
Dy = 2 211
5 2 15

Any space Span{es, e;} with j # 2 is D-indefinite, while the spaces
Span{ey, ez}, Span{es, e }, Span{es, es} are each D-positive definite,
thus we are in the situation of Proposition 4.4 (ii).
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Y=

FIGURE 4.4. The blue area indicates parameter combi-
nations («, d) that result in stability of &+ (D + aGs)< +
Kx = 0, the green area indicates instability

We put (4,7, m,n) = (2,3,1,4) according to Proposition 4.4, and
Ki; = [eie)] D[eiej}:( 92 1) 7

Ko = [emen}*p[emen}:@ g)

Let the eigenvalues of Kj; be p;, u; with p; < 0 < p; and those of

K be i, b, > 0. Clearly there exists a pair of orthonormal vectors
x;, x; € Span{u;, u;} and @, x, € Span{u,,, u,} such that with X,; =
[, z;] and X,,,, = [y, ] We have

diag(pi, pbj) = diag(—14.2621 1.2621) = Xg;DXij :
diag(pim, ptn) = diag(1.2798 11.7202) = X! DX,,, .
Since Kj; is indefinite, we can assume without loss of generality

i <uDu; <0< u;Duj < pj .
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From tr D = 3p_, wiDuy = Sr_, i = 0 we conclude
:Uig_(”n_",um) < OS[L]‘,
(4.6) 0 < L, fbn -

Therefore, for each normalized zo € Span{u,,,u,} there exists a nor-
malized z; € Span{u;, u;} such that

21Dz = —25Dzy .
Let z5(8) = cos(B)xy, + sin(B)x, for g € [0,27) and define z(ap) =

cos(ap)x;+sin(ag)z;. Now we construct a continuous mapping 8 — ag
that satisfies

(4.7) z1(ap) Dz (ag) = —22(B) Dz ()
for all 5. We write (4.7) as

0 = cos(as)us + sin(0s)s + cos2()jim + sin* (B
With sin®(ag) = 1 — cos?(ag) we get

0 = cos®(avg) (s — p5) + 5 + co8*(B) pm + sin®(B8) s, -
and finally

. + cos? + sin?
COS2(Oz5) _ ,uj (ﬁ),um (ﬂ)ﬂn :
Hj — Hi
where the denominator is nonzero by construction. Also, the real
square root of the above fraction exists and is less or equal 1, since

from (4.6) it follows that

1 + c08® (B) i + sin®(8) i 15 + o8 (B) piy + sin®(8) 1
Hj = Hi B R T )
< Hj 7 Hom ¥ fin <1,
Hj + o+

and we also have
15 + c08”(B) pn + 8i0* () 1
Ky — M
since both numerator and denominator are nonnegative. Therefore,

207

(1 0P B+ 50 B
Hj — Hi
is well defined and satisfies (4.7). In our case, it takes the form

1.2621 + cos?(8)1.2798 + sin2(6)11.7202)%
1.2621 + 14.2621 '

a(f) = arccos

a(B) = arccos (
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FIGURE 4.5. Plot of the function f on [0 27)

With

z1(ag) = cos(ag)z; + sin(ag)z;
) (B) = COS(ﬂ)xm + Sin(ﬁ)'%n
we define the mapping

0.2 _ 21(ag)" Dzi(ag) | 22(8)"Dz(B)
f210.2m) = R FB) = o tenE 0 =B

which now according to Proposition 4.4 has at least one zero. Figure 4.5
shows that actually there are several zeros we can choose from, we take
B = 3.4547, complete z;(ag), 22() to an orthonormal basis which we
write into the columns of

0 —0.3208 —0.9471 0

7 0.5872 0 0  0.8095
0.8095 0 0 —0.5872 ’

0 09471 —-0.3208 0

and define as in the previous examples

06 00
=50 00|
G=2 0o o1 l%

00 -1 0

With § = 0.0001, the system & + (D + aGs)i + Q 2%z = 0 is stable for
a > 25595 as can also be seen in figure 4.6.
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real parts of eigenvalues

_5 I I I I I I I
0 0.5 1 1.5 2 25 3 3.5 4

@ x 10
FIGURE 4.6. Plot of the real parts of the eigenvalues of
T+ (D + aGopo01)* + Kx = 0 with o on the horizontal

axis




CHAPTER 5

Space Dimension Five and Higher

The approach we take here is similar to our approach in the four di-
mensional case. Again the fact that the eigenspace for the eigenvalue
zero of G results in an easy to identify eigenspace for the eigenvalue
zero of QGQ) is used.

PROPOSITION 5.1. For any 6 € R and an orthogonal matriz Z =
(21, 22, 23, 24, 73] € R**® set

0 00 00
0 04 00
(5.1) Gs=Z|0 -5 0 00 |2".
0 00 01
0 00 —10

If for 7 > 0 with tr D, =0, trQD,Q > 0 we have

(Z) trSpam{zl} D, = trSpan{22,23} D, = trSpan{Z4,Z5} D; =0 )
(”) trQ*1 Span{z1,22,23} QDTQ > trQ*1 Span{z1 } QDTQ =0,
tI‘Q Span{za,z5} QDTQ >0 ,

then there exists 6 # 0 such that (a), (b), and (c¢) in Proposition 2.1
hold for Gs and T/2.

The idea behind the above proposition is as follows. The matrix G is
constructed such that after a small perturbation 9, the triple eigenvalue
zero of GGy is split into a pair of imaginary eigenvalues +:0 and a single
eigenvalue zero, such that the corresponding eigenvectors of Gy and
QGsQ satisfy the conditions (a), (b) and (c¢) in Proposition 2.1 for
sufficiently small 9.

PROOF. By continuity of eigenvalues, it is clear that (a) in Proposi-
tion 2.1 holds for small |§] # 0.

Using (2.6) and the structure of G5 we conclude that assumption (b) is
equivalent to trspan{z1 Dr 2 0, tTspan{zs,251 Dr = 0 and tropangz, 253 Dy >
0 for all 6 € R\{0}.

To verify (c), first observe that for § # 0 the matrix QGs(Q has a zero
eigenvalue and two conjugate pairs of imaginary eigenvalues, which

43
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we denote by +\s and +pus. These depend continuously on ¢ (where
Ao = 0). The same is true (e.g. [19]) for the invariant subspaces

Voa(d) = Ker (QG;Q ((QGsQ)* + A1) )
Vu(6) = Ker ((QGsQ)* + |us|’I) .

Also, independently of 6, Q 'z is always an eigenvector for the eigen-
value zero of QGs(Q). By construction we have

tI‘Q‘1 Span{z1} QDTQ =0.
We define for any d the orthogonal complement V() of Q! Span{z;}
in V() and get then Vy(§) @ Q! Span{z1} = Vy(0).
By assumption for 6 = 0 and n = 7 we have with D = D, + 7P:
trQ*1 Span{z1 } QDQ = ntrQ*I Span{z1 } QPQ >0 )
try, (0 @DQ = ntry, ) QPR >0,
trvu((;) QDQ > ntrvu((;) QPQ >0.
Now, since Q7! Span{z;} C Vo.(d) and QPQ is positive definite, it
follows that
try, ) QDQ > ntry,, 5 QPQ > ntry,s QPQ >0,

implying that

tl"VA((;) QDQ > ntryx((;) QPQ = ’I]( trvo’k((;) QPQ — tI‘VO((;) QPQ) > 0.
We altogether have

trQ*1 Span{z } QDQ = Uterl Span{z1 } QPQ >0,
try, 5y QDQ ntry, s QPQ >0,
try, ) QDA ntry,s QPQ > 0.

By continuity, the same holds for n = 7/2 and sufficiently small 6.
Together with (2.6) this completes the proof. O

>
>

Thus, as in the four dimensional case, we can relax the conditions in
Problem 2.2 and reformulate it, such that it relates to two-dimensional
spaces containing pairs of complex conjugate eigenvectors instead of
relating directly to eigenvectors.

PROBLEM 5.2. For symmetric matrices D,Q € R**® with Q > 0,
tr D =0 and tr QDQ > 0, find Gy as in (5.1) so that

(l) tI‘Span{z1} D = trSpan{227Z3} D = tl"Spa,n{z4,zs} D = 07
(11) trQ*1 Span{z1,22,23} QDQ > O;
(iii) trgspan{zq,2} @DQ > 0.

The conditions in Problem 5.2 can be weakened even further:
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LEMMA 5.3. Let tr D = 0 and tr QDQ > 0 and suppose that one of
the following conditions holds.

(1) There exists a two-dimensional space Span{z4, 25} with

trSpan{zs,z} D =0

and

0 S trQSpan{z4,Z5} QDQ S tr QDQ .

(ii) There exists a three-dimensional space Span{zi, zq, 23} such
that we have trspan{z; 2,23 D = 0 and

0 S trQ*1 Span{z1,22,23} QDQ S tr QDQ .
(iii) There exists a two-dimensional space Span{zy, z5} with
UrSpan{z4,z5} D=0

and

0< trQ Span{z4,25} QDQ

and a three-dimensional space Span{zy, zs, 23} orthogonal on
Span{zy, 25} with trspangz; 20,253 D and

0 < trQ-1Span{zr,2,23} QDA .

Then there exists a solution to Problem 5.2.

PrROOF. We prove (i) exemplarily. The other cases can be handled
analogously.

Without loss of generality, we assume 21, ..., z5 to be an orthonormal
basis of R®. The condition trspan{zs,zs} D = 0 implies trspanz; 20,25} D =
0, which implies the existence of a D-isotropic vector in Span{zy, 29, 23}.
By a change of the basis, we can assume this D-isotropic vector to be
2. Thus, (i) in Problem 5.2 holds. Also,

0 < trgspan{zs,z) @DQ < trQDQ
implies
0 < tTQ-1 Span{z1,20,25} @DQ < tr QDQ
so (ii) and (iii) in Problem 5.2 hold. O

In the subsequent sections, we will construct spaces according to the
conditions given by Lemma 5.3.

PROPOSITION 5.4. Let tr D = 0 and trQDQ > 0 and let uq, ..., us
and A, ..., 5 be a set of normalized eigenvectors and corresponding
etgenvalues of Q) in no particular order.

Assume that uiDus = 0 Then there exists a gyroscopic stabilizer.
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PROOF. We define

= [ug ug ug uy|*D]uy ug ug uyl ,

O T

= [Ul Ug U3 U4]*Q[U1 Ug U3 U4] .

It directly follows trD = 0, tr QDQ =trQDQ > 0. From section 4
it follows that there exists a twodimensional subspace Z C R* such
that trgﬁ =0and 0 < tro-iz Qﬁ@ < tr@f?@. Let 21,2, € R* be
an orthonormal basis of Z and define ) as the span of the columns
of [uy ug ug ug)[z1 22] = [y1 yo]. Then by construction yi,ys, us are
orthonormal and trspan{y; ys,us} D =0.

Since Q tus L Q 1y, 99, it also follows

tr@’l Span{y1,y2,us} QDQ
= o1 5pan{y 0} QDQ + 51 Span{us} QDQ
- tr@’l Span{y1,y2} QDQ ’

which now implies 0 < 71 gpantys yous) QRDQ < trQDQ. Thus, ac-
cording to lemma 5.3 (iii), there exists a gyroscopic stabilizer. O

The above proposition shows that in the case u;Du; = 0 for some
eigenevector u; of ) the construction of a gyroscopic stabilizer can
be reduced to the four-dimensional case. Thus from here on, if not
mentioned otherwise, we consider u} Du; # 0 for all eigenvectors.

5.1. One D-negative Eigenvector of ()

In this section, we will prove the analogue of Proposition 4.4. Thus
we consider the values u; Du; for the eigenvectors u; of (). We assume
that exactly one of the numbers u;Du;, © = 1,...,5 is negative and
all others are positive. Additionally, we assume the two-dimensional
spaces Span{u;,u,} with j,k # i to be positive definite, analogously
to Proposition 4.4.
Note that, if u; = us is an eigenvector for the largest eigenvalue of @),
it follows that ) = ¢/ is a multiple of the unit matrix, see the proof of
Proposition 4.4. This case is already solved in Proposition 2.9. Thus
in this section, we only need to consider the cases 7 =1, ..., 4.
Let the eigenvectors uq, ... us of () be ordered such that A\; < --- < As.
In this section, we then consider the cases

(1)  uiDup <0 wujDu; >0 for all j # 1
(17)  uyDug <0 [uj ug)*Dluj ux] >0  for all distinct j, k # 2
(249) uijDug <0 [u; wp])*Dlu; up] >0  for all distinet j,k # 3
(v) wjDuy <0 [ujug])*Dlujug] >0  for all distinet j,k # 4 .
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It should be noted, that case (i) is more general than the others since
[uj ug]* D]uj ug] > 0 implies u} Duy, uy Duy > 0.

PROPOSITION 5.5. Let tr D = 0 and tr QD@ > 0 and let uq, ..., us
and \; < --- < X5 be a set of normalized eigenvectors and correspond-
ing eigenvalues of Q.

Assume that uiDuy < 0 and uj;Du; > 0 for all j # 1. Then there
exists a gyroscopic stabilizer.

PROOF. In the proof, we first show the existence of a 3-dimensional
space ), with

(a) try, D =0 and 0 < trg-15pany, @DQ,

(b) 0< tl"be QDQ, where yb = y;'

Then according to Lemma 5.3 (iii), there exists a gyroscopic stabilizer.
(a) From tr D = 3",_ w,Duy = 0 it follows that

uyDuy < —(uiDus + uyDuy) < 0 < uiDusy .

Then the number —(uDugs + ujDuy) is in the numerical range of the
gramian given by [ujus]*Dlujus], so there exists a normalized y; =
auy + bug with yy Dy; + uiDug + uyDuy = 0.

We define ), = Span{y;, ug, us}. By construction, we have try, D = 0.
Since vy, us, uy remain orthogonal under multiplication with (), we can
compute

(Q'y)* @DQ(Q™'y1)
1Q~ ya1?
1D
(5.2) = % + Aui Duz + AjujDuy .

From the definition of y; = au; + buy with a,b € R and a® 4+ b* = 1 we
get

tro-1y, QDQ + AjuiDug + Ajuj Duy

1
1Q w[?

It follows with yjDy; < 0 and an estimation for the denominator in
equation (5.2) that

€ [\ A

tro-1y, QDQ > AjyrDyr + MuiDuy + NjujDuy
= \5(—ujDus — ujDuy) + NuiDug + Nju; Duy
> —\uiDug — Njuj Duy + MjuiDus + MNju;Duy =0 .
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(b) With V, = Y+ and try, D = 0 it follows that try, D = 0. With
QYy L Q7Y we get

troy, QDQ = trQDQ — trg-1y, QDQ
5

D
= Z Nuf Duy, — % — MuiDusg — N Duy
pat 1Q~
> MuiDuy + MNubDuy + M2ui Dus
+ A} (uy Dug + uj Duy)

5
> AquZDuk =0,

k=1

which shows that we fulfill the requirements of lemma 5.3 (iii). O

PROPOSITION 5.6. Let tr D = 0 and tr QDQ > 0 and let uq, ..., us
and Ay < --- < A5 be a set of normalized eigenvectors and correspond-
ing eigenvalues of Q.
Assume that uiDus < 0 and let

Ko = [uj wi]"Dlu; w]
be positive definite for each pair j, k € {1,3,4,5}.
Then there exists a gyroscopic stabilizer.

PROOF. The proof is divided into the following steps.
(a) We show the existence of a two-dimensional space A with

trAD:O, tI'QAQDQStI“QDQ.
(b) A second two-dimensional space B is constructed with
tI’BD:O, tI'QBQDQZO.

(c) The existence of a continuous mapping ), whose image is in the set
P of two-dimensional subspaces of R, with the properties

Y:[0,5]—=P, t—=Y(), dimY(t)=2forallt
(5.3) YO0)=A, Y(F)=B, tryyD=0forallt

and the existence of a ty € [0, §] with trgy,) QDQ = 0 is shown. Then
from lemma 5.3 (i), the existence of a gyroscopic stabilizer follows.
Note that the specific parameterization of J with ¢ € [0, 5] is com-
pletely arbitrary. It should also be mentioned that in general it holds
that (Q71Y)+ # Q~1(Y*+), which is why we introduced the notation
with ),, Y, and avoided Y, Y+.

(a) From uzDuy < 0 and ujDu; > 0 for all j # 2 and 0 = tr D =

Zle uf Du; it follows that there exists a normalized z € Span{uy, us}
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with #*Dx = —uiDus. We then have with A = Span{z,us} and z+
such that {z,x"} is an orthonormal basis of Span{uy, us}:
tI"_AD = 0,

(Qz)"QDQ(Qx)

|Q]?
= )\gugDu&; + trspan{ul,ug} QDQ

Q') QDQ(Q o)

[eRE=iE

= AuiDus + NuiDuy + MNusDuy —

trQA QDQ = )\%UED'&% +

(xL)*DiL‘L

(Ol b

Again from tr D = 0 and 2*Dx = —uiDuj it follows that
(z1)*Dat = —(uiDus + uj Duy)

and thus

usDug + uyDuy

troa QDQ = AuiDus + AufDuy + NusDus + ToRTE

Now we have m € [M\, A\3] and therefore

trgu QDQ < trQDQ .
(b) On the other hand, there exists a normalized y € Span{us, u4} with
y*Dy = —utDus. With B = Span{y,us} and (y)*Dy* = —(u}Du; +
uiDus) we get

QD
tros QDQ = MuDus + (Qu)"@ Cg(Qy)
1Qyll
1 *D 1
= A2uiDus + s Dug + NaujDuy |(|i2)1—iy||2
“ly

uyDuy + uzDusg
1@~y |I?
N2t Dus + Mg Duy + 2wl Duy + N3 (ul Duy + ulDus)

= AuiDus + MNusDuy + MNjuj Duy +

v

5
> AgZufDui =0.
i=1

(c) We consider the space Span{uy,us,us}. We already showed in (a)
and (b) that —ujDus is in the numerical range of

Koy = [U17U2,U4]*D[U1,U2,U4] .

This implies that 0 is in the numerical range of (K24 + uiDusl3).
By construction of x and y, it follows that z = [uq, ug, u4]z, for some
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normalized z, € R?® with z}(Ki94 + uiDusl3)z, = 0, and we have
y = [u1,us,u4)z,. Now by Proposition 2.7 there exists a continuous
mapping z : [0, 2] — R’ with ||z(¢)|] = 1, 2(0) = 2, and either z(%) =
zy or 2(5) = —z,. We define Y(t) = Span{[uy, uz, us)2(t), us} for all t.
Note that Y(5) = Span{y, us} and that ) is continuous by definition.

As seen above in (a) and (b), we have
troyo) QDQ = trga QDQ < tr QDQ
and
trQy(%) QDQ = trQB QDQ Z 0.
If already either
0 < troy QDQ < trQDQ
or

0 < trgye), QDQ < rQDQ.

we have found a space as in lemma 5.3 (ii), and the proposition is
shown.
Otherwise, we have

troyo) @DQ < 0,
5 QDQ > trQDQ.

But then, by continuity of the trace and the intermediate value the-
orem, foy any value ¢ € [trgy) QDQ,trQy(g) QDQ)] there exists a
2

to € [0,5] such that ¢ = trgy,) QDQ. Choose ¢ = % and ¢
accordingly. Then

trQy(2

0 < troy,) @DQ < trQDQ
as in Lemma 5.3 (i). O
PROPOSITION 5.7. Let tr D = 0 and tr QDQ > 0 and let uy, ..., us
and A\ < --- < X5 be a set of normalized eigenvectors and correspond-

ing eigenvalues of Q).
Assume that uiDus < 0 and let

Kjp = [ujug]* D]ujuy)

be positive definite for each pair j, k € {1,2,4,5}.
Then there exists a gyroscopic stabilizer.

PROOF. The strategy for the proof is as follows.
(a) We show the existence of a space Y, with

tl‘ya D=0 5 tI‘an QDQ Z 0 5
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(b) and the existence of a second space ), with
tryb D=0 y tI‘be QDQ S 0.

(c) We construct a continuous mapping ), whose image is in the set P

of two-dimensional subspaces of R®, with the properties
YV:[0,r]—P, t—=Yt), dim)Y(t)=2forallt

(5.4) YO)=YVo, V)=, tryyD=0forallt,

and show the existence of a ty € [0, 7] with trgyu,) @DQ = 0.

(a) From our assumptions it follows that ufDus < —ufDus < u}Duy,

thus there exists a normalized x € Span{us, us} with 2*Dx = —ufDus.

We then have with ), = Span{z, us} and an x such that z, 2" is an
orthonormal basis of Span{ug, u4}:

(Qz)"QDQ(Qx)
1Q|]?
= )\%UEDUE} + trSpan{U3,u4} QDQ
(Q ') QDQ(Q'a)
Q" |?

= AuiDus + M\juiDus + Nuj Duy —

troy, QDQ = M\iuiDus+

(z1)* Dt
1@~ >
From tr D = 0 and
wyDus + ujDuy = 2* D + (1) Do’ = —uiDus + ()" Dot
it follows that
(z1)*Dat = ujDuz + wjDuy + usDus
and thus
troy, QDQ = M\uiDuz + ANjuiDuy + A\2uiDus
B usDug + uyDuy + usDus
Q1|2

We have m € [A2, M}] since ! is a normalized element of
Span{us, us}, therefore we get with — (ugDu;:, + uwjDuy + u5Du5) > 0:

troy, QDQ > NuiDug + MjujDuy + A2ui Dus

—)\g (ugDu;), + uyDuy + u5Du5)
= (A = A)utDus + (A\; — AJ)ujDuy > 0.

(b) On the other hand, there exists a normalized y € Span{us, u3} with
y*Dy = —u}Du;. With Y, = Span{y,u;} and y* such that {y,y*} is
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an orthonormal basis of Span{us, us}, we get

(Qy)* QDQ(Qy)
1Qyl?
= /\%u’{Dul + trspan{us,us} @DEQ
(Q'y")*QDQ(Q 'y ™)
Q@ 1yt2

= AuiDuy + NjuiDug + MNjuiDus —

tI'beQDQ = /\fu”{Dul—i-

(y*)" Dy~
Q= |12
From tr D = 0 and
usDus +uzDug = y* Dy + (y-)" Dy~ = —ui Duy + (y~) " Dy*
it follows that
(yH)* Dyt = wDuy + ujDuy + wiDus
and
troy, @QDQ = AujDuy + NjujDug + NjujDus
~uiDuy + uzDug + uzDug
1Q~ |12
We have m € [M\2, A2] since y is a normalized element of
Span{usg, us}, therefore, since —(uTDul + uiDug + ugDu;;) > 0,

tI‘be QDQ < )\%UTDul + )\%U;DUQ + )\gu;Duz))
— A3 (u; Duy + uy Dus + ujDus)
= (M = A)uiDus + (A3 — AJ)usDuy <0

(¢) From ujDus < —ufDus < ujDug, usDusy it follows that —ufDus is
in the numerical range of

Kasq = [ug,ug,u4]*D[u2,u3,u4] )

in particular there exists « € Span{us,us} with 2*Dx = —ufDus as
in (a), and there exists w € Span{ugy, uz} with w*Dw = —ufDus. If we
put z = [ug, ug, ug)z, and w = [ug, us, u4]z,, then both z,, z, are zeros
of the quadratic form given by (Kas4 + uiDusls).

By Proposition 2.7 there is a continuous z = z(t) with 2(0) = z, and ei-
ther z(5) = 2y or 2(5) = —2,. Weput V() = Span{[ug, us, us)z(t), us}
for all t € [0, §]. Note that Y(5) = Span{w,us}, and ) is continuous
by definition.

We will now extend the map ) and use an argument analogous to the



5.1. ONE D-NEGATIVE EIGENVECTOR OF @ 23

first part of the proof of Proposition 4.4. By assumption, Span{u;, us}
is D-positive definite, thus the numerical range of

K5 = [U1,U5]*D[U17U5]

is completely contained in the interval [0, ujDu; + ufDus], we write
nr(Ky5) C [0, ui Duy + ufDus]. Since we have

usDus < —(uiDus + ujDuy) < uiDusy

it follows that nr(—K75) € nr(Ks3). Thus for each normalized element
vy € Span{uj,us} there exists a normalized element v; = wvy(vy) €
Span{us, us} so that v{Dvy = —viDvy. We can choose v, = f(a) =
cos(a)ty + sin(a)us with o € [0, 5] and @y, @3 are orthonormal such
that [tgts]*D]tgts] = diag(us, pus) where pz < 0 < pg. Then the
mapping g : @ — f(«)*D f(«) is continuous and strictly monotonically
decreasing and therefore continuously invertible. Since the mapping

vy — v3 Dy is also continuous, the mapping
vg = v1(v2) = vi(g~" (v5Dvy))

is continuous as well.
We set vg(t) := cos(t)us + sin(t)u; and vy (t) := vy(va(t)). Then the

space Y(t) = Span{vi(t),vs(t)} is continuous on [7,7]| with Y(3) =

Span{w, us} and Y(7) = Span{y, u; }, where y is as in (b).
Altogether Y is continuous on the complete interval [0, 7] and
troye) @DQ = 0,
tl“Qy(ﬂ) QDY < 0.

The intermediate value theorem implies the existence of ¢y € [0, 7] with

trQy(tO) QDQ =0.
Thus by Lemma 5.3 (i), there exists a gyroscopic stabilizer. O
PROPOSITION 5.8. Let tr D = 0 and tr QDQ > 0 and let uq, ..., us
and \; < --- < A5 be a set of normalized eigenvectors and correspond-

ing eigenvalues of Q.
Assume that u;Duy < 0 and let

Kjp = [ujug]” D]ujuy)

be positive definite for each pair j, k € {1,2,3,5}.
Then there exists a gyroscopic stabilizer.

PROOF. The strategy is basically the same as in the previous proof.
(a) We show the existence of a space Y, with

tI‘ya D=0 s tI‘an QDQ Z tr QDQ y
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(b) then the existence of a second space ), with
tl"yb D=0 5 tI'be QDQ S 0.

(c) We construct a continuous mapping ), whose image is in the set P
of two-dimensional subspaces of R®, with the properties
Y:[0,5]—=P, t=Y(t), dim)(t)=2forallt

(5.5) YO)=Va, VE)=, trypyD=0forallt.
Then the existence of a ¢, € [0, 5] with troy,) @DQ = 0 follows.
(a) From our assumptions it follows that there exists a normalized
x € Span{ug,us} with 2*Dx = —ufDus. We then have with ), =
Span{z,us} and x* such that {z,z*} is an orthonormal basis of the
space Span{ug, u}:
(Q2)*QDQ(Qz)

1Q|]?
= )\gu;Dui’) + trSpan{ug,u4} QDQ

(Q )" QDQ(Q "a)

CRESE

= AuiDus + NuiDus + Nuj Duy —

troy, QDQ = M\iuiDus +

(z1)* Dot
1@~ at]]?
From tr D = 0 and

wyDus + ujDuy = 2* D + (1) Dot = —uiDus + (z+)* Dot
it follows that

(z)*Da* = wyDuz + ujDuy + usDus = — (ujDuy + uDus)

and thus
uy Duy + u3Dug

Q=" |?

is a normalized element of

troy, QDQ = MujDus + NjujDuy + NiuiDus +

We have m € [\2, \?], since xt

Span{ug, uy}, therefore

troy, @DQ
> ANujDus + NjujDuy + ANuiDus + Aj (u; Duy + uyDus)

5
> Z/\Qu;‘Dui =trQDQ > 0.
i=1

(b) On the other hand, there exists a normalized y € Span{ug, us} with
y*Dy = —u}Duy. With V), = Span{y, us} and y* such that y, y* is an
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orthonormal basis of Span{us, us} we get

(Qy)*QDQ(Qy)
Q|2
= /\EU;DU/Q + trSpan{ug,U4} QDQ
(QyH)*QDQyt)
Q1 yt|?

= AujDuy + NjusDus + Mjul Duy —

tl"beQDQ = )\%U;DU@"‘

(y") Dy
1Q y+|I*
From tr D = 0 and
wyDus + uwiDuy = y* Dy + (y-)* Dy = —uDuy + (y)*Dy*
it follows that
(y™)* Dy = ujDuy + uiDus + uj Duy
and

troy, QDQ = NubDuy + NjujDus + ANju;Duy
usDug + uzDug + uyDuy

Q" y+|1?

We have m € [M\2, A}] since y' is a normalized element of

Span{us, us}, therefore, since —(u}Dus + ujDus + ujDuy) > 0,

troy, @QDQ < ANusDusy + NusDug + NjujDuy
— i (ub Dus + uiDug + ujDuy)
= (A = A))usDus + (A3 — A\])ujDus <0

(¢) We will now construct the map ) exactly as in the proof of Propo-
sition 5.7. By assumption, Span{us,us} is D-positive definite, thus
we have nr(—Ks;) C nr(Ksy). It follows that for each normalized
element v, € Span{us,us} there exists a normalized element v; =
vi(ve) € Span{us,us} so that vjDv; = —viDvy. We can choose
vy = f(a) = cos(a)us + sin(a)ty with a € [0, 7] and s, iy are or-
thonormal such that [Usty]* D[usty] = diag(us, pa) where pg < 0 < ps.
Then the mapping g : a — f(a)*Df(«) is continuous and strictly
monotonically decreasing and therefore continuously invertible. Since
the mapping ve — v3Dvy is also continuous, we can assume the map-
ping
va > v1(v2) = vi(g™ (v5 D))
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to be continuous.

In particular we can assume, after choosing the parameter ¢ accord-
ingly, that )(t) = Span{v (), v2(t)} is continuous on [0, 7] with Y(0) =
Span{z,us} and Y(5) = Span{y, us} where x,y are as constructed in
(a) and(b).

Now, trgy @PDQ > trQDEQ > 0 and trQy(g)QDQ < 0. By con-
tinuity of ), the intermediate value theorem implies the existence of
to € [0, 5] with

tl"Qy(to) QDQ = O .

Then our proposition follows from Lemma 5.3 (i). O

5.2. One D-positive Eigenvector of ()

Here we prove the analogue of Proposition 4.6 with an approach as in
section 5.1. Thus, we consider the following cases:

(1)  uiDus >0 u;Du; <0 for all 7 #5

(13)  uyDug >0 [ujug]*Dlu; ug) <0  for all distinct j,k # 4

(149) uwjDug >0 [u; w)*Dlu; u) <0  for all distinet j,k # 3

(tv) uyDug >0 [uj we]*Dluj u] <0  for all distinet j,k # 2.
As was the case in section 5.1, case (i) is more general than the others
since [u; ug]* D[u; ug] < 0 implies u; Duy, uj Duy, < 0.

PROPOSITION 5.9. Let trD = 0 and tr QDQ > 0 and let uq,. .., us
and \; < --- < A5 be a set of normalized eigenvectors and correspond-
ing eigenvalues of Q.

Assume that uzDus > 0 and ujDu; < 0 for all j # 5. Then there
exists a gyroscopic stabilizer.

PRrROOF. We construct a 3-dimensional space ), with
(a) try, D =0 and 0 < trg-1y, QDQ,
(b) 0 < trgy, QDQ, where Y, = V-

Then according to lemma 5.3 (iii), there exists a gyroscopic stabilizer.
(a) From tr D = 3"0_ w, Duy = 0 it follows that

us Dus > —(usDug + uiDug) > 0 > ujDuy .
This implies that there exists a normalized y; € Span{uy, us} with
Y1 Dy1 + usDug + uzDus =0 .
We define ), = Span{y;, us, us}. By construction, we have

tI‘yaD:O.
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Also by construction, ¥, us, u4 remain orthogonal under multiplication
with Q or Q~!, thus we can compute

(Q7'11)*QDQ(Q 1)
10Tl
Y1 Dy
AR To="TER

tro-1y, @QDQ = MjusDuy + NujDug +
(5.6) = MujDuy + NujDu

Now, since y; € Span{uy,us}, we have
1
Q" y: [|2

It follows with y7Dy; > 0 and an estimation for the denominator of

(5.6) that
tro-1y, QDQ > NjusDusy + NuiDus + Ajy; Dy,
= MujDus + MuiDuz + A3 ( — ubDuy — uiDug)
= (A3 = A})ubDus + (A; — A)usDus > 0.

€ [\ A

(b) We define ), = Y. From try, D = 0 and tr D = 0 it follows that
try, D = 0. We get

trgy, @DQ = trQDQ — trg-1y, QDQ

5
" yi Dy " "
= Z A2uf Duy, — m — AujDuy — ANauiDus
k=1

v

Nt Duy + Njuj Duy + M2ui Dus
+ A2 (uh Dug + ul Dus)

5
> AgZuZDuk =0,
k=1
which shows that we fulfill the requirements of Lemma 5.3 (iii). Thus
there exists a gyroscopic stabilizer. U

PROPOSITION 5.10. Let tr D =0 and tr QD@ > 0 and let uq, ..., us
and Ay < --- < A5 be a set of normalized eigenvectors and correspond-
ing eigenvalues of Q.

Assume that ujDuy > 0 and let let

Kjp = [uj ug]* D]u; g

be negative definite for each pair j, k € {1,2,3,5}.
Then there exists a gyroscopic stabilizer.
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PROOF. The proof is divided into the following steps.
(a) We show the existence of a two-dimensional space A with

traD =0, troaQDQ <trQDQ .
(b) A second two-dimensional space B is constructed with
tI‘BD:O, tI‘QBQDQZO.

(c) The existence of a continuous mapping ), whose image is in the set
P of two-dimensional subspaces of R, with the properties

Y:[0,3]—=P, t—=Y(t), dimY(t)=2forallt,
(5.7) YO0)y=A, Y(F) =B, tryyD=0forallt,
and the existence of a ty € [0, 7] with trgy,) QDQ = 0 is shown. Then

our proposition follows from Lemma 5.3 (i).
(a) From uyDuy > 0 and ujDu; < 0 for all j # 4 and 0 = tr D =

S0 urDu; it follows that there exists a normalized 2 € Span{uy, us}

with 2*Dx = —u}Du,. We then have with A = Span{z,u;} and z*
such that {z, 21} is an orthonormal basis of Span{uy, us}:
(Qz)"QDQ(Qx)
Q||
= )\%UTDul + trspan{%%} QDQ
(@) QDQ(Qah)
Q|

= AulDuy + MNjuiDuy + NauiDus —

trQA QDQ = )\%u}‘Dul +

(:L,J_)*ij_

Q1 at]]?

Again from tr D = 0 and z*Dx = —ujDu, it follows that
(z1)*Dat = —(ubDuy + ujDus)

and thus

usDug + uiDusg

[QLzt|?

Now we have m € [M, A2] and u}Duy + u}iDus < 0, therefore

troa QDQ = NuiDuy + NjujDug + AN2uiDus +

troa QDQ < MujDuy + AjujDuy + MeuiDus
+A% (us Dus + ulDus)
5

< Z NufDu; = tr QDQ .

=1
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(b) On the other hand, there exists a normalized y € Span{us,uy}
with y*Dy + ujDu; = 0. With B = Span{y,u;} and (y*)*Dyt =
—(uDus + ufDus) we get

*QD
tros QDQ = Nl Duy + QS @DRQY)

1Qyll

1 *D 1

= AuiDuy + NuiDug + Njuj Duy — ﬁi)l_ﬁp

Y
= MuiDus + Nus Dus + N Dug + =2 ||z23—1+ ﬂg =
)

v

Nt Duy + N Dug + Njuj Duy + N3 (ulDus + ul Dus)

5
> /\ZZUIDUZ- =0.
i=1

(c) We consider the space Span{ug, uy, us}. We already showed in (a)
and (b) that —ujDuy is in the numerical range of

Koys = [ug, ug, us|* D]ug, ug, us) .

This implies that 0 is in the numerical range of (K5 + ufDuyl3).

By construction of = and y, it follows that x = [ug, u4, us)z, for some
normalized z, € R?® with 2}(Kas + ujDuil3)z, = 0 and we have
Yy = [ug,u4,us|z,. Now by Proposition 2.7 there exists a continu-
ous mapping z : [0,Z] — R5 with ||2(¢)|| = 1, 2(0) = z, and either

' 2
2(5) = zy or 2(5) = —z,. We put

Y(t) = Span{[us, ug, us)z(t), us }

for all ¢. Note that V(5) = Span{y,u;} and ) is continuous by defini-
tion.
As seen above in (a) and (b), we have

troy) QDQ = trga QDQ < tr QDQ
and
trQy(%) QDQ =trogQDQ >0 .
If we already have either
0 < trgy) @DQ < trQDQ

or
0< trQ)}(g)) QDQ <trQDQ
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we have found a space as proposed.
Otherwise, we have

troyo) @DQ < 0,
trQy(g)QDQ > trQDQ .

But then, by continuity of the trace and the intermediate value the-

orem, for any value ¢ € [trgy(o) QDQ,trQy(z)QDQ} there exists a
2

to € [0,5] such that ¢ = trgyu,) QDQ. Choose ¢ = % and t

accordingly. Then

0 S trQy(to) QDQ S tr QDQ .
Then our proposition follows from Lemma 5.3 (i). O

PROPOSITION 5.11. Let tr D =0 and tr QDQ > 0 and let uq, ..., us
and A\ < --- < X5 be a set of normalized eigenvectors and correspond-
ing eigenvalues of Q). Assume that u3Dug > 0 and let

Kjp = [ujug]" D]ujuy)

be negative definite for each pair j, k € {1,2,4,5}.
Then there exists a gyroscopic stabilizer.

PROOF. The strategy for the proof is as follows.
(a) We show the existence of a two-dimensional space ), with

tl‘ya D=0 5 tI'an QDQ > 0.
(b) Then we show the existence of a second two-dimensional space ),
with

tl"yb D=0 5 trbe QDQ S 0.
(c) We construct a continuous mapping ), whose image is in the set P
of two-dimensional subspaces of R®, with the properties

YV:[0,r]—=P, t—=Yt), dim)(t)=2forallt,

(5.8) YO)=YVo, V)=V, tryyD=0forallt.
We show the existence of a ty € [0, 7] with trgyu,) @DQ = 0, then
from Lemma 5.3 (i), the existence of a gyroscopic stabilizer follows.
(a) From our assumptions it follows that ufDus > —ujDuy > ubDus,

thus there exists a normalized x € Span{us, us} with 2*Dx = —ujDu;.
We then have with ), = Span{z,u;} and z* such that z,z* is an
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orthonormal basis of Span{usg,us}:
(Qz)"QDQ(Qx)
Q||
= )\%UTDUl + trSpan{UQ,ug,} QDQ
Q) QDQQ ')
Q" at||?

= MuiDuy + NuiDug + MNuiDus —

troy, QDQ = Auw!Du; +

(z1)* Dt
[Q 1zL|2 "
From tr D =0 and
uyDug + usDug = * D + (z4)* Do = —ujDuy + ()" Da

it follows that

(z1)*Dat = wiDuy + ujDug + ujDus
and thus

troy, QDQ = \uiDuy + NubDuy + NuiDus
uy Duy + uiDug + uzDusg
B RERE

1

We have m € [\, \?] since zt is a normalized element of

Span{usg, us}, therefore, since —(u’l‘Dul + usDugy + ugDug) <0,
troy, QDQ > NuiDuy + AsubDuy + AsuiDus
—\; (ui Duy + uyDus + ujDus)
= (A = A)uiDus + (A3 — AJ)usDus > 0.
(b) On the other hand, there exists a normalized y € Span{ug, us} with

y*Dy = —utDus. With ), = Span{y, us} and y* such that y, y* is an
orthonormal basis of Span{ug, us} we obtain

(Qy)*QDQ(Qy)
1Qyll?
= MuiDus 4 trspanfus,u} QDQ
(@ 'yH)"QDQRQ'y*)
|Q~1yL|?

= AuiDug + Njuj Duy + Njui Dus —

tl"beQDQ = /\%U;DU5+

(y")*Dy*
Q@ tyt|?
From tr D = 0 and

u3Dug + uyDuy = y* Dy + (yL)"‘DyL = —uiDus + (yL)*DyL
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it follows that
(y™)* Dy = u}Dug + u} Duy + ui Dus
and
troy, QDQ = MuiDus + NjujDuy + A2uiDus
~uzDug + ujDug + us Dus
1Q~ y |2
We have m € [\2, \?] since y* is a normalized element of
Span{ug, uy}, therefore, since — (ugDu;], + uwjDuy + ugDu5) <0,
troy, QDQ < MjuiDus + ANjujDug + NutDus
—\; (w5 Duz + uiDuy + uiDus)
= (M= A)utDus+ (A2 = XJ)uiDus < 0.

(¢) From u{Dus > —ujDuy > uiDus it follows that —ujDuy is in the
numerical range of

K234 - [UZJ us, U4]*D[U27 us, U4] ’

in particular there exists x € Span{us, us} with 2* Dz = —ujDu, as in
part (a) and there exists also w € Span{us, us} with w*Dw = —ujDu;.
If we put x = [us, ug, us)z, and w = [ug, us, u4|z,, then both z,, z, are
zeros of the quadratic form given by (Kasq + ufDuyl3).

Now by Proposition 2.7 there exists a continuous mapping z : [0, 5]
R® with [[z(¢)|| = 1, 2(0) = z, and either 2(5) = 2, or 2(5) = —z,.
We put Y(t) = Span{[ug, us, us]z(t),u1} for all t € [0,5]. Note that
V(%) = Span{w, u; }, and Y is continuous by definition.

We will now extend the map ) and use an argument analogous to the
first part of the proof of Proposition 4.3. By assumption, Span{u, us}

is D-negative definite, thus the numerical range of
K5 = [uy, us]" D]uy, us)

is completely contained in the interval [ujDuy + uiDus, 0], we write
nr(Ky5) C [ujDuy + ufDus, 0]. Since we have

uzDus > —(uzDus + uiDuy) >0 > uiDuy ,

it follows that nr(—K;5) C nr(K3,). Thus for each normalized element
vy € Span{uj,us} there exists a normalized element v; = vy(vy) €
Span{us, us} such that viDv; = —v} Dvy. We can choose v, = f(a) =
cos(a)tig + sin(a)ty with o € [0, 5] and @3, %, are orthonormal such
that [113@4]*13[113114] = diag(,ug,,u4) where 3 > 0> 2. Then the
mapping g : a« — f(«)*D f(«) is continuous and strictly monotonically
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decreasing and therefore continuously invertible. Since the mapping
vy > v3 Dusy is also continuous, we can assume the mapping

vy = 01 (va) = v1 (g (v3Dv3))

to be continuous.
In particular we can assume, after choosing the parameter ¢ accordingly,

that Y(t) = Span{vi(t),v2(t)} is continuous on [J,n] with Y(3) =

Span{w, u; } and Y(m) = Span{y, us} where y is as constructed in (b).
Altogether Y is continuous on the complete interval [0, 7] and

troyo) @DQ > 0,
tl"Qy(,T) QDQ S 0.

The intermediate value theorem implies the existence of ¢y € [0, 7] with

trQ)}(to) QDQ = O .
Thus by Lemma 5.3 (i), there exists a gyroscopic stabilizer. O

PROPOSITION 5.12. Lettr D =0 and tr QDQ > 0 and let uq, ..., us
and \y < --- < A5 be a set of normalized eigenvectors and correspond-
ing eigenvalues of Q). Assume that usDus > 0 and let

K, = [uj ug]* Dluj uy]

be negative definite for each pair j, k € {1,3,4,5}.
Then there exists a gyroscopic stabilizer.

PROOF. The strategy is basically the same as in the previous proof.
(a) We show the existence of a space ), with

try, D=0, trgy, @QDQ > trQDQ ,
(b) then the existence of a second space ), with
tl"yb D=0 y tI'be QDQ S 0.

(c) We construct a continuous mapping ), whose image is in the set P
of two-dimensional subspaces of R®, with the properties

Y:[0,5]—=P, t=Y(t), dim)(t)=2forallt
(5.9) YO)=Va, VE)=, trypyD=0forallt.

Then the existence of a ty € [0, 5] with trgy,) QDQ = 0 follows, and

from Remark 5.3 (i), the existence of a gyroscopic stabilizer follows.
(a) By assumption there exists a normalized x € Span{us,us} with
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*Dx = —u}Duy. Then we have with ), = Span{z,u;} and z* such
that {z,x!} is an orthonormal basis of the space Span{us, u3}:

*QD
troy, QDQ = )xlul 1+<Qx>|’%$‘g(Q$)

= )‘%UTDul + trSpan{uz,m} QDQ
B (Q_IZ'L)*QDQ(Q_I.TL)
HQ*%HP

(@t Dat LY+ Dt
lQtat|?
From tr D = 0 and

uyDuy + wyDusg = x*Dx + (2)*Dat = —u}Duy + (v7)* D™t
it follows that

(:EL)*Dx = uiDuy + usDus + usDuz = (uZDu4 + u}jDug))
and thus

trgy, QDQ = XuiDuy + NusDuy + MusDu + ||2241+ﬁ5||2“5
T

is a normalized element of

We have m € (X3, M| since zt
Span{usg, us}, and with u}jDuy + ufDus < 0 we get
troy, QDQ > NuiDuy + NubDuy + ANuiDusg

+A5 (uf Dug + us Dus)

Z NufDu; = trQDQ >0 .

(b) On the other hand there exists a normalized y € Span{us, us} with
y*Dy = —u}Duy. With Y, = Span{y, us} and y* such that y,y* is an
orthonormal basis of Span{us, uz} we get
(Qu)"@DA(Qy)
1QylI?
— )\4U4DU4 + tl"span{u2 ug} QDQ
(@'Y QDQ(Q ')
1Q~ "y |2

= MujDug + NjuiDus + Njuj Duy —

troy, QDQ = MujDuy +

(y")*Dy*
Q1 y*|?
From tr D = 0 and

uyDuy + uzDug = y* Dy + (y*)* Dy™ = —ujDuy + (y")* Dy
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it follows that
(y™)* Dy = ujDuy + ulDus + uj Duy
and

troy, QDQ = NubDuy + NjujiDus + ANju;Duy
uyDug + uzDug + uyDuy
1Q~ Y12

We have m € [N\, A}] since y' is a normalized element of

Span{us, us}, therefore, since —(u}Dus + ujDus + ujDus) < 0,

troy, QDQ < NusDuy + MujDus + A\jujDuy
— A3 (us Dug + uiDug + ujDuy)
= (A = A)utDuz + (A\] — A\3)ujDuy < 0.

(c) We will now construct the map ) as in the proof of Proposi-
tion 5.7. By assumption, Span{u;,us} is D-negative definite, thus
we have nr(—Ky4) C nr(Kss). It follows that for each normalized
element vy € Span{u;,us} there exists a normalized element v; =
v1(v2) € Span{ug,uz} so that viDv; = —vjDvy. We can choose
v = f(a) = cos(a)ly + sin(a)us with a € [0, ] and s, U3 are or-
thonormal such that [tet3]* D[totis] = diag(pe, 13) where pg > 0 > us.
Then the mapping ¢ : a — f(a)*Df(a) is continuous and strictly
monotonically decreasing and therefore continuously invertible. Since
the mapping ve — v3Dvy is also continuous, we can assume the map-
ping
vy = v1(v2) = v1 (g~ (v Dvy))

to be continuous.
In particular we can assume, after choosing the parameter ¢ accord-
ingly, that Y(t) = Span{v;(t), v2(t)} is continuous on [0, 7] with Y(0) =
Span{z,u;} and Y(5) = Span{y,us} where x,y are as constructed in
(a) and(b).
Now, trgy @DQ > trQDQ > 0 and trQy(z)QDQ < 0. By con-
2
tinuity of ), the intermediate value theorem implies the existence of
to € [0, 5] with
tl“y(to) D=0
and
t1Qy(t) QDO =0

Then our proposition follows from Lemma 5.3 (i). O
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5.3. Two D-indefinite Subspaces

Proposition 4.3

In section 5.1 we were considered all cases where one of the u}Du;
was negative and the two-dimensional spaces Span{u;, u;} with j, k #
1 were each positive definite, in section 5.2 equivalently. Thus the
case where we have two indefinite spaces each spanned by a pair of
eigenvectors remains to be investigated.

So far we were not able to give a complete proof of the existence of a
gyroscopic stabilizer in this case. Thus in this section we will present a
construction that at least partly solves of our problem of constructing
G.

Let tr D =0 and tr QDQ > 0 and let uq,...,us and Aq,..., A5 be a set
of normalized eigenvectors and corresponding eigenvalues of (), given
in no particular order. Assume that with {7, j, k,m,n} = {1,2,3,4,5}
the matrices

K, = [ujug]*Diujug] ,  Kipp = [Umy)* D]t iy)

are each indefinite or singular.
The goal is to construct a three-dimensional space such that the con-
ditions of Lemma 5.3 (ii) are satisfied. Since Kji, Ky, are indefi-
nite or singular, there exist normalized z; € Span{u;,usz} and 2z, €
Span{u,, u,} with 2Dz = 23Dz, = 0. By construction, Q@ 'z, L
Q'2,, so we can also compute

trQ—l Span{z1,2z2} QDQ
(Q'2)'QDQ*Q 'z n (Q'22)*QDQ x Q' 2
Q"2 Q" 22|

We will extend Q! Span{z, 23} to a three-dimensional space, therefore
we analize the value trg-1 gpan{z; 20,21 @DQ for a given z3 orthogonal on
21, 7. Let v3 be orthonormal on z; in Span{u;, ux} and vy orthonormal
on zo in Span{u,,,u,}. Then by construction, vs, vy, u; are pairwise
orthogonal and remain so under multiplication with @ or Q~!.

Now {IIstII’ Hg 1z1”} is an orthonormal basis of

=0.

Span{u;, uy} = Q* Span{u;, uy} = Q Span{u;, u;} ,

-1 : :
ua Q72 1 g an orthonormal basis of
val]? [|Q~ 1z

Span{t,, u,} = Q' Span{u,,, u,} = Q Span{u,,, u,} .
Let 23 be a normalized vector in Span{vg, vy, u; }. Then

(132, 182 }
IIQ 121||’ 1@~ 2| HPQ 1Z3||
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is an orthonormal basis of Q! Span{z1, 23, 23}, where P denotes the
projection onto the space Q) Span{vs, vy, u;}:

Quzv3Q L QuaviQ i Quiu;Q

P
[Qusl|? ~ |Quall® || Qusl|?
_ Quig, Quug -
| Qus| | Quall
PQ_l _ Qusvs Quavj uu
[Qus||?  |Quall* N
With 23 = avs + buy + cu; we get
_ Qus Quy Us
PQ 'avs 4+ buy + cu;) = a +b +c—
N o7 ER TN EY
_ [ Qus Quy %] Z
[Qul? Toud? x| | ]

and

a? b? c?
- -
[Qusll?  [[Quall* ~ N

1PQ(avs + bvy + cu)||* =

Now we have

terl Span{z1,22,23} QDQ

PQ_l * PQ_l
™t et Q00+ (oo ) 0o
 5QTIPQDQPQ 2
N PQ 2

We put = Q 'PQDQPQ "' and get

U§Q2DQ27J3 U§Q2DQ2U4 v§Q2Dui

1Qusl® [QualPIQuil”  [1Qual?

F = UZQZDQ21)3 v Q DQ?vy vIQ2Dui

||Qvggé|2§v3||2 |l%v4£|4 |Qual|?

u; v3 u; V4 * )

1Qus]? 1Quall? ui Du;

and

qr Qus Qus Uik Qus Qus o
Qr = (PQ7! PQ —
( [ D [IIQU:&II? | Quyl? Ai]

1Qus[? 1Qual? N

1
lQusl|?
_1
- 1Quall? )
1
2
Ai
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this allows us to write with ||v|| =1 and v = (a b ¢):
v*Fv

V*Q v

terl Span{z1,22,z3} QDQ =

and tr Fy = tr QD). We also define

D = [1}3 V4 ui]*D[’Ug V4 UZ] .

In this formulation, what we need is a normalized v such that

0 = v*Dv,

v*Fv
5.10 0 < <trQDQ .
(5.10) < SO S rQDQ

Now either the quadratic forms given by F and D have a nontrivial
common zero vy, then we put z3 = [v3 vy u;]vg and have

trspan{zr 22,23} D =0,
trQ’ISpan{ZhZ%Z:s} QDQ = 0,

and our statement is shown.

Or there exist according to [9] numbers g, h € R such that the matrix
given by gD + hF is positive definite, which just means that the sign
of v*Fv is invariant on the isotropic vectors of D. In that case, one
needs to establish that a normalized v as in (5.10) can be found, which
so far we were not able to prove.

Our approach here might be too restrictive since with Lemma 5.3, we
already demand a very specific form for a gyroscopic stabilizer with a
pair of eigenvalues close to zero.

But still, for given pairs D, (), we were always able to find a gyroscopic
stabilizer G in R® by doing a random search in Matlab. A counterexam-
ple in R®, where tr D, tr QD@ > 0 and no gyroscopic stabilizer exists,
has not yet been found. We therefore formulate our missing case in R?
as an open problem.

PROBLEM 5.13. Let tr D = 0 and trQDQ > 0 and let uy,...,us be
a set of eigenvectors of Q. For {i,j,k,m,n} = {1,2,3,4,5} in no
particular order, let the matrices

Kk = [uj ug]" Dluj ug) ,  Kpn = [Um )" Dty uy]

be indefinite. Show that there exists a gyroscopic stabilizer.
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5.4. Example

In this section, we will demonstrate the construction of a gyroscopic
stabilizer in R® as in Proposition 5.7. The construction in each case in
the first two sections of this chapter is very similar. The difficulty lies
is constructing a function ).

EXAMPLE 5.14. Consider the unstable system i + Di + Q22 = 0
with

10 4 -8 -3 -8 10000

4 6 -1 -2 -2 02000

D=| -8 -1 =25 12 3|, 9g=l003 00
3 -2 12 3 1 00040

8§ -2 3 1 11 00005

With % =1< % = “t?cj;Q we put 7 = 1 and P = [ in Proposi-
tion 2.1 and get

9 4 -8 -3 -8

4 5 -1 -2 -2

D,=| -8 -1 —-26 12 3
3 -2 12 2 1

~8 -2 3 1 10

Any space Span{es,e;} with j # 3 is D-indefinite, while the space
Span{ey, eq, €4, €5} is D-positive definite, thus we are in the situation
of 5.7.

The proposed spaces ), and )}, can be chosen as

0 0
0 0.7184
Y, =Span{| —0.3679 |, es}, YV, =Span{| —0.6956 |, e;}.
0.9299 0
0 0

Note that even if we stick to the proposed construction, the spaces
Y, Yy are not unique, since in Span{es, e4} there are in general at least
two linearly independent normalized vectors x,y with x*Dx = y* Dy =
—ezDes. For ), holds the same.

For t € [0, 3], we put u(t) = cos(t)us + sin(t)us. The proposed nor-
malized z(t) with z(t)*Dx(t) 4+ efDes = 0 can then be constructed as
follows. Define

K(t) = [e3 u(t)]*Dles u(t)] + et DesI .
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Let U(t) be a matrix whose columns are an orthonormal basis of eigen-
vectors of K (t) and V(t) a diagonal matrix with corrsponding eigenval-
ues of K (t) on the diagonal. As the components of K (¢) are continuous,
so are the eigenvectors and eigenvalues. Thus U(t), V(t) can also be
chosen to depend continuously on . Now choose an isotropic vector
g of V(t), see example 4.8. Since isotropy now only depends on the
eigenvalues on the diagonal of V'(t), we can choose § such that it de-
pends continuously on ¢. Then y(t) = U(¢)(1 1)7 is isotropic for K (t).
In particular, it also depends continuously on ¢. Then for

(t) = [es u(®)]y(?)

we have z(t)*Dx(t) = —e;Des by construction.
For t € [5, 7], we define 4(t) = sin(t)e; — cos(t)u; and

A

K(t) = [e3 ea|"Dles es] + u(t)*Du(t)] .

As above, we construct y(t) as an isotropic vector of K(t) and put
x(t) = [es ea]y(t) for ¢ € [F,w]. With

) Span{x(t),us} , tel0,5],
) = {Span{m(t),ﬁ(t)} . telmal.

We now have try) D = 0 for all ¢ € [0,7]. Via Matlab we get

tro1y0) QDQ = 181.9306
trg1ym QDQ = —137.7026

so none of the above two spaces satisfies the desired trace condition
0< tl"Qfly(()) QDA < trQDQ ,

but there exists an intermediate value such that our condition is satis-
fied.
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-100{ B

~150 I I I I I I
0 0.5 1 15 2 25 3

FIGURE 5.1. Plot of the function f on [0 7]

In figure 5.1, we see a plot of f(t) = trg-1y4) @DQ, the horizontal red
lines show the values 0 and tr QD). By construction, there is now an
area where f(t) is in between 0 and tr QD). We pick ¢ty = 1.2563 and
get f(1.2563) = 62.8646 and

0
0.7559
V(to) = Span{| —0.6067 | es} .
0.2459
0

We now choose a normalized D-isotropic vector z; in Y(ty)*, complete
21 to an orthonormal basis {21, 20, 23} of V(to)* and put

J = [21 Z9 23 x(to) U5]
—0.5314 —0.8170 —0.2238 0 0
0.3367 —0.0663 —0.5575  0.7559 O
= 0.1075  0.1423 —0.7746 —0.6067 O
—0.7698  0.5549 —-0.1975 0.2459 0
0 0 0 01

By construction,

. 0 e 0 1 .
Gdel&g(O,(_E O)’(—l O>)Z

now satisfies our eigenvector conditions. Via Matlab we find that the
system is stabilized by oG with o > 296097.
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5.5. A Reduction Method

In some cases, the problem of constructing a gyroscopic stabilizer G
as in Proposition 2.1 can be reduced to lower space dimensions. The
basic idea is similar to case 3.1 in [15].

PROPOSITION 5.15. Let tr D, tr QDQ > 0 and let B = {uq,...,u,}
be a basis of R™ consisting of normalized eigenvectors of (). Suppose
there is a partition

B=DBUBy ={ui,...,u}+ {ups1,--.,un}

such that t is even and

tI'Spanlil D > 07 trSpanB1 QDQ >0 )

1:JrSpanBz D > 07 trSpamB’z QDQ >0.
With By = [uy,...,u), By = [ugy1, ..., u,] define Dy = BfDBy,Q, =
BTQBI and D2 = B;DBQ, QQ = B;QBQ
Let Gy be a gyroscopic stabilizer such that

viDivy >0, wiQi1D1Qiw; >0
for all eigenvectors vy of Gy and all exgenvectors wy of Q1G1Q1, for G
equivalently. Then
G 0 .
G = [B, B,] ( (1) a ) [B) Bs)

is a gyroscopic stabilizer for the pair D, Q).

The assumption that at least one of G1,Gy is of even dimension is
necessary to ensure that the eigenvalues of GG are simple. If both G}
and G5 were of odd dimension, then both would have a zero eigenvalue,
resulting in a double eigenvalue zero in G.

PROOF. By scaling G2, we can assume that o(G1) No(Gq) = 0, thus
no multiple eigenvalues appear in G.
Suppose vy is an eigenvector of G, then v = Byv; is an eigenvector of

G. We get
v*Dv = v B{DByv; = viDyjv; > 0.
Now let w; be an eigenvector of )1G1Q), then w = Bjw; is an eigen-
vector of QGQ. We get, using that im(Q)B;) = Span By,
wQDQw = wyBiQDQByw,

= w;BiQB,B;DB,B;QByw,

= w1 D1Qiw; > 0.
The same holds for the eigenvectors of Gy and Q2G2Q)s. ]
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In case 3.1 in [15] the existence of a gyroscopic stabilizer G is shown
under the condition that v*Dv > 0 for every eigenvector of the eigen-
problem (A?] + K)v = 0. Clearly (A\*I + K)v = 0 if and only if v is an
eigenvector of (.

If v*Dv > 0 for every eigenvector of (), then the conditions of Propo-
sition 5.15 are met for any partition of the set of eigenvectors B. Thus
G can be defined for odd n =2m + 1 as

G = [v1...v,]diag(0, p1Go, ..., pmGo)lv1 ... v.]",

0 1
GO:(—1 0)’

where the p; € R\{0} are pairwise distinct. For even n, the construc-
tion is equivalent.

Finally, we present a condition that guarantees that every G with D-
isotropic eigenvectors is a gyroscopic stabilizer.

PROPOSITION 5.16. Lettr D =0 andtrQDQ > 0 and let py < --- <
iy, be the eigenvalues of QDQ. If uy < 0 < pg and |py| < |2, then for
any G with v*Dv = 0 for all eigenvectors v of G and pairwise distict
eigenvalues also satisfies w*QDQw > 0 for all eigenvectors w of QGQ.

PROOF. By assumption, condition (a) and (b) of Problem 2.2 are
satisfied, thus we just have to verify (c).

If the space dimension n is odd, then there is an an eigenvalue zero of
G with eigenvector vy. By assumption vjDvy = 0, which implies that
for the eigenvector wy = Q~lv, for the eigenvalue zero of QGQ we have
wiQDQuwy = 0 as well.

Now let wg,w; be the eigenvectors for a complex conjugate pair of
eigenvalues of QGQ). By assumption on the eigenvalues of Q) D@, it
follows that

tryy QDQ > py + p2 >0

for any two-dimensional subspace W. In particular,
trSpan{wk,wl} QDQ Z 0

for every pair of eigenvectors wy, w;, implying w*QDQw > 0 for all
eigenvectors w of @DQ. Thus (c) in Problem 2.2 holds. O

5.6. Conclusion

In our work we were able to devise a new sufficient condition for gy-
roscopic stabilizabilty. This condition allowed us to show the necessity
of tr D > 0 and tr QD@ > 0 for the existence of G in the space dimen-
sions 3 and 4. We were able to develop a construction method for G
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in these dimensions and by means of several examples showed how our
construction can be applied. The case n = 5 was not solved completely
in our work. For n > 5 the construction of a gyroscopic stabilizer so
far remains an open problem.

Clearly it is desirable to develop an inductive algorithm for the con-
struction of gyroscopic stabilizers that would allow us to reduce the
construction problem to lower space dimensions. We were not yet able
to devise a method to achieve that. The difficulty in generalizing our
approaches is mainly the fact that in general orthogonality of vectors
and /or spaces is destroyed once they are multiplied with Q or Q1.
That was the reason we relied so much on eigenvectors of () in our
construction because for them orthogonality was preserved.

For further research we suggest to analyze for the shifted problem with
tr D = 0 the elements of the set

A = {T € O(n) | the diagonal of T* DT consists of zeros } ,

where O(n) C R™" denotes the orthogonal group. For n > 3, this set
appears to become decomposed into a finite number of path-connected
components. Then by using continuity arguments it might to be pos-
sible to find a T € A that qualifies for the construction of G via

G = Tdiag(0, piGo, ..., puGo)T*, pi # p;j fori#j,

01
6= (14)-

This approach involves differential geometry and topology and for the
moment is out of reach for us.
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