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Abstract

Granular systems in solid-like state exhibit properties like stiffness
dependence on stress, dilatancy, yield or incremental non-linearity
that can be described within the continuum mechanical framework.
Different constitutive models have been proposed in the literature ei-
ther based on relations between some components of the stress tensor
or on a quasi-elastic description. After a brief description of these
models, the hyperelastic law recently proposed by Jiang and Liu [1]
will be investigated. In this framework, the stress-strain relation is
derived from an elastic strain energy density where the stable proper-
ties are linked to a Drucker-Prager yield criteria. Further, a numer-
ical method based on the finite element discretization and Newton-
Raphson iterations is presented to solve the force balance equation.
The 2D numerical examples presented in this work show that the stress
distributions can be computed not only for triangular domains, as pre-
vioulsy done in the literature, but also for more complex geometries.
If the slope of the heap is greater than a critical value, numerical in-
stabilities appear and no elastic solution can be found, as predicted by
the theory. As main result, the dependence of the material parameter
ξ on the maximum angle of repose is established.

Keywords: Granular elasticity, Constitutive modelling, Non-linear finite
element method.
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1 Introduction

Static stress distributions in granular systems are important in mechanical,
geophysical and chemical engineering applications and also to geotechnical
engineers for the design and safe of fundations [2]. Particular attention should
be paid to design silos [3] because of the problems associated with the forma-
tion of steady arches or the apparition of failures during the emptying phase,
that can have dramatic consequences.

Sand is known to exhibit a diverse set of behaviours like Reynolds di-
latancy, incremental non-linearity, stiffness dependence on stress or history
dependence that makes it difficult to model. One of the most surprising
property is probably that the stress distribution on a sand pile depend on
how the grains were filled into the system [4]. A lot of constitutive models
have been proposed and investigated, leading to a complex set of data [5],
but there is no general theory to describe the granular solid behavior. Solid
mechanics have been successfully employed for more than an hundred years,
starting with the pioneering work of Coulomb [6] to determine the stability
of sand systems. Analytical and numerical methods have been developped to
design industrial equipments. For instance the Janssen model [7] is still used
to design silos. Recently, the statics of the granular matter has also been
investigated by physicists [8, 9]. The behavior of granular solids is howver
still poorly understood and often subjected to intensive debates [9].

The elastic description have been motivated by the experimental observa-
tion of reversible deformations (of the order of 10−4) in compacted granular
systems [10]. Several non-linear stress-strain relations have been proposed
based on theoretical, experimental and numerical investigations [11, 12].
Sound propagation experiments [13, 14] or triaxial tests [10] enable to obtain
informations about the dependence of the shear and bulk moduli with the
stress state. Interesting results were also obtained from assumptions made
at the grain-scale, using contact mechanics [15, 16] and Effective Medium
Theory (EMT) [17]. Discrete element simulations were also performed to cal-
culate macroscopic elastic material parameters [13]. These non-linear elastic
laws are not valid for large strains but can be extended within the elasto-
plastic framework.

Recently, physicists have developed constitutive models motivated by ob-
serving inhomogeneous spatial stress distributions in granular systems [18].
Photoelastic experiments [19, 20] have shown the existence of stress chains in
granular systems or contact networks and these models are able to reproduce
stress transmission phenomena. These laws, generally formulated in 2D, are
based on relations between the different components of the stress tensor.
Although they have been sucessful, their initial assumptions are question-
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able [21, 22] and their generalization in 3D remains difficult.

In a recent work, Liu et al. [23, 24, 25, 1, 14] have proposed a non-linear
elastic model derived from thermodynamical considerations. The stress-
strain relation is determined from the elastic energy density which becomes
unstable at yield. This model was successfully compared with experiments
and used to calculate stress distributions in silos, sand piles or granular sys-
tems under point loads.

In this report, the preliminary results of the granular solid state are first
recalled. The constitutive models proposed in the literature are discussed on
the second part. The granular elasticity framework is then investigated and
the results of the numerical simulation are presented in the final section.

2 Some basic properties of the granular solid

2.1 Reynolds dilatancy

First defined by Reynolds in 1885 [26], dilatancy refers to the volume change
associated with shear distorsion of an element in a granular system. It can
be qualitatively understood by considering layers of compact spheres as in
the Figure 1. To sustain shear, grains must roll or slide over each other, what
leads to an expansion of the overall volume. Reynolds dilatancy is a common
phenomena observed in soil mechanics and a deailed review can be found
in [27]. This phenomena depends strongly on the initial condition of the

Figure 1: Layers of compact spheres under shear forces.

grains: if the system have been set up in a loose state of packing, a reduction
of the volume can be observed. This property is called contractancy.
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2.2 Granular Random packings

Random packings have been intensively studied in the last few years and
are still a major challenge of the condensed matter physics. They not only
provide reliable information about the microscopic structure of granular sys-
tems but also other materials like glasses, simple liquids or amorphous solids.
Random compaction can be studied by shaking spheres vertically in a box.
After the initial work of Scott [28], experimental and numerical investigations
enabled the calculation of relevant parameters for random spherical packings.
Finney [29], inspired by the work of Bernal [30] about the statistics of random
packings, performed computer simulations for packings containing particles
of different geometries. He showed that a random packing of spheres cannot
have a volume fraction greater than 0.64. The maximal volume fraction that
can be obtained when particles are randomly packed is called the random-
close-packing, ρ̂cp. For hexagonal packings, it reaches a value of 0.74, and
is the greatest possible packing that can be obtained for spherical particles.
The definition of the random loose packing ρ̂lp is more difficult, it is often
referred as the loosest possible packing that is mechanically stable. Onoda
et al. [31] identified it as the lowest possible density than can be obtained
in a vanishing gravitation field. He carried out experiments by immersing
glass spheres in a liquid, wherein the density of the liquid was modified to
minimize the effect of gravity, and found the value of ρ̂lp to be 0.56.

2.3 Static stress distribution in sand piles

The pressure distribution below a sand pile does not always exhibit a maxi-
mum at the apex. This counterintuitive result has been intensively debated
in the literature, and it is now accepted that stress distributions depend on
the filling process. Vanel et al [4] showed that by filling sand in successive
layers with a sieve a maximum of pressure is measured at the centre. When
a hopper is used, a local minimum appears. This is illustrated in Figure 2.
A lot of explanations have been proposed (see part 3.2 for instance) in the
literature but there is no consensus about it.

2.4 Contact mechanics and effective elastic moduli

Granular Matter is composed of many grains which are in contact and can
be deformed. An interesting knowledge about the stresses and deformations
which occur when solids are in contact is given by the contact mechanics.
The pioneering work of Hertz [32] about frictionless contacts of two elastic
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Figure 2: Typical pressure profiles at the bottom of sand pile.

bodies is still a reference for mechanical engineers working on processes in-
volving elastic contacts. The Hertz model has been extended to complicated
geometries and used to derive constitutive laws. The main result of the Hertz
theory is presented here, and a detailed review can be found in [15]. Consider
two elastic spheres of radius R which are in contact, as shown in Figure 3.
If these two bodies are pressed together with a force F , deformations occur
near the point of contact. Hertz showed that the radius of the circular con-
tact area a, where deformation occur, depends on the displacement δ which
is given as

δ =
a2

R
. (2.1)

The relation between force and displacement is non-linear

F ∼
√
Rδ3/2. (2.2)

When the gains deforms, an elastic energy We is accumulated, which can be
evaluated by integrating the product of the force and the displacement over
the volume of the sphere

We ∼
√
Rδ5/2. (2.3)

Although the two spheres are elastic, the force does not linearly depend on
the displacement. When the force increases, the contact area also increases
and so does the stiffness of the material. The case of spheres subject to tan-
gential forces is more complicated but have been studied by Mindlin [33]. He
established that, in this case the system is path dependent: the values of work
depends on the loading steps. Different behaviors are observed depending on
rather the system is first sheared and then compressed or vice-versa. Effec-
tive Medium Theory (EMT) is based on the Hertz-Mindlin description and
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Figure 3: Two elastic spheres of radius R in contact.

enables to obtain the value of effective and bulk modulus of a system com-
pressed with pressure P . These coefficients were shown to have typical de-
pendence on P 1/3. Some disagreements are observed with experiments where
dependences in P 1/2 are generally measured. Several explanations based on
micro-mechanical considerations have been proposed to explain that, like for
instance the presence of shell oxide layers between the grains [16]. This issue
has not been resolved and is currently under study.

2.5 Characteristics angles of granular materials

2.5.1 Angle of repose of a cohesionless material

Simple macroscopic observations show that granular matter in a static equi-
librium can exhibit a conical pile structure. The angle between the free
surface of the pile and the horizontal plane is called the angle of repose. The
critical angle of repose refers to the greatest angle that can be found for a
given material. There are actually two angles of repose, namely the static
and the dynamic ones. The static angle is defined as the angle at which an
initially static grain assembly begins to flow. The dynamic angle is the angle
at which a given quantity of sand becomes at rest. Both static and dynamic
angles depend on material parameters like the grain size distribution or the
grain shape. There are a lot of measurement techniques to determine these
angles and results are very sensitive on the procedure of pouring employed.
What is the best design or size of equipment to perform this measurement
is still an open issue [8]. Typical values of angles of repose are between 25◦

and 55◦.
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2.5.2 Angles of friction

According to Coulomb’s law of friction [6] a solid at rest on an inclined plane
making an angle φ with the ground horizonal plane begins to slide when the
tangential force Ft reaches a certain value, proportional to the normal force
Fn:

• Solid at rest:
Ft < µfFn, (2.4)

• Solid in movement:
Ft = µdFn, (2.5)

where µs and µf are respectively the static and dynamical friction coefficients.
Both are empirical parameters that have to be determined experimentally.
Because the solid is subjected to gravity, the normal force Fn and the radial
one can Ft be expressed as:

Fn = ρg cosφ, (2.6)

Ft = ρg sinφ, (2.7)

so that the ratio Ft/Fn is equal to tanφ. The angle φ is called friction
angle. In the case of granular systems, frictional contacts appear between
the grains and are often modelled with the Coulomb friction law applied to
the internal stress tensor (see part 3.4.3). In this report, the notation µ and
φ refer respectively to the internal friction coefficient and the internal angle
of friction. This parameter is employed in civil engineering applications and
usually measured with the triaxial test. Although it is possible to apply the
Coulomb rule in the case of one grain rolling or being at rest on an inclined
plane, generalizing it to an amount of grain is not self-evident. It is important
to keep in mind that the angle is defined by assuming an analogy between
a rigid solid body and sand. It also does not provide any information about
the influence of nature of the grains on the friction coefficients. In practical
applications, the angle of friction may differ by a few degree from the angle
of repose.

3 Review of continuum models

In this section the constitutive laws that were presented in the literature to
account for the solid behaviour of granular systems are presented. The static
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momentum equation is first recalled here. In a body subjected to a volume
force fi,v, the local force equilibrium equation is given as

∂σij
∂xj

= fi,v (3.1)

where σij is the symmetric stress tensor. This conservation equation is a
system of 3 equations in 6 unknowns that can only be solved if some empirical
relations are added, for example between the stress components or between
the stress and strain tensors.

3.1 Janssen model for silo

The knowledge about the stress within a silo packed with granular matter
is crucial for designers to avoid structure failure. Reliable data about the
interaction of the granular media and the silo structure can also help in opti-
mizing processes such as filling or emptying. This topic has been intensively
studied by engineering [22] and physicists [34]. Consider a silo filled with a
certain mass of grains. Experiments show that the weight measured at the
bottom plate fo the silo is only a fraction of the total mass of the silo. In
his pioneering work in 1895, Janssen [35] proposed a model to describe the
vertical stress in silos, which reproduces the pressure saturation observed,
see Figure 4. Although some quantitative differences between the Janssen
theory and experiments have been observed, this model is still used. The
first assumption proposed by Janssen is that a fraction of vertical stress is
transferred to horizontal stress

σrr = kjσzz. (3.2)

The shear stress on the walls is then assumed to have reached the maximal
value given by the Coulomb failure criterion

σrz = µjσrr = µfkjσzz. (3.3)

where µj is the internal friction coefficient between the grains and the wall.
Consider a horizontal slice of diameter 2R and height dz. A the surface of
the silo, where z = 0, the force balance is

dσzz +
2

R
σrz|r=R = ρgdz. (3.4)

Inserting this condition into the equilibrium condition leads to

dσzz
dz

+
2µjkj
R

σzz = ρg. (3.5)
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Figure 4: Pressure profile in silos

Introducing the characteristic length L0 = R/2µfkj and the pressure σ0 =
ρgL0, the solution can be expressed as

σzz = σ0

(
1− exp

(
− z

L0

))
. (3.6)

This result can be easily interpreted by looking at Figure 4. Near the free
surface of the silo, for z � L0, the pressure has the same profile as the
hydrostatic one, and for larger depth z � L0, it reaches the critical value σ0.
In many industrial applications, the dependence of the Janssen coefficient
with the friction angle is expressed via the empirical relation [22]

kj = sinφ. (3.7)

Janssen model shows quantitative disagreement with experimental data, and
more elaborated descriptions have been proposed [36]. The main questionable
point is the assumption in equation (3.2), also called assumption of incipient
failure, which supposes that forces of friction have reached their maximal
values. Due to the absence of reliable experimental data to measure internal
stresses, the invalidity of this hypothesis couldn’t be clearly proven [37].
However numerical simulations using discrete element simulation using three
dimensional packings showed that this criterion wasn’t justified.
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3.2 Stress-based laws

Fully motivated by providing an explanation to the pressure minimum some-
times observed in sand piles (see part 2.3), constitutive models based on
relations between some components of the stress tensor have been proposed
in the literature. The simplest one is the incipient failure everywhere the-
ory [22] which supposes that the granular media is at slip failure everywhere.
It is however generally accepted that this condition is actually just valid at
the free surface of the sand pile. Bouchaud et al. [18] proposed a propor-
tionality relation between the horizontal and principal stresses. The main
consequence of this assumption is that, in two dimensions, the force bal-
ance equation becomes a hyperbolic equation so that a stress transmission
phenomena appears trough certain preferred directions. Because it couldn’t
explain the stress dip on sand pile, more general models called “Oriented
Stress Lineary” [38] have been formulated. On the other hand Edwards [39]
performed a description based on the presence of arches on the sand heap
which only supports their own weight. A consistent implementation of Ed-
ward’s picture has then been provided by the “Fixed principal axes model”
which can be seen as a direct model for stress propagation and was shown
to provide history dependence. A detailed review and comparison of these
models can be found in [39]. Although pertinent in 2D, these models seem
to be difficult to generalize in 3D [21].

3.3 Elastic modeling

Contrary to the previous models, elastic models consider a displacement field
on granular matter from which an elastic strain field can be calculated. It
starts from the simple idea that the grains deform elastically. It is crucial
to keep in mind that when sand behaves like a solid, it is like a very special
solid and therefore its global behaviour is still very different from that of an
elastic body. The solid state is only stable under specific conditions. In soil
mechanics, it is common to use yield criterion, which specify when plastic
flows happen. In this part, the linear elastic framework is reviewed and its
applicability to granular systems is discussed.

3.3.1 Elastic strain

The linear elasticity theory [28] describes the deformation of elastic bodies
subject to different loading conditions. When an elastic body is loaded,
deformations appear, which can be usually described by a displacement field
ui. Here, the term “elastic” means that these perturbations are reversible
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i.e if the loading is released, the body comes back to its initial state; the
elastic displacement leads to a reversible energetic change. Assuming small
strains( ∂ui

∂xj
<< 1) and rotations, the elastic deformation can be expressed

as a function of the elastic displacement through the following kinematic
relation

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (3.8)

The trace of the strain tensor refers to volume change, its opposite, noted
∆ = −εll is positive when the body is in a compressed state. The deviatoric
strain εDij = εij − εll/3δij accounts for the distortion. In the same way, the
stress tensor σij can also be decomposed into a pressure part P = σll/3 and
the a deviatoric stress σDij = σij − Pδij which quantifies shearing efforts due
to a state of stress.

3.3.2 Isotropic linear elastic material law

In the case of an isotropic linear elastic material, the Hooke law postulates
a linear relation between stress and strain tensors :

σij = K∆δij − 2GεDij . (3.9)

where K and G are the bulk and shear modulus respectively. The bulk
modulus quantifies the resistance of the solid to volume changes and the
shear modulus is the resistance to volume preserving shear deformations. The
stress-strain relations can be expressed in term of the fourth order stiffness
tensor Cijkl

σij (εkl) = Cijklεkl. (3.10)

The symmetry of the stress tensor and the existence of a elastic strain en-
ergy (see part 3.3.3) implies symmetric properties which reduces it to 21
independent values

Cijkl = Cklij = Cjikl = Cijlk. (3.11)

It is also current to define the compliance tensor Sijkl as

εij (σkl) = Sijklσkl. (3.12)

3.3.3 Strain energy density

When an elastic material is deformed, it accumulates an elastic energy den-
sity. In this work W denotes the elastic strain energy density. The strain
energy increment is linked to the strain increment through the following re-
lation

∂W = −σij∂εij. (3.13)
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In the case of linear isotropic material, the energy is thus given by

W =
1

2
K∆2 +Gε2

s. (3.14)

The first term accounts for the energy due to compression, and the second
one for shearing. Notice that the stiffness tensor can also be expressed as a
function of the elastic energy (which justifies the first relation of (3.11))

Cijkl = − ∂W

∂εij∂εkl
. (3.15)

The values of the stiffness is determined by the Hooke law

Cijkl =

(
2

3
G−K

)
δijδkl −G (δikδjl + δjkδil) . (3.16)

The stability of the elastic energy requires that the strain energy density
to be a convex function of strain [40]. Being a quadratic function of the
compression and the shear, the linear isotropic elastic energy satisfies this
condition.

3.3.4 Shortcomings of linear elasticity to model granular matter
in solid state

The stress-strain relation of the Hooke law enables to close the force balance
and stress distributions can be calculated in this way. The linear elasticity
theory can model the elastic behaviour of a wide range of materials (metals,
glass, polymers,...) submitted to small deformations. But linear isotropic
laws are not appropriate to describe granular materials. The stress-strain
relations (3.9) are linear and thus doesn’t account for the stiffness dependence
on stress currently observed on the granular Matter [41] and for dilatancy
and contractancy. Although the behaviour of each grain can be modelled as
linear elastic, the mechanical behaviour of an amount of grain is not linear
elastic. Sand does not always exhibit a solid behaviour: there exist a state
from which the granular matter starts to flow, and soil mechanicians use
elastoplastic laws to account for that. In plasticity theories, a yield criterion
must be formulated to determine when plastic flows appear. Finally, if the
Hooke law could model sand, it would mean that sand has the same behaviour
during loading or unloading, what is not the case. This property is sometimes
called incremental non-linearity and any relevant continuum model should
include it.
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3.4 Plasticity

3.4.1 Plastic strain

Plastic models describe the non-reversible deformation of a material submit-
ted to applied forces. Generally, in the beginning of a loading process, a solid
body exhibit an elastic behaviour. After a certain loading time, irreversible
effects occur and plastic contribution must be taken into account in the total
deformation field : ui = uei + upi . To specify when plastic deformations ap-
pear, plasticity theories formulate yield criterion. Plastic models have been
adapted for granular systems to model the transition from the solid state to
the fluid one. Different yield surface and flow rules have been proposed in
the literature [22]. Some of them will be introduced here.

3.4.2 Invariants to describe yield surfaces

Principal stresses and invariants are often used to formulate yield criterion
or energy density. In a stressed body, it is always possible to find three
planes where the stress vector is normal to the plane and does not have
shear components. These three stresses are called the principal stresses σpi .
The strain and stresses have respective invariants Ii, whose values do not
depend on the coordinate system. It can be the three principal stresses but
it is also useful to express it in term of the stress

I1 =
σii
3

= P, (3.17)

I2 =
1

2
(σiiσjj − σijσji) , (3.18)

I3 = det (σij) . (3.19)

The deviatoric stress tensor also has a set of invariants. The principal direc-
tions of the deviatoric tensor are the same as the principal directions of the
stress tensor and the invariants are given as

J1 = 0, (3.20)

J2 = σDijσ
D
ij =

1

3
I2

1 − I2 ≡
σ2
s

2
, (3.21)

J3 = det
(
σDij
)
. (3.22)

These invariants are often used in the formulation of yield criterion. It is also

useful to use the strain invariants, the shear strain εs =
√
εDijε

D
ij is defined as

the second invariant of deviatoric strain tensor.
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3.4.3 Mohr Coulomb failure criterion

Coulomb studied the stability of granular matter submitted to forces. He
found that plastic failure appears if the shear stress τn on a plane exceed a
constant fraction of the normal stress σn [22]:

|τn| > µσn + c. (3.23)

where µ is the coefficient of friction and c the cohesion. In the case of
cohesionless material c is equal to 0. Assuming the analogy with solid friction
developed in (2.5.2), the angle of friction is defined such that tanφ = µ. It
depends on the nature of the material and ranges from 20 and 50◦. This
criteria can also be expressed in term of the principal stresses, according to
the Mohr-Coulomb failure analysis [22]:

σp1
σp3

<
1 + sin(φ)

1− sin(φ)
. (3.24)

3.4.4 Drucker-Prager yield function

Generally used in the soil mechanics, the Drucker-Prager [23] yield surface
is an approximation of the Mohr-Coulomb criteria that accounts for the hy-
drostatic pressure component of the stress. Plastic effects appear if :

σs
P
> α, (3.25)

where α is a material parameter which must be determined experimentally.
Because α is often difficult to measure, it is preferable to express it as a
function of the angle of friction. In many soil mechanics applications, it is
assumed that the Drucker-Prager yield surface circumscribes that of Mohr-
Coulomb and thus the following relation holds [22]

α =
2 sinφ√

3 (3− sinφ)
. (3.26)

In the case of strain plane deformation it reduces to [22]

α =
sinφ√

2
. (3.27)

4 Jiang-Liu hyperelastic constitutive model

4.1 Hyperelastic constitutive law

Hyperelastic models are generally used to describe materials displaying non-
linear stress-strain behaviour, even for small deformations [42]. The terms

15



“hyper” means that the stress-strain relation is derived from an energy po-
tential, in opposition to “hypo”. Once formulated, the expression of strain
energy density determines the stress-strain relation. The modelling effort is
then reduced to finding a relevant scalar expression for the strain energy den-
sity and it ensures that the deformations of the material are reversible [42].
For an isotropic material, the energy does not depend on the loading di-
rection of the material, which means that it must be function of the strain
tensor invariants.

4.2 Granular energy density

First attempts to express non-linear stress-strain relations can be found in
the early work of Boussinesq [12] who formulates stresses-dependent bulk and
shear moduli. In an early work, Goddard [11] developed a hyperelastic ap-
proach and proposed nonlinear strain energy functional to describe the sand
at solid state. Liu and Jiang, in a theory called granular elasticity [23], starts
from a strain energy density which is a special form from those formulated
by Goddard:{

If ∆ > 0 W (∆, εs) =
√

∆
(

2
5
B∆2 + Aε2s

)
= B
√

∆
(

2
5
∆2 + ξε2s

)
If ∆ < 0 W (∆, εs) = 0

(4.1)

with ∆ = −εll, ε2
s = εDijε

D
ij , ξ = B/A and A, B are two material parameters.

The elastic energy is a function of the first invariant of the strain tensor
and of the second invariant of deviatoric strain. It could be also possible
to add a dependence on the third invariant of strain, as initially proposed
by Goddard [11], but this extension is not considered here as it is assumed
that the no linear behaviour of sand can be described only by taking account
for shear and compression deformations. This energy is only defined for
compaction states (∆ ≥ 0) and its expression makes it consistent with the
Hertz contact (cf equation (2.3)). Liu and Jiang [14] demonstrated that the
elastic energy is convex if the following conditions are satisfied

∂W

∆
> 0,

∂2W

∂∆2
> 0, (4.2)

∂2W

∂ε2
s

> 0,
∂2W

∂ε2
s

∂2W

∂∆2
>

(
∂2W

∂εs∂∆s

)2

. (4.3)

The three first conditions leads to positivity of the elastic parameters A
and B. The fourth condition can be calculated from the expression of the
energy [24]

εs
∆
≤
√

2ξ. (4.4)
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This inequality can also be expressed with the stress tensor invariants

σs
P
≤
√

1

ξ
. (4.5)

Equation (4.5) is the Drucker-Prager variant of the Coulomb condition, a
yield function presented in the part (3.4.4). It can be observed from Figures 5
and 6 that the elastic energy is composed of a convex and a concave part,
Figure 5 shows the remarkable property that the stability properties of the
elastic energy are fixed by the Drucker-Prager criteria. The angle of friction is
determined by the parameter ξ which is the ratio of the two elastic constants
A and B. In contrary, the elastic strain function from which the Hooke law
cenbe derived, is a convex function of the shear and of compression according
to (3.14) and doesn’t exhibit any instabilities.

4.3 Stress-Strain relation

Starting from (4.1), the first derivate of the energy can be calculated to get
the stress tensor

σij (εkl) = −∂W
∂εij

= K∆δij − 2GεDij . (4.6)

where the bulk and shear moduli are given as a function of the strain as

K = B
√

∆

(
1 +

ε2
s

2∆2ξ

)
, (4.7)

G =
B
√

∆

ξ
. (4.8)

The pressure P can thus be calculated as

P = B∆
3
2 +

1

2
A
ε2s√
∆
. (4.9)

and the shear stress σs
σs = 2A

√
∆εs. (4.10)

The pressure is composed of two terms, the first one, also employed in the
Boussinesq model [10], reflects the non linear increase of the pressure under
isotropic compression. This is in agreement with the results of the EMT,
which also predict a dependence on the pressure in ∆3/2. The physical inter-
pretation of the second is more difficult as it adds a non-trivial dependence on
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Figure 5: Graph : Plot if the elastic energy W in µJ for ∆ and εs varying
from 0 to 10−4. The colored zone corresponds to the convex part of the
elastic energy. The white zone corresponds to the concave part.

Figure 6: Plot of the values of the elastic energy W in µJ at constant shear,
εs = 5.10−4.
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the shear to the elastic compression, which could be explained by Reynolds
dilatancy. But one should keep in mind Reynolds dilatancy may be explained
by plastic effects rather than elastic ones, and the contribution to elastic ef-
fects on dilatancy seems a priori difficult to quantify. This term is however
a direct consequence of the stability properties of the energy density. The
variation of shear modulus G in

√
∆ is also found in EMT. The Figures 7

and 8 show the pressure and the shear stress as function of the compression at
constant shear rate. It can be observed that the pressure exhibits a minimum
at εs/∆ =

√
6ξ, which is situated in the concave domain of the elastic strain

energy. Beyond the yield region there is qualitatively, no difference with a

linear elastic law, the compressibility ∂P
∂∆
|εs=

3B
2
√

2
− Aε2s

4∆3/2 is positive. The
region where it becomes negatives and then displays a non-linear behaviour,
is situated on the concave domain of the elastic strain energy function.

4.4 Stiffness tensor

The calculation of the stiffness matrix leads to the following expression

Cijkl = A
√

∆

((
ε2
s

4∆2
− 3B

2A
+

2

3

)
δijδkl − δikδjl − δilδjk +

1

∆

(
δklε

d
ij + δijε

d
kl

))
.

(4.11)
Assuming that elastic strain dominate in static stress distribution and that
small strain increments lead to a reversible stress transformation, a compar-
ison with experimental data is possible. The values of the shear and bulk
modulus of the Liu model were thus successfully compared to the experiments
of Kuwano [10, 14].
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Figure 7: Plot of the pressure at constant shear, εs = 0.002.

Figure 8: Plot of the shear stress at constant compression ∆ = 0.0002.
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5 Numerical application: calculation of stress

distribution in sand piles with the Jiang-

Liu model

Numerical applications concerning static stress distributions in silos, under
point loads and in a sand pile using the Jiang-Liu model, introduced in the
previous part, can be found in [24, 39]. Good agreements with experimen-
tal data were observed. Particularly in the case of silos, it reproduces the
stress saturation currently observed. The anisotropic response of a sheared
granular layer subjected to a point-load at his surface was calculated [25].
Humrickhouse [39] numerically tested the influence of adding a dependence
on the third strain invariant on the strain energy density. Numerical applica-
tion of the stress distribution in a sand pile is detailed here. The influence of
the geometry of the problem on the stability of the solution are investigated.
The approach detailed here is based on a discretization of the domain with
the finite element method. The Newton-Raphson iterations are used to solve
the resulting non-linear equations. The finite element freeware Freefem [39]
is employed to discretize and solve the equations.

5.1 Problem setting

2D problem A two dimensional sand heap is considered. The only external
forces applied is the gravity force gi. x and z correspond to the horizontal
and vertical axis respectively. The displacement, strain and stress in the y
direction are assumed to be zero. The two components of the displacement
fields are the two unknowns of the force balance equation, which is a second
order system of coupled differential equations in ux and uz. As Boundary
conditions, grains are glued at the bottom of the sand pile ∂Ω2 and the
normal stress equals to zero on the free surface of the pile ∂Ω1:

∂σij

∂xj
= ρgi in Ω

σijnj = 0 in ∂Ω1

ui = 0 in ∂Ω2

σij = B∆
√

∆
(

1 + ε2s
2∆2ξ

)
δij − B

√
∆
ξ
εDij in Ω

εij = 1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
in Ω

(5.1)

Because of the non-linearity of the strain-stress relation, (5.1) is a system
of non linear differential equations in ui, and therefore requires a numerical
method to approximate the solution. The Newton-Raphson will be used here.
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Weak formulation In the finite element analysis, the principle of virtual
work is currently used to write the force balance equation in an integral form.
It consists on finding a displacement field ui which satisfies∫

Ω

σij (εkl) ε
∗
ijdΩ−

∫
Ω

f vi u
∗
i dΩ = 0, (5.2)

for all the virtual displacement field u∗i . In order to simplify the formalism of
equation, Voigt notations are introduced, using the symmetrical properties
of the strain and stress tensor

εi ≡

 ε1

ε2

ε3

 =

 ε11

ε22

2ε12

σi ≡
 σ1

σ2

σ3

 =

 σ11

σ22

σ12

 . (5.3)

The compression and the traceless part of the deformation can be expressed
as

∆ = −ε1 − ε2

 εD1εD2
εD3

 =

 ε1−ε2
2

ε2−ε1
2
ε3
2

 . (5.4)

The stress-strain relation reads σ1

σ2

σ3

 =

K∆− 2GεD11

K∆− 2GεD22

−2µε12

 =

K∆−G(ε1 − ε2)
K∆−G(ε2 − ε1)

−Gε3

 . (5.5)

Because σijεij = σiεi, the weak formulation can now be written in a more
simplified form as ∫

Ω

σi (εp) ε
∗
i dΩ−

∫
Ω

f vi u
∗
i dΩ = 0. (5.6)

Finite element discretization The displacement field is interpolated at
a set of n nodes. The unknown displacement vector at each nodal point is
written uai . A finite element space can be generated from given geometries,
the canonical basis is built with continuous piecewise quadratic functions
Na(x, z), which enables to interpolate the displacement field

ui(x, z) =
n∑
a=1

Na(x, z)u
a
i . (5.7)

The virtual velocity field can therefore be interpolated in a similar fashion
and finally Eq (5.6) is approximated to a alegraic system of equations, that
can be solved using efficient iterative solvers. More details about the way to
build the stiffness matrix can be found in [42].
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Newton-Raphson iterations Because the stress-strain relation is non-
linear in ui, the Newton-Raphson process is used to approximate the solu-
tion, the same procedure is sometimes employed for the solution of static
hypoelastic problems [42]. Let suppose that unp is solution of (5.6). At the
next integration step the new displacement field un+1

p is expressed the sum
of the old one and a displacement increment δun+1

p :

un+1
p = unp + δun+1

p . (5.8)

By defining εnp as εnp = εnp (unl ) , the term is also expressed as:

εn+1
p = εnp + δεn+1

p . (5.9)

The weak formulation is given by:∫
Ω

σi
(
εnp + δεn+1

p

)
ε∗i dΩ−

∫
Ω

f vi u
∗
i dΩ = 0, (5.10)

and the first term can be linearized at the first order of εp :∫
Ω

(
σi
(
εnp
)

+
δσi(ε

n
p )

δεnp
δεn+1

p

)
ε∗i dΩ−

∫
Ω

f vi u
∗
i dΩ = 0, (5.11)∫

Ω

(
σi
(
εnp
)

+ Cip(ε
n
p )δεn+1

p

)
ε∗i dΩ−

∫
Ω

f vi u
∗
i dΩ = 0, (5.12)

where Cip ≡ δσi

δεn
p

is 3-3 symmetric matrix, and (5.12) leads to :∫
Ω

(
σi
(
εnp (unl )) + δσi

(
unl , δu

n+1
l

)
ε∗i
))
dΩ−

∫
Ω

f vi u
∗
i dΩ = 0. (5.13)

(5.13) is a linear system equations in δun+1
x and δun+1

z .

Convergence The convergence of the Newton-Raphson iteration strongly
depends on the proximity of the initial guess with the solution. If the guess
is sufficiently close to the correct answer, it converges quadratically. Using
the non-linear elastic energy for this work, it is also crucial that the guess
satisfies the convexity condition: εs

∆
6
√

2ξ. A way to obtain a pertinent
guess can be to solve the force balance equation for a linear stress-strain
relation which approximates the real ones. But for the case of geometries
displaying a great angle of inclination, it doesnt ensure that the stability
condition (4.4) is respected. It is then reasonable to start from the following
guess which assures a compaction state and the energy to be convex:

u
(0)
i =

[
u0
x(x, z)
u0
z(x, z)

]
=

[
0

−10−5(z −H)/H

]
. (5.14)
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Algorithm Iterations are performed until

∣∣∣∣∣δu(n+1)
i

un+1
i

∣∣∣∣∣ becomes smaller than

the a tolerance value tol. The algorithm is given by

1. Setting the value of the guess using (5.14)

2. Assuming u
(n)
i is known, calculating δu

(n+1)
i by solving (5.13)

3. u
(n+1)
i = u

(n)
i + δu

(n+1)
i

4. If

∣∣∣∣∣δu(n+1)
i

un+1
i

∣∣∣∣∣ 6 tol then stop calculation. Else go to 2. where tol is the

tolerance of the solution.

5.2 Results

Sand Pile with constant slope The force balance equation is solved
on a triangular geometry, the mesh system can be seen in Figure 9. The val-
ues of elastic constants of the Jiang-Liu constitutive law (4.6) are taken to be
A = 5100 MPa and B = 8500MPa, what gives to ξ = B/A the value 5/3, as
suggested by Jiang and Liu [1]. For an inclination angle of 26◦ calculations
were stopped after 6 iterations for a tolerance of 1.10−4.
The values of the elastic strain tensor can be seen in Figures 10-12 and Fig-
ures 13-18 illustrate the displacement and stress fields. The profile of the
normalized stress on Figure 16 provides qualitatively good agreements with
the pressure profile measured by Vanel at al [4] in the case of a sand pile con-
structed with a sieve. The maximal value of the normalized stress is reached
at the point(−L/2; 0). The displacement in the z direction illustrated in
Figure 17, is always negative due to the axial compression of the pile due
to his own weight. Figure 19 shows the value of the convexity coefficient
defined as Cvx = −εs/∆ +

√
2ξ, which must stay positive to ensure that

yield is not reached. The resulting deformed geometry can be observed in
Figure 20, which is obtained from the initial geometry by making the follow-
ing transformation (as post processing): any point A(xa, ya) is translated to
A’(xa + ux|A, ya + uy|A).

Sand Pile with non constant slope A simple observation of dunes
and sand piles reveal that they do not have a regular triangle profile and
the slope is often inclined. The force balance equation is solved one the
geometries of the Figures 23-26. Simulations show that it is possible to find
elastic solutions as long as the slope is not higher than a critical value.
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Figure 9: Mesh System. Figure 10: Elastic Strain εzz.

Figure 11: Elastic Strain εxx. Figure 12: Elastic Strain εxz.

Figure 13: Normalized displace-
ment ux/H.

Figure 14: Plot of the normalized
displacement ux/H at z = 0.4H.

Figure 15: Normalized stress
σzz/ρgH.

Figure 16: Normalized σzz/ρgH at
the bottom of the pile.
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Figure 17: Normalized displace-
ment uy/H.

Figure 18: Normalized displace-
ment uy/h at x = 0.

Figure 19: Plot of the convexity
coefficient.

Figure 20: Plot of the deformed
geometry (×25000).

Figure 21: Normalized stress
σzz/ρgH on a pile with strong
slope variations.

Figure 22: Plot of the normal-
ized stress σzz/ρgH on a pile
with small slope variations.
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Figure 23: Normalized stress
σzz/ρgH on a pile with a flat apex.

Figure 24: Plot of the normalized
stress σzz/ρgH on a pile with two
apexes.

Figure 25: Plot of the normalized
stress σzz/ρgH.

Figure 26: Plot of the normalized stress σzz/ρgH.

Figure 27: Plot of the convexity coefficient at the fourth iterations of the
Newton process.
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Figure 28: Variation of the maximal angle of repose with the parameter ξ.

Unstable solutions For the same values of the materials parameters,
solutions cannot be calculated for an angle of pile greater than 26◦. It was ob-
served that if during the Newton-Raphson iterations, the stability condition
is violated, then the linear system obtained from (5.13) cannot be solved, this
is a natural consequence of lost of convexity of the elastic energy. Figure 27
show the value of the convexity coefficient after 4 iterations in the Newton
process, the white zone showing the region where the energy becomes con-
cave. Theses instabilities appear near the free surface of the sand. This can
also be observed on the Figures 25 and 26.

Relation between ξ and the angle of repose In granular elasticity,
the parameter ξ fixes the yield surface. The dependence on this material
parameter with the maximal angle of repose obtained from the computations
is investigated here. For each value of ξ, static solutions on the geometry of
the Figure 9 are calculating starting from small inclination angles of the pile
and increasing it until no static solutions can be calculated. The maximal
value of the inclination angle is referred to the angle of repose of the material.
This operation is repeated by varying ξ from 0.5 to 2, and by setting the
elastic parameter B to 8500 MPa. Notice that the inverse procedure that
involve setting the value A also lead to the same results. Figure 28 show that
static solution can be obtained for angle of repose varying between 20◦ and
40,◦, and that the maximal angle of repose is inversely proportional to ξ.

6 Summary and conclusion

Although granular matter sometimes behaves like a solid, it displays some
typical characteristics like yield, non-linear stress-strain relations, Reynolds
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dilatancy that any relevant continuum model should be able to reproduce.
Some simple constitutive models assuming relations between stress compo-
nents, were shown to reproduce correctly stress distributions in silos but are
based on some questionable hypothesis. Some disagreements with experi-
mental data were also observed and model extensions proposed [36]. On the
other hand, the quasi-elastic approach, which postulates non-linear stress
strain-relations, is a powerful tool to account for this effects. Coupled with
some thermodynamical considerations, the Granular Elasticity approach de-
veloped by Liu et al. [1] was shown to capture the main features of the
granular solid. One interesting point of this theory is that the elastic strain
energy is either a convex or a concave function of the elastic variables and the
energy becomes concave when the Drucker-Prager yield surface is violated.
The expression of the elastic energy provides a stress-strain relation compat-
ible with Hertz contacts which can be used to close the system of equations
and to calculate static stress distributions. Resulting elastic coefficients were
compared with experiments [14], providing good agreements. A numerical
example detailed in this work showed the relevance of this approach: the force
balance equation was solved using the Newton-Raphson method on two di-
mensional domains discretized with finite elements. Numerical results shows
that static stable solutions can be found only when the slope of the pile is
smaller than a critical value which can related to the material parameter ξ.
Stress distributions were computed not only on triangular domains but also
for more complicated geometries.

However there is some limitations on the approach presented here. Vanel
at al [4] experiments show that the stress profiles in a sand pile depends on
how sand is filled. It suggests that the elastic variables must be a result
of all the sand “history”, and that the predictive power of static theories is
restricted by the lack of information from the past. Although some static
models have been built to account for the history dependence, one should
consider that a calculation of static stress distributions should be seen as
a result of a more general description of granular systems which includes a
description of the dilute and dense flows and of the transition between the
fluid state and the solid ones.
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