To appear in:

Kurt Rothermel, Radu Popescu-Zeletin (Eds.): Proceedings of the

First International Workshop on Mobile Agents, MA’97, April 7-8th 1997, Berlin, Germany.
Lecture Notes in Computer Science Nr. 1219, Springer Verlag 1997. ISBN: 3-540-62803-7

The Architecture of the Ara Platform for Mobile Agents

Holger Reine and drsten Stolpmann
Dept. of Computer Science
University of Kaiserslautern, Germany
{peing stolp}@informatik.uni-kl.de

Abstract We describe a platform for the portable and secxeelgion of mobile agents written

in various interpreted languages on top of a common run-time core. Agents may migrgite at an
point in their &ecution, fully preserving their state, and maghlange messages with other
agents. One system may contain gnairtual places, each establishing a domain of logically
related services under a common security pajiorerning all agents at this place. Agents are
equipped with allevances limiting their resource accesses, both globally per agent lifetime and
locally per place. W discuss aspects of this architecture and report about ongaikg w

Keywords migration, multi-language, interpretdrcl, C, byte code, ¥a, persistence, authenti-
cation, security domain.

1. I ntroduction

Mobile agents ha raised considerable interest as & nencept for neterked com-

puting, and numerous sofane platforms for a&rious forms of mobile code VY&
recently appeared and are still appearing [CGH95, CMR+96, GRA96, HMD+96,
LAN96, LDD95, JRS95, RAS+97, SBH96]. While there seems i@ leameged a

wide agreement about the general requirements for such systems, most notably porta-
bility and security of agentxecution, man issues are still debated, as witnessed by

the numerous approachegtoring diverging solutions. Prominent issues here include

the right balance between necessary functionality and incurred cdppbnd the

degree of compatibility with@sting models, languages, and safte.

The Ard system is a mobile agent platform undevelepment at the Uwersity of
Kaiserslautern. Its design rationale isattd mobility to the well-deeloped vorld of
programming, rather than attempt toild a nev realm of “mobile programming”.
Mobility should be intgrated as comfortably and unintnedly as possible withxést-

ing programming concepts — algorithms, languages, and programs. A mobile agent in
Ara is a program able to me at its an choice and without interfering with itgexu-

tion, utilizing various established programming languages. Complementing this, the
platform praiides fcilities for access to system resources and agent communication
under the characteristic security and portability requirements for mobile agents in het-
erogeneous netwks.

The rest of this paper is structured as folo The subsequent main section will
describe the system architecture of Ara, featuring agecugon, mobility communi-
cation, securityand fwult tolerance. This is folleed by a section discussing selected

1. “Agents for Remote Action”

aspects of mobile agent architecture. A subsequent secties gih account of the
ongoing vork with Ara, and the paper closes with a conclusion sectionxfemsi/e
description of the Ara system will appear in [PEI97].

2. The Ara Architecture

The programming model of Ara consists of agentving between and staying at
places, where tlyeuse certain services, pided by the host or other agents, to do their
job. A place is pisically located on some host machine, and may impose specific
security restrictions on the agents staying at that plagepikg this in mind, agents
are programmed much &kcorventional programs in all other respects, i.ey tverk

with a file system, user intade and netark interiace. Corresponding to the rationale
stated abee, the Ara architecture deliberately abstains both from high-sgent-spe-

cific concepts, such as support for intelligent interaction patterns, and from gomple
distributed services, such as found in disitddl operating systems.

21 System Coreand Interpreters

Portability and security of agentecution are the most fundamental requirements for
mobile agent platforms, portability being an issue because mobile agents should be
able to mee in heterogeneous nedvks to be really useful, and security being atestak
because the agesthost dectively hands wer control to a foreign program of basi-

cally unknavn efectt. Most «isting platforms, while dfering considerably in the
realization, use the same basic solution for portability and security:dtheot run the
agents on the real machine of process@mory and operating systenut lon some

virtual one, usually an interpreter and a run-time system, which both hides the details
of the host system architecture as well as confines the actions of the agents to that
restricted emronment.

This is also the approach adopted in Ara: Mobile agents are programmed in some
interpreted language andezuted within an interpreter for this language, using a spe-
cial run-time system for agents, called tioge in Ara terms. The relation between core
and interpreters is characteristic here: Isolate the language-specific issuesyéog. ho
capture the Tcl-specific state of an agent programmed in the Tcl programming lan-
guage) in the interpretewhile concentrating all language-independent functionality
(e.g. hev to capture the general state of an Ara agent and use that Yargribe
agent) in the core.ol'support compatibility with>asting programming models and
software, Ara does not prescribe an agent programming languggastead praides

an interfice to attachxésting languages. In contrast to most other systems, such as
Telescript [GEM95] or Jaa [ARG96], this separation of concerns mslt possible to
employ several interpreters for dérent programming languages at the same time on

1. There is also the reverse problem of the agent’s security against undue actions of the
host. There is, however, no general solution for this problem; see section 2.4,
"Security" for a discussion of this.

top of the common, generic core, which mgis services, e.g. agent mobility or com-
munication, uniformly @ailable to agents in all languages.

Since part of an agest&ecution state is ingtably contained in its interpretea gven
interpreter necessarily has to be#emded by state capturing functions if the full trans-
fer of the @ecuting agent is desired. Currentiyterpreters for th&cl scripting lan-
guage as well as faZ/C++, the latter by means of precompilation to aficently
interpretable byte code [®B5], hare been adapted to the Ara core, opening up a wide
spectrum of applications. An adaption of tleva language is on theay, and other
languages such as$tal and Lisp are being considered.

The functionality of the system core igpt to the necessary minimum, with higher

level services pnaded by dedicated sesv agents. The complete ensemble of agents,
interpreters and core runs as a single application process on top of an unmodified host
operating system. Fid. shavs this relation of agents, core, and interpreters for lan-
guages calledt and3.

\ mobile Q%agent/

\

|
B-interpreter

system process

bile 2- t
(compiled) mobte Aagen

A-interpreter

A

thread
Ara core I
host operating system I

Fig. 1. High-level view of the Arasystemarchitecture

Ara agents arexecuted as parallel processes, usingsithread package, and are
transparently transformed into a portable representation wéerleg choose to

move. The system also empk processes for certain internal tasksygtempro-

cessey in order to modularize the architecttir&€mploying threads as opposed to

host operating system processesgps the agent management completely under con-
trol of the core and achies superior performance. The use of multiple threads in a
common address space does not induce a memory protection problem here, as protec-
tion is already ensured on a highareleby the interpreters (see belp independent of
hardware fcilities such as prileged processor modes or page protection.

1. If such processes are trusted and not mobile, they may also be compiled to native
machine code for undiminished performance.

Adapting a gien interpreter for some programming language to the Ara core is a
clearly defined procedure. First, it requires the definition of calling agesf¢tubg in

this language for the functions of the core API, andremsely the praision of func-

tions for interpreter managemenpgallg to the core. The job of the stubs is mostly a
matter of data format cearsions and similar intex€e translations. Rarding the
interpreter upcalls, the most prominent functions are those foxtitae#on of an xe-
cuting interpretes state as it is necessary to transfer the agent being interpreted, and
conversely for the restoration of such a state orvaref a migrated agent. Further
during execution the interpreter must ensure that the agent program will not ezl ille
code or access i|al memory locations; interpreters for languages withoysichl
memory access such as Tcl ovalavill ensure this arway. Finally, the interpreter has

to assist the core in the preemiptiexecution of the agent programs by performirgre
ular calls to a core function for time slice seiflance.

22 Mobility

Many applications require agents to bewad not only once from their source to a des-
tination site, nt to move further based upon their intermediate results and perdei
ervironment, and continue their task acrosgesal sites. Br such purposes a wiag
agent needs to carry itxexution state along, fettively making it a migrating pro-
cess. In contrast to systemsvimy code &clusively prior to eecution, e.g. da, Ara
agents can migrate atyapoint in their &ecution through a special core call, named
ara_go in Ara’s Tcl interbice:

ara_agent {puts “Going to ida”; ara_goida; puts “Hello atida!”}

This creates a meagent, gring it a Tcl program (enclosed in braces) xeaite. The
agent will migrate to a place nameld (simply a host name, in this case) and then
print the greeting message there. Thigration instruction mees the agent in whole

to the indicated place and resumes in tkecestate from where it leftfofi.e. directly
after this instruction, while hiding the compity of extracting the agent from the local
system, marshaling it to anoth@ossibly heterogeneous, machine and reinstalling it
there. Furthermore, the act of migration does nieicathe agens' flov of execution

nor its set of data (including locaénables), allwing the programmer to mekthe
agent migrate whener it seems appropriate, withoutvireg to deal with preparation

or reinstallation measures.

Note that while the internal state of avir agent is transferred transparenthis
does not hold for its %dernal state”, i.e. its relations to othstationary system objects
and resources likfiles or communication end points. It might be tempting to add a
software layer ger such stationary resources making them appear as mofgle, ef
tively creating a distrilted operating system. kever, Ara opted aginst this, since

the compl& protocols and tight couplingunlved with this approach do not seem well
adapted to the W-bandwidth and heterogeneous netks tageted by mobile agents.

1. The same could be achieved in a C agent a by calling a C fuActioGo() etc.

Ara agents mee betweerplaces which are both an efobus association to phical
location and a concept of the architecture. Places are virtual locations within an Ara
system, which in turn is running on a certain machinead¢hdn agent iswahys stay-

ing at some placexeept when in the process of wilng between tw of them. In prac-

tice, a place might be run by an ividiual or an oganization, presenting its services.
Service points (see subsequent section), for instance,veagsalocated at a specific
place. More importantly besides structuringwieer, places alsoxercise control wer

the agents theadmit and host (see section 2.4, "Security").

Places hee names which makthem uniquely identifiable and seras the destination

of a migration. A place name in Ara is, in the most general case, alilsf corre-
sponding to the diérent transport protocdisby which the site hosting the designated
place might be reached, e.g. MIME mail, HTTP av iECP On migration, the system

will try the indicated protocols until one of them succeeds. Apart from designating a
protocol and site, place name URLs will contain a local nhame of meaning to the tar-
geted Ara system onlyrhis local name will identify the specific place, using a simple
hierarchical name space.

Agents bear names as well, consisting of a globally unique id, an identification of their
principal, and an optional symbolic name from a hierarchical name space (disjoint
from the place name space).

2.3 Communication

It can be agued whether agent communication should be remote or restricted to agents
on the same machine. Considering that one of the maiwatiotis for mobile agents

was to &oid remote communication in the first place, Ara emphasizes local agent
interaction. This is not to say that agents should be barred froronketacess (which
depends on the poliof the hosting place, see section 2.4). Rathersystem encour-

ages local communication. There asgious options for this, including disk files, more

or less structured shared memory areas (“tuple space”, “blackboard”), direct message
exchange, or special procedure calls, each entailinfigreift ways of access and
addressing. & reasons of é€iency and simplicity Ara chose aariant of message
exchange between agents, yiding client/serer style interaction. The core pides

the concept of aervice poinfor this. This is a meeting point with a well-kmo name

where agents located at a specific place can interact as clients ard faough an

n:1 exchange of synchronous request and reply messages. Each request is stamped
with the name of the client agent, and the eemay use that in deciding on the reply

Service points pnade a simple and &€ient mechanism for interaction between heter-
ogeneous agents. WWever, for a widely deplged real-verld mobile agent system an
integration with &isting, more structured service int&ces such as CORHOMG96]
would certainly be a preferable altermati

In spite of the emphasis on local interaction, a simple asynchronous reegssging

1. Currently, only raw TCP is supported.

facility between agents will be added for pragmatic reasons, appropriate e.g. for simple
status reports, error messages or askedgments which do notward the werhead

of sending an agent. M@ver, to aoid remote coupling, the messagiragifity will

not involve itself in ay guarantees ainst message losses. Messages will be addressed

to an agent at a place, named gslaned abge. A message will be deéred to all

agents at the indicated place whose names are subordinates of the indicated recipient
name in the sense of the hierarchical agent name space. This addressing scheme may
be used to send place-wide multicast messages or implement applicatiomaes-

parent message foarding by installing a subordinate proxy agent.

Quite apart from programming the agents’ actions, the term “agent language” is some-
times also applied to the language interacting agents, in particular “intelligent” ones,
use for mutual communication. ever, there is no set of agreed basic functionality

for such languages, and it is a current issue of research to firfpl yet general
patterns of agent communication (see [MLF95] for aangple). Ara, in particular
leaves the choice of communication language opeferiofj only a general data
exchange mechanism; applications may implement their customized interaction
scheme on top of this.

2.4 Security

The most basic layer of security in the Ara architecture is the memory protection
through the interpreters as described in section 2.1. Besides this fundamental and
undiscriminating protection, the tifent places»asting on an Ara system play the
central role in the Ara security concept. An Ara place establistemainof logically

related services under a common security paverning all agents at that place.

Allowancesto Limit Resour ce Access

The central function of a place is to decide on the conditions of admission, if at all, of
an agent applying to entérhese conditions argressed in the form of allowance
conceded to the agent for the time of its stay at this place. Amaalb® is a @ctor of
access rights toarious system resources, such as files, CPU time, meomodysk
space. The elements of suchextor constitute resource access limits, which may be
quantitatve (e.g. for CPU time) or qualitaé (e.g. for the netark domains to where
connection is allwed). An agent migrating to a place specifies thevaliwe it desires

for its task there, and the place in turn decides whawvatioe to actually concede to

the applicant and imposes this on the entering agent. The system core will ensure that
an agent neer oversteps its allwance.

Besides the local aleance conceded by an agenturrent place,very agent may

also be equipped with a global allance at the time of creation. The global\adace

puts averall limits to an agerg’actions throughout its lifetime fettively limiting its
principal’s liability. The system core ensures that a place wileneoncede a local
allowance to an agent whiclk@eds the agestglobal one. Agents may inquire about
their current global and local allance at aytime, and may transfer amounts of it
among each other under certain conditions. Agents may also form groups sharing a
common allavance.

Entering a Place

Places may be created dynamicallly specifying a name and admission function

The admission function has a predefined iaaf receiing the agens name and
authenticationstatus (i.e. the strength, if ygnof its authentication), along with its
desired local allwance as input parameters, possibly accompanied by further security
attributes such as the agenpast itinerary record. The admission function returns
either the local allwance to be imposed on this agent, or a denial of admission. Each
place may thus implement itsvo specific security polic discriminating between
individual agents, principals, or source domains, and controlling resource access with
the appropriate granularity

When an agent resumes after a successful migration and admission procedure, it may
check its local allwance, disceering to what etent the place has honored its desires.
This enables the agent to decide on s avhat to do if it finds the conceded local
allowance insufcient. An agent which has been denied access to the destination place
of a desired migration is sent back to its source place, there toeligbe &ilure in

the form of an error return from its migration call.

General resource access restrictions as imposed yaaltes are an adequate mecha-
nism for securing common accesses kllocating memorywriting a file or sending to

a certain netark location. Havever, certain highetevel security requirements such as
enforcing that only data of a specific format are sent, or that congistenditions
across seeral files are preseed, require correspondingly higHewel access restric-
tions. This may be achied by using service points as controlled outlets of the security
domain, sergd by a trusted agent maintaining those higlleequirements. In partic-
ular with respect to such outlets, the security domain concept of Ara places is some-
what similar to thepadded cellsecurity model of Safe-Tcl [QW96], kut realized
independent of a specific language and also advaemore comprehens, regarding
allowances for CPU time and memory consumption.

Open Problems

The implementation of authentication will be based on digital signatures using public
key cryptograply. However, since a mobile agent usually changes during its itinerary

it cannot be signed in whole by its principal, which emk dificult to authenticate

the changing parts of the agent. It seems most desirable that the agdatshould be

signed by the principal; this, vaver, would preclude dynamically generated code as

it is common e.g. in the Tcl programming language. Other securityargleompo-

nents of a mobile agent might be authenticated by dedicated schemes, e.qg. its itinerary
record can be incrementally signed by the nodes the agent has passed through. In addi-
tion to authentication, publicel¢ cryptograply will also be used to optionalgncrypt

Ara agents during migration to protectatst eaesdropping.

As with ary cryptographic scheme, the question ef Histribution must be resobd.
As this is a general problem not specific to mobile agentsyinvay, Ara does not
define specific support for thisytassumes theistence of a well-knen trusted pub-
lic key sener.

Quite apart from the security of the host systemiresgy malfunctioning or malicious
agents, which is indispensable foryamobile agent platform to be practically
accepted, there is also theeese problem of the agesmtecurity aginst undue actions

of the host, e.g. $jing on the agerd’content or modifying it to an harmfuffedt. It is
fortunate that the agentsecurity requirements are not agese in practice as those of

the host, since there is no general solution for the problem of agent setueitira
system will pr@ide certain measures, such as protecting immutable parts of the agent
(e.g. its code) ainst tampering by a digital signature of its principal; other threats,
however, such as gpng on the agerd’ content, cannot usually be sedvby technical
means.

25 Fault Tolerance

When maing through a lage and unreliable netwk such as the Internet, mobile
agents maydil a prey to manifold accidents, e.g. host crashes or line breahkslo
Rather than trying to anticipate all potential lif, Ara ofers a basic means of reco
ery from such accidents: An agent can createegpoint i.e. a complete record of its
current internal state, atyatime in its &ecution. Checkpoints are stored on some per-
sistent media (usually a disk), and can be used to later restore the agent to its state at
the time of checkpointing. The wibus application for this scheme is for an agent to
leave a checkpoint behind as a “back-up yYopefore undertaking a rigkoperation.
Applications may hild their avn fault tolerance schemes upon this. The system will,
however, provide a fcility to implicitly checkpoint all locally xisting agents in the
event of an emegreny shutdavn.

3. Discussion

Most of the technical problemsvilved with mobile agents appear sate in princi-

ple. Havever, considerable wrk is still needed to ak at solutions which strika sat-
isfactory balance between conflicting requirements, such as necessary functionality vs.
incurred compleity, security vs. fleibility and performance, or conceptual purity vs.
compatibility with eisting models, languages, and safter. This section discusses
three selected issues of debate andamakcase for Ara’'decisions.

Language | ntegration

Mobile agent systems are often discussed from point @f efeprogramming lan-
guages, suggested by promineraraples [GEM95, ARG96]. Heever, integrating
concept and language blurs thefelénces between both and raises the hurdle for
widespread use by requiringmekills and tools and hindering the interoperation with
existing software. Analogous »perience from distrilted programming rather sug-
gests to emplplibraries and run-time systems instead of enhanced programming lan-
guages, intedced from whateer languages seem appropriate for the application.
Experience has stm here that distrilition handling is not intertwined so intimately
with the local processing as to require language suppcytstrongly}, relatve to the
disadwantages of changing the language. It is remarkable in this respectghahe

seminal Elescript system, a typicat@mple of the intgration of language and system,
has recently been suggested by its creator to play the role of oneerdl danguage
ervironments on top of a common platform [WHI96].

L ocation Transparence

Distributed object systems and distribd operating systems often &tritovards the
goal of location transparence, i.e. the property of a logical object thayggahoca-
tion is neither discernible nor important. It might bgusd that a mobile agent plat-
form seek such transpargntoo, for maximum corenience. Hwever, the wide area
networks tageted by mobile agents tend to raakistrituted objects unwieldy to use.
Moreover, there is a conceptual mismatch between location transgeaaddhe prin-
ciple of mobile agents toxplicitly move between locations. Both problems are rooted
in the diferent underlying netark assumptions, since hiding distances is only practi-
cable assuming reasonable netkvbandwidth and reliability; otherwise it seems sen-
sible to admit the distance and deal with it. Accordintilg distriuted functions in a
mobile agent system should bepk to a minimum.

Performance

Performance has not been as much in the focus of mobile agent systemsoagraty

ing systems. This may stem from the idea of an agent performingyeslatw and
high-level operations, such that its performance is mostly determined by that of the
underlying host system. While this may be true for anviddal agent, the perfor-
mance gerhead of an agent platform on a semxecuting hundreds of agents may be
crucial. Analogous »xperience from WWW seers strongly suggests the use of
threads instead of operating system processes. Using threads in a common address
space alles highly eficient contat creation and switching without sacrificing protec-
tion, since the latter may ceeniently be ensured by the agent interpreters. Meareo

the threads may be scheduled non-preemigtiwhile preserving sftitiently fine-
grained preemption semantics from point ofwi the agents, achiable by perform-

ing time slice checking synchronously in the run-time system (as opposed to an asyn-
chronous interrupt handler). Non-preemptithread scheduling enables parallelism
without synchronization within the run-time system, further benefiting performance.

4, Ongoing Work

Both the core mobile agent platform functionality as well as tools and applications
building on top of this are ag® areas of wrk. Most components of the Ara platform
have been implemented, including thedar part of the core pvalding agent recu-

tion, service points, checkpointing, and migration; the same holds for the Tcl and C
interpreters.

1. Parallelism, as opposed to distribution, constitutes an instructive counter example:
Parallelizing languages and compilers are well-established in high-performance
computing. This can be attributed to the fact that parallelism appears and can be
realistically exploited in a more fine-grained form than distribution.

The focus of current erk at the platform is on the security implementation. Agents
will be able to create places with programmable admission policies implemented by
application code; at the momentwever, there is only one implicit dafilt place sup-
ported per system. Accordinglglace names currently reduce more or less to machine
names. The dedult place has a fed behsior; it admits all arriing agents and fully
honors their desires for local alance. Consequenflyhere is no authentication of
agents yet. Hwever, allovance enforcement is implemented, and the set of resources
currently controlled by allwances (CPU time and memory consumption) will be
enlaged by files, netark connections, disk space, bandwidth, and visited places.

Apart from the core system functionalitwo other areas of evk are tools and appli-
cations. & are deeloping a visual on-line monitoring and control tool for a set of Ara
systems distribted across a netuk, which will include control and debging of
remote agents. As a first application based on mobile agents, we are implementing a
service for searching and retrieg Usenet nes articles [H@87], a class of applica-
tion we consider typical for mobile agents. Usenet is aarétef seners ecchanging
news articles, where each servpossesses only a constantly changing subset of all
articles. Mobile agents visit sems in search for interesting articles, adapting their
search objecte and itinerary based on the contents of articleg already found, by
means of gploiting meta information in the article headers such as article patipag
path or cross references.

5. Conclusion

Ara is a system platform trying to pfide mobile processes in heterogeneous orsv

in an eficient and secure ay while retaining as much as possible of established pro-
gramming models and languages. This paper has laid out the architecture of the sys-
tem, based on a run-time core, on top of which mobile agentsxaceted inside
interpreters to support portability and securithe system &érs a clear intedce to

adapt interpreters for established programming languages to the core, demonstrated by
the adaption of interpreters for suclatse languages as C/C++ and Tcl. Ariersf

full migration of agents, i.e. orthogonal to the wemtional program»ecution, which

relieves the programmer of all detailssatved with remote communication and state
transfer

The security model of Ara is ftible in that domains of protected resources can be
dynamically created in the form of places, and that the admission of agents to such a
domain, as well as their actual rights at that place, can be controlled in a fine grained
manner den to indvidual agents and resources.

However, the described architecture is still lacking in the area of structured agent inter-
operation. Furthersupportve services for distrilted resource diswery will be
needed for real wrld applications.

1. To be precise, a place name currently designates one (of possibly several) specific
Ara systems on a specific machine.

A usable deelopment snapshot of the Ara platform xpected to beailable in full
source code from the Ara WWW paéeby the time of this publication. The system
has been ported to the Solaris, SunOS and Linux operating systesns so f

References

[ARG96] ARNOLD, K. and GOSLING, J. (1996The &va Pogramming Languge,
Addison-Wesleg/, Reading (MA), USA.

[CGH95] CHESS, D., GRSOF B. and HARRISON, C (1995tinerant Agents for
Mobile ComputingResearch Report RC-20010, IBM Th. Jatgdn Research
Center http://wwwresearch.ibm.com:8080/main-cgi-bin/gunzip_papeS/
172.ps.gz

[CMR+96] CONDICT, M., MILOJICIC, D., REYNOLDS, Fand BOLINGER, D.
(1996) Towards a Verld-Wde Civilization of ObjectsProc. of the 7th &M
SIGOPS European tvkshop, September 9-11th, Connemara, Ireland.
http://www.osf.og/RI/DMO/WebOs.ps.

[GEM95] GENERAL MAGIC, Inc. (1995)The Elescript Languge Refeence Sunry-
vale (CA), USA.
http://cnn.genmagic.comélescript/ TDE/TDEDOCS_HTML/telescript.html

[GRA96] GRAY, R. (1996) Agent-Tcl: A Fleible and Secuér Mobile Agnt system
Proc. of the 4th annual Tcl/Tkaskshop (ed. by M. Diekhans and M. Rose-
man), July Monterg, CA, USA.
http://www.cs.dartmouth.edu/~agent/papers/tcl96.ps.Z

[HMD+96] HYLTON, J., MANHEIMER, K., DRAKE, E WARSAW, B., MASSE, R.,
and VAN ROSSUM, G. (1996)
Knowbot Pogramming: System support for mobilgeats Proceedings of the
Fifth IEEE International \Wrkshop on Object Orientation in Operating Sys-
tems, Oct. 27-28, Seattle AMUSA.
http://the-tech.mit.edu/~jeremy/®0s.ps.gz

[HOA87] HORTON, M.R. and AIAMS, R. (1987) Standad for intecchange of
USENET messggs Internet RFC 1036, P&T Bell Laboratories and Center
for Seismic Studies, Decembattp://ds.internic.net/rfc/rfc1036.txt.

[JRS95] JOHANSEN, D., an RENESSE, R. and SCHNEIDER B= (1995) An Intro-
duction to the ACOMA Distributed SystepTechnical Report 95-23, Dept. of
Computer Science, Urersity of Tomsg, Nonay.
http://www.cs.uit.no/Lokalt/Rapporter/Reports/9523.html.

[LAN96] LANGE, D. (1996) Programming Mobile Agnts in &va - A White Bper,
IBM Corp. http://lwwwibm.co.jp/trl/aglets/whitepapétm

1. http://www.uni-kl.de/AG-Nehmer/Ara/

[LDD95]

[MLF95]

[OMG96]

[OLW96]

[PEI97]

[RAS+97]

[SBH96]

[STO95]

[WHI96]

LINGNAU, A. DROBNIK, O. and DOMEL, P(1995) An HTTP-based In&-
structuie for Mobile Agnts,Proc. of the 4th International WWW Conference,
DecemberBoston (MA), USA.
http://mwww3.01g/pub/Conferences/WWW4#Bers/150/.

MAYFIELD, J., LABROU, Y. and FININ, T (1995) Desideata for Agent
Communication Langwes,Proc. of the AAAI Symposium on Information
Gathering from Heterogeneous, Distied Ewvironments, AAAI-95 Spring
Symposium, Stanford Uwersity, Stanford (CA). March 27-29, 1995.
http://www.cs.umbc.edu/kgml/papers/desiderata-acl/root.html.

OBJECT MANAGEMENT GROUP (1996) CORBA 2.0 specificationrOMG
document ptc/96-03-04, http://wwewng.og/docs/ptc/96-03-04.ps.

OUSTERHOUT J. K., LEVY, J., and WELCH, B. (1996Yhe Safe-Tcl Secu-
rity Model, draft, Sun Microsystems Labs, MountaiieW, CA, USA.
http://www sunlabs.com/research/tcl/safeTcl.ps

PEINE, H. (1997)Ara — Agents for Remote Actipim Itinerant Agents: Expla-
nations and Examples with CDERA, ed. by W Cockayne and M. Zyda,
Manning/Prentice HaII.d'appealr.

RANGANATHAN, M., ACHARYA, A., SHARMA, S., and SALZ, J.
(1997) Network-Avare Mobile Pograms Dept. of Computer Science, Watr-
sity of Maryland, MD, USA. © appear in USENIX'97.
http://www.cs.umd.edu/~acha/papers/usenix97-submitted.html

STRASSER, M., BUMANN, J. and HOHL, F(1996) Mole — A &va Based
Mobile Agnt SysterrProc. of the 2nd ECOOPdfkshop on Mobile Object
Systems, Unersity of Linz, Austria, July 8-9. http://wwwinformatik.
uni-stuttaart.de/ipvr/vs/Publications/1996-stras®drps.gz

STOLPMANN, T. (1995) MACE - Eine abstakte Mashine als Basis mobiler
Anwendungn, diploma thesis, Department of Computer Scienceyeysity of
Kaiserslautern, GermgnGerman tet and English abstract at
http://www.uni-kl.de/AG-Nehmer/Ara/mace.html.

WHITE, J. (1996) A Common Agnt Platform position paper for the Joint
WWW Consortium / OMG Wrkshop on Distribted Objects and Mobile
Code, June 24-25, Boston, MA, USA.
http://www.genmagic.com/internet/cap/w3c-papén.

1. A preprint can be obtained from the author (see cover page of this paper for
address).

