
The Architecture of the Ara Platform for Mobile Agents

Holger Peine and Torsten Stolpmann
Dept. of Computer Science

University of Kaiserslautern, Germany
{peine, stolp}@informatik.uni-kl.de

Abstract: We describe a platform for the portable and secure execution of mobile agents written
in various interpreted languages on top of a common run-time core. Agents may migrate at any
point in their execution, fully preserving their state, and may exchange messages with other
agents. One system may contain many virtual places, each establishing a domain of logically
related services under a common security policy governing all agents at this place. Agents are
equipped with allowances limiting their resource accesses, both globally per agent lifetime and
locally per place. We discuss aspects of this architecture and report about ongoing work.

Keywords: migration, multi-language, interpreter, Tcl, C, byte code, Java, persistence, authenti-
cation, security domain.

1. Introduction
Mobile agents have raised considerable interest as a new concept for networked com-
puting, and numerous software platforms for various forms of mobile code have
recently appeared and are still appearing [CGH95, CMR+96, GRA96, HMD+96,
LAN96, LDD95, JRS95, RAS+97, SBH96]. While there seems to have emerged a
wide agreement about the general requirements for such systems, most notably porta-
bility and security of agent execution, many issues are still debated, as witnessed by
the numerous approaches exploring diverging solutions. Prominent issues here include
the right balance between necessary functionality and incurred complexity, and the
degree of compatibility with existing models, languages, and software.

The Ara1 system is a mobile agent platform under development at the University of
Kaiserslautern. Its design rationale is toadd mobility to the well-developed world of
programming, rather than attempt to build a new realm of “mobile programming”.
Mobility should be integrated as comfortably and unintrusively as possible with exist-
ing programming concepts — algorithms, languages, and programs. A mobile agent in
Ara is a program able to move at its own choice and without interfering with its execu-
tion, utilizing various established programming languages. Complementing this, the
platform provides facilities for access to system resources and agent communication
under the characteristic security and portability requirements for mobile agents in het-
erogeneous networks.

The rest of this paper is structured as follows: The subsequent main section will
describe the system architecture of Ara, featuring agent execution, mobility, communi-
cation, security, and fault tolerance. This is followed by a section discussing selected

1. “Agents for Remote Action”

To appear in:
Kurt Rothermel, Radu Popescu-Zeletin (Eds.): Proceedings of the
First International Workshop on Mobile Agents, MA’97, April 7-8th 1997, Berlin, Germany.
Lecture Notes in Computer Science Nr. 1219, Springer Verlag 1997. ISBN: 3-540-62803-7

aspects of mobile agent architecture. A subsequent section gives an account of the
ongoing work with Ara, and the paper closes with a conclusion section. An extensive
description of the Ara system will appear in [PEI97].

2. The Ara Architecture

The programming model of Ara consists of agents moving between and staying at
places, where they use certain services, provided by the host or other agents, to do their
job. A place is physically located on some host machine, and may impose specific
security restrictions on the agents staying at that place. Keeping this in mind, agents
are programmed much like conventional programs in all other respects, i.e. they work
with a file system, user interface and network interface. Corresponding to the rationale
stated above, the Ara architecture deliberately abstains both from high-level agent-spe-
cific concepts, such as support for intelligent interaction patterns, and from complex
distributed services, such as found in distributed operating systems.

2.1 System Core and Interpreters

Portability and security of agent execution are the most fundamental requirements for
mobile agent platforms, portability being an issue because mobile agents should be
able to move in heterogeneous networks to be really useful, and security being at stake
because the agent’s host effectively hands over control to a foreign program of basi-
cally unknown effect1. Most existing platforms, while differing considerably in the
realization, use the same basic solution for portability and security: They do not run the
agents on the real machine of processor, memory and operating system, but on some
virtual one, usually an interpreter and a run-time system, which both hides the details
of the host system architecture as well as confines the actions of the agents to that
restricted environment.

This is also the approach adopted in Ara: Mobile agents are programmed in some
interpreted language and executed within an interpreter for this language, using a spe-
cial run-time system for agents, called thecore in Ara terms. The relation between core
and interpreters is characteristic here: Isolate the language-specific issues (e.g. how to
capture the Tcl-specific state of an agent programmed in the Tcl programming lan-
guage) in the interpreter, while concentrating all language-independent functionality
(e.g. how to capture the general state of an Ara agent and use that for moving the
agent) in the core. To support compatibility with existing programming models and
software, Ara does not prescribe an agent programming language, but instead provides
an interface to attach existing languages. In contrast to most other systems, such as
Telescript [GEM95] or Java [ARG96], this separation of concerns makes it possible to
employ several interpreters for different programming languages at the same time on

1. There is also the reverse problem of the agent’s security against undue actions of the
host. There is, however, no general solution for this problem; see section 2.4,
"Security" for a discussion of this.

top of the common, generic core, which makes its services, e.g. agent mobility or com-
munication, uniformly available to agents in all languages.

Since part of an agent’s execution state is inevitably contained in its interpreter, a given
interpreter necessarily has to be extended by state capturing functions if the full trans-
fer of the executing agent is desired. Currently, interpreters for theTcl scripting lan-
guage as well as forC/C++, the latter by means of precompilation to an efficiently
interpretable byte code [STO95], have been adapted to the Ara core, opening up a wide
spectrum of applications. An adaption of theJava language is on the way, and other
languages such as Pascal and Lisp are being considered.

The functionality of the system core is kept to the necessary minimum, with higher-
level services provided by dedicated server agents. The complete ensemble of agents,
interpreters and core runs as a single application process on top of an unmodified host
operating system. Fig.1 shows this relation of agents, core, and interpreters for lan-
guages called

�
 and � .

Ara agents are executed as parallel processes, using a fast thread package, and are
transparently transformed into a portable representation whenever they choose to
move. The system also employs processes for certain internal tasks (“systempro-
cesses”) in order to modularize the architecture1. Employing threads as opposed to
host operating system processes keeps the agent management completely under con-
trol of the core and achieves superior performance. The use of multiple threads in a
common address space does not induce a memory protection problem here, as protec-
tion is already ensured on a higher level by the interpreters (see below), independent of
hardware facilities such as privileged processor modes or page protection.

1. If such processes are trusted and not mobile, they may also be compiled to native
machine code for undiminished performance.

Fig. 1. High-level view of the Arasystemarchitecture

system process
(compiled)

host operating system

Ara core

� -interpreter

mobile � -agent

mobile
�

-agent
�

-interpreter

thread

Adapting a given interpreter for some programming language to the Ara core is a
clearly defined procedure. First, it requires the definition of calling interfaces (stubs) in
this language for the functions of the core API, and conversely the provision of func-
tions for interpreter management (upcalls) to the core. The job of the stubs is mostly a
matter of data format conversions and similar interface translations. Regarding the
interpreter upcalls, the most prominent functions are those for the extraction of an exe-
cuting interpreter’s state as it is necessary to transfer the agent being interpreted, and
conversely for the restoration of such a state on arrival of a migrated agent. Further,
during execution the interpreter must ensure that the agent program will not call illegal
code or access illegal memory locations; interpreters for languages without physical
memory access such as Tcl or Java will ensure this anyway. Finally, the interpreter has
to assist the core in the preemptive execution of the agent programs by performing reg-
ular calls to a core function for time slice surveillance.

2.2 Mobility

Many applications require agents to be moved not only once from their source to a des-
tination site, but to move further, based upon their intermediate results and perceived
environment, and continue their task across several sites. For such purposes a moving
agent needs to carry its execution state along, effectively making it a migrating pro-
cess. In contrast to systems moving code exclusively prior to execution, e.g. Java, Ara
agents can migrate at any point in their execution through a special core call, named
ara_go in Ara’s Tcl interface1:

ara_agent {puts “Going to ida”; ara_go ida; puts “Hello at ida!”}

This creates a new agent, giving it a Tcl program (enclosed in braces) to execute. The
agent will migrate to a place namedida (simply a host name, in this case) and then
print the greeting message there. Themigration instruction moves the agent in whole
to the indicated place and resumes in the exact state from where it left off, i.e. directly
after this instruction, while hiding the complexity of extracting the agent from the local
system, marshaling it to another, possibly heterogeneous, machine and reinstalling it
there. Furthermore, the act of migration does not affect the agent’s flow of execution
nor its set of data (including local variables), allowing the programmer to make the
agent migrate whenever it seems appropriate, without having to deal with preparation
or reinstallation measures.

Note that while the internal state of a moving agent is transferred transparently, this
does not hold for its “external state”, i.e. its relations to other, stationary system objects
and resources like files or communication end points. It might be tempting to add a
software layer over such stationary resources making them appear as mobile, effec-
tively creating a distributed operating system. However, Ara opted against this, since
the complex protocols and tight coupling involved with this approach do not seem well
adapted to the low-bandwidth and heterogeneous networks targeted by mobile agents.

1. The same could be achieved in a C agent a by calling a C functionAra_Go() etc.

Ara agents move betweenplaces, which are both an obvious association to physical
location and a concept of the architecture. Places are virtual locations within an Ara
system, which in turn is running on a certain machine. In fact an agent is always stay-
ing at some place, except when in the process of moving between two of them. In prac-
tice, a place might be run by an individual or an organization, presenting its services.
Service points (see subsequent section), for instance, are always located at a specific
place. More importantly besides structuring, however, places also exercise control over
the agents they admit and host (see section 2.4, "Security").

Places have names which make them uniquely identifiable and serve as the destination
of a migration. A place name in Ara is, in the most general case, a list ofURLs, corre-
sponding to the different transport protocols1 by which the site hosting the designated
place might be reached, e.g. MIME mail, HTTP or raw TCP. On migration, the system
will try the indicated protocols until one of them succeeds. Apart from designating a
protocol and site, place name URLs will contain a local name of meaning to the tar-
geted Ara system only. This local name will identify the specific place, using a simple
hierarchical name space.

Agents bear names as well, consisting of a globally unique id, an identification of their
principal, and an optional symbolic name from a hierarchical name space (disjoint
from the place name space).

2.3 Communication

It can be argued whether agent communication should be remote or restricted to agents
on the same machine. Considering that one of the main motivations for mobile agents
was to avoid remote communication in the first place, Ara emphasizes local agent
interaction. This is not to say that agents should be barred from network access (which
depends on the policy of the hosting place, see section 2.4). Rather, the system encour-
ages local communication. There are various options for this, including disk files, more
or less structured shared memory areas (“tuple space”, “blackboard”), direct message
exchange, or special procedure calls, each entailing different ways of access and
addressing. For reasons of efficiency and simplicity, Ara chose a variant of message
exchange between agents, providing client/server style interaction. The core provides
the concept of aservice point for this. This is a meeting point with a well-known name
where agents located at a specific place can interact as clients and servers through an
n:1 exchange of synchronous request and reply messages. Each request is stamped
with the name of the client agent, and the server may use that in deciding on the reply.

Service points provide a simple and efficient mechanism for interaction between heter-
ogeneous agents. However, for a widely deployed real-world mobile agent system an
integration with existing, more structured service interfaces such as CORBA [OMG96]
would certainly be a preferable alternative.

In spite of the emphasis on local interaction, a simple asynchronous remotemessaging

1. Currently, only raw TCP is supported.

facility between agents will be added for pragmatic reasons, appropriate e.g. for simple
status reports, error messages or acknowledgments which do not reward the overhead
of sending an agent. However, to avoid remote coupling, the messaging facility will
not involve itself in any guarantees against message losses. Messages will be addressed
to an agent at a place, named as explained above. A message will be delivered to all
agents at the indicated place whose names are subordinates of the indicated recipient
name in the sense of the hierarchical agent name space. This addressing scheme may
be used to send place-wide multicast messages or implement application-level trans-
parent message forwarding by installing a subordinate proxy agent.

Quite apart from programming the agents’ actions, the term “agent language” is some-
times also applied to the language interacting agents, in particular “intelligent” ones,
use for mutual communication. However, there is no set of agreed basic functionality
for such languages, and it is a current issue of research to find powerful, yet general
patterns of agent communication (see [MLF95] for an example). Ara, in particular,
leaves the choice of communication language open, offering only a general data
exchange mechanism; applications may implement their own customized interaction
scheme on top of this.

2.4 Security

The most basic layer of security in the Ara architecture is the memory protection
through the interpreters as described in section 2.1. Besides this fundamental and
undiscriminating protection, the different places existing on an Ara system play the
central role in the Ara security concept. An Ara place establishes adomain of logically
related services under a common security policy governing all agents at that place.

Allowances to Limit Resource Access
The central function of a place is to decide on the conditions of admission, if at all, of
an agent applying to enter. These conditions are expressed in the form of anallowance
conceded to the agent for the time of its stay at this place. An allowance is a vector of
access rights to various system resources, such as files, CPU time, memory, or disk
space. The elements of such a vector constitute resource access limits, which may be
quantitative (e.g. for CPU time) or qualitative (e.g. for the network domains to where
connection is allowed). An agent migrating to a place specifies the allowance it desires
for its task there, and the place in turn decides what allowance to actually concede to
the applicant and imposes this on the entering agent. The system core will ensure that
an agent never oversteps its allowance.

Besides the local allowance conceded by an agent’s current place, every agent may
also be equipped with a global allowance at the time of creation. The global allowance
puts overall limits to an agent’s actions throughout its lifetime, effectively limiting its
principal’s liability. The system core ensures that a place will never concede a local
allowance to an agent which exceeds the agent’s global one. Agents may inquire about
their current global and local allowance at any time, and may transfer amounts of it
among each other under certain conditions. Agents may also form groups sharing a
common allowance.

Entering a Place

Places may be created dynamically, by specifying a name and anadmission function.
The admission function has a predefined interface, receiving the agent’s name and
authentication status (i.e. the strength, if any, of its authentication), along with its
desired local allowance as input parameters, possibly accompanied by further security
attributes such as the agent’s past itinerary record. The admission function returns
either the local allowance to be imposed on this agent, or a denial of admission. Each
place may thus implement its own specific security policy, discriminating between
individual agents, principals, or source domains, and controlling resource access with
the appropriate granularity.

When an agent resumes after a successful migration and admission procedure, it may
check its local allowance, discovering to what extent the place has honored its desires.
This enables the agent to decide on its own what to do if it finds the conceded local
allowance insufficient. An agent which has been denied access to the destination place
of a desired migration is sent back to its source place, there to discover the failure in
the form of an error return from its migration call.

General resource access restrictions as imposed by allowances are an adequate mecha-
nism for securing common accesses like allocating memory, writing a file or sending to
a certain network location. However, certain higher-level security requirements such as
enforcing that only data of a specific format are sent, or that consistency conditions
across several files are preserved, require correspondingly higher-level access restric-
tions. This may be achieved by using service points as controlled outlets of the security
domain, served by a trusted agent maintaining those high-level requirements. In partic-
ular with respect to such outlets, the security domain concept of Ara places is some-
what similar to thepadded cell security model of Safe-Tcl [OLW96], but realized
independent of a specific language and also somewhat more comprehensive, regarding
allowances for CPU time and memory consumption.

Open Problems

The implementation of authentication will be based on digital signatures using public
key cryptography. However, since a mobile agent usually changes during its itinerary,
it cannot be signed in whole by its principal, which makes it difficult to authenticate
the changing parts of the agent. It seems most desirable that the agent’s code should be
signed by the principal; this, however, would preclude dynamically generated code as
it is common e.g. in the Tcl programming language. Other security-relevant compo-
nents of a mobile agent might be authenticated by dedicated schemes, e.g. its itinerary
record can be incrementally signed by the nodes the agent has passed through. In addi-
tion to authentication, public key cryptography will also be used to optionallyencrypt
Ara agents during migration to protect against eavesdropping.

As with any cryptographic scheme, the question of key distribution must be resolved.
As this is a general problem not specific to mobile agents in any way, Ara does not
define specific support for this, but assumes the existence of a well-known trusted pub-
lic key server.

Quite apart from the security of the host system against malfunctioning or malicious
agents, which is indispensable for any mobile agent platform to be practically
accepted, there is also the reverse problem of the agent’s security against undue actions
of the host, e.g. spying on the agent’s content or modifying it to an harmful effect. It is
fortunate that the agent’s security requirements are not as severe in practice as those of
the host, since there is no general solution for the problem of agent security. The Ara
system will provide certain measures, such as protecting immutable parts of the agent
(e.g. its code) against tampering by a digital signature of its principal; other threats,
however, such as spying on the agent’s content, cannot usually be solved by technical
means.

2.5 Fault Tolerance

When moving through a large and unreliable network such as the Internet, mobile
agents may fall a prey to manifold accidents, e.g. host crashes or line breakdowns.
Rather than trying to anticipate all potential pitfalls, Ara offers a basic means of recov-
ery from such accidents: An agent can create acheckpoint, i.e. a complete record of its
current internal state, at any time in its execution. Checkpoints are stored on some per-
sistent media (usually a disk), and can be used to later restore the agent to its state at
the time of checkpointing. The obvious application for this scheme is for an agent to
leave a checkpoint behind as a “back-up copy” before undertaking a risky operation.
Applications may build their own fault tolerance schemes upon this. The system will,
however, provide a facility to implicitly checkpoint all locally existing agents in the
event of an emergency shutdown.

3. Discussion

Most of the technical problems involved with mobile agents appear solvable in princi-
ple. However, considerable work is still needed to arrive at solutions which strike a sat-
isfactory balance between conflicting requirements, such as necessary functionality vs.
incurred complexity, security vs. flexibility and performance, or conceptual purity vs.
compatibility with existing models, languages, and software. This section discusses
three selected issues of debate and makes a case for Ara’s decisions.

Language Integration

Mobile agent systems are often discussed from point of view of programming lan-
guages, suggested by prominent examples [GEM95, ARG96]. However, integrating
concept and language blurs the differences between both and raises the hurdle for
widespread use by requiring new skills and tools and hindering the interoperation with
existing software. Analogous experience from distributed programming rather sug-
gests to employ libraries and run-time systems instead of enhanced programming lan-
guages, interfaced from whatever languages seem appropriate for the application.
Experience has shown here that distribution handling is not intertwined so intimately
with the local processing as to require language support very strongly1, relative to the
disadvantages of changing the language. It is remarkable in this respect that even the

seminal Telescript system, a typical example of the integration of language and system,
has recently been suggested by its creator to play the role of one of several language
environments on top of a common platform [WHI96].

Location Transparence
Distributed object systems and distributed operating systems often strive towards the
goal of location transparence, i.e. the property of a logical object that its physical loca-
tion is neither discernible nor important. It might be argued that a mobile agent plat-
form seek such transparency, too, for maximum convenience. However, the wide area
networks targeted by mobile agents tend to make distributed objects unwieldy to use.
Moreover, there is a conceptual mismatch between location transparency and the prin-
ciple of mobile agents to explicitly move between locations. Both problems are rooted
in the different underlying network assumptions, since hiding distances is only practi-
cable assuming reasonable network bandwidth and reliability; otherwise it seems sen-
sible to admit the distance and deal with it. Accordingly, the distributed functions in a
mobile agent system should be kept to a minimum.

Performance
Performance has not been as much in the focus of mobile agent systems as, say, operat-
ing systems. This may stem from the idea of an agent performing relatively few and
high-level operations, such that its performance is mostly determined by that of the
underlying host system. While this may be true for an individual agent, the perfor-
mance overhead of an agent platform on a server executing hundreds of agents may be
crucial. Analogous experience from WWW servers strongly suggests the use of
threads instead of operating system processes. Using threads in a common address
space allows highly efficient context creation and switching without sacrificing protec-
tion, since the latter may conveniently be ensured by the agent interpreters. Moreover,
the threads may be scheduled non-preemptively while preserving sufficiently fine-
grained preemption semantics from point of view of the agents, achievable by perform-
ing time slice checking synchronously in the run-time system (as opposed to an asyn-
chronous interrupt handler). Non-preemptive thread scheduling enables parallelism
without synchronization within the run-time system, further benefiting performance.

4. Ongoing Work

Both the core mobile agent platform functionality as well as tools and applications
building on top of this are active areas of work. Most components of the Ara platform
have been implemented, including the larger part of the core providing agent execu-
tion, service points, checkpointing, and migration; the same holds for the Tcl and C
interpreters.

1. Parallelism, as opposed to distribution, constitutes an instructive counter example:
Parallelizing languages and compilers are well-established in high-performance
computing. This can be attributed to the fact that parallelism appears and can be
realistically exploited in a more fine-grained form than distribution.

The focus of current work at the platform is on the security implementation. Agents
will be able to create places with programmable admission policies implemented by
application code; at the moment, however, there is only one implicit default place sup-
ported per system. Accordingly, place names currently reduce more or less to machine
names1. The default place has a fixed behavior; it admits all arriving agents and fully
honors their desires for local allowance. Consequently, there is no authentication of
agents yet. However, allowance enforcement is implemented, and the set of resources
currently controlled by allowances (CPU time and memory consumption) will be
enlarged by files, network connections, disk space, bandwidth, and visited places.

Apart from the core system functionality, two other areas of work are tools and appli-
cations. We are developing a visual on-line monitoring and control tool for a set of Ara
systems distributed across a network, which will include control and debugging of
remote agents. As a first application based on mobile agents, we are implementing a
service for searching and retrieving Usenet news articles [HOA87], a class of applica-
tion we consider typical for mobile agents. Usenet is a network of servers exchanging
news articles, where each server possesses only a constantly changing subset of all
articles. Mobile agents visit servers in search for interesting articles, adapting their
search objective and itinerary based on the contents of articles they already found, by
means of exploiting meta information in the article headers such as article propagation
path or cross references.

5. Conclusion
Ara is a system platform trying to provide mobile processes in heterogeneous networks
in an efficient and secure way while retaining as much as possible of established pro-
gramming models and languages. This paper has laid out the architecture of the sys-
tem, based on a run-time core, on top of which mobile agents are executed inside
interpreters to support portability and security. The system offers a clear interface to
adapt interpreters for established programming languages to the core, demonstrated by
the adaption of interpreters for such diverse languages as C/C++ and Tcl. Ara offers
full migration of agents, i.e. orthogonal to the conventional program execution, which
relieves the programmer of all details involved with remote communication and state
transfer.

The security model of Ara is flexible in that domains of protected resources can be
dynamically created in the form of places, and that the admission of agents to such a
domain, as well as their actual rights at that place, can be controlled in a fine grained
manner down to individual agents and resources.

However, the described architecture is still lacking in the area of structured agent inter-
operation. Further, supportive services for distributed resource discovery will be
needed for real world applications.

1. To be precise, a place name currently designates one (of possibly several) specific
Ara systems on a specific machine.

A usable development snapshot of the Ara platform is expected to be available in full
source code from the Ara WWW pages1 by the time of this publication. The system
has been ported to the Solaris, SunOS and Linux operating systems so far.

References

[ARG96] ARNOLD, K. and GOSLING, J. (1996)The Java Programming Language,
Addison-Wesley, Reading (MA), USA.

[CGH95] CHESS, D., GROSOF, B. and HARRISON, C (1995)Itinerant Agents for
Mobile Computing, Research Report RC-20010, IBM Th. J. Watson Research
Center. http://www.research.ibm.com:8080/main-cgi-bin/gunzip_paper.pl?/PS/
172.ps.gz

[CMR+96] CONDICT, M., MILOJICIC, D., REYNOLDS, F. and BOLINGER, D.
(1996) Towards a World-Wide Civilization of Objects, Proc. of the 7th ACM
SIGOPS European Workshop, September 9-11th, Connemara, Ireland.
http://www.osf.org/RI/DMO/WebOs.ps.

[GEM95] GENERAL MAGIC, Inc. (1995)The Telescript Language Reference, Sunny-
vale (CA), USA.
http://cnn.genmagic.com/Telescript/TDE/TDEDOCS_HTML/telescript.html

[GRA96] GRAY, R. (1996)Agent-Tcl: A Flexible and Secure Mobile Agent system,
Proc. of the 4th annual Tcl/Tk workshop (ed. by M. Diekhans and M. Rose-
man), July, Monterey, CA, USA.
http://www.cs.dartmouth.edu/~agent/papers/tcl96.ps.Z

[HMD+96] HYLTON, J., MANHEIMER, K., DRAKE, F., WARSAW, B., MASSE, R.,
and VAN ROSSUM, G. (1996)
Knowbot Programming: System support for mobile agents, Proceedings of the
Fifth IEEE International Workshop on Object Orientation in Operating Sys-
tems, Oct. 27-28, Seattle, WA, USA.
http://the-tech.mit.edu/~jeremy/iwooos.ps.gz

[HOA87] HORTON, M.R. and ADAMS, R. (1987)Standard for interchange of
USENET messages, Internet RFC 1036, AT&T Bell Laboratories and Center
for Seismic Studies, December. http://ds.internic.net/rfc/rfc1036.txt.

[JRS95] JOHANSEN, D., van RENESSE, R. and SCHNEIDER, F. B. (1995) An Intro-
duction to the TACOMA Distributed System, Technical Report 95-23, Dept. of
Computer Science, University of Tromsø, Norway.
http://www.cs.uit.no/Lokalt/Rapporter/Reports/9523.html.

[LAN96] LANGE, D. (1996) Programming Mobile Agents in Java - A White Paper,
IBM Corp. http://www.ibm.co.jp/trl/aglets/whitepaper.htm

1. http://www.uni-kl.de/AG-Nehmer/Ara/

[LDD95] LINGNAU, A. DROBNIK, O. and DÖMEL, P. (1995) An HTTP-based Infra-

structure for Mobile Agents,Proc. of the 4th International WWW Conference,

December, Boston (MA), USA.

http://www.w3.org/pub/Conferences/WWW4/Papers/150/.

[MLF95] MAYFIELD, J., LABROU, Y. and FININ, T. (1995) Desiderata for Agent

Communication Languages,Proc. of the AAAI Symposium on Information

Gathering from Heterogeneous, Distributed Environments, AAAI-95 Spring

Symposium, Stanford University, Stanford (CA). March 27-29, 1995.

http://www.cs.umbc.edu/kqml/papers/desiderata-acl/root.html.

[OMG96] OBJECT MANAGEMENT GROUP (1996) CORBA 2.0 specification, OMG

document ptc/96-03-04, http://www.omg.org/docs/ptc/96-03-04.ps.

[OLW96] OUSTERHOUT, J. K., LEVY, J., and WELCH, B. (1996)The Safe-Tcl Secu-

rity Model, draft, Sun Microsystems Labs, Mountain View, CA, USA.

http://www.sunlabs.com/research/tcl/safeTcl.ps

[PEI97] PEINE, H. (1997)Ara – Agents for Remote Action, in Itinerant Agents: Expla-

nations and Examples with CD-ROM, ed. by W. Cockayne and M. Zyda,

Manning/Prentice Hall. To appear1.

[RAS+97] RANGANATHAN, M., ACHARYA, A., SHARMA, S., and SALTZ, J.

(1997) Network-Aware Mobile Programs, Dept. of Computer Science, Univer-

sity of Maryland, MD, USA. To appear in USENIX’97.

http://www.cs.umd.edu/~acha/papers/usenix97-submitted.html

[SBH96] STRASSER, M., BAUMANN, J. and HOHL, F. (1996) Mole – A Java Based

Mobile Agent System, Proc. of the 2nd ECOOP Workshop on Mobile Object

Systems, University of Linz, Austria, July 8-9. http://www.informatik.

uni-stuttgart.de/ipvr/vs/Publications/1996-strasser-01.ps.gz

[STO95] STOLPMANN, T. (1995) MACE - Eine abstrakte Maschine als Basis mobiler

Anwendungen, diploma thesis, Department of Computer Science, University of

Kaiserslautern, Germany. German text and English abstract at

http://www.uni-kl.de/AG-Nehmer/Ara/mace.html.

[WHI96] WHITE, J. (1996) A Common Agent Platform, position paper for the Joint

WWW Consortium / OMG Workshop on Distributed Objects and Mobile

Code, June 24-25, Boston, MA, USA.

http://www.genmagic.com/internet/cap/w3c-paper.htm.

1. A preprint can be obtained from the author (see cover page of this paper for
address).

