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Abstract

One main purpose for the use of formal description techniques (FDTs) is formal reasoning
and verification. This requires a formal calculus and a suitable formal semantics of the
FDT. In this paper, we discuss the basic verification requirements for Estelle, and how
they can be supported by existing calculi. This leads us to the redefinition of the stan-
dard Estelle semantics using Lamport’s temporal logic of actions and Dijkstra’s predicate
transformers.
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1 Introduction

Formal description techniques (FDTs) serve two main purposes (see, e.g., [[SO88, ISO89]).
Firstly, specifications written in an FDT shall be precise and unambiguous. This requires
the semantics of the FDT to be defined in a mathematical way. Secondly, an FDT
shall support formal reasoning and, in particular, the formal verification (i.e., exhaustive
proof) that a specification meets its (more abstract) requirements. Again, this requires
the semantics to be defined in a mathematical way. Additionally, the semantics has to fit
a formal calculus, which is used to reason about the specification. While the first aspect
is usually taken into account in the definition of FDT's, the second aspect plays only a
subordinate role in some formalisms.

In this paper, we consider the suitability of Estelle for formal reasoning and verifica-
tion. Estelle ([ISO89, Dia89]) is an FDT for the specification of distributed information
processing systems, in particular communication services and protocols of the OSI Basic
Reference Model. It has the status of an international standard since 1989.

In previous work, we have attempted to formally verify the specification of the InRes-
communication protocol written in Estelle against the InRes-service specified in logic
([Bre90, Got90, Hog91]). During this case study, it turned out that large parts of the proof
had to be conducted on the basis of informal rather than formal reasoning. We believe



that this was mainly due to the style of the original Estelle semantics, which defines the
underlying abstract automaton explicitly. Such a style supports model checking, testing,
and execution. However, exhaustive verification of properties is less well supported.

In this paper, we propose to use a different style to capture the Estelle semantics, which
is still operational (as the original Estelle semantics), but which defines the underlying
abstract automaton implicitly. This means that the automaton is characterized by its
properties. We argue that this style is more convenient for the exhaustive verification of
system properties. To define this semantics, we use a logical formalism based on Lamport’s
Temporal Logic of Actions ([Lam91]) and on Dijkstra’s predicate transformers ([DiSc90]).

The paper is organized as follows. In section 2, basic verification requirements are dis-
cussed. In section 3, we outline the definition of an Estelle semantics that is a suitable
basis for verification. In a first step, possible techniques for defining the meaning of Es-
telle transitions are studied. Based on these results, an Estelle execution model is formally
defined. In section 4, the results are briefly discussed, and a preview of future work is
given.

2 Basic Verification Requirements
There are three basic requirements to formally verify an Estelle specification:

e A formal description of the properties the system is expected to have.
e A formal description of the system in Estelle.

e A way to formally relate the Estelle description to the system properties.

The first requirement says that one needs to have an (even more) abstract formal descrip-
tion of how the system should behave. For concurrent, distributed information processing
systems, temporal logic (TL) is one suitable formalism ([Hai82, ScMe82, Lam91, GoVo91];
see also [Pnu86, Got92]). It is generally agreed that there are two basic kinds of system
properties that should be specified: safety properties ( “nothing bad will happen”) and
liveness properties ( “something good will happen”).

For the second requirement, one needs the specification written in Estelle plus a formal
definition of its semantics. Estelle specifications are based on extended finite state au-
tomata (FSA), so their meaning should be expressed by some sort of transition system.
One obvious possibility to give the semantics is to define an explicit transition system
describing the behaviour of the Estelle specification. In the international standard, the
semantics for Estelle is defined this way. Another possibility is to define this transition
system only implicitly by a logical formula describing its properties.

Thirdly, one wants to check formally if the system meets its requirements. One proof tech-
nique is model checking ([CIEmSi86]). It can be performed if the system’s requirements
are specified by some TL formula, if the system is given as an explicit transition system
(e.g. a FSA graph), and if this transition system has a finite number of states. (Since
Estelle is based on extended FSA with possibly infinite state spaces, model checking is not



suited for Estelle in general. But it may serve to check some aspects; if an appropriate
abstraction step has yielded a finite number of states.) It works as follows: a TL formula
can be interpreted in different models (i.e. trees of states'); the transition system defines
a tree of states; and there exists an algorithm ([CIEmSi86]) that takes the finite transition
system and checks if the formula is satisfied in this model.

Another proof technique is theorem proving. For this, the transition system has to be
given implicitly by a logical formula W. The required properties of the system have to
be given as a logical formula ®. Then, everything can be done in (temporal) logic; one
has to prove the initial validity of ¥ = &. Furthermore, this way it is not necessary to
inspect all possible states individually.

The formal proof system for this has to support all important methods of proving proper-
ties. For safety properties, the basic method is a generalization of the one commonly used
to prove partial correctness of the general iteration in sequential programming (called
do...od-loop in [DiSc90]): find a suitable global invariant; prove it true for the system
start; prove that every single transition preserves the truth of the invariant; prove that
the invariant implies the property. Then one can conclude that the system possesses the
property. According to Lamport ([Lam91]), the proofs of the different kinds of liveness
properties are always reduced to the proof of leads-to properties. For this, one can (hope-
fully) use already given liveness properties (e.g. “fairness” of the system, ...). Otherwise
one has to perform a basic counting-down argument based on a well-founded partial or-
der, which is a straightforward generalization of the method used to prove termination
of the general iteration: show the existence of a function as follows: it maps each state
onto some element of the well-founded order; the expected condition is fulfilled for every
state which is mapped onto the least element; except for those states with the least value,
the function value is lesser for each successor state. Additionally, show that some next
state must exist. Then one can conclude that eventually the expected condition will be
fulfilled. (There are a lot of small variations of this method.)

All these proof methods are supported by Lamport’s new Temporal Logic of Actions TLA
([Lam91]). Lamport observed that in all these methods one refers only to a single state
or at most to a pair of states at a time, and no temporal reasoning is needed except
for the last step of conclusion. Everything before it can be performed in common (first
order) logic. The only thing Lamport added to the logic part of TLA is the concept of the
action, which means the relation between two directly successive states. The first state
is always referred to by unprimed variables, and the second state by primed variables.
(Additionally, an action must be annotated by those variables which have to remain
unchanged if the action is not taken. This achieves invariance under refinement of time
steps.) TLA is formally defined in [Lam91].

With an implicit description of the transition system, all reasoning can be done in logic.
In addition, a logical formula can be reduced by implication to those properties which
are interesting for the moment. On the contrary, the use of an explicit transition system
(like the one currently used for Estelle) would mean the explicit construction of the
model describing the system and would therefore in most steps involve the handling of
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the complicated nested tuples and sets which describe a global state. So, for verification
purposes the implicit description of a transition system turns out to be more adequate.

To come back to the three basic requirements for a formal verification of an Estelle
specification: the description of properties to prove can be done formally in TLA, and TLA
also provides a suitable and elegant formal proof system. So only the second requirement
remains to be investigated. A formal definition of the semantics of an Estelle specification
has to be found that harmonizes with the formalism fulfilling the first two requirements.

3 Design of a Formal Estelle Semantics

To express the static part of an Estelle specification (properties implied by declarations of
variables, definitions of channels, ...), first order logic suffices. (See [Bre92].) Therefore
TLA is suitable for this task, too. The real question still to be investigated is how
to define the part describing the dynamic behaviour. This part consists of the Estelle
transitions and of the so-called execution model. The execution model is common to all
Estelle systems, it determines the temporal development of the system and is directed by
(the formal representation of) the specifications of the Estelle transitions.

As stated in section 2, the meaning of an Estelle specification should be expressed by
a logical formula. This means that some denotation function has to be defined, which
maps specification texts onto logical formulas. Consequently, the execution model is
a subexpression which will be part of every denotation. The design of the denotation
function is described in [Bre92].

3.1 Formal Semantics of Estelle Transitions

From the arguments in section 2 it is clear that some kind of first order logic should be
sufficient to define formally the semantics of Estelle transitions, but which formalism is
suitable?

An Estelle transition consists of two parts: the transition condition and the transition
body. The formal representation of the transition condition, describing the circumstances
under which the Estelle transition may be fired, is trivial since it (nearly) has already the
form of a simple predicate.

The transition body describes the relation between a predecessor and a successor state; it
is expressed in terms of Pascal-like sequential statements. (Nevertheless, it still describes
an atomic operation.) Therefore it is possible to regard each transition body separately
as a sequential, transformational program. To define its semantics, all methods using
first order logic should be investigated that are available to define the semantics of such
programs:

e A single predicate about the pre- and post-state. (E.g. a TLA action)

e A Hoare-style assertion with pre- and postconditions.



e A predicate transformer a la Dijkstra.

e A hybrid formalism from the above.

Since TLA was so well-suited for everything else, let us begin with a look at the first
method. For practical usability, any semantic definition method should work as compo-
sitional as possible. This means that the semantics of bigger objects is composed of the
semantics of smaller objects without refering to the structure of the smaller objects. In
this case, predicates for simple Estelle statements should be defined, and also rules should
be defined to combine these predicates step by step into one single predicate describing
the entire transition body.

In [Hoa85], Hoare proposes that “Programs Are Predicates” and claims “that a computer
program can be identified with the strongest predicate describing all relevant observa-
tions that can be made of a computer executing the program”. Then, he starts to define
predicates for simple statements like the assignment and the conditional. Alas, for the
sequential composition “;” (which is very important for the Pascal-like transition bodies)
he gives no definition, just some algebraic laws and the comment that “it is quite diffi-
cult to formulate the definition in a satisfactory fashion”. The problem arises when the
sequential composition encounters the general iteration (which is important for transition
bodies, too). Without definition in terms of other operators, “;” must be a basic opera-
tor of the calculus, which therefore cannot be the common first order logic. According to
[ZwR089], the weakness in dealing with sequential composition and iteration is common

to all formalisms of this kind.

To understand the origin of this problem, we look at how one treats sequential composition
in proofs. Consider the following two assignment operations and their predicates:

XISy 1 =Y ANY1 = Yo
x:=x+1 T1=xo+ 1Ay =1y

To compose them sequentially, one identifies the variables refering to the post-state of the
first operation with the variables refering to the pre-state of the second operation:

x:=y; x:=x+1 1=y ANy =Y ANT2=x1+1Ay =1y

Furthermore, one has to get rid of the “intermediate” state x; and y;. In this simple
example one easily transforms the predicate into an atomic action again:

Ti=Y +1Ay1 =1y

But such a transformation is already part of a proof, it cannot be done (automatically)
for arbitrary operations by a semantics definition. Another solution is always available:
instead of eliminating the “intermediate” variables, one can hide them by existential
quantification:

(Fr,wv=yoANw=yAz1=v+ 1Ay =w)

With a lot of “;”-operators (like in an average transition body) this yields predicates that
are very big and clumsy to handle but at least in principle it is feasible.



The problem arises when the general iteration joins in. It is characterized by a number
of repetitions that is not statically determined. This makes it impossible to supply a
sufficient number of existential quantifications. Even if the formalism is extended by an
infinite existential quantification, reasoning with it would be awkward. Therefore, the
approach using a single predicate is fine for a top-down refinement from specifications
to programs. (TLA is intended for it, and [Hoa85, p. 153] passes similar remarks.) But
this approach is not well suited for the definition of the semantics and for the analysis of
programs since this is done bottom-up.

In search of a solution to our problem we turn to the second method for defining the
semantics of a Pascal-like program: the Hoare-style assertion. This method ([Hoa69,
Apt81]) annotates a program tr with a precondition P and a postcondition Q:

{P}er{Q}

Provided P is true before execution, the result of tr will render @) true afterwards (if tr
terminates). The sequential composition is handled very elegantly by the following proof
rule:

{P}eri{Q}
{Q}tr2{ R}
{P}tr1;tr2{R}

Alas again, in this method the full semantics of a program is defined by the complete set
of assertions that are provable for it. A single assertion {P}tr{Q} may be sufficient to
prove a certain property; but in general, P and () do not contain everything that can be
said about tr. For instance, it can be proven for an arbitrary tr:

{True}tr{True}

Nevertheless it is possible to choose P and () such that they describe the full semantics
of tr. It can be done ([Bre92]) by fixing one of these predicates to a form that describes
the respective state of the system completely. (E.g., the value of every variable x, y, ...
is captured by some constant zi, y1, ...: £ = 1 Ay = y; A...) By doing this, that
predicate becomes redundant and could be dropped. Consequently, we would return to
the previous method, all its problems included. The elegant proof rule above becomes
clumsy because there is no more a common intermediate predicate () since both tr1 and
tr2 insist on their choice of (). Summary: Hoare-style assertions are a method suitable
for proving that a given program meets a given specification. But a single assertion is
not suitable to define the entire semantics of a transition body.

Next, we investigate the third method for defining the semantics of a Pascal-like program:
a predicate transformer a la Dijkstra. The above Hoare-style semantics was defined by a
binary relation on predicates, but this relation was only implicitly given by a set of proof
rules. The actual pairs had to be found by a (manual) proof. Finding the corresponding
counterpart for an arbitrary predicate is automatized by Dijkstra’s predicate transformer
formalism ([DiSc90]). A predicate transformer is an explicit operator. It performs only
layed-down syntactic manipulations on a predicate; therefore, it can be automated. In



the (single) predicate transformer defining the semantics of a program, all the informa-
tion about this program is contained. For instance, the predicate transformer weakest
liberal precondition for the assignment statement "x:=y+z" is defined to be the textual
substitution (z:=y + z). It replaces every occurrance of the text “z” by the text “y + 2”.
If the postcondition is “xr < 42”7, then the weakest liberal precondition to assure it by the
operation is “y+z < 42”. As can be seen, the definition of this operation relies heavily on
textual substitution, and most of the other predicate transformers do that, too. Dijkstra’s
notation deviates a little from the standard. Instead of

wip("x:=y+z",x < 42) =y + z < 42
he writes
wip."x:=y+z".(x < 42) =y + z < 42]

This “Curried” dot-notation of functions with just a single argument makes it easy to
talk about the function “wlp."x:=y+z"”. (We will need it later on.) The sequential
composition of operations is handled very elegantly by functional composition. For every
predicate X:

[wip."op1l; op2".X = wlp."op1".(wlp."op2".X)]

And for the general iteration does exist a closed form of definition; its combination with
the sequential composition renders no problem. In [Bre92], we investigated in depth that
predicate transformers support all the verification methods mentioned in section 2. Here,
only a very simple example can be given. Suppose that we want to verify a safety property
by the method in section 2, and we just want to show that a certain Estelle transition tr
preserves the global invariant I:

I = wlp.tr.]]

Assume the global invariant is z = x2¥, the transition body is "x:=x div 2; y:=y+1",
and the transition condition 2|x. Therefore, we have to prove true:

[(z=22Y A2|x) = wlp."x:=x div 2; y:=y+1".(z = 22Y)] (1)
This means:

[(z=22Y A2|z) = (r:=zdiv2).((y:=y+1).(z = 22Y))]

Which is equivalent to:

[(z = 22Y A 2|7) = 2z = (2div2)2YT!]

The rest of the proof is trivial. Of course, this example is not entirely formal since the
integration of the predicate transformer formalism into a TLA environment still has to be
performed. Also, it could be noted that the proof was carried out by hand. But manual
work was necessary only during verification, not during semantics definition. It is well
known that somewhere in the verification process the verificator’s ideas unavoidably are



necessary. But here, it is not in the semantics definition; a denotation function exists. As
a résumé can be stated that Dijkstra’s predicate transformers are well suited both for a
semantics definition of transition bodies and for verification. In particular, the ubiquitous
sequential composition is handled elegantly.

Finally, we turn to hybrid forms out of predicates and predicate transformers for defining
the semantics of transition bodies. In every case, some kind of hybridization is necessary
because TLA proved to be an appropriate temporal framework but was not well suited
for transition body semantics. One idea is to take a predicate describing the system’s
state unambiguously (like in the discussion of the Hoare-style assertions above) and stuff
it into a predicate transformer describing the transition body. This yields a predicate
that describes the entire semantics of the transition body. The idea is feasible, but in
[Bre92] it turned out that verification with it is more complicated than with the next
idea: a calculus comprising both predicate transformers and predicates (actions). An
example can be found in [ZwRo89]; it allows explicit transformation between the different
representations, but actually performing them is still as hard as any proof. So, for our
purposes it seems better to restrict ourselves (1) to be able to prove with predicates, (2)
to be able to prove with predicate transformers, and (3) to have some easier to handle,
specialized proof rules which refer to both formalisms and which implement the proof
methods from section 2.

In [Bre92] we design such a calculus (called TLA/PT). It includes TLA; and TLA’s first
order part is augmented by usual predicate transformers that are applied to a predicate.
The action part is augmented by predicate transformers that describe actions, and the
temporal part by specialized proof rules. The definition of the second kind of predicate
transformers creates a problem ([Lam9la]): most predicate transformers specify that
certain variables are modified and all others remain unchanged. On the other hand, to
keep the simplicity of logic, a formula should only state something about those variables
which are mentioned explicitly. Otherwise, F' = (3x :: F'), with x not free in formula F,
would not be valid anymore. As indicated earlier, every TLA action is annotated by an
explicit state function; it contains the variables that must remain unchanged if the action
is not taken. Consequently, we define annotated predicate transformers that state which
variables are affected by them at most when they are? taken:

PT; = (3h: f'= hA=PT.(f #h))

This way, nothing is stated about variables not explicitly mentioned. Finally, TLA/PT
adds a proof rule that takes something like implication (1) as one of its premises and
which formalizes the respective conclusion.

3.2 A Formal Estelle Execution Model

Using TLA/PT, we are able to give an entirely formal definition of the Estelle execution
model. It fits on something more than a single page, and it can be found in figures 1

2Gince annotated predicate transformers are actions, they are annotated a second time to tell what
must remain unchanged if they are not taken.



1 ExecutionModel =

2 ExecutionModelWithoutLiveness

3 A (Vtr:tr.d € Sys.Trans :

4 WFy, Selected(  —tr-Selected A tr.Selected’

5 A ExecutionModelWithoutLiveness)
6 A DO(tr.Selected = O—tr.Selected))

This definition of the execution model is based on the following subsidiary defini-
tions:

7 ExecutionModelWithoutLiveness =

8 OLocExecutionModel(Sys)

9 A IniDefs
10 A O[(Vtr: tr.ld € Sys.Trans U {Sys.Ini.ld} :
11 tr.Selected # tr.Selected)] oy

12 All = (Sys, Attach, Connect)

13 IniDefs =

14 O(Sys.Ini.Selected € Boolean)

15 A Sys.Ini.Selected

16 A O[=(=Sys.Ini.Selected A Sys.lni.SeIected')]SySJni‘5e|ected

17 A O(Sys.Ini.Selected = (Vtr : tr.ld € Sys.Trans : —tr.Selected))

18 A O(—Sys.Ini.Selected)

19 A O  (Sys.Ini.Selected A =Sys.Ini.Selected’)

20 = ( ( Sys.IniTrans # {}

21 = (Jtr : (tr.ld € Sys.IniTrans) :

22 ((tr.Effect_PT).(Change.{Sys.Ini.Selected}))a))
23 A ( Sys.IniTrans = {}

24 = (Change-{sys-lni-SeleCted})AII))]Sys.Ini.Selected

Figure 1: Formal definition of the entire execution model (except quantitative time as-
pects). First part.

and 2. As stated in the beginning of section 3, this formula is part of the output of the
denotation function which maps specification texts onto TLA/PT formulas. Therefore,
the formula has to be understood in the context of the other output. The definition of the
complete denotation function would amount in describing the full semantics of Estelle;
such a definition is beyond the scope of this paper for its space limitations alone. A design
of the complete denotation function can be found in [Bre92]. Here, we restrict ourselves
to defining the execution model. Due to space limitations, we stripped figures 1 and 2
off any quantitative time aspects (introduced — only — by “Delay-clauses”). For the
complete definition refer to [Bre92].

Some more remarks on TLA/PT are in place. We assume traditional temporal logic and



A

25 LocExecutionModel(«)
26 (VB : B.Type € a.LocModDefs A §.Exists : LocExecutionModel(3))

27 A (a.ModDefs = a.LocModDefs U (Ug : 8. Type € a.LocModDefs : 8.ModDefs))
28 A (Vtr:tr.dd € a.LocTrans :

29 tr.Enab = tr.Provided A tr.When A «.State € tr.From)

30 A (Vtr:tr.dd € a.LocTrans :

31 [ (—tr.Selected A tr.Selected’)

32 = ( tr.Enab

33 A (Vtry : tro.dd € a.Trans : —try.Selected)

34 A (Vtry : tro.ld € a.LocTrans \ {tr.ld} : —tr,.Selected’)
35 A (Vtry : tre.dd € a.LocTrans A try.Priority < tr.Priority : —try.Enab)
36 A (Change.(Utrz : tro.ld € Sys.Trans :

37 {trs.Selected})) i) ltr.Selected

38 A (tr.Selected A —tr.Selected’)

39 = ((tr.Effect_PT).(Change.{tr.Selected})) ailltr.Selected)

40 A (3tr : tr.ld € a.LocTrans : tr.Enab)

41 = (Vtr: tr.ld € a.Trans \ a.LocTrans :

42 [=(—tr.Selected A tr.Selected’)]i; Selected)

43 A (Vtr:trdd € a.Trans :

44 [ (—tr.Selected A tr.Selected’)

45 = ( ( a.Class € {SystemProcess, Process}

46 = (Vf : B.Type € a.ModDefs A (3.Exists :

47 (3try : tro.ld € B.LocTrans :

48 Enabled(  —tr,.Selected A tr,.Selected’
49 A LocExecutionModel(3)))
50 = (Itry : tro.ld € B.LocTrans :

51 —itry.Selected A tr,.Selected'))

52 A ( a.Class € {SystemActivity, Activity}

53 = —(3try : tra.ld € a.Trans \ {tr.Id} :

54 —try.Selected A tro.Selected’)))]ir Selected)

Figure 2: Continuation: formal definition of the local execution model.

its operators O, O to be known?. The notation (Vz : F : G) is defined to be (Vz :: F = G),
and (dz : F' : G) is defined to be (dz :: F A G). Unlike [Lam91|, we don’t use indentation
as a substitute for parentheses, but still as a hint to the formula structure. Noteworthy is
the use of compound variables. For records, the standard dot-notation is used (and should
not be confused with the application of predicate transformers). The semantics definition
of a record is based on that of an array as* in TLA* ([Lam91b)®): tr.ld = tr["Id"] (And an
array, for its part, is a special notation for a function.) In figure 2, line 31 to 37, one finds
an expression of the form [Ali, Selected- This is a TLA/PT action annotated by a state

30A (read: “always A”) means that formula A will hold now and always in the future. O A (read:
“eventually A”) means that A will hold now or sometime in the future.

4 A minor change was necessary to accommodate to predicate transformers, see [Bre92].

STLAT is a syntactic extension to TLA that facilitates the handling of large formulas. At the time of
this writing, it is still under development.



function as described in the end of subsection 3.1: “tr.Selected” must remain unchanged
if the action A is not taken.

The definition of the execution model in figures 1 and 2 is structured into several subsidiary
definitions. The actual definition is found in the beginning (line 1 to 6). The longest
subsidiary definition is “LocExecutionModel” (line 25 to 54). It states all safety properties
of a single module instance. To understand it, one has to consider the module structure
of Estelle systems. An Estelle system is a dynamic hierarchy of communicating module
instances. A module instance can be dynamically created according to a generic template
called module (definition), and it can be destroyed again. Therefore, the formula defining
the properties of a module instance will be part of a universal quantification over all
existing module instances of its kind.

The hierarchical structure of an Estelle specification is preserved in the execution model.
At the top of this hierarchy, there is a module instance that exists always, called “Sys” in
the execution model. “LocExecutionModel(Sys)” (line 8) captures its properties. In this
definition, the formula “LocExecutionModel(3)” appears recursively (see line 26), taking
the immediate child module instances of “Sys” as argument, and so forth. Since the depth
of the module hierarchy is finite, the recursion is finite, too. “a.LocModDefs” is a’s set
of identifiers of child module definitions, a corresponding equation is generated by the
denotation function.

In Estelle, module instances are refered to by module variables. The denotation function
generates for a module variable mv of module instance o with module definition mt the
expression Oa.mv. Type = a.mt. Together with the execution model, the properties of the
module instance that mv is refering to can be derived. In order to define the properties of
all existing module instances without loosing the simplicity of the formalism that makes
reasoning feasible, we introduced one single restriction on the semantics of Estelle: for
every module instance, there has to be exactly one module variable referencing it. This
prohibits assignment of module variables, and the use of a module variable for the creation
of a module instance while it refers to another one. The only actual restriction following
from this is the loss of an unbounded creation of module instances.

In line 12, the variables Attach and Connect can be found. They describe the current
communication structure of the Estelle system (which can be dynamic, too). Each is a
set of pairs of interaction point identifiers. The Estelle statements Attach/Detach and
Connect/Disconnect modify the respective variable, the communication operations use
them. The variable All is defined to describe the entire system state.

In Estelle, transitions are not just simply fired. Each module instance is subject to a
cycle of two phases. In the first phase, one transition (or several from different child
module instances) are selected according to certain conditions, and in the second phase
these transitions are fired in an arbitrary order. The end of the first phase is marked
by the irrevocable selection of the transitions to be fired. In the second phase, no more
selection takes place. It ends when all selected transitions have been fired. So, for every
transition, there are two basic states: selected or not selected. To simplify reasoning
about a single transition, we introduce a boolean variable tr.Selected attached to each
transition tr. The action of selecting is expressed by —tr.Selected A tr.Selected’, and the
action of firing is expressed by tr.Selected A —tr.Selected’. To impose conditions on these



actions, or to connect them with (transition body) effects, logical implication can be used.
Examples can be found in line 31 to 37 for conditions and in line 38 to 39 for effects.

In line 32 and in line 28 to 29, the association of transition selection with the Estelle
transition clauses (“conditions”) is formally expressed. For every transition, the denota-
tion function generates predicates of the form O(... A tr.Provided = boolterm) according
to the specification text. Similarly, it generates a definition for the predicate transformer
tr.Effect_PT which defines the effects of the transition body (see line 39).

A quantification over all transitions of the module instance « is made in line 28. “tr.ld” is
an identifier for the transition tr. The denotation function generates expressions specifying
that all these identifiers must be distinct. “a.LocTrans” is specified by a predicate (gen-
erated by the denotation function) to be the set of transition identifiers of . “cv.Trans”
is the respective set union over this module instance, its child module instances, and
all descendants. “Sys.Ini” is a special transition that initializes the entire system from a
preinitial state ([ISO89]); see line 13 to 24.

The hierarchical structure of module instances is accompanied with a rule of priority
between parent and child module instances. If a parent is enabled to select an Estelle
transition, then none of its descendants is allowed to select an Estelle transition for firing.
This is specified formally in line 40 to 42.

Estelle allows different degrees of parallelism between module instances. Near the top
level of the hierarchy, system module instances (which have no active parent) act com-
pletely unsynchronized with respect to each other. This is expressed formally by simply
not imposing any further restrictions on them. The child module instances of instances
declared as process act in a parallel synchronized way. Except those children which are
inhibited otherwise, e.g. by a transition clause or by the parent/child priority, all children
have to be selected simultaneously for firing (or none). Afterwards, they may fire in any
order, until all have done so. Then, a new cycle of selection begins. This behaviour is
specified in line 44 to 51. The implication operator in line 45 puts appropriate restrictions
on the selection of any Estelle transition belonging to a descendant (line 44). In line 48,
the Enabled operator of TLA/PT checks if an Estelle transition of a certain module in-
stance 3 could be selected in accordance with the remaining execution model. If this is
the case, then the implication in line 50 demands the selection of an Estelle transition of
[ as a condition on the selection in line 44.

Child module instances of instances declared as activity progress in a sequentially syn-
chronized mode. At most one of them may be selected at the end of the selection phase.
In line 52 to 54, it is specified that none of the other Estelle transitions in question may
be selected together with the one in line 44.

In the international standard, liveness properties are indicated only a few times, and
only informally. We decided to include the indicated properties in our formal speci-
fication. In line 4 to 6, most of them can be found. In line 6, it is assured that
every transition, when selected, eventually will be fired (compare [ISO89, ch. 5.3.4]).
And in line 4 to 5, the selection of transitions is treated. “WF;(A)” is a TLA/PT
notation denoting weak fairness. Informally® but illustrative, it can be explained by

6For the corresponding formal definition refer to [Bre92], or to [Lam91].



O((©“action A is taken”) V (O “action A is impossible”)). Here, this action is the selec-
tion of a transition in accordance with the safety properties. If it is possible long enough
without interruption, it must be taken. But since the selection of one transition often dis-
ables others, this is only a “weak” property. In every new cycle, the same other transitions
may be disregarded. Only where nothing can block an entire module instance (i.e. near

the top of the module instance hierarchy), this liveness property indeed enforces progress
(compare [ISO89, ch. 5.3.1/3, “NOTE”]).

As this example intimates, our new design of a formal Estelle semantics cannot be exactly
equivalent to the formal semantics in the international standard. Based on a different
approach, we defined a new semantics, which of course resembles the one in the standard
as much as possible.

The definition of the operations related to Estelle statements like Qutput, Init, etc., does
belong to the denotation function (see “tr.Effect PT”) and not to the execution model; it
is therefore not mentioned in its formula.

With the preceding explanations, we hope that the reader can now work out on his
own how the formula in figures 1 and 2 formally describes the rules that determine the
development of an Estelle system.

4 Discussion and Future Work

We investigated the requirements for a calculus that is suitable for formal verification in
Estelle. To reach this goal, a redefinition of the formal Estelle semantics turned out to
be necessary. Among other things, we found out that such a calculus should be based on
first order logic. Lamport’s new Temporal Logic of Actions ([Lam91]) proved suitable for
most of the requirements. Still, a satisfactory representation of transition bodies (which
are important for the dynamic behaviour of a system) could be done best by Dijkstra’s
predicate transformers ([DiSc90]). In [Bre92], we defined the syntax and semantics of
a calculus integrating both formalisms. It still retains the simplicity of logic, which is
necessary for any practical usability. We also designed some proof rules, but they still
have to be elaborated further. Based upon this formalism, we sketched a redefinition of
the Estelle semantics. Then, we defined the entire execution model in a completely formal
way.

The new Estelle semantics is operational like the one in the international standard, but
we defined the underlying abstract automaton implicitely by just giving the automaton’s
properties. This is more convenient for the verification of required system properties,
since the automaton is characterized in the same formalism as the system’s properties.
In [Lam91], Lamport stresses that it is important to use only one formalism, because
“reasoning is practical only if the underlying formalism is simple”. If different aspects are
dealt with using different formalisms, then either one can leave their relationship informal,
loosing all formal rigour; or one has to pay the formalistic expenses of the transition from
one formalism to the other on each reasoning step, so that verification is not practicable
anymore.

Despite the diverging goals of expressibility of a specification technique on the one hand



and of simplicity for ease of reasoning on the other hand, we succeeded in designing a
formal semantics reconciling both.

Some topics are still left for future work. Our calculus has to be completed, and as soon as
Lamport has finished TLA™T (a syntactic extension that facilitates the handling of large
formulas, see [Lam91b]), we should migrate to it, too. Finally, the Estelle denotation
function has to be elaborated according to our design.

Nevertheless, the formal verification of Estelle specifications, being a main purpose of
a formalization, turned out to be possible, provided that some mechanical support is
available. Although the formalization of the Estelle execution model in figures 1 and 2
is quite compact, it is still too large for manual reasoning. For the practical feasibility
of verification, mechanical support is necessary. (But this is true for the verification of
any real system. Unavoidably, their complexity leads to lengthy formulas.) Verification
needs some wit to get the right ideas, but it also needs a lot of painstaking labour to
work things out. The latter can be handed over to computers, for instance the handling
of formulas and the check that a transformation indeed obeys the respective axioms and
rules. For TLA, first experiments with a prototype mechanical verification system have
already been performed (see [Lam91]). The system described there is even able to prove
(very) simple theorems by itself. After further development and progress in the heuristic
capabilities of such tools, eventually the manual share could be reduced far enough (to the
strategic proof decisions), to make the formal verification of Estelle specifications more
interesting for practioners.

It can be expected that it will be feasible to define the semantics of other FDTs using
the same style and the same formalism. For instance, SDL ([CCITT87]) seems to be a
suitable candidate, since its semantics is also based on the model of extended FSA. A
detailed treatment of these issues is left for future work.

Formal verification renders possible very high standards of reliability. Furthermore, it
provides a much deeper understanding of a system’s properties and problems ([Bre90]).
Although it has to be supported by appropriate tools to be of practical relevance, even at
present a system designer aiming for verification will write specifications that are better
readable and understandable. If something cannot be verified in principle, probably it is
not understood well and therefore may be a source of errors.
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