
ODE: A Highly Customizable Graphical
Object Design Editor

Torsten Leidig

AG Telematik

Department of Informatics

University of Kaiserslautern

12.02.90

Abstract

This article describes the basic concepts of an extensible customizable knowledge-based
graphical editor and its adoption to the DOCASE methodology and tool environment. One
aspect in this field is the mapping of conceptual models (expressed in a specific language)
to their graphical representations. This also has impacts to the semantic of the user actions
in a graphical editor tool. The ability to extend and customize the editor can be used to
build specific graphical interfaces to various kinds of tools in the software development
process. Major aspects of ODE are semantics-directed editing besides normal syntax-
directed editing, support of abstraction mechanisms, multiple modeless views to attack com-
plexity, semantic analization and animation. The result is an highly customizable graphical
editor construction set that matches requirements of applications in many domains of system
design.

- 2 -

1 Starting with DOCASE as target system

The DOCASE [9] model is object-oriented. It provides a design language called DODL
[10], which is thought to be applicated to different areas like office automation, CIM or dis-
tributed multimedia authoring and learning environments. (distributed applications engi-
neering). This implies to be customizible in case of the language and in case of the tools
used in DOCASE environment too. More design principles of DOCASE are: explicit repre-
sentation of semantics and the integration of configuration and computation aspects.

DODL comes with a generic class hierarchy that serves as semantic model convenient for
distributed processing and is known to all DOCASE tools. The hierarchy is divided in: a
structural part, a computational part and a system part. The following list gives a short over-
view of the approaches in DODL:

• the language is strongly typed to match requirements of early error detection

• it has a structural hierarchy; systems recursively consists of subsystems in an arbitrary
depth

• there are typed relations between objects enabling explicitly description of communica-
tion patterns, cooperation, etc.

• the language allows description of both static parts (configured elements) and dynamic
parts (generated elements)

• the languages allows description of both classes (types) and instances (objects)

• a graphical representation of language constructs is suggested

There is a strong need for graphical tools in DOCASE because of the complexity of system
design especially when it is combined with problems of distributed programming. So we
don’t want to stress this point. However, the list above implies much requirements or wants
for an interactive graphical editor tool.

2 Requirements for a graphical editor

Using DOCASE as an application area has some major impacts on the functionality for the
graphical object design editor. So the editor must be able to:

• display, construct and extend the class hierarchy of DODL

• display and modify relationships between objects of various types (also in a type hierar-
chy)

• handle structural hierarchies in object design (system to subsystem hierarchies)

• show and edit representations of DODL intrinsic data types

• check the semantics of the above constructs to prohibit ’some’ wrong specifications and
maintain consistency and completeness

• analyze the specified systems using certain methods and algorithms

• allow animation of the system under development

• interchange data between DOCASE tools

- 3 -

There are many more detailed requirements, which we wont discuss here in this depth.

However, an important implication of nearly all mentioned points is the customizability or
extensibility of the editor. Looking on existing software products we can recognize different
levels of extensibility, that you can divide into three layers. Lowest layer is the layer of ex-
tensiblity through simple changes in visual appearance. This isn’t really an extension to the
existing system, so the word customization matches a little bit more. Almost every graphical
tool is able to allow this kind of customization. The usual way is: to supply some ’style’
files in which the appearance of the objects used in the editor can be changed. Attributes,
which can be changed are for example: color, height and width, font, line width, and so on.
A higher degree of extensibility is achieved by being able to add new functions in an other-
wise elsewhere more static editor frame. On the third layer a much more flexible system is
obtained if the editor is able to incorporate the concepts of the application domain.

Figure 2-1 Layers of extensibility

This point will become more clearly by the following example: Suppose you want create a
Petri net editor from a universal graphical editor tool, which is able to display a directed
graph and handle some user actions on it (like selecting nodes and edges by clicking on it).
First you can create the visual styles of the different nodes (places and transitions) and
maybe the style the graph is to be drawn. At this point we are able to draw some fine valid
Petri nets. But we are also able to draw things that are never Petri nets (e.g. an edge between
two places or two transitions). If your editor allows functional extensions you can add some
functions to set marks into a place or to fire a specific transition. But this works only in one
view. This topic raises also question of how to do the mapping from user actions (button
press, pointer motion) to functions. If your editor is able to present multiple views of over-
lapping issues of the regarded domain he must have knowledge about the semantics of the
used objects. For example, if the editor maintains (and shows) a list of places he must know
what objects are places. If he maintains a list of currently fireable transitions he must know
the difference between fireable and nonfireable transitions. This is what I mean with con-
ceptual extensibility and customization.

At the last, we can distinguish between dynamic (at run time) and static (at compile time)
extensibility. For the developer of a customized editor it can be worthfull to do this interac-
tively, at runtime. This is to be kept in mind.

semantic model (concepts)

visual appearance

functionality

- 4 -

3 Current state of the art 1

Let us now consider the technology of graphical (sometimes called ’visual’) editing. Early
language environments have had only textual editing provided. The functions were static
and they regarded the input only as plain text. Typical functions are cursor positioning, in-
sertion, deletion, cut and paste of text parts. Then there came up editors that were extended
by programming them; first there were only keyboard macro facilities; later on there came
specialized highlevel languages. This opened the way for more syntax directed editing de-
pending on the language used. A good example of such an editor is Emacs [21], which is
programmable in a Lisp dialect.

With the increasing capabilities of graphic workstations came a lot of specialized, one do-
main graphical editors along. I will not discuss any of them here because they have not the
things I want. They sometimes have interesting editing capabilities which are merged in
modern graphical environments anyway. To look at the graphical environments is much
more interesting.

First environment to be mentioned is Smalltalk [17], of course. Smalltalk introduced an
highly visual user interface with a new language extending (object-oriented). It has overlap-
ping windows of an arbitrarily large virtual size. User can modeless switch between win-
dows and their functionality or task. Kay’s [14] ’user interface paradigm’ should serve as
basis for his ’integrated environment’, which makes the frontiers between the operating sys-
tem and the application fade away. The Smalltalk system is the father of many current user
interface systems, not only used for programming language environments, like the Apple
Macintosh. With the multiple windows came up the problem of sharing a common internal
data representation. All instances of the i.e. ’Class Browser’ should reflect an internal
change. Smalltalks way to do handle this is the Model-View-Controller (MVC) [1, 2] ap-
proach. You will never find this term in any of the three bibles [17], whether the functions
are implemented and described (dependency field). This leads to the assumption that the
mechanisms were not very well understood at the release time. The first system that explic-
itly knows of ’views’ is the Pecan [19] System. Their idea was to present internal data in
several ways and to leave it to the individual user to select that views that are most useful at
a particular time. The next section gives a brief introductions how the MVC technique func-
tions.

The model is the data to be represented in a window on the Smalltalk screen. It may be any
data structure you can think of. Important is, that the model has no idea about how to dis-
play it self. That’s the task of the view, which is used as the mechanism that a model uses to
display itself. The view knows how to display the components of the model. There usually
are many kinds of views in a system. A controller is is the mechanism used by interaction
with the model displayed by the view. The controller observes the mouse pointer and the

1I don’t want bother you with stories from adam and eve, so only the recent past is considered.

- 5 -

mouse buttons activity on the displayed view. Note that the model has no reference to the
view or the controller of that view but the view and the controller know about each other.

Figure 3-1 Model-View-Controller relations

The view to controller, controller to view, view to model and controller to model relations
are one to one relations. Otherwise a model can have multiple views (dotted line). It is not in
sense of good programming to let the model know about all of it views. In other words a
simple instance must not know the hole system.

Another approach to handle this is the ’daemon’ approach [4]. Daemons are similar things
like controllers, they are ’fired’ at particular events (i.e. a call of a specific method) and will
invoke methods of the ’whole’ (world) to maintain it.

One Method used in e.g. KEE is the active value method. Whenever the value of a field
changes or is read or otherwise activated then an user supplied activity is started. This activ-
ity is evaluated in the context of the object and knows about the whole like the object itself.
It is notable that a new kind of programming style is born out of this technique, that is called
data driven style. Methods (= functions) are invoked by altering data fields. In KEE active
values are used for the same reasons that Smalltalk uses the MVC method. This is to enable
the multiple view approach but further to trigger rules of an expert system.

3.1 Visual programming

Constraint-based programming

A new quality of the multiple view approach is achieved with constraint-based Systems.
Views are in a constraint relation with the model; basically constraints can hold on any ob-
ject in the system. One of the most impressive systems that experiments with constraints is
the ThingLab [6]. Giving a set of dependencies between values in form of special expres-
sions, a solution is generated which satisfy all of this (if it exists). The number of solutions
are small if the number of constraints is sufficient. ThingLab is a constraint-based simula-
tion environment, that allows direct manipulation of graphic objects on the screen using the
mouse pointer and the results of the constraint evaluation are drawn onto the screen in re-
turn. The evaluations takes a long time (too long for interactive applications) if applications
become more complex. So there is a strong evidence for research in algorithms of fast con-
straint satisfaction. ThingLab is a such kind of visual language system and it incorporates
elements of programming by demonstration too (see following sections). Newer visual lan-
guage environments like ThinkPad [5] and Rehearsal World [7] were heavily influenced by
ThingLab.

aController
aView

aModel

- 6 -

Programming-by-demonstration

This approach means that the user performs a graphical manipulations on the screen (dem-
onstrates the program) and the system maps this to executable programs. In ThinkPad users
demonstrations on data structures via graphical representations of it are mapped to Prolog
code. The ’Rehearsal World Theatre’ [7] produces Smalltalk code (but the user does not
have to know Smalltalk!).

Form-based programming

Form-based programming environments are similar to spread sheet programms. But they al-
low the user to arrange cells in any order, size and appearance in so called forms. Cells are
constrained, like spreadsheet cells, by expressions or procedures. There exists an evaluation
strategy that can be influenced by the user. This approach is essentially a specialized form
of constraint programming where the constraint evaluation algorithm is quite simple. An ex-
ample of a form-based programming environment is Forms [8].

4 What are the ODE concepts

4.1 How to build visual representations from the model?

One of the main tasks in the project is to explore how one can map the various facets of the
model into proper visual representatives. There are a lot of things to learn from other
graphical user interfaces and graphical tools. Apart from that we can profit from the knowl-
edge of psychology, especially in the field of communication between people and cognitive
psychology. Issues of this domain where important and complex enough to present them an
own paper. Main goal is, I think, to map parts of the conceptual model in his cognitive form
to visual representations in a one to one or one to many relation, without inserting to much
stages of transformation. To the field of visual representation belongs also the translation of
user actions into functions. Not only data objects of the application domain have to be
mapped to graphical representations. Furthermore the activities (operations) on this objects
have to be converted into user actions on the graphical representations (e.g. moving and re-
sizing of objects, dragging a slider a.s.o.). In most editors this kind of mapping is solved by
programming it out for each special case. The method looked after in the project of ODE is
to give a translation scheme for translating a sequence of atomic user activities (like mouse
clicking, pointer motion,...) and complex activities (that are constructed of atomic ones) into
a specific function.

4.2 Multiple independent views

For ODE the concept of multiple independent views were adopted. One view shows an par-
ticular aspect of a part of the system. It shows the objects in particular colors depending on
the significance of data in the subject of the view. Other views may display the same object
in a different manner according to the viewpoints they offer. Regardless of that, all views
show the actual state of the system under development and are to be maintained if anything
changes. First approach to achieve that is the use of active value expressions which is simi-
lar to the dependency field technique in Smalltalk or the active valua technique in KEE. Fur-
ther research is required to supply a more abstract (high-level) and therefore more user

- 7 -

friendly method of specification of dependencys (constraints). I think of a rule-based and/or
functional system that is combined with a constraint evaluator. Maybe there are restrictic-
tions in the kind of dependencies to be made to achieve a fast evaluation.

Views also work as a user interface to input and change the system. So in some views might
be controllers like editable text fields, toggle buttons or sliders to alter the internal state of
that object. ODE provides views in forms of directed graphs, lists and text areas. It is cur-
rently expanded to combine any of the known user interface objects of todays graphical user
interfaces to views. In order to enable program animation graphical attributes of the view
contents like color, borderwidth, background pixmaps and position can be altered.

Currently we have three kinds of views in ODE. First and most important is the GraphView.
It is based on an extensible graph editor that were developed at the University of Karlsruhe.
Thist view consist of a viewport wich shows an directed graph layouted automatical with
several choosable layout techniques or layouted manualy as users desires. Several parame-
ters and style attributes can be altered. The view is so much important because the object-
oriented programming paradigm used in DOCASE is heavily based on relations between ob-
jects. For instance one of the approaches in DOCASE is to make communications between a
number of objects explicit via a special communications relation which stands in a hierarchy
of relation types and has a particular semantic (e.g. a 1:n broadcast communication or a n:m
communication following some protocols).

- 8 -

GraphViews are subtyped to various GraphViews which allow editing of special subsets of

relations between special subsets of objects or object types. There is of course a ClassView
that shows subclass/superclass relations between the classes of DODL. Other views show
and edit communications patterns combined with a has-component relations which ex-
presses the subsystem structure of the system. A sample screen of views are shown in Figure
4-1. Note that the nodes in this example are placed automatical. Each class of nodes is
linked to a popup menu were user actions on this node (that represents an object) can take
place. The whole view itself can have a popup menu through which general view actions
can be started. User can move nodes by ’dragging’ them to a new location if the automatic
layout don’t taste to him. GraphViews allow much more manipulations like editing, layout-
ing and so on, but I don’t want to draw out all. The GraphView is implemented with an
large graph editor tool called EDGE [22, 23] that offers a lot of functionality in the fields of
graph layout.

Second view is the ListView which holds a set of elements of same or different type. Opera-
tions on it were selection, insertion or deletion of elements. Third view is an ordinary text
view that allows text editing. The three view kinds are to be unterstood as generalized head-
classes to be specialized as needed in the application environment. This is done by the
DOCASE-ODE customization. The views can be placed into a window frame that consists
of titlebar, pulldown menus and command menus that are arranged in a command panel.

Figure 4-1 Sample of Views in DOCASE-ODE

- 9 -

The mechanism used to maintain consistency between the multiple views it very similar to
the ’active value’ described above. Upon this there exist special monitoring object classes.
Instances of them can simple be attached to objects that should be observed. This technique
allows simple and fast evaluation but has sometimes lacks in comfort of the specification of
constraints, because its more procedural as declarative..

4.3 Extensibility by multi-paradigm language

The second approach of ODE is the extensibility achieved by a simple but mighty built-in
language interpreter. The language I choose for ODE is a lisp-like functional language aug-
mented by an object-oriented data structure and method call mechanism. The object-
oriented extension is not to be compared with that in Flavors [13], CommonLOOPS [11]
a.s.o., however it were influenced by the them. The concept of the objects in ODE is on the
one hand made appropriate to the requirements of the editor and on the other hand as simple
as possible. Further it is adaptable to other class concepts like the metaclass concept of
Smalltalk or the support of multiple inheritance. Another important point is that relations are
taken into the language as intrinsics and are extensively used to build intern data representa-
tions. The inheritance lattice too is constructed by relation. Relations are typed (stand in a
class hierarchy too) and use inheritance. The advantages are enormous:

• relations can be used to semantic modeling of the domain

• user can ask system for special relations via coherent orthogonal functions defined over
relations (i.e. can compute sets of transitives)

• operations can be applied uniformly to a set of relatives (relation) as a whole

• relations can be drawn by a uniform directed graph editor (semantic is defined by the
relation)

• relations can be the foundation of rule based inference

• user externalizes knowledge about the domain (makes it explicit)

• relations gather important information rather then distribute it to many objects by using
simple references

• relations can be constrained with properties like symmetry or transitivity

• constraints between different relations can be specified (i.e. some objects can’t be in two
partially adjacent relations)

Indeed you can for example write your own is-subclass relation to implement your own in-
heritance mechanism.

The reasons for using Lisp as original for our task were the following:

• Lisp is a simple orthogonal language (therefore easy to learn)

• it is comparatively easy to write an interpreter for Lisp

• object-oriented appraoch is easily integrated

• Lisp is compact

• equivalence between data and program empowers meta programming

In addition, the subjective preferences of the author might be have played a role.

- 10 -

Why the multiple paradigm approach?

A multiparadigm approach is better then a pure single paradigm like OOPS because of the
different adequateness of used methods in different fields of the design. A good method for
specifying systems is the functional one. Most engineers are familiar with a functional way
of thinking. Functions of their arguments are specified by giving a valid expression which
expresses the function as a term of other functions (lastly atomic ones). Pure functional lan-
guages give no hint about how functions will be evaluated, especially there is no order of
evaluation of subexpressions, so the programming style is called declarative. A second
widely used style is the operational one. This is well known in the domain of programming
languages as procedural style. The developer describes the sequence of actions to be taken
to yield a proper result. Third there is the logical paradigm used e.g. in the Prolog language.
Logical paradigms requires the specification of a number of facts (usually very large) and a
set of rules over the domain. Rules are implications of a combination of preconditions.
Again the programming style is more declarative then procedural, nevertheless some logical
programming environments (like Prolog) require knowledge about the order of evaluation.
A given abstract engine is able to analyze the workspace forward and backward to produce
new facts or prove any assumptions. Other more specialized methods, for example ’access-
oriented’ [20] are available. One paradigm of special interest is the object-oriented para-
digm. This paradigm combines the operational approach with an inheritance mechanism in a
class hierarchy. Procedure call is replaced by method call.

4.4 Other confinements

There are some more pragmatical (technical) requirements for our editor tool like operation
speed, usage in a standard environment or the integration into a software development envi-
ronment. For the reason of speed, we used C++ as implementation language and not Small-
talk or something like this. For reasons of standardization and integration we decided to use
X windows and the X toolkit [24, 25] as user interface platform, which is regarded as the
standard window system in the near future and it offers all what we need. Systems like
Smalltalk or KEE are very useful, they offer a lot of highlevel functionality but they are
closed shops, which means that the integration with other tools writen in other languages are
difficult.

5 Results

6 References

[1] G. Krasner, Smalltalk-80: Bits of History, Words of Advice, Addison-Wesley, Reading,
Mass. 1983.

[2] Ralf L. London and Robert A. Duisberg, "Animating Programs Using Smalltalk", IEEE
Computer?, August 1985.

- 11 -

[3] S.P. Reiss, "Pecan: Program Development Systems that Support Multiple Views", IEEE
Trans. Software Engineering, Vol. SE-11, No. 3. Mar. 1985, pp. 276-285

[4] Makoto Murata and Koji Kusumoto, "Daemon: Another Way of Invoking Methods",
JOOP, Jul/Aug 1989.

[5] R.V. Rubin, E.J. Golin, and S.P. Reiss, "ThinkPad: A Graphical System for Program-
ming by Demonstration", IEEE Software, Vol. 2, No. 2, Mar. 1985, pp. 73-79.

[6] A. Borning, "Defining Constraints Graphically", Proc. CHI 86, Conf. Human Factors in
Computing Systems, Apr. 86, ACM, pp. 137-143.

[7] W. Finzer and L. Gould, "Programming by Rehearsal", Byte, Vol. 9, No. 6, June 84, pp.
187-210.

[8] A.L. Ambler, "Forms: Expanding the Visualness of Sheet Languages", Proc. 1987
Workshop on Visual Languages, Tryck-Center, Linkoping, Sweden, Aug. 87, pp. 105-
117.

[9] A. Schill, L. Heuser, M. Mühlhäuser, "Using the Object Paradigm for Distributed Appli-
cation Development", In: P.J. Kühn (Hrsg.), "Kommunikation in verteilten Systemen",
Proceedings : ITG/GTI-Fachtagung, Grundlagen, Anwendungen, Betrieb, Stuttgart, Feb
1989, Springer-Verlag

[10]W. Gerteis, A. Schill, L. Heuser, M. Mühlhäuser, "DODL: A Design Language for Dis-
tributed Object-Oriented Applications", unpublished, University of Karlsruhe, Institute
of Telematics

[11]D.G. Bobrow, K. Kahn, G. Kiczales, L. Masinter, M. Stefik F. Zdybel, "CommonLoops:
Merging Lisp and Object-Oriented Programming", In: Object-Oriented Programming
Systems, Lanugages and Applications 1986, Conference Proceedings, Association for
Computing Machinery, Sep. 1986

[12]D. Ingalls, s. Wallace, Y-Y Chow, F. Ludolph, K. Doyle, "Fabrik - A Visual Program-
ming Environment", OOPSLA’88 Proceedings, ACM, pp. 176-190

[13]D.A. Moon, "Object-Oriented Programming with Flavors", OPSLA’86 Proceedings,
ACM, pp.. 1-8

[14]Alan Kay, "The reactive Engine", Ph.D. Thesis, University of Utah, Salt Lake City, Sep.
1969

[15]A. Kay, A. Goldberg, "Personal Dynamic Media", IEEE Computer, Vol. 10, No. 3, Mar.
1977, pp. 31-41

[16]J. Rumbaugh, "Relations as Semantic Constructs in an Object-Oriented Language",
OOPSLA’87 Proceedings, ACM, pp. 466-481

[17]A. Goldberg, "Smalltalk-80: The Interactive Language Environment", Addison-Wesley,
1984

[18]A. Goldberg, D. Robson, "Smalltalk-80: The Language and its Implementation",
Addison-Wesley, 1983

[19]S.P. Reiss, "PECAN: Program developement systems that support multiple views",
IEEE Trans. Soft. Eng. , SE-11, Mar. 1985

- 12 -

[20]M.J. Stefik, D.G. Bobrow & K.M. Kahn, Xerox Palo Alto Research Center, "Integrating
Access-Oriented Programming into a Multiparadigm Environment", IEEE Software, Jan.
1986

[21]R. Stallman, "Emacs, the Extensible, Customizable Self-Documenting Display Editor",
545 Tech Square, Cambridge, MA 02139, USA

[22]Walter F. Tichy, Frances J. Newbery, "Knowledge-based Editors for Directed Graphs",
In Howard K. Nichols and Dan Simpson, editors, 1st European Software Engineering
Conference, pp. 101-109, Springer, 1987

[23]Frances J. Newbery, "An Interface Description Language for Graph Editors", Proceed-
ings of the IEEE Workshop on Visual Languages, Pittsburg, PA, October 10-12, 1988

[24]R.W. Scheifler, J. Gettys, "The X Window System", ACM Transactions on Graphics,
Vol. 5, No. 2, Apr. 1987, pp. 79-109

[25]J. McCormack, P Asente, and R.R. Swick, "X Toolkit Intrinsics - C Language Inter-
face", Massachusetts Institute of Technology, Cambridge, Massachusetts, 1988

