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Chapter 1

Introduction

The papermaking is a highly competitive and fast developing industry. Thus, paper machines have

to be constantly improved. Current studies are concerned with the simulation of the processes oc-

curring in the pressing section of a paper machine. In this industrial field themathematical modeling

is a powerful tool since laboratory experiments are a challenging and sometimes even impossible

task. These studies aim at a development of an advanced mathematical modelof the pressing sec-

tion. It will help us to better understand the inside mechanisms of the process.The mathematical

model will also allow us to perform different numerical experiments with various sets of parameters

in a reasonable period of time. The achievement of the stated goal may lead to improvements of the

papermaking industrial process.

1.1 Pressing section of a paper machine

The paper production is an industrial application, which attracts attention of many scientists. It is a

challenging problem, investigated from different points of view by scientistsfrom different fields.

We are concerned with the mathematical modeling and simulation of the pressing section of a paper

machine.

The paper machine is a huge piece of equipment which typically consists of four main parts

(see Fig.1.1): the headbox, the forming section, the pressing section and the drying section (see

[39, 41]). Special woven plastic fabric meshes are used to transport the paperthrough all sections

of the paper machine. During the production process, a wood pulp is transformed into a final paper

product by performing different dewatering techniques. The headbox provides the suspension which

consists of99% of water and1% of solid phase, wooden fibers. In the forming section, dewatering is

performed by the natural filtration and sometimes with the help of suction boxes.After the forming

section, the dry solid content of the paper increases to about20%. In the next section, the dewatering

is carried out by a mechanical pressing of the paper layer against properly selected fabrics, so-called

1



2 CHAPTER 1. INTRODUCTION

Headbox

Fig. 1.1: Schematic representation of a paper machine

felts. The simplest construction of a pressing nip consists of two rotating rollswith the paper–felt

sandwich transported between them at high speed up to2000 m/min as shown in Fig.1.2 on the

left. There exists also another type of a press nip which is called shoe press (see Fig.1.2 on the

right). The advantage of the shoe press is an extended pressing zone,which is about300mm long

in comparison to40mm in the roll press case. In contrast, the thickness of the paper–felt sandwich

is about4 mm and the thickness of the paper layer can go down to100 micrometers. During the

pressing of the paper layer against the felts, water is squeezed out of the paper and enters the felts.

So, the water content of the paper decreases to about50% after the pressing section. The last section

is the drying section where the remaining water is removed by evaporation. Paper is transported over

steam-heated cylinders and comes out of the drying section with a water content of 5%.

Felt

Paper

Roll

Roll

Roll

Shoe

Fig. 1.2: Press nips: roll press (on the left), shoe press (on the right)

The pressing is a more economic way to remove the water from the paper than the drying.

Therefore, the industry is actively working on improving the dewatering in the pressing section.
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The laboratory experiments for the paper machine are very expensive and difficult to carry out.

The simulation approach allows to reduce time and money needed for improving the design of the

pressing section.

The pressing section is composed of a sequence of rolls and typically one shoe. Their position-

ing may vary depending on the paper machine. Fig.1.3shows a sketch of the pressing section. The

paper web is usually transported either on one felt in the top or bottom positionor between two

felts as a sandwich. In some cases, when the paper web is strong enoughcompared to the applied

load in machine direction, the web is transported towards the next press nip or to the dryer section

without any felt support [41]. Thus, the paper layer sometimes is in contact with the felt and some-

times separated from it while passing the pressing section. Our mathematical model of the pressing

section considers the layers to be transported all together. The separation is taken into account by

specifying no-flow boundary conditions on the parts of the interfaces where the layers are not in

contact in reality.

Felt roll

Nip

Felt

Paper

Fig. 1.3: Pressing section

The pressing process in a paper machine is very complex since such features as moving and

deformable porous media, computational domain composed from different layers, multiphase flow,

etc. have to be taken into account. There exist various approaches to model the pressing section

of a paper machine [10, 12, 11, 28, 35]. The mass and momentum conservation equations are used

together with a Lagrangian formulation along displacement characteristic lines(solid flow lines) in

[28, 35]. In [10, 12, 11] the Lagrangian formulation of mass balance is used. In the last work by

Bezanovic et al. [11] the compressible air is also considered. But all these models have a common

feature, which is neglecting the capillary forces. Models which take into account the capillary
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effect are presented in [9, 43, 44, 49]. The model described by Bermond in [9] uses a two-phase

flow model including capillary pressure–saturation relations and introduces thermal aspects. In

[43, 44, 49], the Richards’ approach for flow in unsaturated porous media is adopted. None of the

above mentioned models considers the dynamic capillary pressure effect, which is our main target.

Further on, an advanced finite volume discretization, namely MPFA-O method, isemployed here

in order to provide more accurate discretizations. As a starting point, we have chosen the model

realized in [43, 44].

1.2 Dynamic capillary effects

Typically, the capillary effect has a significant influence on the modeling ofmultiphase flow in

porous media (see [5, 6, 7, 26]). The capillary pressure is defined as the difference in the phase

pressures:

pc = pn − pw,

wherepn andpw are the pressures of non-wetting and wetting phases, respectively. Toinclude

this effect in numerical experiments, the capillary pressure can be presented as a function of the

water saturation, and sometimes of other parameters of the filtration process.The typical approach

to obtain this function is to construct the capillary pressure–saturation relation based on laboratory

experiments. This process is carried out in the following way. To construct for example a drainage

curve, at the beginning the sample of the porous medium is fully saturated with water. Then, air

starts infiltrating the sample by increasing its pressure stepwise. When equilibrium is reached, the

capillary pressure and the water saturation are measured. This measurement forms one point at the

targeted capillary pressure–saturation curve. The time which is needed to reach equilibrium after

changing the pressure can take from several hours to several days. Construction of the complete

capillary pressure–saturation curve for the felt, which is used in the paper production process, may

take several days.

Many scientists worked on parametrization of the measurement results (e.g. see [14, 37, 48]).

This approach works quite accurately in case of slow infiltration processes. In our case, the drying

process of the paper pulp takes much less time than the construction of the staticcapillary pressure–

saturation curve. There also exist different studies which try to understand and parametrize a dy-

namic capillary pressure which is not based on the equilibrium condition (see[3, 4, 13, 34, 45, 23,

24, 25]). Detailed overview and analysis of these models was done by Manthey and can be found

in [38]. We have chosen the approach proposed by Hassanizadeh and co-workers in [24]. Their

method was derived based on the physical aspects of the porous media flow. Adaptation of this

model to processes in the pressing section, as well as performing computational experiments for
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evaluation of the influence of the dynamic capillary pressure, are the main topics of this paper.

Note, that in the above mentioned papers devoted to dynamic effects in the capillary pressure–

saturation relation, the latter is accounted by including terms with time-derivativeof the saturation.

For the papermaking machine, we end up with a model including a space derivative of the saturation.

This is due to the fact that the paper-felt sandwich is transported with about 1500–2000 m/min

between the roles, and follows from the full model derived by Hassanizadeh and Gray in [24, 25].

For fixed porous media, the term with the space derivative of the saturationvanishes. We are not

aware of any other paper where the dynamical effects are accounted by the space derivative of the

saturation.

1.3 Discretization methods

The model of the pressing section has several specific features which have to be taken into account

when we choose a discretization method. First of all, we would like to preserve boundaries between

layers during discretization. Therefore, a grid which is based on the soliddeformations is used. It

means that we deal with a quadrilateral nonorthogonal grid. Moreover,the layered domain leads to

discontinuities in permeability. In spite of it, the continuity of the pressure and thefluxes at local

physical interfaces between grid cell has to be preserved. We also have to take into account that the

permeability is presented by a full tensor and not by a diagonal one.

A number of schemes were proposed recently to discretize such kind of problems (see [1, 2, 18,

27] and references therein). Some of them were tested by Herbin and Hubert [27] for various types

of test problems. They concluded that there does not exist the best scheme for any problem and that

the method has to be chosen taking into account the specific features of the considered problem.

Our choice is the MPFA-O method (see [1, 2, 19]). This method is intuitive. It is simply adopted

for the complex boundary and interface conditions, which have to be preserved, and its usage for

our problem has shown reliable results.

1.4 Main goals and structure of the thesis

Goals

• Extend the one-dimensional model for the pressing section of a paper machine obtained un-

der the Richards’ assumption and presented in [49] by accounting for the dynamic capillary

pressure effects. The derived model has to be discretized and tested by performing some

numerical experiments. The purpose of the extended one-dimensional model is to obtain

the behavior of the fluid pressure and the saturation closer to real ones than behaviors that

obtained by previously existing models.



6 CHAPTER 1. INTRODUCTION

• Theoretically investigate the one-dimensional model. Here the main objective is toprove the

convergence of the discrete solution to the continuous one. The theoretical studies should

be developed for both flow models, namely with the static and dynamic capillary pressure–

saturation relations, with minimal restrictions on input data.

• Extend the one-dimensional model accounting for the dynamic capillary effects to two di-

mensions taking into account a multilayer computational domain and a possible formation of

fully saturated regions.

• Appraise the admissibility of the Richards’ approach for the considered problem. The ob-

jectives are to develop a two-dimensional mathematical model for the pressingsection which

will account for the air and water phases and to perform numerical experiments which will

compare solutions of the models with and without the Richards’ assumption.

Structure

Chapter 2: The objective of this chapter is to develop an advanced one-dimensional model of the

pressing section of a paper machine. The mathematical model presented in [49] is extended

by accounting for the dynamic capillary effects. At first, a two-dimensionalmodel for a

single-layer case is stated. Then, with the help of an averaging procedure in the vertical

direction, the one-dimensional model is obtained. Discretization is performedwith the help

of the finite volume method. Numerical experiments are carried out for the model with the

dynamic capillary pressure–saturation relation as well as with the static one to appraise the

influence of the dynamic capillary effects. We also compare the simulation results with the

existing laboratory experiments presented in [8].

The results of this chapter have been published in [29].

Chapter 3: To have a better understanding of the behavior of the obtained system of equations

we carry out some theoretical studies. At first, we are concerned with themathematical

model with the static capillary pressure–saturation relation, which is presented by a nonlinear

convection-diffusion equation. We prove the existence and the compactness of the solution of

the discrete problem. The main result is presented by the final theorem whichshows that the

discrete solution converges to the solution of the continuous problem. Finally,we illustrate

the obtained theoretical results with the help of a numerical test.

In the second part of this chapter we consider the mathematical model with the dynamic capil-

lary pressure–saturation relation. The model is presented by a system ofnonlinear equations,

which makes the theoretical studies more complex in comparison with the static case. Here,
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we start taking into account two possible flow regimes: the saturated and unsaturated water

flow. At first, we propose a numerical algorithm of obtaining the solution of the discrete prob-

lem. Then, we prove the existence, compactness and the convergence ofthe solution of the

discrete problem. Finally, the derived theoretical results and made assumptions are verified

by numerical experiments.

The results of this chapter have been/will be published in [22, 42].

Chapter 4: The objective of this chapter is to develop a two-dimensional model accounting for the

water flow within the pressing section. Richards’ approach is used to describe the flow in

the unsaturated zone. The dynamic capillary pressure–saturation relationis adopted for the

paper production process. The mathematical model accounts for co-existence of saturated

and unsaturated zones in a multilayer computational domain. The discretization isperformed

by the multipoint flux approximation O-method. Finally, different numerical experiments are

carried out. At first, we consider single-layer cases to compare the results with the previously

developed one-dimensional model and the laboratory experiments. Then,we use the sets

of data provided by our industrial partner Voith Paper Fabric and Roll Systems GmbH at

Heidenheim to evaluate the influence of the dynamic capillary pressure–saturation relation in

the multilayer test cases.

The results of this chapter have been presented in [30].

Chapter 5: Validity range of the Richards’ assumption, which has been used for our problem in

all previous chapters, has to be investigated. A two-dimensional flow modelof the pressing

section is developed accounting for the water and air phases with the static capillary pressure–

saturation relation. The boundary conditions are improved in a way that the water is allowed

to escape from the computational domain through the upper and lower boundaries where the

paper-felt sandwich is not in contact with the surface of the pressing roll.

The main focus of interest is to perform numerical experiments for the new flow model using

the same input data as in the previous chapter and to compare the results obtained with the

help of the Richards’ model and the two-phase flow model.

Results of this chapter are being prepared for publication.





Chapter 2

One-Dimensional Model (Richards’

Approach)

Mathematical modeling of the pressing section of a paper machine is a complex process, which

consists of sequence of steps. At first, one decides how to account for the water infiltration processes

within the pressing zone and for the solid deformations, occurring as a result of the transportation

the paper-felt sandwich through the pressing nips. Secondly, some reasonable assumptions have to

be made to obtain a model with solvable complexity. Thirdly, we properly choosea discretization

method. Finally, we perform some numerical experiments and compare the obtained results with

available laboratory experiments.

Some laboratory experiments were carried out by Beck in [8] in a single-layer case. Thus, to

capture the main behavior of the fluid pressure and the fluid saturation and tocompare them with the

results from [8] as the first step we are going to develop a one-dimensional model. The model from

[49] will be extended by taking into account the dynamic capillary pressure effects (see Section1.2).

Using this one-dimensional model we will go through all the development steps. The aim of the

one-dimensional simulations is to state a basic mathematical model which can be improved and

extended in the following studies.

In short, the objectives of this chapter are to present an accurate one-dimensional model and

to study the influence of the dynamic capillary pressure–saturation relation on the solution of the

problem describing the pressing section of a paper machine. The mathematical model, which de-

scribes the basic physical principles behind the pressing process, is developed in Section2.1. In

Section2.2, the discretization by finite volumes is presented. Section2.3 presents the numerical

experiments. Finally, we discuss results in Section2.4.

9



10 CHAPTER 2. ONE-DIMENSIONAL MODEL (RICHARDS’ APPROACH)

2.1 Mathematical model

In this section we state governing equations for the modeling of the water flow inthe pressing

section. At first, a two-dimensional model is considered. To develop a mathematical model for

the pressing section in one dimension we have to consider a computational domain composed of

only one layer. Therefore, the two-dimensional model is stated for the single-layer case. Then, the

one-dimensional model is obtained with the help of an averaging procedurein the vertical direction.

To conclude this section a model which is used to account for solid deformations in the single-layer

case is briefly discussed. In short, Section2.1 is constructed in the following way. At first, we state

a two-dimensional model for single-layer case in Section2.1.1. Then, in Section2.1.2we obtain

from the two-dimensional model a one-dimensional model with the help of an averaging procedure.

In Section2.1.3we present the elasticity model for the single-layer case, which accounts for the

solid deformations.

2.1.1 Two-dimensional flow model in single-layer case

Concerning the modeling of the pressing section of a paper machine, the porous medium is com-

posed of three phases: solid (denoted by index ”s”), liquid (or water) (index ”w”) and air (index

”a”). An Eulerian approachis used to describe our system. The computational domainΩ ⊂ R
2

press roll

press roll

z

x

Vs,in W

G
U

GL

G
D

G
R

A B

Fig. 2.1: Computational domainΩ

and its boundary∂Ω = ΓL ∪ΓU ∪ΓR ∪ΓD are shown in Fig.2.1. Let the boundaries ofΩ be given

in the following way:

ΓL = {(x, z) ∈ R
2 : x = A, z ∈ [fd(A), fu(A)]}, ΓU = {(x, z) ∈ R

2 : x ∈ [A,B], z = fu(x)},
ΓR = {(x, z) ∈ R

2 : x = B, z ∈ [fd(B), fu(B)]}, ΓL = {(x, z) ∈ R
2 : x ∈ [A,B], z = fd(x)}.
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Then,Ω = {(x, z) ∈ R
2 : x ∈ [A,B], z ∈ [fd(x), fu(x)]}, wherex = A andx = B are fixed

points andA < B.

As indicated in Fig.2.1, let us assume that the paper–felt sandwich is transported through the

press nips in horizontal direction from the left to the right with velocityVs,in measured in[m/s].

The horizontal direction is designated asx-direction, whilez-direction is the vertical component.

The third direction is neglected since the length of the cylindrical roll is large,and lateral boundary

effects are not considered.

Before we start formulating the mathematical model for the water flow in the pressing section

let us make the following assumptions.

Assumption 2.1.1. (Richards’ assumption)Within the computational domain, the air remains at

atmospheric pressure.

Assumption 2.1.2.Gravity is negligible.

Assumption 2.1.3.All phases are incompressible.

Assumption2.1.1 is made to simplify the mathematical model. But the admissibility of this

statement still has to be shown and will be investigated in our future work. Assumption2.1.2 is

reasonable since the capillary and external forces are dominant in the pressing process. Therefore,

the gravity does not significantly influence the movement of water inside the computational domain.

Assumption2.1.3obviously makes sense for the water and solid phases. In case of the air phase, it

still has to be confirmed.

The mass conservation equation inEulerian form[5, 7, 26] for the water phase without source

and sink in case of the two-phase flow is:

∂ (φSρw)

∂t
+ div (φSρwVw) = 0, x ∈ Ω, (2.1)

wheret is the time in[s], S ([−]) is the dimensionless saturation of the water phase,Vw denotes

the velocity of the liquid phase in[m/s], φ ([−]) is the porosity andρw is the density of the liquid

phase, which is measured in[kg/m3]. Let us remark that in the following all vectors and tensors

will be written in bold type.

Assumption2.1.1states that the air is at atmospheric pressure. This assumption, in connection

with paper dewatering, was earlier successfully employed in [43, 49]. Therefore, the air pressure is

considered to be known and saturation of the air phase can be computed asSa = 1− S. Thus, only

the mass conservation equation for the water (2.1) is considered.

To define the water velocityVw in addition to the mass conservation equation, we have to

consider a momentum conservation. The momentum equation for water phase can be represented
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by the generalized Darcy’s law (see e.g. [5, 7, 26]). Neglecting gravity (see Assumption2.1.2) and

taking into account a solid velocity, we have:

φS (Vw − Vs) = −krw

µw
K grad pw, x ∈ Ω, (2.2)

wherekrw ([−]) is the relative permeability of the water phase,Vs is the velocity of solid in[m/s],

µw is the viscosity of the water in[Pa · s], K is the intrinsic permeability tensor in[m2], which we

assume to be diagonal,pw is the pressure of water in[Pa]. The solid velocityVs appears as a result

of the transportation and deformation processes.

According to Assumption2.1.3, the liquid phase is incompressible (ρw = const). Thereby, the

mass conservation equation for the liquid phase (2.1) together with (2.2) yields:

∂(φS)

∂t
− div

(

krw

µw
K grad pw

)

+ div (φSVs) = 0, x ∈ Ω. (2.3)

Eq. (2.3) has to be supplemented by a capillary pressure–saturation relationpc = pc(S). In

our case, when the paper–felt sandwich moves with about 2000 m/min between rolls, it is difficult

to expect equilibrium conditions to be satisfied and including dynamic capillary pressure effect is

very reasonable. We have chosen the dynamic capillary pressure–saturation relationship proposed

by Hassanizadeh and Gray in [24, 25]:

(pa − pw) − pstat
c = −τ D

sS

Dt
, x ∈ Ω, (2.4)

wherepa is the air pressure in[Pa], which is assumed to be zero in the following,τ is a so-called

material coefficient in[Pa ·s], pstat
c is a empirical static capillary pressure–saturation relation,DsSw

Dt

is the material derivative with respect to a reference frame fixed to the solidphase:

DsS

Dt
=
∂S

∂t
+ Vs · gradS. (2.5)

In general,τ may depend on saturation and other parameters, but in these studies we areconcerned

only with case whenτ is a constant. We also remark that case whenτ = 0 leads to the standard

model with the static capillary pressure.

A paper machine works in a non-stop regime during several days. Therefore, we are inter-

ested in a steady-state solution and the derivatives w.r.t. time in (2.3) and (2.4) are equal to zero.

Remembering that the water is considered to be incompressible (see Assumption2.1.3), we obtain:

− div

(

krw

µw
K grad pw

)

+ div (φSVs) = 0, x ∈ Ω, (2.6)
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pw + pstat
c = τVs · gradS, x ∈ Ω. (2.7)

From now on to simplify the notations, we skip index ”w” in the variablespw, krw andµw.

Remark 2.1.1. We should remark that the model (2.6), (2.7) is suitable only for unsaturated flow.

Evaluation of the fully saturated regions is one of the issues of pressing section modeling. But in

this section, we are not concerned with this side of the problem.

2.1.2 One-dimensional flow model

In this section, we are concerned with the one-dimensional problem in machine direction with com-

putational domainΩ = (A,B), B > A and boundary∂Ω = {x = A ∪ x = B} (see Fig.2.1).

To obtain the one-dimensional model, we employ an averaging procedure in vertical direction (see

AppendixA.1).

Then, the one-dimensional mass conservation equation yields:

∂

∂x

(

Ŝ(x)φ̂(x)V̂ 1
w(x)d(x)

)

= 0, x ∈ Ω; (2.8)

whereφ̂(x), Ŝ(x) andV̂ 1
w(x) are the vertically averaged quantities,d(x) = fu(x) − fd(x) > 0 is

the thickness of the layer. We assume that in two dimensions the intrinsic permeability tensorK

has a diagonal form:

K =

[

K(φ) 0

0 K̂(φ)

]

.

Then, thexx-component of this tensor will present in the one-dimensional model. Takinginto

account Darcy’s law (2.2) and omitting the hat sign over the averaged functions, Eq. (2.6) in one

dimension reads:

− ∂

∂x

(

d
kr(S)

µ
K(φ)

∂p

∂x

)

+
∂

∂x
(dφSVs) = 0, x ∈ Ω, (2.9)

whereVs denotes thex-component of averaged vectorVs.

We consider the paper–felt sandwich to be transported horizontally with theconstant speed

Vs,in. Therefore, thex-component of the solid velocity,Vs, does not depend onx and it is equal to

|Vs,in|. From now on, we considerVs to be constant for our problem.

The dynamic capillary pressure–saturation relation (2.7) after the averaging procedure in the

one-dimensional case yields (see AppendixA.2):

p+ pstat
c (S, φ) = τVs

∂S

∂x
, x ∈ Ω, (2.10)



14 CHAPTER 2. ONE-DIMENSIONAL MODEL (RICHARDS’ APPROACH)

where all variables are the vertically averaged variables.

Boundary conditions

For the needs of the pressing section simulation, the boundary conditions have to be imposed. At

first, let us make an assumption.

Assumption 2.1.4.BoundariesΓL andΓR are far away from the pressing zone.

We prescribe Dirichlet boundary conditions for saturation atx = A:

S(A) = C0. (2.11)

Since the boundaryx = A of the computational domainΩ is far enough from the pressing zone,

there is no movement of water with respect to the solid skeleton. The stationarycapillary pressure–

saturation relation is satisfied and the following Dirichlet boundary condition isapplied for pressure

on the left boundary:

p(A) = −pstat
c (C0). (2.12)

According to Assumption2.1.4, on the right boundary the equilibrium with respect to the solid

skeleton is reached as well. Therefore, onΓR we apply the zero-Neumann boundary condition:

∂p

∂x

∣

∣

∣

∣

B

= 0. (2.13)

2.1.3 Elasticity model in single-layer case

In addition to the flow, one has to account for the deformation of the porousmedia. In the current

work we use developments from [43, 44]. In these studies the pressing section is simulated con-

sidering the elasticity model weakly coupled with the flow model supplemented by static capillary

pressure–saturation relation. For the completeness of the stated model let us recall the elasticity

model from [43, 44].

Since the pressing forces are very large (about100 kN/m in the roll press) they are the main

reason of the solid deformations. Hence, we neglect the force of water acting on the solid phase.

Thus, the flow and elasticity models can be weakly coupled. We assume that thesolid phase is

incompressible (see Assumption2.1.3) and the porous medium gets deformed by a rearrangement

of the solid skeleton in vertical direction. According to [31, 49], it is reasonable to assume that the

felt and the paper behave viscoelastically. Then, to describe the behavior of the porous medium we
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use the Kelvin-Voigt model for a single-layer case:

t(x) = E(ε(x)) + Λ |Vs,in|
d

dx
E(ε(x)) − ktmax(x), (2.14)

wheret is the stress measured in[Pa]. The dimensionless strain is defined by:

ε(x) =
l0 − l(x)

l0
, (2.15)

wherel0 is the undeformed thickness of the layer andl(x) is the deformed thickness at coordinate

x. In general, the nonlinear functionE is related to the elastic part of the model.Λ ([s]) is the

viscoelastic time constant which determines the speed of relaxation. In case of the paper layer, we

have to take into account the permanent deformation, which is introduced in (2.14) by the third term

on the right-hand side. This term depends linearly on the maximum stress to which the paper has

been exposed multiplied by the constantk. The maximum stress has the form:

tmax(x0) = max
x≤x0

x0∈[A,B]

t(x). (2.16)

In case when the minimum distancedmin between pressing rolls is given, the geometry of

the computational domain is precisely defined. Then, the system of Eqs. (2.14), (2.16) is solved

directly. Another possibility is that the pressing force is given, than this system is solved iteratively

for differentdmin while the correct geometry of the computational domain is not found.

Taking into account that the thickness of the layer is small, we consider porosity changes only

in horizontal direction. Then, the porosity reads:

φ(x) =
ε(x) + φ0

ε(x) + 1
, (2.17)

whereφ0 is the porosity of undeformed layer. Using the computed stress, the flow meshcan be

immediately obtained as well as the solid velocity.

This elasticity model, in connection with the flow model equipped with a standard (not dynamic)

capillary pressure, is discussed in detail in the PhD thesis of Rief [43]. Following the approach from

[43], we treat consecutively the porous media deformations and the water flow.

2.2 Discretization

To evaluate the influence of the dynamic capillary pressure model, we compare cases with the

different material coefficientsτ , including case whenτ is equal to zero. Therefore, this section
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consists of two parts. At first, we present the finite difference scheme for the model with the static

capillary pressure (τ = 0 Pa s) (see Section2.2.1). Then, assuming thatτ is not equal to zero in

Section2.2.2we discuss the numerical algorithm for the model with the dynamic capillary pressure–

saturation relation. For discretization the finite volume method is used (see e.g.,[20, 46]).

LetN be the number of intervals into which our computational domainΩ = (A,B) is divided.

Then, mesh onΩ is introduces in the following way.

t t t t t t t t t t t

S0 S 1

2

S 3

2

S
i−

1

2

S
i+ 1

2

S
N−

1

2

SN

p0 p1 pi−1 pi pi+1 pN−1 pN

Fig. 2.2: One-dimensional mesh representation and numbering of variables

Definition 2.2.1. The mesh on(A,B) denoted byT (A,B) is given by a family(K(A,B)
i )i=0,N ,N ∈

N
+ (see Fig.2.2) such that:

K(A,B)
0 = (x0, x 1

2

], K(A,B)
i = (xi− 1

2

, xi+ 1

2

], i = 1, N − 1, K(A,B)
N = (xN− 1

2

, xN )

and families:

X (A,B)
1 = {xi = A+ ih, i = 0, N}, X (A,B)

2 = {xi+ 1

2

= A+

(

i+
1

2

)

h, i = 0, N − 1},

whereh = (B −A)/N is the size of the mesh.

2.2.1 Problem with the static capillary pressure

When the coefficientτ in (2.10) is equal to zero the initial system of Eqs. (2.9), (2.10) becomes a

nonlinear Eq. (2.9) with boundary conditions (2.12), (2.13), where the pressurep is considered as an

unknown variable. Then, saturation is a dependent variable and expressed as an analytical function

of the pressure.

We discretize (2.9) by a finite volume method. Then, the finite difference scheme for the model

with the static capillary pressure (2.9), (2.12), (2.13) is presented by the following system:

p0 = −pstat
c (C0), (2.18)

−âi+ 1

2

pi+1 − pi

h
+ âi− 1

2

pi − pi−1

h

+Vs

(

di+ 1

2

φi+ 1

2

Si+ 1

2

− di− 1

2

φi− 1

2

Si− 1

2

)

= 0, i = 1, N − 1,
(2.19)

âN− 1

2

pN − pN−1

h
+ Vs

(

dNφNSN − dN− 1

2

φN− 1

2

SN− 1

2

)

= 0, (2.20)
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âi− 1

2

= di− 1

2

kr,i− 1

2

K
(

φi− 1

2

)

µ
, i = 1, N, (2.21)

where

kr,i+ 1

2

= kr(Si+ 1

2

), di+ 1

2

= d(xi+ 1

2

), φi+ 1

2

= φ(xi+ 1

2

).

Assumption 2.2.1.Let pstat
c (S, φ) ∈ C((Sr, 1] × (0, 1)) such thatpstat

c : (Sr, 1] × (0, 1) ↔ R
+,

whereSr > 0 ∈ R is the residual saturation ([−]).

According to Assumption2.2.1, the functionpstat
c has an inverse with respect toS function

(

pstat
c

)−1
(p, φ). Therefore, an approximation for the saturation can be given in the following form:

S0 = C0, (2.22)

Si+ 1

2

=
(

pstat
c

)−1
(

−pi, φi+ 1

2

)

, i = 0, N − 1, (2.23)

SN =
(

pstat
c

)−1
(−pN , φN ) . (2.24)

Remark 2.2.1. In case of the standard capillary pressure–saturation relation, the saturation can

also be approximated in the following way:

S0 = C0, (2.25)

Si+ 1

2

=
(

pstat
c

)−1
(

−1

2
(pi + pi+1) , φi+ 1

2

)

, i = 0, N − 1, (2.26)

SN =
(

pstat
c

)−1
(−pN , φN ) . (2.27)

This approximation gives us a finite difference scheme with second order accuracy. But the nu-

merical simulations result in nonphysical oscillations. It happens because of the approximation of

the convective term in (2.9) by central differences. In the following, we choose to have first order

accuracy and solution without oscillations.

The discretization (2.18)–(2.21) is a system of nonlinear algebraic equations. It is solved by

Newton’s method (for more details see [17, 36]).

2.2.2 Problem with the dynamic capillary pressure

When the material coefficientτ is not equal to zero we are concerned with the system of Eqs. (2.9)–

(2.13), which accounts for the water flow including the dynamic capillary effect. The finite differ-

ence scheme for the mass conservation Eq. (2.9) with boundary conditions (2.12), (2.13) is presented

by the system of Eqs. (2.18)–(2.21). Finite volume scheme for Eq. (2.10) with boundary condition
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(2.11) is introduced using an intermediate value of saturation. For each spatial step i we split the

discrete algorithm into two steps. In the first step, a prediction of water saturation valueŜi+ 1

2

for

anyi = 0, N − 1 or ŜN is computed by solving one of the following equations:

S0 = C0, (2.28)

p0 =
2

h
τVs

(

Ŝ 1

2

− S0

)

− p̃
(

Ŝ 1

2

, φ 1

2

)

, (2.29)

pi =
1

h
τVs

(

Ŝi+ 1

2

− Si− 1

2

)

− p̃
(

Ŝi+ 1

2

, φi+ 1

2

)

, i = 1, N − 1, (2.30)

pN =
2

h
τVs

(

ŜN − SN− 1

2

)

− p̃
(

ŜN , φN

)

. (2.31)

where

p̃(S) =



















pstat
c (S∗) for S < S∗,

pstat
c (S) for S∗ ≤ S ≤ 1,

pstat
c (1) for S > 1;

(2.32)

andS∗ > Sr.

At the second step, this value is corrected with the help of a simple restriction operator:

Si =



















S∗ + η for Ŝi < S∗ + η;

Ŝi for S∗ + η ≤ Ŝi ≤ 1 − η;

1 − η for Ŝi > 1 − η;

(2.33)

for all i = {1
2 , N − 1

2 , N}. Hereη > 0 is some small value which satisfiesη → 0 ash→ 0.

Remark 2.2.2. S∗ may be chosen asSr + ǫ, whereǫ is some small value. It is done to make sure

that the functioñp(S) is bounded. In this case it is possible to show that solution of this system

exists and converges to solution of the continuous problem (see Section3.2).

Remark 2.2.3. The restriction operator (2.33) is introduced to make sure that the saturation has a

physical value from interval(S∗, 1). As it is going to be discussed in Section3.2 this operator may

also be used to include into consideration the second flow regime, namely saturated water flow.

The proposed finite difference scheme (2.28)–(2.33) also defines the numerical algorithm which

is used to obtain the numerical solution.
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Table 2.1: Experimental data for one-dimensional test case

Variable Dimension Value

kr [−] S3.5

K [m2] K0
φ3

(1−φ)2

K0 [m2] 5e− 12
µ [Pa s] 8e− 4
Vs [m/min] 100

pstat
c [Pa] a(φ− 1)

(

1
S−Sr

− 1
1−Sr

)1/2

a [Pa] P0

1−φ0

(

1
C0−Sr

− 1
1−Sr

)−1/2

S∗ [%] 10
Sr [%] S∗ − 1e− 3
P0 [Pa] −5000
C0 [%] 50
φ0 [%] 87.5
A [m] −0.05
B [m] 0.05

2.3 Numerical experiments

The goal of this section is to study the influence of the dynamic capillary pressure on the behavior

of the solution for different values ofτ and to find out how accurate the obtained one-dimensional

model is. Numerical experiments were carried out for parameters which are typical for a paper layer

during a production process (see [43, 44]). The distribution of the porosity and the thickness of the

layer are obtained from the elasticity model briefly discussed in Section2.1.3, motivated and imple-

mented in [43, 44] (see Figs.2.3, 2.4). The remaining data, needed for computational experiments,

is presented in Table2.1 (see [43, 44]). Here we notice that the static capillary pressure–saturation

relation satisfies Assumption2.2.1made during the development of the numerical algorithm.

2.3.1 Numerical experiment for the different values of the coefficient τ

Simulation results for the material coefficients betweenτ = 0 and104 Pa s are presented. This

range of the parameterτ was chosen, because forτ = 0 Pa s we have the standard model with

p = −pstat
c , then we increase this value by a factor10 for each new experiment until we observe

the significant difference for both output functions, pressure and saturation. We should note that

this range ofτ does not contradict the real values of the material coefficient which were observed

in different experiments [23, 38].
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The distribution of porosity and the thickness of the layer, which are used as input data, are

presented in Figs.2.3 and2.4. Results are shown in Fig.2.5, where saturationS is plotted as a

function ofx. Five different curves are presented, they correspond to values of τ equal to0, 10, 102,

103 and104 Pa s. The case whenτ is equal to zero represents the static capillary pressure curve.

Fig. 2.5 shows that for this set of input parameters, there is no significant difference in saturation

for all values exceptτ = 104 Pa s. But for pressure (see Fig.2.6 and2.7) we observe that the

changes start already fromτ = 10 Pa s. Thus, we conclude that the dynamic capillary pressure

model included in the simulation of the pressing problems influences the solution.

It was experimentally verified in [8] that the pressure peak locates before the center of the

pressing zone. The model with the standard capillary pressure–saturation relation (τ = 0 Pa s)

gives a symmetric distribution of the pressure with the maximum value occurring at the center of

the pressing nip and values of the fluid pressure greater or equal to initialvalue. But when we

include the dynamic effect in the capillary pressure a shift of the peak is observed. Moreover, the

behavior of the pressure profile obtained by our model corresponds tothe experimental data reported

in [8]. It means that we observe the same decrease of the pressure below theinitial value behind the

center of the pressing zone and before the equilibrium w.r.t. the moving solid phase is reached (see

Fig. 2.6and [8]).

Hassanizadeh and co-workers have suggested that the value ofτ is larger for larger domains

(see [33] and references therein). Taking into account the thickness of the felt,small values ofτ

are expected. This conclusion is also in agreement with numerical and laboratory experiments. Ac-

cording to the behavior of pressure from the experimental data (see [8]) we expect that the material

coefficientτ has an order10−102Pas for the test case which is used in our numerical experiment.

Nevertheless, results are presented for the range ofτ from 0 to 104 Pa s to observe the sensitivity

of the model.

2.3.2 Comparison of our one-dimensional model with the two-dimensional model
from [ 43]

To evaluate the quality of the one-dimensional model, we compare our numerical results forτ =

0 Pa s with results obtained in [43]. The model realized in [43] is two-dimensional and takes into

account the geometry of the press rolls. The distribution of pressure obtained by the model from

[43] for the set of parameters described above is presented in Fig.2.8. Note that this experiment

is possible only in the single-layer case. To be able to compare simulation results, we average the

pressure obtained by the 2D model in vertical direction. Pressures are plotted in Fig.2.9 and the

difference between them in Fig.2.10. From this experiment, we can see that the order of the error

between the one-dimensional and the averaged two-dimensional models is about 1%. The error
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consists of two parts. The first part arises from omitting the vertical direction. This part of the error

is irreducible. The second part appears to be due to the different approximation schemes. The two-

dimensional model is discretized by the finite element method. Our numerical scheme is obtained

by the finite volume method and the upwind approximation is used to discretize the convective term.

Due to this fact, in the Fig.2.9, we observe a shift of the pressure curves, which can be reduced by

refining the mesh. Hence, we can conclude that the obtained one-dimensional model is suitable for

the simulation of the pressing section of a paper machine in the single-layer case and in the case of

the diagonal intrinsic permeability tensor.

2.3.3 Convergence test

It is known that in the case of nonsmooth data, unphysical effects can beobserved in the numeri-

cal solution. Therefore, we perform the numerical experiment for different types of input data to

evaluate the rate of convergence of the approximate solution to the continuous one.

Since the analytical solution is unknown, we consider a reference solutionfor a very fine mesh

T (A,B)
∗ . This approximation of the continuous solution is defined aspT∗ . Then, we compute the

errorEn between the discrete solutionpTn for a given meshT (A,B)
n and the reference solutionpT∗

in theL2-norm using the following formula:

En =
‖pT∗ − pTn‖L2

‖pT∗‖L2

.

We should notice thatpT∗ is not the exact solution therefore if we change the step size of the

reference meshh∗ the dependenceEn can also change. But we assume thath∗ is small enough so

that these changes are not significant.

We consider three different cases for input data, the porosityφ(x) and the thickness of the layer

d(x). The first experiment is carried out for the data which is continuous, butnot continuously

differentiable,φ(x), d(x) ∈ C. These curves have one pointx̂ ∈ (A,B) where first derivatives

do not exist. Then, to obtain the second case when the input data is at leasttwice continuously

differentiable,φ(x), d(x) ∈ C2, we apply the spline interpolation to intervals which containx̂ such

that(x̂ − li/2, x̂ + li/2) for i = 1, 2, 3. These intervals have lengthsl1 = 2 mm, l2 = 5 mm and

l3 = 10 mm, respectively. For the third experiment, we use such functions for the porosity and

the thickness of the layer that they are differentiable for all degrees of differentiation,φ(x), d(x) ∈
C∞, and given by:

φ(x) =
φ0 − ǫ(x)

1 − ǫ(x)
, d(x) = d0(1 − ǫ(x)),
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whered0 = 0.56 mm and

ǫ(x) =
Ci√
2π49

e−
x2

2·49 , i = 1, 2,

with C1 = 4.9 andC2 = 5.9. Thus, we study the convergence for six different test cases.

Results for the model with the stationary capillary pressure–saturation relation (τ = 0Pa s) are

presented in Fig.2.11. For dynamic capillary pressure withτ = 10Pas the convergence results are

shown in Fig.2.12. In these figures we also show the order of convergence. The estimatedorderr

is defined as:

r =
1

Ne − 2

Ne−1
∑

n=2

log |En+1/En|
log |En/En−1|

,

whereNe is the number of experiments.

For the model with stationary capillary pressure (τ = 0 Pa s) (see Fig.2.11), the rate of con-

vergence isO(h), but the convergence behavior is the same for all types of input data. Incase

τ = 10 Pa s the convergence rate is alsoO(h) for all data types.

−0.05 0 0.05
80

81

82

83

84

85

86

87

88

89

machine direction x, [m]

po
ro

si
ty

, [
%

]

Fig. 2.3: Porosity

2.4 Results and discussions

The first objective of this chapter was to investigate the behavior of the capillary pressure–saturation

relation proposed by Hassanizadeh and Gray in one dimension in applicationof the pressing section

simulation. This relation has shown to have a significant influence on the results. The obtained

profiles of pressure and saturation affected by the new description of the capillarity have agreed
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Fig. 2.5: Saturation for different values ofτ

with the physical behavior of the pressing process which was observedin laboratory experiment

[8].

The second objective was to develop an accurate one-dimensional modelfor modeling the press-

ing section of the paper machine. We have used an averaging procedurein vertical direction (see

Section2.1.2) to obtain the one-dimensional results which contains information about otherdirec-

tions. This model has given very good results, which are comparable with results obtained by the

two-dimensional model in single-layer case.

The numerical experiments showed that the material coefficientτ has great influence on the
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solution. According to the laboratory experiment presented in [8] we expect the order of the coeffi-

cientτ to be10–100 Pa s. But there is no information about the range of the coefficientτ for the

present problem and more work, including measurements, is needed.
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Chapter 3

Convergence of the Discrete

One-Dimensional Problem (Richards’

Approach)

Richards’ approach [6] is used in a lot of different applications, which deal with the water flow

in porous media. We use this approach to simulate the pressing section of a paper machine. In

Chapter2 the one-dimensional model was stated and some numerical experiments were performed.

Now we would like to investigate this problem from a theoretical point of view. For the one-

dimensional model we are going to prove an existence and a convergenceof the discrete solution to

continuous one.

These theoretical studies are, in particular, motivated by a need for a better understanding of the

results from our computational experiments. During the following proof, theinput data is restricted

minimally to have the theory applicable to real numerical experiments. All assumptions, which are

made in this chapter, are satisfied by the data used in the numerical experimentsin Sections2.3, 3.1.4

and3.2.4. Chapter3 consists of two main parts. At first, in Section3.1we will be concerned with

the nonlinear convection-diffusion equation, which describes the water flow within the pressing

zone including the static capillary pressure model. Then, in Section3.2 the nonlinear system of

equations which takes into account the dynamic capillary effect will be investigated.

Up to the end of this chapter we consider the functionpstat
c to depend only on the water sat-

urationS. It is done to simplify the representation of the following theory. In general,it should

be assumed that this function also depends on the porosity:pstat
c = pstat

c (S, φ(x)). We note that

main steps of these studies remain valid for this more general case. Moreover, in this chapter we are

going to keep the simplified notations introduced previously for the water pressurep, the relative

29
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permeability of the water phasekr, and the water viscosityµ.

3.1 Problem with static capillary pressure

A lot of theoretical studies were done for Richards’ equation (see [21], [47] and references therein).

Most articles consider the case ofx-independent coefficients. This simplifies the system consider-

ably since, after Kirchhoff’s transformation of the problem, the elliptic operator becomes linear. In

our case this condition is not satisfied and we have to consider nonlinear operator of second order.

Moreover, all these articles are concerned with the nonstationary problem, while we are inter-

ested in the stationary case. Due to complexity of the physical process our problem has a specific

feature. An additional convective term appears in our model because the porous media moves with

the constant velocity through the pressing rolls. This term is zero in immobile porous media. We

are not aware of papers, which deal with such kind of modified steady Richards’ problem.

The goal of this section is to show the existence of a solution of the discrete problem, to prove

the convergence of the approximate solution to the weak solution of the modifiedsteady Richards’

equation, which describes the transport processes in the pressing section. In Section3.1.1we present

the model which is considered. In Section3.1.2a numerical scheme obtained by the finite volume

method is given. The main part of this section is theoretical studies, which arepresented in Sec-

tion 3.1.3. Section3.1.4develops numerical experiments. Results are discussed in Section3.1.5.

3.1.1 Mathematical model

The one-dimensional mathematical model for the pressing section was stated inSection2.1.2. If we

set the material coefficientτ to zero the system of Eqs. (2.9), (2.10) yields to the following nonlinear

equation:

− ∂

∂x

(

d(x)
kr(S(p))

µ
K(φ(x))

∂p

∂x

)

+
∂

∂x
(d(x)φ(x)VsS(p)) = 0, x ∈ Ω; (3.1)

whereΩ = (A,B). This equation describes the flow of water inside the pressing section in one-

dimensional case taking into account the static capillary pressure–saturation relation.

We defineb(x) = d(x)K(φ(x))/µ andq(x) = d(x)φ(x)Vs. Using a variable transformation

for x, it is easy to obtain the computational domainΩ to be an interval(0, 1). Up to the end of

this chapter using the same notations forΩ andx, we remember that they differ from ones in (3.1).

Then, the nonlinear convection–diffusion problem (3.1) yields:

− ∂

∂x

(

b(x)kr(S(p))
∂p

∂x

)

+
∂(q(x)S(p))

∂x
= 0, x ∈ (0, 1) (3.2)
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with boundary conditions:

p(0) = P0,
∂p

∂x

∣

∣

∣

∣

x=1

= 0, (3.3)

whereP0 = −pstat
c (C0), and given constitutive relations:

S = S(p), kr = kr(S). (3.4)

Let us impose some assumptions on the input data, which do not contradict thedata used for our

numerical experiments.

Assumption 3.1.1.

(a) b(x) ∈ C([0, 1]), b(x) > 0;

(b) q(x) ∈ C([0, 1]), q(x) ≥ 0;

(c) kr ∈ C([S∗, 1]), kr : [S∗, 1] → [k∗, 1] is an increasing function, wherek∗ ∈ R andk∗ > 0;

(d) S ∈ C(R), S : R → [S∗, 1], whereS∗ ∈ R andS∗ > 0.

Previously, in Section2.2 we made an Assumption2.2.1, which constrains the input function

pstat
c . In this section to obtain desirable theoretical results we make Assumption3.1.1(d) instead.

This assumption concerns only the inverse functionS(p) and it is less strict. We also remark that if

Assumption2.2.1is satisfied and the functionS is defined in the following way:

S(p) =



















S∗ for p ≤ −pstat
c (S∗),

(

pstat
c

)−1
(−p) for p ∈

(

−pstat
c (S∗),−pstat

c (1)
)

,

1 for p ≥ −pstat
c (1);

whereS∗ is discussed in Remark2.2.2, than Assumption3.1.1(d) is satisfied automatically.

For simplicity we apply variable transformationp = y + P0, then instead of (3.2), (3.3) we

obtain:

− ∂

∂x

(

b(x)kr(S(y + P0))
∂y

∂x

)

+
∂(q(x)S(y + P0))

∂x
= 0, x ∈ (0, 1), (3.5)

y(0) = 0,
∂y

∂x

∣

∣

∣

∣

x=1

= 0. (3.6)

Let us introduce a subspace ofH1((0, 1)) denoted byH1
0−((0, 1)) such that:

H1
0−((0, 1)) := {f ∈ H1((0, 1))

∣

∣ f(0) = 0}. (3.7)



32 CHAPTER 3. CONVERGENCE OF THE DISCRETE ONE-DIMENSIONAL PROBLEM

Then, the weak formulation of problem (3.5), (3.6) with y ∈ H1
0−((0, 1)) yields:

∫ 1

0
b(x)kr(S(y + P0))

∂y

∂x

∂ϕ

∂x
dx−

∫ 1

0
q(x)S(y + P0)

∂ϕ

∂x
dx

+ q(1)S(y(1) + P0)ϕ(1) = 0, (3.8)

which is satisfied for allϕ ∈ C∞((0, 1)) such thatϕ(0) = 0.

3.1.2 Discretization

To obtain the finite difference scheme we introduce the meshT (0,1) using Definition2.2.1. In

the following, for simplicity we denote the meshT (0,1) as T and the family
(

K(0,1)
i

)

i=0,N
as

(Ki)i=0,N .

Discretizing Eq. (3.5) by finite volumes we obtain:

− bi+ 1

2

kr,i+ 1

2

yi+1 − yi

h
+ bi− 1

2

kr,i− 1

2

yi − yi−1

h

+ (qi+ 1

2

Si+ 1

2

− qi− 1

2

Si− 1

2

) = 0, i = 1, ..., N − 1. (3.9)

Integrating Eq. (3.5) overKN and using the boundary conditions (3.6), we obtain the following

approximation:

y0 =0, (3.10)

bN− 1

2

kr,N− 1

2

yN − yN−1

h
+ (qNSN − qN− 1

2

SN− 1

2

) =0, (3.11)

where

kr,i+ 1

2

= kr(Si+ 1

2

), bi+ 1

2

= b(xi+ 1

2

) qi+ 1

2

= q(xi+ 1

2

) (3.12)

and for the approximation ofSi+ 1

2

different choices are possible. For example, the ones discussed

in Section2.2.1have the form:

Si+ 1

2

= S(yi + P0), i = 0, N − 1, (3.13a)

Si+ 1

2

= S

(

yi + yi+1

2
+ P0

)

, i = 0, N − 1, (3.13b)

SN = S(yN + P0). (3.14)
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3.1.3 Proof of convergence

In order to obtain a convergence of the discrete solution to continuous one(see Theorem3.1.4), we

should prove an existence and a convergence of the solution of (3.9)–(3.14) for h→ 0 (Lemma3.1.2

and3.1.3). To achieve these results, at first we obtain an estimate (Lemma3.1.1).

The following lemmas and the theorem are proven using a technique which is presented in [20]

for a semilinear elliptic problem:

−uxx(x) = f(x, u(x)), x ∈ (0, 1);

u(0) = u(1) = 0.

Remark 3.1.1. Due to complexity of the presented nonlinear problem there are difficulties for ob-

taining uniqueness results for both continuous and discrete problems. Here we do not study this

aspect of the problem.

Lemma 3.1.1. (Estimate) (see [20], page 28, Lemma 2.3)Let Assumption3.1.1be satisfied and let

T be the mesh on(0, 1) (see Definition2.2.1). If there exists(y0, y1, ..., yN ) ∈ R
N+1 a solution of

(3.9)–(3.14), then it satisfies:
N−1
∑

i=0

(yi+1 − yi)
2

h
≤ C. (3.15)

Proof: Multiplying (3.9) by yi and (3.11) by yN and summing overi = 0, N , it yields:

N−1
∑

i=1

(

−bi+ 1

2

kr,i+ 1

2

yi+1 − yi

h
+ bi− 1

2

kr,i− 1

2

yi − yi−1

h

)

yi

+
N−1
∑

i=1

(qi+ 1

2

Si+ 1

2

− qi− 1

2

Si− 1

2

)yi +

(

bN− 1

2

kr,N− 1

2

yN − yN−1

h

)

yN

+ (qNSN − qN− 1

2

SN− 1

2

)yN = 0.

Reordering summation and taking into account thaty0 = 0, we have:

N−1
∑

i=0

bi+ 1

2

kr,i+ 1

2

(yi+1 − yi)
2

h
−

N−1
∑

i=0

qi+ 1

2

Si+ 1

2

(yi+1 − yi) + qNSNyN = 0

and consequently:

N−1
∑

i=0

bi+ 1

2

kr,i+ 1

2

(yi+1 − yi)
2

h
≤
∣

∣

∣

∣

∣

N−1
∑

i=0

qi+ 1

2

Si+ 1

2

(yi+1 − yi)

∣

∣

∣

∣

∣

+ |qNSNyN |. (3.16)
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According to the extreme value theorem [50] and Assumption3.1.1, there existb∗ andb∗ such

that0 < b∗ ≤ b(x) ≤ b∗ for all x ∈ [0, 1] and consequentlyb∗ ≤ bi+ 1

2

≤ b∗ for all i = 0, N − 1.

Similarly we obtain that there existq∗ andq∗ such that0 ≤ q∗ ≤ q(x) ≤ q∗ for all x ∈ [0, 1] and

consequentlyq∗ ≤ qi+ 1

2

≤ q∗ for all i = 0, N − 1. Let us remark that0 < k∗ ≤ kr,i+ 1

2

≤ 1, for all

i = 0, N − 1. Now we consider the first term of (3.16):

N−1
∑

i=0

bi+ 1

2

kr,i+ 1

2

(yi+1 − yi)
2

h
≥ b∗k∗

N−1
∑

i=0

(yi+1 − yi)
2

h
. (3.17)

By the Cauchy-Schwarz inequality, for the first term on the right-hand side of (3.16) we obtain:

∣

∣

∣

∣

∣

N−1
∑

i=0

qi+ 1

2

Si+ 1

2

(yi+1 − yi)

∣

∣

∣

∣

∣

≤
(

N−1
∑

i=0

(yi+1 − yi)
2

h

N−1
∑

i=0

(qi+ 1

2

Si+ 1

2

)2h

)

1

2

.

Then, using the inequality forq(x) and the facts thatSi+ 1

2

∈ [S∗, 1] for all i = 0, N − 1 and
∑N−1

i=0 h = 1, we have:

∣

∣

∣

∣

∣

N−1
∑

i=0

qi+ 1

2

Si+ 1

2

(yi+1 − yi)

∣

∣

∣

∣

∣

≤ q∗

(

N−1
∑

i=0

(yi+1 − yi)
2

h

)

1

2

. (3.18)

The second term on the right-hand side of inequality3.16yields:

|qNSNyN | ≤ q∗|yN | = q∗|yN − y0| ≤ q∗
N−1
∑

i=0

|yi+1 − yi| ≤ q∗

(

N−1
∑

i=0

(yi+1 − yi)
2

h

)

1

2

. (3.19)

Then, inequalities (3.16)–(3.19) give us the estimate (3.15) with C =
(

2q∗

b∗k∗

)2
:

Lemma 3.1.2. (Existence of solution) (see [20], page 28, Lemma 2.3)Let Assumption3.1.1be sat-

isfied and letT be the mesh on(0, 1) (see Definition2.2.1). Then there existsy = (y0, y1, ..., yN ) ∈
R

N+1, a solution of (3.9)–(3.14).

Proof: Let v = (v0, v1, ..., vN ) ∈ R
N+1 be some vector. Then, it is easy to show that there

exists a uniquey = (y0, y1, ..., yN ) ∈ R
N+1, the solution of (3.9)–(3.11) with (3.12) and instead of

(3.13a), (3.14) the following is used:

Si+ 1

2

= S(vi + P0), i = 0, N − 1, (3.20)

SN = S(vN + P0). (3.21)
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Here we assume that (3.13a) is used for approximation of the original problem. The proof is also

true if Eq. (3.13b) is used for approximation instead of (3.13a).

It means that there exists a continuous applicationF from R
N+1 to R

N+1 such thaty = F (v)

and(y0, y1, ..., yN ) is a solution of (3.9)–(3.14) if and only if y = (y0, y1, ..., yN ) is a fixed point of

F .

Let us introduce a discreteL2-norm:

||v||L2((0,1)) =

(

N
∑

i=0

v2
i h

)

1

2

for v = (v0, v1, ..., vN ) ∈ R
N+1, v0 = 0. (3.22)

Now we are going to prove the next inequality:

||v||L2((0,1)) ≤
(

N−1
∑

i=0

(vi+1 − vi)
2

h

)

1

2

. (3.23)

For |vi| using the triangle inequality and the Cauchy-Schwarz inequality we have:

|vi| ≤
i−1
∑

j=0

|vj+1 − vj | ≤
N−1
∑

j=0

|vj+1 − vj | ≤





N−1
∑

j=0

(vj+1 − vj)
2

h





1

2

, for all i = 0, N ;

then:

||v||L2((0,1)) =

(

N
∑

i=0

v2
i h

)

1

2

=
(v0=0)

(

N
∑

i=1

v2
i h

)

1

2

≤





N
∑

i=1

h
N−1
∑

j=0

(vj+1 − vj)
2

h





1

2

. (3.24)

Thereby, (3.23) is proven.

Note, that inequality (3.15) is also true for (3.9)–(3.11) with (3.12) and (3.20). Then, (3.23)

together with (3.15) gives

||F (v)||L2((0,1)) = ||y||L2((0,1)) ≤ Ĉ for all ||v||L2((0,1)) ≤ Ĉ,

whereĈ = C
1

2 . It meansF (BĈ) ⊂ BĈ , whereBĈ is a closed ball of radiuŝC and center0 in

R
N+1. Then thanks to the Brouwer’s fixed point theorem [15], F has a fixed point inBĈ . This

fixed point is a solution of (3.9)–(3.14). Thereby, existence is proven.

Lemma 3.1.3. (Compactness) (see [20], page 29, Lemma 2.4)Let Assumption3.1.1be satisfied

and letT be a mesh on(0, 1) (see Definition2.2.1). Let (y0, y1, ..., yN ) ∈ R
N+1 be a solution of
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(3.9)–(3.14) and letyT : (0, 1) → R by yT (x) = yi if x ∈ Ki, i = 0, N . Then the setyT for all T
is relatively compact inL2((0, 1)). Furthermore, ifyTn → y in L2((0, 1)) andhn → 0, asn→ ∞,

then,y ∈ H1
0−((0, 1)).

Proof: By the Kolmogorov compactness theorem (see [20], page 93, Theorem 3.9) to prove that

yT is relatively compact inL2((0, 1)), it is sufficient to show that:

• the setyT is bounded inL2(R) for all T ,

• ||yT (· + ν) − yT ||L2(R) → 0 asν → 0 uniformly.

Step 1. FunctionyT (x) can be redefined asyT (x) = yi if x ∈ Ki, i = 0, N otherwise

yT (x) = 0. Using the facts thaty0 = 0, the Cauchy-Schwarz inequality and estimate (3.15), for all

x ∈ R we have:

|yT (x)| ≤
N−1
∑

i=0

|yi+1 − yi| ≤
(

N−1
∑

i=0

(yi+1 − yi)
2

h

)

1

2

≤ Ĉ. (3.25)

It means that the setyT (x) for all T is bounded inL2(R).

Step 2.Let 0 < ν < 1. We defineχi+ 1

2

: R → R for i = 0, N − 1 such thatχi+ 1

2

(x) = 1 if

xi+ 1

2

∈ [x, x+ ν] andχi+ 1

2

(x) = 0 if xi+ 1

2

6∈ [x, x+ ν] andχN+ 1

2

(x) = 1 if xN ∈ [x, x+ ν] and

χN+ 1

2

(x) = 0, otherwise.

Then, for allx ∈ R we have:

(yT (x+ ν) − yT (x))2 ≤
(

N−1
∑

i=0

|yi+1 − yi|χi+ 1

2

(x) + yNχN+ 1

2

(x)

)2

≤ 2

(

N−1
∑

i=0

(yi+1 − yi)
2

h
χi+ 1

2

(x)

)(

N−1
∑

i=0

hχi+ 1

2

(x)

)

+ 2y2
NχN+ 1

2

(x).

(3.26)

Integrating (3.26) overR, we obtain:

‖yT (· + ν) − yT ‖2
L2(R) ≤ 2(ν + 2h)

∫

R

(

N−1
∑

i=0

(yi+1 − yi)
2

h
χi+ 1

2

(x)

)

dx

+ 2Ĉ2

∫

R

χN+ 1

2

(x)dx

= 2(ν + 2h)
N−1
∑

i=0

(yi+1 − yi)
2

h

∫

R

χi+ 1

2

(x)dx+ 2Cν

≤ 2C(ν + 2h)

∫

R

χi+ 1

2

(x)dx+ 2Cν = 2Cν(ν + 2h+ 1).

(3.27)
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Sinceh < 1 andν < 1, we conclude:

‖yT (· + ν) − yT ‖2
L2(R) ≤ 8Cν. (3.28)

Thereby, the second condition in the Kolmogorov compactness theorem is proven.

Step 3.Let us prove that(yTn(x+ hn) − yTn(x))/hn converges to∂y/∂x for all x ∈ (−∞, 1)

in a weak sense andhn → 0, asn→ ∞. Letϕ ∈ C∞
0 ((−∞, 1)) andsuppϕ ⊂ (0, 1). The discrete

functionϕT is defined in the following way:

ϕT (x) =







ϕi = ϕ(xi), if x ∈ Ki, i = 0, N ;

0, otherwise.

Let us redefine the functionyT (x) such that ifx ∈ [xN , xN+ 1

2

] thanyT (x) = yN and if x ∈
(xN+ 1

2

, xN+ 3

2

] thanyT (x) = yN+1 = yN , then we obtain:

(

yTn(· + hn) − yTn

hn
, ϕTn

)

L2((−∞,1))

=

∫ 1

−∞

yTn(x+ hn) − yTn(x)

hn
ϕTndx

=
N
∑

i=0

yi+1 − yi

hn
ϕihn

= −
N−1
∑

i=0

yi+1
ϕi+1 − ϕi

hn
hn

= −
N
∑

i=0

yi
ϕi − ϕi−1

hn
hn

= −
∫ 1

−∞
yTn(x)

ϕTn(x) − ϕTn(x− hn)

hn
dx.

(3.29)

The functionyTn (·+hn)−yTn

hn
is bounded inL2(R) (see (3.15)). Then, for any sequence of meshes

(Tn)n∈N such thathn → 0, asn → ∞, there exists a subsequence, still denoted by(Tn)n∈N, such

that functionyTn (·+hn)−yTn

hn
weakly converges to some functionw(x). We also know thatyTn → y

in L2((−∞, 1)) andhn → 0, asn→ ∞.

On the other hand, thanks to the regularity of the functionϕ(x) we have thatϕTn strongly

converges toϕ andϕTn (x)−ϕTn(x−hn)
hn

strongly converges to∂ϕ
∂x . Then, passing to the limit in (3.29),

we obtain:
∫ 1

−∞
w(x)ϕ(x)dx = −

∫ 1

−∞
y(x)

∂ϕ(x)

∂x
dx. (3.30)
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By the definition of the weak derivative (3.30) proves thatw(x) = ∂y
∂x . Using (3.15), we have:

∥

∥

∥

∥

∂y

∂x

∥

∥

∥

∥

2

L2((−∞,1))

≤ C.

We also have that∂y
∂x = 0 if x ∈ (−∞, 0). Hence, the restriction ofy to (0, 1) is inH1

0−((0, 1)).

Theorem 3.1.4. (Convergence)Let Assumption3.1.1be satisfied. For the meshT on (0, 1) (see

Definition2.2.1) let (y0, y1, ..., yN ) ∈ R
N+1 be a solution of (3.9)–(3.14) and letyT : (0, 1) → R

beyT (x) = yi if x ∈ Ki, i = 0, N .

Then, for any sequence of meshes(Tn)n∈N such thathn → 0, as n → ∞, there exists a

subsequence, still denoted by(Tn)n∈N, such thatyTn → y in L2((0, 1)), asn → ∞, wherey ∈
H1

0−((0, 1)) is a solution of (3.8) with given functions (3.4).

Proof: Let (Tn)n∈N be a sequence of meshes on(0, 1) such thathn → 0, asn→ ∞. Lemma3.1.2

gives us the existence of solution of the problem (3.9)–(3.14) for any meshTn from sequence

(Tn)n∈N. According to Lemma3.1.3, there exists a subsequence, still denoted by(Tn)n∈N, such that

yTn → y in L2((0, 1)) asn→ ∞. In order to conclude the proof, we show thaty ∈ H1
0−((0, 1)) is

a solution of (3.8).

Let ϕ ∈ C∞((0, 1)) be such thatϕ(0) = 0. Then, the weak formulation (3.8) can be rewritten

in the following way:

T1 + T2 − T3 = 0, (3.31)

where:

T1 =

∫ 1

0
b(x)kr(S(y + P0))

∂y

∂x

∂ϕ

∂x
dx, (3.32)

T2 = q(1)S(y(1) + P0)ϕ(1), (3.33)

T3 =

∫ 1

0
q(x)S(y + P0)

∂ϕ

∂x
dx. (3.34)

Let Tn be a mesh on(0, 1) (see Definition2.2.1) which is one of the meshes of the extracted sub-

sequence(Tn)n∈N, andϕi = ϕ(xi), i = 1, N andϕ0 = 0. If (y0, y1, ..., yN ) is a solution of

(3.9)–(3.14) on the meshTn, multiplying (3.9), (3.11) byϕi and summing overi = 1, N yields:

N−1
∑

i=1

(

−bi+ 1

2

kr,i+ 1

2

yi+1 − yi

hn
+ bi− 1

2

kr,i− 1

2

yi − yi−1

hn

)

ϕi +
N−1
∑

i=1

(qi+ 1

2

Si+ 1

2

− qi− 1

2

Si− 1

2

)ϕi

+ bN− 1

2

kr,N− 1

2

yN − yN−1

hn
ϕN + (qNSN − qN− 1

2

SN− 1

2

)ϕN = 0. (3.35)
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By reordering summation in (3.35), we obtain:

T̂n
1 + T̂n

2 − T̂n
3 = 0, (3.36)

where:

T̂n
1 =

N−1
∑

i=0

bi+ 1

2

kr,i+ 1

2

yi+1 − yi

hn

ϕi+1 − ϕi

hn
hn, (3.37)

T̂n
2 = qNSNϕN , (3.38)

T̂n
3 =

N−1
∑

i=0

qi+ 1

2

Si+ 1

2

ϕi+1 − ϕi

hn
hn. (3.39)

Thanks to the regularity of the functionϕ, we notice, that:

ϕi+1 − ϕi

hn
=
∂ϕ

∂x

∣

∣

∣

∣

x
i+1

2

+Ri+ 1

2

, where|Ri+ 1

2

| < C1h
2
n, (3.40)

with someC1 only depending onϕ. Therefore, (3.37) yields:

T̂n
1 = T̂n

1,1 + T̂n
1,2, (3.41)

T̂n
1,1 =

N−1
∑

i=0

bi+ 1

2

kr,i+ 1

2

yi+1 − yi

hn
hn

∂ϕ

∂x

∣

∣

∣

∣

x
i+1

2

, (3.42)

T̂n
1,2 =

N−1
∑

i=0

bi+ 1

2

kr,i+ 1

2

yi+1 − yi

hn
Ri+ 1

2

hn. (3.43)

Using inequality (3.25), we conclude thatyi+1−yi

h is bounded. Thus, we havêTn
1,2 → 0, asn→ ∞.

Substituting (3.40) in (3.39), we obtain:

T̂n
3 = T̂n

3,1 + T̂n
3,2, (3.44)

T̂n
3,1 =

N−1
∑

i=0

qi+ 1

2

Si+ 1

2

hn
∂ϕ

∂x

∣

∣

∣

∣

x
i+1

2

, (3.45)

T̂n
3,2 =

N−1
∑

i=0

qi+ 1

2

Si+ 1

2

Ri+ 1

2

hn. (3.46)

Since the functionsq(x) andS(y) are bounded, we havêTn
3,2 → 0, asn → ∞. We also remark,

thatT̂n
2 → T2, asn→ ∞.
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Let T̂n
1,1 andT̂n

3,1 be presented in the following way:

T̂n
1,1 =

∫ 1

0
bTnkr,Tn

yTn(x+ hn) − yTn(x)

hn

(

∂ϕ

∂x

)

Tn

dx, (3.47)

T̂n
3,1 =

∫ 1

0
qTnSTn

(

∂ϕ

∂x

)

Tn

dx, (3.48)

where

kr,Tn(x) = kr,i+ 1

2

, bTn(x) = bi+ 1

2

, qTn(x) = qi+ 1

2

,

(

∂ϕ

∂x

)

Tn

=
∂ϕ

∂x

∣

∣

∣

∣

x
i+1

2

, STn(x) = Si+ 1

2

,

if x ∈ [xi, xi+1] for all i = 0, N − 1.

Now let us show thatSTn converges toS asn → ∞. Let Si+ 1

2

be approximated by (3.13a) as

we used in Chapter2, then:

STn(x) = S(yTn(x) + P0). (3.49)

SinceyTn → y in L2((0, 1)) asn → ∞, STn → S in L2((0, 1)) asn → ∞. It is also clear that

kr,Tn → kr asn → ∞, bTn(x) → b(x) andqTn(x) → q(x) asn → ∞, α = 1, 2. Remembering

(y(· + hn) − y)/hn converges to∂y/∂x in the weak sense ofL2((−∞, 1)) asn → ∞ (see proof

of Lemma3.1.3), we obtain:

T̂n
1,1 → T1 asn→ ∞,

T̂n
3,1 → T3 asn→ ∞.

Hence the theorem is proven.

3.1.4 Numerical experiments

To illustrate the theoretical results obtained in the previous section we carry out a numerical ex-

periment for a test problem. We consider problem (3.2)–(3.4) with input data given in Table3.1.

Note, that these data satisfy Assumption3.1.1. In general the problem (3.2)–(3.4) does not have an

analytical solution. But in this particular case it is given by:

p(x) = −x3 + 3x− 1, x ∈ [0, 1].

To solve this nonlinear problem we use the Newton–iteration method. A terminationcriterion
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Table 3.1: Experimental data for numerical experiment with the static capillary pressure

Variable Value

b(x) ex

q(x) ex(−3x2 + 3)
S(p) 1

2π arctan p+ 1
2

kr(S) S
P0 −1.0

for the iteration process is:
‖pk+1

Tn
− pk

Tn
‖L2

‖p0
Tn
‖L2

< ǫ,

wherek is the Newton iteration number,Tn is the given mesh andǫ = 10−4. The saturation and

pressure are shown in Figs.3.1 and3.2, respectively. Fig.3.3 represents the errorEn between the

discrete solutionpTn and continuous solutionp in L2-norm. The errorEn is obtained using the

following relation:

En =
‖p− pTn‖L2

‖p‖L2

and it converges with the rateO(hn) asn→ ∞.

This numerical experiment illustrates one particular example when the discreteproblem has a

solution as it was proven in Lemma3.1.2and this solution converges to the analytical one asn→ ∞
(see Theorem3.1.4). In Fig. 3.3 results for the convergence of the discrete solution to continuous

one are shown. The obtained rate of convergence isO(h). Hence, the numerical experiment for

the model with the static capillary pressure proposed in previous chapter agrees with the obtained

theoretical results.

3.1.5 Results and discussions

In this section we were concerned with theoretical studies for a mathematical model with the static

capillary pressure, which was developed to simulate the pressing section ofa paper machine. The

existence of a solution of the discrete problem was shown. We presented the proof of the weak

convergence of the approximate solution to the continuous one. Let us notethat the uniqueness

of the solutions was not discussed since there are certain difficulties for getting these results due

to complexity of the problem. As the final result the numerical experiment was performed for the

test problem with a known analytical solution. Thus, we illustrated the agreement of the developed

theory with the particular test case. With the help of this numerical experiment we appraised the

order of the convergence, which isO(h). Although, it was not possible to obtain it in our theoretical



42 CHAPTER 3. CONVERGENCE OF THE DISCRETE ONE-DIMENSIONAL PROBLEM

0 0.2 0.4 0.6 0.8 1
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

machine direction x,[−]

sa
tu

ra
tio

n,
 [−

]

Fig. 3.1: Saturation for the test case with the static capillary pressure
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Fig. 3.2: Pressure for the test case with the static capillary pressure

studies. We would like to note that the first order of convergence was alsothe case in numerical

experiments performed in Section2.3
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3.2 Problem with dynamic capillary pressure

One of the main challenges of the pressing process modeling is the study of regimes leading to

appearance of the fully saturated zones. This issue was not considered before. But in this section

we start including the second flow regime, namely the fully saturated water flow. First of all, it

allows us to observe how the dynamic capillary pressure behave in case ofthe presence of the

fully saturated zone. Second of all, the second flow regime is necessary toobtain the existence

and convergence results for the model with the dynamic capillary pressure, which we study in this

section.

As a result of the two flow regimes, we have to deal with a free boundary problem. There

exist theoretical studies which investigate the convergence of discrete solution for free boundary

problems describing various applications such as fluid flow in porous media,obstacle problems

and elastic problems (see [16, 32] and references therein). In this section we are concerned with

a proof of convergence for the system of equations describing water flow in the pressing section.

The main issue during these studies is the proof of convergence of the discrete domain with the

single-phase water flow. To obtain this result we assume that the solution of continuous problem

has a non-degeneracy property. This kind of assumption was used by Deckelnick and Siebert in

[16] to resolve the same issue. To prove the existence and the compactness of the solution of our

discrete problem we use technique from [20]. This approach uses minimal restrictions on input data

to prove the convergence of the discrete problem to continuous one.

The mathematical model for the flow in the pressing section of a paper machine which is pre-

sented here includes into consideration the dynamic capillary pressure. Tomodel this effect we

choose the dynamic capillary pressure–saturation relation proposed by Hassanizadeh and Gray

[23, 24, 25]. In domain with unsaturated water flow we obtain a system of two nonlinear equa-

tions, which makes the theoretical studies more complex than in case of standard (steady) capillary

pressure–saturation relation. There are some theoretical studies for theflow model with the dynamic

capillary effect. They deal with existence and uniqueness of the solution (see [40] and references

therein). As opposed to our work, they have considered a time-dependent problem with the dy-

namic capillary pressure–saturation relation including partial derivative w.r.t. time. In our case, due

to specificity of the pressing process we are concerned with a steady-state problem with the dy-

namic capillary pressure–saturation relation depending on partial derivative w.r.t. space coordinate.

We are not aware of theoretical studies which deal with this kind of problems.

Here we investigate the one-dimensional model of the pressing section in machine direction.

This model can be used only in case of the computational domain composed of one layer due to

the dimensionality. If we want to be more close to real applications we have to consider at least a

two-dimensional model, where it is possible to include the multilayer case. The technique used in
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our studies is seemed to be possible to extend to two-dimensional model but onlyin single-layer

case (see, also [20], where basic ideas and algorithms are applied for 2D and 3D problems, also).

For multilayer problems discontinuities in the input data arise. Thus, absolutely different theoretical

approaches have to be used in this case.

In short, the objective of this section is to study theoretically convergence of the solution of

the discrete problem to the solution of the continuous problem. The one-dimensional continuous

model including the dynamic capillary pressure effect, which describes water flow in the pressing

section is presented in Section3.2.1. In Section3.2.2, the nonlinear finite difference scheme and

its implementation algorithm are presented. The theoretical existence and convergence studies are

presented in Section3.2.3. Some numerical tests are developed in Section3.2.4. Final remarks and

discussions are presented in Section3.2.5.

3.2.1 Mathematical model

When one models the pressing section of a paper machine it is important to evaluate fully saturated

zones. Therefore, one has to account for two possible flow regimes inside the computational domain.

Let us assume that the computational domainΩ is divided into two subdomains such thatΩ =

Ω1 ∪ Ω2 andΩ1 ∩ Ω2 = ∅ (see Fig.3.4). Ω1 is the domain, where single-phase (water) flow

takes place, andΩ2 is the domain, where two-phase flow occurs. Then, the interface betweenthese

domains is denoted byΓ = Ω1 ∩ Ω2.

Let us shortly recall the main conditions under which we developed the modelin Section2.1.

Since the aim of this work is to investigate one-dimensional model, we consider acase when the

computational domainΩ is composed of one layer. We assume that this layer is transported through

the press nips from the left to the right with velocityVs,in measured in[m/s] as indicated in Fig.3.4.

Remembering that a paper machine works in a non-stop regime during several days, we state the

model under steady-state conditions. According to Assumption2.1.3, the water is considered to be

incompressible.

The first regime is a single-phase flow model. We describe it with the help of mass conservation

equation for the water phase and Darcy’s law in the case of moving porousmedia and neglected

gravity term (for more details see [6]):

− div

(

K

µ
grad p

)

+ div(φVs) = 0, x ∈ Ω1. (3.50)

The second regime is a two-phase flow, which is simulated using Richards’ assumptions, the

mass conservation equation for water phase, the Darcy law and the dynamiccapillary pressure-

saturation relation derived by Hassanizadeh and Gray [23, 24, 25] (for more detailed explanations
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Fig. 3.4: Computational domainΩ with two flow regimes in single-layer case

see Section2.1):

− div

(

kr

µ
K grad p

)

+ div(φSVs) = 0, x ∈ Ω2, (3.51)

p+ pstat
c (S) = τVs · gradS, x ∈ Ω2. (3.52)

On the interfaceΓ between the domains with the different flow regimes we satisfy the continuity

of the pressure and the normal fluxes. We introduce operator[f ]Γ which indicates a jump of a

functionf across the interfaceΓ:

[f ]Γ = lim
t→Γ+0

f(t) − lim
t→Γ−0

f(t).

Then, the interfacial conditions, the continuity of the water pressure and the continuity of the normal

fluxes across the interfaceΓ yield:

[p]Γ = 0, [Jw · n]Γ = 0, (3.53)

wheren is the unit normal vector toΓ, Jw is the water flux, which is defined as:

Jw =







−K

µ grad p+ φVs for x ∈ Ω1;

−kr

µ K grad p+ φSVs for x ∈ Ω2.
(3.54)

We obtain the one-dimensional model by averaging the two-dimensional modelin vertical di-

rection (for more details see Section2.1.2and AppendixA.1). Therefore, a thickness of the layer

d(x) is included into the final model:

− ∂

∂x

(

d(x)
K(φ(x))

µ

∂p

∂x

)

+
∂

∂x
(d(x)φ(x)Vs) = 0, x ∈ Ω1, (3.55)
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− ∂

∂x

(

d(x)
kr(S)

µ
K(φ(x))

∂p

∂x

)

+
∂

∂x
(d(x)φ(x)VsS) = 0, x ∈ Ω2, (3.56)

p+ pstat
c (S) = τVs

∂S

∂x
x ∈ Ω2. (3.57)

In one dimension, the domainsΩ1 andΩ2 are presented by the sets of intervals such thatΩ1∪Ω2 =

Ω andΩ1 ∩ Ω2 = ∅. Moreover, as in case of the theoretical studies for model with the static

capillary pressure, it is assumed that the one-dimensional computational domain Ω is an interval

(0, 1) obtained by the simple variable transformation.

We consider the paper-felt sandwich to be transported horizontally with theconstant speed

Vs,in. Then, thex-component of the solid velocityVs does not depend onx and it is equal to

|Vs,in|.
Let us define functionsb(x) = d(x)K(φ(x))/µ, q(x) = d(x)φ(x)Vs andc = τVs = const.

Then, the nonlinear system of Eqs. (3.55)–(3.57) can be rewritten as:

− ∂

∂x

(

b(x)
∂p

∂x

)

+
∂q(x)

∂x
= 0, x ∈ Ω1, (3.58)

− ∂

∂x

(

b(x)kr(S)
∂p

∂x

)

+
∂(q(x)S)

∂x
= 0, x ∈ Ω2, (3.59)

p+ pstat
c (S) = c

∂S

∂x
, x ∈ Ω2. (3.60)

The boundary conditions yield:

p(0) = −pstat
c (C0),

∂p

∂x

∣

∣

∣

∣

x=1

= 0, S(0) = C0. (3.61)

The interfacial conditions (3.53) have also to be satisfied for the one-dimensional water flux defined

by:

Jw =







−b(x) ∂p
∂x + φVs for x ∈ Ω1;

−b(x)kr
∂p
∂x + φSVs for x ∈ Ω2.

(3.62)

Let us impose the following assumptions on the input data:

Assumption 3.2.1.

(a) b(x) ∈ C([0, 1]), b(x) > 0;

(b) q(x) ∈ C([0, 1]), q(x) ≥ 0;

(c) kr ∈ C([S∗, 1]), kr : [S∗, 1] → [k∗, 1] is an increasing function, wherek∗ ∈ R andk∗ > 0;
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(d) C0 ∈ R, C0 ∈ (S∗, 1);

(e) c ∈ R, c > 0;

(f) pstat
c ∈ C1([S∗, 1]), pstat

c : [S∗, 1] ↔ [p∗, p
∗] is a decreasing function, whereS∗ ∈ R and

S∗ > 0.

These assumptions are physical and satisfied for the input data used in our numerical exper-

iments. The first three statements are the same as in case of the static capillary pressure. As-

sumptions2.2.1(d), (e) are required for the following proof. We should remark that they do not

contradict the data used for our numerical experiments. Assumption3.2.1(f) coincides with the As-

sumption2.2.1if, in addition, it is specified thatpstat
c is the one-time continuously differentiable

decreasing function andS∗ is defined by Remark2.2.2. Although Assumption3.2.1(f) is stricter

than Assumption2.2.1, it is still satisfied for the input data used for the numerical experiments.

Taking into account imposed assumptions, we can reformulate problem (3.58)–(3.60) in the

following way:

− ∂

∂x

(

b(x)kr(S)
∂p

∂x

)

+
∂(q(x)S)

∂x
= 0, x ∈ Ω, (3.63)

ĉ(S)(p+ pstat
c (S)) =

∂S

∂x
, x ∈ Ω, (3.64)

where function̂c(S) takes the form:

ĉ(S) =







1/c for S ∈ (S∗, 1);

0 for S /∈ (S∗, 1).
(3.65)

Using Assumption3.2.1, we notice that Eq. (3.63) coincides with Eq. (3.57) in the domainΩ1

and with Eq. (3.58) in the domainΩ2. Continuity of the pressurep in whole domainΩ follows from

the definition of the non-linear convection–diffusion Eq. (3.63). Continuity of the normal fluxes

directly follows from integration of Eq. (3.63) over a small interval which contains the interface

betweenΩ1 andΩ2.

Eq. (3.64) with (3.65) transforms automatically into Eq. (3.59) in the domainΩ2. Let us prove

that in the domainΩ1 one of the following equations are satisfied:

S = S∗, S = 1.

We are going to show that solution of (3.64), (3.65) is bounded and belongs to interval[S∗, 1].

Integrating (3.64) over interval(0, x) for somex ∈ (0, 1) and then finding|S(x) − S(y)| we can
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show that solution of (3.64), (3.65), S, is a continuous function.

Let us assume that there existsx̃ ∈ Ω such thatS(x̃) > 1. Since the functionS is continuous

there existsy ∈ (0, x̃) such thatS(y) = 1 andS(x) > 1 for all x ∈ (y, x̃]. Then, we have:

S(x̃) = C0 +

∫ y

0
ĉ(S)(p+ pstat

c (S))dt+

∫ x̃

y
ĉ(S)(p+ pstat

c (S))dt

= S(y) +

∫ x̃

y
ĉ(S)(p+ pstat

c (S))dt = S(y).

Hence, we have obtained a contradictionS(x̃) = S(y), which proves thatS ≤ 1. Using the same

approach it can be proven thatS ≥ S∗. Thus, system of Eqs. (3.64), (3.65) guarantees that solution

S is in [S∗, 1].

Remark 3.2.1. Our model (3.63)–(3.65) contains a fictitious regime when saturation is equal to

S∗. This case is included only to make the formulation of the model homogeneous for all values of

saturationS. The fictitious domain method is quite popular method to solve PDEs in non-standard

domains or to simulate processes described by free boundary problems. From the physical point of

view instead of Eqs. (3.63)–(3.65) in this case we should formulate the following equations:

p = −p∗, S = S∗.

We will not investigate the error introduced by such fictitious domain technique, since in all our

numerical experiments the single-phase air flow has never occurred.

In order to simplify notations, we apply variable transformationp = y − pstat
c (C0), then we

obtain the following nonlinear boundary value problem:

− ∂

∂x

(

b(x)kr(S)
∂y

∂x

)

+
∂(q(x)S)

∂x
= 0, x ∈ (0, 1), (3.66)

ĉ(S)(y + g(S)) =
∂S

∂x
, x ∈ (0, 1], (3.67)

y(0) = 0, (3.68)

∂y

∂x

∣

∣

∣

∣

x=1

= 0, (3.69)

S(0) = C0, (3.70)

whereg(S) = pstat
c (S) − pstat

c (C0).
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LetH1
0−((0, 1)) be the subspace ofH1((0, 1)) satisfying

H1
0−((0, 1)) := {f ∈ H1((0, 1))

∣

∣ f(0) = 0}.

Then, we consider the weak formulation of problem (3.66)–(3.70):

find y ∈ H1
0−((0, 1)) andS ∈ L2((0, 1)) such that

∫ 1

0
b(x)kr(S)

∂y

∂x

∂ϕ

∂x
dx−

∫ 1

0
q(x)S

∂ϕ

∂x
dx+ q(1)S(1)ϕ(1) = 0, (3.71)

−
∫ 1

0
ĉ(S) (y + g(S))ϕdx−

∫ 1

0
S
∂ϕ

∂x
dx+ S(1)ϕ(1) = 0, (3.72)

for all ϕ ∈ C∞([0, 1]) such thatϕ(0) = 0.

In order to prove the main convergence theorem we will assume that the following non-degeneracy

property is satisfied.

Assumption 3.2.2.For anyǫ > 0 there existsδǫ > 0 such that:

meas ({x ∈ Ω : S ∈ (S∗, S∗ + δǫ) ∪ (1 − δǫ, 1)}) ≤ ǫ. (3.73)

This kind of assumption was used by Deckelnick and Siebert in [16] to prove the convergence of

the discrete domain with the free boundary to continuous one. Without this non-degeneracy property

is not possible to complete the proof of convergence. We are going to to verify the admissibility of

this assumption by the numerical experiments.

3.2.2 Discretization

The finite difference scheme for the one-dimensional model with the dynamic capillary pressure

was stated in Section2.2. Since in this section we investigate the proposed numerical algorithm

let us recall the finite difference scheme here. Let the meshT be introduced on the computational

domainΩ = (0, 1) (see Definition2.2.1). The mass conservation Eq. (3.66) discretized by the finite

volume method yields:

y0 = 0, (3.74)

−bi+ 1

2

kr,i+ 1

2

yi+1 − yi

h
+ bi− 1

2

kr,i− 1

2

yi − yi−1

h

+(qi+ 1

2

Si+ 1

2

− qi− 1

2

Si− 1

2

) = 0, i = 1, N − 1,
(3.75)

bN− 1

2

kr,N− 1

2

yN − yN−1

h
+ (qNSN − qN− 1

2

SN− 1

2

) = 0, (3.76)
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where

kr,i+ 1

2

= kr(Si+ 1

2

), bi+ 1

2

= b(xi+ 1

2

), qi+ 1

2

= q(xi+ 1

2

). (3.77)

To discretize Eq. (3.67) we have the following two-step algorithm:

S0 = C0, (3.78)

1

c

(

y0 + g̃(Ŝ 1

2

)
)

=
2

h
(Ŝ 1

2

− S0), (3.79)

1

c

(

yi + g̃(Ŝi+ 1

2

)
)

=
1

h
(Ŝi+ 1

2

− Si− 1

2

), i = 1, N − 1, (3.80)

1

c

(

yN + g̃(ŜN )
)

=
2

h
(ŜN − SN− 1

2

), (3.81)

where

g̃(S) =



















g(S∗) for S < S∗,

g(S) for S∗ ≤ S ≤ 1,

g(1) for S > 1.

(3.82)

The second correction step has the form:

Si =



















S∗ + η for Ŝi < S∗ + η;

Ŝi for S∗ + η ≤ Ŝi ≤ 1 − η;

1 − η for Ŝi > 1 − η;

(3.83)

for all i = {1
2 , N − 1

2 , N}. Hereη > 0 is some small value which satisfiesη → 0 ash→ 0.

We note here, that the correction step in an implicit way defines the discrete analog of the

function ĉ(S).

3.2.3 Proof of convergence

To prove the convergence of discrete solution of (3.74)–(3.83) to continuous solution of (3.71),

(3.72), first we consider Eqs. (3.74)–(3.77) separately from Eqs. (3.78)–(3.83). In the following two

lemmas we prove existence of solutions of each of these problems.

Remark 3.2.2. Due to complexity of the presented nonlinear problem there are difficulties for ob-

taining uniqueness results for both continuous and discrete problems. In this work we do not study

this aspect of the problem.
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Let us introduce the following notation:

S− 1

2

= S0, SN+ 1

2

= SN .

Lemma 3.2.1. Let Assumption3.2.1 be satisfied and letT be the mesh on(0, 1) (see Defini-

tion 2.2.1). Let S = (S− 1

2

, S 1

2

, . . . , SN+ 1

2

)T ∈ R
N+2 be some given vector, such thatSi− 1

2

∈
[S∗ + η, 1 − η] for all i = 0, N + 1. Then, there exists a unique solution of (3.74)–(3.77),

y = (y0, y1, . . . , yN )T ∈ R
N+1, such that:

N−1
∑

i=0

(yi+1 − yi)
2

h
≤ C2

1 =

(

2q∗

b∗k∗

)2

,

whereq∗ ≤ qi+ 1

2

≤ q∗ andb∗ ≤ bi+ 1

2

≤ b∗ for all i = 0, N − 1.

Proof: Following the proof of Lemma3.1.1and3.1.2from Section3.1.3we obtain the required

result.

For any given vectorv = (v− 1

2

, v 1
2

, ..., vN+ 1

2

) ∈ R
N+2 we introduce the following seminorm:

‖Dv‖L2((0,1)) =

(

N
∑

i=0

(vi+ 1

2

− vi− 1

2

)2

hi

)

1

2

,

whereh0 = h/2, hi = h for all i = 1, N − 1, hN = h/2.

Lemma 3.2.2. Let Assumption3.2.1 be satisfied and letT be the mesh on(0, 1) (see Defini-

tion 2.2.1). Let y = (y0, y1, . . . , yN )T ∈ R
N+1 be some given vector, such that|yi| ≤ C1 for

all i = 0, N . Then, there exists a solution of (3.78)–(3.83), S = (S− 1

2

, S 1

2

, . . . , SN+ 1

2

)T ∈ R
N+2,

such that:

Si− 1

2

∈ [S∗ + η, 1 − η], i = 0, N + 1 (3.84)

and

‖DS‖L2((0,1)) ≤ C2 =
C1 + g∗

c
, (3.85)

whereg∗ = p∗ − pstat
c (C0).

Proof: The system (3.79)–(3.81) can be considered as a Cauchy problem with the initial condition

(3.78). Hence, we can solve these equations sequentially. At first, let us consider Eq. (3.79) in the

following form:

Ŝ 1

2

= S− 1

2

+
h

2c

(

y0 + g̃(Ŝ 1

2

)
)

. (3.86)
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In Eq. (3.86), S− 1

2

is given by (3.78). We denote the right-hand side of Eq. (3.86) asG(Ŝ 1

2

). We

notice thatG is a continuous function of̂S 1

2

. It is easy to see, that:

|G(v)| ≤ C0 +
h

2c
(C1 + g∗),

for any givenv. It meansG(Br) ⊂ Br, whereBr ⊂ R is a closed ball with radiusr = C0 +
h
2c(C1 + g∗) and center0. Using Brouwer’s fixed point theorem we conclude thatG has at least one

fixed point inBr, which is a solution of (3.86).

After the correction step (3.83) for valueS 1
2

we have:

S 1

2

∈ [S∗ + η, 1 − η] .

The same boundedness result can be obtained for everySi− 1

2

, i = 2, N + 1.

It remains to prove estimate (3.85) for ‖DS‖L2((0,1)). Using Eqs. (3.80), (3.82), (3.83) we

obtain:
∣

∣

∣Si+ 1

2

− Si− 1

2

∣

∣

∣

h
≤

∣

∣

∣Ŝi+ 1

2

− Si− 1

2

∣

∣

∣

h
≤ C1 + g∗

c
, i = 1, N − 1. (3.87)

Considering Eqs. (3.79), (3.81) instead of (3.80), we obtain the same upper bound for2
∣

∣

∣
S 1

2

− S− 1

2

∣

∣

∣
/h

and2
∣

∣

∣SN+ 1

2

− SN− 1

2

∣

∣

∣ /h. Then, for‖DS‖2
L2((0,1)) we have:

‖DS‖2
L2((0,1)) ≤

(

C1 + g∗

c

)2 h

2
+

N−1
∑

i=1

(

C1 + g∗

c

)2

h+

(

C1 + g∗

c

)2 h

2

=

(

C1 + g∗

c

)2

h

(

1

2
+ (N − 1) +

1

2

)

=

(

C1 + g∗

c

)2

.

Lemma 3.2.3. (Existence)Let Assumption3.2.1be satisfied and letT be the mesh on(0, 1) (see

Definition 2.2.1). Then, there exist a pair of vectorsy = (y0, y1, . . . , yN )T ∈ R
N+1 and S =

(S− 1

2

, S 1

2

, . . . , SN+ 1

2

)T ∈ R
N+2, which is solution of the system of Eqs. (3.74)–(3.83).

Proof: Let us consider auxiliary system of equations obtained from system (3.74)–(3.77) by

replacingS with a vectorv and from system (3.78)–(3.83) by replacingy with a vectoru. The

vectorsv andu satisfy:

u = (u0, u1, . . . , uN )T ∈ R
N+1, |ui| ≤ C1 for all i = 0, N ; (3.88)

v = (v− 1

2

, v 1
2

, . . . , vN+ 1

2

)T ∈ R
N+2, vi− 1

2

∈ [S∗ + η, 1 − η] for all i = 0, N + 1. (3.89)
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Then, it follows from Lemmas3.2.1, 3.2.2that there exists an operatorT : R
2N+3 → R

2N+3 such

that:

χ = T (θ), (3.90)

whereχ = (y,S)T ∈ R
2N+3 and θ = (u,v)T ∈ R

2N+3. Let us assume that operatorT is

continuous (we will prove this property later). For any given vectorψ = (x, z)T ∈ R
2N+3 we

define the following norm:

‖ψ‖L2((0,1)) =

(

N
∑

i=0

x2
ihi +

N
∑

i=0

z2
i+ 1

2

hi

)

1

2

, (3.91)

whereh0 = hN = h/2, hi = h for all i = 1, N − 1 and:

x = (x0, x1, . . . , xN )T ∈ R
N+1, x0 = 0; (3.92)

z = (z− 1

2

, z 1

2

, . . . , zN+ 1

2

)T ∈ R
N+2, z− 1

2

= C0. (3.93)

Then, for anyθ = (u,v)T with u andv, which satisfy (3.88), (3.89), it follows that

‖θ‖L2((0,1)) ≤ C3 =
(

C2
1 + 1

)
1

2 .

Due to the properties of the finite volume scheme (3.74)–(3.83), we also have that:

‖T (θ)‖L2((0,1)) = ‖χ‖L2((0,1)) ≤ C3.

Using Brouwer’s fixed point theorem, we conclude that there exists a solution of the system of

Eqs. (3.74)–(3.83).

In order to apply the fixed point theorem we have to show that operatorT is continuous. We

notice that operatorT consists of two operators. The first operatory = Ty(S) is defined by system

of Eqs. (3.74)–(3.77) with some given vectorS. Continuity of this operator is a standard result from

theory of finite volume schemes and it follows from the coefficient stability of elliptic operators.

The second operatorS = TS(y) is defined by (3.78)–(3.83) with some given vectory. Let us

prove thatTS is continuous, if Assumptions3.2.1are satisfied. Let us consider two different input

vectorsy andu and denote the corresponding solutions bySy = TS(y) andSu = TS(u). We want

to prove that for anyǫ > 0 there existsδ = δǫ > 0 such that:

‖y − u‖1,L2((0,1)) < δǫ =⇒ ‖Sy − Su‖2,L2((0,1)) < ǫ, (3.94)
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where the norms are introduced as:

‖x‖1,L2((0,1)) =

(

N
∑

i=0

x2
ihi

)

1

2

, ‖z‖2,L2((0,1)) =

(

N
∑

i=0

z2
i+ 1

2

hi

)

1

2

,

andx, z satisfy conditions (3.92), (3.93). Let us write Eqs. (3.81), i = 1, N − 1 in the following

form:

Ŝy

i+ 1

2

− Sy

i− 1

2

=
h

c
g̃(Ŝy

i+ 1

2

) +
h

c
yi, (3.95)

Ŝu
i+ 1

2

− Su
i− 1

2

=
h

c
g̃(Ŝu

i+ 1

2

) +
h

c
ui. (3.96)

Introducing vectorŝei+ 1

2

= Ŝy

i+ 1

2

− Ŝu
i+ 1

2

, ei− 1

2

= Sy

i− 1

2

− Su
i− 1

2

, and subtracting Eq. (3.96) from

(3.95), we get:

êi+ 1

2

− ei− 1

2

=
h

c

(

g̃(Ŝy

i+ 1

2

) − g̃(Ŝu
i+ 1

2

)

)

+
h

c
(yi − ui). (3.97)

Taking into account the definition of functioñg in (3.82), we get the estimate:

g̃(Ŝy

i+ 1

2

) − g̃(Ŝu
i+ 1

2

) = g′(Sξ

i+ 1

2

)θêi+ 1

2

,

whereS∗ ≤ Sξ

i+ 1

2

≤ 1 and 0 ≤ θ ≤ 1. Since the functiong is a decreasing function, then

g′(Sξ

i+ 1

2

) < 0.

It follows from the definition of the restriction operator (3.83) that|ei+ 1

2

| ≤ |êi+ 1

2

|. Then, using

(3.97), we get:

∣

∣ei+ 1

2

∣

∣ ≤
∣

∣êi+ 1

2

∣

∣ ≤
∣

∣

∣
1 − h

c
g′(Sξ

i+ 1

2

)θ
∣

∣

∣

∣

∣êi+ 1

2

∣

∣ ≤
∣

∣ei− 1

2

∣

∣+
h

c
|yi − ui|. (3.98)

Similarly from Eqs. (3.79), (3.81) we obtain:

∣

∣e 1

2

∣

∣ ≤ h

2c
|y0 − u0| ,

∣

∣eN+ 1

2

∣

∣ ≤
∣

∣eN− 1

2

∣

∣+
h

2c
|yN − uN | . (3.99)

Using sequentially inequalities (3.98), (3.99) and the Cauchy–Schwartz inequality, we have:

∣

∣

∣
ej+ 1

2

∣

∣

∣
≤

N
∑

i=0

hi

c
|yi − ui| ≤

1

c

(

N
∑

i=0

(yi − ui)
2hi

N
∑

i=0

hi

)

1

2

=
1

c
‖y − u‖1,L2((0,1)), j = 0, . . . , N. (3.100)
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From (3.100) we obtain:

‖e‖2
2,L2((0,1)) =

N
∑

i=0

|ei+ 1

2

|2hi ≤
1

c2
‖y − u‖2

1,L2((0,1)),

wherehi is defined in (3.91). Hence, statement (3.94) is proven andT is a continuous operator.

Lemma 3.2.4. (Compactness)Let Assumptions3.2.1be satisfied and letT be a mesh on(0, 1) (see

Definition2.2.1). Let the pair of vectorsy = (y0, y1, . . . , yN )T ∈ R
N+1

andS = (S− 1

2

, S 1

2

, . . . , SN+ 1

2

)T ∈ R
N+2 be a solution of (3.74)–(3.83). LetyT : (0, 1) → R be

yT (x) = yi and letST : (0, 1) → [S∗ + η, 1 − η] beST (x) = Si+ 1

2

for x ∈ Ki, i = 0, N . Then,

the setsyT andST are relatively compact inL2((0, 1)). Furthermore, ifyTn → y andSTn → S in

L2((0, 1)) andhn → 0 asn→ ∞, then,y ∈ H1
0−((0, 1)) andS ∈ H1((0, 1)).

Proof: All statements foryT were proven in Lemma3.1.3in Section3.1.3. Therefore, here we

are concerned only with the functionST .

Using Kolmogorov compactness theorem, it is sufficient to show thatST is relatively compact

in L2((0, 1)):

• the setST is bounded inL2(R) for all T ,

• ‖ST (· + ν) − ST ‖L2(R) → 0 asν → 0 uniformly.

Step 1.FunctionST can be redefined asST (x) = Si+ 1

2

if x ∈ Ki, i = 0, N , ST (x0) = S− 1

2

,

otherwiseST = 0. Then, using (3.84) it follows immediately that the setST for all T is bounded

in L2(R).

Step 2.Let 0 < ν < 1. We defineχi : R → R for i = −1, N + 1 such that:

χ− 1

2

(x) = 1 if x0 ∈ [x, x+ ν], χ− 1

2

(x) = 0, otherwise;

χi+ 1

2

(x) = 1, if xi+ 1

2

∈ [x, x+ ν], χi+ 1

2

(x) = 0, otherwise,i = 0, N − 1;

χN+ 1

2

(x) = 1; if xN ∈ [x, x+ ν], χN+ 1

2

(x) = 0, otherwise.

Then, for allx ∈ R we have:

(ST (x+ ν) − ST (x))2 ≤
(

S− 1

2

χ− 1

2

+
N
∑

i=0

∣

∣

∣
Si+ 1

2

− Si− 1

2

∣

∣

∣
χi− 1

2

+ SN+ 1

2

χN+ 1

2

)2

≤ 3S2
− 1

2

χ− 1

2

+ 3







N
∑

i=0

(

Si+ 1

2

− Si− 1

2

)2

hi
χi− 1

2







(

N
∑

i=0

hiχi− 1

2

)

+ 3S2
N+ 1

2

χN+ 1

2

,

(3.101)
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whereh0 = hN = h/2 andhi = h for all i = 1, N − 1. Integrating (3.101) overR we obtain:

‖ST (· + ν) − ST ‖2
L2(R) ≤ 6ν + 3(ν + 2h)

∫

R







N
∑

i=0

(

Si+ 1

2

− Si− 1

2

)2

hi
χi− 1

2






dx

≤ 6ν + 3(ν + 2h)
N
∑

i=0

(

Si+ 1

2

− Si− 1

2

)2

hi

∫

R

χi− 1

2

dx

≤ 6ν + 3ν(ν + 2h)C2
2 .

Sinceν < 1 andh < 1 we conclude that‖ST (· + ν) − ST ‖2
L2(R) ≤ Ĉν,whereĈ = const > 0.

Hence, the second condition of Kolmogorov compactness theorem is proven.

Step 3.Here we want to prove that functionS(x) belongs toH1((0, 1)). At first let us prove

that (STn(x + hn) − STn(x))/hn converges to∂S/∂x for all x ∈ (−∞, 1) in a weak sense when

hn → 0 asn → ∞. Let ϕ ∈ C∞
0 ((−∞, 1)) andsuppϕ ⊂ (0, 1). The discrete functionϕTn is

defined in the following way:

ϕTn(x) =







ϕi = ϕ(xi) if x ∈ Ki, i = 0, N ;

0, otherwise.

Let us redefine functionSTn such thatSTn = SN+ 1

2

if x ∈ [xN , xN+ 1

2

] andSTn = SN+ 3

2

= SN+ 1

2

if x ∈ [xN+ 1

2

, xN+ 3

2

]. Then, we have:

(

STn(· + hn) − STn

hn
, ϕTn

)

L2((−∞,1))

=

∫ 1

−∞

STn(x+ hn) − STn(x)

hn
ϕTn(x)dx

=
N
∑

i=0

Si+ 3

2

− Si+ 1

2

hn
ϕihn = −

N
∑

i=1

Si+ 1

2

ϕi − ϕi−1

hn
hn

= −
∫ 1

−∞
STn(x)

ϕTn(x) − ϕTn(x− hn)

hn
dx

= −
(

STn ,
ϕTn − ϕTn(· − hn)

hn

)

L2((−∞,1))

.

(3.102)

FunctionsϕTn and(ϕTn−ϕTn(·−hn))/hn strongly converge toϕ and∂ϕ/∂x, respectively. We

also know thatSTn → S inL2(R) asn→ ∞. On the other hand, function(STn(·+hn)−STn)/hn is

bounded inL2(R) (see (3.85)). Then, for any sequence of meshes(Tn)n∈N such thathn → 0 asn→
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∞, there exists a subsequence, still denoted by(Tn)n∈N, such that function(STn(·+hn)−STn)/hn

weakly converges to some function. Then, passing to the limit in (2.14) and using the definition of

the weak derivative we obtain that(STn(· + hn) − STn)/hn converge weakly to∂S/∂x.

Using (3.85) we have:
∥

∥

∥

∥

∂S

∂x

∥

∥

∥

∥

L2((−∞,1))

≤ C2.

We also have that∂S/∂x = 0 if x ∈ (−∞, 0). Hence, the restriction ofS to (0, 1) is inH1((0, 1)).

Lemma3.2.4is proven.

In order to prove the main convergence theorem we introduce one more assumption.

Assumption 3.2.3.The domainΩ1, where single-phase flow occurs, consists of a finite number of

simply connected subdomains.

This assumption does not contradict physical meaning of the infiltration process.

Theorem 3.2.5.Let Assumptions3.2.1, 3.2.2and3.2.3be satisfied. For the meshT on (0, 1) let

the pair of vectorsy = (y0, y1, . . . , yN )T ∈ R
N+1 andS = (S− 1

2

, S 1

2

, . . . , SN+ 1

2

)T ∈ R
N+2 be a

solution of (3.74)–(3.83) and letyT andST be defined as

yT : (0, 1) → R byyT (x) = yi, if x ∈ Ki, i = 0, N ;

ST : (0, 1) → (S∗, 1] byST (x) = Si+ 1

2

, if x ∈ Ki, i = 0, N.

Then, for any sequence of meshes(Tn)n∈R
such thathn → 0, asn→ ∞, there exists a subsequence,

still denoted by(Tn)n∈R
, such thatyTn → y and STn → S in L2((0, 1)), asn → ∞, where

y ∈ H1
0−((0, 1)) andS ∈ H1((0, 1)) are solutions to the system (3.71), (3.72).

Proof: Let (Tn)n∈N be a sequence of meshes on(0, 1) such thathn → 0, asn→ ∞. Lemma3.2.3

gives us the existence of solution of the problem (3.74)–(3.83) for any meshTn from sequence

(Tn)n∈N
. Lemma3.2.4guarantees that there exists a subsequence, still denoted by(Tn)n∈N

, such

thatyTn → y andSTn → S in L2((0, 1)) asn→ ∞ and thaty ∈ H1
0−((0, 1)) andS ∈ H1((0, 1)).

Following the proof of Theorem3.1.4from Section3.1.3we obtain thaty ∈ H1
0− is a solution

to (3.71) for a any givenS ∈ L2((0, 1)). In order to conclude the proof we have to show that

S ∈ L2((0, 1)) is a solution of (3.72) for any giveny ∈ H1
0−.

Letϕ ∈ C∞([0, 1]) such thatϕ(0) = 0. Then the weak formulation (3.72) can be written in the

following way:

−T1 − T2 + T3 = 0,

where:

T1 =

∫

Ω2

1

c
(y + g(S))ϕdx, T2 =

∫ 1

0
S
∂ϕ

∂x
dx, T3 = S(1)ϕ(1),
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where domainΩ2 is defined in the following way:

Ω2 = {x ∈ (0, 1) : S(x) ∈ (S∗, 1)}. (3.103)

Taking into account two-step algorithm (3.78)–(3.83) we notice that solutionSi− 1

2

for i =

0, N + 1 satisfies:

S− 1

2

= C0, (3.104)

1

c

(

yi + g(Si+ 1

2

)
)

=
1

hn
i

(Si+ 1

2

− Si− 1

2

), i ∈ U, (3.105)

Si+ 1

2

− S∗ − ηn = 0, i ∈ F∗, (3.106)

Si+ 1

2

− 1 + ηn = 0, i ∈ F ∗; (3.107)

whereηn corresponds to meshTn, U ∪ F∗ ∪ F ∗ = 0, N and:

U = {i : S∗ + ηn < Ŝi+ 1

2

< 1 − ηn}, (3.108)

F∗ = {i : Ŝi+ 1

2

≤ S∗ + ηn}, (3.109)

F ∗ = {i : Ŝi+ 1

2

≥ 1 − ηn}. (3.110)

We rewrite Eqs. (3.106), (3.107) in the following way:

1

hn
i

(

Si+ 1

2

− Si− 1

2

)

+
1

hn
i

(

Si− 1

2

− S∗ − ηn

)

= 0, i ∈ F∗, (3.111)

1

hn
i

(

Si+ 1

2

− Si− 1

2

)

+
1

hn
i

(

Si− 1

2

− 1 + ηn

)

= 0, i ∈ F ∗. (3.112)

LetTn be the mesh on[0, 1] (see Definition2.2.1), which is one of the meshes of the subsequence

(Tn)n∈N
andϕi = ϕ(xi), i = 0, N . If S =

(

S− 1

2

, S 1

2

, . . . , SN+ 1

2

)T
is a solution of (3.104)–

(3.107) for some giveny = (y0, y1, . . . , yN )T on the meshTn, multiplying (3.105), (3.111), (3.112)

byϕih
n
i for all i = 0, N and summing overi = 0, N we get

−
∑

i∈U

1

c

[

yi + g(Si+ 1

2

)
]

ϕih
n
i +

N
∑

i=0

1

hn
i

(

Si+ 1

2

− Si− 1

2

)

ϕih
n
i

+
∑

i∈F∗

1

hn
i

(

Si− 1

2

− S∗ − ηn

)

ϕih
n
i +

∑

i∈F ∗

1

hn
i

(

Si− 1

2

− 1 + ηn

)

ϕih
n
i = 0.

(3.113)
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Reordering summation in the second term of (3.113), we obtain:

− T̂n
1 − T̂n

2 + T̂n
3 + T̂n

4 = 0, (3.114)

T̂n
1 =

∑

i∈U

1

c

[

yi + g(Si+ 1

2

)
]

ϕih
n
i , (3.115)

T̂n
2 =

N−1
∑

i=0

Si+ 1

2

ϕi+1 − ϕi

hn
i

hn
i , (3.116)

T̂n
3 = SN+ 1

2

ϕN , (3.117)

T̂n
4 =

∑

i∈F∗

Si− 1

2

− S∗ − ηn

hn
i

ϕih
n
i +

∑

i∈F ∗

Si− 1

2

− 1 + ηn

hn
i

ϕih
n
i . (3.118)

Let us consider the terms in Eq. (3.114) separately. Term̂Tn
1 can be written down in the follow-

ing integral formulation:

T̂n
1 =

∫

Ωn,2

1

c
(yTn + g(STn))ϕTndx,

whereϕTn = ϕi if x ∈ Ki, i = 0, N , domainΩn,2 = ∪i∈UKi. Using (3.108), the domainΩn,2 can

be represented in the following form:

Ωn,2 = {Ki, i : Ŝi+ 1

2

∈ (S∗ + ηn, 1 − ηn)}
(3.83)
= {Ki, i : Si+ 1

2

∈ (S∗ + ηn, 1 − ηn)}

= {x ∈ Ω : STn(x) ∈ (S∗ + ηn, 1 − ηn)}.

(3.119)

Let us now consider the difference
∣

∣

∣
T1 − T̂n

1

∣

∣

∣
:

∣

∣

∣
T1 − T̂n

1

∣

∣

∣
=

∣

∣

∣

∣

∫

Ω2

1

c
(y + g(S))ϕdx−

∫

Ωn,2

1

c
(yTn + g(STn))ϕTndx

∣

∣

∣

∣

<

∣

∣

∣

∣

∫

Ω2

1

c
(y + g(S))ϕdx−

∫

Ωn,2

1

c
(y + g(S))ϕdx

∣

∣

∣

∣

+

∫

Ωn,2

∣

∣

∣

∣

1

c
((yTn + g(STn))ϕTn − (y + g(S))ϕ)

∣

∣

∣

∣

dx

≤
∣

∣

∣

∣

∫

Ω2⊕Ωn,2

1

c
(y + g(S))ϕdx

∣

∣

∣

∣

+

∫

Ω

∣

∣

∣

∣

1

c
((yTn + g(STn))ϕTn − (y + g(S))ϕ)

∣

∣

∣

∣

dx.

(3.120)
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The second term on the right-hand side in inequality (3.120) converges to zero asn→ ∞. To prove

that the first term on the right-hand side also converges to zero asn→ ∞ we have to show that for

anyε > 0 there existsN ε ∈ N such that:

∫

Ω2⊕Ωn,2

dx < ε for all n ≥ N ε. (3.121)

This condition is sufficient, since all functions under the integral in (3.120) are bounded.

It was shown in Lemma3.2.4thatSTn → S in L2((0, 1)), which means that it also converges

in measure. Then, for anyδ > 0 andǫ > 0 there existsN ∈ N such that:

meas ({x ∈ Ω : |STn(x) − S(x)| > δ}) < ǫ, for all n ≥ N,

whereΩ = (0, 1). To simplify the notations we suppose thatδ = ǫ then definition of convergence

in measure yields for anyδ > 0 there existsN = N(δ) ∈ N such that:

meas ({x ∈ Ω : |STn(x) − S(x)| > δ}) < δ, for all n ≥ N. (3.122)

Using (3.122) we define two subsets ofΩ in the following way:

Ωδ = {x ∈ Ω : |STn(x) − S(x)| ≤ δ}, (3.123)

Ω̃δ = Ω \ Ωδ = {x ∈ Ω : |STn(x) − S(x)| > δ}. (3.124)

Next we consider the integral (3.121). Using an indicator function, namely1A(x) = 1, if x ∈ A,

and1A(x) = 0, if x /∈ A, we obtain:

∫

Ω2⊕Ωn,2

dx =

∫

Ω
1Ω2⊕Ωn,2dx =

∫

Ω
1Ω2\Ωn,2dx+

∫

Ω
1Ωn,2\Ω2dx. (3.125)

Using setsΩδ andΩ̃δ, defined in (3.123), (3.124), we split integrals on the right hand side of (3.125)

into four integrals:
∫

Ω2⊕Ωn,2

dx = I1 + I2 + I3 + I4, (3.126)

I1 =

∫

Ω
1(Ω2∩Ωδ)\(Ωn,2∩Ωδ)dx, (3.127)

I2 =

∫

Ω
1(Ω2\Ωn,2)∩Ω̃δdx, (3.128)
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I3 =

∫

Ω
1(Ωn,2∩Ωδ)\(Ω2∩Ωδ)dx, (3.129)

I4 =

∫

Ω
1(Ωn,2\Ω2)∩Ω̃δdx. (3.130)

Summing integralsI2 andI4 we have:

I2 + I4 =

∫

Ω
1(Ω2⊕Ωn,2)∩Ω̃δdx <

∫

Ω
1Ω̃δ < δ.

Let us now consider the integralI1. Introducing a set:

Ω̃2 = {x ∈ Ω : S(x) ∈ (S∗ + δ + ηn, 1 − δ − ηn)} ,

it is easy to show that
(

Ω̃2 ∩ Ωδ
)

⊆
(

Ωn,2 ∩ Ωδ
)

. Then, we notice that:

I1 ≤
∫

Ω
1(Ω2∩Ωδ)\(Ω̃2∩Ωδ)dx =

∫

Ω
1(Ω2\Ω̃2)∩Ωδdx,

This integral is the measure of the domain where|STn(x) − S(x)| ≤ δ and:

S ∈ (S∗, S∗ + δ + ηn] ∪ [1 − δ − ηn, 1). (3.131)

Using Assumption3.2.2for small enoughδ andηn we notice thatI1 → 0 asn→ ∞.

ConcerningI3, we chooseδ such thatδ < ηn. Then, we have:

(

Ωn,2 ∩ Ωδ
)

⊆
(

Ω2 ∩ Ωδ
)

and it follows thatI3 = 0.

Now we consider the term̂Tn
2 . Thanks to the regularity of the functionϕ, from Eq. (3.116) we

may obtain:

T̂n
2 =

N−1
∑

i=0

Si+ 1

2

∂ϕ

∂x

∣

∣

∣

∣

xi

hn +
N−1
∑

i=0

Si+ 1

2

Rihn

=

∫ 1−hn/2

0
STn

(

∂ϕ

∂x

)

Tn

dx+
N−1
∑

i=0

Si+ 1

2

Rihn,

(3.132)

whereRi is an error between the continuous derivative ofϕ and the discrete one at the pointxi. The

function
(

∂ϕ
∂x

)

Tn

is equal to∂ϕ
∂x

∣

∣

∣

xi

, if x ∈ Ki, i = 0, N − 1. Since all valuesSi+ 1

2

are bounded the

last term in (3.132) converges to zero asn→ ∞. Thus, we havêTn
2 → T2 asn→ ∞.
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Using (3.117) we remark, that:

T̂n
3 → T3 asn→ ∞,

Now let us consider̂Tn
4 defined by (3.118). We notice that setsF∗ andF ∗ can be divided into

the following subsets:

• F∗,U→F∗
= {i ∈ F∗ : S∗ + ηn < Ŝi− 1

2

< 1 − ηn},

• F∗,F ∗→F∗
= {i ∈ F∗ : Ŝi− 1

2

≥ 1 − ηn},

• F∗,internal = {i ∈ F∗ : Ŝi− 1

2

≤ S∗ + ηn},

• F ∗
U→F ∗ = {i ∈ F ∗ : S∗ + ηn < Ŝi− 1

2

< 1 − ηn},

• F ∗
F∗→F ∗ = {i ∈ F ∗ : Ŝi− 1

2

≤ S∗ + ηn},

• F ∗
internal = {i ∈ F ∗ : Ŝi− 1

2

≥ 1 − ηn}.

Then, termT̂n
4 yields:

T̂n
4 =

∑

i∈F1

Si− 1

2

− S∗ − ηn

hn
i

ϕih
n
i +

∑

i∈F2

Si− 1

2

− 1 + ηn

hn
i

ϕih
n
i ,

F1 = F∗,U→F∗
∪ F∗,F ∗→F∗

, F2 = F ∗
U→F ∗ ∪ F ∗

F∗→F ∗ ,

since for alli ∈ F∗,internal saturationSi− 1

2

is equal to constantS∗ and for alli ∈ F ∗
internal saturation

Si− 1

2

is equal to constant1.

Using inequalities (3.87) for T̂n
4 we have:

∣

∣

∣
T̂n

4

∣

∣

∣
≤

∑

i∈F1∪F2

∣

∣

∣
Si− 1

2

− Ŝi+ 1

2

∣

∣

∣

hn
i

|ϕi|hn
i ≤ C1 + g∗

c
ϕ∗hn

∑

i∈F1∪F2

1,

where functionϕ is bounded by constantϕ∗ > 0 since it is a continuous function on[0, 1].

Since domainΩ1 consists of a finite number of simply connected subdomains and each subdo-

main corresponds to one element of setF1 ∪ F2, the number of elements of setF1 ∪ F2 does not

depend on discretization. Then, we obtain:

∣

∣

∣
T̂n

4

∣

∣

∣
→ 0 asn→ ∞. (3.133)

Hence, the theorem is proven.
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3.2.4 Numerical experiments

The goal of this section is to investigate numerically some typical examples. We are going to

estimate the rate of convergence of the proposed numerical scheme (3.74)–(3.83) and verify As-

sumption3.2.2. The test problems are selected such that fully saturated regions appear.

For the numerical experiments we consider three different cases of parameters which are typical

for a paper layer during a production process. All information on input data is presented in Table3.2

and in Figs.3.5 and3.6. Note that the input data satisfy Assumption3.2.1. Obtained distributions

of saturation and pressure are presented in Figs.3.7and3.8, respectively.

Table 3.2: Experimental data for numerical experiment with the dynamic capillary pressure

Variable Dimension Test Case 1 Test Case 2 Test Case 3

C0 [%] 50 60 55
c [Pa m] 16.7 200 125
kr [−] S3.5

S∗ [%] 10
Sr [%] S∗ − 1e− 3

pstat
c [Pa] a(φ− 1)

(

1
S−Sr

− 1
1−Sr

)1/2

a [Pa] P0

1−φ0

(

1
C0−Sr

− 1
1−Sr

)−1/2

P0 [Pa] −5000
φ0 [%] 87.5
Ω [m] (−0.05, 0.05)

Exact solutions of the presented problems are unknown. To obtain the convergence rate, the

reference solutions, by which the errors are measured, has been calculated on a very fine meshT∗.
Corresponding distributions of saturation and pressure are denoted byST∗ andpT∗ . Then we define

the relative errorEn between the discrete solutionSTn , pTn and the reference solutionST∗ , pT∗ as:

En =

(

‖ST∗ − STn‖2
L2(Ω)

‖ST∗‖2
L2(Ω)

+
‖pT∗ − pTn‖2

L2(Ω)

‖pT∗‖2
L2(Ω)

)
1

2

.

For each test case we consider three different values ofηT ,i:

ηT ,i =
Cih

meas Ω
, i = 1, 2, 3,

whereC1 = 1, C2 = 2 andC3 = 10. The results are given in Fig.3.9. For all three cases and
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different values ofηT ,i we observe a first-order convergence (the estimated orderr is defined as:

r =
1

Ne − 2

Ne−1
∑

n=2

log |En+1/En|
log |En/En−1|

,

whereNe is the number of experiments).

In the proof of Theorem3.2.5 we have obtained that the parameterη can not be too small,

because the convergence of the measure of the domain with single-phase flow regime depends on it.

So we carry out numerical experiments to estimate the behavior of the domain measure convergence

for different values ofη. The reference domain with single-phase water flow is denoted byΩ∗,1.

Then, errorMn between the measure of the reference domainΩ∗,1 and the measure of the domain

for a current meshΩn,1 is computed as:

Mn =
|meas(Ω∗,1) − meas(Ωn,1)|

meas(Ω∗,1)
.

Results are presented in Fig.3.10. As it follows from the proof of Theorem3.2.5 the optimal

value of parameterη is unknown in advance. The results of numerical experiments show that the

convergence of the solution is not sensitive to the value ofη (see Fig.3.9). But here we should take

into account that increasingη we also increase the solution error. On the other hand, convergence

of measure of the single-phase flow domain shows stronger behavior forbigger values ofη (see

Fig. 3.10).

The last goal of the numerical experiments is to verify Assumption3.2.2, which states that the

non-degeneracy property for the solutionS is satisfied. Since the exact solution is unknown and

validity of this assumption can not be shown in advance, we use the reference solutionST∗ and plot

in Fig. 3.11the dependence ofδǫ on ǫ from condition (3.73). It follows from the presented results

that Assumption3.2.2is satisfied for the given numerical examples.

3.2.5 Results and discussions

The objective of these studies is to show the convergence of the numericalsolution to the contin-

uous one in one-dimensional case for the system of equations describingthe pressing section of a

paper machine including the dynamic capillary effect. One of the challenges of this problem is an

evaluation of the fully saturated regions. Solving this problem we have to keep in mind that in the

computational domain the region with single-phase water flow may appear. At first, we state two

mathematical models for the both flow regimes with a free boundary. Then, we combine them into

one model in the whole computational domain. For the discretized system we propose a numerical
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Fig. 3.5: Input functionb(x) for the test case with the dynamic capillary pressure
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Fig. 3.6: Input functionq(x) for the test case with the dynamic capillary pressure

algorithm, which implicitly takes into account the two flow regimes.

The theoretical part of this work contains the proof of existence of solution of the discrete

system, compactness and the convergence theorem. The main idea of the theoretical studies is to

prove the convergence for the input data which is typical for real numerical experiments. Since we

can not imply too strong assumptions we do not get precise estimates on the convergence order and

we are not concerned with the proof of uniqueness.

Some assumptions for solution, which are made during the theoretical studies,are verified by

the numerical experiments. We also have estimated numerically the rate of convergence of solution
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Fig. 3.7: Saturation for the test case with the dynamic capillary pressure

−0.05 0 0.05
−0.5

0

0.5

1

1.5

2

2.5

3

machine direction x, [m]

pr
es

su
re

s,
 [b

ar
]

 

 

test case 1
test case 2
test case 3

Fig. 3.8: Pressure for the test case with the dynamic capillary pressure

and measure of the fully saturated region.



10
−5

10
−4

10
−3

10
−2

10
−2

10
−1

10
0

10
1

Size of mesh, h
n
 [m]

L2
−

er
ro

r,
 E

n

TC1 with C
1
 (r≈1.062)

TC1 with C
2
 (r≈1.0433)

TC1 with C
3
 (r≈0.98904)

TC2 with C
1
 (r≈1.0641)

TC2 with C
2
 (r≈1.0565)

TC2 with C
3
 (r≈0.99941)

TC3 with C
1
 (r≈1.0723)

TC3 with C
2
 (r≈1.06)

TC3 with C
3
 (r≈1.0069)

Fig. 3.9: Convergence of the solution for the test case with the dynamic capillary pressure (TC is an
abbreviation for ”test case”)

10
−5

10
−4

10
−3

10
−2

10
−3

10
−2

10
−1

10
0

Size of mesh, h
n
 [m]

L2
−

er
ro

r,
 M

n

TC1 with C
1

TC1 with C
2

TC1 with C
3
 (r≈1.062)

TC2 with C
1

TC2 with C
2

TC2 with C
3
 (r≈1.0678)

TC3 with C
1

TC3 with C
2

TC3 with C
3
 (r≈1.0863)

Fig. 3.10: Convergence of the domain measure for the test case with the dynamic capillary pressure
(TC is an abbreviation for ”test case”)



0 1 2 3 4 5 6
x 10

−3

0

1

2

3

4

5

6

7

8

9

10

ε, [m]

δ ε, [
%

]

 

 

test case 1
test case 2
test case 3

Fig. 3.11: Verification of Assumption3.2.2using the reference solution of the test case with the
dynamic capillary pressure





Chapter 4

Two-Dimensional Model (Richards’

Approach)

In the pressing section of a paper machine dewatering of the paper layer isperformed by pressing it

against special felts with the help of pressing nips. Width of the paper layeras well as width of the

flat pressing nips may reach up to12m, which is much larger than the pressing zone. Thus, a two-

dimensional mathematical model in vertical and machine directions is sufficient for understanding

the infiltration processes occurring within the pressing zone. The aim of thischapter is to develop

an accurate two-dimensional model for the pressing section which takes intoaccount the dynamic

capillary effects.

The mathematical model is developed in the way that the real industrial processes can be simu-

lated. The one-dimensional model developed in Chapter2 is extended to the two dimensions. Now,

instead of the single-layer computational domain, the multilayer paper-felt sandwich is taken into

account. Chosen mathematical model and discretization technique allow us to satisfy the continuity

of the fluid pressure and the normal fluxes across interfaces of the different layers. Moreover, a

formation of fully saturated zones during the pressing process is includedby accounting for two

possible flow regimes, saturated and unsaturated water flow.

The Richards’ approach accompanied by the dynamic capillary pressureis used to describe the

water flow within the pressing zone. The two-dimensional mathematical model takes into account

the dynamic capillary pressure–saturation relation proposed by Hassanizadeh and co-workers in

[24] (see Section1.2). The goal of this chapter is to develop and to numerically investigate the

proposed model. In short, Chapter4 is constructed in the following way. In Section4.1we present

the mathematical model, which take into account all the issues discussed above. Advanced dis-

cretization is performed by the MPFA-O method in Section4.2. In Section4.3 some numerical

71
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experiments are performed. To conclude this chapter we draw some conclusions in Section4.4.

4.1 Mathematical model

In this section we present the two-dimensional model for the pressing section of a paper machine.

At first, we recall the model which was stated in Section3.2.1for the single-layer case. Then, the

model is extended by the inclusion of the layers and by the formulation of the boundary conditions

in Section4.1.1. To close the mathematical model, in Section4.1.2we recall the elasticity model

stated in [43, 44].

4.1.1 Two-dimensional flow model in multilayer case

As a starting point, we consider the mathematical model for the two flow regimes: saturated and

unsaturated water flow in single-layer case stated in Section3.2.1. In Fig. 4.1we remind the main

notations introduced earlier for our problem (the direction of the paper–felt transportation, the com-

putational domainΩ, the subdomainsΩ1 andΩ2 with the saturated and unsaturated water flow,

respectively, the boundaries ofΩ and the interfaceΓ betweenΩ1 andΩ2).

press roll

press roll

GL

G
U

G
D

G
R

z

x

Vs,in

W
2

W
1

W

G

Fig. 4.1: Computational domainΩ with two flow regimes for multilayer case

Remark 4.1.1. As opposed to Fig.3.4, we show in Fig.4.1 that the fully saturated zone is located

insideΩ and that the interfaceΓ may not have common points with the boundary∂Ω. The reason

is that in Section3.2.1we aimed to present the one-dimensional model, which after the averaging

procedure in vertical direction gives us a fully saturated zone. It is satisfied in case of the domain

presented in Fig.3.4, but not in case of the domain shown in Fig.4.1. In this section we would like

to state a two-dimensional model in multilayer case, which may contain the fully saturated zone

inside the computational domain as it is indicated in Fig.4.1.
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The two-dimensional model for the one-layer case and the two flow regimes intwo dimensions

was stated in Section3.2.1by Eqs. (3.50)–(3.54). Summarizing the two flow models, we reformulate

the problem (3.50)–(3.54) in a more suitable way for further developments. Let Assumption3.1.1(c)

(or 3.2.1(c)) be satisfied. Then, we rewrite Eqs. (3.50)–(3.52) in the following form:

−div

(

krw

µw
K grad pw

)

+ div(φSVs) = 0, x ∈ Ω, (4.1)

S = 1, x ∈ Ω1, (4.2)

pw + pstat
c = τVs · gradS, x ∈ Ω2; (4.3)

where we assume thatkrw = krw(S), K = K(x), φ = φ(x), Vs = Vs(x), pstat
c = pstat

c (S, φ),

τ = τ(x).

We notice that Eq. (4.1) coincides with (3.50) in Ω1 and with (3.51) in Ω2. We also have to

make sure that continuity conditions (3.53), (3.54) are satisfied in this case. Continuity of the water

pressurepw follows from the definition of the nonlinear convection–diffusion Eq. (4.1). Continuity

of the normal fluxes follows directly from integration of Eq. (4.1) over a small neighborhood of the

interfaceΓ.

Layered computational domain

In general, the computational domainΩ consists of several layers (see Fig.4.2). Therefore, it is

divided into nonoverlapping subdomainsΩ1, Ω2, . . . ,ΩL, whereL is the total number of layers.

Interfaces between the subdomains are denoted byΓl = Ωl ∩ Ωl+1 for all l = 1, L− 1.
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Fig. 4.2: Computational domainΩ with indicated layers

Then, the system of Eqs. (4.1)–(4.3) has to be satisfied together with the continuity of the fluid

pressure and the continuity of the normal fluxes on the interfaces:

[pw]Γl
= 0, [Jw · n]Γl

= 0, l = 1, L− 1; (4.4)
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where we remember that each layer has its own properties, therefore, functionskrw = krw(S,x),

K = K(x), φ = φ(x), pstat
c = pstat

c (S, φ,x), τ = τ(x) may have jumps over the layer interfaces.

Boundary conditions

To close the system of Eqs. (4.1)–(4.4) we impose boundary conditions. Let Assumption2.1.4be

satisfied. On the left boundaryΓL the distributions of the saturation and the pressure are known.

This case is typical for the production process. Then, Dirichlet boundary conditions are imposed

on ΓL. Let Assumption2.1.4be satisfied. It means that water remains at equilibrium w.r.t. the

solid skeleton onΓL and the dynamic effect is absent there. Therefore, for the pressurewe use the

dependencepstat
c on initial values of saturation. Since the right boundaryΓR is also far from the

pressing zone, it is assumed that the water reaches the equilibrium state w.r.t.the solid skeleton on

ΓR. Therefore, we apply no-flow boundary conditions onΓR. On the upper and lower boundaries

ΓU andΓD we assume that there is no escape of water and also impose zero-Neumann boundary

conditions. Hence, we have:

S|ΓL
= C0(x), pw|ΓL

= −pstat
c (C0), x ∈ ΓL; (4.5)

(

−krw

µw
K grad pw

)

· ns

∣

∣

∣

∣

ΓR

= 0; (4.6)

(

−krw

µw
K grad pw

)

· n
∣

∣

∣

∣

ΓU ,ΓD

= 0; (4.7)

wherens is the unit vector collinear toVs. We remark that the second term of water flux related to

convection in (4.7) is equal to zero sinceVs ·n = 0 for the outer unit normal vectorn to ΓU or ΓD.

According to the production process, sometimes layers of the paper and felt in the paper–felt

sandwich are separated as shown in Fig.1.2, 1.3 (see Section1.1). To take it into account we also

provide a possibility to impose no-flow boundary conditions on some parts of the interfaces between

layers.

4.1.2 Elasticity model in multilayer case

We supplement our flow model with the elasticity model stated in [43, 44], which accounts for

the solid deformations. In Section2.1.3we recalled this model in the single-layer case. Let us

now shortly state this elasticity model for the multilayer computational domain. More detailed

discussions on this elasticity model, its discretization and solution can be found in[43, 44].

The main reason of the solid deformations is the pressing forces which are about100 kN/m in

the roll press and about1000 kN/m in the shoe press. Thus, we assume that the water acting on the
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solid skeleton can be neglected in a first approximation. According to Assumption 2.1.3, the solid

phase is incompressible. Therefore, the porous medium gets deformed bya rearrangement of the

solid skeleton in vertical direction. Assuming that the felt and the paper behave viscoelastically (see

[49, 31]), we can state the Kelvin-Voigt model forL layers:

t(x) = E1(ε1(x)) + Λ1 |Vs,in|
d

dx
E1(ε1(x)) − ktmax(x), (4.8)

t(x) = Ei(εi(x)) + Λi |Vs,in|
d

dx
Ei(εi(x)), i = 2, L; (4.9)

wheret is the stress measured in[Pa]. The dimensionless strain is defined by

εi(x) =
l0,i − li(x)

l0,i
for each layeri = 1, L, (4.10)

with undeformed and deformed thicknesses of the layeri at coordinatex denoted byl0,i(x) and

li(x), respectively. In general,Ei is some nonlinear function related to the elastic part of the stress

and the strains.Λi ([s]) is the viscoelastic time constant, which determines the speed of relaxation.

Eqs. (4.9) correspond to the felts. Eq. (4.8) corresponds to the paper layer and has an additional

third term on the right hand side. This term is introduced to model the permanent compression,

which appears due to plasticity of the paper. We assume that the value of the permanent deformation

depends linearly on the maximum stress to which the paper has been exposedmultiplied by some

constantk:

tmax(x0) = max
x≤x0

t(x). (4.11)

To close the system of Eqs. (4.8),(4.9) we also use the following relation:

L
∑

i=1

εi(x)l0,i = l0 − f(x), (4.12)

wherel0 =
∑L

i=1 l0,i is the total thickness of the undeformed paper–felt sandwich. Due to the fact

that the thickness of the paper–felt sandwich will never exceedl0, the functionf(x) has the form:

f(x) = min{l0,distance between press profiles at positionx}. (4.13)

To resolve the system of Eqs. (4.8),(4.9),(4.12) one more input parameter has to be provided.

The first possibility is to provide the minimum distance between press profiles, which defines the

position of the pressing nips and the geometry of the computational domainΩ. Another possibility

which is more convenient for the industrial applications is to define the pressing force, which is
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equal to the integral of the stress profile over the length of the computationaldomain. Having one

of these parameters, the system of equations can be solved.

After we find the distribution of the stress and the strains, it is possible to compute the necessary

input data for the flow solver. Since the thickness of the layers is small we consider that the porosity

changes only in horizontal direction. Then, the porosity for each layer can be found as:

φi(x) =
εi(x) + φ0,i

εi(x) + 1
for all i = 1, L, (4.14)

whereφ0,i is the porosity of theith undeformed layer. Using the computed strains, the flow mesh

can be obtained immediately as well as the distribution of the solid velocityVs(x) (for more details

see [43, 44]).

Remark 4.1.2.As it was mentioned in Chapter1, we also consider the second type of the press nips,

so-called shoe press. In this case the paper–felt sandwich is not transported strictly in horizontal

direction (see Fig.1.2). But since the thickness of the pressing zone is very small compared toits

length the angle between the paper–felt sandwich and machine direction is small. Therefore, the

assumption on the horizontal transportation is still a very good approximation, and we use the same

elasticity model for the shoe press.

4.2 Discretization

Let us now discuss the discretization on a quadrilateral unstructured gridof the flow model stated

in the previous section. We use the finite volume method namely the MPFA-O method.For an

introduction to the discretization method see Section1.3and [1, 2, 19].

At first, the two-dimensional mesh is introduced.

Definition 4.2.1. Let Ω be an open bounded polygonal subset ofR
2 with boundary∂Ω. The dis-

cretization ofΩ is defined asD = (T , E ,X ), where the following holds.

• T is the finite set of nonoverlapping quadrilateral cellsK (’control volumes’) such thatΩ =

∪K∈T K. The boundary of each control volume is denoted by∂K = K \ K.

• E is the finite set of one-dimensional edges of all control volumes. For any control volume

K ∈ T there exists a subsetEK of E such that∂K = ∪σ∈EKσ. Furthermore,E = ∪K∈T EK.

For anyK, L from T with K 6= L, eitherK ∩ L = ∅ or K ∩ L = σ for someσ ∈ E , which

then will be denoted by indexK|L.

• X = (xK)K∈T is the finite set of points ofΩ (’cell centers’) such thatxK ∈ K for all K ∈ T .
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Remark 4.2.1. In the previous section the computational domainΩ was used. In Definition4.2.1

the polygonal set still denoted byΩ is an approximation of the original computational domain.

Definition4.2.1introduces some general notations for the mesh which is used for discretization.

The mesh which is constructed for our computational domain has constant step sizehx in x-direction

(see Fig.4.3). In z-direction at the left and right boundaries where no deformations occurthe mesh

has also constant step sizehz. If the cell contains an interface between two layers the step size

hz is divided into two parts to resolve the interface. In general, the mesh has varying step size

in z-direction which is proportional to the solid deformations. Cell centerxK is defined as the

intersection point of intervals connecting midpoints of the opposed edges ofthe control volumeK.

x

z

hx

hz

xK

s

K

Fig. 4.3: Discretization of the computational domainΩ

The system of Eqs. (4.1)–(4.3) together with interfacial conditions (4.4) and boundary condi-

tions (4.5)–(4.7) is discretized with the help of the finite volume method (see e.g. [20]). To simplify

the notations we omit the index ’w’ in the variablespw, krw andµw.

Now let us introduce some notations. Ifσ = σK|L is the common edge of cellsK andL then

we denote:

Sσ =
1

2
(SK + SL); (4.15)

Sσ,+ =







SK, if Vs · nσ ≥ 0;

SL, if Vs · nσ < 0;
(4.16)

whereSK is the approximated value ofS atxK, nσ is the normal unit vector toσ outward toK.

Integrating (4.1) over the control volumeK, we obtain:

−
∑

σ∈EK

kr(Sσ)

µ
FK,σ +

∑

σ∈EK

mσφσSσ,+Vs · nσ = 0, K ∈ T ; (4.17)
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wheremσ is the one-dimensional measure of the boundaryσ, φσ is the porosity atσ. The general

form of FK,σ is:

FK,σ =
∑

L∈NK,σ

tLK,σpL; (4.18)

with transmissibility coefficientstLK,σ and the subsetNK,σ of all control volumes such that:

NK,σ = {L ∈ T : σ ∈ EK, σ ∩ L 6= ∅}. (4.19)

For the quadrilateral grid the setNK,σ consists of six control volumes as shown in Fig.4.4.

K
s

NK,s

Fig. 4.4: SetNK,σ for quadrilateral grid

The discrete fluxFK,σ is an approximation of the integral
∫

σ (nσ · K grad p) ds. The main idea

of the MPFA method is to obtain the transmissibility coefficients by carrying out some preprocessing

calculations, which depend only on the input data. The approximation is carried out by the multi-

point flux approximation O-method (see [1, 2, 19]). CoefficientstLK,σ are so-called transmissibility

coefficients, which satisfy:
∑

L∈NK,σ

tLK,σ = 0.

Finite volume schemes for Eqs. (4.2) and (4.3) yield:

SK = 1, K ∈ T1, (4.20)

mK

(

pK + pstat
c (SK)

)

= τ
∑

σ∈EK

mσ(Sσ,+ − SK)Vs · nσ, K ∈ T2, (4.21)

wheremK is the two-dimensional measure of the control volumeK. T1 andT2 are the sets of

the control volumes which approximate the domainsΩ1 andΩ2, respectively. These sets satisfy

T1 ∩ T2 = ∅ andT1 ∪ T2 = T .

Let us now take into account the boundary conditions (4.5)–(4.7). Let the setE be divided into
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five subsets:

Eint = {σ ∈ E : σ ∩ ∂Ω = ∅}, (4.22)

Eext,α = {σ ∈ E : σ ∩ Γα 6= ∅}, α = {L,U,R,D}. (4.23)

In Eqs. (4.17) and (4.21) the following relations are used:

• if σ ∈ EK ∩ Eext,L than

Sσ,+ =







SK, if Vs · nσ ≥ 0;

C0,σ, if Vs · nσ < 0;
, Sσ =

1

2
(SK + C0,σ), (4.24)

whereC0,σ is the value ofC0 atσ;

• if σ ∈ EK ∩ Eext,R than

Sσ,+ = SK, Sσ = SK. (4.25)

We also remark that ifσ ∈ EK ∩ (Eext,U ∪ Eext,D) thannσ · Vs = 0 andFK,σ = 0. So we do not

need to defineSσ andSσ,+ there. The boundary conditions (4.5)–(4.7) also have to be taken into

account while computing transmissibility coefficientstLK,σ (for more details see [1, 2]).

To solve the nonlinear system of Eqs. (4.17), (4.20) and (4.21) the Newton’s method is used

(see [17, 36]). Remembering that the static capillary pressure–saturation relation depends also on

the porosity, initial guesses for pressure and saturation are chosen as:

p0
K = −pstat

c (C0(xK,ΓL
), φ(xK,ΓL

)), S0
K = (pstat

c )−1(p0
K, φ(xK)), (4.26)

where upper indices correspond to Newton’s iterations.xK,ΓL
is the point which corresponds to

xK on the left boundaryΓL taking into account deformations. In other words, the initial guess of

the pressure remains constant along streamlines of the solid deformations.

The initial guess of the saturation satisfiesS0
K ∈ (S∗, 1) for all K ∈ T . Thus, the initial guess

T 0
1 is an empty set and the initial guessT 0

2 is equal toT . After each Newton’s iterationk for

Eqs. (4.17), (4.20) and (4.21), when correction values for pressure∆pk+1
K and saturation∆Sk+1

K

are computed, we definepk+1
K as:

pk+1
K = pk

K + ∆pk+1
K for all K ∈ T (4.27)

and the simple restriction operator is applied to defineSk+1
K :
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Sk+1
K =



















S∗, if Sk
K + ∆Sk+1

K ≤ S∗;

Sk
K + ∆Sk+1

K , if Sk
K + ∆Sk+1

K ∈ (S∗, 1);

1, if Sk
K + ∆Sk+1

K ≥ 1;

(4.28)

for all K ∈ T , whereS∗ is discussed in Remark2.2.2. Then, the setsT k+1
1 andT k+1

2 are defined
as:

T k+1
1 = {K ∈ T : Sk+1

K = 1}, (4.29)

T k+1
2 = {K ∈ T : Sk+1

K ∈ (S∗, 1)}, (4.30)

T k+1
3 = {K ∈ T : Sk+1

K = S∗}. (4.31)

Remark 4.2.2. The proposed numerical procedure (4.27)–(4.30) may cause an appearance of some

unphysical domainsT k+1
3 with the water saturation being equal toS∗. This domain is required for

the completeness of the numerical approach. From a physical point ofview, in the domain where

this regime appears the following equations have to be satisfied:

pK = −pstat
c (S∗), SK = S∗. (4.32)

In practice, we do not observe numerical experiments where single-phase air flow appears.

If after kth Newton’s iteration the setT k+1
3 is not empty any more then on the next Newton’s

iteration(k+1) one more equation has to be added to the system of equations (4.17), (4.20), (4.21):

SK = S∗, K ∈ T3.

4.3 Numerical experiments

This section presents numerical experiments for the pressing section of a paper machine. At first,

single-layer test cases are considered to evaluate the behavior of the solution in presence of the

dynamic capillary effect and to compare the results with the laboratory experiments presented in

[8]. Then, we study how the dynamic capillarity acts in the multilayer case. Since in this work we

suggested to use the MPFA-O FV scheme for discretizing the governing equations at the end of this

section we compare numerical results with the results earlier obtained in [43] using the FE scheme

with the static capillary pressure.

All tests are performed with realistic sets of parameters provided by our industrial partner Voith
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Table 4.1: Experimental data for all two-dimensional test cases

Variable Dimension Value

kr [−] S3.5

K [m2] K0
φ3

(1−φ)2

µ [Pa s] 0.0008

pstat
c [Pa] a(φ− 1)

(

1
S−Sr

− 1
1−Sr

)1/2

a [Pa] P0

1−φ0

(

1
C0−Sr

− 1
1−Sr

)−1/2

S∗ [%] 10
Sr [%] S∗ − 1e− 3
P0 [Pa] −5000

Paper Fabric and Roll Systems GmbH at Heidenheim. More detailed descriptionof the parameter

evaluation can be found in [44].

4.3.1 Numerical experiments for evaluation of the dynamic capillary effect: single-
layer case

Simulation results for three different test cases with single layer configuration are presented. Sets of

parameters correspond to two types of felts and a paper. For the dynamic capillary pressure model

we consider the material coefficientτ equal to0, 10 and100 Pa s. The caseτ = 0 corresponds to

the static capillary pressure. Our studies of a one-dimensional model in [29] indicated that values of

τ of order10 and100Pas are realistic for the process studied in this paper. Further on, we consider

cases with different velocitiesVs,in and with different initial saturationC0.

The input data is presented in Tables4.1, 4.2(see [44]). We give the input data only for the flow

model. For the typical parameters for the elasticity model we refer to [44]. As it was mentioned

in Section4.1.2, the elasticity model is used to obtain the geometry of the computational domain

Ω, the distributions of the porosityφ(x), and the solid velocityVs(x). As an example, the typical

distributions of these parameters are shown for the first test case ”Felt 1” with |Vs,in| = 100m/min

in Fig. 4.5, where in Fig.4.5A the porosityφ is presented. In Figs.4.5B and4.5C thex andz-

components of the solid velocityVs are shown, respectively.

The obtained distributions of the water saturation and the water pressure in the single-layer case

show a homogeneous behavior in the vertical direction. Therefore, all numerical results in this

subsection are shown as one-dimensional graphs, representing vertical averages of two-dimensional

values. Simulation results for ”Felt 1”, ”Felt 2” and ”Paper” are shown inFigs.4.6, 4.7, Figs.4.8,

4.9and Figs.4.10, 4.11, respectively. Figs.4.6, 4.8, 4.10correspond to|Vs,in| = 100m/min, while



82 CHAPTER 4. TWO-DIMENSIONAL MODEL (RICHARDS’ APPROACH)

Table 4.2: Experimental data for two-dimensional single-layer test cases

Variable Dimension Felt 1 Felt 2 Paper

K0,xx [m2] 2.95e− 11 1.57e− 11 5.00e− 12
K0,xy [m2] −6.66e− 14 −1.43e− 13 0
K0,yy [m2] 1.82e− 11 2.96e− 11 1.00e− 13
φ|ΓL

[%] 45 34 88

d|ΓL
[mm] 0.80 1.20 0.56

C0 [%] 25, 35 30, 50 40, 60
ΓL [m] −0.05
ΓR [m] 0.05

|Vs,in| [m/min] 100, 300

Figs.4.7, 4.9, 4.11correspond to|Vs,in| = 300m/min. Figs.4.6A–4.11A illustrate the computed

saturation, while in Figs.4.6B–4.11B the computed fluid pressure is shown. Further on, Figs.4.6C–

4.11C represent different magnification of part of the data, aiming at better visualization. These

figures represent only part of the results, namely those which can not be well seen in Figs.4.6B–

4.11B. For every test case we vary the initial saturation to see the influence of the dynamic capillary

pressure model in case of the unsaturated and saturated water flow. For”Felt 1” we consider two

values ofC0, which are25% and35%, for ”Felt 2” the initial saturation is equal to30% and50%,

and for ”Paper”C0 is equal to40% and60%. In Figs.4.6–4.11the data which corresponds to the

same initial saturation is shown with the same type of markers. The data corresponding to the same

value ofτ we present with the same color.

In general, we see that the two-dimensional model in the single-layer case shows the same kind

of behavior of the pressure and the saturation in presence of the dynamiccapillary effect as the

one-dimensional model considered in Chapter2. With the increase of the material coefficientτ

we observe a decrease of the maximum value of the saturation or a reductionof the fully saturated

zone. Regarding the distribution of the fluid pressure, with the increase ofτ the maximum value

of the pressure decreases a little bit in case when saturated flow is present and it shifts to the left

in case of the unsaturated flow. For both flow regimes we observe a decrease of the pressure below

the initial value behind the center of the pressing zone. These effects arewell seen in the test

cases ”Felt 1” and ”Felt 2”. The fluid pressure in the test case ”Paper” behave similarly but less

evidently. The behavior of the pressure profiles obtained by the model withthe dynamic capillary

pressure–saturation relation was also observed in laboratory experiments carried out by Beck [8].

In Fig. 4.12A the dependence of the fluid pressure peak on the initial saturation is shown for all

test cases with different material coefficientsτ and fixed|Vs,in| = 100 m/min. This numerical

experiment shows that for small initial saturation the dynamic capillary pressure model significantly
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influences the fluid pressure peak. But when the initial saturation becomeslarger, the pressure peak

increases and does not differ much for the static and dynamic capillary pressure models. We also

observe that the values ofC0 after which pressure peak increases depends on the test case.

For better understanding of the behavior of the fluid pressure let us introduce the following

quantityQin:

Qin = C0
φ(xL)d(xL)

φ(x∗)d(x∗)
, (4.33)

whered is the one-dimensional function of thex-coordinate which expresses the thickness of the

layer,xL is thex-coordinate of the left boundaryΓL, x∗ is thex-coordinate where the layer reaches

the minimum thickness or the maximum value of the porosity during pressing. In other words, the

quantityQin expresses the ratio of incoming water volume to void volume at the center of the nip.

In Fig.4.12B we show the dependence of the fluid pressure peak onQin. WhenQin become greater

than one, a fully saturated zone appears and the fluid pressure rises dramatically. In [8] a similar

dependence is presented. They observe the same behavior of the fluid pressure forQin < 1.3. But

whenQin exceeds1.3, the pressure reaches a metastable state and does not increase much with

increase of the initial saturation due to the water escape through the entrance of the nip. In our

model water rearranges within the computational domain but it is not allowed to escape from the

computational domain. So we do not observe this stabilization of the fluid pressure peak due to the

model limitations. Enrichment of the model with the boundary conditions which allowescape of

the water through the upper and lower boundaries is planned as the next step of our future studies.

4.3.2 Numerical experiments for evaluation of the dynamic capillary effect: multi-
layer case

Now we consider the multilayer cases which may be investigated numerically only with the help of

the two-dimensional model. The input data from Table4.1 is used in all numerical experiments.

The first test case is developed for the roll press with eleven layers (see Table4.3), where Layer 6

presents the paper. The paper–felt sandwich is transported with the speed |Vs,in| = 100 m/min.

The boundaries of the computational domain are considered to beΓL = {x = −0.1 m}, ΓR =

{x = 0.1m}. Remembering thatτ equal to zero corresponds to the static capillary pressure model,

we show the numerical results for the first test case in Figs.4.13–4.16. Figs.4.13A, B, C show the

distribution of the water saturation forτ equal to0, 10, and100 Pa s, respectively. In Figs.4.14A,

B, C the location of the fully saturated zone and in Figs.4.15A, B, C the distribution of the fluid

pressure are shown forτ equal to0, 10, and100 Pa s. Fig. 4.16presents the dry solid content of

the paper layer for the different values ofτ . As we can see from the obtained numerical results, the

behavior of the solution of the multilayer test problem is quite similar to the single-layer tests. The
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Table 4.3: Experimental data for two-dimensional multilayer test case 1

K0,xx, [m2] K0,xy, [m2] K0,yy, [m2] φ|ΓL
, [%] d|ΓL

, [mm] C0, [%]

Layer 1 1.00e− 09 0 1.00e− 09 20 2.50 26
Layer 2 1.89e− 11 −1.89e− 13 5.91e− 11 40 0.28 38
Layer 3 1.57e− 11 −1.43e− 13 2.96e− 11 34 0.60 44
Layer 4 6.72e− 12 −6.51e− 14 2.42e− 11 31 0.52 45
Layer 5 8.34e− 11 −1.05e− 13 2.46e− 11 52 0.60 42
Layer 6 5.00e− 12 0 1.00e− 13 88 0.28 90
Layer 7 2.95e− 11 −6.66e− 14 1.82e− 11 45 0.40 44
Layer 8 2.93e− 12 −5.22e− 14 1.59e− 11 25 0.42 45
Layer 9 8.36e− 12 −8.88e− 14 1.36e− 11 29 0.65 44
Layer 10 1.11e− 11 −1.13e− 13 3.02e− 11 31 0.28 48
Layer 11 8.17e− 11 −1.05e− 13 6.48e− 11 53 0.23 49

fully saturated zone decreases and the fluid pressure takes the characteristic shape with increase of

the material coefficientτ . We also notice that the dry solid content of the paper is not influenced

much by the dynamic capillary effect. It changes the shape with the increaseof τ but the final value

remains the same.

The second numerical test is performed for the roll press with parameterspresented in Table4.4

and|Vs,in| = 500m/min. The boundaries of the computational domain areΓL = {x = −0.15m},

ΓR = {x = 0.15 m}. The numerical results are presented in Figs.4.17–4.20. The saturation for

τ equal to0, 10, and100 Pa s is shown in Figs.4.17A, B, and C, respectively. The location of

the fully saturated zone and the distribution of the pressure are presentedin Figs.4.18A, B, C and

4.19A, B, C for the different values of the material coefficient, respectively. Here we observe a

significant decrease of the fully saturated zone with increase of the dynamic component. The fluid

pressure shows the same behavior as before. With increase ofτ we observe after the pressure peak

an appearance of the region with the pressure below the initial value. As opposed to the previous

example, the dry solid content of the paper is influenced by the dynamic capillarity. Its value

increases after the pressing with increasingτ .

For the third numerical test we consider the shoe press with|Vs,in| = 1000m/min andΓL =

{x = −0.30 m}, ΓR = {x = 0.40 m}. We use the input data for the layers as in test case 1

from Table4.3 except the initial saturation which is presented in Table4.5. Numerical results are

presented in Figs.4.21–4.24. The difference in the water saturation for the considered values ofτ

can not be seen. Thus, we show only one distribution of the water saturation in Fig. 4.21, where

Figs. 4.21(A) and (B) show the water saturation in the undeformed and standard computational

domains, respectively. Figs.4.22A, 4.23A correspond to the static capillary pressure model. In
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Table 4.4: Experimental data for two-dimensional multilayer test case 2

K0,xx, [m2] K0,xy, [m2] K0,yy, [m2] φ|ΓL
, [%] d|ΓL

, [mm] C0, [%]

Layer 1 5.00e− 12 0 1.00e− 13 88 0.24 91
Layer 2 1.51e− 10 1.64e− 12 1.15e− 10 53 0.51 51
Layer 3 1.45e− 10 2.34e− 12 1.60e− 10 53 0.81 51
Layer 4 3.46e− 10 −5.60e− 13 2.05e− 10 57 2.65 51
Layer 5 9.75e− 10 −2.88e− 12 4.93e− 10 80 0.65 51
Layer 6 1.00e− 08 0 1.00e− 08 35 5.00 17

Table 4.5: Experimental data for two-dimensional multilayer test case 3

C0, [%]

Layer 1 12
Layer 2 38
Layer 3 44
Layer 4 45
Layer 5 42
Layer 6 99
Layer 7 44
Layer 8 45
Layer 9 44
Layer 10 48
Layer 11 49

Figs.4.22B, 4.23B and Figs.4.22C, 4.23C the material coefficientτ is equal to10 and100 Pa s,

respectively. The location of the fully saturated zone are shown in Fig.4.22. Fig.4.23represents the

distribution of the fluid pressure. The dry solid content of the paper layeris shown in Fig.4.24for

differentτ . All numerical results are presented for the undeformed geometry except the saturation

for τ = 100 Pa s. The fluid pressure shows the same behavior as in the previous test cases. But in

saturation we observe an increase of the fully saturated zone with increasing τ . It may be caused by

the different geometries of the computational domain. The curve of the dry solid content changes

its shape but the final value remains the same for the cases with the dynamic andstatic capillary

pressure.

4.3.3 Numerical experiments for the discretization technique

For the model with the static capillary pressure we have the possibility to comparethe numerical

solution with results obtained in [43], where the model was discretized with the finite element
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method. This opportunity is used to investigate the quality of the discretization technique used in

this study. Typically, the difference in solutions can be well seen in the distribution of the water

velocity. For the first and third test cases we show distributions of the watervelocities in Figs.4.25,

4.26. In these figures we do not show the whole range of the water velocity in order to see better

regions with nonphysical values. We cut the water velocities by some value which is shown in

each figure on the color bar (see Figs.4.25, 4.26). Figs.4.25A and4.26A represent the distribution

of the water velocity obtained with the help of our model. The results obtained withthe help

of the model proposed by Rief are shown in Figs.4.25B and 4.26B. In Figs. 4.25C, 4.26C we

show magnified regions which are indicated in Figs.4.25B, 4.26B with the help of black boxes.

The last figures show that the solution obtained with the help of discretization used by Rief gives

nonsmooth and sometimes oscillatory solution at the same time as our solution is smooth.Such

nonphysical oscillations of the finite element solution are typical for convection-diffusion equations,

if no stabilization technique (e.g. streamwise diffusion) is used.

In most of the test cases it was observed that the numerical algorithm proposed in this study

converges faster than the algorithm from [43]. The MPFA-O method is also very well applicable to

the specific boundary conditions which we have to preserve between layers.
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Fig. 4.5: Input data for the flow solver for ”Felt 1” with|Vs,in| = 100 m/min: porosityφ (A),
x-component of solid velocityVs (B), z-component of solid velocityVs (C)
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Fig. 4.6: Saturation (A) and pressure (B, C) for ”Felt 1” with|Vs,in| = 100m/min
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Fig. 4.7: Saturation (A) and pressure (B, C) for ”Felt 1” with|Vs,in| = 300m/min
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Fig. 4.8: Saturation (A) and pressure (B, C) for ”Felt 2” with|Vs,in| = 100m/min
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Fig. 4.9: Saturation (A) and pressure (B, C) for ”Felt 2” with|Vs,in| = 300m/min
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Fig. 4.10: Saturation (A) and pressure (B, C) for ”Paper” with|Vs,in| = 100m/min
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Fig. 4.11: Saturation (A) and pressure (B, C) for ”Paper” with|Vs,in| = 300m/min
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Fig. 4.12: Fluid pressure peak as a function of the initial saturationC0 (A) andQin (B) for |Vs,in| =
100m/min
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4.4 Results and discussions

In this chapter a two-dimensional model was developed for the pressing section of a paper machine.

This model adopted the dynamic capillary pressure effects described earlier by Hassanizadeh and

Gray. At first, the mathematical model was discussed together with its discretization technique.

Then, some numerical results were obtained. Single-layer test cases were carried out to compare

the two-dimensional solutions with the laboratory experiments and to obtain the mainbehavior

of the water saturation and the water pressure in presence of the dynamic capillary effects. The

behavior of the pressure for the model with the dynamic capillary pressureis similar to the behavior

of the pressure obtained in the laboratory experiments by [8]. We also observed the same kind of

dependence of the pressure peak on the initial saturation as Beck.

Multilayer simulations showed that the behavior of the fluid pressure is the sameas in the

single-layer case. Regarding the distribution of the saturation, we notice that the behavior of the

fully saturated regions for the static and dynamic capillary pressure models may differ for different

geometries of the computational domain. So we observed a decrease of the fully saturated area with

increasingτ for the roll nips and otherwise for the shoe press. For the dry solid content of the paper

layer it was not possible to evaluate a general behavior for all test cases. We observed dependence

of the dry solid content on particular test cases. In general, the numerical experiments showed that

the material coefficientτ of order10 and100 Pa s significantly influences the distributions of the

fluid pressure and the saturation. On the other hand the distribution of the dry solid content of the

paper layer does not change much whenτ changes in this range.
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Fig. 4.13: Saturation for the test case 1 withτ equal to0 (A), 10 (B) and100 Pa s (C)
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Fig. 4.14: Fully saturated zone for the test case 1 withτ equal to0 (A), 10 (B) and100 Pa s (C)
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Fig. 4.15: Pressure for the test case 1 withτ equal to0 (A), 10 (B) and100 Pa s (C)
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Fig. 4.16: Dry solid content of the paper for the test case 1 for different values ofτ



Fig. 4.17: Saturation for the test case 2 withτ equal to0 (A), 10 (B) and100 Pa s (C)



Fig. 4.18: Fully saturated zone for the test case 2 withτ equal to0 (A), 10 (B) and100 Pa s (C)



Fig. 4.19: Pressure for the test case 2 withτ equal to0 (A), 10 (B) and100 Pa s (C)
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Fig. 4.20: Dry solid content of the paper for the test case 2 for different values ofτ



Fig. 4.21: Saturation for the test case 3 for different values ofτ for the undeformed (A) and standard
(B) computational domains



Fig. 4.22: Fully saturated zone for the test case 3 withτ equal to0 (A), 10 (B) and100 Pa s (C)



Fig. 4.23: Pressure for the test case 3 withτ equal to0 (A), 10 (B) and100 Pa s (C)
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Fig. 4.24: Dry solid content for the test case 3 for different values ofτ



Fig. 4.25: Water velocity for the test case 1 with the static capillary pressure model obtained by the
MPFA-O method (A) and by the FE method (B,C)



Fig. 4.26: Water velocity for the test case 3 with the static capillary pressure model obtained by the
MPFA-O method (A) and by the FE method (B,C)





Chapter 5

Two-Dimensional Model (Two-Phase

Flow)

Developing the mathematical model of the pressing section of a paper machine,up to now we have

assumed that the air phase has a constant pressure within the computational domain. It simplifies

the mathematical model significantly since we consider instead of two nonlinear mass conservation

equations in the flow model only one for the water phase. But when we make Assumption2.1.1in

Section2.1.1we remark that its admissibility has to be shown. Thus, now we are going to develop

a model for the pressing section using a two-phase flow model without the Richards’ assumption.

The previously stated mathematical model takes into consideration the dynamic capillary pressure–

saturation relation, which allows us to obtain the behavior of the fluid pressure similar to one ob-

tained in the laboratory experiments carried out by Beck [8]. As the first step we are going to

investigate the admissibility of Assumption2.1.1for the model without the dynamic capillary ef-

fects. We will check if accounting for the real dynamics of the air phase allows us to recover effects

which we encountered under the Richards’ assumption for the air phase,but with dynamic capillary

pressure. The model accounting for the both phases and the dynamic capillary pressure is going to

be a subject for our future work.

In this chapter the pressing section of a paper machine is simulated with the help of the two-

phase flow approach. The two-dimensional model accounts for the filtration of the water and the air

within the computational domain taking into consideration the static capillary pressure–saturation

relation. At first, in Section5.1 we extend the previous flow model by inclusion of the mass con-

servation equation for the air phase. Moreover, the mathematical model is improved by allowing

for more complex boundary conditions which allow water to escape through of the upper and lower

boundaries. This issue was not accounted for before. The finite difference scheme obtained by the

111
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MPFA-O method and the numerical algorithm are discussed in Section5.2. Numerical experiments

checking range of applicability of the Richards’ approach for the mathematical modeling of the

pressing section are performed in Section5.3. Finally, we draw some conclusions in Section5.4.

5.1 Mathematical model

As in the previous chapter, we consider the computational domainΩ indicated in Fig.5.1. We

assume that the paper-felt sandwich is transported in horizontal directionfrom the left to the right

with the constant speedVs,in. We also consider that the two flow regimes may be present inΩ.

Ω1 andΩ2 denote the domains with the single-phase water flow and the two-phase air-water flow,

respectively. The interface between these domains is denoted byΓ.

GL

G
UL

G
DR

G
R

z

x

Vs,in

W
2

W
1

W

G

G
UC

G
UR

G
DCG

DL

Fig. 5.1: Computational domainΩ with two flow regimes and new partitioning of∂Ω

Let Assumptions2.1.2and2.1.3be satisfied. Let the functionpstat
c be defined by Assump-

tion 2.2.1. Then, the functionS is defined in the following way:

S(pc) =



















S∗ for pc ≥ pstat
c (S∗),

(

pstat
c

)−1
(pc) for pc ∈ (pstat

c (1), pstat
c (S∗)),

1 for pc ≤ pstat
c (1);

(5.1)

whereS∗ is discussed in Remark2.2.2. Then, the saturated water flow obeys the following mass

conservation equation:

− div

(

K

µw
grad pw

)

+ div (φVs) = 0, x ∈ Ω1. (5.2)

The two-phase air-water flow is described by the mass conservation equations for the air and water
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phases:

−div

(

krw

µw
K grad pw

)

+ div (φSVs) = 0, x ∈ Ω2; (5.3)

−div

(

kra

µa
K grad pa

)

+ div (φ(1 − S)Vs) = 0, x ∈ Ω2; (5.4)

wherekra ([−]) is the relative permeability of the air phase,µa is the air viscosity measured in

[Pa s], the water saturationS is a function of the capillary pressurepc = pa − pw, the saturation of

the air phase is equal to(1 − S).

Now we are concerned with the conditions which have to be satisfied at the interfaces between

the domains with the different flow regimes and between the layers. As it was introduced in Sec-

tion 4.1.1the interfaces between domainsΩ1, Ω2, . . . ,ΩL, which indicate different layers, are de-

noted byΓl = Ωl ∩ Ωl+1 for all l = 1, L− 1, whereL is the total number of layers (see Fig.4.2).

The water fluxJw within Ω is defined as:

Jw =







− K

µw
grad pw + φVs for x ∈ Ω1;

−krw

µw
K grad pw + φSVs for x ∈ Ω2.

(5.5)

For the air fluxJa within Ω we have:

Ja =







0 for x ∈ Ω1;

−kra

µa
K grad pa + φ(1 − S)Vs for x ∈ Ω2.

(5.6)

Then, the continuity of the pressures and the continuity of the normal fluxesacross the interfaces

have to be satisfied in the following form:

[pw]Γ = 0, [Jw · n]Γ = 0, (5.7)

[pw]Γl
= 0, [Jw · n]Γl

= 0, l = 1, L− 1, (5.8)

[Ja · n]Γ = 0, (5.9)

[pa]Γl
= 0, [Ja · n]Γl

= 0, l = 1, L− 1. (5.10)

Now let the functionkrw satisfy Assumption3.1.1(c) and the functionkra satisfy the following

assumption.

Assumption 5.1.1.kra ∈ C([S∗, 1]), kra : [S∗, 1] → [0, 1] is a decreasing function.

In the fully saturated regionΩ1 the water saturation satisfiesS ≡ 1 andpa is undefined. To have
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a unique model for both saturated and unsaturated flows we define a prolongation ofpa in Ω1 with

the help of Eq. (5.12). Then, the system of equations (5.2)–(5.10) yields:

−div

(

krw(S)

µw
K grad pw

)

+ div (φSVs) = 0, x ∈ Ω; (5.11)

pa − pw − pstat
c (1) = 0, x ∈ Ω1; (5.12)

−div

(

kra(S)

µa
K grad pa

)

+ div (φ(1 − S)Vs) = 0, x ∈ Ω2; (5.13)

together with the continuity of the pressures and the normal fluxes (5.8) and (5.10) on Γl, l =

1, L− 1. We remark that thanks to the assumptions on the functionskrw andkra the interfacial

conditions (5.7) and (5.9) acrossΓ are satisfied automatically. We remark that the air pressurepa

extended toΩ by (5.12) also satisfies continuity condition acrossΓ: [pa]Γ = 0.

Specification of the boundary conditions is important for the development ofa mathematical

model. Often the simulated process is too complex to precisely define the boundary conditions

which have to be specified. In Section4.1.1we used the no-flow conditions for the water phase on

the upper and lower boundaries. But as it was observed during the numerical experiments carried

out in Section4.3.1the no-flow boundary conditions for the water phase in some test cases are too

artificial. Thus, in this model we are going to improve this issue by allowing the water to escape

from the upper and lower boundaries of the computational domain where there is no contact with

the pressing rolls.

Since the boundary conditions for the water phase become more complex andthe boundary

conditions for the air phase have to be introduced the boundariesΓU andΓD have to be divided into

some parts as shown in Fig.5.1:

Γα = ΓαL ∪ ΓαC ∪ ΓαR, α = {U,D}.

As before we want Assumption2.1.4to be satisfied. Then, for the water phase we have the same

Dirichlet and no-flow boundary conditions onΓL andΓR, respectively (for more details see Sec-

tion 4.1.1). On the parts of the upper and lower boundariesΓUC andΓDC where the computational

domain is in contact with the pressing rolls we preserve the zero-Neumann boundary conditions

since the water can not escape there. On the rest of the boundaries we would like to allow the es-

cape of water if the fluid pressure is greater than the atmospheric pressure. Here the atmospheric

pressure is chosen as the first approximation. Although, we note that in reality the pressure outside

the boundary where water escapes is nonconstant and greater than atmospheric. Thus, onΓUL,

ΓUR, ΓDL andΓDR we specify Robin conditions. The boundary conditions for the water pressure
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yield:

pw|ΓL
= −pstat

c (C0(x)), x ∈ ΓL; (5.14)
(

−krw

µw
K grad pw

)

· ns

∣

∣

∣

∣

ΓR

= 0; (5.15)

(

−krw

µw
K grad pw

)

· n
∣

∣

∣

∣

ΓαC

= 0, α = {U,D}; (5.16)

(

−krw

µw
K grad pw

)

· n
∣

∣

∣

∣

ΓαL,ΓαR

= γ̂(pw)(pw − patm)
∣

∣

ΓαL,ΓαR
, α = {U,D}; (5.17)

whereγ is the parameter which defines how much water is allowed to escape,patm is the atmo-

spheric pressure in[Pa]. We define the function̂γ as:

γ̂(pw) =







γ if pw ≥ patm;

0 if pw < patm;
(5.18)

whereγ = const > 0 ∈ R.

Now let us discuss the boundary conditions for the air phase. Since the boundariesΓL andΓR

are far away from the pressing zone (see Assumption2.1.4) we assume that the air remains at the

atmospheric pressure there. On the rest of the boundaries where the computational domain is not

in contact with the pressing rolls Dirichlet boundary conditions are applied.On ΓUC andΓDC the

zero-Neumann boundary conditions are preserved since air as well aswater can not escape through

these parts of the boundaries. Thus, the boundary conditions for the airphase yield:

pa|Γα
= patm, α = {L,UL,UR,R,DR,DL}; (5.19)

(

−kra

µa
K grad pa

)

· n
∣

∣

∣

∣

ΓαC

= 0, α = {U,D}. (5.20)

The elasticity model by which the flow model is supplemented was discussed in Section4.1.2.

5.2 Discretization

Now we are going to discuss the discretization of the flow model (5.11)–(5.13) by the finite volume

method on the quadrilateral unstructured grid. Let the two-dimensional meshD be introduced by

Definition4.2.1as shown in Fig.4.3and discussed in Section4.2.
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Then, for Eq. (5.11) we have the following finite volume scheme:

−
∑

σ∈EK

krw(Sσ)

µw
Fw
K,σ +

∑

σ∈EK

mσφσSσ,+Vs · nσ = 0, K ∈ T ; (5.21)

whereSσ andSσ,+ are defined by Eqs. (4.15) and (4.16), respectively. We remember thatT1 andT2

are the sets of the control volumes which approximate the domainsΩ1 andΩ2, respectively. Using

properties of the functionS, the finite difference scheme for Eq. (5.12) yields:

pa,K − pw,K = pstat
c (1), K ∈ T1. (5.22)

For Eq. (5.13) we have:

−
∑

σ∈EK

kra(Sσ)

µa
F a
K,σ +

∑

σ∈EK

mσφσ(1 − Sσ,+)Vs · nσ = 0, K ∈ T2. (5.23)

The general form ofFα
K,σ, α = {w, a} yields:

Fα
K,σ =

∑

L∈NK,σ

tα,L
K,σpα,L; (5.24)

wheretα,L
K,σ are the transmissibility coefficients andNK,σ is defined by (4.19).

The boundary conditions (5.14)–(5.20) and the interfacial conditions (5.8), (5.10) are considered

during accounting for the transmissibility coefficientstα,L
K,σ by the MPFA-O method (for more details

see [1, 2]). In case if the control volumeK contains an edge common with the boundary∂Ω, values

Sσ andSσ,+ are defined by (4.24), (4.25) (see Section4.2). Remembering that on the upper and

lower boundaries the Robin boundary conditions for the water phase andthe Dirichlet boundary

conditions for the air phase may be specified, in addition we have:

• if σ ∈ EK ∩ (Eext,U ∪ Eext,D) thanSσ = SK andS+,σ do not need to be defined since

nσ · Vs = 0.

To solve the system of equations (5.21)–(5.24) the Newton’s method is used. Initial guesses for

the fluid pressurepw and the air pressurepa are chosen as:

p0
w,K = patm − pstat

c (C0(xK,ΓL
), φ(xK,ΓL

)) ;

p0
a,K = patm;

where the upper index corresponds to the number of the Newton’s iteration. The initial guesses are

chosen in a way that the pressures remain constant along the solid streamlines. Initial guess for the
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water saturationC0(x) satisfiesC0(x) ∈ (S∗, 1). Thus, the setT 0
1 is empty andT 0

2 is equal toT .

After every Newton’s iterationk for the system of equations (5.21)–(5.23) we obtain the correction

values∆pk+1
w,K and∆pk+1

a,K . New approximations of the fluid and air pressures are obtained as:

pk+1
w,K = pk

w,K + ∆pk+1
w,K, K ∈ T ;

pk+1
a,K = pk

a,K + ∆pk+1
a,K , K ∈ T .

Using Eq. (5.1), the water saturation can be defined. The setsT k+1
1 andT k+1

2 are obtained in the

following form:

T k+1
1 = {K ∈ T : S

(

pk+1
a,K − pk+1

w,K

)

= 1};

T k+1
2 = {K ∈ T : S

(

pk+1
a,K − pk+1

w,K

)

∈ (S∗, 1)};

T k+1
3 = {K ∈ T : S

(

pk+1
a,K − pk+1

w,K

)

= S∗}.

Remark 5.2.1. We use the fictitious domain method like in previous chapters. The proposednumer-

ical approach may cause an appearance of some fictitious domainsT k+1
3 withS = S∗. It is done to

make sure that the formulation of the model is homogeneous for all values of the water saturation

S. From the physical point of view, in this domain the mathematical model for the single-phase

air flow has to be stated. Since in our numerical experiments the single-phase air flow has never

occurred in this work we are not concerned with this flow regime.

If after thekth Newton’s iteration the setT k+1
3 is not empty any more, then on the next Newton’s

iteration(k + 1) one more equation has to be added to the system of equations (5.21)–(5.23):

SK = S∗, K ∈ T3.

5.3 Numerical experiments

Using the mathematical model developed in Section5.1 and discretized in Section5.2, which ac-

counts for the water and air phases, we are going to perform some numerical experiments. This

section aims at investigating the admissibility of Assumption2.1.1, which states that the air phase

remains at a constant pressure within the computational domain. We are goingto use the same sets

of parameters as in the numerical experiments performed in Section4.3 and compare the results

with the results obtained under Richards’ assumption. Thus, some single-layer and multilayer test

cases will be carried out sequentially.

As we discussed before, these numerical experiments will be performed only for the model
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Table 5.1: Experimental data for the two-phase flow model

Variable Dimension Value

kra [−] (1 − Se)
2(1 − S1.5

e )
Se [−] (S − S∗)/(1 − S∗)
µa [Pa s] 1.862e− 5
γ [mm3s/kg] 5.00e− 9

patm [Pa] 0

with the static capillary pressure–saturation relation. The dynamic capillary effects in case of the

two-phase flow model are going to be investigated in our future work.

5.3.1 Numerical experiments for the Richards’ assumption:single-layer case

The input data for the single-layer test case is presented in Tables4.1, 4.2. Some additional data

required for the two-phase flow model is presented in Table5.1. As a result of several numerical

experiments, the parameterγ for the boundary condition (5.17) is chosen to be5.00e−9mm3s/kg.

The atmospheric pressurepatm, which is used in the boundary conditions for the water phase (5.17)

and for the air phase (5.19) is chosen to be0 Pa (see Table5.1). Since we are interested in values

of pressure up to some constant, we have chosen zero for simplicity.

The numerical results for ”Felt 1” are presented in Figs.5.2–5.10. Figs.5.2–5.7 show two-

dimensional distributions of the water saturation, the water pressure, and the water velocities for

the different initial saturationsC0 and the velocitiesVs,in. The water saturationS is shown in

Figs. 5.2A–5.7A. Figs. 5.2B–5.7B and Figs.5.2C–5.7C present the water pressure and the water

velocity, respectively. The initial saturationC0 is equal to25% and35% for the numerical tests

presented in Figs.5.2, 5.4, 5.6and Figs.5.3, 5.5, 5.7, respectively. The velocityVs,in is considered

to be equal to100, 300, and900 m/min and it is presented in Figs.5.2, 5.3, Figs.5.4, 5.5, and

Figs.5.6, 5.7, respectively.

The obtained results show that accounting for the real dynamics of the air phase causes some

visible differences in distribution of the water phase. At first, let us remarkthat in the results

presented in Figs.5.2–5.7we observe that the behavior of the water pressure has changed in com-

parison to the behavior obtained by the model under the Richards’ assumption with static capillary

pressure. The water pressure has the maximum value shifted to the left with respect to the center

of the nip. Moreover, for small velocitiesVs,in (100 and300 m/min) we observe a decrease of

the water pressure below the initial value behind the center of the press nip.The same kind of the

water pressure behavior was obtained for the Richards’ model with the dynamic capillary pressure–

saturation relation and it is in agreement with the laboratory experiments carried out by Beck in
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[8]. Secondly, we would like to pay attention to the water velocitiesVw for the test cases with the

large initial saturationC0 and the large velocityVs,in (see Fig.5.3C, 5.5C–5.7C). Thanks to the

extended boundary conditions, we observe a water escape from the computational domain when the

water pressure is large near the boundary where the layer is not in contact with the roll surface.

Now we would like to have a better impression on how significant the difference between the

two-phase flow model and the model using the Richards’ approach is. Thereto, we average the

results obtained with the help of the two-phase flow model in the vertical direction and show them

on the same figure with the averaged results obtained with the help of the model from Chapter4

(see Figs.5.8–5.10). In Figs.5.8–5.10abbreviations ”2PF” and ”Rich” indicate the two-phase flow

model and the Richards’ model, respectively. Figs.5.8A–5.10A show the water saturation for the

different velocitiesVs,in, when Figs.5.8B,C–5.10B,C show the water pressure.

The one-dimensional representation of the water saturation (see Figs.5.8A–5.10A) allows us

to see that a decrease of the maximum value of the water saturation is observed for the two-phase

flow model in comparison to the flow model obtained under Richards’ assumption. Let us now

discuss it in more details. The comparison of the water saturation for the two-phase model and the

Richards’ model can be made in three steps. When the maximum value of the water saturation is

small (see Fig.5.10A with C0 = 25%), these two mathematical approaches give almost the same

water saturation. The second case is when the maximum saturation reaches higher values around

80% and90% but still not big enough to form a fully saturated zone in case of the Richards’ model

(see Figs.5.8A, 5.9A with C0 = 25%, and Fig.5.10 with C0 = 35%). Here, the decrease of

the maximum value becomes visible. But the water saturation differs only for thebig values and

for smaller values results coincides with the results obtained by the Richards’model. This type of

the water saturation behavior was also obtained by the Richards’ model with thedynamic capillary

effect (see Section4.3). But the decrease of the maximum value of the saturation was much less than

we observe for the two-phase flow model. The third case is when a fully saturated zone is formed

for the Richards’ approach in Figs.5.8A, 5.9A with C0 = 35%. We observe that the air does not

escape from the computational domain completely. The water saturation reaches some high value

but it is not equal to one. Let us remark the remaining air is not due to the residual saturation of the

air phase since it is considered to be equal to zero. We observe it due to the fact that the air velocity

can not be infinite as in the case of the Richards’ assumption. In this third case the distribution

of the water saturation differs completely for whole range of the saturation values from the results

obtained by the previous model.

In Figs.5.8A and5.9A with C0 = 35% we can also observe an influence of the Robin boundary

conditions included in this model to allow the water escape through the upper and lower boundaries.

It effects the water saturation value on the right boundary. Since the amount of water within the
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computational domain is not constant any more, the value of the water saturation after the pressing

decreases in comparison with the saturation, when all water remains inside thepaper-felt sandwich.

Regarding the water pressure, the one-dimensional profiles (see Figs.5.8B,C–5.10B,C) show

the behavior which we described previously discussing the two-dimensional representation of the

obtained results. The maximum value of the water pressure occurs beforethe center of the nip for

all performed test cases. The decrease of the water pressure below the initial value is observed in

the cases when the velocitiesVs,in are equal to100 and300 m/min. But it was not the case for

the larger velocity (|Vs,in| = 900m/min). According to the laboratory experiments carried out for

the pressing section by Beck in [8], the decrease of the water pressure below the initial value was

observed for the velocity|Vs,in| = 381m/min. Thus, we can conclude that the pressure profiles

obtained by the two-phase flow model for smallVs,in correspond to the reality and in case of large

Vs,in more laboratory experiments are required. Analyzing the one-dimensionalpressure profiles

presented in Figs.5.8B,C–5.10B,C, we also note that in most of the numerical tests for ”Felt 1”

the maximum value of the water pressure significantly rises in comparison to the test cases with the

Richards’ assumption.

The second and third single-layer test cases are performed for the feltand the paper with param-

eters presented in Tables4.1, 4.2, and5.1. The results are shown in Figs.5.11–5.19for ”Felt 2” and

in Figs.5.20–5.28for ”Paper”. Figs.5.11–5.16, 5.20–5.25show the obtained results in two dimen-

sions. In Figs.5.17–5.19, 5.26–5.28 the comparison of the results presented as one-dimensional

variables and obtained by the averaging procedure in the vertical direction is presented. The be-

havior of the obtained results is similar to the behavior discussed in detail for the first test case

”Felt 1”. The water pressure profiles have the typical shape with the maximum value shifted to

the left and the decrease after the center of the pressing nip. The maximum value of the water

pressure rises significantly in the two-phase model in comparison to the modelunder the Richards’

assumption. The water saturation also shows behavior similar to the test case ”Felt 1”. For the

averaged one-dimensional profiles of the water saturation (see Figs.5.17A–5.19A for ”Felt 2” and

Figs.5.26A–5.28A for ”Paper”) the behavior of the water saturation can be divided into thefollow-

ing groups:

• if the water saturation values are less than70%, the two-phase model gives almost the same

results as the Richards’ model (see Figs.5.18A, 5.19A with C0 = 30% and Figs.5.28A with

C0 = 40%);

• if the water saturation has the maximum value around80% and90%, the decrease of the

maximum value of the water saturation is observed for the two-phase model in comparison

to the saturation profiles obtained by the Richards’ model (see Fig.5.17A with C0 = 30%,

Fig. 5.19A with C0 = 50%, Figs.5.26A, 5.27with C0 = 40%);
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• if the Richards’ model has a fully saturated region, the behavior of the one-dimensional

profiles of the water saturation is completely different for the two-phase flow model and

the Richards’ model (see Figs.5.17A, 5.18A with C0 = 50%, Figs. 5.26A–5.28A with

C0 = 60%).

The influence of the new boundary conditions, which allow the escape of water through the upper

and lower boundaries we can observe in Figs.5.12C, 5.14C–5.16C for ”Felt 2” and in Figs.5.21C,

5.23C–5.25C for ”Paper”, where the water velocity is shown, and in Figs.5.17A, 5.18A for ”Felt 2”

and in Figs.5.26A–5.28A for ”Paper”, where the averaged water saturation is shown.

We remark that as opposed to the Richards’ model in the two-phase flow model we observe

two-dimensional effects, namely the water saturation and the water pressure vary in the vertical

direction. This effect can be well seen in the test case ”Paper” in the figures presenting the two-

dimensional results (see Figs.5.21–5.25) and also in some figures for ”Felt 1” and ”Felt 2”, namely

with the high initial saturationC0 (see Figs.5.3, 5.5, 5.7and Figs.5.12, 5.14, 5.16).

In Fig. 5.29the water pressure peak is presented as a function of the initial saturationC0 (see

Fig.5.29A) andQin (see Fig.5.29B), where the quantityQin is defined by (4.33). Here we compare

results obtained with the help of the two-phase flow model and the Richards’ model for all the single-

layer test cases. As it was also remarked before, we observe that the fluid pressure significantly rises

in the case when the air phase is taken into account. Thanks to the Robin boundary conditions, which

have been introduced in this chapter, we observe that the pressure peak profile is smoother for the

two-phase flow model. Moreover, the fluid pressure does not rise much for Qin > 1.3. This effect

was also observed in the laboratory experiments performed by Beck in [8]. Thus, we may conclude

that the new boundary conditions have improved the mathematical model.

5.3.2 Numerical experiments for the Richards’ assumption:multilayer case

In this section we are going to carry out numerical experiments for the multilayer test cases using the

input data from Section4.3.2. The data presented in Tables4.1, 4.3, and5.1 is used to carry out the

first numerical experiment. The velocityVs,in is chosen to be100m/min. The boundaries of the

computational domain are considered to beΓL = {x = −0.1m}, ΓR = {x = 0.1m}. Results for

the test case 1 are shown in Figs5.30–5.32, where the water saturation, the water pressure, and the

dry solid content of the paper layer are presented, respectively. In Figs.5.30A and5.31A the results

obtained with the help of the two-phase flow model are shown. Figs.5.30B and5.31B present the

results obtained with the help of the Richards’ model. The dry solid content ofthe paper layer is

shown for both flow models as well.

The numerical results for test case 1 show the similar behavior earlier discussed for the single-

layer test cases. With the new mathematical model, the distribution of the water saturation changes
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significantly (see Fig.5.30). The fully saturated zone is not observed in case of the two-phase flow

model while the same test case using the Richards’ assumption shows the region with the single-

phase water flow. As it can be seen in Fig.5.31, the maximum pressure value rises and it is shifted

to the left for the two-phase flow model in comparison with the Richards’ model.Moreover, as

well as for the single-layer test cases the decrease of the water pressure below the initial value is

observed after the maximum pressure value. The dry solid content of the paper layer (see Fig.5.32)

has also changed. The profile for the two-phase flow model with bigger value on the right boundary

of the computational domain differ from the profile for the Richards’ model.

For the second test cases we use data presented in Tables4.1, 4.4, and5.1. The paper-felt sand-

wich is considered to be transported through the roll press with the velocity|Vs,in| = 500m/min.

The boundaries of the computational domain are fixed atΓL = {x = −0.15 m} andΓR = {x =

0.15 m}. In the third test case we use the paper-felt sandwich with parameters presented in Ta-

bles4.1, 4.3, 5.1, and the initial saturation defined in Table4.5. The velocityVs,in is chosen to be

equal to100m/min. The boundaries of the computational domain are set toΓL = {x = −0.30m},

ΓR = {x = 0.40 m}. In Figs.5.33–5.35and Figs.5.36–5.38the results for the test case 2 and 3

are shown, respectively. In Figs.5.33and5.36the water saturation is shown. The water pressure

and the dry solid content of the paper layer are presented in Figs.5.34, 5.37and Figs.5.35, 5.38, re-

spectively. In Figs.5.33A, 5.34A, 5.36A, and5.37A results obtained with the help of the two-phase

flow model are shown, while Figs.5.33B, 5.34B, 5.36B, and5.37B present the results obtained by

the Richards’ model. The distribution of water significantly differs for the two-phase flow model

from the model with the Richards’ assumption. The water saturation and the water pressure show

the behavior discussed in the first test case. The dry solid content profiles have completely differ-

ent shapes for these two mathematical models in the test case 2 (see Fig.5.35). The value on the

right boundary for the two-phase flow model is significantly lower than the value obtained under the

Richards’ assumption. In the test case 3 (see Fig.5.38) the dry solid content profiles have similar

shape but the values for the two-phase flow model are greater in the wholecomputational domain.
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Fig. 5.2: SaturationS (A), pressurepw (B) and velocityVw (C) for ”Felt 1” with |Vs,in| =
100m/min andC0 = 25%
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Fig. 5.3: SaturationS (A), pressurepw (B) and velocityVw (C) for ”Felt 1” with |Vs,in| =
100m/min andC0 = 35%
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Fig. 5.4: SaturationS (A), pressurepw (B) and velocityVw (C) for ”Felt 1” with |Vs,in| =
300m/min andC0 = 25%
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Fig. 5.5: SaturationS (A), pressurepw (B) and velocityVw (C) for ”Felt 1” with |Vs,in| =
300m/min andC0 = 35%
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Fig. 5.6: SaturationS (A), pressurepw (B) and velocityVw (C) for ”Felt 1” with |Vs,in| =
900m/min andC0 = 25%
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Fig. 5.7: SaturationS (A), pressurepw (B) and velocityVw (C) for ”Felt 1” with |Vs,in| =
900m/min andC0 = 35%
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Fig. 5.8: SaturationS (A), pressurepw (B,C) for ”Felt 1” with |Vs,in| = 100 m/min for the
two-phase flow model and for the Richards’ model
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Fig. 5.9: SaturationS (A), pressurepw (B,C) for ”Felt 1” with |Vs,in| = 300 m/min for the
two-phase flow model and the Richards’ model
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Fig. 5.10: SaturationS (A), pressurepw (B,C) for ”Felt 1” with |Vs,in| = 900 m/min for the
two-phase flow model and for the Richards’ model
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Fig. 5.11: SaturationS (A), pressurepw (B) and velocityVw (C) for ”Felt 2” with |Vs,in| =
100m/min andC0 = 25%
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Fig. 5.12: SaturationS (A), pressurepw (B) and velocityVw (C) for ”Felt 2” with |Vs,in| =
100m/min andC0 = 35%
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Fig. 5.13: SaturationS (A), pressurepw (B) and velocityVw (C) for ”Felt 2” with |Vs,in| =
300m/min andC0 = 25%
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Fig. 5.14: SaturationS (A), pressurepw (B) and velocityVw (C) for ”Felt 2” with |Vs,in| =
300m/min andC0 = 35%
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Fig. 5.15: SaturationS (A), pressurepw (B) and velocityVw (C) for ”Felt 2” with |Vs,in| =
900m/min andC0 = 25%
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Fig. 5.16: SaturationS (A), pressurepw (B) and velocityVw (C) for ”Felt 2” with |Vs,in| =
900m/min andC0 = 35%
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Fig. 5.17: SaturationS (A), pressurepw (B,C) for ”Felt 2” with |Vs,in| = 100 m/min for the
two-phase flow model and for the Richards’ model
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Fig. 5.18: SaturationS (A), pressurepw (B,C) for ”Felt 2” with |Vs,in| = 300 m/min for the
two-phase flow model and for the Richards’ model
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Fig. 5.19: SaturationS (A), pressurepw (B,C) for ”Felt 2” with |Vs,in| = 900 m/min for the
two-phase flow model and for the Richards’ model
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Fig. 5.20: SaturationS (A), pressurepw (B) and velocityVw (C) for ”Paper” with |Vs,in| =
100m/min andC0 = 25%
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Fig. 5.21: SaturationS (A), pressurepw (B) and velocityVw (C) for ”Paper” with |Vs,in| =
100m/min andC0 = 35%
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Fig. 5.22: SaturationS (A), pressurepw (B) and velocityVw (C) for ”Paper” with |Vs,in| =
300m/min andC0 = 25%
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Fig. 5.23: SaturationS (A), pressurepw (B) and velocityVw (C) for ”Paper” with |Vs,in| =
300m/min andC0 = 35%
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Fig. 5.24: SaturationS (A), pressurepw (B) and velocityVw (C) for ”Paper” with |Vs,in| =
900m/min andC0 = 25%
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Fig. 5.25: SaturationS (A), pressurepw (B) and velocityVw (C) for ”Paper” with |Vs,in| =
900m/min andC0 = 35%
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Fig. 5.26: SaturationS (A), pressurepw (B,C) for ”Paper” with |Vs,in| = 100 m/min for the
two-phase flow model and for the Richards’ model
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Fig. 5.27: SaturationS (A), pressurepw (B,C) for ”Paper” with |Vs,in| = 300 m/min for the
two-phase flow model and for the Richards’ model
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Fig. 5.28: SaturationS (A), pressurepw (B,C) for ”Paper” with |Vs,in| = 900 m/min for the
two-phase flow model and for the Richards’ model
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Fig. 5.29: Fluid pressure peak as a function of the initial saturationC0 (A) andQin (B) for |Vs,in| =
100m/min
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Fig. 5.30: Saturation for the test case 1 using the two-phase flow model (A)and the Richards’ model
(B)
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Fig. 5.31: Pressure for the test case 1 using the two-phase flow model (A) and the Richards’ model
(B)
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Fig. 5.32: Dry solid content of the paper for the test case 1 using the two-phase flow model and the
Richards’ model
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Fig. 5.33: Saturation for the test case 2 using the two-phase flow model (A)and the Richards’ model
(B)
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Fig. 5.34: Pressure for the test case 2 using the two-phase flow model (A) and the Richards’ model
(B)
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Fig. 5.35: Dry solid content of the paper for the test case 2 using the two-phase flow model and the
Richards’ model
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Fig. 5.36: Saturation for the test case 3 using the two-phase flow model (A)and the Richards’ model
(B)
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Fig. 5.37: Pressure for the test case 3 using the two-phase flow model (A) and the Richards’ model
(B)
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Fig. 5.38: Dry solid content of the paper for the test case 3 using the two-phase flow model and the
Richards’ model

5.4 Results and discussions

In this chapter a two-dimensional mathematical model for the pressing section of a paper machine

was developed. The model uses the two-phase flow approach to simulate the infiltration processes

in the pressing zone. We aimed to check the validity range of the Richards’ assumption, which had

been used in all previous chapters for the pressing section modeling. As the first step we developed

the mathematical model using the static capillary pressure saturation relation. The model with the

included dynamic capillary effects is planned to be investigated in our future work.

The numerical experiments have shown that the new mathematical model has a significant in-

fluence on the distribution of the water. We have observed that the water saturation has changed in

comparison to the Richards’ model especially in the areas where it reacheshigh values. Moreover,

we have not obtained the fully saturated zones in case of the two-phase flow model. One of the

possible reasons is that in this model the air phase has a finite velocity and it is not able to escape

completely. It may also happen because of the Robin boundary conditions introduced in this chap-

ter, which allow the escape of water through the upper and lower boundaries. The water pressure has

shown behavior similar to the behavior obtained by the Richards’ model with the dynamic capillary

pressure–saturation relation (see Chapter4). We observed the maximum pressure value shifted to

the left and the decrease of the pressure below the initial value after this maximum. But the two-

phase flow model has also shown a significant increase of the maximum valueof the pressure in

comparison to the Richards’ model. The dry solid content of the paper layeris also influenced a lot
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by the two-phase flow model. The way it changes depends on the particulartest case.

The new boundary conditions, which allow the water escape from the computational domain,

were used. The numerical experiments showed that it improved the mathematical model.

To conclude this chapter, we notice that the mathematical modeling of the pressing section

should take into consideration both the air and water phases. It will also be very interesting to see

how the dynamic capillary effects influence the two-phase flow model.



Summary

The current studies have been intended to develop a mathematical model forthe pressing section

of a paper machine. As a starting point a one-dimensional model was introduced. The Richards’

type equation together with the dynamic capillary pressure–saturation relationwas used to simulate

the pressing section in Chapter2. The obtained behavior of the water pressure appeared to be in

agreement with laboratory experiments.

In Chapter3 the stated mathematical model was investigated from the theoretical point of view.

The convergence of the discrete solution to the continuous one was proven together with the exis-

tence and the compactness of the solution to the discrete problem. In the first part of this chapter, we

considered the one-dimensional mathematical model with the static capillary pressure–saturation re-

lation. In the second part, the model including the dynamic capillary effects was investigated. The

theoretical studies were developed under minimal restrictions on the input data which were satisfied

by the data used in our numerical experiments.

Since the one-dimensional model can not provide a complete image of the infiltration processes

within the pressing zone, in Chapter4 we extended the mathematical model to two dimensions.

There we considered a two-phase flow model under Richards’ assumption with a possible forma-

tion of the fully saturated zones in a multilayer computational domain. The MPFA-Omethod was

applied to discretize the obtained mathematical model on a nonorthogonal quadrilateral grid resolv-

ing the layer interfaces. To conclude this chapter, we carried out a number of numerical experiments

with realistic sets of parameters.

The last chapter aimed to validate the admissibility of the Richards’ assumption used for devel-

oping the mathematical model in all previous chapters. Simulations for the pressing section have

been performed accounting for the water phase as well as for the air phase. Moreover, the boundary

conditions have been improved by allowing a water phase escape from the computational domain

where there is no contact with the surface of the pressing roll. In Chapter5, we have considered the

flow model with the static capillary pressure–saturation relation. The dynamic capillary effects are

planned to be included into the flow model in our future studies.

161
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The performed simulations have allowed us to better understand the infiltration process occur-

ring within the pressing zone. Moreover, using the developed model we are able to test the various

felts and the different press configurations, which may lead to further improvements of the pressing

section.



Appendix A

Averaging Procedure

A.1 Averaging procedure for the mass conservation equation

Let us consider the integral form of the mass conservation equation for the domainΩ̂ ⊂ R
2 (see

FigureA.1) in the case of no sources and no sinks and impermeable upper and lower boundaries:

∫

Ω̂
div (φSVw) dσ = 0,

whereΩ̂ = {(x̂, ẑ) : x̂ ∈ [x, x+ ∆x], ẑ ∈ [fl (x̂) , fu (x̂)]}, x ∈ [A,B], ∆x > 0, ∆x ∈ R+ is a

fixed value, such thatx+ ∆x ∈ [A,B]. Using Green’s theorem, one obtains the following integral

Fig. A.1: Computational domain̂Ω for the averaging procedure

163
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over the boundary∂Ω̂ with integration in the counterclockwise direction:

∮

∂Ω̂
φSVw · nds = 0, (A.1)

wheren is the outward unit normal of the boundary∂Ω̂. The boundary∂Ω̂ can be represented as

(see FigureA.1):

∂Ω̂ = Γ̂1 ∪ Γ̂2 ∪ Γ̂3 ∪ Γ̂4,

whereΓ̂i ∩ Γ̂j = ∅ for all i 6= j. Let vectorVw have the following componentsVw =
(

V 1
w , V

2
w

)

.

Then (A.1) yields:

0 =

∮

∂Ω̂
φSVw · nds =

∫

Γ̂1

φSVw · n1ds+

∫

Γ̂2

φSVw · n2ds

+

∫

Γ̂3

φSVw · n3ds+

∫

Γ̂4

φSVw · n4ds

=

∫

Ex+∆x

φSV 1
wds−

∫

Ex

φSV 1
wds,

(A.2)

whereEx = {(x, z) : z ∈ [fl(x), fu(x)]} and the integrals over the boundariesΓ̂2 andΓ̂4 are equal

to zero since in the two-dimensional case we imposed no-flow conditions for these boundaries

(Vw · n|Γ̂2,Γ̂4
= 0). We introduce vertically averaged horizontal quantitiesφ̂(x), Ŝ(x) andV̂ 1

w(x)

in the following way:

φ̂(x) =
1

d(x)

∫

Ex

φ(x, z)dz,

Ŝ(x) =
1

d(x)φ̂(x)

∫

Ex

φ(x, z)S(x, z)dz,

V̂ 1
w(x) =

1

d(x)φ̂(x)Ŝ(x)

∫

Ex

φ(x, z)S(x, z)V 1
w(x, z)dz,

where A ≤ x < x+ ∆x ≤ B, d(x) = fu(x) − fl(x) > 0 is the thickness of the layer.

Remembering that̂Γ1 = Ex andΓ̂2 = Ex+∆x, equation (A.2) yields:

− φ̂(x)Ŝ(x)V̂ 1
w(x)d(x) + φ̂(x+ ∆x)Ŝ(x+ ∆x)V̂ 1

w(x+ ∆x)d(x+ ∆x) = 0. (A.3)

Dividing (A.3) by ∆x and passing to the limit∆x→ 0, one obtains:

∂

∂x

(

Ŝ(x)φ̂(x)V̂ 1
w(x)d(x)

)

= 0, x ∈ Ω. (A.4)
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Note, thatx (see FigureA.1) was chosen arbitrarily, therefore, equation (A.4) is satisfied for any

x ∈ [A,B].

A.2 Averaging procedure for dynamic capillary pressure–saturation

relation

Now, we are concerned with the dynamic capillary pressure–saturation relation (2.7). For our prob-

lem, we considerpstat
c as a function of the saturation and the porosity:pstat

c = pstat
c (S, φ). Integra-

tion of the left hand side of (2.7) overΩ̂ yields:

∫

Ω̂
p+ pstat

c (S, φ)dσ ≈
(

p̂Ω̂ + pstat
c

(

ŜΩ̂, φ̂Ω̂

))

m(Ω̂), (A.5)

whereûΩ̂ is the averaged over domain̂Ω quantity defined by:

ûΩ̂ =
1

m
(

Ω̂
)

∫

Ω̂
udσ, lim

∆x→0
ûΩ̂ = û, (A.6)

under assumption that̂u is a continuous function.

Let us integrate the right hand side of (2.7) overΩ̂:

∫

Ω̂
τVs · gradSdσ =

∫

Ω̂
div (τSVs) dσ −

∫

Ω̂
S div (τVs) dσ

≈
∮

∂Ω̂
τSVs · nds− ŜΩ̂

∮

∂Ω̂
τVs · nds,

whereŜΩ̂ is defined by (A.6). Remembering thatVs is thex-component of the vectorVs and that

Vs · n|Γ̂2,Γ̂4
= 0, we have:

∫

Ω̂
τVs · gradSdσ ≈

∫

Γ̂1

τSVs · n1ds+

∫

Γ̂3

τSVs · n3ds

− ŜΩ̂

(∫

Γ̂1

τVs · n1ds+

∫

Γ̂3

τVs · n3ds

)

=

∫

Ex+∆x

τSVsds−
∫

Ex

τSVsds

− ŜΩ̂

(

∫

Ex+∆x

τVsds−
∫

Ex

τVsds

)

.

(A.7)
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Defining functionŝτ(x) andŜ(x) in the following way:

τ̂(x) =
1

d(x)

∫

Ex

τ(x, z)dz,

Ŝ(x) =
1

d(x)τ̂(x)

∫

Ex

τ(x, z)S(x, z)dz.

Then, equation (A.7) yields:

∫

Ω̂
τVs · gradSdσ ≈ τ̂(x+ ∆x)Ŝ(x+ ∆x)Vsd(x+ ∆x)

− τ̂(x)Ŝ(x)Vsd(x)

− ŜΩ̂τ̂(x+ ∆x)Vsd(x+ ∆x)

+ ŜΩ̂τ̂(x)Vsd(x).

(A.8)

Dividing the right hand sides of equations (A.5) and (A.8) by ∆x and passing to the limit∆x→ 0,

one obtains:

d(x)
(

p̂(x) + pstat
c

(

Ŝ(x), φ̂(x)
))

=
∂

∂x

(

τ̂(x)Ŝ(x)Vsd(x)
)

− Ŝ(x)
∂

∂x
(τ̂(x)Vsd(x)) . (A.9)

Transforming equation (A.9) we obtain:

p = τVs
∂S

∂x
− pstat

c (S, φ), x ∈ Ω,

where the hats over the functions are omitted.
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