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Chapter 1

Introduction

The papermaking is a highly competitive and fast developing industry., fayer machines have
to be constantly improved. Current studies are concerned with the simulétibe processes oc-
curring in the pressing section of a paper machine. In this industrial fielu#tlieematical modeling

is a powerful tool since laboratory experiments are a challenging andtisoeseeven impossible
task. These studies aim at a development of an advanced mathematicabfibeebressing sec-
tion. It will help us to better understand the inside mechanisms of the proteesnathematical

model will also allow us to perform different numerical experiments with verigets of parameters
in a reasonable period of time. The achievement of the stated goal may leadovémgnts of the

papermaking industrial process.

1.1 Pressing section of a paper machine

The paper production is an industrial application, which attracts attentionmf s@@entists. Itis a
challenging problem, investigated from different points of view by scientista different fields.
We are concerned with the mathematical modeling and simulation of the pressiiog £ a paper
machine.

The paper machine is a huge piece of equipment which typically consistsiofrfain parts
(see Fig.1.1): the headbox, the forming section, the pressing section and the dngtigrsésee
[39, 41]). Special woven plastic fabric meshes are used to transport the theipegh all sections
of the paper machine. During the production process, a wood pulp igdrares] into a final paper
product by performing different dewatering techniques. The heaghavides the suspension which
consists 0H9% of water andl % of solid phase, wooden fibers. In the forming section, dewatering is
performed by the natural filtration and sometimes with the help of suction b&xes.the forming
section, the dry solid content of the paper increases to &06tit In the next section, the dewatering
is carried out by a mechanical pressing of the paper layer againgryreglected fabrics, so-called
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Headbox

Forming Section Pressing Section Drying Section

Fig. 1.1: Schematic representation of a paper machine

felts. The simplest construction of a pressing nip consists of two rotatingwithsthe paper—felt
sandwich transported between them at high speed @p0®m/min as shown in Figl.2 on the
left. There exists also another type of a press nip which is called shog (ses Figl.2 on the
right). The advantage of the shoe press is an extended pressinguuocie js abou300 mm long

in comparison tal0 mm in the roll press case. In contrast, the thickness of the paper—felvigdnd
is about4 mm and the thickness of the paper layer can go downotbmicrometers. During the
pressing of the paper layer against the felts, water is squeezed oet pdpler and enters the felts.
So, the water content of the paper decreases to abbuafter the pressing section. The last section
is the drying section where the remaining water is removed by evaporatipar Baransported over
steam-heated cylinders and comes out of the drying section with a watentofiés.

\ Felt

Fig. 1.2: Press nips: roll press (on the left), shoe press (on the right)

The pressing is a more economic way to remove the water from the paper thanythg.
Therefore, the industry is actively working on improving the dewatering énpressing section.



1.1. PRESSING SECTION OF A PAPER MACHINE 3

The laboratory experiments for the paper machine are very expensivdifficult to carry out.
The simulation approach allows to reduce time and money needed for improeitnigsign of the
pressing section.

The pressing section is composed of a sequence of rolls and typicallyhoee Bheir position-
ing may vary depending on the paper machine. Eigshows a sketch of the pressing section. The
paper web is usually transported either on one felt in the top or bottom positibatween two
felts as a sandwich. In some cases, when the paper web is strong exwmngared to the applied
load in machine direction, the web is transported towards the next press toiph@ dryer section
without any felt support41]. Thus, the paper layer sometimes is in contact with the felt and some-
times separated from it while passing the pressing section. Our mathematiclohtite pressing
section considers the layers to be transported all together. The sepasaaéen into account by
specifying no-flow boundary conditions on the parts of the interfacesravthe layers are not in
contact in reality.

Felt roll

&

Nip

Fig. 1.3: Pressing section

The pressing process in a paper machine is very complex since suctegeatumoving and
deformable porous media, computational domain composed from diffeyems|anultiphase flow,
etc. have to be taken into account. There exist various approaches & thegressing section
of a paper machinelD, 12, 11, 28, 35]. The mass and momentum conservation equations are used
together with a Lagrangian formulation along displacement characteristiq iokd flow lines) in
[28, 35. In [10, 12, 11] the Lagrangian formulation of mass balance is used. In the last work by
Bezanovic et al. I1] the compressible air is also considered. But all these models have a common
feature, which is neglecting the capillary forces. Models which take intowatcthe capillary
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effect are presented i9,[43, 44, 49]. The model described by Bermond ifj] uses a two-phase
flow model including capillary pressure—saturation relations and intredti@ymal aspects. In
[43, 44, 49], the Richards’ approach for flow in unsaturated porous media is adlopltene of the

above mentioned models considers the dynamic capillary pressure efféc, isour main target.
Further on, an advanced finite volume discretization, namely MPFA-O methed)pfoyed here
in order to provide more accurate discretizations. As a starting point, we dteasen the model
realized in 3, 44].

1.2 Dynamic capillary effects

Typically, the capillary effect has a significant influence on the modelinmuitiphase flow in
porous media (se&] 6, 7, 26]). The capillary pressure is defined as the difference in the phase
pressures:

Pec = Pn — Pw,

wherep,, andp,, are the pressures of non-wetting and wetting phases, respectiveiycllide
this effect in numerical experiments, the capillary pressure can benpeelsas a function of the
water saturation, and sometimes of other parameters of the filtration prdtessgpical approach
to obtain this function is to construct the capillary pressure—saturation relzdiged on laboratory
experiments. This process is carried out in the following way. To cortdwuexample a drainage
curve, at the beginning the sample of the porous medium is fully saturated w&itr.wrhen, air
starts infiltrating the sample by increasing its pressure stepwise. When dguiliisrreached, the
capillary pressure and the water saturation are measured. This measuf@ms one point at the
targeted capillary pressure—saturation curve. The time which is neededdo equilibrium after
changing the pressure can take from several hours to several Gaystruction of the complete
capillary pressure—saturation curve for the felt, which is used in ther papéuction process, may
take several days.

Many scientists worked on parametrization of the measurement results ée.f.4s37, 49]).
This approach works quite accurately in case of slow infiltration proses$seur case, the drying
process of the paper pulp takes much less time than the construction of theapétéoy pressure—
saturation curve. There also exist different studies which try to utadetsand parametrize a dy-
namic capillary pressure which is not based on the equilibrium conditior{ §sée13, 34, 45, 23,
24, 25])). Detailed overview and analysis of these models was done by Mantliegaambe found
in [38]. We have chosen the approach proposed by Hassanizadeh avatl@rs in p4]. Their
method was derived based on the physical aspects of the porous medigAflaptation of this
model to processes in the pressing section, as well as performing compatatiperiments for
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evaluation of the influence of the dynamic capillary pressure, are the mads withis paper.

Note, that in the above mentioned papers devoted to dynamic effects in tharggpessure—
saturation relation, the latter is accounted by including terms with time-deriaftibe saturation.
For the papermaking machine, we end up with a model including a spacetderivf the saturation.
This is due to the fact that the paper-felt sandwich is transported witht &5&0—-2000 m/min
between the roles, and follows from the full model derived by Hassdelzand Gray in44, 25].
For fixed porous media, the term with the space derivative of the saturatioshes. We are not
aware of any other paper where the dynamical effects are accounted bpace derivative of the
saturation.

1.3 Discretization methods

The model of the pressing section has several specific features wavettdbe taken into account
when we choose a discretization method. First of all, we would like to presewndaries between
layers during discretization. Therefore, a grid which is based on the del@mations is used. It
means that we deal with a quadrilateral nonorthogonal grid. Morethestayered domain leads to
discontinuities in permeability. In spite of it, the continuity of the pressure anflukes at local
physical interfaces between grid cell has to be preserved. We alsddtake into account that the
permeability is presented by a full tensor and not by a diagonal one.

A number of schemes were proposed recently to discretize such kindhdéprs (seel], 2, 18,
27] and references therein). Some of them were tested by Herbin andtHi2ijdfor various types
of test problems. They concluded that there does not exist the beshedbr any problem and that
the method has to be chosen taking into account the specific features an$idered problem.
Our choice is the MPFA-O method (sek P, 19]). This method is intuitive. It is simply adopted
for the complex boundary and interface conditions, which have to bemwexs and its usage for
our problem has shown reliable results.

1.4 Main goals and structure of the thesis

Goals

e Extend the one-dimensional model for the pressing section of a papemaadtitained un-
der the Richards’ assumption and presentedt#i py accounting for the dynamic capillary
pressure effects. The derived model has to be discretized and tgstmfbrming some
numerical experiments. The purpose of the extended one-dimensional imdd obtain
the behavior of the fluid pressure and the saturation closer to real cnedeéhaviors that
obtained by previously existing models.
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e Theoretically investigate the one-dimensional model. Here the main objectivprisue the
convergence of the discrete solution to the continuous one. The thebsttidees should
be developed for both flow models, namely with the static and dynamic capillasgyme—
saturation relations, with minimal restrictions on input data.

e Extend the one-dimensional model accounting for the dynamic capillargtefte two di-
mensions taking into account a multilayer computational domain and a possimblation of
fully saturated regions.

e Appraise the admissibility of the Richards’ approach for the consideraolggn. The ob-
jectives are to develop a two-dimensional mathematical model for the presssitign which
will account for the air and water phases and to perform numericalriexeets which will
compare solutions of the models with and without the Richards’ assumption.

Structure

Chapter 2: The objective of this chapter is to develop an advanced one-dimensiodal wicthe
pressing section of a paper machine. The mathematical model presendéfli;mgxtended
by accounting for the dynamic capillary effects. At first, a two-dimensionatlel for a
single-layer case is stated. Then, with the help of an averaging precadtine vertical
direction, the one-dimensional model is obtained. Discretization is perfowitadhe help
of the finite volume method. Numerical experiments are carried out for the Imaithethe
dynamic capillary pressure—saturation relation as well as with the static oppraise the
influence of the dynamic capillary effects. We also compare the simulatiotigegth the
existing laboratory experiments presenteddh [

The results of this chapter have been publishe@h [

Chapter 3: To have a better understanding of the behavior of the obtained systequatians
we carry out some theoretical studies. At first, we are concerned witmtteematical
model with the static capillary pressure—saturation relation, which is preseytenonlinear
convection-diffusion equation. We prove the existence and the compgaaihthe solution of
the discrete problem. The main result is presented by the final theorem sHuouals that the
discrete solution converges to the solution of the continuous problem. Finalijjustrate
the obtained theoretical results with the help of a numerical test.

In the second part of this chapter we consider the mathematical model withrtamet capil-
lary pressure—saturation relation. The model is presented by a systemlimfear equations,
which makes the theoretical studies more complex in comparison with the statid=rse
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we start taking into account two possible flow regimes: the saturated aatlueied water
flow. At first, we propose a numerical algorithm of obtaining the solutionefiiscrete prob-
lem. Then, we prove the existence, compactness and the convergdheesofution of the
discrete problem. Finally, the derived theoretical results and made assomptm verified
by numerical experiments.

The results of this chapter have been/will be publishe@in42].

Chapter 4: The objective of this chapter is to develop a two-dimensional model accgutithe
water flow within the pressing section. Richards’ approach is used toidegsbe flow in
the unsaturated zone. The dynamic capillary pressure—saturation reésatéidopted for the
paper production process. The mathematical model accounts for ¢eredsof saturated
and unsaturated zones in a multilayer computational domain. The discretizatienidemed
by the multipoint flux approximation O-method. Finally, different numericalegipents are
carried out. At first, we consider single-layer cases to compare thiksr@asth the previously
developed one-dimensional model and the laboratory experiments. iMeense the sets
of data provided by our industrial partner Voith Paper Fabric and Ratedys GmbH at
Heidenheim to evaluate the influence of the dynamic capillary pressureatgatuelation in
the multilayer test cases.

The results of this chapter have been presenteddh [

Chapter 5: Validity range of the Richards’ assumption, which has been used forrobtgm in
all previous chapters, has to be investigated. A two-dimensional flow noddleé pressing
section is developed accounting for the water and air phases with the spallarggressure—
saturation relation. The boundary conditions are improved in a way thatater i allowed
to escape from the computational domain through the upper and lower &rtesmd/here the
paper-felt sandwich is not in contact with the surface of the pressihg ro

The main focus of interest is to perform numerical experiments for the wewnflodel using
the same input data as in the previous chapter and to compare the resultechbigimthe
help of the Richards’ model and the two-phase flow model.

Results of this chapter are being prepared for publication.






Chapter 2

One-Dimensional Model (Richards’
Approach)

Mathematical modeling of the pressing section of a paper machine is a complaspr which
consists of sequence of steps. At first, one decides how to accatinéfaater infiltration processes
within the pressing zone and for the solid deformations, occurring asili odshe transportation
the paper-felt sandwich through the pressing nips. Secondly, sos@nazde assumptions have to
be made to obtain a model with solvable complexity. Thirdly, we properly chaagscretization
method. Finally, we perform some numerical experiments and compare theeabtasults with
available laboratory experiments.

Some laboratory experiments were carried out by Becl8jinin a single-layer case. Thus, to
capture the main behavior of the fluid pressure and the fluid saturation anchfzare them with the
results from 8] as the first step we are going to develop a one-dimensional model. Thé frmde
[49] will be extended by taking into account the dynamic capillary pressueetsf{see Sectioh?2).
Using this one-dimensional model we will go through all the development.siEps aim of the
one-dimensional simulations is to state a basic mathematical model which can bedthpral
extended in the following studies.

In short, the objectives of this chapter are to present an accuratdimeasional model and
to study the influence of the dynamic capillary pressure—saturation relatitmecsolution of the
problem describing the pressing section of a paper machine. The mathémettdzl, which de-
scribes the basic physical principles behind the pressing processeloped in Sectior2.1. In
Section2.2, the discretization by finite volumes is presented. Secti@mpresents the numerical
experiments. Finally, we discuss results in Secich

9
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2.1 Mathematical model

In this section we state governing equations for the modeling of the water flaineipressing
section. At first, a two-dimensional model is considered. To develop a matieal model for
the pressing section in one dimension we have to consider a computationahdmmgposed of
only one layer. Therefore, the two-dimensional model is stated for théedianger case. Then, the
one-dimensional model is obtained with the help of an averaging proceuiinevertical direction.
To conclude this section a model which is used to account for solid deformsatidhe single-layer
case is briefly discussed. In short, Sectiohis constructed in the following way. At first, we state
a two-dimensional model for single-layer case in Sec#idnl Then, in Sectior2.1.2we obtain
from the two-dimensional model a one-dimensional model with the help of@naging procedure.
In Section2.1.3we present the elasticity model for the single-layer case, which accoumitisef
solid deformations.

2.1.1 Two-dimensional flow model in single-layer case

Concerning the modeling of the pressing section of a paper machine, thespoedium is com-
posed of three phases: solid (denoted by ind€y, liquid (or water) (index ") and air (index
"a"). An Eulerian approachis used to describe our system. The computational dofain R?

\ Z I
s N\ Pressrl,
\_/
I
L\ Vs,in o) I

T
/D
/ SN

press roll

y X

wt---—--

A
Fig. 2.1: Computational domain

and its boundarg$) = T', UTy UT' g UT p are shown in Fig2.1. Let the boundaries d® be given
in the following way:

I, ={(z,2) € R2:z=A, z ¢ [fa(A), fu(A)]}, Tu=A{(z,2) € R?:z € [A, B], z = fu(z)},
F'r={(z,2) € R2:2=B, z¢€ [fa(B), fu(B)]}, Tr={(z,z2)¢€ R?:z € [A, B], z = fa(x)}.
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Then,Q = {(z,2) € R? : 2 € [A,B],z € [f4(7), fu(z)]}, wherez = A andz = B are fixed
points andA < B.

As indicated in Fig2.1, let us assume that the paper—felt sandwich is transported through the
press nips in horizontal direction from the left to the right with velodity;, measured ifim/s].
The horizontal direction is designated &aslirection, whilez-direction is the vertical component.
The third direction is neglected since the length of the cylindrical roll is lagd,lateral boundary
effects are not considered.

Before we start formulating the mathematical model for the water flow in thesipgesection
let us make the following assumptions.

Assumption 2.1.1. (Richards’ assumptioriVithin the computational domain, the air remains at
atmospheric pressure.

Assumption 2.1.2. Gravity is negligible.
Assumption 2.1.3. All phases are incompressible.

Assumption2.1.1is made to simplify the mathematical model. But the admissibility of this
statement still has to be shown and will be investigated in our future workumysson2.1.2is
reasonable since the capillary and external forces are dominant ingb&ny process. Therefore,
the gravity does not significantly influence the movement of water inside thpu@ational domain.
Assumption2.1.3obviously makes sense for the water and solid phases. In case of tihasdr, it
still has to be confirmed.

The mass conservation equatiorBualerian form[5, 7, 26] for the water phase without source
and sink in case of the two-phase flow is:

0 (¢Spw)

wheret is the time in[s], S (|—]) is the dimensionless saturation of the water pha5g denotes
the velocity of the liquid phase i /s], ¢ ([—]) is the porosity ang,, is the density of the liquid
phase, which is measured fing/m?]. Let us remark that in the following all vectors and tensors
will be written in bold type.

Assumption2.1.1states that the air is at atmospheric pressure. This assumption, in connection
with paper dewatering, was earlier successfully employedin49]. Therefore, the air pressure is
considered to be known and saturation of the air phase can be compuigeras— S. Thus, only
the mass conservation equation for the waket)(is considered.

To define the water velocity,, in addition to the mass conservation equation, we have to
consider a momentum conservation. The momentum equation for water @rabe cepresented
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by the generalized Darcy’s law (see .8, 1, 26]). Neglecting gravity (see Assumptiéhl.? and
taking into account a solid velocity, we have:

¢S (Vy —Vy) = _@K gradp,, = € £, (2.2)
wherek,., ([—]) is the relative permeability of the water pha¥g, is the velocity of solid inm/s|,
IS the viscosity of the water ifPa - s], K is the intrinsic permeability tensor {m?], which we
assume to be diagonal,, is the pressure of water [#a]. The solid velocityV ; appears as a result
of the transportation and deformation processes.

According to Assumptio2.1.3 the liquid phase is incompressible (= const). Thereby, the
mass conservation equation for the liquid phdsé)together with 2.2) yields:

8(;;5) —div (]:Z)Kgradpw) +div (¢SVs) =0, x € Q. (2.3)

Eg. .3 has to be supplemented by a capillary pressure—saturation retatienp.(S). In
our case, when the paper—felt sandwich moves with about 2000 m/min etalEz it is difficult
to expect equilibrium conditions to be satisfied and including dynamic capill@gspre effect is
very reasonable. We have chosen the dynamic capillary pressumatiestuelationship proposed
by Hassanizadeh and Gray i?¢] 25]:

s

Dt’

_ Stat __

(Pa — pw) — P2 = —7

x € Q, (2.4)

wherep, is the air pressure ifPa], which is assumed to be zero in the followingis a so-called
material coefficient inPa- s], ps® is a empirical static capillary pressure—saturation relaﬁﬁ,M
is the material derivative with respect to a reference frame fixed to theswdise:

DS 0S

D = o + V, - grad S. (2.5)

In general; may depend on saturation and other parameters, but in these studiescoa@med
only with case wherr is a constant. We also remark that case whea 0 leads to the standard
model with the static capillary pressure.

A paper machine works in a non-stop regime during several days. fohereve are inter-
ested in a steady-state solution and the derivatives w.r.t. tim2 & &nd @.4) are equal to zero.
Remembering that the water is considered to be incompressible (see Assutnptyrnwe obtain:

— div (ka gradpw> +div (pSVy) =0, x €, (2.6)
Hw
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pw+ P =1V -grad S, x € Q. (2.7)

From now on to simplify the notations, we skip index™in the variablesp,,, k., and .

Remark 2.1.1. We should remark that the mode&l.§), (2.7) is suitable only for unsaturated flow.
Evaluation of the fully saturated regions is one of the issues of pressitigrs@codeling. But in
this section, we are not concerned with this side of the problem.

2.1.2 One-dimensional flow model

In this section, we are concerned with the one-dimensional problem in neadingttion with com-
putational domaif2 = (A, B), B > A and boundary)) = {x = AUz = B} (see Fig.2.1).
To obtain the one-dimensional model, we employ an averaging proceduegticaV direction (see
AppendixA.1).

Then, the one-dimensional mass conservation equation yields:

O (2, 2, v B '

o (S@d@Vi@)d@)) =0, ze (2.8)
whereg(z), S(z) andV,}(z) are the vertically averaged quantitiey) = f,(z) — fq(z) > 0is
the thickness of the layer. We assume that in two dimensions the intrinsic pélitpdahsor K

has a diagonal form:
K
Ko | K@ o ]
0 K(¢)
Then, thexz-component of this tensor will present in the one-dimensional model. Takiog

account Darcy’s law4.2) and omitting the hat sign over the averaged functions, E@) (n one
dimension reads:
Op

0
p K(¢)8ZB) + 2 (dpSVs) =0, z€Q, (2.9)

SNpEL

whereV; denotes the-component of averaged vectWf.

We consider the paper—felt sandwich to be transported horizontally witedhstant speed
V.in. Therefore, thec-component of the solid velocity);, does not depend onand it is equal to
|Vs.in|. From now on, we considéf; to be constant for our problem.

The dynamic capillary pressure—saturation relatidm)(after the averaging procedure in the
one-dimensional case yields (see Appendig):

p+ (S, ¢) = TVS%, z€Q, (2.10)
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where all variables are the vertically averaged variables.

Boundary conditions

For the needs of the pressing section simulation, the boundary conditieaschbe imposed. At
first, let us make an assumption.

Assumption 2.1.4.Boundaried’;, andI'r are far away from the pressing zone.
We prescribe Dirichlet boundary conditions for saturatiom at A:
S(A) = Cp. (2.11)

Since the boundary = A of the computational domaift is far enough from the pressing zone,
there is no movement of water with respect to the solid skeleton. The staticaygithary pressure—
saturation relation is satisfied and the following Dirichlet boundary conditiapjdied for pressure
on the left boundary:

p(A) = —pStt(Cy). (2.12)

According to Assumptior?.1.4 on the right boundary the equilibrium with respect to the solid
skeleton is reached as well. Therefore Igawe apply the zero-Neumann boundary condition:

2 —, (2.13)
oz |

2.1.3 Elasticity model in single-layer case

In addition to the flow, one has to account for the deformation of the pormdia. In the current
work we use developments from3, 44]. In these studies the pressing section is simulated con-
sidering the elasticity model weakly coupled with the flow model supplementethtiy sapillary
pressure—saturation relation. For the completeness of the stated modekrdéstall the elasticity
model from B3, 44].

Since the pressing forces are very large (ad®0tkN/m in the roll press) they are the main
reason of the solid deformations. Hence, we neglect the force of wetiagan the solid phase.
Thus, the flow and elasticity models can be weakly coupled. We assume thadlithg@phase is
incompressible (see Assumpti@rl.3 and the porous medium gets deformed by a rearrangement
of the solid skeleton in vertical direction. According ®il[ 49, it is reasonable to assume that the
felt and the paper behave viscoelastically. Then, to describe the bebéthe porous medium we
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use the Kelvin-Voigt model for a single-layer case:
d
t(z) = E(e(z)) + A Vgn @E(E(CIZ)) — ktmaz (), (2.14)

wheret is the stress measured|[ifa]. The dimensionless strain is defined by:

o —I(x)
=

e(x) , (2.15)

wherely is the undeformed thickness of the layer dfd) is the deformed thickness at coordinate
z. In general, the nonlinear functiol is related to the elastic part of the mode\. ([s]) is the
viscoelastic time constant which determines the speed of relaxation. Infcéeepaper layer, we
have to take into account the permanent deformation, which is introduc2d #) py the third term
on the right-hand side. This term depends linearly on the maximum stress th thkipaper has
been exposed multiplied by the constanfThe maximum stress has the form:

tmaz(20) = max t(2). (2.16)
zo€[A,B]

In case when the minimum distandg,;, between pressing rolls is given, the geometry of
the computational domain is precisely defined. Then, the system of Eqg),((2.16) is solved
directly. Another possibility is that the pressing force is given, than thiesyss solved iteratively
for differentd,,,;, while the correct geometry of the computational domain is not found.

Taking into account that the thickness of the layer is small, we considesipoolanges only
in horizontal direction. Then, the porosity reads:

e(z) + ¢o

d(@) = e(r)+1’

(2.17)
where ¢, is the porosity of undeformed layer. Using the computed stress, the flow caeshe
immediately obtained as well as the solid velocity.

This elasticity model, in connection with the flow model equipped with a standatdiymamic)
capillary pressure, is discussed in detail in the PhD thesis of Ri#fIFollowing the approach from
[43], we treat consecutively the porous media deformations and the water flow

2.2 Discretization

To evaluate the influence of the dynamic capillary pressure model, we ceropaes with the
different material coefficients, including case when is equal to zero. Therefore, this section
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consists of two parts. At first, we present the finite difference schentbdéanodel with the static
capillary pressurer( = 0 Pa s) (see Sectior2.2.1). Then, assuming thatis not equal to zero in
Section2.2.2we discuss the numerical algorithm for the model with the dynamic capillargres
saturation relation. For discretization the finite volume method is used (se@@.¢6]).

Let N be the number of intervals into which our computational donfaia (A, B) is divided.
Then, mesh off) is introduces in the following way.

So Sy S Sic1 Sipa Sn-1 Sy
o——+—o o+ +——eo e+ e+ 1+ e
Do P1 DPi—1  DPi Di+1 PN-1 PN

Fig. 2.2: One-dimensional mesh representation and numbering of variables

Definition 2.2.1. The mesh o4, B) denoted byr (4-B) is given by a family{*?))
N* (see Fig.2.2) such that:

A:077N’ N €

(2

Kot = @o.ry). KM = (@ yiey) i= TN L KR = (ay_yan)

and families:

XA — (= A+in, i=0,N}, xP) = {z0 = A+ (i—i— ;) h,i=0,N—1},
whereh = (B — A)/N is the size of the mesh.

2.2.1 Problem with the static capillary pressure

When the coefficient in (2.10 is equal to zero the initial system of Eq&.9), (2.10 becomes a
nonlinear Eq. 2.9 with boundary conditionsX 12, (2.13, where the pressugeis considered as an
unknown variable. Then, saturation is a dependent variable andssgoras an analytical function
of the pressure.

We discretize 2.9) by a finite volume method. Then, the finite difference scheme for the model
with the static capillary pressurg.Q), (2.12), (2.13 is presented by the following system:

po = =" (Co), (2.18)
N Di+1 — Di ~ Di — Pi—1
B S B (2.19)
Ve (diy 16518041 —di 16 15, 1) =0, i=TN -1,

N PN —PN-1

iy = 4 (ngbNSN —dy 165 ) —0, (2.20)
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L i=1,N, (2.21)

where

kr,i—i—% = k‘r(sﬂ-%)v dH_% = d(%H_%), ¢z+% = gb(xﬂ-%)

Assumption 2.2.1.Letpstt (S, ¢) € C((S,, 1] x (0,1)) such thatps®® : (S,,1] x (0,1) < R*,

c

whereS, > 0 € R is the residual saturation[{]).

According to Assumptior?.2.1, the functionps® has an inverse with respect ffunction
( it“t)_l (p, ¢). Therefore, an approximation for the saturation can be given in the fiolépferm:

So = Co, (2.22)
SiJr% = ( ztat)il <_pia ¢2+%) , 1=0,N—1, (223)
SN = (pitat)_l (—pN, ON) - (2.24)

Remark 2.2.1. In case of the standard capillary pressure—saturation relation, the stiturazan
also be approximated in the following way:

So = Co, (2.25)
Sta _1 1 . S AT I

Sivs = (42 (—2 (b + pisa) ,%) i=ON T (2.26)

Sy = ()™ (~pw. o) - (2.27)

This approximation gives us a finite difference scheme with second otdaraey. But the nu-
merical simulations result in nonphysical oscillations. It happens beeani the approximation of
the convective term ir2(9) by central differences. In the following, we choose to have first order
accuracy and solution without oscillations.

The discretization4.18—(2.2]) is a system of nonlinear algebraic equations. It is solved by
Newton’s method (for more details sekr| 36]).

2.2.2 Problem with the dynamic capillary pressure

When the material coefficientis not equal to zero we are concerned with the system of Bd3—(
(2.13, which accounts for the water flow including the dynamic capillary effebie finite differ-

ence scheme for the mass conservation E§) with boundary conditions( 12, (2.13 is presented
by the system of Eqs2(18—(2.21). Finite volume scheme for EqR (L0 with boundary condition
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(2.11) is introduced using an intermediate value of saturation. For each spafialwtesplit the
discrete algorithm into two steps. In the first step, a prediction of Wateraet'mmrvalueSH; for

2
anyi =0, N — 1 or Sy is computed by solving one of the following equations:

So = Co, (2.28)
po = %TVS (8- 50) =5 (S1.01). (2.29)
pi = %TVS (S*H% - Si—%) —D (Si+%v¢i+%> , i=1LN-1, (2.30)
pv =27V (Sx =Sy ) 5 (Sn.6w) (2:31)
where
pstat(S,) for S < S,
p(S) = ¢ pgtat(S) for S, < S <1, (2.32)
pstat(1) for S > 1;
ands, > S,.

At the second step, this value is corrected with the help of a simple restrictevatop:

S« +1n forS’i<S*+n;
Si =<5, forS, +n<5S;<1—mn; (2.33)

1—n for S; > 1 —n;

foralli = {5, N — 4, N}. Heren > 0 is some small value which satisfigs— 0 ash — 0.

Remark 2.2.2. S, may be chosen &S, + ¢, wheree is some small value. It is done to make sure
that the functiorp(.S) is bounded. In this case it is possible to show that solution of this system
exists and converges to solution of the continuous problem (see Sé&jion

Remark 2.2.3. The restriction operatord.33) is introduced to make sure that the saturation has a
physical value from intervalS,, 1). As itis going to be discussed in Sectida this operator may
also be used to include into consideration the second flow regime, nantetsitea water flow.

The proposed finite difference scher2e2@—(2.33 also defines the numerical algorithm which
is used to obtain the numerical solution.
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Table 2.1: Experimental data for one-dimensional test case

Variable Dimension Value
k’r [_] 53.5
3
K [mg} Ko (1f¢)2*
Ky [mQ} 5e — 12
i [Pa s] 8e — 4
Vs [m/min] 100
1/2
pret [Pd alo-1) (v - )
2172
a [Pa] 15250 (C()is'r - 1_15r)
S (%] 10
Sy (%] Sy —1le—3
By [Pal —5000
Cy (%] 50
o (%] 87.5
A [m] —0.05
B [m] 0.05

2.3 Numerical experiments

The goal of this section is to study the influence of the dynamic capillary ymess the behavior

of the solution for different values af and to find out how accurate the obtained one-dimensional
model is. Numerical experiments were carried out for parameters wheédl@ical for a paper layer
during a production process (se&3[44]). The distribution of the porosity and the thickness of the
layer are obtained from the elasticity model briefly discussed in Se2tiof motivated and imple-
mented in {3, 44] (see Figs2.3, 2.4). The remaining data, needed for computational experiments,
is presented in Tabl2.1 (see {13, 44]). Here we notice that the static capillary pressure—saturation
relation satisfies Assumptich2.1made during the development of the numerical algorithm.

2.3.1 Numerical experiment for the different values of the oefficient

Simulation results for the material coefficients betweea 0 and10* Pa s are presented. This
range of the parameter was chosen, because for= 0 Pa s we have the standard model with
p = —pst, then we increase this value by a factorfor each new experiment until we observe
the significant difference for both output functions, pressure andaton. We should note that
this range ofr does not contradict the real values of the material coefficient whick oieserved
in different experiments3, 38].
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The distribution of porosity and the thickness of the layer, which are usedpait data, are
presented in Fig2.3and2.4. Results are shown in Fi@.5 where saturatioty is plotted as a
function ofz. Five different curves are presented, they correspond to vafuesgual to0, 10, 102,

103 and10* Pa s. The case when is equal to zero represents the static capillary pressure curve.
Fig. 2.5 shows that for this set of input parameters, there is no significant eliféerin saturation

for all values except = 10* Pa s. But for pressure (see Fig.6 and2.7) we observe that the
changes start already from= 10 Pa s. Thus, we conclude that the dynamic capillary pressure
model included in the simulation of the pressing problems influences the solution.

It was experimentally verified in8] that the pressure peak locates before the center of the
pressing zone. The model with the standard capillary pressure—saturgltition ¢ = 0 Pa s)
gives a symmetric distribution of the pressure with the maximum value occurtrithg @enter of
the pressing nip and values of the fluid pressure greater or equal to vatisd. But when we
include the dynamic effect in the capillary pressure a shift of the peaksisrebd. Moreover, the
behavior of the pressure profile obtained by our model corresporids éxperimental data reported
in [8]. It means that we observe the same decrease of the pressure beinitidhealue behind the
center of the pressing zone and before the equilibrium w.r.t. the moving $@ikgs reached (see
Fig. 2.6and B]).

Hassanizadeh and co-workers have suggested that the vatuis ¢dirger for larger domains
(see B3] and references therein). Taking into account the thickness of thesfedll values ofr
are expected. This conclusion is also in agreement with numerical an@laboexperiments. Ac-
cording to the behavior of pressure from the experimental data§hesd expect that the material
coefficientr has an ordet0 — 102 Pa s for the test case which is used in our numerical experiment.
Nevertheless, results are presented for the rangefraim 0 to 10* Pa s to observe the sensitivity
of the model.

2.3.2 Comparison of our one-dimensional model with the twalimensional model
from [43]

To evaluate the quality of the one-dimensional model, we compare our nufrresa#ts forr =

0 Pa s with results obtained in43]. The model realized in43] is two-dimensional and takes into
account the geometry of the press rolls. The distribution of pressuramebithy the model from
[43] for the set of parameters described above is presented ir2 FigNote that this experiment

is possible only in the single-layer case. To be able to compare simulation regkserage the
pressure obtained by the 2D model in vertical direction. Pressuredatedpin Fig.2.9 and the
difference between them in Fig.1Q From this experiment, we can see that the order of the error
between the one-dimensional and the averaged two-dimensional modetsuisi@b The error
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consists of two parts. The first part arises from omitting the vertical dineclibis part of the error

is irreducible. The second part appears to be due to the differentdpm@ation schemes. The two-
dimensional model is discretized by the finite element method. Our numerieahscis obtained

by the finite volume method and the upwind approximation is used to discretizenhective term.
Due to this fact, in the Fig2.9, we observe a shift of the pressure curves, which can be redyced b
refining the mesh. Hence, we can conclude that the obtained one-dimedimsioael is suitable for
the simulation of the pressing section of a paper machine in the single-lageamdsn the case of
the diagonal intrinsic permeability tensor.

2.3.3 Convergence test

It is known that in the case of nonsmooth data, unphysical effects cabd®mved in the numeri-
cal solution. Therefore, we perform the numerical experiment foeudifit types of input data to
evaluate the rate of convergence of the approximate solution to the corginneu

Since the analytical solution is unknown, we consider a reference sofoti@wery fine mesh
T*(A’B). This approximation of the continuous solution is defineghbas Then, we compute the
error E,, between the discrete solutign;, for a given mesI’Tn(A’B) and the reference solutign,
in the L,-norm using the following formula:

g ez —prllz,
HpT*”Lz

We should notice thap7, is not the exact solution therefore if we change the step size of the
reference mesh, the dependencg;, can also change. But we assume thats small enough so
that these changes are not significant.

We consider three different cases for input data, the poresity and the thickness of the layer
d(x). The first experiment is carried out for the data which is continuousnbutontinuously
differentiable,¢(x), d(x) € C. These curves have one poiitc (A, B) where first derivatives
do not exist. Then, to obtain the second case when the input data is atweastontinuously
differentiable (), d(z) € C?, we apply the spline interpolation to intervals which contasuch
that(z — 1;/2,2 + 1;/2) for i = 1,2, 3. These intervals have lengths= 2 mm, ls = 5 mm and
I3 = 10 mm, respectively. For the third experiment, we use such functions for thesihyp and
the thickness of the layer that they are differentiable for all degreeiffefehtiation,¢(z), d(x) €

C®°, and given by:
$o — €(x)

o) = T

d(z) = do(1 — e(x)),
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wheredy = 0.56 mm and
C; 2%
elx) = e 245, 1 =1,2,
(z) V2749

with C; = 4.9 andCsy = 5.9. Thus, we study the convergence for six different test cases.
Results for the model with the stationary capillary pressure—saturation refatie 0 Pa s) are
presented in Fig2.11. For dynamic capillary pressure with= 10 Pa s the convergence results are

shown in Fig.2.12 In these figures we also show the order of convergence. The estioraterd
is defined as:

Ne—1

Z log |Ent1/ Byl
IOg |En/Enfl| 7

1
N, —2

r =

n=2
whereN, is the number of experiments.
For the model with stationary capillary pressure=£ 0 Pa s) (see Fig.2.11), the rate of con-
vergence i90(h), but the convergence behavior is the same for all types of input dataas
7 = 10 Pa s the convergence rate is alédh) for all data types.
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Fig. 2.3: Porosity

2.4 Results and discussions

The first objective of this chapter was to investigate the behavior of thkergpressure—saturation
relation proposed by Hassanizadeh and Gray in one dimension in applicati@pressing section
simulation. This relation has shown to have a significant influence on thésteSine obtained
profiles of pressure and saturation affected by the new descriptiore afapillarity have agreed
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Fig. 2.5: Saturation for different values of

with the physical behavior of the pressing process which was obsarnafloratory experiment
[8l.

The second objective was to develop an accurate one-dimensionalforoteldeling the press-
ing section of the paper machine. We have used an averaging pro¢edwmtical direction (see
Section2.1.2 to obtain the one-dimensional results which contains information about ditleer
tions. This model has given very good results, which are comparable egthts obtained by the
two-dimensional model in single-layer case.

The numerical experiments showed that the material coeffieidrds great influence on the
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solution. According to the laboratory experiment presented]iwg expect the order of the coeffi-
cientr to be10-100 Pa s. But there is no information about the range of the coefficiefdr the
present problem and more work, including measurements, is needed.



x 10~

-3.5

vertical direction z, [m]

0
machine direction x, [m]

Fig. 2.8: Pressure obtained with the help of the two-dimensional model #8m [

—-p (2D Rief's model)
-3.61 —p (tau=0 Pals) i

pressure, [KPa]

~5¢0s e 0.05
machine direction x, [m]

Fig. 2.9: Pressure obtained with the help of our one-dimensional model andidhdimensional
model from B3]



0.04

0.03f

0.02f

0.01r

0

-0.01r

-0.02r

difference in pressures, [KPa]

—-0.03r

-0.04r

%05 0 0.05
machine direction x, [m]

Fig. 2.10: Difference in the pressures obtained with the help of our onergional model and the
two-dimensional model from4f3)

~@(x), d(x) [0 C(r=1.0347)
1072 , ; - 600, d0) DCP 1] (1=1.0343) - -

@x), dx) 0 C2 [1,] (r=1.0345)
/ . 9(), d() 0 C? [1] (=1.0344)

7 G0, d) D7 [C,] (=1.0344) |
/ '  __e09,d( 0C7[C,] (=1.0344) |
Z

|
w

A\

L2-error,

|
\\Hh T T T TTTT

=
o

-5

107}

N

-5 -4 -3 -2 -1

10 10 ] 10 10 10
Size of mesh, h [m]

Fig. 2.11: Convergence results for modelgj—(2.13 with 7 = 0 Pa s



10 [ RO . 3
o 7 ; . 0x), d(x) 0 C”[C,] (=1.0852)

L2-error, E

~@(x), d(x) O C_(r=1.0696)
__0(X), d(x) 0 C* [1,] (=1.0847)

L e / 009, d(x) O C? [1.] (=1.0849)
-3 0, d(x) O C? [1.] (r=1.0846)

_9(x), d(x) 0 C” [C,] (r=1.0851) |

NN

/

107 10° 10 10
Size of mesh, h [m]

Fig. 2.12: Convergence results for model9j—(2.13 with 7 = 10 Pa s






Chapter 3

Convergence of the Discrete
One-Dimensional Problem (Richards’
Approach)

Richards’ approachf] is used in a lot of different applications, which deal with the water flow
in porous media. We use this approach to simulate the pressing section oéranpaghine. In
Chapter2 the one-dimensional model was stated and some numerical experimentsrermpd.
Now we would like to investigate this problem from a theoretical point of vievar the one-
dimensional model we are going to prove an existence and a convemfehealiscrete solution to
continuous one.

These theoretical studies are, in particular, motivated by a need for almaterstanding of the
results from our computational experiments. During the following proofirthet data is restricted
minimally to have the theory applicable to real numerical experiments. All assumsptidich are
made in this chapter, are satisfied by the data used in the numerical experim&sdtons.3 3.1.4
and3.2.4 Chapter3 consists of two main parts. At first, in Secti@rl we will be concerned with
the nonlinear convection-diffusion equation, which describes the water\ilithin the pressing
zone including the static capillary pressure model. Then, in Seé&tibthe nonlinear system of
equations which takes into account the dynamic capillary effect will be tigated.

Up to the end of this chapter we consider the functigii’ to depend only on the water sat-
urationS. It is done to simplify the representation of the following theory. In genérahould
be assumed that this function also depends on the porgsgiif: = p'e(S, #(x)). We note that
main steps of these studies remain valid for this more general case. Mriedirés chapter we are
going to keep the simplified notations introduced previously for the watesipres, the relative

29
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permeability of the water phagg, and the water viscosity.

3.1 Problem with static capillary pressure

A lot of theoretical studies were done for Richards’ equation (8&k [47] and references therein).
Most articles consider the case@independent coefficients. This simplifies the system consider-
ably since, after Kirchhoff’s transformation of the problem, the elliptic apmrbecomes linear. In
our case this condition is not satisfied and we have to consider nonlinetopof second order.

Moreover, all these articles are concerned with the nonstationary pmphlkile we are inter-
ested in the stationary case. Due to complexity of the physical processahlem has a specific
feature. An additional convective term appears in our model becaegmtbus media moves with
the constant velocity through the pressing rolls. This term is zero in immobitauponedia. We
are not aware of papers, which deal with such kind of modified steadaRlIs’ problem.

The goal of this section is to show the existence of a solution of the disciaéepr, to prove
the convergence of the approximate solution to the weak solution of the mostifiady Richards’
equation, which describes the transport processes in the presding sktSectior8.1.1we present
the model which is considered. In Sectidri.2a numerical scheme obtained by the finite volume
method is given. The main part of this section is theoretical studies, whicprasented in Sec-
tion 3.1.3 Section3.1.4develops numerical experiments. Results are discussed in Séctién

3.1.1 Mathematical model

The one-dimensional mathematical model for the pressing section was st&tection2.1.2 If we
set the material coefficientto zero the system of Eq=2.0), (2.10) yields to the following nonlinear
equation:

dp

> (10" S ko)) + L svse) =0, sen @)

- o P

whereQ) = (A, B). This equation describes the flow of water inside the pressing section in one
dimensional case taking into account the static capillary pressure—saiuedtition.

We defineb(z) = d(z)K(¢(x))/pu andq(z) = d(xz)p(x)Vs. Using a variable transformation
for z, it is easy to obtain the computational dom&irto be an interval0, 1). Up to the end of
this chapter using the same notationsffoandx, we remember that they differ from ones 7).
Then, the nonlinear convection—diffusion problednl yields:

9 31?) n I(q(z)S(p))

o (st st 2 S =0, 2 e (0) 32)
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with boundary conditions:

_ or|  _
p(O) = P, Iz . =0, (3.3)

wherePy = —ps'%t(Cy), and given constitutive relations:
S=58(p), kr=k-(S). (3.4)

Let us impose some assumptions on the input data, which do not contraddatehased for our
numerical experiments.

Assumption 3.1.1.
(@) b(z) € C(]0,1]), b(x) > 0;
() ¢(z) € C([0,1]), (=) = 0;
(€) kr € C([Sx, 1]), kr : [S«, 1] — [k«, 1] is an increasing function, whete. € R andk, > 0;
(d) S e C(R),S:R — [S,, 1], whereS, € RandS, > 0.

Previously, in Sectior2.2 we made an Assumptich 2.1, which constrains the input function
pstat. In this section to obtain desirable theoretical results we make Assunfptiolfd) instead.
This assumption concerns only the inverse functigp) and it is less strict. We also remark that if
Assumption?.2.1is satisfied and the functiafi is defined in the following way:

S, for p < —pgtat(S,),
S(p) =14 (pstat) " (=p)  forp e (—pitt(S.), —pitat(1)),
1 for p > —pgtat(1);

whereS, is discussed in Rematk 2.2 than Assumptior3.1.1(d) is satisfied automatically.
For simplicity we apply variable transformatign= y + Py, then instead of3.2), (3.3) we
obtain:

_ a% (b(x)k,,(S(y + Po))gi) + a(q(a:)%(g ) o, s o), (3.5)
y(0) =0, gi =0. (3.6)
=1

Let us introduce a subspace®f ((0, 1)) denoted byH:_((0, 1)) such that:

Hj_((0,1)) :={f € H'((0,1))] f(0) = 0}. (3.7)
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Then, the weak formulation of probler@.f), (3.6) with y € H_((0,1)) yields:

' dy Oy ! 0y
/0 b(x)kr(S(y + Fo)) 5 540 — /O a(2)S(y + Po) 5 de

+q(1)S(y(1) + Po)e(1) =0, (3.8)

which is satisfied for alp € C*°((0, 1)) such thatp(0) = 0.

3.1.2 Discretization

To obtain the finite difference scheme we introduce the nES$h) using Definition2.2.1 In
the following, for simplicity we denote the mesh(®!) as7 and the famin(le””) as

i=0,N
(ICi)i:Q—N.
Discretizing Eqg. 8.5 by finite volumes we obtain:

Yi+t1 — Yi
- bi+%kr,i+%T + bi—§ ri=3

+ (qH%SH% —qF%SF%) =0,i=1,...,N—1. (3.9

Integrating Eq. 8.5) overCy and using the boundary conditior& @), we obtain the following
approximation:

b1 h 1 2 *hyN*I + (anSy — a1 Sy_1) =0, (3.11)
where
Frivt =ke(Sip1)s bipa =b(x1) g1 =alz1) (3.12)

and for the approximation af, 1 different choices are possible. For example, the ones discussed
2
in Section2.2.1have the form:

Sii = Swi+h), i=0N-T, (3.133)
2
Sui = S <y+2y+1 + P0> =0 N1, (3.13b)

Sy = S(yn + Ro). (3.14)



3.1. PROBLEM WITH STATIC CAPILLARY PRESSURE 33

3.1.3 Proof of convergence

In order to obtain a convergence of the discrete solution to continuouseed heorer3.1.4, we
should prove an existence and a convergence of the soluti@ipf(3.14) for h — 0 (Lemma3.1.2
and3.1.3. To achieve these results, at first we obtain an estimate (LeBnn3.

The following lemmas and the theorem are proven using a technique whidatsisned inZ0|
for a semilinear elliptic problem:

—Uge(z) = f(z,u(x)), € (0,1);

Remark 3.1.1. Due to complexity of the presented nonlinear problem there are difficultiesbfo
taining uniqueness results for both continuous and discrete problemse Wweido not study this
aspect of the problem.

Lemma 3.1.1. (Estimate) (see]0], page 28, Lemma 2.3)et Assumptio.1.1be satisfied and let
T be the mesh ofD, 1) (see Definitior2.2.1). If there existyo, y1, ..., yn) € RY*! a solution of
(3.9—(3.14), then it satisfies:

N— 1
3 y’* LY < ¢ (3.15)
=0

Proof:  Multiplying (3.9) by y; and @.11) by y» and summing ovei = 0, N, it yields:

N—-1
Yi+1 — Yi Yi — Yi-1

(‘bz'+§kr,z‘+; T + bi—%kr,i—% h) Yi
i=1

N-1
YN —YN-1
3 g5y — g Sy (byoyhonsy 2
i=1

+ (av Sy — qN—%SN—%)yN = 0.

Reordering summation and taking into account that 0, we have:

N-1
(y +1
biJr%kr’iJr - Z q1+1 S szrl — %) +anSnyn =0
0

l\)\»—l

1=
and consequently:

N-1

Z bi%k‘r,i%(yzﬂi < Z 9i1 1S 1 Wir1 — i) | + lanSnyn |- (3.16)
=0
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According to the extreme value theoreB0] and AssumptiorB.1.], there exisb, andb* such
that0 < b, < b(x) < b* for all z € [0, 1] and consequently, < b, i+ <vb*foralli =0,N —1.
Similarly we obtain that there exigt andg* such tha0) < ¢, < ¢(z ) < g*forallz € [0,1] and
consequently, < Gip1 < g*foralli =0, N — 1. Let us remark thal < k, < km% < 1, for all

i =0, N — 1. Now we consider the first term oB(16):

N-1

N—
yz+1 yz+1
“ z+% Ty % h 20: : (3-17)
1= =

By the Cauchy-Schwarz inequality, for the first term on the right-hanelgi¢3.16) we obtain:

N-1 N ! (s 2N 1 3
+1

3 a8y < (5 S0 SR )

=0 =0 =0

Then, using the inequality fof(z) and the facts thaSH% € [Si, 1] foralli = 0,N —1 and
vaol h =1, we have:

= i1 — i)? :
quJrlS L (Yig1 — )S‘J*<thl>- (3.18)

1=0

The second term on the right-hand side of inequdify6yields:

N-1 N 2
lanSvyn| < ¢ lyvl = ¢*lux — vl < ¢ lyirr —wil < ¢* (Z Yl — ) . (3.19)
2
Then, inequalities3.16—(3.19 give us the estimate3(15 with C = <b = ) : ]

Lemma 3.1.2. (Existence of solution) (se€(], page 28, Lemma 2.3)et Assumptio.1.1be sat-
isfied and letZ” be the mesh of?, 1) (see Definitior2.2.1). Then there existg¢ = (yo, y1, ..., yn) €
RN*1 a solution of 8.9—(3.14).

Proof: Letv = (vg,v1,...,uy) € RVF! be some vector. Then, it is easy to show that there
exists a unique’ = (yo, y1, ..., yn) € RV, the solution of 8.9—(3.11) with (3.12) and instead of
(3.139, (3.14) the following is used:

Si+% =S+ Fy), i=0,N-—1, (3.20)
Sy = S(UN + P()). (3.21)
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Here we assume thas.(L3g is used for approximation of the original problem. The proof is also
true if Eq. 3.131 is used for approximation instead & {33.

It means that there exists a continuous applicafidinom RV *! to RV *! such thaty = F(v)
and(yo, y1, -.., yn) is @ solution of 8.9—(3.14) if and only ify = (vo, v1, ..., yn) is @ fixed point of
F.

Let us introduce a discrete,-norm:

1
2

N
||V”L2((071)) - (Z UZQh> forv = (U07U17 "'>UN) € RN+1, vo = 0. (322)
=0

Now we are going to prove the next inequality:

N-1

%
V; — U; 2
[IVIlzae0,1)) < <Z (i1 —vi)” Hh ) ) : (3.23)

=0

For|v;| using the triangle inequality and the Cauchy-Schwarz inequality we have:

i—1 N-1 N-1 (031 — 0;)’ 2
|Ui|§Z|Uj+1*Uj|S Z\vﬂl*vjlé ]JFTJ , foralli =0, N;
j=0 j=0 j=0
then:
1 1 1
N 2 N 2 N N-1 (041 — v;)? 2
IVllLaoay = | D vih o) Swih| <D on e B2

=0 o \i=l =1 j=0

Thereby, 8.23 is proven.
Note, that inequality3.15 is also true for 8.9—(3.11) with (3.12 and @.20. Then, @3.23
together with 8.15 gives

HEMW a0, = [1¥1lzo0,1y) < € forall [[v]] 1, 0,1y < €

whereC' = C=. It meansF(By) C Bg, whereBe is a closed ball of radiu§’ and cented in
RN+ Then thanks to the Brouwer’s fixed point theorehf][ F has a fixed point inB. This
fixed point is a solution 0of3.9)—(3.14). Thereby, existence is proven. ]

Lemma 3.1.3. (Compactness) (se€(], page 29, Lemma 2.4)et Assumptior8.1.1be satisfied
and letT be a mesh ori0, 1) (see Definitior2.2.1). Let (yo,y1,...,yn) € RV*! be a solution of
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(3.9—-(3.14 and letys : (0,1) — Rbyys(z) = y; if x € K;, i = 0, N. Then the segs for all 7
is relatively compact irL?((0, 1)). Furthermore, ify7, — yin L?((0,1)) andh,, — 0, asn — oo,
then,y € H}_((0,1)).

Proof: By the Kolmogorov compactness theorem (s&d,[page 93, Theorem 3.9) to prove that
yT is relatively compact irL?((0, 1)), it is sufficient to show that:

e the setys is bounded inL?(R) for all 7,
i HZ/T(' + V) - yTHLQ(]R) — 0 asv — 0 uniformly.

Step 1. Functionyz(x) can be redefined agr(z) = y; if x € K;, i = 0, N otherwise
y7(x) = 0. Using the facts thagy = 0, the Cauchy-Schwarz inequality and estim&é.§), for all
z € R we have:

N |=

- U
lyr ()] < Z [Yyit1 — yil < <Z Zhl> <C. (3.25)
i=0 i=0

It means that the set-(z) for all 7 is bounded in.2(R).

Step 2.Let0 < v < 1. We definexz.+% :R — Rfori=0,N—1such thatXH%(o:) =1if
Tyl € [z, + V] andXH%(l') =0if g1 &z, +v] andXN+%(CU) =1lifazy € [z,z + v] and
XN+%(1‘) = 0, otherwise.

Then, for allz € R we have:

N—-1 2
(yr(z +v) —yr(2))* < (Z [Yie1 = Yilxip 1 (@) + ?JNXN+§($)>
i=0

. 2 . (3.26)
Yi+1 — Yi
<2 (; (+h)xi+;($)> (; hxi+;(af)> +2yR X1 (@),
Integrating 8.26) overRR, we obtain:
= (i1 — )’
i+1 — Y
lyz (- +v) = y7 )52 < 2(v + Qh)/]R (2; +hXi+é(m)> dx
+2C’2/ X1 (®)dz
BT (3.27)
= (i1 — i)’ |
=2(v +2h) ; h/RX”é(x)dx +2Cv

< 2C(v + 2h) / Xi+%(£6)dl‘ +2Cv =2Cv(v +2h +1).
R
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Sinceh < 1 andv < 1, we conclude:
lyz (- +v) = y7 |72y < 8Cv. (3.28)

Thereby, the second condition in the Kolmogorov compactness theoreovepr

Step 3.Let us prove thatyr, (v + hy) — yz, (x))/hy, converges t@y/Ox for all x € (—o0, 1)
in a weak sense arig, — 0, asn — oo. Lety € C§°((—o0, 1)) andsupp ¢ C (0, 1). The discrete
function 7 is defined in the following way:

wi =@(x;), Ifxek;, i=0,N;
or(r) = _
0, otherwise

Let us redefine the functiops(z) such that ifx € [xN,xN+;] thanyr(z) = yy and ifz €
2
(xN%,xNJF%} thanyr(z) = yn+1 = yn, then we obtain:

(yfn(- +hn) —yr,

Iy, y PT,

o0 han

) o1, dz
La((—00,1))

Nl/ Y

n
1

=0
N_ . J— .
==Yyt (3.29)

1=0

_ _Zyi%‘ —h%—1hn
. n
=0

I R AR P

o0 hn

—_

The function% is bounded in.(R) (see 8.19). Then, for any sequence of meshes
(7,)nen such thath,, — 0, asn — oo, there exists a subsequence, still denoted®y,,n, such
that functionyT"('ﬂ’;:)*yT" weakly converges to some functiar(z). We also know that;, — y
in L?((—o0, 1)) andh,, — 0, asn — oc.

On the other hand, thanks to the regularity of the functidm) we have thatpz, strongly
converges te and ‘”"(‘”)_fjn (2=hn) strongly converges té%. Then, passing to the limit ir8(29),
we obtain:

1 1 "
/ w(z)p(z)dr = —/ y(m)agi )da:. (3.30)

—0o0 —0o0
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By the definition of the weak derivativ& (30 proves thatv(z) = %. Using B.15, we have:

|

We also have thagg = 0if 2 € (—o0,0). Hence, the restriction afto (0, 1) isin Hi_((0,1)). m

8y2

< (.
ox =C

La((=00,1))

Theorem 3.1.4. (Convergence) et Assumptior.1.1be satisfied. For the mesh on (0, 1) (see
Definition2.2.7) let (yo, y1, ..., yn) € RV be a solution of §.9—(3.14) and letys : (0,1) — R
beyr(z) = y;if z € K;,i =0, N.

Then, for any sequence of meslti&s),.cn such thath, — 0, asn — oo, there exists a
subsequence, still denoted B, ),cn, such thatyz, — y in L%((0,1)), asn — oo, wherey €
H}_((0,1)) is a solution of 8.8) with given functions3.4).

Proof: Let(7,),en be asequence of meshes(onl) such thah,, — 0, asn — oco. Lemma3.1.2
gives us the existence of solution of the proble®B)—(3.14) for any mesh7, from sequence
(75)nen- According to Lemma. 1.3 there exists a subsequence, still denotetify,,cn, such that
yz, — yin L*((0,1)) asn — oo. In order to conclude the proof, we show that H}_((0,1)) is
a solution of 8.8).

Letp € C*°((0,1)) be such thap(0) = 0. Then, the weak formulatior8(8) can be rewritten
in the following way:

T+ T, —1T5 =0, (331)
where:
1
7= [ bl (St + )52 S (3.32)
Ty = q(1)S(y(1) + Fo)e(1), (3:33)
1
T3 = /0 q(z)S(y + Po)gid:c. (3.34)

Let 7,, be a mesh orf0, 1) (see Definitior2.2.1) which is one of the meshes of the extracted sub-
sequence€7, )nen, andy; = (z;), ¢ = 1, N andgpg = 0. If (yo,91,...,yn) IS @ solution of
(3.9—(3.14 on the mesHy,,, multiplying (3.9), (3.11) by ¢; and summing over = 1, N yields:

-

N—-1 N—-1
Yi+1 — Yi Yi — Yi-1
<—bi+;kr,i+;hn + bi—%kr,i—iihn ) oit ) (441501 = ¢ 15, 1)@
i=1 =1

+ bN_%krvN_%yN_hijN_lﬁpN + (gn SN — qN_%SN_%)(PN =0. (3.35)
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By reordering summation ir8(35, we obtain:

"+ 10 — T8 =0, (3.36)
where:
Yi+1 — Yi Pi+1 — i
Z bz+§ rz+2 ho, ho, han, (337)
Ty = QN5N<PN, (3.38)
Pit1 — Pi
Z R (3.39)

Tl
Thanks to the regularity of the functian we notice, that:

Yiy1— i _ Op

hy, _89533 + B

1:+%

i+1, where[R; 1| < C1h2, (3.40)

with someC; only depending orp. Therefore, 8.37) yields:

7 =17 + 17, (3.41)
p Y yi, Op
~n +1 — Yt
M= bkt st (3.42)
=0 n OCH_%
pl y Y
+1 — Ys
Z FE %TRH%hn. (3.43)

1=0

Using inequality 8.25), we conclude that*5— is bounded. Thus, we haﬂA%{fQ — 0, asn — oo.
Substituting 8.40 in (3.39, we obtain:

T3 =15 + 13, (3.44)
N-1 8(,0
T3, = Z Gis 1 Sivhn 5 , (3.45)
1+%
N—-1
TB 2= Z qz+1Sz+1Rz+§h : (3.46)

Since the functiong(x) andS(y) are bounded, we ha\@’f2 — 0, asn — oo. We also remark,
thatTy — Ty, asn — oc.



40 CHAPTER 3. CONVERGENCE OF THE DISCRETE ONE-DIMENSIONAL PRCEM

Let 77, and7y, be presented in the following way:

) 1 hy) — 9

i, = / b, by, YT i) ~7, () (“’) e, (3.47)
? 0 ’ hn 83? Tn

N 1 890

Ty, = S — d 3.48
3,1 /0 qr, T"<(9x>7n z, (3.48)

where

kr () = kg1, b (2) = b1, gz (2) = g1,
9o\ _ 9v
ox ) 1. - Oz

if z € [x;,z;41] foralli =0, N — 1.

T, 1
z+§

Now let us show thabz, converges t& asn — oo. Let SH% be approximated by3(139 as
we used in Chaptet, then:
51, (x) = S(yz, (%) + Fo). (3.49)

Sinceyr, — yin L?((0,1)) asn — oo, Sz, — S in L?((0,1)) asn — oo. Itis also clear that
kr1, — k, asn — oo, bz, () — b(z) andgr, (z) — ¢(x) asn — oo, a = 1,2. Remembering
(y(- + hn) — y)/h, converges t@y/Ox in the weak sense df,((—o0,1)) asn — oo (see proof
of Lemma3.1.3, we obtain:

17y — Ty asn — oo,

15 — T3 asn — oc.

Hence the theorem is proven. ]

3.1.4 Numerical experiments

To illustrate the theoretical results obtained in the previous section we carry wumerical ex-
periment for a test problem. We consider probl&)—(3.4) with input data given in Tabl&.1.
Note, that these data satisfy Assumptiofh.l In general the problenB(2—(3.4) does not have an
analytical solution. But in this particular case it is given by:

p(z) = —23+3z -1, z€[0,1].

To solve this nonlinear problem we use the Newton—iteration method. A termiratterion



3.1. PROBLEM WITH STATIC CAPILLARY PRESSURE 41

Table 3.1: Experimental data for numerical experiment with the static capiliapspre
Variable Value

eCE

)
r)  e*(—3x2+3)
S(p) 5= arctanp+ 3
k.(S) S

Py —10

for the iteration process is:

k
A
1%, Iz, ’

wherek is the Newton iteration numbef,, is the given mesh and = 10~*. The saturation and
pressure are shown in Figs.l and3.2, respectively. Fig3.3represents the errdr,, between the
discrete solutiorpz, and continuous solutiop in Ly-norm. The errorE,, is obtained using the

following relation:
g, - lp—prlL,
HPHLQ

and it converges with the rate(h,,) asn — oo.

This numerical experiment illustrates one particular example when the digcodtlem has a
solution as it was proven in Lemn3al.2and this solution converges to the analytical one as co
(see Theoren3.1.4. In Fig. 3.3 results for the convergence of the discrete solution to continuous
one are shown. The obtained rate of convergene2(is). Hence, the numerical experiment for
the model with the static capillary pressure proposed in previous chaptesagith the obtained

theoretical results.

3.1.5 Results and discussions

In this section we were concerned with theoretical studies for a mathematidel mith the static
capillary pressure, which was developed to simulate the pressing sectiopaper machine. The
existence of a solution of the discrete problem was shown. We presemrtguidbf of the weak
convergence of the approximate solution to the continuous one. Let ughattthe uniqueness
of the solutions was not discussed since there are certain difficultieeftingthese results due
to complexity of the problem. As the final result the numerical experiment wefenmed for the
test problem with a known analytical solution. Thus, we illustrated the agmterhthe developed
theory with the particular test case. With the help of this numerical experimerappraised the
order of the convergence, which@¥ k). Although, it was not possible to obtain it in our theoretical
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Fig. 3.1: Saturation for the test case with the static capillary pressure
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Fig. 3.2: Pressure for the test case with the static capillary pressure

studies. We would like to note that the first order of convergence waglascase in numerical
experiments performed in Secti@r3
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Fig. 3.3: Convergence results for the test case with the static capillargupesconvergence rate
r=1.0)
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3.2 Problem with dynamic capillary pressure

One of the main challenges of the pressing process modeling is the studyiroeseleading to
appearance of the fully saturated zones. This issue was not comshiEfoge. But in this section
we start including the second flow regime, namely the fully saturated water fiinst of all, it
allows us to observe how the dynamic capillary pressure behave in cabe pfesence of the
fully saturated zone. Second of all, the second flow regime is necessahtaim the existence
and convergence results for the model with the dynamic capillary presghieh we study in this
section.

As a result of the two flow regimes, we have to deal with a free boundatyiggro There
exist theoretical studies which investigate the convergence of discreteordor free boundary
problems describing various applications such as fluid flow in porous mel&acle problems
and elastic problems (seéd, 32] and references therein). In this section we are concerned with
a proof of convergence for the system of equations describing wateriril the pressing section.
The main issue during these studies is the proof of convergence of thretdisiomain with the
single-phase water flow. To obtain this result we assume that the soluti@ntificous problem
has a non-degeneracy property. This kind of assumption was use@dkeldick and Siebert in
[16] to resolve the same issue. To prove the existence and the compactnessalution of our
discrete problem we use technique frabd][ This approach uses minimal restrictions on input data
to prove the convergence of the discrete problem to continuous one.

The mathematical model for the flow in the pressing section of a paper machiok is pre-
sented here includes into consideration the dynamic capillary pressurmodel this effect we
choose the dynamic capillary pressure—saturation relation proposedssahizadeh and Gray
[23, 24, 25]. In domain with unsaturated water flow we obtain a system of two nonlinaesa-eq
tions, which makes the theoretical studies more complex than in case of stgsiady) capillary
pressure—saturation relation. There are some theoretical studiesflomttmeodel with the dynamic
capillary effect. They deal with existence and uniqueness of the sol&n{0] and references
therein). As opposed to our work, they have considered a time-depepd®lem with the dy-
namic capillary pressure—saturation relation including partial derivative ¥ime. In our case, due
to specificity of the pressing process we are concerned with a steddypstédolem with the dy-
namic capillary pressure—saturation relation depending on partial thegivar.t. space coordinate.
We are not aware of theoretical studies which deal with this kind of problems

Here we investigate the one-dimensional model of the pressing section innmalifection.
This model can be used only in case of the computational domain composeé tfy@r due to
the dimensionality. If we want to be more close to real applications we haventodaw at least a
two-dimensional model, where it is possible to include the multilayer case. Theigee used in
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our studies is seemed to be possible to extend to two-dimensional model buh aithgle-layer
case (see, als@(], where basic ideas and algorithms are applied for 2D and 3D problem$, als
For multilayer problems discontinuities in the input data arise. Thus, absoliftelyedt theoretical
approaches have to be used in this case.

In short, the objective of this section is to study theoretically convergehtieecsolution of
the discrete problem to the solution of the continuous problem. The one-donahsontinuous
model including the dynamic capillary pressure effect, which describé&srflaw in the pressing
section is presented in Secti@2.1 In Section3.2.2, the nonlinear finite difference scheme and
its implementation algorithm are presented. The theoretical existence arefgenee studies are
presented in Sectioh.2.3 Some numerical tests are developed in Sed@i@W Final remarks and
discussions are presented in Sectiah.5

3.2.1 Mathematical model

When one models the pressing section of a paper machine it is important tateviailly saturated
zones. Therefore, one has to account for two possible flow reginide th& computational domain.
Let us assume that the computational dom@iis divided into two subdomains such that =
QluQ? andQ' N Q2% = () (see Fig.3.4). Q' is the domain, where single-phase (water) flow
takes place, anf}? is the domain, where two-phase flow occurs. Then, the interface betivesa
domains is denoted by = QI N Q2.

Let us shortly recall the main conditions under which we developed the nmo&elction2.1.
Since the aim of this work is to investigate one-dimensional model, we consithegeawhen the
computational domaifR is composed of one layer. We assume that this layer is transported through
the press nips from the left to the right with velocWy, ;,, measured ifin/ s] as indicated in Fig3.4.
Remembering that a paper machine works in a non-stop regime during |sgtegsawe state the
model under steady-state conditions. According to Assumpatiorg the water is considered to be
incompressible.

The first regime is a single-phase flow model. We describe it with the help af coaservation
equation for the water phase and Darcy’s law in the case of moving paned& and neglected
gravity term (for more details seé]):

K
—div (M gradp) +div(¢V,) =0, x € Qb (3.50)
The second regime is a two-phase flow, which is simulated using Richaighasions, the

mass conservation equation for water phase, the Darcy law and the dyoapillary pressure-
saturation relation derived by Hassanizadeh and GtayZ4, 25] (for more detailed explanations
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Fig. 3.4: Computational domain with two flow regimes in single-layer case

see Sectior.1):
ky
— div (K gradp) + div(¢SV,) =0, x € Q?, (3.51)
7!

p+ptat(S) =1V, -grad S, x € Q2. (3.52)

On the interfacé’ between the domains with the different flow regimes we satisfy the continuity
of the pressure and the normal fluxes. We introduce opef#éiprwhich indicates a jump of a
function f across the interfack:

Then, the interfacial conditions, the continuity of the water pressure ambtitinuity of the normal
fluxes across the interfadeyield:

[plr =0, [Juw-n]p =0, (3.53)

wheren is the unit normal vector tb, J,, is the water flux, which is defined as:

K O1.
—=gradp+ ¢V forx € Q;
Jw = { K (3.54)

—%Kg1"adp+ngVS forx € Q2.

We obtain the one-dimensional model by averaging the two-dimensional nmodeiftical di-
rection (for more details see Secti@rl.2and AppendixA.1). Therefore, a thickness of the layer
d(x) is included into the final model:

9 <d($)K(¢(:r)) 8p> 0

B 1
o W)t (d(z)p(2)Vs) =0, z € QY (3.55)
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9 (d(z)’”f )K<¢<w>>§§) + 2 doVs) =0 ze 0t (356

oS
Az
In one dimension, the domaifis' and)? are presented by the sets of intervals such@at Q2 =
QandQ!' N Q2 = (. Moreover, as in case of the theoretical studies for model with the static
capillary pressure, it is assumed that the one-dimensional computatianalird@Q is an interval
(0,1) obtained by the simple variable transformation.

We consider the paper-felt sandwich to be transported horizontally witlktdhstant speed
V.in. Then, thexz-component of the solid velocity; does not depend on and it is equal to
|Vsinl-

Let us define functions(z) = d(x)K(¢(z))/p, q(z) = d(x)p(x)Vs andec = Vs = const.
Then, the nonlinear system of Eq8.§5—(3.57) can be rewritten as:

p+pii(S) = Vi 2 € Q% (3.57)

9 (2P ;. 9alx) _ !
o <b($)8w> + . 0, ze€Q, (3.58)
9 op\ | 9q(=)S) _ 2
~ (b(m)sz(S) 695) + P 0, =€ (3.59)
p+pilat(S) = ca—S, x e’ (3.60)
Ox
The boundary conditions yield:
Jp

=0, S(0)=Cy. (3.61)

r=1

p(0) = P (Co), o

The interfacial conditions3(53 have also to be satisfied for the one-dimensional water flux defined
by:

—b(x) %2 + ¢V, for z € O1;
Jw{ (@)ge +¢ (3.62)

—b(x)k, 22 + ¢SV, forz € Q.
Let us impose the following assumptions on the input data:
Assumption 3.2.1.
(@) b(x) € C(]0,1]), b(x) > 0;
(b) q(z) € C([0,1]), q(x) = 0;

(€) kr € C([Sx, 1]), kr = [S«, 1] — [k«, 1] is an increasing function, whete. € R andk, > 0;
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() ceR,ec>0;

(f) pstat € CH([S«, 1)), pstat : [Si, 1] « [p«, p*] is a decreasing function, wherg, € R and
Sy > 0.

These assumptions are physical and satisfied for the input data usednaroarical exper-
iments. The first three statements are the same as in case of the static capdtmyrg@r As-
sumptions2.2.1(d), (e) are required for the following proof. We should remark that they do not
contradict the data used for our numerical experiments. Assumpiioi(f) coincides with the As-
sumption2.2.1if, in addition, it is specified thaps'* is the one-time continuously differentiable
decreasing function anf, is defined by Remark.2.2 Although AssumptiorB.2.1(f) is stricter
than Assumptior2.2.], it is still satisfied for the input data used for the numerical experiments.

Taking into account imposed assumptions, we can reformulate proldgr§-((3.60 in the
following way:

—% <b(:z:)kr(5)g§> n a(qg;m —0, z€Q, (3.63)
Ao+ r " (S) = 5, 7 €0, (364)

where functiorg(.S) takes the form:

f v 1);
é(S){l/c or S € (S, 1) 25)

0 for S ¢ (S, 1).

Using Assumptior8.2.1, we notice that Eq.3.63 coincides with Eqg.%.57) in the domairQ!
and with Eq. 8.58) in the domair2?. Continuity of the pressurein whole domairt? follows from
the definition of the non-linear convection—diffusion E§.63. Continuity of the normal fluxes
directly follows from integration of Eq.3.63 over a small interval which contains the interface
betweer2! and?.

Eqg. (3.64) with (3.65 transforms automatically into E¢3.69) in the domair2?. Let us prove
that in the domaif2' one of the following equations are satisfied:

S=5, S=1.

We are going to show that solution d3.64), (3.65 is bounded and belongs to interval,, 1].
Integrating 8.64) over interval(0, z) for somez € (0,1) and then findindS(z) — S(y)| we can
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show that solution of3.64), (3.69), S, is a continuous function.

Let us assume that there existsE ) such thatS(z) > 1. Since the functiort' is continuous
there existg € (0, z) such thatS(y) = 1 andS(z) > 1 for all x € (y, Z]. Then, we have:

S(&) = Co + / "o(S) (p+ 21 (S)) i + / ") (p 4 pe(S) e
~sw)+ [ " HS) (p 4+ p(S) )t = S(y).
)

Hence, we have obtained a contradicti®ft) = S(y), which proves that < 1. Using the same
approach it can be proven thét> S,. Thus, system of Eqs3(64), (3.65 guarantees that solution
Sisin[Sy, 1].

Remark 3.2.1. Our model 8.63—(3.65 contains a fictitious regime when saturation is equal to
S.. This case is included only to make the formulation of the model homogefeall values of
saturationsS. The fictitious domain method is quite popular method to solve PDEs in nodasthn
domains or to simulate processes described by free boundary prabieoms the physical point of
view instead of Eqs3(63—(3.65) in this case we should formulate the following equations:

We will not investigate the error introduced by such fictitious domain teclenigjmce in all our
numerical experiments the single-phase air flow has never occurred.

In order to simplify notations, we apply variable transformatior= y — p5'%*(Cj), then we
obtain the following nonlinear boundary value problem:

9 9y , 9g(z)S) _
5 (b(m)kr(S)&E> + g =0, e (01), (3.66)
Sy +9(8) = 5o we (0,1], 367
y(0) =0, (3.68)

oy B
2a|_ = 0, (3.69)
S(0) = Cp, (3.70)

whereg(S) = pstat(S) — pstat(Cy).
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Let H}_((0,1)) be the subspace @f*((0, 1)) satisfying

Hj ((0,1)) :={f € H'((0,1))] f(0) = 0}.

Then, we consider the weak formulation of probler60—(3.70):
findy € H}_((0,1)) andS € Ly((0, 1)) such that

! dy g ! dp B
/0 b(x)kr(S)a—xada: - /0 q(x)SEda: +q(1)S(1)p(1) =0, (3.71)
1 1
_ / &(S) (y + 9(S)) wda — / sgﬁdx +8(1)p(1) =0, (3.72)
0 0 X

for all ¢ € C°([0, 1]) such thatp(0) = 0.
In order to prove the main convergence theorem we will assume that theifalloon-degeneracy
property is satisfied.

Assumption 3.2.2.For anye > 0 there exist9,. > 0 such that:
meas ({z € Q: 5 € (S, 5 +d)U(1—-6,1)}) <e (3.73)

This kind of assumption was used by Deckelnick and Siebeitdhtp prove the convergence of
the discrete domain with the free boundary to continuous one. Without thidegeneracy property
is not possible to complete the proof of convergence. We are going toifg trex admissibility of
this assumption by the numerical experiments.

3.2.2 Discretization

The finite difference scheme for the one-dimensional model with the dynaapitacy pressure
was stated in SectioB.2. Since in this section we investigate the proposed numerical algorithm
let us recall the finite difference scheme here. Let the nfesle introduced on the computational
domain(2 = (0, 1) (see Definitior2.2.1). The mass conservation E§.6) discretized by the finite
volume method yields:

Yo = 0, (3.74)
Yi+1 — Yi Yi — Yi—1
_b”%krv”%T + bi—%krvi—%T (3.75)
+(qz+% i+% q; %Si_l) =0, i=1,N—-1,

bN_%an_%#—F(QNSN—qN_%SN_%):0, (3.76)
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where
kmur% = kr(SH%)? bi—i—% = b(xi-‘r%)’ %+l = q(xi'F%)' (3.77)

To discretize Eq.3.67) we have the following two-step algorithm:

So = Co, (3.78)

% (yo + §(5’%)) = %(Sé — So), (3.79)
% (yi +§(Si+%)) = %( Az‘+§ - Si—%)7 i=1,N—1, (3.80)
"o +a05w) = 2(8x — Sy y), (3.8)

where
9(Sx) for S < S,

g(S) = { g(5) for S, < S <1, (3.82)
g(1) for S > 1.

The second correction step has the form:

S« +1 f0r§i<S*+17;
Si=145; for S, +n <S8 <1—mn; (3.83)

1—n for S; > 1 —n;

foralli = {3, N — 1, N}. Heren > 0 is some small value which satisfigs— 0 ash — 0.

We note here, that the correction step in an implicit way defines the discrategaof the
functioné(.S).

3.2.3 Proof of convergence

To prove the convergence of discrete solution &f7{—(3.83 to continuous solution of3(77),
(3.72), first we consider Eqs3(74—(3.77) separately from Eqs3(78—(3.83. In the following two
lemmas we prove existence of solutions of each of these problems.

Remark 3.2.2. Due to complexity of the presented nonlinear problem there are difficultiesbfo
taining uniqueness results for both continuous and discrete problemsisiwdink we do not study
this aspect of the problem.
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Let us introduce the following notation:

Lemma 3.2.1. Let AssumptiorB.2.1 be satisfied and leT” be the mesh o0, 1) (see Defini-
tion 2.2.7). LetS = (87%,5%,...,SN+%)T e RY+2 pe some given vector, such theit 1 €
[Sx + n,1 —mn] forall i = 0,N + 1. Then, there exists a unique solution Gf714—(3.77),
y = (Y0, 1, ...,yn)T € RN*L such that:

N- 1 (y 2 2
z+1
Z < Cf = (b*k*> :

whereg, < Qiy1 <g*andb, <b

<b*foralli=0,N —1.

1
2
Proof:  Following the proof of Lemma&.1.1and3.1.2from Section3.1.3we obtain the required
result. |

For any given vectov = (v_1,v1,

1,0 Un,1) € RN*2 we introduce the following seminorm:
2 2

N[

N

(V41 1 2
HDVHLQ((O,l)): Z—Z W . )

=0
wherehg = h/2, h; = hforalli = 1,N — 1, hy = h/2.

Lemma 3.2.2. Let AssumptiorB8.2.1 be satisfied and lef be the mesh o010, 1) (see Defini-
tion 2.2.10). Lety = (yo,%1,...,yn)? € RV be some given vector, such that| < C; for
all i = 0, N. Then, there exists a solution &f.{9—(3.83, S = (S_1,81,-., SN+%)T € RN+2,
such that:

Si1 € [Sc+n,1—n, i=0,N+1 (3.84)

1

and .
+ *
1DS a0y < G2 = ==, (3.85)

whereg* = p* — pstat(Cy).

Proof: The systemd.79—(3.81) can be considered as a Cauchy problem with the initial condition
(3.78. Hence, we can solve these equations sequentially. At first, let ugdleosy. 3.79 in the
following form:

)) - (3.86)
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In Eq. (3.86), 87% is given by B8.78. We denote the right-hand side of E§.6 asG(S‘ ). We

notice that(¥ is a continuous function of . It is easy to see, that:
2

1
2

h
G)] < Co+ 5-(C1+ ")

for any givenv. It meansG(B,) C B,, whereB, C R is a closed ball with radius = Cy +
%(Cl + ¢*) and centef). Using Brouwer’s fixed point theorem we conclude tGdtas at least one
fixed point inB,., which is a solution of$.86).

After the correction ste3(83 for vaIueS% we have:

S%E[S*—l-n,l—n].

The same boundedness result can be obtained for éyggy 1=2,N + 1.
It remains to prove estimate3.85 for HDSHL2((OJ)). Using Eqgs. 8.80), (3.82, (3.83 we
obtain:

Sipr =51 Az’ 1 =51 * -
ta 2l 17 2 <Cl+g, i=1,N— 1. (3.87)
h h
Considering Eqs3.79), (3.81) instead of 8.80, we obtain the same upper boundI#S% — S_% /h
and2 ’SN% — Sy_1|/h- Then, for| DS|Z, (o.1y, We have:
Ci+g\°h =R /Ci+g%\> Ci+g\%h
2 1 1
10810 = (L) 5+ 30 (AH0) ne (AH) 5
Ci+g\*. (1 1 C1+g*\?
= = —1)+=) = .
(F) nGrev-meg) = (%
|

Lemma 3.2.3. (Existence)Let Assumptior3.2.1be satisfied and I be the mesh of0, 1) (see
Definition 2.2.7). Then, there exist a pair of vectogs = (yo,y1,...,yn). € RNl andS =
(S_%, Sty SN+%)T e RN*2, which is solution of the system of Eq3.714)—(3.83.

Proof: Let us consider auxiliary system of equations obtained from sys&e){(3.77) by
replacingS with a vectorv and from system3.78—(3.83 by replacingy with a vectoru. The
vectorsv andu satisfy:

u = (ug,uy,...,uy)’ € RN |u;| < Cyforalli =0, N; (3.88)

v=(v_1,v ,...,UN+;)T€RN+2, v;_1 €[Sy +n,1—nlforalli=0,N + 1. (3.89)
2 2

1
2

N[
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Then, it follows from Lemmas.2.1, 3.2.2that there exists an operatbr: R2N 3 — R2V+3 such
that:
x =1T(0), (3.90)

wherey = (y,8)7 € R?**3 andf = (u,v)T € R?N*+3, Let us assume that operatdris
continuous (we will prove this property later). For any given veetor (x,z)” ¢ R2V+3 we
define the following norm:

N N %
191l (0,1 = <Z x?thz;iéhi) : (3.91)
=0 =0
wherehg = hy = h/2, h; = hforalli =1, N — 1 and:

T e RN 2y =0; (3.92)
= Cp. (3.93)

x = (20, X1,...,TN)

T N+2
z=1(z_1,z1,...,2y, 1) €R z
(_57 57 7N+§) 9 —

Then, for anyd = (u,v)’ with u andv, which satisfy 8.89), (3.89), it follows that
1
161 £, ((0,1)) < C3 = (CT+1)2.
Due to the properties of the finite volume scherd& §—(3.83, we also have that:

1T £o(0,1)) = X £ (0,1)) < Cs-

Using Brouwer’s fixed point theorem, we conclude that there exists di@olaf the system of
Egs. 8.74—(3.83.

In order to apply the fixed point theorem we have to show that opefatercontinuous. We
notice that operatdf” consists of two operators. The first operagor T, (S) is defined by system
of Egs. B.74—(3.77) with some given vectdB. Continuity of this operator is a standard result from
theory of finite volume schemes and it follows from the coefficient stabilitylgdte operators.

The second operat® = Ts(y) is defined by 8.789—(3.83 with some given vectoy. Let us
prove thatTs is continuous, if Assumption3.2.1are satisfied. Let us consider two different input
vectorsy andu and denote the corresponding solutionsSly= Ts(y) andS* = Tg(u). We want
to prove that for any > 0 there exist9 = §. > 0 such that:

ly — qu,Lz((o,l)) < e = |[|SY - Su”2,L2((0,1)) <e, (3.94)
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where the norms are introduced as:

N 3 N 3
%11, L5(0,1)) = (Z 33?’%) o Mzll2,y0,0)) = (Z Ziéhi) 7
=0

1=0

andx, z satisfy conditions.92, (3.93. Let us write Eqs.3.81), ¢ = 1, N — 1 in the following
form:

. h o . h
y  _qy _'~ray "

SH% S,% = CQ(SH%) + s (3.95)

APl —ﬁ~(3“ )+ﬁu~ (3.96)
i+l -1~ cg i+1 i .

Introducing vectorg, 1 =S¥ , — 8", e, 1 =S¥, — §* ,, and subtracting Eq3(96) from
2

(3.99, we get: 3 Py Tyt Ui T Py
o . W oo o om h
Citi T6-3 T <9(5i+%) - 9(52-4_;)) + E(yi — ;). (3.97)

Taking into account the definition of functignin (3.82), we get the estimate:

~r &Y ~7 &u o 13 ~
557 ) — (8%, 1) = (S5, )66,y
where S, < Sf+l < land0 < # < 1. Since the functiory is a decreasing function, then
2
<3
g (SH%) <0.
It follows from the definition of the restriction operatd.83 that\ei+%] < |é¢+%\- Then, using

(3.97), we get:
evas] < levss <[ 2a8E 001y s < lers |+ s -l (3.98)
i+l S Gl = I Wiyl i+ S 161 T WY -
Similarly from Egs. 8.79, (3.81) we obtain:
< h < h 3.99
\65}_2*C|y0—UO!7 \€N+%}_\€N_%\+2*C\9N—UN|- (3.99)

Using sequentially inequalitie§ 08), (3.99 and the Cauchy—Schwartz inequality, we have:

N WA N 3
% 2
‘€j+% < Z; |y — ui| < p (Z(yz — u;) hizohi>

i=0 =0

1 .
= EHY —ulli,zy¢0,1)), 5=0,...,N. (3.100)
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From (3.100 we obtain:

N

1
2 2 2
He||2,L2((0,1)) = E |€¢+%\ hi < C*QHY - qu,Lg((O,I))?
i=0

whereh; is defined in 8.91). Hence, statemenB(94) is proven and’ is a continuous operator.m

Lemma 3.2.4. (Compactnesd)et Assumption8.2.1be satisfied and |eI’ be a mesh o0, 1) (see
Definition2.2.7). Let the pair of vectory = (o, y1,...,yn)! € RVH

andS = (57%, Si,. .,SN%)T € RV*2 be a solution of §.749—(3.83. Letyr : (0,1) — R be
yr(z) = y; and letSy : (0,1) — [S« + 1,1 —n] beSr(z) = Si+% forz € K;,i =0,N. Then,
the setg7 and St are relatively compact i.((0, 1)). Furthermore, ifyz, — y andSz, — S in
L*((0,1)) andh,, — 0 asn — oo, then,y € H}_((0,1)) andS € H'((0,1)).

Proof:  All statements fory; were proven in Lemma&.1.3in Section3.1.3 Therefore, here we
are concerned only with the functicfy-.

Using Kolmogorov compactness theorem, it is sufficient to showShais relatively compact
in L2((0,1)):

e the setSt is bounded in?(R) for all 7,
o [|S7(-+v) = STl 2@®) — 0asv — 0 uniformly.

Step 1.FunctionS7 can be redefined &y (x) = SH% if x € Kiyi =0,N, St(z0) = Sfé’
otherwiseSs = 0. Then, using §.84) it follows immediately that the sef; for all 7 is bounded
in L2(R).

Step 2Let0 < v < 1. We definey; : R — R fori = —1, N + 1 such that:

X_1(x)=11if g € [z,2+ V], X_1(z) =0, otherwise;
2 2
Xipr(z)=1,ifz, 1 € [z,2+ V], Xi41(z) =0, otherwise; = 0, N — 1;
2 2 2
Xyii(z)=1; if oy € [z,2 + 1], Xn41(z) =0, otherwise
2 2

Then, for allx € R we have:

N
(S7(x +v) — Sr(2))* < (S_;x_; +> Sip1 =S| Xiot + Sy Xyl
=0
2 (3.101)
(Siey = 513)

N . N
castpcp | 2O (S ) +astuns
; v i=0
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wherehg = hy = h/2 andh; = hforall i = 1, N — 1. Integrating 8.101) overR we obtain:

2
ol (Si+l_5¢—l)
IST(- +v) = 57|72 <6V+3(1/+2h)/ > z Xioy | de
R

2
N (Sz'+l - Sz’fl>
<61/+3(1/—|—2h)2 2 2 /Xz_ld.f
< 6v + 3v(v+2h)C3

Sincer < 1 andh < 1 we conclude thalfSr(- + v) — St3, ), < CvwhereC' = const > 0.
Hence, the second condition of Kolmogorov compactness theorem isprove

Step 3.Here we want to prove that functio$yz) belongs toH!((0,1)). At first let us prove
that(Sz, (z + hy) — Sz, (x))/hy, converges t@S/0zx for all z € (—oo, 1) in a weak sense when
hn, — 0asn — oco. Letyp € C§°((—o0, 1)) andsupp ¢ C (0,1). The discrete functiorpz, is
defined in the following way:

vi = @(x;) ifreK;,i=0,N;
o, (7) = _
0, otherwise

.I_et us redefine functio§'z, such thatSy, = SN+% if v € [xn, :cN+%] andSz, = SN+% = SN+%
if z € [z, 1,2y, 3] Then, we have:

A y PT,
n La((—00,1))

o0 hn

o, (7)dx

N
=0
1 _ —

(S <PT—<PT( hn))

(,07, n — ZS’L+2 ()01 1hn

n

La((~0.1))
(3.102)

Functionspz, and(ypr, — @7, (-—hn))/hy Strongly converge te anddy /O, respectively. We
alsoknowthalS, — Sin Ly(R) asn — oo. On the other hand, functiqy'z,, (-+hy,)—Sz,)/hn IS
bounded in»(R) (see 8.85). Then, for any sequence of mesli&s),cn such thah,, — 0 asn —
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o0, there exists a subsequence, still denote@®y,,cn, such that functiotSz, (- +hy) — S7,)/hn
weakly converges to some function. Then, passing to the lim.idJ and using the definition of
the weak derivative we obtain the¥z, (- + h,) — Sz, )/h, converge weakly t@S/0x.
Using (3.89 we have:
oS
B

< (Cs.
LQ((—OO,l))

We also have tha®S/dx = 0 if x € (—o0,0). Hence, the restriction &f to (0, 1) isin H*((0,1)).
Lemma3.2.4is proven. ]
In order to prove the main convergence theorem we introduce one ngugson.

Assumption 3.2.3. The domairf2', where single-phase flow occurs, consists of a finite number of
simply connected subdomains.

This assumption does not contradict physical meaning of the infiltratiorepsoc

Theorem 3.2.5.Let Assumption8.2.], 3.2.2and 3.2.3be satisfied. For the mesh on (0, 1) let
the pair of vectory = (yo, y1,...,yn)! € R¥*landS = (S_%,S%, ... ,SN+%)T e R¥*2pea
solution of 8.74—(3.83 and lety; and .S+ be defined as

yr : (0,1) = Rbyyr(z) =y, ifx € K;, i=0,N;
ST:(O,l)H(S*,l] byST(x):S frek;, i=0,N.

i1y
z+2

Then, for any sequence of mesfis),, . such that., — 0, asn — oo, there exists a subsequence,
still denoted by(7,,),, g, such thatyr, — y andSz, — S in Ly((0,1)), asn — oo, where
y € HL ((0,1))andS € H'((0,1)) are solutions to the syster.71), (3.72.

Proof: Let(7,),en be asequence of meshes(6nl) such thah,, — 0, asn — oo. Lemma3.2.3
gives us the existence of solution of the probledri7{)—(3.83 for any mesh7Z,, from sequence
(7n),en- Lemma3.2.4guarantees that there exists a subsequence, still denotef, Ry, such
thatyz, — y andSz, — Sin Ly((0,1)) asn — oo and thaty € H}_((0,1)) andS € H((0,1)).

Following the proof of TheorerB.1.4from Section3.1.3we obtain thay € H}_ is a solution
to (3.71) for a any givenS € L»((0,1)). In order to conclude the proof we have to show that
S € Ly((0,1)) is a solution of 8.72) for any giveny € Hj_.

Letp € C*°(]0,1]) such thatp(0) = 0. Then the weak formulatior8(72 can be written in the
following way:

=11 — Ty +1T5 =0,

where:

1 Lo
Ty = / ~(W+9(5) pde, T = / Taptn To =8,
Q 0 v

2 C
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where domair2? is defined in the following way:

Q% ={z€(0,1): S(x) € (Ss, 1)} (3.103)

Taking into account two-step algorithn3.79—(3.839 we notice that solutiort,_1 for i =
- 2
0, N + 1 satisfies:

S_1 = Co, (3.104)

1 1 .
- (yi +9(Si+%)> = hf?(SH% — Sl-_%), ieU, (3.105)
Sip1 =S —mn =0, i€ F,, (3.106)
Si+%_1+77n:07 i€ F*; (3.107)

wheren,, corresponds to mesh,, U U F, U F* = 0, N and:

U={i: S+ < Sp1 <1—ml, (3.108)
F*={i: SH% >1—1n,}. (3.110)

We rewrite Eqs.$.106, (3.107) in the following way:

hl? (Si2—551) +hl? (Siy =S —m) =0, ick, (3.111)
(55 (-t 0 er @

Let7,, be the mesh oft, 1] (see Definitior2.2.1), which is one of the meshes of the subsequence
(Tn)peny @aNd; = @(z;), i = O,N. If S = (S_%,S%, .. .,SN%)T is a solution of 8.104—
(3.107 for some givery = (yo,y1, - - -, yN)T on the mesl,,, multiplying (3.109, (3.117), (3.1129
by o;h? for all i = 0, N and summing over = 0, N we get

s a6y okt + i i (Siey 5y it

zGU ] (3113)

+Zhn<i—— 77n>§01h +Zhn(i—f_1+77n>901h —0.

i€ Fy i€F*
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Reordering summation in the second term®f.( 3, we obtain:

— TP TR+ T+ TP =0, (3.114)

. 1

T = = v+ 9(Sip)] i, (3.115)
€U

) N—-1

5=3 Si+%7¢l+2 P h, (3.116)
=0 i

5 = Snt1PN, (3.117)

A Si,l — S — —1+mn,

m=> — L Z bl (3.118)
i€F, i ieF*

Let us consider the terms in E@.{ 14 separately. Terrﬁf{I can be written down in the follow-
ing integral formulation:

R 1
17 = / = (yz,, + 9(S7,)) 1,.dz,
Qn.2 C

wherepr, = ; if z € K;,i = 0, N, domainQ™? = U;cyK;. Using 3.109, the domairf2™?2 can
be represented in the following form:

[9) 2 {K:Z,Z : Si+l € (S*+77n71_77n)}
(3.83) {/CZ,Z z+% € (Sx + My 1 —mn)} (3.119)
={zxeQ: 57 (x) € (Sc+m,1—mn)}.

Let us now consider the diﬁeren@l — T{L :

(Tl _fn

1 1
_ ] [ Awrasyet— [ Lon+osn) e
02 C on.2 C

<[ rurasnet— [ Lo o(s) e
1

i /sm - (7 +9(57.)) o7, = (y + 9(5)) ) | dz (3.120)
= /&22@Qn2 i (y + Q(S)) SDd.T
+/ 1((3/771 +9(ST)) et — (y + g(S)) 9)| da.

olC
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The second term on the right-hand side in inequaBty 20 converges to zero as— oo. To prove
that the first term on the right-hand side also converges to zeto-asx we have to show that for
anye > 0 there existdV¢ € N such that:

/ dx < eforalln > N°. (3.121)
Q2@Qn,2

This condition is sufficient, since all functions under the integraBii 20 are bounded.

It was shown in Lemm&.2.4that Sz, — S in Ly((0, 1)), which means that it also converges
in measure. Then, for any> 0 ande > 0 there existgV € N such that:

meas ({z € Q: |97, (x) — S(z)| > d}) <e, foralln > N,

whereQ2 = (0,1). To simplify the notations we suppose thiat e then definition of convergence
in measure yields for any > 0 there existsV = N(0) € N such that:

meas ({z € Q: |S7, (x) — S(x)| > d}) < 4, foralln > N. (3.122)
Using (3.122 we define two subsets 6f in the following way:
Q ={zeQ:|Sr,(z)— S(z)| <}, (3.123)

QR =0\ WV ={zecQ:|S7,(z) - Sx)| >} (3.124)

Next we consider the integrad (L121). Using an indicator function, namelyy (z) = 1,if z € A,
andl,(x) =0, if x ¢ A, we obtain:

/ dl‘:/ 1Q2@Qn,2d$:/].QQ\Qn,Qd.%'—i—/ lQn,Z\Q2d$. (3125)
Q2pOn.2 Q Q Q

Using set€2? and2?, defined in 8.123, (3.129, we split integrals on the right hand side 8125
into four integrals:

/ de =11+ Iy + I3 + 14, (3126)
QQEBQTL,Q

Il = /Q 1(92095)\(97%2(795)(&1;’ (3127)
Iy = /Q L (g2\qn2)nge i, (3.128)
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13:/S21(9n72095)\(92m95)dx, (3129)
_[4:/ 1(97L72\92)0Q5d$. (3.130)
Q

Summing integralg, andl, we have:

_[2 + I4 = / 1(92@97;,2)0Q5d$ < / 1@5 < 5
Q Q
Let us now consider the integral. Introducing a set:
P ={recQ:5x)€(Ss+d+n,1-0—n,)},

it is easy to show thaéfl2 n Q5> C (22N Q?%). Then, we notice that:

I < /Ql(szzmm)\(mmm)dx = /Q L(2\g2)nas 2,
This integral is the measure of the domain whigte, (x) — S(x)| < ¢ and:
S € (S, Sc+d+m] Ul =06 —mp,1). (3.131)

Using Assumptior8.2.2for small enoughy andn,, we notice thatl;, — 0 asn — cc.
Concerningl3, we choosé such thaty < 7,,. Then, we have:

(QW n 95) - (92 N 95)

and it follows that/; = 0.
Now we consider the ter@”. Thanks to the regularity of the functiasn from Eqg. 3.116 we
may obtain:

(3.132)

1—hn/2 dp N-1
:/0 S, (ax>7 da + Z Si1 Rihn,
n =0

whereR; is an error between the continuous derivative@nd the discrete one at the paint The
function (%f) is equal to‘g—ﬁ‘ ,if 2 € K;,i=0,N — 1. Since all valuesS;, : are bounded the
Tn T, 2

last term in 8.132 converges to zero as— oo. Thus, we havé“Q" — Ty asn — oo.
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Using 3.117) we remark, that:
T8 — T3 asn — oo,

Now let us consideﬂ” defined by 8.118. We notice that sets), and F* can be divided into
the following subsets:

L4 F*,UHF*:{Z‘EF*:S*+77”<S’7J—% <1_77n}7

N

o Fpp, = {i€F,: SZ;% > Mt

o F*,internal = {Z € F,: gz_% < Si + 77n}a

o [ pe={i€F :S+mn <§i_1 <1-=—m},

.F;'AF*_{Z'GF* ,SA' %SS*+77”}’

 Fiyerna = {1 € F*:S;_1 > 1~}

Then, termi} yields:
“ S',l _S* 1+77n
Tp=3 —2 o gozh"Jr Z — T,
i€ F i i€ Fy

Fi=F.y.r, UF.pp, Fo=F)_ pUFp _pe,

since foralli € F internai saturationSi_% is equal to constart, and foralli € F7, . saturation
S,_1 is equal to constarit.
2

Using inequalities¥.87) for Tj‘ we have:

~

11— 5,
> P T e < A, Y

1€F1UFy ? ’LEF1UF2

i
\T4

where functionp is bounded by constagt > 0 since it is a continuous function de, 1].

Since domaiM)! consists of a finite number of simply connected subdomains and each subdo-
main corresponds to one element of 8gtJ F», the number of elements of st U F5 does not
depend on discretization. Then, we obtain:

’Tg (3.133)

Hence, the theorem is proven. |
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3.2.4 Numerical experiments

The goal of this section is to investigate numerically some typical examples. &\Vgoamg to
estimate the rate of convergence of the proposed numerical scl3erde-(3.83 and verify As-
sumption3.2.2 The test problems are selected such that fully saturated regions appear.

For the numerical experiments we consider three different casesasfipters which are typical
for a paper layer during a production process. All information on inptd & presented in TabBe2
and in Figs.3.5and3.6. Note that the input data satisfy Assumpti®2.1. Obtained distributions
of saturation and pressure are presented in Bigsand3.8, respectively.

Table 3.2: Experimental data for numerical experiment with the dynamic capiliassure
Variable Dimension TestCasel TestCase2 TestCase3

Co [%] 50 60 55

c [Pa m] 16.7 200 125

k. [—] 535

S, %] 10

S, %] S, —le—3

stat 1 1 1/2

J2 [Pa] a(¢ —1) (s_isr - ﬁ)

~1/2

a [PCL] 15)250 (C()isr - 1_15T)

P [Pal] —5000

o %] 87.5

Q [m)] (—0.05,0.05)

Exact solutions of the presented problems are unknown. To obtain thvergence rate, the
reference solutions, by which the errors are measured, has beatatzdoon a very fine mesh..
Corresponding distributions of saturation and pressure are denotgg laydp+. . Then we define
the relative erro,, between the discrete solutidiy, , p7, and the reference solutid#y , p7, as:

15T,

1
_ (HS?; - STnH%Q(Q) ”PT* anH%Q(Q)> ?

Ta(5) P77,

For each test case we consider three different values gf

Cih
meas )’

nr:= 1= 17 2737

whereC; = 1, Cy = 2 andC3 = 10. The results are given in Fig.9. For all three cases and
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different values of)r ; we observe a first-order convergence (the estimated ordeafefined as:

Ne—1
log ’En-i-l/En‘

1
r= ,
N, —2 7;2 log |Ey/En—1]

whereN, is the number of experiments).

In the proof of TheorenB8.2.5we have obtained that the parametecan not be too small,
because the convergence of the measure of the domain with single-mivasegiime depends on it.
So we carry out numerical experiments to estimate the behavior of the domanm@eanvergence
for different values of). The reference domain with single-phase water flow is denoted*dy
Then, errorM,, between the measure of the reference dorfidih and the measure of the domain
for a current mesk™! is computed as:

| meas(Q*!) — meas(Q2™1)|
M, =
meas(2%1)

Results are presented in Fig.10 As it follows from the proof of Theoren3.2.5the optimal
value of parameter is unknown in advance. The results of numerical experiments show that the
convergence of the solution is not sensitive to the valug(Ske Fig.3.9). But here we should take

into account that increasingwe also increase the solution error. On the other hand, convergence
of measure of the single-phase flow domain shows stronger behavibigiger values of; (see

Fig. 3.10.

The last goal of the numerical experiments is to verify Assumpdi@i? which states that the
non-degeneracy property for the solutiSns satisfied. Since the exact solution is unknown and
validity of this assumption can not be shown in advance, we use the regéeselutionSy and plot
in Fig. 3.11the dependence of on ¢ from condition 8.73. It follows from the presented results
that Assumptior8.2.2is satisfied for the given numerical examples.

3.2.5 Results and discussions

The objective of these studies is to show the convergence of the nunslatibn to the contin-
uous one in one-dimensional case for the system of equations deschbipgessing section of a
paper machine including the dynamic capillary effect. One of the challerfgbs@roblem is an
evaluation of the fully saturated regions. Solving this problem we have fo ikemind that in the
computational domain the region with single-phase water flow may appeansi\tfie state two
mathematical models for the both flow regimes with a free boundary. Thenprvbioe them into
one model in the whole computational domain. For the discretized system pesgra numerical
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Fig. 3.5: Input functiorb(x) for the test case with the dynamic capillary pressure
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Fig. 3.6: Input functiony(x) for the test case with the dynamic capillary pressure

algorithm, which implicitly takes into account the two flow regimes.

The theoretical part of this work contains the proof of existence of solutiothe discrete
system, compactness and the convergence theorem. The main idea of tetdalkstudies is to
prove the convergence for the input data which is typical for real nizadezxperiments. Since we
can not imply too strong assumptions we do not get precise estimates on Vieegaste order and
we are not concerned with the proof of uniqueness.

Some assumptions for solution, which are made during the theoretical stadiegrified by
the numerical experiments. We also have estimated numerically the rate ofgemee of solution
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and measure of the fully saturated region.
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Chapter 4

Two-Dimensional Model (Richards’
Approach)

In the pressing section of a paper machine dewatering of the paper |ggefasmed by pressing it
against special felts with the help of pressing nips. Width of the paper tsyeell as width of the
flat pressing nips may reach up1® m, which is much larger than the pressing zone. Thus, a two-
dimensional mathematical model in vertical and machine directions is sufficeahélerstanding
the infiltration processes occurring within the pressing zone. The aim ofthister is to develop
an accurate two-dimensional model for the pressing section which takesciewont the dynamic
capillary effects.

The mathematical model is developed in the way that the real industrial pescean be simu-
lated. The one-dimensional model developed in Chapigextended to the two dimensions. Now,
instead of the single-layer computational domain, the multilayer paper-feltgeim is taken into
account. Chosen mathematical model and discretization technique allow tisfptb@ continuity
of the fluid pressure and the normal fluxes across interfaces of treratifflayers. Moreover, a
formation of fully saturated zones during the pressing process is incligledcounting for two
possible flow regimes, saturated and unsaturated water flow.

The Richards’ approach accompanied by the dynamic capillary presaused to describe the
water flow within the pressing zone. The two-dimensional mathematical modsd tado account
the dynamic capillary pressure—saturation relation proposed by Haadahiand co-workers in
[24] (see Sectiorl.2). The goal of this chapter is to develop and to numerically investigate the
proposed model. In short, Chapteis constructed in the following way. In Sectidnl we present
the mathematical model, which take into account all the issues discussed akavanced dis-
cretization is performed by the MPFA-O method in Sectibk In Section4.3 some numerical

71
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experiments are performed. To conclude this chapter we draw some siomslin Sectiort.4.

4.1 Mathematical model

In this section we present the two-dimensional model for the pressing setftiopaper machine.
At first, we recall the model which was stated in Sectiod.1for the single-layer case. Then, the
model is extended by the inclusion of the layers and by the formulation of iimedaoy conditions
in Section4.1.1 To close the mathematical model, in Sectibf.2we recall the elasticity model
stated in {13, 44)].

4.1.1 Two-dimensional flow model in multilayer case

As a starting point, we consider the mathematical model for the two flow regimésrated and
unsaturated water flow in single-layer case stated in Se8tidd. In Fig. 4.1 we remind the main
notations introduced earlier for our problem (the direction of the papktr&insportation, the com-
putational domairf?, the subdomain§! and Q? with the saturated and unsaturated water flow,
respectively, the boundaries @fand the interfac® betweer()! and?).

NG

press roll

N r
Fig. 4.1: Computational domain with two flow regimes for multilayer case

Remark 4.1.1. As opposed to Fig3.4, we show in Fig4.1that the fully saturated zone is located
inside(2 and that the interfac& may not have common points with the bounda§y The reason

is that in SectiorB.2.1we aimed to present the one-dimensional model, which after the averaging
procedure in vertical direction gives us a fully saturated zone. It is saligfiease of the domain
presented in Fig3.4, but not in case of the domain shown in HgL In this section we would like

to state a two-dimensional model in multilayer case, which may contain the &tilyased zone
inside the computational domain as it is indicated in FEgdL
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The two-dimensional model for the one-layer case and the two flow reginte® idimensions
was stated in Sectioh2.1by Eqgs. 8.50—(3.54). Summarizing the two flow models, we reformulate
the problem 8.50—(3.54) in a more suitable way for further developments. Let Assumiaril(c)

(or 3.2.1(c)) be satisfied. Then, we rewrite Eq8.50—(3.52) in the following form:

krw 1
—div (K gradpw> +div(¢SV,) =0, x€, (4.1)
S=1, xeQl (4.2)
Pw+ Y =7V, -gradS, xeQ? (4.3)

where we assume that,, = k.,(S), K = K(x), ¢ = ¢(x), V5 = V,(x), pitat = pstat(S ¢),
T = 7(x).

We notice that Eq.4.1) coincides with 8.50) in Q! and with 3.51) in Q2. We also have to
make sure that continuity condition3.%3), (3.54) are satisfied in this case. Continuity of the water
pressurey,, follows from the definition of the nonlinear convection—diffusion Ef1). Continuity
of the normal fluxes follows directly from integration of Ed.1) over a small neighborhood of the
interfacel.

Layered computational domain

In general, the computational domdinconsists of several layers (see Fig2). Therefore, it is
divided into nonoverlapping subdomaifys, €, ...,Qr, whereL is the total number of layers.
Interfaces between the subdomains are denotdd by Q; N ;. forall I =1, L — 1.

T,
= \%\ ;/Fz

e 2 N @
?

X Dress rol™ N\ :

Fig. 4.2: Computational domain with indicated layers

Then, the system of Eqst.()—(4.3) has to be satisfied together with the continuity of the fluid
pressure and the continuity of the normal fluxes on the interfaces:

pulr, =0, [l =0, 1=TL—T, (4.4
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where we remember that each layer has its own properties, therefoctiphsk,,, = k.., (S, x),
K = K(x), ¢ = ¢(x), pstat = pstal(S, ¢,x), 7 = 7(x) may have jumps over the layer interfaces.

Boundary conditions

To close the system of Eqst.()—(4.4) we impose boundary conditions. Let Assumptibf.4be
satisfied. On the left boundalty;, the distributions of the saturation and the pressure are known.
This case is typical for the production process. Then, Dirichlet bayndanditions are imposed
onT';. Let Assumption2.1.4be satisfied. It means that water remains at equilibrium w.r.t. the
solid skeleton o', and the dynamic effect is absent there. Therefore, for the preasunse the
dependence:i® on initial values of saturation. Since the right boundBgyis also far from the
pressing zone, it is assumed that the water reaches the equilibrium statthevsalid skeleton on
I'r. Therefore, we apply no-flow boundary conditionsItg. On the upper and lower boundaries
I'y andI'p we assume that there is no escape of water and also impose zero-Neurnadargo
conditions. Hence, we have:

Slp, = Co(x), pulp, = —p2*(Co), x€Ty; (4.5)
k’/‘w
(— Kgradpw> ‘ng| =0 (4.6)
w T'r
krw
(—K gradpw> ‘n = 0; 4.7)
Pw I'y,I'p

wheren; is the unit vector collinear t&% ;. We remark that the second term of water flux related to
convection in 4.7) is equal to zero sinc¥ , - n = 0 for the outer unit normal vectatto I'; or I'p.

According to the production process, sometimes layers of the paper laml tlee paper—felt
sandwich are separated as shown in Eig, 1.3 (see Sectiori.l). To take it into account we also
provide a possibility to impose no-flow boundary conditions on some partg ditdrfaces between
layers.

4.1.2 Elasticity model in multilayer case

We supplement our flow model with the elasticity model stated4) £4], which accounts for
the solid deformations. In Sectichl.3we recalled this model in the single-layer case. Let us
now shortly state this elasticity model for the multilayer computational domain. Metailed
discussions on this elasticity model, its discretization and solution can be folh8 iv].

The main reason of the solid deformations is the pressing forces whichauel@0 kN /m in
the roll press and abowt00 kN /m in the shoe press. Thus, we assume that the water acting on the
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solid skeleton can be neglected in a first approximation. According to Adsamip1.3 the solid
phase is incompressible. Therefore, the porous medium gets deforneedehyrangement of the
solid skeleton in vertical direction. Assuming that the felt and the papewnbatiscoelastically (see
[49, 31]), we can state the Kelvin-Voigt model fdr layers:

H(x) = Br(e1(2)) + At [Viesn] %El(sl(:p)) ~ Kby (), (4.8)

d
t(l‘) = Ez(sz(az)) + A; ‘Vs,m| %Ez(&(w)), i1 =2,L; (49)
wheret is the stress measured|[iRa]. The dimensionless strain is defined by

loi — 1 .
gi(x) = 010(37) for each layet =1, L, (4.10)

with undeformed and deformed thicknesses of the layarcoordinater denoted byl ;(z) and
l;(x), respectively. In generaly; is some nonlinear function related to the elastic part of the stress
and the strains); ([s]) is the viscoelastic time constant, which determines the speed of relaxation.

Egs. 6.9 correspond to the felts. Eq4.8) corresponds to the paper layer and has an additional
third term on the right hand side. This term is introduced to model the permaaspression,
which appears due to plasticity of the paper. We assume that the value eftharent deformation
depends linearly on the maximum stress to which the paper has been expasiptied by some
constant::

tmaz (o) = max t(x). (4.12)

<z

To close the system of Eqst.6),(4.9) we also use the following relation:
L
D i@l =lo — f(x), (4.12)
i=1

wherely = 3" | Iy, is the total thickness of the undeformed paper—felt sandwich. Due todhe fa
that the thickness of the paper—felt sandwich will never exégetie functionf(z) has the form:

f(z) = min{ly, distance between press profiles at positi¢n (4.13)

To resolve the system of Eqst.8),(4.9),(4.12 one more input parameter has to be provided.
The first possibility is to provide the minimum distance between press profitlgshwlefines the
position of the pressing nips and the geometry of the computational ddmainother possibility
which is more convenient for the industrial applications is to define the ipgeésrce, which is
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equal to the integral of the stress profile over the length of the computatonsin. Having one
of these parameters, the system of equations can be solved.

After we find the distribution of the stress and the strains, it is possible to dertimeinecessary
input data for the flow solver. Since the thickness of the layers is small mgder that the porosity
changes only in horizontal direction. Then, the porosity for each lagebe found as:

() + ¢o.i
gi(z)+1

wheregy ; is the porosity of théth undeformed layer. Using the computed strains, the flow mesh
can be obtained immediately as well as the distribution of the solid vel®Citx) (for more details
see §i3, 44)).

¢i(r) = foralli =1,L, (4.14)

Remark 4.1.2. As it was mentioned in Chapté&rwe also consider the second type of the press nips,
so-called shoe press. In this case the paper—felt sandwich is not taedpstrictly in horizontal
direction (see Figl.2). But since the thickness of the pressing zone is very small compaitsd to
length the angle between the paper—felt sandwich and machine directioralls Siherefore, the
assumption on the horizontal transportation is still a very good approximaéinod we use the same
elasticity model for the shoe press.

4.2 Discretization

Let us now discuss the discretization on a quadrilateral unstructuredfgitie flow model stated
in the previous section. We use the finite volume method namely the MPFA-O mefttocan
introduction to the discretization method see Sectliddand [L, 2, 19].

At first, the two-dimensional mesh is introduced.

Definition 4.2.1. Let 2 be an open bounded polygonal subseRéfwith boundaryd2. The dis-
cretization of(2 is defined a® = (7, £, X'), where the following holds.

e 7 is the finite set of nonoverlapping quadrilateral cells(’control volumes’) such tha@ =
Uxe7 K. The boundary of each control volume is denotedky= K \ K.

e £ is the finite set of one-dimensional edges of all control volumes. PFprcantrol volume
K € T there exists a subsék of £ such thao K = U,cg, 0. Furthermore £ = UxerEk.
For any K, £ from T with K # £, eitherK N £ = ) or K N L = & for someos € &, which
then will be denoted by indeg| L.

o X = (xx)xe7 is the finite set of points 61 (‘cell centers’) such thakx € K forall £ € 7.
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Remark 4.2.1. In the previous section the computational dom&imvas used. In Definitiod.2.1
the polygonal set still denoted BYis an approximation of the original computational domain.

Definition4.2.lintroduces some general notations for the mesh which is used for disticetiza
The mesh which is constructed for our computational domain has consfasizk,. in z-direction
(see Fig4.3). In z-direction at the left and right boundaries where no deformations dbeunesh
has also constant step size. If the cell contains an interface between two layers the step size
h. is divided into two parts to resolve the interface. In general, the mesh hgisgatep size
in z-direction which is proportional to the solid deformations. Cell certeris defined as the
intersection point of intervals connecting midpoints of the opposed eddke obntrol volume<.

onoc.o('o.
—— e N e
= N N
- -
. (0}
K Xk

Fig. 4.3: Discretization of the computational dom&in

The system of Eqs4(1)—(4.3) together with interfacial conditiongt(4) and boundary condi-
tions @.5—(4.7) is discretized with the help of the finite volume method (see €@).[ To simplify
the notations we omit the index’ in the variablesp,,, k-, and .

Now let us introduce some notations.dlf= oy is the common edge of cells and £ then
we denote:

1
Sq = 5 (Sk +5¢); (4.15)

Skb if ‘fs‘lla Efo;
So+ = (4.16)
Se, fVg-n, <O0;

whereSx is the approximated value 6f atxx, n,, is the normal unit vector te outward tok.
Integrating ¢.1) over the control voluméC, we obtain:

-y kSo)pe 4 > Me60Ss4 Vs mp =0, KeT; (4.17)

o€€x ceéic
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wherem, is the one-dimensional measure of the boundary,, is the porosity atb. The general
form of Fic , is:

Fro= Y tR,pc; (4.18)
EGNkJ

with transmissibility coefficients,%p and the subseY/ , of all control volumes such that:
Neco={LeT: o€&, TNL#D}. (4.19)

For the quadrilateral grid the s&f , consists of six control volumes as shown in Fig.

. 1 K| . PJKJS

Fig. 4.4: SetN , for quadrilateral grid

The discrete flu¢ , is an approximation of the integrgl (n,, - K grad p) ds. The main idea
of the MPFA method is to obtain the transmissibility coefficients by carrying auegareprocessing
calculations, which depend only on the input data. The approximation iedaut by the multi-
point flux approximation O-method (seg R, 19)). Coefficientstéa are so-called transmissibility
coefficients, which satisfy:

Y tg,=0.

EENkJ

Finite volume schemes for Eqgl.p) and @.3) yield:

Sk =1, KeT, (4.20)
mic (px + 05 (Sk)) =7 > Me(Sor — Sk)Vs -0y, K€ T, (4.21)

oe€ic

wheremy is the two-dimensional measure of the control volukie 7; and7; are the sets of
the control volumes which approximate the domditisand)?, respectively. These sets satisfy
TiNTy=0and7 UT, =T7.

Let us now take into account the boundary conditich8)¢(4.7). Let the se€ be divided into
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five subsets:

Eimt={oc€€&:0n0N =0}, (4.22)
Eerta={c€€:0NTy #0}, a={L,U,R,D}. (4.23)

In Egs. @¢.17) and @.21) the following relations are used:

o if 0 € &N &y than

Sk, if Vi -n, > 0; 1
So’,+ = . 3 SO’ = 7(SIC + CU,O)a (424)
Co,o, if Vi -n, <0; 2
whereCy . is the value o’ ato;
o if 0 € & N Ecat,r than
So+ =Sk, Se=5k. (4.25)

We also remark that & € Ex N (Eeat,v U Eeat,p) thann, - V, = 0 andFx , = 0. So we do not
need to defines, andS, ; there. The boundary condition$.)—(4.7) also have to be taken into
account while computing transmissibility coefficieﬁ%sa (for more details se€l] 2]).

To solve the nonlinear system of Eqé.17), (4.20 and @.21) the Newton’s method is used
(see L7, 36)). Remembering that the static capillary pressure—saturation relation diepéso on
the porosity, initial guesses for pressure and saturation are chasen as

pOIC = fp“zmt(CO(XIC,I‘L% ¢(XK,FL))7 SIOC = (pimt)_l(}?oica ¢(XK))7 (426)

where upper indices correspond to Newton’s iteratiatg, is the point which corresponds to
xj on the left boundary';, taking into account deformations. In other words, the initial guess of

the pressure remains constant along streamlines of the solid deformations.
The initial guess of the saturation satisfigls € (S.,1) for all £ € 7. Thus, the initial guess
T is an empty set and the initial gueg$ is equal to7. After each Newton's iteratios for

Egs. @.17), (4.20 and @.21), when correction values for pressutq)%+1 and saturz:ltiomS,’g+1
are computed, we defing-"" as:

Pl = ph 4+ ApitlforallK e T (4.27)

and the simple restriction operator is applied to deﬁﬁél:
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S., if SE + ASEH < S,
Sk = SEHASEH, i SE+ ASEH € (S, 1); (4.28)
1, if SE+ ASEM > 1;

for all K € 7, whereS, is discussed in Rematk2.2 Then, the setg;"™ and 7" are defined
as:

TF = {KeT: Sk =1}, (4.29)
T ={KeT: S e (S, 1)}, (4.30)
T ={KeT: Sk =5,1. (4.31)

Remark 4.2.2. The proposed numerical procedureZ7—(4.30 may cause an appearance of some
unphysical domaingg"”rl with the water saturation being equal &. This domain is required for
the completeness of the numerical approach. From a physical poinewf in the domain where
this regime appears the following equations have to be satisfied:

pi = —pI(S.), Sk =S (4.32)

In practice, we do not observe numerical experiments where sirigleepair flow appears.

If after kth Newton'’s iteration the séI:,b’ngl is not empty any more then on the next Newton’s
iteration(k + 1) one more equation has to be added to the system of equadids (4.20), (4.21):

Sk =58, KeT.

4.3 Numerical experiments

This section presents numerical experiments for the pressing sectiorapea machine. At first,
single-layer test cases are considered to evaluate the behavior ofiutiersin presence of the
dynamic capillary effect and to compare the results with the laboratory iexgets presented in
[8]. Then, we study how the dynamic capillarity acts in the multilayer case. Sincésimtrk we
suggested to use the MPFA-O FV scheme for discretizing the governiagieasiat the end of this
section we compare numerical results with the results earlier obtaindd]inging the FE scheme
with the static capillary pressure.

All tests are performed with realistic sets of parameters provided by oustir@ipartner Voith
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Table 4.1: Experimental data for all two-dimensional test cases

Variable Dimension Value
Ky [~] 535
3
K [m?] Korgp
w [Pa s] 0.0008
stat P 1 1 1 1/2
pc o] alo-1) (55 - )
Z1/2
a [Pa] 1f?¢>0 (coisT - 1—15T)
S (%] 10
S, (%] S, —1le—3
P, [Pa) —5000

Paper Fabric and Roll Systems GmbH at Heidenheim. More detailed descoptiom parameter
evaluation can be found inHfj].

4.3.1 Numerical experiments for evaluation of the dynamic apillary effect: single-
layer case

Simulation results for three different test cases with single layer confignratepresented. Sets of
parameters correspond to two types of felts and a paper. For the dyrepillary pressure model

we consider the material coefficientequal to0, 10 and100 Pa s. The case- = 0 corresponds to

the static capillary pressure. Our studies of a one-dimensional mod]jimflicated that values of

7 of order10 and100 Pa s are realistic for the process studied in this paper. Further on, we conside
cases with different velocitie¥ , ;, and with different initial saturatiof.

The input data is presented in Tables, 4.2 (see §4]). We give the input data only for the flow
model. For the typical parameters for the elasticity model we refe44p [As it was mentioned
in Section4.1.2 the elasticity model is used to obtain the geometry of the computational domain
2, the distributions of the porosity(x), and the solid velocity ;(x). As an example, the typical
distributions of these parameters are shown for the first test case "mMethl V ;,,| = 100m/min
in Fig. 4.5, where in Fig.4.5A the porosity¢ is presented. In Figel.5B and4.5C thex and z-
components of the solid velocily ; are shown, respectively.

The obtained distributions of the water saturation and the water pressueesimgfle-layer case
show a homogeneous behavior in the vertical direction. Thereforeuaikerical results in this
subsection are shown as one-dimensional graphs, representinghaaréitages of two-dimensional
values. Simulation results for "Felt 17, "Felt 2" and "Paper” are showigs.4.6, 4.7, Figs.4.8,
4.9and Figs4.10 4.11, respectively. Figst.6, 4.8, 4.10correspond toV g ;,,| = 100m/min, while
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Table 4.2: Experimental data for two-dimensional single-layer test cases

Variable Dimension Felt 1 Felt 2 Paper
| 2 [m?] 2.95¢—11  1.57e —11 5.00e — 12
Ko,zy [m?] —6.66e — 14 —1.43e — 13 0
Ko,y [m?] 1.82¢ —11  2.96e —11  1.00e — 13
I, [%] 45 34 88
dlp, [mm] 0.80 1.20 0.56
Co (%] 25,35 30, 50 40, 60
I'y [m] —0.05
I'r [m] 0.05

|Vsin|  [m/min] 100, 300

Figs.4.7,4.9, 4.11correspond toV g ;,,| = 300 m/min. Figs.4.6A-4.11A illustrate the computed
saturation, while in Figst.6B—4.11B the computed fluid pressure is shown. Further on, Figc—
4.11C represent different magnification of part of the data, aiming at bettaakzstion. These
figures represent only part of the results, namely those which carenatlh seen in Figs4.6B—
4.11B. For every test case we vary the initial saturation to see the influence dyttamic capillary
pressure model in case of the unsaturated and saturated water floi¥elidt” we consider two
values ofCj, which are25% and35%, for "Felt 2" the initial saturation is equal 0% and50%,
and for "Paper’Cy is equal to40% and60%. In Figs.4.6-4.11the data which corresponds to the
same initial saturation is shown with the same type of markers. The data cordasg to the same
value ofr we present with the same color.

In general, we see that the two-dimensional model in the single-layer lvass the same kind
of behavior of the pressure and the saturation in presence of the dyoapiilary effect as the
one-dimensional model considered in ChagterWith the increase of the material coefficient
we observe a decrease of the maximum value of the saturation or a recofati@fully saturated
zone. Regarding the distribution of the fluid pressure, with the increaseted maximum value
of the pressure decreases a little bit in case when saturated flow is tpaesein shifts to the left
in case of the unsaturated flow. For both flow regimes we observe sadeavéthe pressure below
the initial value behind the center of the pressing zone. These effectgsedireeen in the test
cases "Felt 1” and "Felt 2”. The fluid pressure in the test case "Pdygdrave similarly but less
evidently. The behavior of the pressure profiles obtained by the modethéttlynamic capillary
pressure—saturation relation was also observed in laboratory exp&sioaeried out by Beckd].

In Fig. 4.12A the dependence of the fluid pressure peak on the initial saturation is1\ghoall
test cases with different material coefficientsind fixed|V ;| = 100 m/min. This numerical
experiment shows that for small initial saturation the dynamic capillary pressadel significantly
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influences the fluid pressure peak. But when the initial saturation bedarges, the pressure peak

increases and does not differ much for the static and dynamic capillasgyyeemodels. We also

observe that the values 6f, after which pressure peak increases depends on the test case.
For better understanding of the behavior of the fluid pressure let usludeothe following

guantityQ;n,:
¢(zr)d(zL)

P(xs)d(zs)
whered is the one-dimensional function of thecoordinate which expresses the thickness of the
layer,x, is thex-coordinate of the left boundaty;,, ., is thex-coordinate where the layer reaches

the minimum thickness or the maximum value of the porosity during pressing. én wtirds, the
quantity@;,, expresses the ratio of incoming water volume to void volume at the center aifgthe n

In Fig. 4.12B we show the dependence of the fluid pressure pedak;pnWhenQ);,, become greater

than one, a fully saturated zone appears and the fluid pressure @geatidally. In B] a similar
dependence is presented. They observe the same behavior of thedksdne foQ;,, < 1.3. But

when Q;,, exceedsl.3, the pressure reaches a metastable state and does not increase much with
increase of the initial saturation due to the water escape through the entfatie nip. In our

model water rearranges within the computational domain but it is not allowesctape from the
computational domain. So we do not observe this stabilization of the fluidyseegeak due to the
model limitations. Enrichment of the model with the boundary conditions which avape of

the water through the upper and lower boundaries is planned as theaemerf sur future studies.

Qin = Co (4.33)

4.3.2 Numerical experiments for evaluation of the dynamic apillary effect: multi-
layer case

Now we consider the multilayer cases which may be investigated numerically @hlyhe help of
the two-dimensional model. The input data from Tablgis used in all numerical experiments.

The first test case is developed for the roll press with eleven layerJédded. 3), where Layer 6
presents the paper. The paper—felt sandwich is transported with tbe |3pe;,| = 100 m/min.
The boundaries of the computational domain are considered Ig.be {r = —0.1 m}, I'r =
{z = 0.1 m}. Remembering that equal to zero corresponds to the static capillary pressure model,
we show the numerical results for the first test case in Eidgs3-4.16 Figs.4.13A, B, C show the
distribution of the water saturation ferequal to0, 10, and100 Pa s, respectively. In Figss.14A,
B, C the location of the fully saturated zone and in Figd.5A, B, C the distribution of the fluid
pressure are shown farequal to0, 10, and100 Pa s. Fig. 4.16 presents the dry solid content of
the paper layer for the different valuesafAs we can see from the obtained numerical results, the
behavior of the solution of the multilayer test problem is quite similar to the singks-tagts. The
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Table 4.3: Experimental data for two-dimensional multilayer test case 1
Koaa, [m*] Koy, [m°]  Kogy [m?] 0lp,, (%] dlp,, [mm]  Co, [%]
Layerl 1.00e — 09 0 1.00e — 09 20 2.50 26
Layer2 1.89¢—11 —1.89¢—13 59le—11 40 0.28 38
Layer3 1.57e—11 —1.43e—13 2.96e— 11 34 0.60 44
Layer4 6.72¢e—12 —6.5le—14 2.42e—11 31 0.52 45
Layer5 8.34e—11 —1.05e—13 2.46e—11 52 0.60 42
Layer6 5.00e — 12 0 1.00e — 13 88 0.28 90
Layer7 2.95¢—11 —6.66e —14 1.82e¢—11 45 0.40 44
Layer8 293e—12 —522¢—14 1.59¢—11 25 0.42 45
Layer9 8.36e—12 —888e¢—14 1.36e—11 29 0.65 44
Layer10 1.1le—11 —1.13e—13 3.02¢—11 31 0.28 48
Layer11 8.17¢e—11 —1.05¢e —13 6.48¢ — 11 53 0.23 49

fully saturated zone decreases and the fluid pressure takes thetelistiacshape with increase of

the material coefficient. We also notice that the dry solid content of the paper is not influenced
much by the dynamic capillary effect. It changes the shape with the incoéadmut the final value

remains the same.

The second numerical test is performed for the roll press with paranpeesrsnted in Tablé.4
and|V, ;| = 500m/min. The boundaries of the computational domainlgre= {z = —0.15m},
I'r = {x = 0.15 m}. The numerical results are presented in Fig§.74.20 The saturation for
T equal to0, 10, and100 Pa s is shown in Figs4.17A, B, and C, respectively. The location of
the fully saturated zone and the distribution of the pressure are preseriers. 4.18A, B, C and
4.19, B, C for the different values of the material coefficient, respectivélgre we observe a
significant decrease of the fully saturated zone with increase of therdgm@mponent. The fluid
pressure shows the same behavior as before. With increase@bbserve after the pressure peak

an appearance of the region with the pressure below the initial value. gseg to the previous
example, the dry solid content of the paper is influenced by the dynamic ciyilldts value

increases after the pressing with increasing

For the third numerical test we consider the shoe press|With,,| = 1000 m/min andl';, =
{z = -0.30m}, 'r = {x = 0.40 m}. We use the input data for the layers as in test case 1
from Table4.3 except the initial saturation which is presented in Table Numerical results are
presented in Figst.21-4.24 The difference in the water saturation for the considered values of
can not be seen. Thus, we show only one distribution of the water satunat€ig. 4.21, where
Figs. 4.21(A) and (B) show the water saturation in the undeformed and standardutatiomal
domains, respectively. Figd.22A, 4.23A correspond to the static capillary pressure model. In
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Table 4.4: Experimental data for two-dimensional multilayer test case 2

Koz, (] Koay, [m°] Kogy, [m?]  @lp,. (%] dip,, [mm]  Co, [%]
Layer1 5.00e — 12 0 1.00e — 13 88 0.24 91
Layer2 1.5le—10 1.64e—12  1.15¢ — 10 53 0.51 51
Layer3 1.45¢—10 2.34e—12  1.60c — 10 53 0.81 51
Layer4 3.46e—10 —5.60e —13 2.05¢ — 10 57 2.65 51
Layer5 9.75¢ —10 —2.88¢—12 4.93¢ — 10 80 0.65 51
Layer 6 1.00e — 08 0 1.00e — 08 35 5.00 17

Table 4.5: Experimental data for two-dimensional multilayer test case 3

Co, [%]
Layer 1 12
Layer 2 38
Layer 3 44
Layer 4 45
Layer 5 42
Layer 6 99
Layer 7 44
Layer 8 45
Layer 9 44
Layer 10 48
Layer 11 49

Figs.4.22B, 4.238B and Figs4.22C, 4.23C the material coefficient is equal tol0 and100 Pa s,
respectively. The location of the fully saturated zone are shown iMlE2g. Fig. 4.23represents the
distribution of the fluid pressure. The dry solid content of the paper ligystown in Fig4.24for
differentr. All numerical results are presented for the undeformed geometry etkeepaturation
for 7 = 100 Pa s. The fluid pressure shows the same behavior as in the previous test Basén
saturation we observe an increase of the fully saturated zone with imgeadt may be caused by
the different geometries of the computational domain. The curve of theotid/@ntent changes
its shape but the final value remains the same for the cases with the dynanstatadapillary
pressure.

4.3.3 Numerical experiments for the discretization techrgue

For the model with the static capillary pressure we have the possibility to corttpareumerical
solution with results obtained indB], where the model was discretized with the finite element
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method. This opportunity is used to investigate the quality of the discretizationitgghused in
this study. Typically, the difference in solutions can be well seen in the disiwibb of the water
velocity. For the first and third test cases we show distributions of the wealeeities in Figs4.25
4.26 In these figures we do not show the whole range of the water velocitydir ¢o see better
regions with nonphysical values. We cut the water velocities by some vaiighws shown in
each figure on the color bar (see Fig25 4.26). Figs.4.25A and4.26A represent the distribution
of the water velocity obtained with the help of our model. The results obtainedthttnelp
of the model proposed by Rief are shown in Fig2mB and 4.26B. In Figs.4.25C, 4.26C we
show magnified regions which are indicated in Fig23B, 4.2B with the help of black boxes.
The last figures show that the solution obtained with the help of discretizasieh by Rief gives
nonsmooth and sometimes oscillatory solution at the same time as our solution is si@ooth.
nonphysical oscillations of the finite element solution are typical for caivedliffusion equations,
if no stabilization technique (e.g. streamwise diffusion) is used.

In most of the test cases it was observed that the numerical algorithroga@n this study
converges faster than the algorithm frof3]. The MPFA-O method is also very well applicable to
the specific boundary conditions which we have to preserve betweas laye
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4.4 Results and discussions

In this chapter a two-dimensional model was developed for the pressitigrsef a paper machine.
This model adopted the dynamic capillary pressure effects describlsr &égrHassanizadeh and
Gray. At first, the mathematical model was discussed together with its disti@tizachnique.
Then, some numerical results were obtained. Single-layer test casesaveed out to compare
the two-dimensional solutions with the laboratory experiments and to obtain thebmlaavior
of the water saturation and the water pressure in presence of the dyraillarg effects. The
behavior of the pressure for the model with the dynamic capillary pregssimilar to the behavior
of the pressure obtained in the laboratory experiment8hyWe also observed the same kind of
dependence of the pressure peak on the initial saturation as Beck.

Multilayer simulations showed that the behavior of the fluid pressure is the aanme the
single-layer case. Regarding the distribution of the saturation, we notitéhthaehavior of the
fully saturated regions for the static and dynamic capillary pressure modgldiffex for different
geometries of the computational domain. So we observed a decreaseuhtisaturated area with
increasingr for the roll nips and otherwise for the shoe press. For the dry solid cbot¢he paper
layer it was not possible to evaluate a general behavior for all tess.ceg=observed dependence
of the dry solid content on particular test cases. In general, the nuiexperiments showed that
the material coefficient of order10 and100 Pa s significantly influences the distributions of the
fluid pressure and the saturation. On the other hand the distribution ofytteslitt content of the
paper layer does not change much wherhanges in this range.
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Chapter 5

Two-Dimensional Model (Two-Phase
Flow)

Developing the mathematical model of the pressing section of a paper maghittenow we have
assumed that the air phase has a constant pressure within the computatioaad.dit simplifies
the mathematical model significantly since we consider instead of two nonlinsaraoaservation
equations in the flow model only one for the water phase. But when we ms&eptior2.1.1in
Section2.1.1we remark that its admissibility has to be shown. Thus, now we are going ttogeve
a model for the pressing section using a two-phase flow model without theuE assumption.

The previously stated mathematical model takes into consideration the dyngitiarggressure—
saturation relation, which allows us to obtain the behavior of the fluid pressonilar to one ob-
tained in the laboratory experiments carried out by Beflk [As the first step we are going to
investigate the admissibility of Assumptiénl.1for the model without the dynamic capillary ef-
fects. We will check if accounting for the real dynamics of the air phasevalies to recover effects
which we encountered under the Richards’ assumption for the air ghasgith dynamic capillary
pressure. The model accounting for the both phases and the dynarfi@rgggessure is going to
be a subject for our future work.

In this chapter the pressing section of a paper machine is simulated with thefhlétao-
phase flow approach. The two-dimensional model accounts for the fittrattihe water and the air
within the computational domain taking into consideration the static capillary peessturation
relation. At first, in Sectiorb.1 we extend the previous flow model by inclusion of the mass con-
servation equation for the air phase. Moreover, the mathematical model isveapby allowing
for more complex boundary conditions which allow water to escape throiutje aipper and lower
boundaries. This issue was not accounted for before. The finiteafiffe scheme obtained by the

111
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MPFA-O method and the numerical algorithm are discussed in SeettoNumerical experiments
checking range of applicability of the Richards’ approach for the matheahatiodeling of the
pressing section are performed in Sectio® Finally, we draw some conclusions in Sectio#.

5.1 Mathematical model

As in the previous chapter, we consider the computational dofamdicated in Fig.5.1. We
assume that the paper-felt sandwich is transported in horizontal dirdaiorthe left to the right
with the constant speeW ;,. We also consider that the two flow regimes may be presefit in
Q! andQ? denote the domains with the single-phase water flow and the two-phasetairfloe,
respectively. The interface between these domains is denotEd by

l—‘UR

Fig. 5.1: Computational domaf with two flow regimes and new partitioning of2

Let Assumptions2.1.2and 2.1.3be satisfied. Let the functiop!* be defined by Assump-
tion 2.2.1 Then, the functiord' is defined in the following way:

S, for p. > pstat(S,),
S(pe) = 4 (p51) ™ (pe)  for pe € (pEiot(1), psiot(S..)), (5.1)
1 for p. < pg*(1);

where S, is discussed in Remark 2.2 Then, the saturated water flow obeys the following mass
conservation equation:

— div (K gradpw> +div (¢V,) =0, xe Q. (5.2)

Haw

The two-phase air-water flow is described by the mass conservatioticetguir the air and water
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phases:

k?"w .
—div <K gradpw> +div (pSV,) =0, x € Q% (5.3)

w

—div <ka gradpa) +div (p(1 — S)V,) =0, xe (5.4)
Ha

wherek,, ([—]) is the relative permeability of the air phage, is the air viscosity measured in
[Pa s], the water saturatiof is a function of the capillary pressupe = p, — p., the saturation of
the air phase is equal @ — 5).

Now we are concerned with the conditions which have to be satisfied at thiage® between
the domains with the different flow regimes and between the layers. As it waslited in Sec-
tion 4.1.1the interfaces between domaifis, (2., ..., Qr, which indicate different layers, are de-
noted byl'; = O; N Q. foralll = 1, L — 1, whereL is the total number of layers (see Fig2).
The water fluxJ,, within Q is defined as:

K _
— 2 ogradpy, + @V forx € Q1;
J, = { P (5.5)

Bk gradp, + 9SV,  forx € Q2.

For the air fluxJ, within Q we have:

0 for x € QI
Ja = (5.6)
—bEaK gradp, + ¢(1 - S)V,  forx € 0

Then, the continuity of the pressures and the continuity of the normal factess the interfaces
have to be satisfied in the following form:

[pwlr =0, [Jy-m]r =0, (5.7)
pwlr, =0, [Ju-njp, =0, 1=1,L -1, (5.8)
[Jo-njr =0, (5.9)
[Palr, =0, [Jo-njp, =0, 1 =1,L—1. (5.10)

Now let the functiork,., satisfy Assumptior3.1.1(c) and the functiort,, satisfy the following
assumption.

Assumption 5.1.1. k., € C([Ss, 1]), kra : [Ss, 1] — [0, 1] is a decreasing function.

In the fully saturated regioft! the water saturation satisfi®s= 1 andp, is undefined. To have
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a unique model for both saturated and unsaturated flows we define agatitm ofp, in Q! with
the help of Eg.%.12). Then, the system of equatioris )—(5.10 yields:

—div <krw(S)Kgradpw> +div (pSVs) =0, x€Q; (5.11)
Pa—Pw —pI(1) =0, xe€ (5.12)
. kra(s) . 2
—div Kgradp, | +div(¢(1 — S)Vs) =0, x € Q7 (5.13)
It

together with the continuity of the pressures and the normal fluxe} énd 6.10 on I, [ =
1,L — 1. We remark that thanks to the assumptions on the functippsandk,., the interfacial
conditions 6.7) and 6.9) acrossl” are satisfied automatically. We remark that the air presgyre
extended td2 by (5.12) also satisfies continuity condition acrdss[p,|r = 0.

Specification of the boundary conditions is important for the developmeatroéathematical
model. Often the simulated process is too complex to precisely define the bypwudalitions
which have to be specified. In Sectidri.1we used the no-flow conditions for the water phase on
the upper and lower boundaries. But as it was observed during thericairexperiments carried
out in Section4.3.1the no-flow boundary conditions for the water phase in some test castsoar
artificial. Thus, in this model we are going to improve this issue by allowing therwatescape
from the upper and lower boundaries of the computational domain whareitheo contact with
the pressing rolls.

Since the boundary conditions for the water phase become more complekeabdundary
conditions for the air phase have to be introduced the boundagiesdI" , have to be divided into
some parts as shown in Fig.L

I'o =T Ul Ulgr, a= {U,D}

As before we want Assumptioh 1.4to be satisfied. Then, for the water phase we have the same
Dirichlet and no-flow boundary conditions dty, andI'r, respectively (for more details see Sec-
tion4.1.1). On the parts of the upper and lower boundafigs: andI' - where the computational
domain is in contact with the pressing rolls we preserve the zero-Neumamudwy conditions
since the water can not escape there. On the rest of the boundariesuletlike to allow the es-
cape of water if the fluid pressure is greater than the atmospheric predsere the atmospheric
pressure is chosen as the first approximation. Although, we note thatlity tee pressure outside
the boundary where water escapes is nonconstant and greater thapltaénm Thus, od'yr,

T'vr, I'pr andl'pr we specify Robin conditions. The boundary conditions for the watesspres



5.2. DISCRETIZATION 115

yield:

Pulp, = -0 (Co(x)), x€Ty; (5.14)

(_k‘er gradpw> ‘ng| =0 (5.15)
M Tr
k’r‘w

<— Kgradpw> ‘n =0, a={UD}; (5.16)
Hw Coc
krw N atm

(— Kgradpw> ‘n = Y(pw)(Pw — P ¢ )|I‘ LTun’ a={U,D}; (5.17)
Hw Par,Lar e

where~ is the parameter which defines how much water is allowed to espéjjejs the atmo-
spheric pressure ifPa]. We define the functiofy as:

) v i py > p™
Y(pw) = _ (5.18)
0 if pu < pm;

wherey = const > 0 € R.

Now let us discuss the boundary conditions for the air phase. Since timel@ed'; andl'r
are far away from the pressing zone (see Assumgdiar) we assume that the air remains at the
atmospheric pressure there. On the rest of the boundaries wherentpatational domain is not
in contact with the pressing rolls Dirichlet boundary conditions are appledl ;¢ andT' p¢ the
zero-Neumann boundary conditions are preserved since air as wata@scan not escape through
these parts of the boundaries. Thus, the boundary conditions for thieaae yield:

Palp, =", o ={L,UL,UR,R,DR,DL}; (5.19)

Fra
(—K gradpa> ‘n

a

=0, a={UD}. (5.20)

Tac

The elasticity model by which the flow model is supplemented was discussedtiorsée 1.2

5.2 Discretization

Now we are going to discuss the discretization of the flow madsaléllj—(5.13 by the finite volume
method on the quadrilateral unstructured grid. Let the two-dimensional fMdxhintroduced by
Definition 4.2.1as shown in Fig4.3and discussed in Secti@gn2.
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Then, for Eq. .11 we have the following finite volume scheme:

o Z MF;CU,U + Z mad)oscrﬂrvs ‘n, =0, KeT; (521)

o€l w o€k

whereS, andS,  are defined by Eqs4(15 and ¢.16), respectively. We remember thatand7;
are the sets of the control volumes which approximate the dorimnd(?, respectively. Using
properties of the functiol, the finite difference scheme for E&.(2) yields:

Pa KX — PwK = pitat(1)7 KeT. (522)
For Eq. 6.13 we have:
—-E:EﬂigﬁF%U+-Z:n%¢ﬂl—5@+ﬂﬁ-n020, K e Ts. (5.23)
o€ a AT

The general form of' ¢ |, o = {w, a} yields:

L
FR,= > tpac (5.24)
EEN;QU

wheret%ﬁ are the transmissibility coefficients and. ,, is defined by 4.19).

The boundary condition$(14—(5.20 and the interfacial condition$(8), (5.10 are considered
during accounting for the transmissibility coefficien%é by the MPFA-O method (for more details
see [, 2]). In case if the control volum& contains an edge common with the bounda®; values
Se and S, ;. are defined by4.24), (4.29 (see Sectiort.2). Remembering that on the upper and
lower boundaries the Robin boundary conditions for the water phas¢handirichlet boundary
conditions for the air phase may be specified, in addition we have:

o if 0 € E N (Eeaty U Eeat,p) thanS, = Sk and S, , do not need to be defined since
n, - Vg =0.

To solve the system of equatioris Z1)—(5.24) the Newton’s method is used. Initial guesses for
the fluid pressure,, and the air pressure, are chosen as:

Py i = P — P (Co(xicry ) d(xkcr,)) s

atm

P =P

where the upper index corresponds to the number of the Newton'’s iterati@ninitial guesses are
chosen in a way that the pressures remain constant along the solid streammiti@ guess for the
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water saturatior®y (x) satisfiesCy(x) € (Ss,1). Thus, the sef,? is empty andZy is equal to7 .
After every Newton’s iteratiofk for the system of equations.21)—(5.23 we obtain the correction

vaIuesAp’fUJr,c1 andAp’ﬁcl. New approximations of the fluid and air pressures are obtained as:

k k
Pl =i+ AP, KeT;

Pl =phe+ApLY, KeT.

Using Eq. 6.1), the water saturation can be defined. The g¢ts! and7;**! are obtained in the
following form:

T ={KeT:S (p’jjrcl —pﬁ,ﬁé) =1}
T ={KeT:S (p’jjcl —pﬂé) e (S, 1)}

%k—i-l ={KeT:S <p’;jcl _pl;r]cl> = 5.}

Remark 5.2.1. We use the fictitious domain method like in previous chapters. The proposet-
ical approach may cause an appearance of some fictitious dorﬁ’@ﬁ%with S = S,. Itisdone to
make sure that the formulation of the model is homogeneous for all valuks water saturation
S. From the physical point of view, in this domain the mathematical model ®ositigle-phase
air flow has to be stated. Since in our numerical experiments the singleeiaflow has never
occurred in this work we are not concerned with this flow regime.

If after thekth Newton'’s iteration the ség’““ is not empty any more, then on the next Newton’s
iteration(k + 1) one more equation has to be added to the system of equadi@is(5.23):

Sk =5, KeT.

5.3 Numerical experiments

Using the mathematical model developed in Sectidnand discretized in Sectioh.2, which ac-
counts for the water and air phases, we are going to perform some naheqeriments. This
section aims at investigating the admissibility of Assumpfioh 1, which states that the air phase
remains at a constant pressure within the computational domain. We aretgoisgthe same sets
of parameters as in the numerical experiments performed in Setticand compare the results
with the results obtained under Richards’ assumption. Thus, some singlealagt multilayer test
cases will be carried out sequentially.

As we discussed before, these numerical experiments will be performgdar the model
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Table 5.1: Experimental data for the two-phase flow model

Variable Dimension Value
kra [-] (1- 56)2(1 - 561'5)
Se [-] (8= 5:)/(1=5)
Ha, [Pa s] 1.862¢ — 5
v [mm?3s/kg] 5.00e — 9
patm [Pa] 0

with the static capillary pressure—saturation relation. The dynamic capillagteiin case of the
two-phase flow model are going to be investigated in our future work.

5.3.1 Numerical experiments for the Richards’ assumptionsingle-layer case

The input data for the single-layer test case is presented in Talle$.2. Some additional data
required for the two-phase flow model is presented in Table As a result of several numerical
experiments, the parametgfor the boundary conditiorb(17) is chosen to b&.00e — 9mm?>s/kg.
The atmospheric pressus&™, which is used in the boundary conditions for the water phase)
and for the air phasé>(19 is chosen to b@ Pa (see Tablé.1). Since we are interested in values
of pressure up to some constant, we have chosen zero for simplicity.

The numerical results for "Felt 1” are presented in Fig2-5.10 Figs.5.2-5.7 show two-
dimensional distributions of the water saturation, the water pressure, amndatier velocities for
the different initial saturationg’y and the velocitieV ;,. The water saturatio is shown in
Figs.5.2A-5.7A. Figs.5.2B-5.7B and Figs.5.2C-5.7C present the water pressure and the water
velocity, respectively. The initial saturatiafy is equal t025% and35% for the numerical tests
presented in Fig$.2, 5.4, 5.6and Figs5.3, 5.5, 5.7, respectively. The velocity, ;,, is considered
to be equal tal00, 300, and900 m/min and it is presented in Figs.2, 5.3, Figs.5.4, 5.5, and
Figs.5.6, 5.7, respectively.

The obtained results show that accounting for the real dynamics of thbasegauses some
visible differences in distribution of the water phase. At first, let us rentlagk in the results
presented in Figb.2-5.7 we observe that the behavior of the water pressure has changed in com-
parison to the behavior obtained by the model under the Richards’ assomyittiostatic capillary
pressure. The water pressure has the maximum value shifted to the lefegjibct to the center
of the nip. Moreover, for small velociti€¥; ;,, (100 and300 m/min) we observe a decrease of
the water pressure below the initial value behind the center of the pres$hmepsame kind of the
water pressure behavior was obtained for the Richards’ model with tieewig capillary pressure—
saturation relation and it is in agreement with the laboratory experimentsccauteby Beck in
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[8]. Secondly, we would like to pay attention to the water velociNgs for the test cases with the
large initial saturatiorCyy and the large velocity; ;,, (see Fig.5.3C, 5.5C-5.7C). Thanks to the
extended boundary conditions, we observe a water escape frommipeitagional domain when the
water pressure is large near the boundary where the layer is not irctaiittathe roll surface.

Now we would like to have a better impression on how significant the differéetween the
two-phase flow model and the model using the Richards’ approach istefbheve average the
results obtained with the help of the two-phase flow model in the vertical direatid show them
on the same figure with the averaged results obtained with the help of the moteChaptert
(see Figs5.8-5.10. In Figs.5.8-5.10abbreviations "2PF” and "Rich” indicate the two-phase flow
model and the Richards’ model, respectively. Fig&A-5.10A show the water saturation for the
different velocitiesV ;,,, when Figs5.88,C-5.1B,C show the water pressure.

The one-dimensional representation of the water saturation (see5Ri§s:5.107) allows us
to see that a decrease of the maximum value of the water saturation is abf®rtiee two-phase
flow model in comparison to the flow model obtained under Richards’ assumptiet us now
discuss it in more details. The comparison of the water saturation for thehasepnodel and the
Richards’ model can be made in three steps. When the maximum value of thesataiition is
small (see Fig5.10A with Cy = 25%), these two mathematical approaches give almost the same
water saturation. The second case is when the maximum saturation reagesvalues around
80% and90% but still not big enough to form a fully saturated zone in case of the Risharddel
(see Figs5.8A, 5.9A with Cy = 25%, and Fig.5.10with Cy = 35%). Here, the decrease of
the maximum value becomes visible. But the water saturation differs only fdrighealues and
for smaller values results coincides with the results obtained by the Richaadigl. This type of
the water saturation behavior was also obtained by the Richards’ model witlyrihenic capillary
effect (see Sectiof.3). But the decrease of the maximum value of the saturation was much less than
we observe for the two-phase flow model. The third case is when a fullyasedlizone is formed
for the Richards’ approach in Figs.8A, 5.9A with Cy = 35%. We observe that the air does not
escape from the computational domain completely. The water saturatioresesmime high value
but it is not equal to one. Let us remark the remaining air is not due to tlluegsaturation of the
air phase since it is considered to be equal to zero. We observe it duefatithat the air velocity
can not be infinite as in the case of the Richards’ assumption. In this thiedtibadistribution
of the water saturation differs completely for whole range of the saturatiues from the results
obtained by the previous model.

In Figs.5.8A and5.9A with Cy = 35% we can also observe an influence of the Robin boundary
conditions included in this model to allow the water escape through the upghévaer boundaries.
It effects the water saturation value on the right boundary. Since therdrbwater within the
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computational domain is not constant any more, the value of the water satuafiBothe pressing
decreases in comparison with the saturation, when all water remains insjugpiinefelt sandwich.

Regarding the water pressure, the one-dimensional profiles (seesRBIL-5.1MB,C) show
the behavior which we described previously discussing the two-dimensepr@sentation of the
obtained results. The maximum value of the water pressure occurs liedorenter of the nip for
all performed test cases. The decrease of the water pressure belavitid value is observed in
the cases when the velociti&s, ;, are equal td00 and300 m/min. But it was not the case for
the larger velocity |V ;| = 900m/min). According to the laboratory experiments carried out for
the pressing section by Beck ifi][ the decrease of the water pressure below the initial value was
observed for the velocityV, ;| = 381 m/min. Thus, we can conclude that the pressure profiles
obtained by the two-phase flow model for sm¥ll ;,, correspond to the reality and in case of large
V.in, more laboratory experiments are required. Analyzing the one-dimengicesgure profiles
presented in Figss.8B,C-5.1(B,C, we also note that in most of the numerical tests for "Felt 1”
the maximum value of the water pressure significantly rises in comparison tetlwases with the
Richards’ assumption.

The second and third single-layer test cases are performed for thedete paper with param-
eters presented in Tablésl, 4.2, and5.1 The results are shown in Figs.11-5.19for "Felt 2" and
in Figs.5.26-5.28for "Paper”. Figs5.115.16 5.26-5.25show the obtained results in two dimen-
sions. In Figs5.175.19 5.26-5.28the comparison of the results presented as one-dimensional
variables and obtained by the averaging procedure in the vertical diréstjsresented. The be-
havior of the obtained results is similar to the behavior discussed in detail ddirgt test case
"Felt 1. The water pressure profiles have the typical shape with the maxivalue shifted to
the left and the decrease after the center of the pressing nip. The maxialuenof the water
pressure rises significantly in the two-phase model in comparison to the onudie the Richards’
assumption. The water saturation also shows behavior similar to the testrmsd” For the
averaged one-dimensional profiles of the water saturation (see3Fige—5.19A for "Felt 2" and
Figs.5.26A-5.28A for "Paper”) the behavior of the water saturation can be divided intdatew-
ing groups:

e if the water saturation values are less thaf, the two-phase model gives almost the same
results as the Richards’ model (see Figd.8A, 5.19A with Cy = 30% and Figs5.28A with
Co = 40%);

e if the water saturation has the maximum value aro80% and 90%, the decrease of the
maximum value of the water saturation is observed for the two-phase modahipacison
to the saturation profiles obtained by the Richards’ model (see5FEigA with Cy = 30%,
Fig. 5.19A with Cy = 50%, Figs.5.26A, 5.27with Cy = 40%);
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¢ if the Richards’ model has a fully saturated region, the behavior of thedonensional
profiles of the water saturation is completely different for the two-phase fitmdel and
the Richards’ model (see Fig5.17A, 5.18A with Cy = 50%, Figs.5.26A-5.28A with
Co = 60%).

The influence of the new boundary conditions, which allow the escapaitgfrihrough the upper
and lower boundaries we can observe in Fig&2C, 5.14C-5.16C for "Felt 2" and in Figs5.21C,
5.23C-5.25C for "Paper”, where the water velocity is shown, and in Figé.7A, 5.18A for "Felt 2"
and in Figs5.26A-5.28A for "Paper”, where the averaged water saturation is shown.

We remark that as opposed to the Richards’ model in the two-phase flow medsbserve
two-dimensional effects, namely the water saturation and the water peessyrin the vertical
direction. This effect can be well seen in the test case "Paper” in theeguresenting the two-
dimensional results (see Figs21-5.25 and also in some figures for "Felt 1" and "Felt 2", namely
with the high initial saturatiort’; (see Figs5.3, 5.5 5.7and Figs5.12 5.14, 5.16).

In Fig. 5.29the water pressure peak is presented as a function of the initial satutatiaee
Fig.5.29) andQ);,, (see Fig5.29B), where the quantit{);,, is defined by 4.33. Here we compare
results obtained with the help of the two-phase flow model and the Richardelroo all the single-
layer test cases. As it was also remarked before, we observe thalitheréissure significantly rises
in the case when the air phase is taken into account. Thanks to the Rob@eibpuoanditions, which
have been introduced in this chapter, we observe that the presslirprpéke is smoother for the
two-phase flow model. Moreover, the fluid pressure does not rise mueh;fo> 1.3. This effect
was also observed in the laboratory experiments performed by Be8k ifHus, we may conclude
that the new boundary conditions have improved the mathematical model.

5.3.2 Numerical experiments for the Richards’ assumptionmultilayer case

In this section we are going to carry out numerical experiments for the multilesecases using the
input data from Sectiod.3.2 The data presented in Tablég, 4.3 and5.1is used to carry out the
first numerical experiment. The veloci¥;, ;, is chosen to b&é00 m/min. The boundaries of the
computational domain are considered talhe= {z = —0.1 m},I'r = {x = 0.1 m}. Results for
the test case 1 are shown in Figg80-5.32 where the water saturation, the water pressure, and the
dry solid content of the paper layer are presented, respectivelyg$nF-30A and5.31A the results
obtained with the help of the two-phase flow model are shown. Bi§éB and5.31B present the
results obtained with the help of the Richards’ model. The dry solid contethiegbaper layer is
shown for both flow models as well.

The numerical results for test case 1 show the similar behavior earlielsdetdior the single-
layer test cases. With the new mathematical model, the distribution of the watetgatichanges
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significantly (see Fig5.30. The fully saturated zone is not observed in case of the two-phase flow
model while the same test case using the Richards’ assumption shows thewébidhe single-
phase water flow. As it can be seen in Fig31, the maximum pressure value rises and it is shifted
to the left for the two-phase flow model in comparison with the Richards’ mokligiteover, as

well as for the single-layer test cases the decrease of the water nerbstow the initial value is
observed after the maximum pressure value. The dry solid content chpee layer (see Fig.32

has also changed. The profile for the two-phase flow model with bigdee wa the right boundary

of the computational domain differ from the profile for the Richards’ model.

For the second test cases we use data presented in fahlés), and5.1. The paper-felt sand-
wich is considered to be transported through the roll press with the vela&ity,| = 500 m/min.
The boundaries of the computational domain are fixeldjat= {x = —0.15m} andl'gr = {z =
0.15 m}. In the third test case we use the paper-felt sandwich with parameteenped in Ta-
bles4.1, 4.3, 5.1, and the initial saturation defined in Tablé. The velocityV ;, is chosen to be
equal tol00m /min. The boundaries of the computational domain are sBjte- {z = —0.30m},

I'r = {x = 0.40 m}. In Figs.5.33-5.35and Figs.5.36-5.38the results for the test case 2 and 3
are shown, respectively. In Figs.33and5.36the water saturation is shown. The water pressure
and the dry solid content of the paper layer are presented inF:ig%5.37and Figs5.35 5.38 re-
spectively. In Figs5.33A, 5.34A, 5.36A, and5.37A results obtained with the help of the two-phase
flow model are shown, while Figs.338, 5.34B, 5.3, and5.37B present the results obtained by
the Richards’ model. The distribution of water significantly differs for the-phase flow model
from the model with the Richards’ assumption. The water saturation and tiee prassure show
the behavior discussed in the first test case. The dry solid contereprioéive completely differ-
ent shapes for these two mathematical models in the test case 2 (sée3Big.The value on the
right boundary for the two-phase flow model is significantly lower than #igesobtained under the
Richards’ assumption. In the test case 3 (see %80 the dry solid content profiles have similar
shape but the values for the two-phase flow model are greater in the edrmafautational domain.
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Fig. 5.12: Saturatiorb (A), pressurep,, (B) and velocityV,, (C) for "Felt 2" with |V, ;,| =
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Fig. 5.26: Saturatiort (A), pressurep,, (B,C) for "Paper” with|V;,| = 100 m/min for the
two-phase flow model and for the Richards’ model
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Fig. 5.28: Saturatiort (A), pressurep,, (B,C) for "Paper” with|V,;,| = 900 m/min for the
two-phase flow model and for the Richards’ model
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5.4 Results and discussions

In this chapter a two-dimensional mathematical model for the pressing set@opaper machine
was developed. The model uses the two-phase flow approach to simulatélttation processes
in the pressing zone. We aimed to check the validity range of the Richasishasion, which had
been used in all previous chapters for the pressing section modelinge Aisstrstep we developed
the mathematical model using the static capillary pressure saturation relatiermddel with the
included dynamic capillary effects is planned to be investigated in our futarke. w

The numerical experiments have shown that the new mathematical model igafiaast in-
fluence on the distribution of the water. We have observed that the wateatsan has changed in
comparison to the Richards’ model especially in the areas where it rebigfegalues. Moreover,
we have not obtained the fully saturated zones in case of the two-phasefidel. One of the
possible reasons is that in this model the air phase has a finite velocity anaitabla to escape
completely. It may also happen because of the Robin boundary conditiboduped in this chap-
ter, which allow the escape of water through the upper and lower bousd@tie water pressure has
shown behavior similar to the behavior obtained by the Richards’ model withytientic capillary
pressure—saturation relation (see Chagjete observed the maximum pressure value shifted to
the left and the decrease of the pressure below the initial value after thismomax But the two-
phase flow model has also shown a significant increase of the maximumofatue pressure in
comparison to the Richards’ model. The dry solid content of the paperimgéso influenced a lot
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by the two-phase flow model. The way it changes depends on the partiesti@aase.

The new boundary conditions, which allow the water escape from the datignal domain,
were used. The numerical experiments showed that it improved the mathed mmetobe.

To conclude this chapter, we notice that the mathematical modeling of the presssition
should take into consideration both the air and water phases. It will alserigénteresting to see
how the dynamic capillary effects influence the two-phase flow model.



Summary

The current studies have been intended to develop a mathematical motted fmessing section

of a paper machine. As a starting point a one-dimensional model was ing@dThe Richards’
type equation together with the dynamic capillary pressure—saturation rels#sunsed to simulate

the pressing section in Chapter The obtained behavior of the water pressure appeared to be in
agreement with laboratory experiments.

In Chapter3 the stated mathematical model was investigated from the theoretical point of view
The convergence of the discrete solution to the continuous one washpagether with the exis-
tence and the compactness of the solution to the discrete problem. In thaffitst ihis chapter, we
considered the one-dimensional mathematical model with the static capillasypresaturation re-
lation. In the second part, the model including the dynamic capillary effectsrwastigated. The
theoretical studies were developed under minimal restrictions on the injguvich were satisfied
by the data used in our numerical experiments.

Since the one-dimensional model can not provide a complete image of the infiljpaticesses
within the pressing zone, in Chaptémwe extended the mathematical model to two dimensions.
There we considered a two-phase flow model under Richards’ assumgtio a possible forma-
tion of the fully saturated zones in a multilayer computational domain. The MPRAeod was
applied to discretize the obtained mathematical model on a nonorthogonailageadrgrid resolv-
ing the layer interfaces. To conclude this chapter, we carried out a mohbemerical experiments
with realistic sets of parameters.

The last chapter aimed to validate the admissibility of the Richards’ assumptidriarsevel-
oping the mathematical model in all previous chapters. Simulations for themyesction have
been performed accounting for the water phase as well as for the ai.piareover, the boundary
conditions have been improved by allowing a water phase escape frororfputational domain
where there is no contact with the surface of the pressing roll. In Chapter have considered the
flow model with the static capillary pressure—saturation relation. The dynapittary effects are
planned to be included into the flow model in our future studies.

161
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The performed simulations have allowed us to better understand the infiltratioegs occur-
ring within the pressing zone. Moreover, using the developed modelavatde to test the various
felts and the different press configurations, which may lead to furtheiowepnents of the pressing
section.



Appendix A

Averaging Procedure

A.1 Averaging procedure for the mass conservation equation

Let us consider the integral form of the mass conservation equationdataimain() ¢ R? (see
FigureA.1) in the case of no sources and no sinks and impermeable upper and tmyneldbies:

/ div (¢pSVy,) do = 0,
Q

whereQ = {(2,2) : & € [z, 2+ Az], 2 € [fi (), fu (2)]},z € [A,B], Az >0, Az e R  isa
fixed value, such that + Ax € [A, B]. Using Green’s theorem, one obtains the following integral

AZ

|

|

|
XI

><___
x

+

>

x

Fig. A.1: Computational domaift for the averaging procedure
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over the boundarg2 with integration in the counterclockwise direction:

?{)Q ¢SV, -nds =0, (A.1)

wheren is the outward unit normal of the bounda®2. The boundand$} can be represented as
(see FigureA.1):
aQ:f1Uf2Uf3Uf4,

wherel’; N T; = ( for all i # j. Let vectorV,, have the following componen®é,, = (V,},V;2).
Then A.1) yields:

0= ¢ ¢SV, -nds= | ¢SVy-nuds+ | ¢SV, - nads
9] I Iy

+ | &SVy - -nzds+ [ ¢SV, -nyds (A.2)
I's Iy

= / #SVlds — / SV ds,
8m+Aac Ex

where&, = {(z,z2) : z € [fi(z), fu(x)]} and the integrals over the boundarigsandT'; are equal
to zero since in the two-dimensional case we imposed no-flow conditions dee thoundaries
(Vw - nlp, 5, = 0). We introduce vertically averaged horizontal quantitiés), S(x) andV;} (x)
in the following way:

A 1
gb(fﬁ) = M /Sx d)(l’,Z)dZ,
A 1

S(x) = d2)d(@) Je. o(x,2)S (@, z)dz,

V(e :% z,2)S(z, )V (x, 2)dz,
) = T8 o, A DSV

where A <z <z + Az < B,d(z) = fu(z) — fi(z) > 01is the thickness of the layer.

Remembering that, = &, andl’; = &, A, equation 4.2) yields:

— d(2)S(x)VE(2)d(z) + ¢p(x + Az)S(x + Az) V) (x + Az)d(z + Az) = 0. (A.3)

Dividing (A.3) by Ax and passing to the limihz — 0, one obtains:

2 ($@d)vi @) =0, zeo (A4)
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Note, thatx (see FigureA.1) was chosen arbitrarily, therefore, equati@dnd) is satisfied for any
x € [A, B].

A.2 Averaging procedure for dynamic capillary pressure—saturation
relation

Now, we are concerned with the dynamic capillary pressure—saturatiione(2.7). For our prob-
lem, we considep:'® as a function of the saturation and the porosity*! = p5'%(.S, ¢). Integra-
tion of the left hand side ofX7) over} yields:

/Qp + P8, ¢)do ~ (15@ + pg (SQ %)) m($), (A.5)

whereiy, is the averaged over domathuantity defined by:
1 ! / d lim 7 (A.6)
Uy = ——~ [ udo, lm ugy = u, .
Q m (Q) O Ax—0 Q

under assumption thatis a continuous function.

Let us integrate the right hand side &f7) over:

/TVS‘gradeU:/diV(TSVS)dO'—/SdiV(TVS)dU
Q Q Q

R jq{ 75V, -nds — SQ 7V - nds,
a0 ol9)
whereS}2 is defined by A.6). Remembering thd is thez-component of the vectdv ; and that
V- n|g 5, =0, we have:

/ TV - grad Sdo =~ / 7SV, -nids + / 7S5V, - nsds
Q 't I's

— S'Q </ TV, -nids —i—/ TV, - n3d5>
FAl fS

:/ TSVsds/ TSVsds
gz+Az x

— 84 </ Tvsds—/ TVSdS>.
SI+AI gm

(A.7)
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Defining functions?(z) andS(z) in the following way:

Then, equation/.7) yields:

/ TV, - grad Sdo ~ 7(z + Az)S(z 4+ Az)Vid(z + Ax)
Q

— #(2)S(x) Vad(z) (A.8)
z + Az)Vid(x + Ax)

G (

»
Dividing the right hand sides of equations.§) and A.8) by Az and passing to the limihz — 0,
one obtains:

d(a) (p(@) + P ($(2), () )
= L (+@)8)Vad(@) ~ $(a) o (H(a)Vad()) . (A9)
Transforming equation(9) we obtain:

oS
p:T‘é%_pitat(Sa¢)a er:

where the hats over the functions are omitted.
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