
Vom Fachbereich Informatik der Technischen Universität Kaiserslautern zur Verleihung
des akademischen Grades Doktor der Naturwissenschaften (Dr. rer. nat.) genehmigte
Dissertation. Datum der wissenschaftlichen Aussprache: 02.05.2012

Information Extraction
on the Semantic Web

Utilizing the Resource Description Framework in Information Extraction

Benjamin Adrian

June 17, 2012

Promotionskommittee:

Prof. Dr. Andreas Dengel, Technische Universität Kaiserslautern,
Erstgutachter

Prof. Dr. Philipp Cimiano, Universität Bielefeld,
Zweitgutachter

Prof. Dr. Arnd Poetzsch-Heffter, Technische Universität Kaiserslautern,
Vorsitzender, Dekan

D 386

In January 11, 2012, this document was submitted as doctoral thesis to the Department
of Computer Science, University of Kaiserslautern. In May 02, 2012, this dissertation
was defended successfully by Benjamin Adrian.

This document was set in Times New Roman by the author using KOMA-Script and
LATEX.

c©Benjamin Adrian
Hauptstr. 42,
D-67731 Otterbach, Germany
benjamin.horak@gmail.com

Acknowledgments

Although by nature a doctoral thesis has to be performed by the author on his own, he
would never bring it to success without the help of others.

Fortunately, while investigating on “Information Extraction on the Semantic Web”
I had the opportunity to collaborate with a number of outstanding and supporting
colleagues and researchers.

First, I want to thank my adviser Andreas Dengel. Since the beginning of my research,
he confirmed me the importance of the topic of this work and encouraged me to proceed.
Andreas made it possible for me to discuss and present emerging research objectives
and results at international conferences. This comprised the doctoral consortium at the
International Semantic Web Conference 2009 in Washington DC. There, I had the chance
to meet Tim-Berners Lee, James Hendler, Ivan Herman, and all the other folks of the
Semantic Web community. Andreas also enabled me contributing to two working groups
of the World Wide Consortium, namely the RDFa WG and the RDF Web application
WG. These activities helped a lot in understanding the research gap between Information
Extraction and the Semantic Web. Especially in the beginning of my research, my close
collaboration with Andreas laid the foundation of my career as researcher.

I would like to say a big thank you to Marcus Liwicki. Writing my thesis, Marcus
supported me with excellent remarks and hints on structuring and editing this document.
His thoroughness in willingness for understanding every bit of this work was a real
support for me.

I want to thank my office mate Jörn Hees for his patience. Jörn always had the time
for brainstorming and discussing topics and problems. He also has the talent to ask the
right questions at the right time.

I like to thank Thomas Roth-Berghofer for his excellent advises. During my work time
at DFKI, Thomas has become a very good friend of mine.

I had the chance to work with excellent students on topics of this thesis, namely Sebas-
tian Ebert and Sebastian Sperber. Collaborating with them was always very inspiring.

In general, thank you Knowledge Management Group at DFKI. It was great fun
working with you for the last five years.

Last but definitely not least, I am deeply grateful to my wife Denise, my children
Emma and Max, and my family. They were a great support in recent years. Without
them it would not have been possible to finishing this doctoral thesis successfully.

3

Abstract

Dealing with information in modern times involves users to cope with hundreds of thou-
sands of documents, such as articles, emails, Web pages, or News feeds. Above all
information sources, the World Wide Web presents information seekers with great chal-
lenges. It offers more text in natural language than one is capable to read.

The key idea for this research intends to provide users with adaptable filtering tech-
niques, supporting them in filtering out the specific information items they need. Its
realization focuses on developing an Information Extraction system, which adapts to a
domain of concern, by interpreting the contained formalized knowledge.

Utilizing the Resource Description Framework (RDF), which is the Semantic Web’s
formal language for exchanging information, allows extending information extractors to
incorporate the given domain knowledge. Because of this, formal information items from
the RDF source can be recognized in the text. The application of RDF allows a further
investigation of operations on recognized information items, such as disambiguating and
rating the relevance of these. Switching between different RDF sources allows changing
the application scope of the Information Extraction system from one domain of concern
to another. An RDF-based Information Extraction system can be triggered to extract
specific kinds of information entities by providing it with formal RDF queries in terms
of the SPARQL query language. Representing extracted information in RDF extends
the coverage of the Semantic Web’s information degree and provides a formal view on a
text from the perspective of the RDF source.

In detail, this work presents the extension of existing Information Extraction ap-
proaches by incorporating the graph-based nature of RDF. Hereby, the pre-processing
of RDF sources allows extracting statistical information models dedicated to support
specific information extractors. These information extractors refine standard extraction
tasks, such as the Named Entity Recognition, by using the information provided by the
pre-processed models. The post-processing of extracted information items enables rep-
resenting these results in RDF format or lists, which can now be ranked or filtered by
relevance. Post-processing also comprises the enrichment of originating natural language
text sources with extracted information items by using annotations in RDFa format.

The results of this research extend the state-of-the-art of the Semantic Web. This
work contributes approaches for computing customizable and adaptable RDF views on
the natural language content of Web pages. Finally, due to the formal nature of RDF,
machines can interpret these views allowing developers to process the contained infor-
mation in a variety of applications.

5

About the author

Personal Data

Benjamin Adrian

Education

2006 German Diplom in Computer Science

2001 - 2006 Studied Applied Computer Science at
University of Kaiserslautern, Germany

1991 - 2000 Helmholtz-Gymnasium,
66482 Zweibrücken, Germany

Experience

2006 - 2011 Researcher, German Research Center for Artificial Intelligence
(DFKI GmbH), Kaiserslautern, Germany

2010 - 2011 Member of the RDFa Working Group,
World Wide Web Consortium (W3C)

2005 - 2006 Undergraduate research assistant,
German Research Center for Artificial Intelligence
(DFKI GmbH), Kaiserslautern, Germany

2005 6 month internship at SAP, St. Ingbert, Germany

2004 - 2005 Undergraduate research assistant,
University of Kaiserslautern,
Dept. Database and Information Systems,
Kaiserslautern, Germany

2001 - 2003 Undergraduate student assistant,
Business and Innovation Center (BIC GmbH),
Kaiserslautern, Germany

7

List of Abbreviations

AI Artificial Intelligence

CBD Concise Bound Description

ConLL Conference on Computational Natural Language Learning

CRF Conditional Random Field

EBNF Extended Bachus-Naur-Form

FSM Finite-state Machine

FOAF Friend of a Friend

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IE Information Extraction

IR Information Retrieval

LOD Linking Open Data

MUC Message Understanding Conference

NER Named Entity Recognition

NLP Natural Language Processing

OBIE Ontology-based Information Extraction

OWL Web Ontology Language

PCA Principle Component Analysis

POS Part-of-speech

RDFa RDF in Attributes

RDF Resource Description Framework

RDFS RDF Vocabulary Description Language

SCOOBIE Service Ontology-based Information Extraction

SGML Standard Generalized Markup Language

SPARQL SPARQL Query Language

SQL Structured Query Language

URI Uniform Resource Identifier

URL Unique Resource Locator

W3C World Wide Web Consortium

WWW World Wide Web

XHTML Extensible Hypertext Markup Language

XML Extensible Markup Language

9

Contents

1 Introduction 21
1.1 Motivation . 22
1.2 Hypotheses . 23
1.3 Contributions . 24
1.4 Prerequisites . 25
1.5 Terminology . 26
1.6 Outline . 27

2 Computation on natural language 29
2.1 Processing natural language . 30

2.1.1 Syntactics . 31
2.1.2 Semantics . 32
2.1.3 Pragmatics . 33

2.2 Information Extraction . 33
2.2.1 Historic outline . 35
2.2.2 State-of-the-Art . 38

2.3 Unsolved and emerging challenges . 48
2.4 Contributions . 50

3 Representing knowledge on the Web 51
3.1 Computing with semantics in the Semantic Web 52
3.2 Resource Description Framework . 53
3.3 Representing instance knowledge . 55
3.4 Representing properties . 56
3.5 Representing classes . 57
3.6 Representing multiple RDF graphs . 58
3.7 Vocabularies . 58
3.8 Querying with SPARQL . 59
3.9 Utilizing RDF from the Web . 61
3.10 Unsolved and emerging challenges . 62
3.11 Contributions . 63

4 Ontology-based Information Extraction 65
4.1 Ontologies in Information Extraction . 66

11

Contents

4.2 Ontology-based Information Extraction Systems 69

4.3 Extraction ontologies . 70

4.4 Unsolved and emerging challenges . 72

4.5 Contributions . 72

5 Foundations for utilizing RDF in Information Extraction 75
5.1 Linking URIs and textual references . 76

5.2 RDF components . 77

5.2.1 Literals . 77

5.2.2 Datatype properties . 77

5.2.3 Types . 79

5.2.4 Instances . 80

5.2.5 Object properties . 81

5.3 Semantic entity recognition process . 81

5.4 Required technological fundamentals . 85

5.4.1 Suffix arrays . 85

5.4.2 Matrix computations . 86

5.4.3 Hierarchical clustering . 87

5.4.4 Descriptive statistics . 88

5.4.5 Principle component analysis . 90

5.4.6 Link analysis in graphs . 91

5.4.7 Maximum entropy models . 93

5.4.8 Conditional Random Field . 94

5.5 Summary and Conclusion . 95

5.5.1 Summary . 95

5.5.2 Conclusion . 96

6 Preprocessing feature descriptions from text and RDF graphs 97
6.1 Features in Information Extraction . 98

6.2 A relational model of RDF data . 99

6.3 Clustering correlating classes in RDF graphs 102

6.3.1 Hierarchical clustering . 105

6.3.2 Principle Component Analysis . 108

6.4 RDF graph statistics . 109

6.4.1 Usage statistics of datatype properties 109

6.4.2 Estimating cardinalities . 111

6.4.3 Estimating characteristic relations between classes 113

6.5 Text corpus statistics . 114

6.5.1 Term and document frequencies . 114

6.5.2 Combining text corpus with RDF graph statistics 115

6.6 Mining datatype properties for proper names 115

12

Contents

6.7 Aligning datatype properties with regular expressions 117

6.8 Automatically labeling a text corpus with classes 118

6.9 Experiments and evaluations . 118

6.9.1 Datasets . 118

6.9.2 Clustering classes in DBpedia . 120

6.9.3 Proper name mining in DBpedia 125

6.9.4 Learning a Markov chain from DBpedia 128

6.9.5 Matching regular expressions with DBpedia literals 129

6.9.6 Labeling the ConLL 2003 Corpus 131

6.10 Summary and conclusion . 131

6.10.1 Summary . 131

6.10.2 Conclusion . 132

7 Processing the Semantic Entity Recognition 133
7.1 Information Extractors . 134

7.2 Filtering text for proper names . 135

7.3 Spotting text for datatype property values 137

7.4 Linking named entities to formal instances 140

7.5 Resolving ambiguous semantic entities . 142

7.6 Rating relevance of semantic entities in text 146

7.7 Classifying semantic entities . 149

7.8 Predicting object properties between semantic entities 150

7.9 Experiments . 155

7.9.1 Test Corpora . 156

7.9.2 Evaluation metrics . 157

7.9.3 Accelerating the recognition of semantic entities 159

7.9.4 Naive recognition of semantic entities 162

7.9.5 Filtering entity recognition by datatype properties 163

7.9.6 Graph-based disambiguation . 166

7.9.7 Entity classification on automatically generated training data . . . 168

7.9.8 Classification-based disambiguation 179

7.9.9 Ranking extraction results by relevance 180

7.9.10 Predicting object properties . 185

7.10 Summary and Conclusion . 186

7.10.1 Summary . 186

7.10.2 Conclusion . 188

8 Incorporating SPARQL and RDF serializations into Information Extraction 189
8.1 Post-processing IE results . 190

8.2 Ranking IE results . 191

8.3 Serializing extraction results in RDF . 193

13

Contents

8.4 Annotating IE results in Web pages . 195
8.5 Filtering IE results by specifying templates in SPARQL 196

8.5.1 Extracting Filtering Statements from SPARQL templates 197
8.5.2 Inferring Filtering Statements from SPARQL templates 198

8.6 Summary and Conclusion . 199
8.6.1 Summary . 199
8.6.2 Conclusion . 200

9 Applications of RDF-based Information Extraction 201
9.1 RDF-based Information Extraction Systems 202

9.1.1 SCOOBIE . 202
9.1.2 A comparative view on Semantic Entity Recognition systems . . . 205
9.1.3 Epiphany . 206
9.1.4 Sterntaler . 208

9.2 Additional applications and experiments 209
9.2.1 Labeling a digital document image 209
9.2.2 Semantic Desktop . 210
9.2.3 Explanations . 211
9.2.4 Textual case-based reasoning . 212

9.3 Summary and Conclusion . 212
9.3.1 Semantic content enrichment . 212
9.3.2 Position . 214
9.3.3 Conclusion . 215

10 Concluding Information Extraction on the Semantic Web 217
10.1 Summary . 218
10.2 Discussion . 218
10.3 Lessons-learned . 219
10.4 Conclusion . 220
10.5 Future Work . 221

10.5.1 Short-term investigations . 221
10.5.2 Long-term investigations . 223

10.6 Acknowledgments . 224

Bibliography 225

14

List of Figures

1.1 Degrees of formalism. 23

2.1 Two parse tree alternatives. 32

2.2 Information Extraction template. 36

2.3 A simple extract of a finite-state machine. 39

2.4 General architecture of IE systems. 40

2.5 Components used for recognizing entities in text. 42

2.6 Feature types used for representing named entities. 44

3.1 The Semantic Web layer cake (W3C, 2007). 52

3.2 RDF graph in TURTLE syntax. 54

3.3 Graph visualization of RDF data about the “Battle of Kaiserslautern”. . . 54

3.4 Symmetric Concise Bound Description of dbp:Kaiserslautern. 55

3.5 LOD cloud diagram. 61

3.6 Extended Semantic Web layer cake . 63

4.1 Ontology learning stack, by Cimiano [2006]. 67

4.2 The OBIE system, by Wimalasuriya and Dou [2010]. 68

4.3 Extraction ontology. 71

5.1 Triadic co-relation between entity references and URI references. 76

5.2 Markup text segments as formal literal values of an RDF graph. 78

5.3 Assign RDF datatype properties to recognized entities. 79

5.4 Disambiguating word senses by explicit rdf:type statements. 80

5.5 Semantic link between a named entity and a URI reference. 81

5.6 RDF resources are interlinked with object properties. 82

5.7 RDF-based Information Extraction architecture. 83

5.8 Correlation values between variables in a 2-dimensional space. 90

6.1 Model creation by pre-processing RDF and corpus data. 98

6.2 Dendrogram. 106

6.3 Colored extract of a correlation matrix. 120

6.4 Taxonomic precision ratios of PCA and hierarchical clusterings. 122

6.5 PCA generated clustering of DBpedia classes. 123

15

List of Figures

6.6 Hierarchical clustering based generated clustering of DBpedia classes. . . 124

6.7 Histograms of proper name ratings. 126

6.8 Markov chains on object properties. 127

7.1 Processing steps. 134

7.2 Filtering plain text for noun phrases. 136

7.3 Like dictionaries in linguistics, datatype properties subsume literal values. 137

7.4 Algorithm for matching text with datatype property values. 138

7.5 Linking named entities in text to instances in RDF graphs. 141

7.6 Relations between recognized instances indicate resolutions to ambiguities. 143

7.7 Some recognized semantic entities are more relevant than others. 147

7.8 Instance/predicate-object matrix of triples in Example 7.10. 152

7.9 Similarity values for matrix in Figure 7.8. 153

7.10 Predicted values for matrix in Figure 7.8. 154

7.11 Sets of relevant and recognized instances. 158

7.12 Histogram of length of literals in DBpedia. 160

7.13 Count of query results in terms of prefix lengths. 161

7.14 Processing times needed for querying and comparing literals. 163

7.15 Histograms of ambiguity ratios of datatype properties. 164

7.16 Histograms of ambiguity ratios of datatype properties. 165

7.17 Accuracy of classification results on ConLL2003 test data. 170

7.18 Accuracy of classification results in a 10-fold cross validation. 171

7.19 Comparison of window lengths and n-gram conjunctions. 172

7.20 Comparison between content and context features. 173

7.21 Learning curves of maximum entropy models. 173

7.22 Impact of known semantic entities on context features. 174

7.23 Correlation between threshold and classification accuracies. 175

7.24 Pascal ontology of workshops and conferences. 176

7.25 Classifier’s accuracies of predicted properties (a) and types (b). 177

7.26 Correlation between threshold and classification accuracies. 178

7.27 Precision ratios of an ideal type classifier on ambiguous entities. 179

7.28 Ranking correlations between the five test corpora. 182

7.29 Correlation heat maps between rankings. 184

8.1 The architecture of an RDF based IE system. 190

8.2 Cycle between extracting information and annotating formal knowledge. . 191

8.3 A list of recognized instances sorted by relevance. 192

9.1 Extended Semantic Web layer cake. 202

9.2 The Epiphany RDFa annotator. 207

9.3 Screenshot of the Sterntaler faceted Web search. 208

16

List of Figures

9.4 Rendering recognized semantic entities on top of a document image. . . . 209
9.5 The Nepomuk DropBox. 210
9.6 Explanations on IE results. 211

17

List of Tables

6.1 Correlation matrix about ambiguity, coverage, and idf. 126
6.2 Proper name ratings for common classes in DBpedia. 128
6.3 Outgoing transitions by object properties of dbp-ont:Building. 129

7.1 Comparison of frequencies between noun phrases and other words in text. 160
7.2 Response times of string or integer based hash values. 162
7.3 Recognized rates of longest match and all matches strategies. 162
7.4 Instance recognition results. 163
7.5 Rankings of the top three datatype properties. 166
7.6 Comparison of graph-based disambiguation algorithms. 167
7.7 DBpedia classes corresponding with ConLL2003 labels. 168
7.8 Coverage of datatype properties used classes of the DBpedia. 169
7.9 Pearson correlation coefficient matrix. 169
7.10 Confusion matrices listing two types of context features. 175
7.11 Mean average precision ratios of ranking metrics on each corpus. 181
7.12 Best rankings from all kinds of combinations of metrics. 183
7.13 Leave one out evaluation results of fact predictors. 185

9.1 A system comparison of instance recognition services. 205

19

1 Introduction

It’s Not Information Overload. It’s Filter Failure.

(Clay Shirky, 2008)

Google’s software engineers Alpert and Hajaj [2008] stated
that in 2008, their systems hit a milestone of handling one
trillion (as in 1 000 000 000 000) Unique Resource Loca-
tors (URLs) on the Web at once. With respect to this incredi-
ble amount of published information, an information overload
resulting in disorientation and lack of responsiveness may be
assumed at worst. The answer of Shirky [2008], a US writer
and consultant, to the social and economic effects of mas-
sive information on Web technologies is very clear: “It’s Not
Information Overload. It’s Filter Failure”. He states that
efficient information management bases on efficient filtering
techniques. Unfortunately, these information-filtering tech-
niques are still immature. In this work, we are following
Clay Shirky’s general assumption that information indepen-
dent from its amount is a blessing. It investigates the appli-
cation of knowledge representation techniques from the Web
to creating semantic filters that will prevent users from being
overloaded with information.

This chapter outlines the motivation, the hypotheses, and
the main contributions of this work. In Section 1.1, Web tech-
nologies are motivated for developing efficient information fil-
tering and extraction facilities. Section 1.2 addresses the re-
search objective by claiming three research hypotheses. Main
contributions to the Semantic Web and Information Extrac-
tion are given in Section 1.3. Section 1.4 lists necessary back-
ground to understand the scope of this work. Editorial con-
ventions and the used terminology is outlined in Section 1.5.
Finally, Section 1.6 summarizes the structure of this work.

21

1 Introduction

1.1 Motivation

In 1990, Tim Berners-Lee encouraged users to publish and distribute information on
a world embracing software system called the World Wide Web (WWW). The Web
is spanned between distributed, independent Web servers running at sites all over the
world. On such a Web server, we can deploy any kind of resource, from text documents,
videos, audios, to files. To address a published resource on the Web, a Uniform Resource
Identifier (URI) has to be assigned. All threads in the World Wide Web base on such
URIs. They are implemented as hyperlinks that associate an originating Web resource
with a target resource by referring to its URI. The Hypertext Transfer Protocol (HTTP)
allows requesting URIs from within a Web browser on a client machine, which results in
a transfer of information from the Web server to the browser.

By nature, the WWW is a web of documents. Its design focuses on the use of hypertext
[Jacobs and Walsh, 2004]. When querying a standard Web search engine, the common
stereotype of a returned Web resource is most likely a Web page whose structure and
layout is specified in Hypertext Markup Language (HTML). However, the use cases
behind HTML did not cover computers interpreting the information in published Web
content.

Hence, it is not overstating to say that, initially, the design of the Web was intended
to serve human needs. In consequence, even people without background in computer
science are part of the Web community when maintaining homepages, sharing thoughts
on blogs, or editing open encyclopedias in Wiki systems. Nevertheless, the incredible
number of billions of published Web resources may confuse users. Because the WWW as
such requires the use of computers for consuming information on the Web, the following
question should be raised:

Why do computers provide users with so little assistance on consuming in-
formation on the Web?

Berners-Lee et al. [2001] published the idea of the Semantic Web, which extends the
WWW by a formal and therefore machine interpretable layer. Here, computers can be
told about the information content of a Web resource by describing it formally in the
Resource Description Framework (RDF) [Manola et al., 2004]. Web pages of world’s
largest information providers such as the New York Times, the British Broadcasting
Corporation, the White House, the German National Library, and Wikipedia show the
great success when adding RDF data as machine-interpretable hints to published infor-
mation. Actually, by using RDF in Attributes (RDFa) markup it is possible to embed
RDF data directly within a Web page’s HTML model [Adida et al., 2011].

Figure 1.1 presents the formal value of information on the Web along two axes that
represent degrees of underlying syntax and semantics in formalisms. Basic operations
on information, such as structured questions or reasoning, require formally represented

22

1.2 Hypotheses

information as provided by knowledge representation languages, such as RDF, the RDF
Vocabulary Description Language (RDFS), and the Web Ontology Language (OWL).

syntactical structuring of content

form
al sem

antics in structure

plain text

OWL

RDF

RDF Schema

Relational Algebra

HTML XML

Microdata/
Microformats

RDFa

unstructured well structured

w
ell form

alized
w

eakly form
alized

fo
rm
al
 r
ea
so
ni
ng

st
ru
ct
ur
ed

qu
er
ie
ste

rm
 s
ta
ti
st
ic
s

Figure 1.1: Increasing the degree of formalism in specifying syntax and semantics of
information results in an increase of the value and the usability of

information.

In fact, Web content management systems, such as Drupal or Wordpress support the
creation of RDF and RDFa data along publishing processes in Web pages. Nevertheless,
most Web pages do not contain any structured information, yet. Still, plain text is of
major use in news, education, entertainment, or science. Even those Web pages that do
contain RDF data will most likely contain passages of plain text without any machine-
interpretable hints. Hence, the following question remains:

Who creates RDF(a) data for existing and unstructured Web content and
text, respectively?

1.2 Hypotheses

In Computational Linguistics, the algorithmic process of extracting structured informa-
tion from unstructured text is referred to as Information Extraction (IE). This work

23

1 Introduction

investigates methods that extend the state-of-the-art in IE by integrating formally rep-
resented Semantic Web data into the architecture, the interfaces, and the information
extractors of IE systems. This raises the following three research hypotheses:

The utilization of RDF in IE approaches . . .

H.1 . . . enhances the IE process: Providing Information Extraction (IE)-systems
with formal Semantic Web data in RDF enables the investigation of enhanced
IE-algorithms that add new opportunities to implementing IE tasks, such as the
recognition of entities, the disambiguation of word senses, and the extraction of
relations.

H.2 . . . facilitates design of IE-interfaces: In IE, templates specify and represent
structure and content of information items, which should be extracted from the
natural language text. Formal data of the Semantic Web comprises the use of vo-
cabularies to specify the tokens of a certain domain in terms of classes, properties,
and relationships of and between individual information items. The incorpora-
tion of such vocabularies for defining an information demand on RDF sources in
the SPARQL Query Language (SPARQL) facilitates the specification of IE tem-
plates. Providing the formal nature of extracted information in RDF facilitates
the utilization of extracted results by subsequent applications.

H.3 . . . involves domain adaptability: Traditional IE- systems suffer from being
specialized on single IE templates and domains of concern. The utilization of
RDF-represented information as well as the RDF-represented IE results facilitates
the domain independent usage of IE systems. The incorporation of exchangeable
formal information involves an increasing flexibility in adapting IE-systems to a
new domain of concern.

Each of these research hypotheses are referred to especially from Chapter 5 to 8
covering the main research objectives.

1.3 Contributions

The research activities performed in this work result in the following main contributions.
They refer to each of the upper defined research hypotheses.

C.1 Incorporating RDF into IE enables information extractors to utilize additional
background knowledge. This work contributes insights on how to pre-process raw
RDF data by combining statistical graph and corpus analyzes to compile statistical
models that cover single aspects of knowledge patterns. Please refer to Chapters 5
and 6 for more information on pre-processing RDF data.

24

1.4 Prerequisites

C.2 Incorporating RDF into IE involves the extension of the traditional Named En-
tity Recognition (NER). This results in the specification of the Semantic Entity
Recognition process, which extends the traditional recognition of named entities
with the consumption of formal knowledge provided by RDF graphs. Chapters 5
and 7 provide foundations and detailed information on extracting semantic entities
from text.

C.3 By utilizing terms from the formal vocabularies, which are used in RDF data sets,
SPARQL queries are applied for specifying IE templates that describe which types
of information the IE-system should extract from text. Chapter 8 explains the
application of SPARQL to IE.

C.4 In order to deploy the application of RDF-enhanced Information Extraction (IE)
into the general architecture of the Semantic Web, this work presents the formal-
ization of IE results in RDF. This also comprises the ability to integrate formal
extraction results back into originating Web pages by automatically generating a
copy of it enriched with RDF in Attributes (RDFa) markup. Chapter 8 provides
detailed information on this topic.

C.5 The state-of-the-art of NER depends on the existence of training data, which is
expensive to create. This work proposes a method, which uses the knowledge of
an RDF graph to automatically label a text corpus. A labeled corpus is used to
train entity classifiers in terms of the domain of concern of the underlying RDF
graph. This allows a more general adaption of IE systems to specific application
domains. Chapter 6 provides detailed information on the automatic creation of
training data.

C.6 Due to the Linking Open Data (LOD) community, a large variety of domains have
been published in recent years using RDF data. The evaluations of methods and
applications that were developed in this work (see Chapters 6, 7, and 8) were
conducted on the data of different RDF graphs. This confirms the general value
of an application of RDF to Information Extraction (IE) independently of the
underlying domain.

1.4 Prerequisites

The reader should be familiar with general Web technologies including the Hypertext
Transfer Protocol (HTTP), the Unique Resource Locator (URL), and its generalized
form, the Uniform Resource Identifier (URI). Jacobs and Walsh [2004], Berners-Lee and
Fischetti [1999] provide a comprise summary of these technologies.

The author recommends referring to Jurafsky and Martin [2008] for details on Natural
Language Processing (NLP), which is applied in Chapter 2 and Chapter 7.

25

1 Introduction

A background in Semantic Web technologies like it is summarized by Hitzler et al.
[2009] is helpful to understand its application and utilization in Chapters 3, 5, and 8.

The application of statistics and probabilities in Chapters 5 and 6 requires a basic un-
derstanding in these fields of mathematics. Here, knowledge about statistics in machine
learning is helpful to understand the computation of models. Duda et al. [2001] and
Jurafsky and Martin [2008] provide a comprehensive overview on used machine-learning
approaches.

1.5 Terminology

Within this document, references to scientific literature are referring to by keys consisting
of the authors’ last names and the date of publication. At the end of this document, a
literature list provides more citation information about these references. Because some
literature is only available online, these references are recorded as standard literature
but also consist of a persistent URL. Informative background information related to
current topics is referred to by using footnotes.

Within examples and data excerpts of experimental results, RDF graphs are printed
in TURTLE syntax Beckett and Berners-Lee [2007]. Here, the following prefixes and
namespaces are used to provide a compact illustration:

rdf RDF Vocabulary http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs RDF Schema Vocabulary http://www.w3.org/2000/01/rdf-schema#

owl Web Ontology Language http://www.w3.org/2002/07/owl#

foaf Friend-of-a-Friend vocabulary http://xmlns.com/foaf/0.1/

dc Dublin core metadata vocabulary http://purl.org/dc/elements/1.1/

mo Music Ontology http://purl.org/ontology/mo/

dbp DBpedia’s resources http://dbpedia.org/resource/

dbp-ont DBpedia’s ontology http://dbpedia.org/ontology/

yago YAGO knowledge base, derived from Wikipedia. http://dbpedia.org/class/

yago/

geo A vocabulary for representing latitude, longitude and altitude information. http:

//www.w3.org/2003/01/geo/

26

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2002/07/owl#
http://xmlns.com/foaf/0.1/
http://purl.org/dc/elements/1.1/
http://purl.org/ontology/mo/
http://dbpedia.org/resource/
http://dbpedia.org/ontology/
http://dbpedia.org/class/yago/
http://dbpedia.org/class/yago/
http://www.w3.org/2003/01/geo/
http://www.w3.org/2003/01/geo/

1.6 Outline

1.6 Outline

The structure of this document is divided into six parts:

Introduction: Chapter 1 motivates further investigations on IE approaches on the Se-
mantic Web. It exposes three research objectives in Section 1.2 and summarizes
the resulting contributions of this research in Section 1.3.

State-of-the-Art / Related Work: The next two chapters outline the state-of-the-art
in IE and Semantic Web technologies this work is building upon. Each chapter ex-
poses open issues this work contributes to. More specifically, Chapter 2 outlines the
history of recurring problems in IE research from the early beginnings until now.
Chapter 3 presents knowledge representation techniques of the Semantic Web for
exchanging information in RDF. Finally, the foundations are completed by listing
related work on Ontology-based Information Extraction (OBIE) in Chapter 4.

Concept: This part covers the general concept for incorporating RDF for enhancing
the implementation of IE tasks. Chapter 5 describes the extension of a named
entity with a semantic link associating it with an RDF source. It defines semantic
entities and specifies a Semantic Entity Recognition process. Moreover, it outlines
formal computation approaches for programming with semantic entities and RDF
sources.

Realization: The remainder four chapters describe activities spent on the core research
objectives. Chapters 6 and 7 detail on how RDF supports different kinds of infor-
mation extractors. Each chapter is self-contained in terms of approach, relevant
related work, experimental evaluation, and final conclusion. Chapter 6 figures out
the preprocessing of textual and formal background knowledge to create models
that support the development of concrete information extractors. Within the scope
of a general Semantic Entity Recognition process, these tasks are introduced and
outlined in Chapter 7. Chapter 8 explains the application of RDF and SPARQL
in the input and the output interfaces of an IE system. It describes RDF serial-
ization of extracted information and outlines the use of SPARQL for filtering the
information that has to be extracted from text.

Application: Chapter 9 outlines IE software systems and prototypes, which were de-
veloped based on RDF-based IE. It describes the implemented RDF-based IE
system Service Ontology-based Information Extraction (SCOOBIE), the annota-
tion of Web pages with IE results in Epiphany and finally a Web search extension
called Sterntaler.

Conclusion and Outlook: Chapter 10 summarizes, discusses, and concludes the research
results and provides hints for promising future work topics.

27

2 Computation on natural language

Language is the fabric of the Web.

(Hans Uszkoreit, What is Computer Linguistics?,
http: // www. coli. uni-saarland. de/

~ hansu/ what_ is_ cl. html , 2000)

A vast amount of information in the Web is represented in
unstructured natural language text. In order to extract from
text relevant information for users, this work investigates al-
gorithmic approaches processing the natural language in text.
In the following chapter, the field of Computational Linguis-
tics is introduced. The necessary foundation of a computa-
tional processing of natural language is outlined. Information
Extraction (IE) as an application of Computational Linguis-
tics approaches is described in more details. In the remainder
chapters, IE techniques will be extended by incorporating for-
mal Semantic Web knowledge.

This chapter introduces the field of Computational Linguis-
tics by focusing on IE tasks that are extended by the research
of this work. First, Section 2.1 addresses challenges and vi-
sions of Computational Linguistics as a subfield of Artificial
Intelligence (AI). Providing a background for the investiga-
tions of NLP, Section 2.2 outlines a short historic summary
of IE as application of Computational Linguistics and sum-
marizes the state-of-the-art in IE. Subsequently, Section 2.3
summarizes the open challenges in IE. The challenges relate
to the research hypotheses claimed in Section 1.2. Finally,
Section 2.4 concludes the contributions to these challenges.

29

http://www.coli.uni-saarland.de/~hansu/what_is_cl.html
http://www.coli.uni-saarland.de/~hansu/what_is_cl.html

2 Computation on natural language

2.1 Processing natural language

Computational Linguistics is a research field, which investigates algorithmic NLP meth-
ods to finally create a formal understanding of contained information. Hence, from an
Artificial Intelligence (AI) point of view, a Computational Linguist’s vision is to teach
machine agents on how to understand meanings in natural language and on how to apply
language in conversations similar to humans.

Jurafsky and Martin [2008] separate the visions of Computational Linguistics into
three fields:

• Conversational agents that speak and understand natural language like humans.

• The machine translation of text from one language into another.

• A question answering system that answers questions given in natural language.

The research objectives of this work are related to the question answering. It addresses
techniques for extracting structured information from natural language text.

When processing natural language, Jurafsky and Martin [2008] state that, the main
challenges occur from resolving ambiguities during its interpretation. For example, the
occurrence of “cook” in a sentence can be resolved as either verb or noun. In addition,
by speaking of “make” in a sentence, depending on surrounding context its intended
meaning may be “create” or “cook”. The resolution of language ambiguities is concerned
to be a hard problem in AI. It requires formal background knowledge from conversational
contexts or about real world facts (please refer to [Shapiro, 1992]).

The application of Computational Linguistics to process Web content, which is in
focus of this work, is described by Uszkoreit [2000] as follows1:

“The rapid growth of the Internet/WWW and the emergence of the infor-
mation society poses exciting new challenges to language technology. Al-
though the new media combine text, graphics, sound and movies, the whole
world of multimedia information can only be structured, indexed and nav-
igated through language. For browsing, navigating, filtering and processing
the information on the Web, we need software that can get at the contents of
documents.[Uszkoreit, 2000]

Uszkoreit’s description of applying language technology for developing information
filtering mechanisms matches exactly with the general intention of this work.

In general, the basic literature about NLP approaches describes a conceptual stack
dividing the problem into syntactics, semantics, and pragmatics [Allen, 1994, Jurafsky
and Martin, 2008] .

1Uszkoreit’s definition got cited by the AI topics http://www.aaai.org/AITopics of the American
Association of Artificial Intelligence (AAAI)

30

http://www.aaai.org/AITopics

2.1 Processing natural language

Syntactics: Algorithms within this category address the recognition and processing of
well-defined syntactic structures of languages.

Semantics: Approaches performing semantic analysis principally ground on the inter-
pretation of known language semantics.

Pragmatics: Here, the focus is set on the application of knowledge that was interpreted
from language.

The following sections outline each of these elements. Later, in Section 2.2.2, syntac-
tics, semantics, and pragmatics are used to classify specific task topics of the state-of-
the-art in processing natural language.

2.1.1 Syntactics

Syntactic knowledge about languages specifies basic language segments, such as words
and sentences. Syntax rules determine how words can be combined in order to form a
correct sentence. They also specify the structural roles of words within the context of a
sentence and determine word sequences as phrasal units.

Computational approaches for processing syntax are, for example, grammars spec-
ifying syntactic rule sets that allow the generation of valid sentences and parsers for
applying these rules when processing language data. Chomsky [1956] described and for-
malized the computational complexities of natural language grammars and parsers. He
showed that even at the bottom of the language processing stack the syntax of natural
language may be complex to a form that even the most general model of a computer,
i.e., the Turing Machine, is not able to decide whether a sentence is correct according to
the formal grammar rules of a language, or not. The following example shows that even
the parsing of language segments requires the resolution of language ambiguities.

Example 2.1 (Syntax)

Please read the following two English sentences:

“Time flies like an arrow.”

“Fruit flies like a banana.”

These sentences show that dependent or not the words “Time flies” or “Fruit flies”
are determined as noun phrases, an English parser is unable to return decidedly parsing
results (see parse tree alternatives in Figure 2.1).

31

2 Computation on natural language

Time flies like an arrow
Fruit flies like a banana

NP NP

N V P DT N

PP

VP

S

N N V DT N

VP

S

NP NP

" "

" "

Figure 2.1: Two parse tree alternatives.

2.1.2 Semantics

Language semantics specify the required knowledge used for interpreting the meaning of
language segments within the context of a sentence. The disambiguation of word senses,
as well as the resolution of co-references created by speaking with pronouns is a typical
application of processing language semantics.

Example 2.2 (Semantics)

Reading the following beginning of a sentence should not invoke any ambiguities.

“We gave the monkeys the bananas,

But, extending the sentence with the following two options results in ambiguities while
resolving the targeting reference of the pronoun “they”.

. . . because they were ripe.”

. . . because they were hungry.”

Formal language semantics, for example, may add role signatures to phrasal structures.
In fact, the roles of monkeys do not comprise monkeys being ripe or bananas being
hungry. This enables a co-reference resolver to decide that the occurrence of they in
the first case refers to the bananas, whether the occurrence of they in the second case
refers to the monkeys.

32

2.2 Information Extraction

2.1.3 Pragmatics

The extraction of formal information is influenced by the interpretation and expectation
of a sentence’s meaning. Pragmatic approaches comprise the holistic interpretation of
a sentence meaning within the context of surrounding sentences as discourse. However,
often world knowledge is needed to resolve language ambiguities.

Example 2.3 (Pragmatics)

Please read the following text passage carefully:

I was finished and closed the pen . . .

Answer yourself the question: What is meant by the speaking of a pen? Keep this
answer in mind while continuing reading the next passage to the end of the sentence.

. . . in order to get the chickens safe this night.

Asking again, about how you would interpret the meaning of pen will most likely
generate a different answer. The reason is that now, the interpretation of pen differs
because of the extended context, which relates pen with chickens.

2.2 Information Extraction

Jurafsky and Martin [2008] describe IE as a system-oriented application of Computa-
tional Linguistics, which is related to the nature of question answering. Grishman [2002]
and his team published an overall vision of IE in 2002 on the homepage of project
Proteus. Proteus was a driving research project coping with IE.

Definition 2.1 (Long-term goals of Information Extraction)

Our long-term goal is

1. to build systems that

2. automatically find the information

3. you’re looking for,

4. pick out the most useful bits,

5. and present it in your preferred language,

6. at the right level of detail.

33

2 Computation on natural language

Proteus’ definition of IE summarizes important high level goals [Grishman, 2002]. The
following paragraphs comment single features of this vision and outline the impact each
feature has on this work.

1. In general, Grishman’s claim to building systems conforms to the overall goal
of Computational Linguistics, i.e., to build systems that understand natural
language. In this work, the system SCOOBIE (see Section 9.1.1) was developed as a
prototypical IE system, which verifies the value of utilizing information represented
in RDF in the implementations of a number of information extractors.

2. The vision states that information extractors automatically process natural lan-
guage sources and extract contained information items without any supervision.
This includes the configuration of parameters used for adapting and applying in-
formation extractors to specific RDF data without or at least by requiring only
minimal human input. Hence, the goal of this work is to develop IE methods
that incorporate and adapt to given RDF data without human supervision. This
corresponds with the claimed Hypothesis H.3.

3. “Extracting the information the user is looking for” refers to the IE template fea-
ture, which enables users to define their information demand from text. In this
work, the goal is to enhance the existing IE template mechanisms by incorpo-
rating the SPARQL query mechanism. This corresponds with the claim of the
Hypothesis H.2.

4. The IE-system should extract or filter only those information items from text
the user is currently interested in. This feature entails necessary considerations of
relevance criteria to rate extracted bits of information. In consequence, this work
will use passed RDF data to rate the relevance of the IE-results. This corresponds
with the claim of the Hypothesis H.1.

5. The presentation of IE results in a preferred language covers translational aspects
of formally representing IE-results. Consequently, IE results should be translated
to formats that fit best to the user’s need for enabling her to pass IE-results to
succeeding applications. This work uses RDF for representing IE results corre-
sponding with the claim of the Hypothesis H.2.

6. IE-systems should not overload the user with verbose details in IE results. Gr-
ishman proposes IE-systems to provide summaries about extracted information.
The use of Semantic Web technology allows summarizing IE results on a technical
level by providing users just URI references that point to more background infor-
mation about the recognized information items in text. This corresponds with the
claim of the Hypothesis H.2 as the applied domain knowledge rates the relevant
information in text.

34

2.2 Information Extraction

2.2.1 Historic outline

One of the earliest IE systems was developed in the Linguistic String Project. It was
based on the application of hand crafted string grammars [Sager, 1967]. The used
technology consisted of handcrafted rules and simple template population techniques
[Sager, 1981].

DeJong [1979, 1982] proposed the FRUMP IE system. It adapted Schank’s high-level
script structures for representing episodic knowledge of situations [Schank and Abelson,
1977]. He refined Scripts to what the IE community nowadays refers to as templates,
e.g., a model frame with slots that represent bits of knowledge about scenarios such
as job changes of top managers. The design of the FRUMP system was intended to
populate slots in kind of these template structures.

With the beginning of the Message Understanding Conference (MUC)-series in 1987,
a research community emerged and collaborated on developing IE-systems. Results
of the MUC-series form the base of all modern IE-systems. During the MUC-decade,
independent NLP-tasks, such as Named Entity Recognition, Co-reference Resolution, or
Word-sense Disambiguation were defined. A pipeline architecture consisting of a series
of transducers emerged as best practice for processing information on different levels and
units of language. Finally, the existence of formal IE templates, which define the users’
information demand, was a major contribution of the MUC conference series.

Interestingly to see is how the MUC task definitions given to participants changed over
time [Grishman and Sundheim, 1996]. Influenced by evolving political and economic
interests, the choice of data and extracted content differed from extracting information
from naval messages in the late 80-ies, to extract information from Japanese documents
about job changes of top managers and joint ventures in the early 90-ies. Finally, the
focus was set on the extraction of terror-related information from Arabic texts in the
late 90-ies.

The following summary of activities in the MUC-series rests upon “A Brief History
of MUC” by Grishman and Sundheim [1996] and surveying work written by Cowie and
Lehnert [1996] as well as Wilks [1997].

In the first MUC in 1987, neither a predefined format was given for recording extracted
information, nor was a formal evaluation conducted. As result, it was hard to compare
the qualities of different systems.

By MUC-2 in 1989, template filling had crystallized as a determining task topic.
Developers received a description of a class of events to be identified in the text; for each
of the events one had to fill a template with information about the event. IE templates
were frame-like structures with slots representing information about a thing which was
concerned as an event on these conference call. Ten slots covered information about
the event’s type, the agent, the time and place, the effect, etc. Precision and Recall
measures were used to rate the quality of populated template slots (see Section 7.9.2).

IE templates became more complex comprising 18 slots at MUC-3 in 1991 and 24 slots

35

2 Computation on natural language

at MUC-4 in 1992.
At MUC-5 in 1993, the extraction had to be solved in two languages, English and

Japanese. The reason was the increasing influence of Japan in US economy. Here, joint
ventures should be extracted from text. This task required 11 templates with a total of
47 slots. The task documentation was over 40 pages long.

Figure 2.2: Nested IE template in EBNF syntax specifying entities with slots for
describing manager successions.

One innovation of MUC-5 was the use of nested template structures. In earlier MUCs,
each event had been represented as a single template in effect, a single record in a
database, with a large number of attributes. This format proved awkward when an
event had several participants (e.g., several victims of a terrorist attack) and one wanted
to record a set of facts about each participant. Figure 2.2 contains the Extended Bachus-
Naur-Form (EBNF)2 notation such a template definition.

2Please refer to http://www.cs.man.ac.uk/~pjj/bnf/bnf.html for more information on EBNF.

36

http://www.cs.man.ac.uk/~pjj/bnf/bnf.html

2.2 Information Extraction

At MUC-5, Hobbs [1993] presented a first technical view on a generic IE architecture:

Definition 2.2 (Hobb’s generic IE architecture)

An Information Extraction system is a cascade of transducers or modules that at each
step add structure and often lose information, hopefully irrelevant, by applying rules
that are acquired manually and/or automatically.

[Hobbs, 1993]

One year after MUC-5, Hobbs and Israel [1994] elaborate on knowledge representation
techniques for designing templates. The authors were the first to mention ontology in
an IE context, i.e., ontology about representing extracted entities.

By MUC-6 in 1995, several goals were defined for specifying the nature of desired in-
formation extractors. One goal was to identify task independent component technologies
of IE systems.

Named Entity Recognition (NER), for example, was defined as IE task to identify
persons, locations, organizations, time expressions, currency, and percentage values in
text.

Example 2.4 (Named entities)

The example below shows how the Standard Generalized Markup Language (SGML)
was used to represent labeled entities in text.

The <ENAMEX TYPE=”LOCATION”>U.K.</ENAMEX> s a t e l l i t e t e l e v i s i o n
broadcas te r sa id i t s s ub s c r i b e r base grew
<NUMEX TYPE=”PERCENT”>17.5 percent</NUMEX> during
<TIMEX TYPE=”DATE”>the past year</TIMEX> to 5 .35 m i l l i o n .

Furthermore, three “Deep Understanding” IE tasks were proposed:

Co-reference: The IE system has to mark co-referential noun phrases in text passages.
Interestingly, Grishman remarked that the initial specification of co-reference ana-
lyzes envisioned marking even set-subset; and part-whole relations, in addition to
identity relations.

Word-sense Disambiguation: For each open class word (noun, verb, adjective, and ad-
verb) in the text, the IE-system would have to determine its sense (in terms of
linguistic semantics). The classification system of the Wordnet thesaurus defining
hyponyms and synonyms for English words was used for accomplishing this task
[Stark and Riesenfeld, 1998].

Predicate-argument structure By using deep parsing methods, the system would have
to create a tree interrelating the constituents of the sentence, using some set of
grammatical functional relations.

37

2 Computation on natural language

Up to MUC-6, IE-systems were developed for single domains-of-concerns with special-
ized extraction tasks. Now, portability was defined as the ability to rapidly re-target a
system to extract information about a different class of events. The correct wording of
Grishman and Sundheim [1996] speaking about portability in IE was:

“The committee felt that it was important to demonstrate that useful extrac-
tion systems could be created in a few weeks.”

The MUC-7 in 1997 was the last conference of the MUC-series. Systems working on
NER in English produced near-human performance. The best system scored 93.39% of
f-measure. Compared to this, human annotators scored 97.60%.3

From 2000–2008 the Automatic Content Extraction (ACE) competition started eval-
uating IE-systems. The primary ACE research objectives were viewed as the detection
and classification of Entities, Relations, and Events in text. In 2009, ACE became a
track in the Text Analysis Conference (TAC).

One year later a new IE task called Knowledge Base Population emerged at the TAC
2010. Knowledge Base Population means to use extracted information from text for
populating any kind of knowledge base. It was the first IE task being categorized as
Ontology-based Information Extraction (OBIE) (see Chapter 4).

2.2.2 State-of-the-Art

Appelt and Israel [1999] provide a tutorial about NLP techniques and IE systems that
built on them. Despite the advanced age of this tutorial, it still provides a comprehensive
overview about the general architecture most IE systems follow. Jurafsky and Martin
[2008] describe IE as the compilation of a series of NLP techniques.

Finite state transducer

A stable architecture pattern implemented in IE systems is to wrap information extrac-
tors by a transducer concept such as Finite-state Machines (FSMs) (see Appelt et al.
[1993], Kushmerick [2002], McCallum [2002], Bontcheva et al. [2004], Nadeau and Sekine
[2007], Adrian and Dengel [2008], Jurafsky and Martin [2008]).

The modeling of FSMs is a well-known technique for processing textual input streams.
It is based on states, transitions, and actions. Two groups of FSMs exist, namely
recognizers and transducers. Recognizing machines accept certain tokens with a function
λ that maps read tokens into the Boolean token set O := {false, true}. Transducing
machines (called finite-state transducer) read tokens and create a new formal language
with λ and an output alphabet O as shown in Figure 2.3.

3Further readings about MUC-7 results is available under http://www-nlpir.nist.gov/related_

projects/muc/proceedings/muc_7_proceedings/marsh_slides.pdf.

38

http://www-nlpir.nist.gov/related_projects/muc/proceedings/muc_7_proceedings/marsh_slides.pdf
http://www-nlpir.nist.gov/related_projects/muc/proceedings/muc_7_proceedings/marsh_slides.pdf

2.2 Information Extraction

Figure 2.3: A simple extract of a finite-state machine.

According to Chomsky’s hierarchy of grammars, a finite-state transducer is capable
to implement parsers for regular languages, which is the simplest form of complexity
[Chomsky, 1956]. Nevertheless the majority of IE-tasks that are implemented by using
this simplistic concept produce sufficient quality. Hence, in this work IE is implemented
by means of the system SCOOBIE, built upon this architecture (please refer to Sec-
tion 9.1.1).

We set the focus on a special type of FSTs called Moore Machines. The basic nature
of a Moore Machine is the fact that it generates output based on its current state. Thus,
transitions to other states depend on the input.

Definition 2.3 (Moore Machine)

We describe a Moore Machine as a 6-tuple (S, S0, I, O, σ, λ) with:
S as finite set of states and S0 ∈ S as initial state,
I as input alphabet, and
O as output alphabet,
σ : S × I → S as transition function, and finally
λ : S → O as output function.

Figure 2.3 outlines a Moore machine between a token input stream I and output
stream O. The theory of FST allows composing a series of FSTs to finite-state cascades
[Allauzen and Mohri, 2009].

The FSM framework is applied to each of the information extractors in SCOOBIE.
The first application of finite-state cascaded within SCOOBIE’s pipeline architecture
was published in [Adrian and Dengel, 2008]. There, the extension of FSTs with a belief
function was proposed adding weights to elements of transducers’ input and output
alphabets, which are referred to as hypotheses. Within a finite state cascade, this paper
describes a combination function with a converging feature that enables transducers to
consume multiple weighted hypotheses to finally produce one weighted hypothesis. Later
on, the implementation of SCOOBIE’s pipeline architecture is restricted to interpret,

39

2 Computation on natural language

weight, and combine only relevance ratings. Calculations on relevance ratings are based
on stochastic operations using statistical distributions of these relevance values.

Language identification

Language identification refers to the problem of determining which natural language a
text is written in. A common approach is based on the usage of statistics on character
n-grams in languages [Dunning, 1994, Cole, 1997]. A typical classifier is then trained on
the distribution of a language’s character n-grams of length 1 ≤ n ≤ 5.

An existing implementation, which provides character n-gram distributions for com-
mon languages is used in SCOOBIE (please refer to Section 9.1.1)4. Figure 2.4 outlines
common tasks of IE systems separated by the general categories syntax, semantic, and
pragmatic of Computational Linguistics.

named entity recognition
word sense disambiguation
co-reference resolution

Semantic AnalysesSyntactic Analyses Pragmatic Analyses

relation extraction
text segmentation
part-of-speech tagging
text chunking

Figure 2.4: General architecture of IE systems.

Text segmentation

Text segmentation describes the problem of segmenting running text into words and
sentences [Jurafsky and Martin, 2008]. In European languages, a simple word tokenizer
can be implemented by interpreting space characters as delimiters and applying rules that
determine the interpretation of existing punctuations for example in abbreviations or
sentence boundaries (“e.g.”, “i.e.”). The segmentation of text into sentences is generally
based on the interpretation of punctuations. Certain kinds of punctuations such as
“!? :” tend to mark sentence boundaries. Others (e.g., “The 1st Int. Workshop on Text
Processing”) have to be handled by using abbreviation lists and lexical rules or training
classifiers on ground truth data. Finite-state transducers of the Java programming
language API are used as word and sentence tokenizers in SCOOBIE (please refer to

4The Nutch library provides an open source implementation of a language identifier. See http://wiki.

apache.org/nutch/LanguageIdentifier for more details.

40

http://wiki.apache.org/nutch/LanguageIdentifier
http://wiki.apache.org/nutch/LanguageIdentifier

2.2 Information Extraction

Section 9.1.1)5

Part of speech tagging

In Computational Linguistics, Part-of-speech (POS) tagging, is also referred to as word-
category disambiguation. It describes the problem of labeling words in a text to cor-
respond to a particular part of speech. A simplified form of a POS analysis is the
identification of words as nouns (NN), verbs (VB), determiners (DT), etc.

Example 2.5 (POS tagging)

The following sentence is labeled with part of speech tags:

RDF is a graphical knowledge representation format .

NN VB DT JJ NN NN NN .

In English, POS tag sets are defined by the Brown corpus [Greene and Rubin., 1981]
or the Penn Treebank6. For German, the Tiger corpus provides annotated corpus data
Brants et al. [2002].

In this work, POS tagging models for the German and English language provided by
the Open NLP library7 are used. This implementation is based on maximum entropy
classifiers [Nigam et al., 1999b]. In Section 7.2 and 7.7, POS tags are used as feature
functions that determine a word’s meaning in a sentence.

Text chunking

Text chunking describes the problem of classifying words to be part of a phrasal structure.
The example below lists a result of a phrase chunking sequence tagger. The labels are
specified in the I −O −B notation. B denotes a word to be the beginning of a phrase,
I denotes a word to be within a phrasal sequence, and O denotes a word to be outside
any phrasal structures. The postfix of I −O−B tags describes the type of phrase. NP
denotes a noun phrase. V P denotes a verb phrase.

Example 2.6 (Text chunking)

The following sentence is labeled with phrase tags in I −O −B notation.

RDF is a graphical knowledge representation format .

B-NP B-VP O B-NP I-NP I-NP I-NP O

For implementing a text chunker, the shared task on text chunking of the Conference
on Computational Natural Language Learning (ConLL) in 2000 provides a data set8

5http://download.oracle.com/javase/6/docs/api/java/text/BreakIterator.html
6The data set is available at: http://www.cis.upenn.edu/~treebank/
7http://incubator.apache.org/opennlp/
8The data set is available at: http://www.clips.ua.ac.be/conll2000/chunking/

41

http://download.oracle.com/javase/6/docs/api/java/text/BreakIterator.html
http://www.cis.upenn.edu/~treebank/
http://incubator.apache.org/opennlp/
http://www.clips.ua.ac.be/conll2000/chunking/

2 Computation on natural language

annotated with phrase labels. Tjong Kim Sang and Buchholz [2000] present a general
overview of the systems that have taken part in the shared task and briefly discuss their
performance.

One goal in IE is to detect names in text that refer to real world concepts. In this
context, a further investigation on the use of nouns in text is needed: Nouns are tradi-
tionally grouped into proper nouns and common nouns. Proper nouns, like Regina,
Colorado, and IBM, are names of specific persons or entities. They are also referred
to as proper names. Common nouns are divided into count nouns and mass nouns.
Count nouns are those that allow grammatical enumeration; that is, they can occur in
both the singular and the plural (goat/goats, relationship/relationships) and they can
be counted (one goat, two goats). Mass nouns are used when something is conceptu-
alized as homogeneous group. Therefore, words like snow, salt, and communism are not
counted [Jurafsky and Martin, 2008].

In this work, text chunking, for example, is applied to identify noun phrases in text
(refer to Section 7.2). These syntactic language segments are considered to be candidates
for proper names and therefore provide a good starting point for a subsequent semantic
analysis such as the recognition of named entities.

formal
representation

named
entity

extraction
logic

text

interpretes

referred from

describes spots
named entity
recognition

Figure 2.5: Components used for recognizing entities in text.

Named Entity Recognition

In contrast to just formally analyzing the syntax of proper names, NER refers to the
problem of labeling word sequences as proper names and classifying the type of entity
they refer to. The MUC series defined a fixed set of types IE-system should recognize
in text mainly consisting of person, location, organization, and event.

The general architecture for building a named entity recognizer is given by Figure 2.5.
First, a machine understandable representation for describing the types of entities is
needed. Such representation often depends on large lists of known names and values of

42

2.2 Information Extraction

these types. In literature, these lists are often referred to as dictionary or gazetteer.
Rule-based approaches model finite-state automaton on these lists for spotting their

entries in text. For example, the GATE framework provides such an implementation
[Cunningham et al., 2002]. GATE also provides the JAPE language [Cunningham et al.,
2000] for specifying lexical rules that enable domain experts to create entity represen-
tation by combining values of gazetteers. JAPE also allows the specification of regular
expressions for a more generalized definition on possible entity values.

The state-of-the-art in NER applies machine-learning models to train sequence tag-
gers. In general, these supervised machine-learning techniques require a corpus of ex-
amples to exist. These examples are labeled with entity classes that should be learned
and finally predicted by the sequence tagger. Sequence taggers analyze statistical distri-
butions on word co-occurrences for each label in the corpus. These distributions create
discriminating evidences for labeling a word sequence correctly. Freitag [1998, 2000] pro-
posed the application of such supervised machine learning techniques to NER and IE in
general. Commonly used machine-learning models for NER are Hidden Markov Models
[Todorovic et al., 2008] or Conditional Random Fields (CRFs) [Finkel et al., 2005] (see
Section 5.4.8).

Existing corpora are provided by the shared task on language-independent NER at
ConLL 20039 challenge. Tjong Kim Sang and De Meulder [2003] presented a general
overview of the systems that have taken part in the shared task and briefly discuss their
performance.

With the series of Pascal challenges, Ireson et al. [2005] organized a challenge on
evaluating machine-learning approaches for IE and therefore provided a corpus. In this
work both corpora are used to train sequence taggers and rate the quality of their labeling
results.

Indicator functions form the elementary features for describing the representation of
entities in statistical distributions. These functions are binary functions returning one
if for example a certain word exists within the observed context of a possible entity
candidate. In general, such features can be categorized as describing either the context
or the content of an entity. Figure 2.6 lists different implementations of both categories.

A popular approach for representing entities content-based is to use plain lists of
possible values. In their survey on NER, Nadeau and Sekine [2007] describe the usage of
name lists as privileged. They conclude that most supervised machine-learning methods
read large annotated corpora and memorize these large lists of entities. They also state
that most list-based approaches require candidate words to match at least one element
of a pre-existing list.

9The data set is available at: http://www.cnts.ua.ac.be/conll2003/ner

43

http://www.cnts.ua.ac.be/conll2003/ner

2 Computation on natural language

text windows grammars

content based

syntax patterns

context based

Hearst patterns

representing entities

gazetteers

Figure 2.6: Feature types used for representing named entities.

Example 2.7 (Name lists)

The following word lists contain different kind of entity names.

person first names = Horst, Harald, Konrad

person family names = Zuse, Finke, Merkel

company suffixes = GmbH, Inc., AG, Holding

The disadvantage of the list-based approach is that it is hardly possible to collect all
possible values of an entity type within a list. In consequence, these lists turn out to be
very large and in terms of family names carry millions of entries. Because of polysemy,
the same word often occurs in more than a single list (for example, my family name
Adrian may likely occur in a list of first names. Mercedes may name a girl or a car.).
Hence, disambiguation rules have to be created for these names.

In cases where entity values possess an underlying syntax structure, the disadvantage
of gazetteers can be overcome by formalizing this structure with syntax patterns. Entities
of this category are also referred to as structured entities. A simple formal description
of a structured entity like a date can be defined in a regular expression.

Example 2.8 (Regular expression)

The following regular expression defines a simple shape of a date expression.

([1-9][0-9]^{3})-([0-1][0-9])-([0-3][0-9])

It is written in Perl syntax and describes a date as three groups of digits separated by
a dash. The first group represents the year by four digits and is restricted to hold values
in a range from 1000 to 9999. The second group represents a month by two digits. In
order to keep it simple, the representation of months is a bit underspecified, as it allows
values in a range from 01 to 19. The last group represents a day by two digits in a range
from 00 to 39, which is again a bit underspecified.

44

2.2 Information Extraction

More general syntactic patterns descriptions regarding cases, morphologies, punctua-
tions, and digits within entity values are given in [Nadeau and Sekine, 2007].

Apart from describing the lexical content of an entity, it is possible to describe infor-
mation about the linguistic context surrounding an entity in text. The following example
gives an impression about handling linguistic context.

Example 2.9 (Linguistic context)

The following sentence contains a role relation between multiple entity references.

Situated in Silicon Valley, Mountain View is home to many high
technology companies.

The named entity of type city “Mountain View” occurs nearby another named entity
“Silicon Valley” of type location.

The role signatures of “is home to many high technology companies” and “situated
in” classify “Mountain View” as location.

Common descriptions of a linguistic context are either based on grammars and parsers
consisting of hand-crafted language rules [Nadeau and Sekine, 2007], on statistical or
probabilistic distributions on word n-grams in sliding text windows [Todorovic et al.,
2008], or they are based on lexical rules (also described as local text grammars) called
Hearst patterns [Hearst, 1992].

Rule-based approaches formalize signatures of verb, adjective and adverb usages in
grammars for inferring the type of a named entity. Disadvantages are the high costs
for creating and maintaining these rules. Rules are hardly adaptable to other domains
of concerns or languages. Machine-learning-based approaches built models that learn
dependencies between co-occurring entity types and surrounding words from annotated
text corpora. Hearst patterns are a method for the automatic acquisition of the hy-
ponymy lexical relation from text. They are based on simple lexico-syntactic patterns
as shown in the following example:

45

2 Computation on natural language

Example 2.10 (Hearst pattern)

This Hearst pattern will extract two facts from this text snippet:

“a machine learning model, such as Maximum Entropy or Conditional
Random Fields”

1. hyponym (Maximum Entropy, machine learning model)

2. hyponym (Conditional Random Field, machine learning model)

NP0, such as NP1,NP2, . . . ,NPn−1(and|or)NPn

for all NPi, 1 < i < n, hyponym(NPi, NP0)

Cimiano et al. [2004] applied Hearst patterns to populate a formal knowledge base.
They faced the fact that such patterns occur rarely in text. NER approaches are used
and refined within the Semantic Entity Recognition process in Section 7.4.

Word-Sense Disambiguation

Ambiguities in the semantic interpretation of language are already discussed in Sec-
tion 2.1.2. It cannot be ensured that the semantics of each language unit, such as a
name, is that clear that the intended entity reference can be resolved correctly in all
cases. Navigli [2009] describe the technology of Word-sense Disambiguation to deter-
mine, which sense of a word is activated by its use in a particular context. If a word
conveys only a single meaning, it can be described as monosemous. Conversely, pol-
ysemous words are words conveying more than one meaning. If the different meanings
of a single word do not share any relations, the word is referred to as homonymous.

Disambiguation methods that utilize external knowledge sources, i.e., RDF data, are
addressed in Section 7.5. Knowledge sources are valuable for Word-sense Disambiguation
if they provide data, which formalize associations between words and senses. Apart from
approaches that use dictionaries or linguistic thesauri such as WordNet, Navigli [2009]
outlines the application of formal ontologies consisting of formal taxonomies and general
semantic relations as valuable knowledge source.

Co-reference resolution

Two noun phrases co-refer to each other if both of them resolve to the same unique
referent [Elango, 2005]. A special kind of co-reference is denoted by the Anaphora:

46

2.2 Information Extraction

Definition 2.4 (Anaphora)

If A and B are noun phrases and if the interpretation of B requires the interpretation
of A the relation between B and A is called anaphora.

Example 2.11 (Co-reference vs. Anaphora)

The following two sentences describe a co-reference and an anaphoric relationship.

Co-reference Peter Parker shot photos of Spiderman.

Anaphora Peter Parker put on his uniform.

The shared task of ConLL 2011 was concerned about a co-reference resolution.10

Within the scope of this work, anaphoric relations were processed in terms of pronouns.
Due to the existence of detailed instance descriptions in Semantic Web data concerning
multiple names (please refer to Section 5.2 on RDF components for detailed information
on modeling names), the resolution of co-references is obsolete for recognizing entity
references in text as described in Section 7.4.

A simple resolution of pronouns was performed for classifying noun phrases in text
(see Section 7.7). Here, feature representations of noun phrases consist of the infor-
mation with the sentence each noun phrase occurs in. The feature representation is
extended with information from subsequent sentences if these start with a pronoun, e.g.,
“Angela Merkel is born in Hamburg. She is the German chancellor”.

Relation extraction

Co-occurring entities in a sentence may induce the existence of an explicit relationship
in between them. Relation extraction techniques try to recognize such relationships
between two or more entities in text.

Example 2.12 (Relation extraction)

“The headquarters of Google are situated in Mountain View.”

In this sentence, “Google” and “Mountain View” are given as named entities. The
goal of a relation extractor is to recognize the relation between both entities as an
organization to location associations, which may be labeled like situated in.

Describing the state-of-the-art in relation extraction, Bach and Badaskar [2007] and
Jurafsky and Martin [2008] categorize existing approaches in supervised and unsuper-

10More details on the task description, training data, and final system results can be retrieved at
http://conll.bbn.com/.

47

http://conll.bbn.com/

2 Computation on natural language

vised methods.

Supervised methods Bach and Badaskar [2007] describe supervised relation extraction
approaches as classifiers. For a given set of relations, the classifier predicts the best
matching relation for a passed text segment. Due to the supervised nature, labeled
corpus data is needed for training the classifier on example text segments. The
challenge in this field is determined by finding a suitable feature representation
of relations based on the given text segments. Common approaches are based
on simple text-based features such as bags of word n-grams or more complex
features based on parse trees. Classifier models such as support vector machines,
maximum entropy models, or CRFs are trained upon these features. Concluding
the supervised approach, Bach and Badaskar [2007] reveal the following limitations:

1. For each type of relationship, labeled training data is needed.

2. Recognition of n-ary relationships between more than two entities is difficult.

3. The use of text-based features is computationally burdensome and does not
scale with increasing amounts of data.

Semi-supervised methods Hearst [1992] propose an approach describing taxonomic re-
lationships between entities by using local text grammars (see Section 2.2.2). The
approach starts with a small set of lexical patterns, which are referred to as seed.
Iteratively matches of these rules in text are processed. If two known entities co-
occur within similar lexical textual contexts, a new lexical pattern is created and
added to the seed. Depending on the initial seed and the used text corpus, this ap-
proach converges or diverges by creating new rules within each iteration. Cimiano
et al. [2004] adapt this approach to recognize semantic relationships but revealed
that the recall of recognized relationships remains on low level. However, Bach
and Badaskar [2007] and Jurafsky and Martin [2008] report that the application of
semi-supervised methods to recognize semantic relations have not been changing
much compared to the originating Hearst patterns.

Section 7.8 describes methods, which interpret co-occurring named entities by consid-
ering existing relationships between these entities within the given RDF data.

2.3 Unsolved and emerging challenges

Since the MUC decade, the methodology of IE has not been extended, significantly yet.
Until now, the community has raised a list of open issues on IE that relate to the research
hypotheses in Section 1.2:

48

2.3 Unsolved and emerging challenges

Formalize IE-interfaces: During the MUC conference series the constant increase of
complexity of IE templates resulted in a high complexity of template specifications
[Gaizauskas and Wilks, 1998]. By now, IE templates are created and described manually
by domain experts. A single IE template description could extend forty pages in MUC-
5.11 Wilks [1997] criticizes the limits of IE templates as being far too over-specified
and too technical for being used in real world applications. Therefore, he demanded a
practical and cost effective construction and adaptation of templates to new domains.

Hobbs and Israel [1994] stated very early that templates are devices for ontologi-
cal knowledge representation. However, a formal template representation like an IE-
template definition language is missing in this field.

Provide IE with domain adaptability: Yangarber and Grishman [1997] state that the
customization of IE-systems is crucial, as it directly affects every aspect of the progress
in the field. Nevertheless, the schedule of MUC-7 did not comprise any tasks concerning
customization and domain adaptability. By now, no IE-system exists that solves this
issue in portability. Wilks [1997] and Gaizauskas and Wilks [1998] complain that porting
IE-systems to new domains is a serious bottleneck for state-of-the-art systems. With
respect to adaptation costs, Cowie and Lehnert [1996] state the following:

The actual cost of building an IE system is unknown, but estimates at a recent
Tipster workshop suggest it should take from three to six person-months
for a computational linguist to port a system to a new domain [Cowie and
Lehnert, 1996].

Currently, this estimation of three to six person-months is far from being ap-
plicable for business or personal use cases. Taking the judgmental statements about
traditional IE approaches Grishman [1997], Cowie and Wilks [2000], and Cunningham
[2006] conclude three main challenges:

i. Facilitate maintainability for reacting on evolving domain knowledge in IE system,
on demand.

ii. Increase re-usability for refocusing existing IE systems to other domains, rapidly.

iii. Enhance usability of templates in order to allow ad-hoc template generation, fa-
cilitate template filling, and reduce the complexity of template unification.

Concluding the survey and template shortcomings, a forth challenge was added:

iv. Separate background knowledge specifications from templates and use background
ontologies for knowledge representation purpose.

11MUC-6 template definitions can be reviewed under http://www.aclweb.org/anthology-new/M/M95/

M95-1027.pdf.

49

http://www.aclweb.org/anthology-new/M/M95/M95-1027.pdf
http://www.aclweb.org/anthology-new/M/M95/M95-1027.pdf

2 Computation on natural language

2.4 Contributions

The research hypotheses (see Section 1.2) address exactly these major shortcomings of
traditional IE-systems:

• With respect to Hypothesis H.1, the incorporation RDF data enables the exchange
and utilization of domain knowledge. The approaches presented in Chapter 5 cover
these basic aspects of letting information extractors compute with knowledge in
form of RDF.

• On the basis of Hypothesis H.2, this work investigates the use of SPARQL for
specifying IE templates in terms of formal queries. This enables users to specify
an information demand by re-using the vocabulary of the existing domain knowl-
edge. Hence, knowledge engineering is no longer required for specifying IE tem-
plates. The knowledge is already defined in the schema behind the given RDF
data. Chapter 8 illustrates the concrete use and value of SPARQL in RDF-based
IE systems.

• The contribution of Hypothesis H.3 states the automatic adaptation of an IE-
system to the patterns of formal domain descriptions in RDF. The complete design
of the RDF-based IE process in Chapters 5, 6, and 7 is driven by the requirement
to adapt systems from one RDF source to another.

50

3 Representing knowledge on the Web

A new form of Web content that is meaningful to
computers . . .

(Berners-Lee et al. [2001])

Information that is represented in natural language text is
difficult to interpret by computers. By nature, the WWW
provides a large amount of natural language sources in Web
pages. Consequently, the Semantic Web offers formal knowl-
edge representation techniques for translating unstructured
information meaningful to computers. This work investigates
methods, which incorporate information, formally represented
in RDF, into information extractors approaches. The goal is
to utilize the bits of formal domain descriptions to facilitate
the adaption to these domains of concerns and to enhance
performance of information extractors.

This chapter provides required background on the Seman-
tic Web technology. Section 3.1 outlines the general vision of
the Semantic Web. Next, in Section 3.2 RDF is elucidated
for exchanging and representing information. In Section 3.3,
techniques are presented for aggregating information about
individual instances. The use of formal properties and class
hierarchies is addressed in Sections 3.4 and 3.5. Section 3.6
describes the notion of naming graphs with URIs. Vocabu-
laries and ontologies are introduced in Section 3.7 for trans-
lating knowledge formally on the Web. SPARQL is presented
in Section 3.8 for describing and querying specific parts of
RDF data. In Section 3.9, Linking Open Data (LOD) as form
of publishing RDF data is introduced for being utilized by
IE systems. Section 3.10 concludes related issues of the Se-
mantic Web to the research hypotheses. Finally, Section 3.11
summarizes the contributions of this work to the vision of the
Semantic Web.

51

3 Representing knowledge on the Web

Figure 3.1: The Semantic Web layer cake (W3C, 2007).

3.1 Computing with semantics in the Semantic Web

In 2001, Tim Berners-Lee (inventor of the WWW), James Hendler and Ora Lassila
described the vision of a Semantic Web as follows [Berners-Lee et al., 2001]:

“The Semantic Web is not a separate Web but an extension of the current
one, in which information is given well-defined meaning, better enabling com-
puters and people to work in cooperation”.

Here, by speaking of “the current one”, the authors refer to the WWW consisting of:

• Web documents written in Hypertext Markup Language (HTML) or Extensible
Hypertext Markup Language (XHTML),

• Web resources identified by a Uniform Resource Identifier (URI),

• hyperlinks between Web resources,

• and finally the Hypertext Transfer Protocol (HTTP).

The Semantic Web layer cake depicted in Figure 3.11 is an official attempt to sum-
marize the integration of Semantic Web technology. URIs and its extension Internation-
alized Resource Identifier (IRI) form the basis of addressing and identifying resources

1This official version of the Semantic Web Layer Cake is copyrighted by W3C and published at this
persistent URL: http://www.w3.org/2007/03/layerCake.png.

52

http://www.w3.org/2007/03/layerCake.png

3.2 Resource Description Framework

on the Web. The Extensible Markup Language (XML) enables the markup of plain
text with additional structures. The design of XML is document-oriented. Therefore,
its underlying mental model is a tree hierarchy. It is used to markup the structure of
Web documents with languages such as (X)HTML. For exchanging information about
Web resources, the Resource Description Framework (RDF) is applied. In contrast to
XML, RDF does not imply a hierarchical but a graph model. The reason is that whereas
XML is used to formalize document structures, RDF formalizes link structures of and
between resources. Here, symmetries and inverse relation require the existence of cir-
cular relationships. In order to give RDF data a well-defined meaning, vocabularies,
rules, and formal ontologies can be created by using the RDF Vocabulary Description
Language (RDFS), which is also referred to as RDF Schema, the Rule Interchange
Format (RIF), and the Web Ontology Language (OWL). The SPARQL Query Lan-
guage (SPARQL) allows querying RDF data with formal graph queries. Above these
data models, the unifying logic intends to mashup different RDF graphs without losing
semantics. What is called “proof” intends to check data correctness and data integrity
in order to guarantee data quality. The “trust” layer allows users to select only data
from originators of their confidence. Finally, “crypto” is a means that adds security to
a Web of sensitive data.

Extending the Semantic Web layer cake, results of this work enable the automatic
translation of information from natural language text into formally represented informa-
tion in RDF.

3.2 Resource Description Framework

RDF is the standard for exchanging formal information on the Web. Its design encom-
passes the separation of schema and raw data. This enables the merging of information
from different sources even if the underlying schemes differ [Manola et al., 2004].

For transferring RDF statements on the Web, RDF provides a couple of serialization
formats. Some of them are specified in Extensible Markup Language (XML) in order
to simplify the validation and parsing of RDF data (i.e., RDF/XML[Becket, 2004] or
TRIX[Carroll and Stickler, 2004]). The nature of XML is verbose and its tree model
invokes problems when serializing graphs. Therefore, RDF can also be serialized in
plain text or line based formats (i.e., Notation 3 [Berners-Lee and Connolly, 2008] or its
sub-language Turtle [Beckett and Berners-Lee, 2007]).

“RDF extends the linking structure of the Web to use URIs to name the relationship
between things as well as the two ends of the link.”[Manola et al., 2004] An RDF state-
ment consisting of two resources and a link in between is usually referred to as a “triple”.
“The linking structure of RDF forms a directed, labeled graph, where the edges represent
the named link between two resources, represented by the graph nodes. This graph view is
the easiest possible mental model for RDF and is often used in easy-to-understand visual

53

3 Representing knowledge on the Web

@pref ix f o a f : <http :// xmlns . com/ f o a f /0.1/> .
@pre f ix dbp : <http :// dbpedia . org / r e sou r c e/> .
@pre f ix fb : <http :// rd f . f r e eba s e . com/ns/ fb : time . event .> .
@pre f ix dbp ont : <http :// dbpedia . org / onto logy/> .
@pre f ix xsd : <http ://www.w3 . org /2001/XMLSchema#> .

dbp : B a t t l e o f K a i s e r s l a u t e r n
f o a f : name ”Batt l e o f Ka i s e r s l au t e rn ”@en ;
fb : s t a r t d a t e ”1793−11−28”ˆˆ xsd : date ;
fb : end date ”1793−11−30”ˆˆ xsd : date ;
dbp ont : p lace dbp : K a i s e r s l a u t e r n .

dbp : K a i s e r s l a u t e r n
f o a f : name ”Ka i s e r s l au t e rn ””@en .

Figure 3.2: RDF graph in TURTLE syntax. It starts with prefix definitions of
vocabulary shortcuts creating aliases for namespaces. Dots denote the end
of a statement. Semicolons denote that succeeding statements are about
the same subject. The graph describes the “Battle of Kaiserslautern”.

explanations.” [Manola et al., 2004]
Representing knowledge in RDF enables machines to interpret it as a list of triples.

The example in Figure 3.2 contains RDF statements that give information about the
“Battle of Kaiserslautern”. It shows triples consisting of a subject of which this statement
is about, a predicate that identifies the type of link (called property), and finally an object
that is the property value. The same knowledge is rendered as graph in Figure 3.3.

“Battle of Kaiserslautern”@en “1793-11-28ˆˆxsd:date” “Kaiserslautern”@en“1793-11-30ˆˆxsd:date”

dbp:Kaiserslauterndbp:Battle of Kaiserslautern

fb:start date fb:end datefoaf:name

dbp-ont:place

foaf:name

Figure 3.3: Graph visualization of RDF data about the “Battle of Kaiserslautern”.

RDF defines the following data types to be used within RDF triples:

URI references are tokens assigning a formal name to any kind of referent. Hence, URI
references represent the existence of entities and are used to describe these with
additional properties. Subjects of RDF triples are assigned with a URI reference
to determine the general subject described by this statement. Assigning a URI
reference to a triple’s predicate determines the relationship between subject and

54

3.3 Representing instance knowledge

object. In order to describe relationships, URI references used within predicates
may also be used as subjects in triples [see Klyne and Carroll, 2004].

Blank Nodes are treated as simply indicating the existence of an entity, without using
or saying anything about the formal name of that thing [see Hayes, 2004].

Literals are used to identify values, such as numbers and dates, by means of a lexical
representation [see Klyne and Carroll, 2004]. RDF distinguishes between plain lit-
erals that have an optional language tag (e.g., "Battle of Kaiserslautern"@en)
and typed literals which refer to the datatype of the literal’s lexical value by a
URI (e.g., "1793-11-28"^^xsd:Date).

In the remainder of this document, URI references and blank nodes, which occur as
subject in RDF statements inside RDF graphs are referred to as instances.

dbp:Kaiserslautern

dbp:Battle_of_Kaiserslautern

dbp-ont:Place

dbp-ont:Event

foaf:Person

"Kaiserslautern"

"Battle of Kaiserslautern"

"Benjamin"

Figure 3.4: Symmetric Concise Bound Description of dbp:Kaiserslautern.

3.3 Representing instance knowledge

In general, an RDF graph provides information about more than a single instance. The
symmetric Concise Bound Description (CBD) [Stickler, 2005] is a method for separating
an RDF graph into logical sub graphs, each consisting of information about a single
instance. The algorithm to extract a symmetric CBD about a specific subject from an
RDF graph is defined as follows [Stickler, 2005]:

55

3 Representing knowledge on the Web

Algorithm 3.1 (Symmetric Concise Bound Description (CBD))

Input: Given (i) a starting node in an RDF graph and (ii) a sub graph of that source
graph.

Output: It returns a symmetric concise bounded description of the instance denoted by
the starting node.

1. Include in the sub graph all statements in the source graph where the subject of
the statement is the starting node;

2. Recursively, for all statements identified in the sub graph having a blank node
object:

→ include in the sub graph all statements in the source graph where the subject
of the statement is the blank node in question and which are not already
included in the sub graph;

3. Include in the sub graph all statements in the source graph where the object of
the statement is the starting node;

4. Recursively, for all statements identified in the sub graph having a blank node
subject not equal to the starting node:

→ include in the sub graph all statements in the source graph where the object
of the statement is the blank node in question and which are not already
included in the sub graph.

By using the symmetric CBD, it is possible to collect existing information about an
instance into a single sub graph. Figure 3.4 illustrates an example RDF graph and
highlights the CBD of the instance dbp:Kaiserslautern.

3.4 Representing properties

Within an RDF graph, RDF statements consist of different types of property references.
Some statements assign literal values to subjects others connect two URI references. The
value of each kind of these statements differs when consumed by information extractors.
Hence, these properties were separated into three categories:

RDF allows defining slot-like attributes as datatype properties.

56

3.5 Representing classes

Definition 3.1 (Data properties)

RDF statements assign literal values to subjects. The OWL 2 vocabulary defines RDF
properties with a defined range of literals data properties [Bock et al., 2009]. e.g.,

dbp:Konrad Zuse foaf:name ‘‘Konrad Zuse’’ .

In RDF, classifications are represented by using the type property.

Definition 3.2 (Type property)

RDF statements subsume subjects under defined classes. For this reason, the RDF
vocabulary provides an explicit RDF type property [Klyne and Carroll, 2004]. e.g.,

dbp:Konrad Zuse rdf:type foaf:Person .

In RDF relations between two instances are formalized by using object properties.

Definition 3.3 (Object properties)

RDF statements connect two subjects by using an RDF property. The OWL 2 vocabu-
lary defines RDF properties with a defined range of resources that are not literals object
properties [Bock et al., 2009]. e.g.,

dbp:Konrad Zuse dbp-owl:known for dbp:Z4 (computer) .

3.5 Representing classes

In RDF, the description of real world entities comprises the classification of those along
one or multiple hierarchies of RDFS classes. A class in RDFS summarizes subjects that
share a similar nature. In some cases this shared nature is explicated by a set of shared
properties whose domain or range is restricted on subjects of this class.

More technically, the RDF Primer [Manola et al., 2004] defines the meaning of classes
as follows:

“Classes can be used to represent almost any category of thing, such as Web
pages, people, document types, databases, or abstract concepts. Classes are
described using the RDF Schema resources rdfs:Class and rdfs:Resource,
and the properties rdf:type and rdfs:subClassOf.”

In RDF-based IE, classes will be used for describing the nature of recognized entities
(see Section 5.2).

57

3 Representing knowledge on the Web

3.6 Representing multiple RDF graphs

Carroll et al. [2005] proposed the concept of having multiple RDF graphs in a single
document, and naming them with URIs. Therefore, the TRIX syntax was invented for
serializing RDF triples in XML syntax and grouping them in terms of graphs [Carroll
and Stickler, 2004]. Bizer and Cyganiak [2007] extended the TURTLE syntax by defining
the TRIG syntax, which was able to express graph URIs as well. The following example
illustrates an RDF document containing two named graphs:

Example 3.1 (Serializing named graphs in TRIG syntax)

<http :// example . org> = {
<http :// example . org> dc : t i t l e ‘ ‘ Queen and Paul Rogers ’ ’ .
} .

<http :// dbpedia . org> = {
dbp : Brian May mo:member dbp : Queen .
dbp : Roger Taylor mo:member dbp : Queen .
dbp : Freddy Mercury mo:member dbp : Queen .
} .

Later on named graphs will be used to serialize IE results in RDF (see Section 8.3).

3.7 Vocabularies

Representing knowledge in RDF is independent from existing schemes. In consequence,
just processing RDF triples with machines does not provide any facilities of a formal
understanding that is required to proof statements or infer new ones. Therefore, vocab-
ularies are used to describe a schema that underlies the RDF data.

“On the Semantic Web, vocabularies define terms like concepts and relationships to
describe and represent an area of concern. Vocabularies are used to formalize the terms
that can be used in a particular application”[W3C, 2010b]. For example, Friend of a
Friend (FOAF) is a vocabulary devoted to linking people and information using the
Web [Brickley and Miller, 2010]. “Vocabularies characterize possible relationships, and
define possible constraints”[W3C, 2010b]. For example in FOAF, the relationship knows
is represented by the token foaf:knows. It links two resources that are described as
being persons in terms of foaf:Person.

Examples of other vocabularies are RDFS, and the DBpedia Ontology. RDFS is a
vocabulary for using RDF to describe RDF vocabularies [Brickley and Guha, 2004]. The
DBpedia Ontology is a shallow, cross-domain vocabulary based on the most commonly
used infoboxes within Wikipedia [Bizer et al., 2009b].

There is no clear division between what is referred to as “vocabularies” and “on-
tologies” on the Web. In fact, the common use of the term ontology tends to be over

58

3.8 Querying with SPARQL

generalized. Gruber [1993] provided a high-level definition of ontology as being a shared
conceptualization, which classifies each vocabulary in use by the Semantic Web commu-
nity as ontology. The trend is to use the word “ontology” for more complex, and possibly
quite formal collection of terms, whereas “vocabulary” is used when such strict formalism
is not necessarily used or only in a very loose sense [W3C, 2010b]. This means that, for
example, the Dublin Core vocabulary, which describes terms for adding general metadata
to Web resources, may be considered as plain vocabulary. Data in Dublin Core do not
facilitate any formal inference. Nevertheless, Dublin Core is the vocabulary that is most
frequently used. In contrast, the Creative Commons vocabulary specifies terms that
formalize licensing restrictions on re-using published Web resources. As the existence
of Creative Commons data about resources has severe implications on the application
and further processing of such resources, it might be referred to as ontology. However,
vocabularies are the basic building blocks for inference techniques on the Semantic Web
[W3C, 2010b]. Vocabularies provide a portable representation of machine-interpretable
knowledge on the Web. In this work, the term vocabulary is preferred, as formal rea-
soning beyond simple entailment is not in focus of IE on the Semantic Web, yet. The
use of vocabularies as underlying schemes can be seen in Example 3.2.

Example 3.2 (Classification)

An instance is classified as db ont:Town and dbp ont:Location.

@pref ix dbp : <http :// dbpedia . org / r e sou r c e/> .
@pre f ix dbp ont : <http :// dbpedia . org / onto logy/> .
@pre f ix rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#> .
@pre f ix r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#> .

dbp : Ka i s e r s l au t e rn rd f : type dbpedia ont :Town .
dbp ont :Town rd f s : subClassOf dbpedia ont : Locat ion .

The subclass relationship defines a subsumption between Town and Location. This
assertion let a reasoner infer the following RDF statement:

dbp : Ka i s e r s l au t e rn rd f : type dbp ont : Locat ion .

If a computer is given a schema with defined rules, it is enabled to validate and entail a
given data set that follows this schema. Still, the machine does not “know” what a town
or location is, but it knows that every town is a location. This circumstance (called
“Chinese Room Argument” by John Searle in [Searle, 1980]) should give a realistic
impression on how to read the notion machine-understandable.

3.8 Querying with SPARQL

“SPARQL is the query language for RDF data. SPARQL contains capabilities for query-
ing required and optional graph patterns along with their conjunctions and disjunctions.

59

3 Representing knowledge on the Web

The results of SPARQL queries can be result sets or RDF graphs”[SPARQL Working
Group, 2008]. By using SPARQL, it is possible to query an RDF graph for existing sub
graphs. Thereby, the SPARQL language allows different query types [Prud’hommeaux
and Seaborne, 2008] that return different result formats:

SELECT Returns the variables bound in a query pattern match. Figure 3.1 shows such
a select query.

CONSTRUCT Returns an RDF graph constructed by substituting variables in a set of
triple templates.

“With SPARQL queries on RDF data can be specified across diverse data sources,
whether the data is stored natively as RDF or viewed as RDF via middleware” [SPARQL
Working Group, 2008]. In fact, the approach described in this work is exactly such
a middleware. One claim of this work is devoted to integrate the SPARQL Query
Language (SPARQL) into IE systems in order to specify and filter what information
the system must extract from text. Using the Query 3.1 as such, a filter would return
only those entities from text that are German women in Politics having the first name
“Angela”. The use of such SPARQL queries is expected to be much more usable than
specifying traditional IE templates similar to those shown in Figure 2.2. Chapter 8
outlines how to improve the specification of IE templates by using SPARQL.

Query 3.1 (SPARQL query)

Select query requesting full names and descriptions about German women in politics
with first name “Angela”.

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
PREFIX rd f : <http ://www. w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX yago : <http :// dbpedia . org / c l a s s /yago/>

SELECT DISTINCT ∗
FROM <http :// dbpedia . org/>
WHERE {

? u r i rd f : type yago : GermanWomenInPolitics ;
f o a f : givenName ”Angela”@en ;
r d f s : comment ?comment ;
f o a f : name ?name .

FILTER (lang (? comment)=”en”) }

60

3.9 Utilizing RDF from the Web

As of September 2010

Music
Brainz

(zitgist)

P20

YAGO

World
Fact-
book
(FUB)

WordNet
(W3C)

WordNet
(VUA)

VIVO UF
VIVO

Indiana

VIVO
Cornell

VIAF

URI
Burner

Sussex
Reading

Lists

Plymouth
Reading

Lists

UMBEL

UK Post-
codes

legislation
.gov.uk

Uberblic

UB
Mann-
heim

TWC LOGD

Twarql

transport
data.gov

.uk

totl.net

Tele-
graphis

TCM
Gene
DIT

Taxon
Concept

The Open
Library
(Talis)

t4gm

Surge
Radio

STW

RAMEAU
SH

statistics
data.gov

.uk

St.
Andrews
Resource

Lists

ECS
South-
ampton
EPrints

Semantic
Crunch
Base

semantic
web.org

Semantic
XBRL

SW
Dog
Food

rdfabout
US SEC

Wiki

UN/
LOCODE

Ulm

ECS
(RKB

Explorer)

Roma

RISKS

RESEX

RAE2001

Pisa

OS

OAI

NSF

New-
castle

LAAS

KISTI
JISC

IRIT

IEEE

IBM

Eurécom

ERA

ePrints

dotAC

DEPLOY

DBLP
(RKB

Explorer)

Course-
ware

CORDIS

CiteSeer

Budapest

ACM

riese

Revyu

research
data.gov

.uk

reference
data.gov

.uk

Recht-
spraak.

nl

RDF
ohloh

Last.FM
(rdfize)

RDF
Book

Mashup

PSH

Product
DB

PBAC

Poké-
pédia

Ord-
nance
Survey

Openly
Local

The Open
Library

Open
Cyc

Open
Calais

OpenEI

New
York

Times

NTU
Resource

Lists

NDL
subjects

MARC
Codes
List

Man-
chester
Reading

Lists

Lotico

The
London
Gazette

LOIUS

lobid
Resources

lobid
Organi-
sations

Linked
MDB

Linked
LCCN

Linked
GeoData

Linked
CT

Linked
Open

Numbers

lingvoj

LIBRIS

Lexvo

LCSH

DBLP
(L3S)

Linked
Sensor Data
(Kno.e.sis)

Good-
win

Family

Jamendo

iServe

NSZL
Catalog

GovTrack

GESIS

Geo
Species

Geo
Names

Geo
Linked
Data
(es)

GTAA

STITCH
SIDER

Project
Guten-
berg
(FUB)

Medi
Care

Euro-
stat

(FUB)

Drug
Bank

Disea-
some

DBLP
(FU

Berlin)

Daily
Med

Freebase

flickr
wrappr

Fishes
of Texas

FanHubz

Event-
Media

EUTC
Produc-

tions

Eurostat

EUNIS

ESD
stan-
dards

Popula-
tion (En-
AKTing)

NHS
(EnAKTing)

Mortality
(En-

AKTing)
Energy

(En-
AKTing)

CO2
(En-

AKTing)

education
data.gov

.uk

ECS
South-
ampton

Gem.
Norm-
datei

data
dcs

MySpace
(DBTune)

Music
Brainz

(DBTune)

Magna-
tune

John
Peel
(DB

Tune)

classical
(DB

Tune)

Audio-
scrobbler
(DBTune)

Last.fm
Artists

(DBTune)

DB
Tropes

dbpedia
lite

DBpedia

Pokedex

Airports

NASA
(Data
Incu-
bator)

Music
Brainz
(Data

Incubator)

Moseley
Folk

Discogs
(Data In-
cubator)

Climbing

Linked Data
for Intervals

Cornetto

Chronic-
ling

America

Chem2
Bio2RDF

biz.
data.

gov.uk

UniSTS

UniRef

Uni
Path-
way

UniParc

Taxo-
nomy

UniProt

SGD

Reactome

PubMed

Pub
Chem

PRO-
SITE

ProDom

Pfam PDB

OMIM

OBO

MGI

KEGG
Reaction

KEGG
Pathway

KEGG
Glycan

KEGG
Enzyme

KEGG
Drug

KEGG
Cpd

InterPro

Homolo
Gene

HGNC

Gene
Ontology

GeneID

Gen
Bank

ChEBI

CAS

Affy-
metrix

BibBase
BBC

Wildlife
Finder

BBC
Program

mes
BBC

Music

rdfabout
US Census

Media

Geographic

Publications

Government

Cross-domain

Life sciences

User-generated content

Figure 3.5: LOD cloud diagram, by Richard Cyganiak and Anja Jentzsch.
http://lod-cloud.net/

3.9 Utilizing RDF from the Web

The exploitation of published RDF data on the Web in IE systems is a contribution of
this work. Currently, the Semantic Web is referred to as Web of data that hosts arbitrary
RDF sources about various domains of concerns. Here, Linking Open Data (LOD) is a
Semantic Web best practice that provides means for publishing RDF data on the Web
[W3C, 2010a]. The LOD community project encourages content providers to publish
data in terms of RDF by following simple guidelines [Bizer et al., 2009a]. Berners-Lee
[2010] defines four recurring rules for publishing data:

Definition 3.4 (The mantra of Linking Open Data)

1. Use URIs as names for things.

2. Use HTTP URIs o that people can look up those names.

3. When someone looks up a URI, provide useful information, using RDF.

4. Include links to other URIs, so that they can discover more things.

LOD is a treasure cove for RDF-based IE applications. The LOD cloud in Figure 3.5
gives an impression how much data exists that can be used for IE purpose.

61

3 Representing knowledge on the Web

3.10 Unsolved and emerging challenges

The Semantic Web is an emerging bundle of technologies offering methods to represent,
publish, and consume formal information on the Web. Here, the grounding challenge is
to automatically translate existing information from plain Web pages into a machine-
interpretable form.

Despite of the production of formal information, the consumption of published RDF
data is complicated by the low quality [Jain et al., 2010]. When utilizing RDF into IE,
the issues that turn out to be of major importance are illustrated in the following list
and elucidated by using examples from the DBpedia:

Ambiguities between instances Frequently, different instances share a similar set of
labels. This induces ambiguity problems as they occur in interpreting natural lan-
guage. For example, the term “Gold” is assigned as rdfs:label by a large list
of different instances in DBpedia2 covering a range from music albums, minerals,
movies, or results in competitions. These ambiguities result from label homonyms
(e.g., the band “Gold”, and Radio station “Gold”) or overgeneralized label associ-
ations (e.g., labeling the career of Barack Obama3 as “Barack Obama”).

Conversely, ambiguities occur if a single entity referent is referred to by multiple
instances, e.g., dbp:Category:Barack Obama and dbp:Barack Obama that share
similar labels.

Bad labels of instances Very often labels of instances are unlikely to occur as entity
references in text. For example, bracket suffixes such as “Harry Potter (film se-
ries)” are a common label pattern in DBpedia. Some labels consist of additional
descriptions, e.g., “Harry Potter and the Goblet of Fire Movie Poster Book [With
Posters]” is a label of a RDF represented product of the Amazon online store.

Under-specifications of datatype properties Neither RDF, RDFS, nor OWL provide
means for formalizing datatype properties as describing proper names or addi-
tional attributes values such as length or height. In consequence, the whole set of
datatype properties used within an RDF graph has to be analyzed before any of
these properties’ values may be used with entity recognition algorithms.

Incomplete models In general, RDF knowledge bases do not provide a complete cover-
age of used vocabularies for describing facets of represented instances. For example,
although DBpedia uses the FOAF vocabulary and FOAF provides properties rep-
resenting a full name, nick name, first name and family name, instances often just
possess values for full names.

2http://dbpedia.org/sparql?query=select+distinct+*+where+{%3Fs+%3Fp+%22Gold%22}
3dbp:United States Senate career of Barack Obama

62

http://dbpedia.org/sparql?query=select+distinct+*+where+{%3Fs+%3Fp+%22Gold%22}

3.11 Contributions

Figure 3.6: RDF-based IE-layer cake. Extraction logic is deployed as middleware
component providing an RDF view on HTML data.

Inconsistent usage of vocabularies Especially in knowledge bases consisting of multiple
vocabularies, overlapping properties or classes are sometimes assigned differently
to single instances. For example, dbp:Person and foaf:Person are defined to be
equivalent, but in DBpedia some instances are only classified by using the FOAF
type.

Representation errors Especially, in automatic generated RDF knowledge bases, such
as DBpedia, errors occur like assigning literal values to object properties, merging
multiple different instances in a single URI, or creating nonsense properties.

The implementations of approaches that preprocess RDF data as well as processing
approaches that utilize RDF data for extracting information are presented in Chapters 6
and 7. Both chapters figure out how to cope with these challenges.

3.11 Contributions

The application of RDF to Information Extraction (IE) is related to the design goal of
exchanging information on the Web. Knowledge on the Web is represented in RDF.
Hence, conforming IE on the Web returns extracted information in RDF format, either.
Figure 3.6 outlines a modified version of the bottom part of the Semantic Web layer
cake. It declares IE as middleware between HTML content and RDF data.

• The specification of RDF intends to provide information interoperability on the
Web in a standardized data format. The utilization of such RDF encoded infor-
mation in IE applies this intention in terms of the Hypotheses H.1 Further details
on the algorithmic usage of RDF are described in Chapters 5, 6, and 7.

63

3 Representing knowledge on the Web

• Hypothesis H.2 confirms with the Semantic Web use case that a middleware should
provide RDF views about Web resources. In fact, the serialization of IE results in
RDF described in Chapter 8 provides exactly such a perspective on a natural lan-
guage text. In addition, the use of SPARQL Query Language (SPARQL) enables
people to employ tokens of the vocabulary underlying the data of concern as filters
in SPARQL queries describing what information the IE-system must extract from
text.

• RDF is a data format, capable to represent any kind of domain knowledge. Hence,
providing a support for incorporating RDF data in IE confirms the claim for adapt-
ability in the Hypothesis 3 (see Chapters 5 and 6).

64

4 Ontology-based Information Extraction

“Automatic metadata generation would be the
snowball to unleash an avalanche of metadata
through the Web, making the Semantic Web
come true.”

(Popov et al. [2004])

Popov et al. [2004] stated that the identification and extrac-
tion of formal knowledge in text bears great potential. So
far, IE-results have not being provided sufficient degrees of
completeness, clarity, and relevance. The reason for this is
figured out by Brewster et al. [2003]: “An ontology reflects
the background knowledge used in writing and reading a text.
However, a text is an act of knowledge maintenance, in that it
re-enforces the background assumptions, alters links and asso-
ciations in the ontology, and adds new concepts. This means
that background knowledge is rarely expressed in a machine
interpretable manner.” Consequently, Buitelaar et al. [2005]
conclude that most of the knowledge in text is implicit and
remains “under the surface”. The approaches proposed in
this work provide information extractors with formal domain
knowledge for supporting the correct semantic interpretation
of entity references.

This chapter surveys literature about utilizing ontologies
in IE-systems and distinguishes this work from related ap-
proaches. First, Section 4.1 introduces a general Ontology-
based Information Extraction (OBIE) architecture and sep-
arates between ontology learning and ontology population.
Second, Section 4.2 describes existing IE-systems that utilize
ontologies. Extraction ontologies as special form of integra-
tion are addressed in Section 4.3. Next, Section 4.4 figures
out the challenges current OBIE system have to cope with.
Contributions to these challenges are exposed in Section 4.5.

65

4 Ontology-based Information Extraction

4.1 Ontologies in Information Extraction

The intention of this work addresses the utilization of formally represented information in
IE-systems. In literature, this is referred to as Ontology-based Information Extraction
(OBIE). Embley et al. [1998] coined this term in an IE approach for populating the
content of a relational database. Here, the database is described as kind of ontology.
Later on, OBIE was further promoted by Bontcheva et al. [2004] and integrated into the
General Architecture for Text Engineering (GATE). The Workshop on Ontology-based
Information Extraction Systems (OBIES 2008) [Adrian et al., 2008b] helped to establish
the discrete nature of Ontology-based Information Extraction (OBIE).

Wimalasuriya and Dou [2010] summarize the state-of-the-art in OBIE and defined
corresponding systems as follows:

Definition 4.1 (An ontology-based Information Extraction system)

“A system that processes unstructured or semi-structured natural language text through
a mechanism guided by ontologies to extract certain types of information and presents
the output using ontologies.” Wimalasuriya and Dou [2010]

In terms of OBIE Wimalasuriya and Dou [2010] separates between two general ap-
proaches:

Ontology learning approaches construct an ontology by processing natural language
text. The term was originally coined by Maedche and Staab [2001]. Cimiano
[2006] describes ontology learning as acquisition of a domain model from data. He
illustrates a process (shown in Figure 4.1) about the learning of ontologies from
text, which involves NLP techniques. It is divided into following steps:

• Extraction of domain terminology and synonyms from a corpus of documents
(e.g., {city}, {country, nation})
• Identifying of main concepts on the basis of the detected relevant terms and

the classes of synonyms (e.g., c := country := nation)

• Structuring of concepts into taxonomy (e.g., capital < city)

• Learning of non-taxonomic relations between concepts (e.g., is capital(city,
country))

• Structuring of relations into hierarchy(e.g., is capital(city, country) ¡ located incity,
country)

• Learning the adoption of axiomatic definitions of and between concepts (e.g.,
disjoint, equivalence) and relations (e.g., cardinalities, transitive, reflexive,
symmetric)

• Learning general axioms (e.g., currentProject(person, project) ∧member(project,
organization) → member(person, organization))

66

4.1 Ontologies in Information Extraction

Related to learning ontologies, Buitelaar et al. [2005] remarks that “an ontology
is a view on how the world or a specific domain is structured as agreed upon by
the members of a community”. Hence, he concludes, “ontologies as such cannot
be learned by machines in the strict sense of the word”. The reason is that “ma-
chines lack intention and purpose”. “Instead, ontology learning techniques support
ontology engineers” . . . “on the basis of empirical evidence derived from textual or
other data”.

Terms

Relations

Synonyms

Concepts

Concept Hierarchy

Relation Hierarchy

Axiom Schemata

General Axioms

Figure 4.1: Ontology learning stack, by Cimiano [2006].

Ontology population approaches identify entities in text that are related to a pre-
defined domain ontology. Cimiano [2006] outlines three major task topics in pop-
ulating ontologies:

• Learning instances of concepts in the domain ontology (e.g., concrete cities,
persons, or locations). This task is similar to a NER. Here, the formal concept
definition makes the difference.

• Learning instances of formalized relations between two or more instances of
concepts (e.g., instantiations of the relationship foaf:member between an
instance of foaf:Group and any kind of foaf:Agent such as a foaf:Person.)

• Semantically annotating entity references with instantiations of relations or
concepts in a domain ontology. This topic is going to be discussed in more
detail in Chapter 5 where it is referred to as Semantic Entity Recognition.

Wimalasuriya and Dou [2010] stated that most OBIE systems only extract instances
and property values with respect to classes and properties of a given ontology. Here,
ontology population is implemented as set of information extractors, each extracting
individuals for a class or property value for a property. This statement is applicable

67

4 Ontology-based Information Extraction

to the intended goals of this work, which investigate ontology population techniques.
In terms of OBIE, the research objectives of this work follow Li and Bontcheva [2007],
who described OBIE as: “use the representation of formal ontologies in Information
Extraction as one of the system inputs and as the target output”. Wimalasuriya and Dou
[2010] categorized this characteristic of OBIE as: “Present the output using ontologies”.

With respect to the statement of Popov et al. [2004], about the impact of OBIE as
kind of automatic metadata generation, Wimalasuriya and Dou [2010] outline a close
relation between OBIE and the Semantic Web. OBIE systems create semantic content
for the Semantic Web, which semantic agents can directly process. This is conform with
the application of OBIE in Figure 3.6 presented in Section 3.11.

With respect to its application in IE Wimalasuriya and Dou [2010] discuss the value
of an ontology as:

“A given domain ontology can be successfully used by an OBIE system to
extract the semantic content from a set of documents related to that domain,
it can be deduced that the ontology is a good representation of that domain.
Further, the weaknesses of the ontology can be identified by analyzing the
types of semantic content it has failed to extract.”

This relates to the challenges listed in Section 3.10, which outline possible anti-patterns
in ontologies when utilizing the provided knowledge in information extractors.

Query answering
system

Knowledge base /
database

Information extraction
module

Preprocessing

Ontology

Ontology editor

Semantic lexicon

Ontology generator

OBIE system

Text input Other inputs

User Human (domain expert)

Extracted information

Figure 4.2: The OBIE system, by Wimalasuriya and Dou [2010].

68

4.2 Ontology-based Information Extraction Systems

4.2 Ontology-based Information Extraction Systems

Figure 4.2 presents possibilities of combining ontologies with IE systems. It separates
between a knowledge base and an ontology. The knowledge base is queried by users
and populated by information extractors. The ontology is utilized by these IE modules.
Similar to the claim in the Hypothesis H.2, Wimalasuriya and Dou [2010] generalize
IE templates as traditional input devices by applying a formal knowledge base. The
IE modules as such are enhanced with ontologies as well as semantic lexicons. The
separation between an ontology and a semantic lexicon splits the knowledge representing
a domain of concern from the more general linguistic knowledge about a language in
lexicons. The creation of both, ontological domain knowledge and lexicons may be
supported by external sources. Interestingly, this architecture allows human domain
experts to influence internal extraction logic, explicitly.

The research objectives of this work confirm with Wimalasuriya’s architecture in Fig-
ure 4.2. More specifically, the information extractors in this work utilize RDF graphs
from Semantic Web sources, extract information from text, and return extracted infor-
mation as RDF graphs. SPARQL queries provide means for additional filtering mecha-
nisms. The role of semantic lexicons is fulfilled by applying linguistic resources such as
text segmenters, POS taggers, and text chunkers.

The following section provides an overview on IE, annotation and ontology population
systems that relate to the research objectives of this work. The distinctions between these
approaches and the approaches presented in this work will be discussed in Chapters 5,
6, and 7 in more details:

• The GATE framework [Bontcheva et al., 2004] enables the use of ontologies in
IE by providing OntoGazetteers and OntoRootGazetteer. OntoGazetteers allow a
manual mapping between gazetteer lists to ontology classes. OntoRootGazetteer
analyze existing concept labels in ontologies with tokenizers, POS taggers, and
stemmers in order to recognize these labels in text sources.

• Many OBIE systems are employing the technology provided by GATE. Li and
Bontcheva [2007], Popov et al. [2003], and Saggion et al. [2007], for example, apply
GATE and labels inside ontologies for implementing instance resolution tasks,
similar to the approach presented in Section 7.4.

• Independently from GATE, Embley et al. [1998] and Sintek et al. [2001] describe a
use case for populating domain ontologies with results from IE-systems. Buitelaar
et al. [2006] propose SOBA, a scenario for integrating an ontology about soccer
and IE-approaches to extract soccer results from semi-structured Web pages.

• In S-Cream, Handschuh et al. [2002] enriched the content of Web pages with se-
mantic annotations originating from domain ontologies, semi-automatically. The

69

4 Ontology-based Information Extraction

interesting fact about S-Cream is that it used an IE-system without ontology sup-
port. As consequence, the authors complain about issues in aligning IE-results to
particular parts of the domain ontology.

• Endres-Niggemeyer [2008] proposed the use of distributed semantic agents as an ar-
chitecture for interacting IE-modules. Within this application scenario, the agents
utilize a shared domain ontology for extracting information from medical docu-
ments.

• The Firefox plug-in Piggy Bank extracts information from Web pages by using
manually created information extractors called screen scrapers. Results are stored
in a local or a global RDF store [Huynh et al., 2007]. A screen scraper is a
Javascript program that extracts RDF information from within a Web document’s
content.

• Zemanta [Tori, 2008] is a Web service for building Web mashups. Zemanta also
spots for labels of DBpedia or Freebase1 resources (namely instances) in Web pages.
The API returns results in RDF format and provides ratings about relevance and
certainty.

• Open Calais2 provides services for instance resolution. The focus of Open Calais
is set on News content. Instances retrieved by Open Calais are defined in a pro-
prietary ontology.

• Ontos’ Semantic API3 is similar to Open Calais’ services. Ontos also hosts a
proprietary ontology populated with instances that can be retrieved ass mentions
in text.

• The providers of the DBpedia knowledge offer an instance resolution in the DBpe-
dia Spotlight service Mendes et al. [2011]. The implementation is focused on the
DBpedia knowledge base.

Section 9.1.2 compares results from DBpedia Spotlight, Open Calais, and Zemanta
with the SCOOBIE system.

4.3 Extraction ontologies

In contrast to the ontology population approaches listed above, the approach of extrac-
tion ontologies applies a special ontology type to support information extractors along
an extraction pipeline. Embley et al. [2002] coined extraction ontologies in an approach

1http://www.freebase.com
2http://www.opencalais.com
3http://www.ontos.com

70

http://www.freebase.com
http://www.opencalais.com
http://www.ontos.com

4.3 Extraction ontologies

that formally defined wrappers as ontologies to extract data from source records into a
target schema. They described such an extraction ontology as follows:

Definition 4.2 (Extraction ontology.)

“An extraction ontology is a conceptual-model instance that serves as a wrapper for
a narrow domain of interest such as car ads. The conceptual-model instance includes
objects, relationships, constraints over these objects and relationships, and descriptions
of strings for lexical objects and keywords denoting the presence of objects and relation-
ships among objects.”Embley et al. [2002]

The intention of extraction ontologies is the formal declaration of IE templates in order
to facilitate the adaption of an IE system to a specific domain. As shown in Figure 4.3,
Embley et al. [2002] applied extraction ontologies for extracting information from HTML
tables about car offers in a car ads domain.

Car [−> ob j e c t] ; // D e f i n i t i o n o f car ad ob j e c t
Car [0 : 1] has Year [1 : ∗] ;
Car [0 : 1] has Model [1 : ∗] ;
Car [0 : 1] has Mileage [1 : ∗] ;
Car [0 : 1] has Pr i ce [1 : ∗] ;

PhoneNr [1 : ∗] i s f o r Car [0 : 1] ; // Re lat ing a phone number to
// a car ad

Year matches [4] // Syntax d e f i n i t i o n o f year
constant { e x t r a c t ”\d{2}” ;

context ”\b ’ [4 −9]\d\b ” ;
s u b s t i t u t e ”ˆ” −> ”19” ; } ,

Mileage matches [8] // Def in ing keyword ev idence s
keyword ”\ bmi les \b” , ”\bmi \ . ” , // to milage r e f e r e n c e s
”\ bmileage \b” , ”\bodometer\b ” ;

. . .

Figure 4.3: Extraction ontology adding lexical pattern definitions to a conceptual
modeling of a car ads domain [Embley et al., 2002].

Labsky [2008] extended the approach of extraction ontologies by specifying the Ex-
traction Ontology Language (EOL). EOL is an XML-based language used to encode
extraction ontologies.

71

4 Ontology-based Information Extraction

4.4 Unsolved and emerging challenges

This chapter revealed that the unsolved problems of OBIE, ontology learning, or ontology
population remain on a rather conceptual level. Although Wimalasuriya and Dou [2010],
Nedellec and Nazarenko [2006], Cimiano [2006], Buitelaar et al. [2005], and Maedche
[2002] provide comprehensive overviews on the use of ontologies in IE, they agree on
the fact that, even with the support of ontologies, automatic text understanding and
therefore IE is still an unsolved problem field. By studying different ontology-based
approaches, it can be seen that no consensus exists about how to support IE at best by
applying ontologies or any kind of formal background knowledge. Hence, improving the
effectiveness of the IE process by incorporating formal background knowledge is still an
open issue. Nevertheless, the above mentioned authors agree about the huge potential
and influence the integration of OBIE systems with the Semantic Web bears.

4.5 Contributions

In terms of OBIE and ontology population, results of this work bear the following con-
tributions:

• Intended by the Hypothesis H.1, the Semantic Entity Recognition process in Sec-
tion 5.3 extends the description of OBIE tasks. Here, existing IE tasks are refined
by the use of formal background knowledge:

1. Recognizing instantiations of concepts in a text (see Section 7.3).

2. Annotating entity references with such instantiations (see Sections 7.4, 8.4).

3. Recognizing instantiations of formal relations (see Section 7.8).

In addition to these tasks, an extended list of OBIE-enabled tasks are defined:.

1. Filter segments in larger amounts of textual content that might be candi-
dates for being entity references to instantiations of formal concepts (see Sec-
tion 7.2).

2. Separate the identification of instantiations of formal datatype properties from
formal object properties in a text (see Section 6.2).

3. Disambiguate multiple referents of instances caused by unclear entity refer-
ences (see Section 7.5).

4. Rank recognized concept instances by relevance criteria.(see Section 7.6).

Solutions to these knowledge-processing issues are described in more detail in
Chapter 7.

72

4.5 Contributions

• Hypothesis H.2 demands an integration of OBIE into the Semantic Web technology
stack consisting of URIs, RDF, and SPARQL. Despite DBpedia Spotlight, which is
specialized to the DBpedia domain, none of the presented OBIE system implements
this integration. Chapter 8 proposes methods for serializing IE results in RDF by
preserving the terms of the underlying domain of concern. It also presents the use
of SPARQL for specifying OBIE templates.

• In contrast to the presented approaches, which utilize proprietary or specialized
ontologies, the approaches being presented in Chapter 6 apply to any kind of
ontologies stating they are represented in RDF. Compared to extraction ontologies,
the approaches presented in this work do neither require any modifications of
existing ontologies nor do they require the creation of handcrafted representation
devices or IE rule sets (refer to the Hypothesis H.3).

73

5 Foundations for utilizing RDF in
Information Extraction

A proper name is a word that answers the purpose
of showing what thing it is that we are talking
about but not of telling anything about it.

(John Stuart Mill, 1843, A System of Logic,
Ratiocinative and Inductive)

References to real world entities occur in natural language text
as well as a in formal ontologies. Hence, combining natural
language with formal ontologies involves associations between
both reference types if they correlate with the same concep-
tual referents. Technically, this work utilizes RDF in IE by
recognizing URI references in RDF graphs that correspond
with proper names in text.

This chapter outlines the values of incorporating RDF
graphs into information extractors. First, Section 5.1 intro-
duces Peirce’s formal sign relations to reveal correlations be-
tween knowledge represented in natural language and in Re-
source Description Framework (RDF). This investigation re-
sults in extending named entities, as they are defined and
used in IE, to become semantic entities. Next, Section 5.2
lists components of the RDF model and analyzes the utiliza-
tion within information extractors. As a result, the Semantic
Entity Recognition process is defined in Section 5.3. Finally,
Section 5.4 summarizes techniques for preprocessing knowl-
edge in RDF as well as extracting information from text in
scope of the Semantic Entity Recognition process.

75

5 Foundations for utilizing RDF in Information Extraction

Konrad Zuse,
the pioneer of

modern computers
...

<http://dbpedia.org/resource/Konrad_Zuse>
 foaf:name "Konrad Zuse" ;
 foaf:firstName "Konrad" ;
 foaf:lastName "Zuse" ;
 rdf:type foaf:Person ;
 dbp-owl:known_for dbp:Z4_(computer).

Real world
entity

URI reference

Entity reference

refers to

describes
semantic
link

Semantic
Entity

Figure 5.1: Triadic co-relation between entity references and URI references.

5.1 Linking URIs and textual references

Within natural language text, references to real world concepts are made by mentioning
proper names (e.g., “Konrad Zuse”) or by paraphrasing the behavior of concepts with
attributes (“Inventor of Z3”). In Computational Linguistics, these references are defined
as entity references (short entities). If a proper name in text is determined as entity
reference, it is referred to as a named entity in literature. Similar to referring to entities
from text, in RDF instances, which are named by URIs, refer to real world concepts.
The scientific foundation behind such a co-reference is provided by Peirce [1976], who
defined a theory about sign relations:

“Namely, a sign is something, A, which brings something, B, its interpretant
sign determined or created by it, into the same sort of correspondence with
something, C, its object, as that in which itself stands to C.”

Figure 5.1 applies this triadic relationship to entity references in the natural language
text (A), the instance in the RDF graph (B), and finally the corresponding real world
concept (C). On the base of this triadic relationship, it can be concluded that utilizing
RDF data in Named Entity Recognition (NER) (as described in Section 2.2.2) requires
the alignment of named entities with corresponding instances. Therefore, the traditional
NER approach is extended to also perform a Semantic Entity Recognition, which aligns
named entities with URI references. More concretely, the recognition of semantic entities

76

5.2 RDF components

creates links between entity references in the text and instances in the RDF graph if both
references target to exactly the same real world concept. In the remainder, these bridges
between natural the language text and the RDF graph are from now on referred to as
semantic links.

Definition 5.1 (Semantic link, semantic entity)

A semantic link is an explicit association between a named entity NE and an instance
URI, if NE and URI resolve to the same referent. Any named entity that possesses a
semantic link is referred to as semantic entity.

In terms of an actual concept that is referred to from text, the existence of a semantic
link to a formal instance allows the incorporation of additional information about this
instance from RDF graphs.

5.2 RDF components

The utilization of RDF provides information extractors with additional information on
semantic features about entities. This information exceeds the syntactic interpretation
capabilities of traditional NER approaches. The value of RDF components is presented
for being used by information extractors.

5.2.1 Literals

Literal values in RDF graphs determine property values such as weight, height, dates,
and prizes of instances. Literals also comprise proper names or structured identifiers,
such as ISBN numbers.

As shown in Figure 5.2, the recognition of a match between an RDF literal and an
entity allows the definition of single text segments as literals of an RDF graph (i.e.,
“Kaiserslautern”, “Konrad Zuse”, “Konrad”, and “Zuse”). As consequence, text seg-
ments matching with RDF literals can be considered as relevant in terms of the RDF
graph’s domain of concern.

5.2.2 Datatype properties

In RDF, datatype properties determine the semantics of literal values. Applied to se-
mantic entities in the natural language text, datatype properties attach a formal se-
mantics to the associative meaning of semantic links. Figure 5.3, for example, describes
the entity “Konrad” to match with a literal value of the foaf:firstName property.
foaf:firstName describes the first name of an instantiation of a foaf:Person.

77

5 Foundations for utilizing RDF in Information Extraction

“Kaiserslautern”

“Konrad”

“Konrad Zuse”

“Zuse”

rdfs:Literal

rdf:type

rdf:type

rdf:type

rdf:value

rdf:type

rdf:value

rdf:value

rdf:value

“Konrad Zuse has never been to Kaiserslautern.”

Figure 5.2: Markup text segments as formal literal values of an RDF graph.

The semantic value of recognized datatype properties depends on how restrictive its
signature is defined within the formal vocabulary. As shown in the listing below, the
Friend of a Friend (FOAF) vocabulary declares instances with foaf:firstName proper-
ties to be classified as foaf:Person.

Example 5.1 (Signature of foaf:firstName)

f o a f : f i r stName rd f s : domain f o a f : Person ;
r d f s : range r d f s : L i t e r a l .

Hence, the entity “Konrad”, which is recognized as a property value of foaf:firstName,
can now be inferred to relate to an instance of type foaf:Person. In contrast to FOAF’s
foaf:firstName, the RDFS vocabulary defines the property rdfs:label more loosely
as being a human-readable version of a resource’s name [Brickley and Guha, 2004].

78

5.2 RDF components

“Kaiserslautern” “Konrad”“Konrad Zuse” “Zuse”

foaf:surnamerdfs:label foaf:firstName

rdf:predicate rdf:predicate

rdf:object rdf:object

rdf:predicate

rdf:object rdf:object

rdf:predicate

“Konrad Zuse has never been to Kaiserslautern.”

Figure 5.3: Assign RDF datatype properties to recognized entities.

Example 5.2 (Signature of rdfs:label)

r d f s : l a b e l r d f s : domain r d f s : Resource ;
r d f s : range r d f s : L i t e r a l ;
rd f : type owl : AnnotationProperty .

The formal OWL definition of rdfs:label classifies it as owl:AnnotationProperty,
which determines annotating properties whose values should be used as a basis for subse-
quent inferences [Bock et al., 2009]. The recognition of the rdfs:label “Kaiserslautern”
does not produce any hints for inferring any further classifications. In summary, the
recognition of datatype properties of semantic entities is required to infer further classi-
fications, but does not imply these in all cases. Additional information about instances
has to be utilized from RDF graphs.

In general, datatype properties formally subsume a shared nature of a list of literal
values. This relates to gazetteers in traditional NER (see Section 2.2.2) consisting of
lists of first names, academic title abbreviations, or currency symbols.

5.2.3 Types

The example in Figure 5.3 shows that literals of the semantic entities “Kaiserslautern”
and “Konrad Zuse” are values of the datatype property rdfs:label. As a rdfs:label

value is defined to determine only a name of something, it is impossible to infer addi-
tional information about the instances both entities refer to. Supporting, for example,
a Word-sense Disambiguation requires additional information, such as the instances’
types. In Figure 5.4, the type of “Kaiserslautern” and “Konrad Zuse” can be resolved
by interpreting the values of the rdf:type property, i.e. foaf:Person and dbp:Town.

79

5 Foundations for utilizing RDF in Information Extraction

Example 5.3 (Explicit classification knowledge by rdf:type statements.)

[] r d f s : l a b e l ’ Ka i s e r s l aute rn ’ ;
rd f : type dbp :Town .

[] r d f s : l a b e l ’Konrad Zuse ’ ;
rd f : type f o a f : Person .

Adding rdf:type information to a list of datatype property values leads to a formal
representation of gazetteers populated with names of respective types, such as names of
instantiations of dbp-ont:Town, dbp-ont:Country, or dbp-ont:Company.

“Kaiserslautern” “Konrad”“Konrad Zuse” “Zuse”

foaf:Persondbp:Town

rdfs:label

rdf:typerdf:type

foaf:surname

rdf:type

rdfs:label

rdf:type

foaf:firstName

“Konrad Zuse has never been to Kaiserslautern.”

Figure 5.4: Disambiguating word senses by explicit rdf:type statements.

5.2.4 Instances

A semantic link is most valuable when it associates a named entity in text with an
instance in the RDF graph. This allows the utilization of known properties about this
actual instance in the RDF graph, comprising datatype property values, classifications,
and relationships to other instances.

In Figure 5.5 the semantic entity “Konrad Zuse” refers to the instance dbp:Konrad Zuse

described by the DBpedia as dbp-ont:Person who is known for the “Z4” and who pos-
sessed the first and last name “Konrad” and “Zuse”.

Links between entities and instances connect the formal semantics within RDF graphs
to unstructured text. In terms of Computation Linguistics, this allows information
extractors operating on the RDF graph for solving entity resolution problems, such as:

• The Word-sense Disambiguation of an entity on a literal value that may be resolved
with multiple instances (see also Section 7.5).

80

5.3 Semantic entity recognition process

• The unification of recognized entities on different literal values that all refer to the
same instance in the RDF graph (see also Section 7.4).

“Konrad”Zuse”“Konrad Zuse”

dbp:Konrad Zuse dbp:Z4 (computer)

foaf:lastName

dbp-owl:known for

rdfs:label foaf:firstName

“Konrad Zuse has never been to Kaiserslautern.”

Figure 5.5: Semantic link between a named entity and a URI reference.

5.2.5 Object properties

Object properties associate two instances with an explicit relationship, which may be
specified by an underlying vocabulary. The interpretation of such relational knowl-
edge may provide a word sense resolver with evidences about why two entities co-occur
in a text. For example, in Figure 5.6 the relation dbp-owl:birthplace associates
dbp:Horst Zuse with dbp:Bad Hindelang meaning that Horst Zuse was born in Bad
Hindelang. Here, the resolution of the entity “Zuse” is still ambiguous. Both entities
may be resolved with two different instances. “Zuse” may be resolved either as name of
a person called “Horst Zuse” or as name of a person called “Konrad Zuse”. However,
having access to the “birthplace” relationship the resolver is enabled to resolve “Zuse”
by taking into account the co-occurrence of “Zuse” and “Bad Hindelang” in text to
match it with the known relationship. As result, this evidence is used to decide that,
most likely, “Zuse” refers to dbp:Horst Zuse.

5.3 Semantic entity recognition process

Finally, for developing and evaluating a Semantic Entity Recognition, the overall entity
recognition process is divided into a sequence of information extractors. This definition
allows a proper utilization of RDF within each information extractor. Each information
extractor is categorized in two ways: Information extractors that pre-process knowledge
in RDF graphs or text corpora. Information extractors that process the information
from a text content in order to recognize semantic entities. Figure 5.7 illustrates this
architecture. The following lists summarizes IE preprocessing and processing topics this

81

5 Foundations for utilizing RDF in Information Extraction

“Bad Hindelang”“Zuse”

dbp:Konrad Zuse

dbp:Z4 (computer) dbp:Bad Hindelang

dbp:Horst Zuse

foaf:surname

rdfs:label

dbp-owl:known for dbp-owl:birtplace

foaf:surname

“Zuse first saw the light in Bad Hindelang.”

Figure 5.6: RDF resources are interlinked with object properties.

work contributed to (more details on preprocessing and processing techniques will be pro-
vided in Chapters 6 and 7). Specific techniques that are used to implement information
extractors in (pre-)processing steps will be subsequently described in Section 5.4. Chap-
ter 8 explains details on post-processing methods that cover further processing-steps of
extraction results.

Preprocessing steps consolidate and condense knowledge provided by RDF graphs and
text corpora. The analyses performed by these steps are independent from the given
text in progress of the entity recognition pipeline. In general, preprocessors create rep-
resentational or statistical models that are later on utilized by subsequent information
extractors. More details on preprocessors will be presented in Chapter 6.

The following list summarizes the investigated pre-processing approaches:

1. A relational model of RDF data (Section 6.2): RDF is designed to exchange formal
information on the Web. Its data model is not suitable for handling retrieval,
partitioning, or mining operations efficiently. Hence, a relational database schema
was developed to store RDF graphs with focus on the requirements demanded by
information extractors along the Semantic Entity Recognition process.

2. Clustering correlating classes in RDF graphs (Section 6.3): In general, RDF graphs
classify instances by a single or by multiple class hierarchies. These hierarchies may
overlap or consist of over-specified class definitions that cannot be reconstructed
from the data in text. Hence, a clustering is performed to reduce the number of
classes by subsuming correlating parts of hierarchies into single clusters. Hierar-
chical Clustering (Section 5.4.3) and Principle Component Analysis (Section 5.4.5)
were applied to collapse correlating RDFS classes.

82

5.3 Semantic entity recognition process

document

RDF graph

pre-processing

processing

extraction
result

feature models

corpus

post-processing

annotated document

clusteringlearning

miningestimating rating

aligning

serializing annotating

ranking filtering

literals classes properties

entities relevance ambiguities

query

Figure 5.7: RDF-based Information Extraction architecture.

3. RDF graph statistics (Section 6.4): This pre-processing computes a variety of statis-
tics about the structure in RDF graphs, such as frequency distributions of datatype
properties, object properties, classes in RDF statements, and instances.

4. Text corpus statistics (Section 6.5): Word frequencies in text corpora are computed
in this pre-processing step, such as the number of word occurrences within a single
text (term frequency) and the number of documents that contain a word (document
frequency).

5. Mining datatype properties for proper names (Section 6.6): Frequency distributions
of literals in text corpora and RDF graphs are used to create proper metrics for
describing RDF properties that represent proper names.

6. Aligning datatype properties with regular expressions (Section 6.7): Analyzes which
datatype properties contain values that match with given regular expressions.

7. Automatically labeling a text corpus with classes (Section 6.8): Training data is
necessary for training machine-learning models to automatically classify entities
with RDFS classes. This pre-processing step automatically generates such training
data based on a given text corpus and results of the Semantic Entity Recognition
process.

83

5 Foundations for utilizing RDF in Information Extraction

Processing steps implement information extractors of the Semantic Entity Recogni-
tion. These extractors incorporate background knowledge from RDF graphs and text
corpora in terms of models, which were created during the preprocessing phase. More
details on information extractors will be presented in Chapter 7.

1. Filtering text for proper names (Section 7.2): In general, the recognition of RDF
instances in text is built upon spotting values of proper name properties. Here,
the recognition of noun phrases reduces the amount of comparisons. A CRF (which
is described in Section 5.4.8) is trained to detect phrasal language segments in text.
Detected noun phrases determine possible candidates to co-occur in RDF graphs
as values of datatype properties.

2. Spotting text for datatype property values (Section 7.3): Recognized proper name
candidates in text are compared with literal values of datatype properties that were
classified to represent proper names. (This refers to the RDF graph statistics). A
suffix array (which is described in Section 5.4.1) is used as technique for comparing
lists of noun phrases and literal values. The relational model of RDF data is used
for querying the RDF graph for potentially matching literals. This comparison
results in a list of matches consisting of literal values typed as datatype properties.

3. Linking named entities to formal instances (Section 7.4): Based on recognized lit-
eral values and datatype properties, the instance recognition resolves candidates
for instances that exist as subject in RDF triples holding the actual datatype prop-
erty as predicate and literal values as object. The relational model of RDF data
facilitates this resolution of subjects.

4. Resolving ambiguous semantic entities (Section 7.5): Ambiguously recognized in-
stances are analyzed by using graph metrics describing the connectivity. Here,
the link mining algorithms HITS and PageRank (described in Section 5.4.6) as
well as standard metrics are applied to resolve the set of ambiguously recognized
instances.

5. Rating relevance of semantic entities in text (Section 7.6): Recognized entities are
rated by relevance related to the general context, which is determined by the
information contained in text and RDF graph. Besides term-based corpus statistics
(described in Section 6.4) again, HITS and PageRank are applied.

6. Classifying semantic entities (Section 7.7): A classifier predicts RDFS classes from
the RDF graph for recognized proper names. The maximum entropy approach
(described in Section 5.4.7) was chosen as model for classification.

7. Predicting object properties between semantic entities (Section 7.8): Based on the
sub graph consisting of recognized instances and their object property values, this

84

5.4 Required technological fundamentals

approach predicts additional relations between instances that have not been ex-
plicate in the RDF graph, yet. Here, matrix representations (described in Sec-
tion 5.4.2) are used to calculate with correlations, distances, and similarities.

5.4 Required technological fundamentals

The implementation of preprocessing and processing steps involves the application of
algorithmic, statistical, and general mathematical procedures. Before explaining details
on each preprocessing and processing step, the remainder of this section outlines the
procedures used within this work:

5.4.1 Suffix arrays

An efficient comparison between a set of RDF literals and a plain text has to be performed
in a linear time complexity. This requires both sources to be transformed into a data
structure that is specialized on implementing string comparisons.

A suffix array describes an array of suffixes sorted in lexicographical ordering. It
provides support for scalable substring matching operations [Kärkkäinen et al., 2006].
This important property of suffix arrays allows sub-string matching to be implemented
by searching the lookup string as a prefix value in the sorted list of suffixes. Such a
lookup can be performed in logarithmic (O(log(n))) complexity.

Example 5.4 (Suffix array)

Transforming the string “Peter, Paul, and Mary” into a suffix array produces the fol-
lowing results. Here, words are the basic indexing segments of this text.

’ and Mary ’
’Mary ’
’ Paul and Mary ’
’ Peter , Paul and Mary ’

Algorithm 5.1 describes a simple implementation of constructing a suffix array. The
algorithm creates a suffix array in log-linear (O(n∗log(n))) time complexity. Kärkkäinen
et al. [2006] proposed a method for constructing suffix arrays in linear time. Instead of
creating physical substrings, the implementation of a suffix array developed within this
work uses references in memory that point to text passages. This ensures that the text
remains only once as string value in memory.

85

5 Foundations for utilizing RDF in Information Extraction

Algorithm 5.1 (Simple suffix array creation)

Input: A parameter text.

Output: A suffix array, which is a lexicographically sorted list of suffixes of text.

def s u f f i x a r r a y (t ext) :

s u f f i x a r r a y = [] # crea t e array s t r u c t u r e
words = text . s p l i t (’ ’) # token i z e t e x t by wh i t e space s
l a s t = len (words)−1; # index o f l a s t word

for i in range (l a s t) : # crea t e and append s u f f i x
s u f f i x a r r a y . append (’ ’ . j o i n (words [l a s t−i :]))

return so r t ed (s u f f i x a r r a y , key=s t r . lower)

When spotting RDF literals in text, the maximum suffix-length can be restricted. In
terms of the DBpedia, a maximum of 100 characters per literal is applied1.

In theory, suffix arrays are often referred to as a pragmatic generalization of a suffix
tree, which offers a richer set of string matching functionalities. In practice, suffix arrays
are more applicable. Because of their list-like nature, it is simple to serialize suffix
arrays to files. However, it is possible to process a suffix array as stream of string
values without the need to store it in main memory completely. A suffix tree consists
of highly interconnected pointer structures, which requires to keep the whole suffix tree
in main memory. Finally, it can be stated that the suffix array provides a computable
representation of text that offers efficient search features.

5.4.2 Matrix computations

Linear algebra offers various procedures for computing with multivariate data sources.
In order to apply algebraic operations to formally represented information, a matrix
representation is used. Information about an instance is represented within a matrix as
a row. Each column of a row determines a certain property or feature of this instance.
For example, the matrix M classifies the instances Peter, Paul, and Mary as persons,
males, or females. In the following chapters, when referring to matrices, the index i
refers to the row of a matrix, j denotes the column, m represents the count of rows, and
n represents the count of columns. Indexes will be counted starting from zero.

1Even the longest European village name, Llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch
is just 58 characters long (see http://en.wikipedia.org/wiki/List_of_long_place_names).

86

http://en.wikipedia.org/wiki/List_of_long_place_names

5.4 Required technological fundamentals

Example 5.5 (Matrix representation of instances)

M =


i\j person male female

Peter 1.0 1.0 0.0

Paul 1.0 1.0 0.0

Mary 1.0 0.0 1.0



Such a matrix representation allows the calculation of similarities or distances between
instances. Euclidean distance between two instances A and B is calculated as follows:

Definition 5.2 (Euclidean distance)

Euclidean distance(A,B)

√√√√ n∑
j=1

(Aj −Bj)2

When interpreting instances A and B as vectors the cosine similarity between ~A and
~B determines the angle between both. Compared to the Euclidean distance, the cosine
similarity is not influenced by the length of the vector. Cosine similarity values are
within a range of zero and one.

Definition 5.3 (Cosine similarity)

cosine similarity(~A, ~B) =

∑n
j=1

~Aj × ~Bj√∑n
j=1 (~Aj)2 ×

√∑n
j=1 (~Bj)2

5.4.3 Hierarchical clustering

Based on a matrix populated with information on instances, the agglomerate hierarchi-
cal clustering algorithm [Duda et al., 2001] provides means for clustering instances by
maximal similarity or minimal distance. The agglomerative clustering in Python that is
presented in Algorithm 5.2 starts with a given set of instances within a matrix. During
each subsequent step, the algorithm merges the closest or most similar pair of instances
or clusters to a new cluster until the desired number of clusters is reached.

87

5 Foundations for utilizing RDF in Information Extraction

Algorithm 5.2 (Agglomerative clustering algorithm)

Input: A matrix representing instances, and a parameter desired cluster number.

Output: A clustered matrix, consisting of desired cluster number columns.

def agg l ome r a t i v e c l u s t e r i n g (matrix , d e s i r ed c lu s t e r number) :

while matrix . rows > de s i r ed c lu s t e r number :
C1 , C2 = matrix . f i n d n e a r e s t c l u s t e r ()
matrix . merge (C1 , C2)

return matrix

In this work, hierarchical clustering is used to subsume similar RDFS classes (as
described later in Section 6.3). Closeness between single instances is computed by the
Euclidean distance. In detail, the distance between two clusters is computed as the mean
distance between contained instances. This strategy is also referred to as average linkage
clustering [Duda et al., 2001].

Definition 5.4 (Average linkage)

average linkage(~C1, ~C2) =

∑
A∈C1

∑
B∈C2

distance(A,B)

|C1||C2|

5.4.4 Descriptive statistics

In descriptive statistics, the column of a matrix may be interpreted as a variable X of
a sample distribution of values. The statistical ratios mean, variance, covariance, and
correlation provide more specific descriptions on the distribution of X. In this work, the
arithmetic mean of a sample of the variable X is also interpreted as expected value (µ)
of the variable X. They are defined as follows:

Definition 5.5 (Arithmetic mean)

The arithmetic mean denotes the average value of the distribution of X.

mean(X) = µ(X) =

∑m
i Xi

m

88

5.4 Required technological fundamentals

Definition 5.6 (Variance)

The variance describes the deviation between the realization of X and its mean.

var(X) =
1

n− 1

n∑
i=1

(Xi − µ(X))2

The variance of a variable X is often interpreted as the contained degree of informa-
tion. Knowing the value of a variable that possesses a low amount of variance does not
contain much information. For example, the knowledge about Peter being a person is
not informative as all instances within the matrix are classified as person. Hence, the
variance of (X = person) is 0 in M . Gender information is determined by a variance
ratio of var(X) = 1/3.

Definition 5.7 (Covariance)

The covariance describes the dependence between two variables X and Y .

cov(X,Y) =
1

n− 1

n∑
i=1

(Xi − µ(X))(Yi − µ(Y))

A negative covariance value describes an anti-proportional linear dependency between
variables X and Y , i.e., increasing the value of X causes a decreasing value of Y . A
positive covariance denotes a proportional linear dependency. A zero value expresses the
absence of any linear dependency between X and Y .

Correlation

Pearson’s product momentum normalizes the covariance to produce values in a range
between minus one and one. Pearson’s product momentum is simply the covariance of
the normalized statistical distributions of variables X and Y , which possesses a zero
mean of and a standard deviation (

√
var(X)) of 1.0.

Definition 5.8 (Pearson’s product momentum)

correlation(X,Y) =
cov(X,Y)√

var(X)
√

var(Y)

The scatter plots illustrated in Figure 5.82 visualize a series of correlation values
between a range from −1.0 to 1.0.

2originating from http://en.wikipedia.org/wiki/File:Correlation_examples2.svg, 2011-06-16

89

http://en.wikipedia.org/wiki/File:Correlation_examples2.svg

5 Foundations for utilizing RDF in Information Extraction

Figure 5.8: Correlation values between variables in a 2-dimensional space.

5.4.5 Principle component analysis

Similar to the hierarchical clustering the goal of applying a Principle Component Analysis
(PCA) is to collapse similar properties of instances. Therefore, the matrix M (n×m),
which describes m instances along n columns, should be transformed by a projection
matrix T into a new matrix Mr (nr ×m) with a reduced number nr < n of columns.

Definition 5.9 (Projection matrix)

Mr = TM

The properties within the projected matrix Mr should possess a maximum of variance.
Following Duda et al. [2001] this optimization problem can be reformulated to:

Definition 5.10 (Eigenvalue equation)

COV(M)T = αT

This equation is satisfied if T is a matrix of eigenvectors of the matrix of covariance
values of M COV(M) and α determines the corresponding eigenvalues. These eigen-
vectors and eigenvalues can be computed by applying the singular value decomposition
to the covariance matrix [Wall et al., 2002]. The vector α contains the eigenvalues in
decreasing order. The matrix T contains the corresponding eigenvectors. As the nature
of eigenvalues corresponds with the notion of variance, the interpretation of αT allows
to state that the first column vector of T determines the first principle component of the
distributions of M .

Now, for collapsing invariant columns of matrix M a fixed proportion p can be calcu-
lated by a sum of eigenvalues along k <= n columns:

Definition 5.11 (Cumulative degree of informativeness)

p =

∑k
λi∈α λi∑n
λi∈α λi

If the value of p exceeds a threshold t, k determines the number of eigenvectors to
choose from T . These columns are represented within a reduced projection matrix Tr.
Mr is defined and normalized to possess a zero mean and standard deviation of one by:

90

5.4 Required technological fundamentals

Definition 5.12 (Final projection)

Mr =
Tr(M −mean(M))√

α

5.4.6 Link analysis in graphs

The representational model of RDF is a graph. Therefore, adjacency matrices are used
as representation to allow a mathematical calculation with RDF data.

Definition 5.13 (Adjacency matrix)

When considering a graph G(V,E) to consist of a set vertexes V and of edges E in
between vertexes, the adjacency matrix is a quadratic matrix in which rows and
columns represent the graph’s vertexes. Boolean values within the matrix express the
existence of an edge between vertex i and j whereas real values assign an edge weight
between vertex i and j. An undirected graph results in a symmetric adjacency matrix.

By adding restrictions on the sum of row values, an adjacency matrix can be trans-
formed into a probabilistic transition matrix.

Definition 5.14 (Probabilistic transition matrix)

A normalized form of an adjacency matrix assures that the sum of entry values within
each row sum up to one. In this case, each value of a matrix cell can be interpreted
as probability. The adjacency matrix is then referred to as probabilistic transition
matrix.

A link analysis within graphs intends to raise descriptive statistics about the connec-
tivity of vertexes. Transferred to RDF graphs, such statistics allow the evaluation of
importance of relatedness between a single instance and an existing RDF graph.

Node connectivity

In graph theory, several methods exist for computing a node’s connectivity. Representing
an RDF graph as directed graph G(E, V) which represents instances as vertexes V and
object properties as directed edges E(Vs, Vo), allows the application of following metrics:

Definition 5.15 (The degree of a node)

The degree of a node V denotes the number of incoming edges plus the amount of
outgoing edges.

degree(V) = |E(Vi, V)|+ |E(V, Vj)|

91

5 Foundations for utilizing RDF in Information Extraction

Definition 5.16 (The capacity of a node)

The capacity of a node V denotes the minimum count of incoming and outgoing edges.

capacity(V) = min(|E(Vi, V)|, |E(V, Vj)|)

Two prominent link analysis algorithms, namely HITS and PageRank, are applied to
RDF graphs. Both algorithms are grounding their calculations on the eigenvalue analysis
of the adjacency matrix.

Hyperlink-Induced Topic Search (HITS)

Kleinberg [1999] proposes an approach to compute two scores for each vertex within
a graph. A hub score assigns high ratings to vertexes with many outgoing edges. An
authority score assigns high ratings to vertexes with many incoming edges. Originally,
this algorithm was applied to rate relevancies of hyperlinked Web pages. The intended
idea behind HITS is that relevant hubs link to relevant authorities and vice versa.

Definition 5.17 (Authority, Hub)

Based on an adjacency matrix A in which a value of one denotes an existing link and
its transposed version AT , the equations of authority and hub values a, h can be written
as:

a(t+1) = ATh(t) = (ATA)a(t)

h(t+1) = Aa(t) = (AAT)h(t)

Here, t represents one step along a graph traversal. Finally, hub and authority values
have to be computed asymptotically by h = limt→∞h

t and a = limt→∞a
t. Following

Ng et al. [2001] and Langville et al. [2009], a solution of these equations corresponds to
the first principle eigenvector of (ATA) in terms of authority and to the first principle
eigenvector of (AAT) in terms of hub ratings.

PageRank

Page et al. [1999] propose a calculation of an authoritativeness based on an infinite
random walk on a probabilistic transition matrix. The underlying idea is that each time
a random Web surfer visits a Web page, he randomly selects from the outgoing hyperlinks
the next page to visit. PageRank contains a teleporting functionality by which with a
probability of ε the random surfer decides to jump to a Web page picked uniformly and
at random from the collection of Web pages. Ng et al. [2001] explained that if teleporting
is represented by a matrix U , which is uniformly populated with the value 1/n, pagerank
scores can be computed by multiplying (εU+(1−ε)M)T with its principle eigenvector p.

92

5.4 Required technological fundamentals

Definition 5.18 (Pagerank)

pagerank = (εU + (1− ε)M)T p

5.4.7 Maximum entropy models

Maximum entropy classifiers are widely used for a variety of natural language processing
tasks, such as POS-tagging, or text segmentation [Jurafsky and Martin, 2008]. Nigam
et al. [1999a] describe maximum entropy as technique for estimating probability distri-
butions from sample data.

A maximum entropy classifier is used to predict the classes of recognized entities in
text. Again, instances are represented by features in a matrix F . Here, each column
represents a feature fj that was extracted from text. Given a training corpus, in which
entities were labeled with classes of an ontology, the maximum entropy approach esti-
mates the empirical expected value for each feature Ē(fj) in terms of observed feature
values fj(x, y) of instances X and labels Y in the training data Z. Hence, Z contains
all pairs of co-occurring labels Y and instances X in the training corpus.

Definition 5.19 (Empirical expectation value)

Ē(fj) =
1

m

∑
(x,y)∈Z

fj(x, y)

These expected values for observed features and labels, in addition to probabilistic
assumptions that p(y|x) ≥ 0 and

∑
y∈Y p(y|x) = 1, form the constraints for the resulting

probabilistic maximum entropy distribution.
Here, entropy can be understood likewise to the uncertainty about the degree of

information of a hypothesis. Jaynes [1957] defines the principle of maximum entropy
that whenever nothing is known the estimated probability distribution should be as
uniform as possible. Under this assumption, the best probability distribution is the
one, which maximizes the entropy given the constraints from the training data. The
underlying conditional entropy H(y, x) is defined as:

Definition 5.20 (Conditional entropy)

H(y|x) = −
∑

(x,y)∈Z

p(y, x)logp(y|x)

The model, maximizing p(y|x) in the space of all possible models P , is defined as:

p∗(y|x) = argmax(H(y|x)p(y,x)∈P)

93

5 Foundations for utilizing RDF in Information Extraction

By using optimization techniques, such as Lagrange multipliers λi, the upper form
can be derived to its upper extrema by still restricting it with Ē(fj) as well as the
probabilistic assumptions. Finally, p(y|x) can be expressed as:

p(y|x) =
exp(

∑n
i=1 λifi(x, y))∑

y∈Y exp(
∑n

i=1 λifi(x, y))

Nigam et al. [1999a] give a very concise example in which the principle of maximum
entropy is applied to classify texts:

Example 5.6 (Maximum entropy)

Consider a four-way text-classification task where we are told only that on average 40%
of documents with the word “professor” in them are in the faculty class. Intuitively,
when given a document with “professor” in it, we would say it has a 40% chance of
being a faculty document, and a 20% chance for each of the other three classes. If a
document does not have “professor” we would guess the uniform class distribution, 25%
each. This model is exactly the maximum entropy model that conforms to our known
constraints. [Nigam et al., 1999a]

Due to probabilistic nature of the returned model distribution, the maximum entropy
classifier is referred to as probabilistic classifier. This property is useful as it presumes
that for a given observation O the classifier’s prediction is a ordered list L of labels
Li ∈ L along probabilities that sum up to one (0.0 ≥ p(l) ≥ 1.0 and

∑n
i=1 p(Li) = 1.0).

It allows the application of certainty tests that check the difference between the two
highest probabilities.

Definition 5.21 (Certainty)

certainty(L) = p(L1)− p(L2)

The higher the value of certainty is, the more certain is the classifier about its pre-
diction. In consequence, a threshold checks, if the certainty of a prediction is above a
given value t. Compared to other classifiers such as Naive Bayes [Duda et al., 2001],
the guarantee of probability assumptions offered by the maximum entropy model is a
feature that led to the decision of its usage.

5.4.8 Conditional Random Field

CRF-models are applied to tag a sequence of words with labels that determine each
word to be part of a phrase. CRF are a popular state-of-the-art approach for learning a
probabilistic distribution of transitions within sequences. The following explanation of
CRF will remain at a higher abstraction level. The mathematical background of a CRF

94

5.5 Summary and Conclusion

depends on mathematical frameworks, for which an explanation is out of scope of this
work.

In general, CRFs apply the idea of maximum entropy models and transfer it from
relational classification to sequential classification by modeling conditional dependencies
between sequences and features as factor graphs [Kschischang et al., 2001]. Being trained
on a corpora of sequences of words and labels, for an unlabeled sequence of words the
CRF estimates the most probable distribution of labels by maximizing the entropy based
on best fitting cliques within the factor graphs.

Therefore, the CRF remains a probabilistic classifier. Due to its sequential nature,
it may be referred to as a probabilistic finite state transducer [Lafferty et al., 2001] as
described in Section 2.2.2. For a deeper overview on CRFs, please refer to Sutton and
McCallum [2006].

5.5 Summary and Conclusion

Contributing to the Hypothesis H.1, this chapter illustrated the concept of linking parts
of RDF graphs to named entities in text. For this purpose, the notions of semantic
links and semantic entities are defined (see Definition 5.1). Finally, this involves the
specification of the Semantic Entity Recognition process (see Section 5.3).

5.5.1 Summary

This chapter described formal aspects of utilizing information from RDF graphs in in-
formation extractors:

1. Starting with Section 5.1 foundational approaches were presented providing back-
ground for linking information represented in RDF and natural language text.

2. Section 5.2 addressed the value of RDF-components for IE-tasks. It reveals the
high potential of enhancing IE-systems by enriching them with existing RDF data.

3. In Section 5.3, traditional NER was extended and refined to handle semantic links
and semantic entities. Finally, the Semantic Entity Recognition process allows the
initial motivation of extending IE with RDF to take concrete shape.

4. For incorporating RDF knowledge into the Semantic Entity Recognition process,
Section 5.4 illustrated mathematical representation and processing techniques.
These techniques provide pre-processing (see Chapter 6) and processing approaches
(see Chapter 7) with a mathematical framework for allowing a numeric computa-
tion on RDF represented information. Hereby, the used representational techniques
are independent from the instantiated information in RDF graphs. This supports
the adaptivity claimed in the Hypothesis H.3.

95

5 Foundations for utilizing RDF in Information Extraction

5.5.2 Conclusion

The presented utilization of RDF graphs within information extractors results in con-
tributing the following solutions listed in Section 1.3:

Contribution 1 addresses the rehashing of information in RDF to compute with it in
information extractors. Part of this contribution is the creation of semantic links
between RDF graphs and text, and in consequence, the recognition of semantic
entities as parts of RDF graphs (see Definition 5.1). The algebraic matrix rep-
resentation of RDF graphs in Section 5.4.2 provided a basis for a computational
interpretation and consumption of contained information.

Contribution 2 covers the Semantic Entity Recognition process, which was described
and specified in Section 5.3 (see Figure 5.3).

Contribution 3 focusses on the value of using the formal vocabularies in RDF graphs.
Section 5.2 exposed components within RDF graphs that are support the Semantic
Entity Recognition process.

96

6 Preprocessing feature descriptions from
text and RDF graphs

An ideal feature extractor would yield a
representation that makes the job of the classifier
trivial; . . .

(Duda et al. [2001])

Information extractors, each processing different extraction
tasks, require specialized bits of background information. For
instance, the recognition of named entity references requires
information about proper names in the text. The disambigua-
tion of entities can be fostered with knowledge about the re-
lationships between instance referents. Following Duda et al.
[2001], extracting and selecting features from RDF graphs and
text corpora is required and facilitates implementing the in-
tended information extractors.

This chapter outlines a number of feature models that cap-
ture individual aspects of knowledge from text and RDF
graphs. First, Section 6.2 demonstrates a specialized stor-
age of RDF graphs to be used by information extractors.
Next, Section 6.3 presents approaches summarizing correlat-
ing classes in taxonomies. Sections 6.4 and 6.5 illustrate sta-
tistical analyzes of knowledge in RDF graphs and text cor-
pora. A statistical model that fosters the recognition of proper
names in text and RDF is presented in Section 6.6. Next,
Section 6.7 demonstrates a technique that learns how to align
formal syntax descriptions about entities to datatype prop-
erties of the RDF graph. Subsequently, Section 6.8 describes
the automatic creation of training data for classifying entities.
Section 6.9 summarizes experiments supporting the value of
presented approaches. Finally, Section 6.10 concludes valu-
able insights of these approaches that foster IE processors.

97

6 Preprocessing feature descriptions from text and RDF graphs

RDF graph

pre-processing

feature models

corpus
clusteringlearning

miningestimating rating

aligning

Figure 6.1: Model creation by pre-processing RDF and corpus data.

6.1 Features in Information Extraction

In general, information extractors involve various kinds of background knowledge, i.e.,
statistics about term frequencies, grammar-based language models, or formal synonym
relationships. In this work, a special form of representing knowledge is used to en-
hance information extractors, namely RDF graphs. Figure 6.1 illustrates the use of
pre-processors for extracting, selecting, and representing bits of knowledge as features
from RDF graphs and text corpora. The following techniques for pre-processing RDF
graphs are proposed in this chapter:

1. A relational model of RDF data (see Section 6.2), which provides the basis for
handling RDF data independently from its describing domain of concern. The
intention of the approach originates from the hypotheses H.1 and H.3. Its imple-
mentation supports the contributions C.1 and C.6 directly, C.2 indirectly.

2. Clustering correlating classes in RDF graphs (see Section 6.3) reduces information
theoretic complexities within RDF graphs, which is required by the Hypothesis H.1
for utilizing knowledge from RDF graphs efficiently. Results of the investigated
clustering algorithms support the Contribution C.1.

3. RDF graph statistics (see Section 6.4) describe the distributions of intrinsic features
within RDF graphs for utilizing knowledge from RDF graphs efficiently. This
corresponds with the Hypothesis H.1 and facilitates contributing C.1.

4. Text corpus statistics (see Section 6.5) enrich the descriptive statistics of RDF
graph based features with descriptions in natural language text corpora. Following
the line of the Hypothesis H.1 the presented maps information of an RDF graph
to correlating statistical features of a text corpus, which creates a positive impact
on Contribution C.1.

5. Mining datatype properties for proper names (see Section 6.6) allows rating datatype
properties of an RDF vocabulary, which is in scope of Contribution C.1. With re-

98

6.2 A relational model of RDF data

spect to the hypotheses H.1 and H.3, such ratings are the basis for filtering and
ranking extraction relevant vocabulary tokens needed to create the claimed adap-
tion to individual domains of concerns by the Contribution C.6 .

6. Aligning datatype properties with regular expressions (see Section 6.7) enriches
the IE process as claimed by the Hypothesis H.1. Such a utilization of regular
expressions in terms of RDF graphs extends the traditional NER approach, which
is conforming to Contribution C.2.

7. Automatically labeling a text corpus with classes (see Section 6.8) is required for
adapting an IE system to RDF descriptions of arbitrary domains of concerns like
it is claimed by the Hypothesis H.3. The presented approach as such is in line with
the described Contribution C.5.

6.2 A relational model of RDF data

When providing parts of knowledge from RDF graphs to information extractors, the first
problem arising is to store RDF encoded knowledge in a way that enables efficient access
to information extractors. The design of RDF intends to provide arbitrary applications
with a data interoperability layer on the Web. By nature, each application handles its
data differently, which involves implementing specialized strategies to store and request
required data. The following list summarizes information demands and data operations
of the IE-algorithms that were developed and used within this work:

Requirements

1. The recognition of semantic entities involves string-based comparisons between
RDF literals and text segments. Hence, requests for sorted lists of literal values
from the RDF graph must be computed in minimal amount of time (as it will be
described in Section 7.3).

2. The application of suffix arrays requires the computation of prefix values of a fixed
length for each literal value. (This will be explained in Sections 5.4.1, 7.3).

3. The syntax analysis of datatype property values (that is going to be explained in
Section 6.7) requires large lists of literals to be matched with regular expressions.

4. The disambiguation of entities’ instances referents (more details will be provided
in Section 7.5) as well as investigations on formal relations between recognized
instances (which will be explained in Sections 7.6, 7.8) involve the application of
link traversals in RDF graphs. Some kinds of links like rdf:type predicates are
of greater focus (more details will follow in Sections 6.3, 6.4, 6.8, and 7.7). Hence,
specialized indexing mechanisms should be provided.

99

6 Preprocessing feature descriptions from text and RDF graphs

5. Statistics on various kinds of distributions about datatype and object property
values will be computed (as described in Sections 6.4, 6.6). Hence, analytical
processing methods, such as selection and grouping of data, have to be provided
separately for datatype and object properties.

Concept

In order to cope with these requirements, RDF triples were separated into two categories:

Definition 6.1 (Categories of RDF triples)

Assuming RDF triples in RDF graphs to consist of a subject, a predicate, and an object,
the following distinction can be made:

Symbols determine RDF triples that possess datatype properties as predicates. In con-
sequence, all symbolic triples possess literal values as object. (e.g.,

dbp:Horst Zuse rdfs:label ‘‘Horst Zuse’’ .

)

Relations determine RDF triples that possess object properties as predicates. By na-
ture, these relational triples possess URI references or blank nodes as object values.
(e.g.,

dbp:Horst Zuse foaf:knows dbp:Konrad Zuse .

)

For storing RDF in a way that supports the IE-requirements, relational databases
were considered as grounding storage technology. Relational databases provide scalable
functionalities for storing, indexing, and sorting data.

In terms of RDF, several approaches exist that handle RDF graphs in relational
database schemes. Currently, Jena [Wilkinson et al., 2003], Sesame [Broekstra et al.,
2002], and Virtuoso [OpenLink Software Documentation Team, 2011] are the most pop-
ular RDF repositories. They all store RDF triples and process SPARQL queries. As
back-end, all approaches provide the use of a relational database.

In terms of a relational database, the used schema, in general, provides a single table
holding subject, predicate, and object values of RDF triples. In order to save memory
and to support efficient comparisons, dictionaries are used to substitute URI values and
literal values with integer identifiers. Unfortunately, neither Jena, Sesame, nor Virtuoso
provides any functionality to generate prefix strings from literal values.

The approach of a single database table for representing RDF triples, as used by
Jena, Sesame, and Virtuoso, is not confirm with the conceptual separation between
symbols and relations. Hence, the following relational database schema was developed

100

6.2 A relational model of RDF data

and populated with RDF data. It enables the use of Structured Query Language (SQL)
to query parts of the RDF graph.

Query 6.1 (Relational schema for representing symbols and relations)

−− A d i c t i ona r y f o r index ing l i t e r a l v a l u e s .
CREATE TABLE i n d e x l i t e r a l s (

index SERIAL PRIMARY KEY, −− i n t e r n a l key f o r l i t e r a l s
l i t e r a l varchar (256) , −− p l a i n l i t e r a l va lue
p r e f i x int) ; −− hash va lue f o r p r e f i x e s

−− A d i c t i ona r y f o r index ing URIs t ha t r ep r e s en t i n s t ance s .
CREATE TABLE i nd ex r e s ou r c e s (

index SERIAL PRIMARY KEY, −− i n t e r n a l key f o r URIs
u r i varchar (256) UNIQUE) ; −− p l a i n URI r ep r e s en t a t i on

−− RDF t r i p l e s , which a s s i gn l i t e r a l v a l u e s to in s t ance s .
CREATE TABLE symbols (

sub j e c t int REFERENCES index r e s ou r c e s (index) ,
p r ed i c a t e int REFERENCES index r e s ou r c e s (index) ,
ob j e c t int REFERENCES i n d e x l i t e r a l s (index)) ;

−− RDF t r i p l e s , which a s s o c i a t e two in s t ance s .
CREATE TABLE r e l a t i o n s (

sub j e c t int REFERENCES index r e s ou r c e s (index) ,
p r ed i c a t e int REFERENCES index r e s ou r c e s (index) ,
ob j e c t int REFERENCES index r e s ou r c e s (index)) ;

The dictionaries index resources and index literals substitute literals and URIs
with numerical values. The tables symbols and relations represent the conceptual
separation of RDF triples.

To further support prefix-based substring comparisons performed by suffix arrays,
each lexical prefix of a literal is indexed and hashed. Hashing prefixes of literals allows
requesting a list of literal values that possibly match with a passed prefix string of a
suffix array entry. Prefixes of RDF literals are hashed with numeric values by using the
following hash function, which interprets a string as array of characters.

Definition 6.2 (Hashing string values)

This hash function is used by the Java programming language for computing hashes of
string objects.

hash(string) =

n=|string|∑
i=0

string[i] ∗ 31n−(i+1)

101

6 Preprocessing feature descriptions from text and RDF graphs

In Section 7.3, the length of hashed string prefixes will be parameterized. Further-
more, results of experiments (that will be described Section 7.9.3) focus on the impact
of differing lengths (|string| = 1,2,3,4, or 5) of hashed string prefixes on computing
complexity.

In this work, the relational database PostgresQL1 was used as basic storage implemen-
tation. In practice, the schema in Listing 6.1 was populated with hundreds of millions
of RDF triples, such as provided by the DBpedia dataset. Still, the database on this
schema is capable to return query results quickly, even when sending complex queries
with multiple join operations.

6.3 Clustering correlating classes in RDF graphs

Instances within RDF graphs are classified along class hierarchies (also referred to as
taxonomies). Figure 6.1 illustrates an example class hierarchy consisting of a root node
A with two nested descendants B and C.

Example 6.1 (Example class hierarchy.)

Assuming the nodes A,B,C,D,E,F,G to be classes in an RDF graph. The following tree
illustrates their respective class hierarchy.

A

CB

ED GF

In a class hierarchy of A,B,C, the two sibling classes B and C, which are subsumed
by a third class A, indicate that B and C share a specific nature, which is summarized by
A. In RDF, such a shared nature can be explicated with datatype and object properties
by restricting their signatures (i.e., domain, range) to A. Conversely, the specific natures
of classes B and C can be defined by modeling specialized properties with signatures
restricting domain or range to B or C. In the absence of such discriminating properties,
it is hard to choose correct classes for instances without knowing explicit classifying
relations such as rdf:type. related to this, in the area of IE it can not be asserted that
the surrounding text of a recognized entity holds enough evidence for discriminating

1http://www.postgresql.org/

102

http://www.postgresql.org/

6.3 Clustering correlating classes in RDF graphs

between A, B, and C. In this work, we refer to this problem as over-specification of
instance referents in RDF graphs. Examples 6.2 and 6.3 illustrate this problem:

Example 6.2 (RDF properties subsuming or specializing classes)

Assuming the following taxonomy in RDFS:

dbp-ont:Athlete rdfs:subClassOf foaf:Person .

dbp-ont:Politician rdfs:subClassOf foaf:Person .

The datatype properties foaf:firstName and foaf:lastName define person names.
Hence, their domain is defined on instances of type foaf:Person. In consequence, in-
stances of the sibling classes B,C (here, dbp-ont:Athlete, dbp-ont:Politician) can
both be described by using these properties.

Conversely, the object property dbp-ont:club associates a dbp-ont:Athlete with
a sports club, whereas dbp-ont:party defines instances of dbp-ont:Politician as
members of political parties.

Example 6.3 (Over-specification of instance referents in RDF graphs)

Assuming the following sentence:

“Christian Wulff presents Manuel Neuer, the captain of Schalke’s soccer
team, with the DFB cup.”

It can be inferred that “Manuel Neuer” and “Christian Wulff” are both names of persons.
Furthermore, it can be inferred that the person Manuel Neuer is a soccer player and a
member of a sports team, which classifies him as athlete. The text does not provide
any information that, for example, refers to the politician nature of Christian Wulff. (In
2010, Christian Wulff was elected as President of Germany)

Features extracted from natural language text do not always possess enough informa-
tion to determine a correct classification of entities in terms of a deeply nested taxonomy.
This issue is going to cause problems when training, for example, an entity classifier. In
general, whenever the two classes B and C can hardly be discriminated, by implication,
a correlation between B and C can be assumed. Hence, the goal is to cluster those
correlating classes that can hardly be discriminated. The following algorithm extracts
correlating coefficients between all classes by sampling instances from RDF graphs:

103

6 Preprocessing feature descriptions from text and RDF graphs

Algorithm 6.1 (Mine correlating classes by co-occurrence)

Input: An RDF graph G consisting of a set of instances I, which are classified to a set
of classes C; a parameter m, which denotes the amount of sample instances, which
should be analyzed from G.

Output: A correlation matrix MCOR.

1. Create the n× n matrix MCOOC . n denotes the number of distinct classes in G.

2. Extract m random sample instances Icm ⊂ I for each class c ∈ C from G.

3. For each instance sample i ∈ Icm, retrieve its associated set of classes Ci ⊂ C.

4. For each pair of classes ci ∈ Ci, cj ∈ Ci increase MCOOC(i, j) by one.

5. The resulting matrix MCOOC is referred to as co-occurrence matrix. The
columns j of a row MCOOC(i) describe how often instances of type ci are also
classified as cj .

6. By using Pearson’s correlation coefficient (see Section 5.4.4), transform the co-
occurrence matrix MCOOC into a correlation matrix MCOR.

Based on the taxonomy, Figure 6.4 illustrates the derived co-occurrence matrixMCOOC ,
which can be sampled by using the algorithm described above. Here, only a single in-
stance per class was assumed. The co-occurrence values in MCOOC were transformed
into the correlation matrix MCOR, which is shown by Figure 6.5.

Example 6.4 (Co-occurrence matrix (MCOOC))

The co-occurrence matrix (MCOOC) is derived from the taxonomy in Example 6.1.

MCOOC =



A B C D E F G

A 7 3 3 1 1 1 1

B 3 3 0 1 1 0 0

C 3 0 3 0 0 1 1

D 1 1 0 1 0 0 0

E 1 1 0 0 1 0 0

F 1 0 1 0 0 1 0

G 1 0 1 0 0 0 1



104

6.3 Clustering correlating classes in RDF graphs

Example 6.5 (Correlation matrix (MCOR))

The correlation matrix (MCOR) is derived from Example 6.4.

MCOR =



A B C D E F G

A 1.0 0.7 0.7 0.5 0.5 0.5 0.5

B 0.7 1.0 −0.0 0.8 0.8 −0.1 −0.1

C 0.7 −0.0 1.0 −0.1 −0.1 0.8 0.8

D 0.5 0.8 −0.1 1.0 0.4 −0.2 −0.2

E 0.5 0.8 −0.1 0.4 1.0 −0.2 −0.2

F 0.5 −0.1 0.8 −0.2 −0.2 1.0 0.4

G 0.5 −0.1 0.8 −0.2 −0.2 0.4 1.0



6.3.1 Hierarchical clustering

The hierarchical clustering algorithm, which is described in Section 5.4.3, allows the
clustering of correlating classes in a matrix MCOR. The Euclidean distance (see Sec-
tion 5.4.2) is used for computing the similarity between two classes. Similarities between
two clusters are calculated by taking the mean distance of all contained classes.

The dendrogram in Figure 6.2a illustrates a tree of clusters along a one-dimensional
scale of accumulated euclidean distances. Besides the dendrogram, the curve in Fig-
ure 6.2b describes the decrease of mean Euclidean distance ratios between the closest
clusters, when reducing the amount of clusters.

Finally, for retrieving a fixed set of clustered RDF classes, it is necessary to provide a
threshold value tk of mean Euclidean distances as upper bound. It determines that all
k clusters with Euclidean distance below tk have to be returned as significant clusters.
As the hierarchies of classes and therefore the correlations between these classes differ
between RDF graphs, the optimal threshold tk has to be evaluated for each RDF graph.
Therefore, Sugar and James [2003] describe an approach to automatically estimating a
good number of clusters, which may provide a further automatism in future work.

Labeling clusters of correlating classes For each cluster passing the threshold test, a
representative class has to be identified, which subsumes the contained classes within
the cluster. For this reason, the co-occurrence counters in MCOOC are transformed into
conditional probabilities in a matrix MCOPR:

105

6 Preprocessing feature descriptions from text and RDF graphs

0

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.599

1.799

1.999

2.199

2.400

2.600

2.800

3.000

3.200

3.400

3.600

3.800

4.048

(a)

0

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.599

1.799

1.999

2.199

2.400

2.600

2.800

3.000

3.200

3.400

3.600

3.800

4.048

(b)

Figure 6.2: (a) Clustering correlating classes along an y-axis of distance values.
(b) Regression of distance values by increasing count of clusters.

Definition 6.3 (Conditional probability matrix)

Based on co-occurrences within the transitive closure of classes associated to instances,
the following conditional probabilities can be computed expressing how likely an instance
of class ci is also classified with cj .

MCOPR(i, j) = P (Ci|Cj) =
|Ci

⋂
Cj |

|Cj |

The conditional probabilities P (ci ∈ C|cj ∈ C) denote how likely an instance of type cj
is also of type ci. Hence, if cj is subclass of ci, it can be assumed that P (ci|cj) > P (cj |ci).
Consequently, the upper right triangle of MCOPR contains greater values than the lower
left triangle. The interpretation of values in the upper right triangle (i > j) allows to
infer for all MCOPR(i, j) > 0 that ci is a super class of cj . The lower left triangle (i < j)
denotes a taxonomic distance between ci as being a super class of cj . The higher the
value is, the smaller is the distance. The conditional probability matrix MCOPR can be
interpreted as adjacency matrix (see Section 5.4.6) that represents the transitive closure
of a hierarchy as directed graph with weighted edges. Example 6.6 presents an extreme
variant of MCOPR in which the upper right triangle contains values either of zero or of
one.

106

6.3 Clustering correlating classes in RDF graphs

Example 6.6 (Conditional probability matrix MCOPR.)

Conditional probability matrix MCOPR, derived from data of Example 6.4. P (ci|cj)
denote how likely an instance of type cj is also of type ci.

MCOPR =



A B C D E F G

A 1.0 1.0 1.0 1.0 1.0 1.0 1.0

B 0.3 1.0 0.0 1.0 1.0 0.0 0.0

C 0.3 0.0 1.0 0.0 0.0 1.0 1.0

D 0.1 0.3 0.0 1.0 0.0 0.0 0.0

E 0.1 0.3 0.0 0.0 1.0 0.0 0.0

F 0.1 0.0 0.3 0.0 0.0 1.0 0.0

G 0.1 0.0 0.3 0.0 0.0 0.0 1.0



The calculation of a cluster’s representative is based on building two sums of condi-
tional probabilities of:

• ci ∈ C for each pair of P (ci|cj) called ancestors anc and

• cj ∈ C for each pair of P (cj |ci) called distances dist.

Both sums are then divided by the number of clusters |Ccluster| in order to assure
values between zero and one:

Definition 6.4 (Ancestor ratios in taxonomies)

Related to the upper right triangle of MCOPR, the following sum aggregates probabilities
of ci being a super class.

anc(ci ∈ C) =

∑
j∈MCOPR

P (ci ∈ C|cj ∈ Ccluster)

|Ccluster|

Definition 6.5 (Distance ratios in taxonomies)

Related to the lower left triangle of MCOPR, the following sum aggregates the taxonomic
distance between ci and the remainder classes.

dist(ci ∈ C) =

∑
j∈MCOPR

P (cj ∈ C|ci ∈ Ccluster)

|Ccluster|

107

6 Preprocessing feature descriptions from text and RDF graphs

Algorithm 6.2 (Labeling clusters)

Input: A set of classes C; a clustering of these classes; ci, which determines the set of
classes in the RDF graph; cj , which determines the set of classes in the cluster.

Output: The representative class for each cluster of correlating classes.

1. For each ci ∈MCOPR calculate its ancestor values anc(ci).

2. For each ci ∈MCOPR calculate its distance values dist(ci).

3. Return the class that possesses the highest product value between dist and anc is
taken as label. (ci|maxci{dist(ci)× anc(ci)})

6.3.2 Principle Component Analysis

As alternative to hierarchical clustering, the PCA, which is described in Section 5.4.5,
is applied to the correlation matrix MCOR. Again, the goal is to transform class rep-
resentations i in MCOR into a lower dimensional space nr < n. Depending on a given
proportion 0.0 < t < 1.0, the dimensional reduction of a PCA returns a matrix MRED,
which consists of a reduced number nr < n of columns.

Example 6.7 (PCA-reduced matrix MRED)

The PCA-reduced matrix MRED is derived from data of Example 6.4.

MPCA
RED =



CLUSTER1 CLUSTER2 CLUSTER3

A 5.394 0.000 0.000

B 0.763 −2.344 0.000

C 0.763 2.344 0.000

D −1.73 −0.858 -0.62

E −1.73 −0.858 0.62

F −1.73 0.858 −0.34

G −1.73 0.858 0.34



For each row, the index 0 ≤ j < nr of the maximum column value determines the
cluster the class in row i is assigned to. Within each cluster j, the class i with the
maximum value M i,j

RED is selected as label of the cluster. In Figure 6.7, the PCA was
set to reduce the count of columns to three. The maximum column values of each row,
which are marked as bold, can be used to cluster each instance.

108

6.4 RDF graph statistics

6.4 RDF graph statistics

A statistical graph analysis allows recognizing recurring patterns of knowledge about
instances in the RDF graph that may (if utilized) foster IE. Such an analysis com-
prises, for example, the recognition of statistical patterns in the distribution of datatype
properties as well as object properties.

6.4.1 Usage statistics of datatype properties

In RDF, datatype properties describe literal-valued identifiers, names, or other kind
of attributes of instances. For utilizing such literal values to, e.g., for enhancing the
recognition of entities in text, it is necessary to know which datatype properties are
more suitable than others are.

In general, for fostering IE by applying datatype properties of an RDF graph, the
effective application value of each datatype property depends on:

1. A high coverage of instances of allowed classes (with respect to the properties’
signature definitions) that assign values to these datatype properties.

2. A low amount of ambiguity, resulting from the number of instances that share the
same datatype property values.

3. The frequent use of especially these datatype property values in text (document
frequency).

A statistical graph analysis allows the computation of coverage and ambiguity. Sec-
tion 6.5 will illustrate methods for computing the document frequency by using additional
knowledge from text corpora.

Coverage In terms of IE, a relevant datatype property assigns literal values to a high
coverage of instances of a certain class (e.g., most persons in DBpedia possess foaf:name
values).

Definition 6.6 (Coverage)

For a given class t, the coverage of a datatype property p is introduced and defined as
the count of instances s of t that possess p as predicate in RDF triples of the RDF graph
G, divided by the overall number of instances of t in G:

coverage(p, t,G) =
|{s|∀s ∈ t ∧ ∃(s, p, o) ∈ G}|

|t|
(6.1)

109

6 Preprocessing feature descriptions from text and RDF graphs

Ambiguity In addition to high coverage, values of extraction-relevant datatype prop-
erties possess minimal ambiguities. In consequence, it is desirable to select only those
datatype properties that possess literal values, which in average refer to merely a single
instance.

Definition 6.7 (Ambiguity)

The lexical ambiguity of a literal l in an RDF graph G is introduced as the distinct
number of subjects s in RDF triples that possess l as object.

lexical ambiguity(l, G) = |{s|∃(s, p, l) ∈ G}| (6.2)

Subsequently, the average ambiguity of a datatype property p is determined by the
mean value of lexical ambiguities of literal values l in existing RDF triples (s, p, l).

ambiguity(p,G) =

∑∃(s,p,l)∈G
l lexical ambiguity(l, G)

|{l|∃(s, p, l) ∈ G}|
(6.3)

An analysis of datatype properties of the RDF graph of DBpedia revealed that on
average rdfs:label and foaf:name were rated best by coverage and ambiguity (see
Section 6.9.3).

In order to compute coverage and ambiguity ratios, the relational database schema
presented in Section 6.2 was extended. The SQL view in Listing 6.2 creates an overview
on the count of instances per class that exists within an RDF graph.

Query 6.2 (Histogram of count of instances per class)

−− Creates view on how many in s t ance s per c l a s s e x i s t .
CREATE VIEW hi s togram types AS

SELECT r . ob j e c t AS type , count (DISTINCT r . s ub j e c t) AS count
FROM r e l a t i o n s r WHERE (r . p r ed i c a t e IN (

SELECT R. index FROM i nd ex r e s ou r c e s R
WHERE R. u r i = ’ rd f : type ’))

GROUP BY r . ob j e c t ;

In Query 6.3, the SQL view creates an overview of the count of instances that share
literal values within an RDF graph.

110

6.4 RDF graph statistics

Query 6.3 (Histogram about the count of distinct subjects per literal value)

−− Creates a view on how many in s t ance s a s s i gn equa l l i t e r a l v a l u e s .
CREATE VIEW h i s t o g r am l i t e r a l s AS

SELECT S . ob j e c t AS l i t e r a l , count (DISTINCT S . sub j e c t) AS count
FROM symbols S GROUP BY S . ob j e c t

Finally, the SQL Query 6.4 uses the histogram on literals to calculate ambiguity values
for each datatype property.

Query 6.4 (Calculating ambiguity values)

−− A view , which computes ambigui ty va l u e s f o r each da ta type proper ty .
CREATE VIEW AMBIGUITY SYMBOLS AS

SELECT S . p r ed i c a t e as property , avg (HL. count) as ambiguity
FROM symbols S , h i s t o g r am l i t e r a l s HL
WHERE (HL. l i t e r a l = S . ob j e c t)
GROUP BY symbols . p r ed i c a t e

These three views are necessary to formulate the following SQL query, which calculates
for each datatype property and class the degree of coverage and ambiguity.

Query 6.5 (Computation of coverage and ambiguity)

−− S e l e c t query , which re tu rns coverage and ambigui ty va l u e s
−− f o r each da ta type proper ty .
SELECT A. property ,C. coverage ,A. ambiguity FROM (

SELECT S . p r ed i c a t e AS property ,
(count (DISTINCT S . sub j e c t)/avg (HT. count)) AS coverage

FROM r e l a t i o n s R, symbols S , h i s togram types HT
WHERE (HT. type = R. ob j e c t AND

S . sub j e c t = R. sub j e c t AND R. ob j e c t = <ID o f c l a s s>)
GROUP BY S . p r ed i c a t e) C, AMBIGUITY SYMBOLS A

WHERE (A. property = C. property)

An evaluation of these ratios is described in Section 6.9.3.

6.4.2 Estimating cardinalities

The cardinalities of datatype and object properties can be divided into four categories:

1 : 1 A property with a 1 : 1 cardinality associates subject and object only once. Any
kind of unique identifiers such as tax IDs, social security numbers, or ISBN numbers
may be examples for this kind of property.

111

6 Preprocessing feature descriptions from text and RDF graphs

1:m Objects must only be referred to once by a subject when using such properties.
In mathematics, this cardinality is referred to as injective function. In OWL it
is defined as inverse functional property. An example is the modeling of email
addresses of abstract agents in the FOAF vocabulary.

n:1 Instances may possess properties with this cardinality only once. In mathematics,
this cardinality is referred to as surjective function. OWL defines it as functional
property. For example, in western culture the spouse relationship, and in general,
father and mother relationships are defined as functional.

n:m Any subject may be related with any object by using properties of this cardinality.
The friendship relation is an example for this type of cardinality.

For each datatype property, Query 6.6 calculates cardinalities of domain values.

Query 6.6 (Calculating domain cardinalities)

−− A view , which c a l c u l a t e s the c a r d i n a l i t i e s o f domain va l u e s
−− f o r a l l da ta type p r o p e r t i e s .
CREATE VIEW SUBJECT CARD SYMBOLS AS

SELECT H. pred i cate , count (dist inct H. sub j e c t) ,
sum(H.C) , sum(H.C)/count (dist inct H. sub j e c t)

FROM (SELECT sub ject , p red i ca te , count (∗) AS C FROM symbols
GROUP BY subject , p r ed i c a t e) AS H

GROUP BY H. p r ed i c a t e

For each datatype property, Query 6.7 calculates cardinalities of range values.

Query 6.7 (Calculating range cardinalities)

−− A view , which c a l c u l a t e s the c a r d i n a l i t i e s o f range va l u e s
−− f o r a l l da ta type p r o p e r t i e s .
CREATE VIEW OBJECT CARD SYMBOLS AS

SELECT H. pred i cate , count (dist inct H. ob j e c t) ,
sum(H.C) , sum(H.C)/count (dist inct H. ob j e c t)

FROM (SELECT object , p red i ca te , count (∗) AS C FROM symbols
GROUP BY object , p r ed i c a t e) AS H

GROUP BY H. p r ed i c a t e

By replacing table symbols with table relations, the upper two views calculate
cardinalities of object properties. Knowledge about cardinalities will be used in the
prediction of unknown relations between recognized instances (see Section 7.8).

112

6.4 RDF graph statistics

6.4.3 Estimating characteristic relations between classes

The recognition of relationships between entities in text can be fostered by incorporating
the relational knowledge from RDF graphs. In RDF, object properties represent rela-
tionships between instances. Here, respective signatures define valid classes of instances.
Characteristic relationships between instances of classes A and B can be computed by
analyzing the distribution of used object properties between A and B.

Figure 6.8 illustrates an example, in which object properties of 50 instances of type
Person are rendered as directed graph.

Example 6.8 (Relations of persons.)

Object relations of a sample of 50 instantiated persons.

Person

Company WorkPlace

works (30) author (10)

knows (10)

lives (20) born (30)

A model for representing graph-based relationships is a probabilistic transition ma-
trix. In Figure 6.9, the absolute edge counts of the graph presented in Figure 6.8 are
normalized by dividing each edge count with the overall aggregation of edge counts of
outgoing edges of person. This results in a probabilistic transition graph, which can be
represented as probabilistic adjacency matrix as it was already described in Section 5.4.6.

Example 6.9 (Outgoing transitions graph starting from persons)

This Markov chain is derived from Example 6.8.

Person

Company WorkPlace

works (0.3) author (0.1)

knows (0.1)

lives (0.2) born (0.3)

When combining transition probabilities of characteristic relationships of each class
(or cluster) of an RDF graph, the resulting transition matrix (also referred to as Markov
chain) can be used as base for predicting relationships between instances. See Section 7.8
for more details about the application of Markov chains in fact prediction. Algorithm 6.3
describes how to learn a Markov chain from object properties of sampled instances.

113

6 Preprocessing feature descriptions from text and RDF graphs

Algorithm 6.3 (Learning a Markov chain from object properties)

def markovChain (SAMPLE SIZE = 100) :
MARKOVCHAIN = {}
CLASS COUNT = {}
for c in getClassesFromRDFGraph () :

i n s t an c eL i s t = getSampleInstances (c , SAMPLESIZE)
for i n s t ance in i n s t a n c eL i s t :

for pred i ca te , ob j e c t in ge tOb j e c tPrope r t i e s (i n s t ance) :
CLASS COUNT[c] += 1
for type in ge tC l a s s e s (ob j e c t) :

MARKOVCHAIN[(c , p , type)] += 1
for (c , p , type) in MARKOVCHAIN:

MARKOVCHAIN[(c , p , type)] /= CLASS COUNT[c]
return MARKOVCHAIN

6.5 Text corpus statistics

In general, the focus of this work is set on fostering IE by utilizing knowledge from
RDF graphs. The use of statistical models derived from text corpus data is part of the
state-of-the-art in IE. In the following investigation on proper nouns, a combination
between text corpus statistics and RDF graph statistics is introduced. The investigation
on proper nouns in RDF graphs (see Section 6.6) involves investigating the occurrence
of literals in a text corpus. To start with, this analysis comprises the well-approved
statistics on term and document frequencies:

6.5.1 Term and document frequencies

Manning et al. [2008] describe term frequency as assigning to each term in a document
a weight for that term, which depends on the number of occurrences of the term in
the document. In Section 7.6, term frequencies are used within relevance analyses of
recognized entities.

Definition 6.8 (Term frequency)

Term frequency describes the number of times n a term t occurs in document d
divided by the sum of all terms in document |d|.

tft,d =
nt,d
|d|

(6.4)

The document frequency of a term is defined to be the number of documents in the
collection that contain the term:

114

6.6 Mining datatype properties for proper names

Definition 6.9 (Document frequency)

Document frequency of a term t describes the number n of documentsD that contains
the term t divided by the overall number of documents |D|

dft,D =
nt,D
|D|

(6.5)

The combination of term frequency with the inverse document frequency produces a
composite weight for each term in each document:

Definition 6.10 (tf-idf)

tf-idf combines term frequency (tf) and document frequency (df) by multiplying tf and
the logarithmic inverse of df. The logarithm is applied to smooth resulting values. It is
increased by one to avoid a division by null:

tf-idft,d,D = tft,d × log(
|D|

nt,D + 1
) (6.6)

6.5.2 Combining text corpus with RDF graph statistics

Combining the usage of term statistics in a document corpus and statistics in RDF
graphs allows analyzing which datatype property values also occur as tokens in text.
Here, the following metric about datatype properties describe how frequently contained
values occur in text.

Definition 6.11 (Datatype property-based document frequency)

For given documents d in a corpus C, the document frequency of a property p is intro-
duced as the count of those d ∈ C which contain literal object values l of p in an RDF
graph G, divided by the overall count of documents in C.

df(p, C) =
|{d ∈ C|∃l ∈ d ∧ ∃(s, p, l) ∈ G}|

|C|
(6.7)

6.6 Mining datatype properties for proper names

Datatype properties assign literal values to instances. In general, RDF graphs possess
various datatype properties that describe different facets of concepts they refer to. How-
ever, not all of these properties contain the kind of literal values that can be determined

115

6 Preprocessing feature descriptions from text and RDF graphs

as being proper names. For example, values of prices, weights, and heights are not suit-
able for recognition of entities like books in the Amazon Book store. As many books
share identical values of these properties, the recognition would result in large lists of
possible books that possess at least one of these property values. Therefore, entity recog-
nition requires proper names to guarantee a minimal ambiguity. The goal of this task
is to mine datatype properties for those representing proper names. Here, Peirce [1976]
provided a pragmatic definition on the nature of proper names:

Definition 6.12 (Proper names)

[Pietarinen, 2010, quoting Peirce] A proper name, when one meets with it for the
first time, is existentially connected with some percept or other equivalent individual
knowledge of the individual it names. It is then, and then only, a genuine Index. The
next time one meets with it, one regards it as an Icon of that Index.

This definition refers back to Peirce’s theory of signs in which an index is a sign that
denotes its object by virtue of an existential connection that it has with its object. Peirce
considered any designation to be an index, for example, a pronoun, a proper name, or
a label on a diagram, actually directing or compelling the mind’s attention toward the
object just as a reagent does.2 The nature of proper names does not assign any additional
descriptions to the object they refer to (c.f.[Pietarinen, 2010]). This corresponds with
the quotation by John Stuart Mill, which was introduced Chapter 5.

Following Peirce’s convention of names, Semantic Web ontologies define datatype prop-
erties as links between instances and literal values. The RDF vocabulary provides the
most general property for a name as rdfs:label which is defined as owl:Annotation-
Property. Values of a owl:AnnotationProperty only serve pure annotation purposes
without any intended formal implications. Popular vocabularies model naming proper-
ties such as foaf:name or dc:title either as sub-property of rdfs:label or by deter-
mining these properties to be of type owl:AnnotationProperty.

For avoiding ambiguities while resolving entity references, the combination of coverage,
ambiguity, and inverse document frequency assigns higher ratings to properties that are
determined to contain good proper names:

Definition 6.13 (Proper Name Rating)

The proper name rating is introduced as follows:

proper name rating(p, t, C) =
coverage(p, t)

ambiguity(p)
∗ idf(p, C)

2As described in http://mywikibiz.com/index.php?title=Charles_Sanders_Peirce&oldid=125195#

Types_of_signs; 3. June, 2011

116

http://mywikibiz.com/index.php?title=Charles_Sanders_Peirce&oldid=125195#Types_of_signs
http://mywikibiz.com/index.php?title=Charles_Sanders_Peirce&oldid=125195#Types_of_signs

6.7 Aligning datatype properties with regular expressions

6.7 Aligning datatype properties with regular expressions

In contrast to dictionary-based representations, regular expressions provide methods
for describing the general syntax of a family of literal values such as dates, addresses,
intervals, or prices. The regular expressions in Example 6.10 describe email addresses
and dates.

Example 6.10 (Regular expressions)

Regular expressions in Python describing the syntax of email addresses and dates.

• emai l = re . compi le (” [a−zA−Z0−9\.]+@[a−zA−Z0−9\ .]+\ . [a−zA−Z]+”)

• date = re . compi le (” ([1−9]+[0−9]+)\−([1−9]?[0−9]+)\−([1−9]?[0−9]+)”)

Based on such a syntax description, the RDF graph can be queried for datatype
property values that match with these descriptions. Queries 6.8, 6.9, 6.10 and show
how the relational database schema facilitates the creation of an histogram of datatype
properties which aggregates values that match with a given regular expression.

Query 6.8 (Schema extension)

−− A database view , which c r ea t e s a his togram on how many
−− d i s t i n c t l i t e r a l v a l u e s e x i s t per da ta type proper ty .

CREATE VIEW histogram symbols AS
SELECT pred i ca te , count (DISTINCT ob j e c t)
FROM symbols
GROUP BY pr ed i c a t e ;

After dividing each histogram value with the cardinality of the related datatype prop-
erty, datatype properties with a ratio above 0.9 are considered as relevant in terms of a
given regular expression.

Query 6.9 (Matching regular expressions with datatype property values)

−− A t a b l e t h a t ho l d s in format ion about p r o p e r t i e s wi th va l u e s
−− t h a t match wi th a r e gu l a r expre s s i on .
CREATE TABLE l i t e r a l s r e g e x d i s t r i b u t i o n (

regex varchar (100) , −− the r e gu l a r e xp re s s i on
property int , −− the da ta type proper ty
r a t i o f l oat) ; −− the r a t i o o f matching va l u e s

117

6 Preprocessing feature descriptions from text and RDF graphs

Query 6.10 (Matching regular expressions with datatype property values)

−− Popula tes t h i s t a b l e wi th the amount o f matches
−− between va l u e s o f a da ta type proper ty and a r e gu l a r
−− exp re s s i on . A t h r e s h o l d t = 0.9 as sure s t ha t on ly those
−− p r o p e r t i e s wi th h igh amount o f matches popu la t e the t a b l e .
INSERT INTO l i t e r a l s r e g e x d i s t r i b u t i o n VALUES (

SELECT H.P, H.C∗1 .0 / count FROM (
SELECT pr ed i c a t e AS P, count (DISTINCT ob j e c t) AS C

FROM i n d e x l i t e r a l s , symbols
WHERE l i t e r a l ˜ ’ regex ’ AND index = symbols . ob j e c t
GROUP BY pr ed i c a t e) AS H, histogram symbols

WHERE H.P = pred i c a t e AND H.C∗1 .0 / count > 0 .9)

6.8 Automatically labeling a text corpus with classes

For classifying proper nouns in text with classes from the RDF graph, it is necessary
to create training data on top of which statistical distributions can be created. These
statistics provide a sufficient statistical understanding for training a classifier.

Based on the clustering of correlating classes and parts of the processing steps, classes
of recognized semantic entities are used as labels for the originating sequences of words,
respectively. The resulting labeled text corpus can be used either as training or vali-
dation data. This requires the following list of processing tasks of the Semantic Entity
Recognition process, which will be further investigated in the next chapter:

1. Filtering text for proper names (see Section 7.2)

2. Spotting text for datatype property values (see Section 7.3)

3. Linking named entities to formal instances (see Section 7.4)

4. Resolving ambiguous semantic entities (see Section 7.5)

6.9 Experiments and evaluations

The following sections present results of experiments that were performed to confirm the
value of the presented pre-processing approaches.

6.9.1 Datasets

Most experiments were settled on RDF data provided by DBpedia3 and text data from
Reuters News Corpus. These datasets provide a large amount of data and cover a wide

3More specifically, the experiments were performed on DBpedia data of version 3.51

118

6.9 Experiments and evaluations

range of topics. Hence, the experimental results generated on these datasets contained
most meaningful insights.

DBpedia DBpedia is an open source knowledge base. It provides an RDF graph about
knowledge extracted from the Wikipedia [Bizer et al., 2009b] in regular cycles. Part
of DBpedia’s RDF graph is the DBpedia ontology, which classifies instances within the
graph along a taxonomy of about 274 classes. It models several hundreds of datatype
and object properties about these classes. Concrete reasons for using DBpedia data in
these experiments are:

• DBpedia provides massive amount of RDF data. It consists of 14 933 856 distinct
URI references, 8 019 745 instances, 9 363 625 distinct literal values, 142 559
573 RDF triples of object properties, and 13 741 397 RDF triples of datatype
properties.

• DBpedia is extracted automatically from tabular-like info boxes of the Wikipedia.
Hence, it contains huge set of errors. Although this fact bears several imple-
mentation problems, it ensures in general, that the developed pre-processing and
extraction methods had to cope with these errors. It can be assumed that data
from other real environments also contains a huge set of similar errors.

• RDF data from DBpedia is linked to natural language text in Wikipedia. This
facilitates the generation of language models as done in Section 6.8.

• The domain of concern of DBpedia covers an open world scenario, which allows
its interpretation even for non-experts.

• Underlying the ontology, DBpedia provides of a large amount of instances, which
cover each class of the taxonomy. This allows the computation of significant statis-
tics.

• DBpedia reused datatype and object properties from arbitrary Semantic Web vo-
cabularies such as FOAF, Dublin Core, and GEO (see Section 1.5). This supports
a realistic applicability of presented approaches, as these vocabularies are of most
popular use in the Semantic Web across a variety of domains.

Reuters News Corpus Reuters is a global news agency. The Reuters Corpus, Volume
1 is a corpus of Reuters News stories for use in research and development of natural
language-processing, information-retrieval or machine learning systems.4

In this work, experiments on text data were mainly conducted on Reuters News stories.
The concrete reasons for using the Reuters Corpus are:

4http://trec.nist.gov/data/reuters/reuters.html

119

http://trec.nist.gov/data/reuters/reuters.html

6 Preprocessing feature descriptions from text and RDF graphs

Figure 6.3: Colored extract of a correlation matrix of co-occurring classes in DBpedia.
Degrees of blue represent positive and degrees of red negative correlations.

• News stories from Reuters cover a wide range of topics, including science, politics,
sports, or pop gossip.

• The corpus consists of a large number of documents.

• Entity types like locations, persons, and organizations occur frequently in text.

• Entities of these types also occur in the DBpedia dataset. Table 7.7 lists concrete
numbers of correlating types of entities and instances.

• The ConLL2003 dataset [Tjong Kim Sang and De Meulder, 2003] labels text of
the Reuters corpus with the entity types person, place, organization, and miscel-
laneous.

6.9.2 Clustering classes in DBpedia

In this study, the 274 classes of DBpedia were clustered by analyzing co-occurring classes
in rdf:type statements. Therefore, for each class a sample of 20 instances was chosen
randomly. The transitive closure of classes (rdf:type statements) of these instances
was used to populate the co-occurrence matrix MCOOC . The correlation matrix in
Figure 6.3 was derived from such a sampled co-occurrence matrix. Figure 6.3 illustrates
a colored part of the complete correlation matrix. Matrix cells are colored by degree
of correlation values between minus one and one. Degrees of blue represent positive
correlations. Degrees of red represent negative correlations. It can be observed that
the matrix consists of rectangles of correlating regions of blue values. These correlating
regions may be subsumed by using clustering approaches.

120

6.9 Experiments and evaluations

As described in Section 6.3, PCA (see Section 5.4.5) and hierarchical clustering (see
Section 5.4.3) were applied to cluster correlating classes. In order to perform a quan-
titative rating of the quality of clusters, the metrics taxonomic precision (TP) and
taxonomic recall (TR), which were coined by Dellschaft and Staab [2008], were ap-
plied. The intention of applying these metrics to evaluate the computed clusters is to
compare the topology of computed clusters and their representative classes with the
originating topology of the underlying taxonomy.

Definition 6.14 (Global taxonomic precision and recall)

Global definition of precision (TP) and recall (TR) between two taxonomies:

TP (OC , OR) :=
1

|CC |
∑
c∈CC

tp(c,OC , OR)

TR(OC , OR) :=
1

|CC |
∑
c∈CC

tp(c,OC , OR)

The global definition of precision and recall between two taxonomies relies on strategies
that estimate local precision and recall values in terms of a single concept.

Definition 6.15 (Local taxonomic precision and recall)

Local taxonomic precision (tp) and recall (tr) between a concept in two taxonomies:

tp(c,OC , OR) :=
|ce(c,OC)ce(c,OR)|
|ce(c,OC)|

tr(c,OC , OR) :=
|ce(c,OC)ce(c,OR)|
|ce(c,OR)|

According to Dellschaft and Staab [2008], the term ce represents a characteristic en-
vironment of a concept within a taxonomy, which can be defined as follows:

Definition 6.16 (Characteristic environment)

Characteristic environment (ce) of a concept, i.e., all its sub and super concepts:

ce(c,O) := {ci|ci ∈ CO ∧ (Ci ≤ c ∨ c ≤ ci)}

The distribution of taxonomic precision values, which is presented in Figure 6.4 shows
that independent from the amount of calculated clusters the hierarchical clustering pro-
duced clusters of higher precision scores than the results of the PCA. This means, the
topology of clusters computed by the hierarchical clustering algorithm possesses a higher
similarity to the originating taxonomy of DBpedia than the clusters computed by the

121

6 Preprocessing feature descriptions from text and RDF graphs

PCA. In both cases, the taxonomic recall and the harmonic mean (F-measure) between
recall and precision decrease monotonously when the amount of clusters decreases. In
contrast to taxonomic recall ratios, the ratios of taxonomic precision oscillate. By ig-
noring extreme cluster results with high or low amount of clusters, the remaining local
optima are 32 clusters in case of hierarchical clustering and 23 clusters in case of PCA.
Figures 6.5 and 6.6 illustrates two rendered PCA and hierarchical clustering results,
which were rated best according to the local optima of taxonomic precision values in
Figure 6.4.

1 2 3 4 5 6 7 9 10 13 15 19 21 23 25 26 27 28 29 31 32 33 35 36

0.5

0.6

0.7

0.8

0.9

1

Hierarchical Clustering PCA

count of clusters

T
ax

on
om

ic
 P

re
ci

si
on

Figure 6.4: Taxonomic precision ratios of PCA and hierarchical clusterings.

It can be observed that the PCA computed clustering, which is rated best and is ren-
dered in Figure 6.5, subsumed a heterogeneous (in terms of the originating taxonomy)
set of classes (i.e., Scientist, TennisLeague, Language, etc.) as SiteOfSpecialScientificIn-
terest5. In contrast, the clusters computed by the hierarchical clustering (see Figure 6.6)
contain homogeneous (in terms of the originating taxonomy) sets of classes. Each class
representing a cluster is also a super-class of a cluster’s contained classes in the origi-
nating taxonomy. The best rated hierarchical clustering separated the taxonomy into a
higher count of clusters than the PCA did. In addition, the average cluster size differs
less than compared to the PCA-computed clustering.

In terms of complexity, the computation and labeling of clusters based on principle

5In order to increase readability, the prefix dp-ont was dismissed within the rendering of Figures 6.5
and 6.6.

122

6.9 Experiments and evaluations

Figure 6.5: PCA generated clustering of DBpedia classes.

123

6 Preprocessing feature descriptions from text and RDF graphs

Figure 6.6: Hierarchical clustering based generated clustering of DBpedia classes.

124

6.9 Experiments and evaluations

components is easy to implement. The comparison of clusters, which were calculated
by hierarchical clustering and PCA, reveals that the hierarchical clustering produces
clusters of higher quality than the PCA.

The presented approaches assume a materialized transitive closure of rdf:type state-
ments within the RDF graph. In terms of the conditional probability matrix MCOPR,
this assumption assures values of either zero or one within the upper left triangle rep-
resenting ancestors. If this assumption fails for an RDF graph, the selection of repre-
sentatives depends on the existing distribution of rdf:type relations between instances
and classes within each cluster. In extreme cases, in which no transitivity of rdf:type

statements is materialized, the described approach is unable to cluster any classes of the
RDF graph. In such a case, the correlation matrix is a diagonal matrix, in which values
of one only occur on the diagonal where i = j.

The idea underlying the Semantic Web encourages mixing hierarchies from various
vocabularies. Within such mashups and the transitive closure of classifications, the
described clustering approach returns a meaningful summarization of classes. In terms
of the DBpedia, for example, the classes dbp-ont:Person and foaf:Person are clustered
equally by the hierarchical clustering.

6.9.3 Proper name mining in DBpedia

Instances within the DBpedia are described by using around 500 different datatype
properties. An analysis was conducted to describe the underlying distribution of each
datatype property. The goal is to decide which datatype property is suitable to be
used within an entity recognition task. Based on data from Reuters News corpus, Fig-
ure 6.7 illustrates histograms about the distributions of ambiguity, coverage, document
frequency, and proper name ratings. The ordering of each histogram is descending in
terms of frequency values. The analysis of these histograms in Figure 6.7 reveals that
each rating follows a power-law distribution. Hence, the upper left part of each his-
togram indicates datatype properties of proper name values. Only to a few datatype
properties possess combined proper name ratings near 1.0.

The following matrix in Table 6.1 lists correlation coefficients that describe the linear
dependency between ambiguity, coverage, and idf. It can be observed that no linear
correlations between these ratios exist on the DBpedia dataset. Hence, the factor com-
bination of ambiguity, coverage, and idf does not deform average distributions and
therefore preserves the underlying frequencies.

By using proper noun ratings, Table 6.2 lists top k datatype properties for places,
works, persons, and companies. The two most clear and commonly used datatype prop-
erties are rdfs:label and foaf:name.

125

6 Preprocessing feature descriptions from text and RDF graphs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

datatype property

co
ve

ra
ge

(a)Coverage

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

datatype property

am
bi

gu
it

y

(b)Ambiguity

0

2

4

6

8

10

12

14

datatype property

in
ve

rs
e

do
cu

m
en

t
fr

eq
ue

nc
y

(c)Inverse Document Frequency

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

datatype property

p
ro

p
er

 n
am

e
ra

ti
ng

(d)Proper name rating

Figure 6.7: Histograms of ambiguity, coverage, IDF, and proper name ratings.

ambiguity coverage idf

ambiguity 1.0 0.02 0.05

coverage 0.02 1.0 -0.01

idf 0.05 -0.01 1.0

Table 6.1: Correlation matrix about ambiguity, coverage, and idf.

The resulting insights of this study are that the datatype properties rdfs:label and
foaf:name are good candidates for being used by a NER. In addition, it was a bit
surprising that the person naming properties of the FOAF vocabulary were rated near
zero (foaf:nick, foaf:familyname, etc.).

126

6.9 Experiments and evaluations

(a)Markov chain between DBpedia classes.

(b)Markov chain starting from dbp-ont:Building.

Figure 6.8: Markov chains on object properties.

127

6 Preprocessing feature descriptions from text and RDF graphs

type datatype property coverage ambiguity idf rating

dbp-ont:Place rdfs:label 1.00 1.22 0.96 0.79

foaf:name 0.86 6.66 0.96 0.12

geo:long 0.65 16.32 2.00 0.08

geo:lat 0.65 21.93 2.00 0.06

dbp-ont:postalCode 0.18 15.23 2.18 0.03

dbp-ont:Work rdfs:label 0.77 1.22 0.96 0.61

dbp-ont:review 0.14 1.42 3.00 0.30

foaf:name 0.99 6.66 0.96 0.14

dbp-ont:releaseDate 0.35 37.68 1.41 0.01

dbp-ont:aSide 0.00 3.83 6.00 0.01

dbp-ont:bSide 0.03 8.79 1.60 0.01

dbp-ont:Person rdfs:label 0.99 1.22 0.96 0.78

foaf:name 0.89 6.66 0.96 0.13

dbp-ont:birthDate 0.73 13.53 1.41 0.08

dbp-ont:birthName 0.03 4.36 12.00 0.08

dbp-ont:deathDate 0.22 17.10 1.41 0.02

dbp-ont:Company rdfs:label 1.00 1.22 0.96 0.79

foaf:name 0.96 6.66 0.96 0.14

dbp-ont:slogan 0.11 12.66 12.00 0.11

dbp-ont:revenue 0.18 87.35 8.00 0.02

dbp-ont:fate 0.05 63.08 12.00 0.01

Table 6.2: Proper name ratings for common classes in DBpedia.

6.9.4 Learning a Markov chain from DBpedia

In order to extract knowledge about proper relationships between classes in RDF graphs,
an experiment was conducted that transformed object properties of a uniform sample of
100 instances of each class of the DBpedia into a Markov chain representation. Table 6.3
illustrates an extract of the resulted Markov chain. When assuming a subject of type
dbp-ont:Building, the table lists the probabilities that this subject possesses an object
property as transition to a target object of a certain class.

Figure 6.8 illustrates two graphical representations of the resulting Markov chain. In
Figure 6.8a, a complete overview of relationships between classes is rendered as graph.
Here, the width of edges represents the degree of probability. Figure 6.8b highlights
outgoing and incoming relationships of class dbp-ont:Building. Experiments on the

128

6.9 Experiments and evaluations

transition target probability

dbp-ont:architect dbp-ont:Thing 0.03

dbp-ont:Person 0.03

dbp-ont:locatedInArea dbp-ont:Thing 0.03

dbp-ont:Place 0.02

dbp-ont:PopulatedPlace 0.01

geo: Feature 0.003

dbp-ont:location dbp-ont:Thing 0.22

dbp-ont:Place 0.17

dbp-ont:PopulatedPlace 0.11

geo: Feature 0.02

dbp-ont:operator dbp-ont:Thing 0.03

dbp-ont:owner dbp-ont:Thing 0.09

dbp-ont:Place 0.04

dbp-ont:PopulatedPlace 0.03

dbp-ont:Company 0.02

geo: Feature 0.01

dbp-ont:owningOrganisation dbp-ont:Thing 0.08

dbp-ont:Place 0.04

dbp-ont:PopulatedPlace 0.03

dbp-ont:Company 0.02

geo: Feature 0.01

sum 1.00

Table 6.3: Outgoing transitions by object properties of dbp-ont:Building.

DBpedia dataset show that computing Markov chains is easy.

6.9.5 Matching regular expressions with DBpedia literals

In order to review the effectiveness of learning to align regular expressions with datatype
properties, three regular expressions were matched against literal values of the DBpedia.
It has to be considered that the DBpedia may contain incorrect datatype property values.
Hence, only those datatype properties whose values match with coverage above 90% were
taken into account. The decision of setting the threshold to 90% was based on a rough
estimate on experimental results.

129

6 Preprocessing feature descriptions from text and RDF graphs

Date expression (e.g., 1981− 02− 11) In terms of the DBpedia, the evaluation of this
regular expression resulted in 49 different datatype properties.

(19 |20)\d {2} − (0 [1 −9] |1 [012] | [1 −9]) − (0 [1 −9] | [1 −9] | [1 2] [0 −9] |3 [01])

The table below lists five example datatype properties that contain a date syntax.

datatype property ratio

dbp-ont:closed 1.0

dbp-ont:season 1.0

dbp-ont:introductionDate 1.0

dbp-ont:rebuildingDate 0.98

dbp-ont:demolitionDate 0.96

The remaining mismatches show the existence of errors of incorrectly formatted
date values in DBpedia.

Floating point number expression (e.g., −34.03453) The evaluation of the following
regular expression resulted in 124 datatype properties.

[−]?[0−9]+\ . [0−9]+

The table below lists five example datatype properties that contain a floating
number syntax.

datatype property ratio

dbp-ont:width 1.0

dbp-ont:areaWater 1.0

dbp-ont:floorArea 1.0

dbp-ont:maximumElevation 1.0

dbp-ont:salary 1.0

2d point expression (e.g., 49.484447 7.735939) Only values of a single datatype property
matched with the following regular expression.

[−]?[0−9]+\ . [0−9]+ [−]?[0−9]+\ . [0−9]+

The table below contains a single datatype properties that contain a syntax rep-
resenting a two dimensional point.

datatype property ratio

http://www.georss.org/georss/point 1.0

130

http://www.georss.org/georss/point

6.10 Summary and conclusion

Finally, it can be concluded that for a given regular expression especially in RDF
graphs like DBpedia the match of possibly hundreds of datatype properties involves the
selection of relevant properties by mechanisms like SPARQL queries as it is going to be
described in Chapter 8.

6.9.6 Labeling the ConLL 2003 Corpus

The automatic labeling of corpus data was performed by using proper names of instance
from DBpedia and by annotating these to recognized references of semantic entities
in the Reuters News corpus. The quantitative quality rating of this automatically pro-
duced training data was performed by comparing results of two classifiers, the first being
trained on the ConLL labeling of Reuters corpus, the second being trained on the auto-
matically generated training data. Because results of these classifiers are also influenced
by the selection of features, Section 7.7 first explains the effectiveness of different feature
settings, before evaluation results are presented in Section 7.9.7.

6.10 Summary and conclusion

Motivated by the Hypothesis H.1, this chapter described pre-processing methods on
RDF graphs.

6.10.1 Summary

The presented pre-processors allow the extraction and selection of various kinds of feature
models from RDF graphs and text corpora. Subsequently, these models are provided to
the information extractors, which will be described in Chapter 7.

• Section 6.2 illustrated a relational database schema specialized on representing
RDF graphs specifically for IE-purpose.

• The clustering approaches presented in Section 6.3 successfully achieved to reduce
the amount of classes within RDF graphs to a manageable and distinct set of
clusters that can be used in succeeding analyzes or IE-methods .

• In Sections 6.4, 6.5, and 6.6 the calculation of statistical models was explained.
The presented approaches built upon graph and text corpora statistics. Finally,
the application of these models to information extractors fosters the recognition of
semantic entities in natural text (see the Contribution C.1).

• In Section 6.7, a method was presented that automatically learns which datatype
properties contain values that match with passed regular expressions. This ap-
proach extends the Semantic Entity Recognition process.

131

6 Preprocessing feature descriptions from text and RDF graphs

• Section 6.8 presented an approach for automatically creating corpus data for train-
ing an entity classification model.

• Finally, Section 6.9 listed a series of experiments, which were conducted for inves-
tigating the effective use of presented pre-processors.

6.10.2 Conclusion

The presented rehashing techniques of RDF graphs and contained information resulted
in contributing the following solutions listed in Section 1.3:

Contribution 1 covers the programmatic incorporation of RDF knowledge into the IE
system. This goal was reached by developing the relational database model. The
consolidation of contained information was performed in term of clustering corre-
lating classes and creating meaningful statistics on distributions of datatype and
object properties, occurrences in text corpora and the nature of proper names.

Contribution 2 relates to the Semantic Entity Recognition process. The implementation
of contained information extractors, which utilize information from RDF graphs,
is based on the performed pre-processing techniques resulting in statistical models.

Contribution 5 corresponds with the automatically labeling of training data described
in Section 6.8.

Contribution 6 covers domain independence, which was achieved by the presented pre-
processing approaches.

132

7 Processing the Semantic Entity
Recognition

The good of a book lies in its being read. A book
is made up of signs that speak of other signs,
which in their turn speak of things. Without an
eye to read them, a book contains signs that
produce no concepts; therefore it is dump.

(Umberto Eco, 1983, The Name of the Rose)

Eco describes the challenge of reading as recognizing signs
in text and resolving these signs with already known or yet
unknown concepts. In this work, the challenge of reading is
transferred to information extractors utilizing concepts from
RDF graphs. Hence, an information extractor is an algorithm,
in terms of Eco a machine reader, which resolves signs in text
by utilizing the formal conceptualization of an RDF graph.

This chapter is related to the research Hypothesis H.1. First,
Section 7.1 introduces information extractors and summarizes
the presented approaches that utilize RDF graphs. In Sec-
tion 7.2, the recognition of proper names is illustrated. Sec-
tion 7.3 specifies the recognition of RDF literals in text. The
recognition of instances is explained in Section 7.4. The res-
olution of ambiguously recognized instances is illustrated in
Section 7.5. Section 7.6 presents relevance ratings to recog-
nized entities. The classification of noun phrases with classes
from RDF graphs is described in Section 7.7. Section 7.8
shows approaches for predicting object properties between
recognized instances. With respect to Hypothesis H.3, Sec-
tion 7.9 illustrates experiments performed on multiple test
corpora that prove the quality and adaptability of the pre-
sented approaches.

133

7 Processing the Semantic Entity Recognition

document

RDF graph

pre-processing

processing

extraction
result

feature models

corpus
clusteringlearning

miningestimating rating

aligning

literals classes properties

entities relevance ambiguities

query

Figure 7.1: Information extractors within the Semantic Entity Recognition process.

7.1 Information Extractors

Information extractors are algorithms that implement specific IE tasks. Subject of this
research is extending information extractors with following information sources:

• The originating natural language text document,

• Preliminary extraction results from preceding information extractors,

• Knowledge from pre-processed feature models (see previous Chapter 6),

• Specifying SPARQL queries that filter information (see Section 8.5).

In consequence of the RDF-based IE architecture, the output of the series of informa-
tion extractors is serialized in RDF format. Figure 7.1 is part of the holistic Semantic
Entity Recognition process, which is illustrated in Figure 5.7. The presented process-
ing approaches depend on the pre-processing layer, which is illustrated in Figure 6.1.
Finite-state transducers provide a framework for implementing information extractors
(see Section 2.2.2). Consequently, the Semantic Entity Recognition process, which is
outlined in Section 5.3, is designed as finite-state cascade consisting of a series of in-
formation extractors. On the basis of the Hypothesis H.1, each information extractor

134

7.2 Filtering text for proper names

utilizes RDF knowledge from the underlying RDF graph in form of the provided feature
models. In the remainder of this chapter, the following information extractors will be
presented (see also Section 5.3):

1. Filtering text for proper names (see Section 7.2)

2. Spotting text for datatype property values (see Section 7.3)

3. Linking named entities to formal instances (see Section 7.4)

4. Resolving ambiguous semantic entities (see Section 7.5)

5. Rating relevance of semantic entities in text (see Section 7.6)

6. Classifying semantic entities (see Section 7.7)

7. Predicting object properties between semantic entities (see Section 7.8)

In Section 7.9, these information extractors are evaluated, on behalf of five docu-
ment corpora and three RDF graphs, for verifying the demanded adaptability of the
Hypothesis H.3.

7.2 Filtering text for proper names

Natural language text documents may contain large amounts of words. RDF graphs
may contain millions of names describing instances. Hence, the recognition of RDF
literals in text as named entities requires the application of filtering mechanisms. These
filters should remove irrelevant and noisy words and therefore reduce the overall amount
of text segments in string comparisons. Section 5.1 describes NER depending on the
recognition of proper names. Hence, the underlying role of nouns is used for creating
an initial description of proper names. Figure 7.2 illustrates the general idea of filtering
text segments by recognizing noun phrases.

The following text-based features were used to describe phrasal structures in text:

1. The current word,

2. The POS tag of that word (see Section 2.2.2),

3. The cases of its letters (upper, lower, capitalized), and finally

4. A window function that selects a context of previous and succeeding three words
with corresponding POS tags.

The example below provides an impression on how the featured data looks like that
is passed to the classifier.

135

7 Processing the Semantic Entity Recognition

text
filtered

text
B-NP I-NP

B-NP

B-NP

I-NP

B-NP

B-NP

I-NP

I-NP

B-NP

noun phrase

filter

Figure 7.2: Filtering plain text for noun phrases.

Example 7.1 (Noun phrase chunking)

Assuming the sentence below:

“Barrack Obama was born in Honolulu.”

Features used to describe the occurrence of the word “Obama” in text are:

word content: Obama
POS tag: \NN
case of word: upper
word window: -1:word:Barrack; +1:word:was; +2:word:born; +3:word:in
POS window: -1:pos:\NN; +1:pos:\vrb; +2:pos:\vrb; +3:pos:\in

On the basis of text chunking techniques and a CRF (see Section 5.4.8), a proper
name filter was trained to recognize noun phrases (see Section 2.2.2). It was decided to
choose a CRF-based model, because in the ConLL 2000 text chunking challenge1 the
use of CRFs achieved best results. The implementation of the Mallet library is used
[McCallum, 2002]. Resulting noun phrase chunkers are trained on the English ConLL
2000 and the German Tiger Brants et al. [2002] corpus.

The proper names that were recognized in the text are further processed by succeeding
information extractors:

• When spotting a text for datatype property values describing proper names (see
Section 7.3), filtering noun phrases reduces the amount of string comparisons.

1Please refer to text chunking results listed at http://www.clips.ua.ac.be/conll2000/chunking/

136

http://www.clips.ua.ac.be/conll2000/chunking/

7.3 Spotting text for datatype property values

rdfs:label

foaf:name

dc:title

di
ct
io
na
ry

di
ct
io
na
ry

dictionary

filtered
text

Figure 7.3: Like dictionaries in linguistics, datatype properties subsume literal values.

• The classification of semantic entities (see Section 7.7) is implemented as classifying
noun phrase segments in text with RDFS classes or datatype properties. Here, the
goal is to classify noun phrases that do not match with yet known literal values in
the RDF graph.

The experiments described in Section 7.9.3 confirm the filtering effects of noun phrases
in text. Some aspects of this work on filtering text for proper names were already
published in [Adrian and Schwarz, 2011].

7.3 Spotting text for datatype property values

The recognition of datatype property values in text involves a comparison between a
text (or a list of filtered noun phrases) and a list of literal values from the RDF graph.
As described in Section 2.2.2 the current state-of-the-art in NER is determined by the
use of dictionaries. Figure 7.3 illustrates the similarity between literal values of datatype
properties and dictionaries. The substitution of dictionaries with datatype properties
adapts the NER to the nature of names and concepts occurring in the underlying RDF
graph (see hypotheses H.1 and H.3).

RDF graphs such as the DBpedia2 may consist of hundreds of millions of literal values.
This large number requires the application of scalable string comparison mechanisms.
Approaches querying the database for matches on each noun phrase are impractical,
because of the large amount of resulting string comparisons. On the opposite, hashing
all literal values in memory is estimated as too memory consuming [Mendes et al., 2011].

2The query select count(?label) where {?s ?p ?label. FILTER (isLiteral(?label))} counts
105 019 913 literal values in DBpedia 3.6. Linked geo data counts 111 083 681 literal values.

137

7 Processing the Semantic Entity Recognition

rdfs:labeltext phrases
B-NP I-NP

B-NP

B-NP

I-NP

B-NP

B-NP

I-NP

I-NP

B-NP

suffixes hashes hashes

candidatesmatches

prefix match

hash match

text chunking suffix array prefix hashing prefix hashing

Figure 7.4: Algorithm for matching text with datatype property values.

Hence, Algorithm 7.1 is implemented for spotting RDF literals in text [Adrian and
Schwarz, 2011]. Figure 7.4 illustrates the data flow.

Algorithm 7.1 (Matching text with datatype property values)

Input: A text and an RDF graph, which is represented as described in Section 6.2, a pa-
rameter lengthprefix, and datatype properties, whose values should be recognized.

Output: A list of named entities that match with literal values of the RDF graph.

1. Extract noun phrases from text by using a text chunker.

2. Represent these noun phrases in a suffix array (see Section 5.4.1).

3. For each entry of the suffix array, extract lexical prefixes of length lengthprefix.

4. By using the hash function described in the Definition 6.2 in Section 6.2, compute
numerical hash values for each prefix.

5. By executing the Query 7.1, request an ordered list of candidate literals with
matching hashed prefix values from the list of datatype properties.

6. Compare the list of candidate literals with the suffix array via prefix matches. If
the character-based comparison of an RDF literal with a prefix inside the suffix
array is successful, the respective text segment is labeled as positive match.

138

7.3 Spotting text for datatype property values

Query 7.1 (Request datatype property values by hash matches.)

−− For an input l i s t o f da ta type p r o p e r t i e s and hash va lues , t h i s query
−− r e turns an ordered l i s t o f matching l i t e r a l v a l u e s .
SELECT DISTINCT L . l i t e r a l , L . index , S . p r ed i c a t e
FROM i n d e x l i t e r a l s L , symbols S
WHERE (S . p r ed i c a t e IN (

−− < l i s t o f da ta type p rope r t i e s>
) AND S . ob j e c t = L . index AND L . p r e f i x IN (

−− < l i s t o f hashed p r e f i x va lues>
)) ORDER BY L . l i t e r a l

Algorithm 7.1 spots RDF literals efficiently in a complexity of O(|suffix array| +
|literals|). It depends on stepping through both sorted lists. Based on the use of cursors3

provided by modern relational databases, the local consumption of memory is reduced
to a minimum. Example 7.2 illustrates the algorithm’s workflow:

Example 7.2 (Matching text with datatype property values.)

“Quotations in the Frankfurt Stock Exchange reacted sensitively on the im-
prudent statement by Philipp Rösler.”

• Based on this sentence the noun phrase filtered suffix array, extracted prefixes and
corresponding hash values are:

Suffix Prefix of suffix Hashed prefix

Frankfurt . . . Fra 70901

Frankfurt Stock Exchange . . . Fra 70901

Philipp Rösler . . . Phi 80209

Quotation . . . Quo 81579

Stock Exchange . . . Sto 83470

• Requesting the database (by Query 7.1) with these hash values, might result in
a list of literals such as: “Frankfurt”, “FraPort”, “Philipp Hoschka”, “Philipp
Rösler”, “Quotation”, “Stock”, “Stock Exchange”.

• The prefix match between this result list and the suffix array results in these
remaining entities: “Fankfurt”, “Philipp Rösler”, “Quotation”, “Stock Exchange”.

3Cursors point to remote iterators on the database server side. See http://www.postgresql.org/docs/
8.3/interactive/plpgsql-cursors.html

139

http://www.postgresql.org/docs/8.3/interactive/plpgsql-cursors.html
http://www.postgresql.org/docs/8.3/interactive/plpgsql-cursors.html

7 Processing the Semantic Entity Recognition

The selection of datatype properties, whose values to use for comparisons, can be trig-
gered by using datatype properties with high proper name ratings (see Section 6.6). The
matching strategy of the Algorithm 7.1 returns matching literal values from the RDF
graph that are substrings of a given entry in the suffix array. A longest match strategy
is applied in order to avoid the recognition of irrelevant or ambiguous instances whose
datatype property values only match with substrings of the identified entity.

In the Example 7.3, the constraint to the longest match reduces the resulting list
of matches to a single entry One World Trade Center. The cardinalities written in
parentheses denote the count of distinct instances within the DBpedia that possess
exactly these literal values. In the succeeding recognition of instances, restricting named
entities to longest matches reduces the amount of ambiguously recognized instances (see
Section 7.4).

Example 7.3 (Longest match based comparison)

The Algorithm 7.1 returns the following list of matching RDF literals from the DBpedia
graph for the given noun phrase:

“One World Trade Center”

One World Trade Center (3)
World Trade Center (34)
World Trade (4)
World (272)
Trade Center (1)
Trade (15)
Trad (6)
Center (931)
Cent (13)

In order to avoid collapsing homonyms in a text, the longest match strategy is im-
plemented on the absolute character position of a named entity reference in the text.
Hence, if within a text the smaller phrase “World Trade Center” occurs outside the
longer phrase “One World Trade Center” the smaller phrase “World Trade Center” is
not considered as being part of “One World Trade Center”. The experiments described
in Section 7.9.3 verify the quality of the presented approach.

7.4 Linking named entities to formal instances

After recognizing the literal values of a datatype property in text, the Semantic Entity
Recognition involves the recognition of instances from the RDF graph. These instances
possess the recognized datatype property and value. Figure 7.5 illustrates the recognition

140

7.4 Linking named entities to formal instances

rdfs:label

foaf:name

filtered
textdbp:Paris_Hilton

Paris

Paris

dbp:Paris_(city)

dbp:Paris_(mythodology)

Notre DameNotre Dame Cathedraldbp:Notre_Dame_de_Paris Cathedral

Figure 7.5: Linking named entities in text to instances in RDF graphs.

of a specific datatype property value in text. It results in creating a semantic link
referring to the set of recognized instances.

Based on the representation of RDF graphs in the relational database schema (please
refer to Section 6.2), for a given datatype property and value, the retrieval of instances
can be implemented by querying the database with the Query 7.2. It returns a list of
RDF triples consisting of subject, predicate, and object values. The predicate and object
values correspond with the passed datatype properties and literal values. Returned
subjects denote URI reference to instances that possess these property value pairs.

Query 7.2 (Requesting subjects of recognized property-value pairs)

−− For a g iven l i s t o f proper ty va lue pa irs , t h i s query
−− r e turns a l i s t o f matching in s t ance s .

SELECT DISTINCT S . subject , S . pred i cate , S . ob j e c t
FROM symbols S
WHERE (

(S . pred i ca te , S . ob j e c t) IN (< l i s t o f property value pa i r s >)
)

Example 7.4 illustrates the linking of named entities to formal instances.

141

7 Processing the Semantic Entity Recognition

Example 7.4 (Linking named entities to formal instances)

Assuming the following sentence:

“Notre Dame de Paris also known as Notre Dame Cathedral, is a Gothic,
Catholic cathedral.”

The entity reference “Paris” can be resolved with several instances from DBpedia that
possess “Paris” as literal value of the datatype property rdfs:label, i.e.:

• dbp:Paris (mythology), a legendary figure of the Trojan War,

• dbp:Paris (city), the capital of France,

• dbp:Paris Hilton, a female celebrity.

This example shows that linking instances to named entities by matching property
values may return multiple ambiguous instance references. Although it may be obvious
for human readers, which of the listed instances was in the originating intention of this
sentence, a machine reader needs additional formal background knowledge to perform
any kind of instance resolutions. In Section 7.5, specialized algorithms for resolving these
ambiguities will be presented.

Nevertheless, the presented approach for resolving instances is taken as a baseline in
the evaluation in Section 7.9.4. The recognition of formal instances in text extends the
originating definition of IE and more specifically NER. Semantic links associate named
entities in the text with instances in the RDF graph. Hence, they extend the degree of
information of named entities and therefore refine these as semantic entities. Linking
additional information from RDF graphs to text segments confirms and supports the
claim of Hypothesis H.1.

7.5 Resolving ambiguous semantic entities

In RDF, more than a single instance may be described by using the same datatype
property value. For example, first and last names of persons are likely to be shared by
multiple instances. In addition, polysemous words carry multiple meanings dependent
on the context of use. For example, the word “crane” may be resolved to be either a
name of a bird species or the name of a type of construction equipment.

In Computational Linguistics, this problem is covered by the Word-sense Disambigua-
tion. Compared to other Word-sense Disambiguation approaches (see Section 2.2.2)
utilizing external knowledge sources, this work investigates utilizing RDF graphs for
resolving ambiguous entities.

142

7.5 Resolving ambiguous semantic entities

rdfs:label

foaf:name

filtered
text

Paris

Paris

dbp:Paris_(mythodology)

Notre Dame Cathedral

dbp:Notre_Dame_de_Paris

Notre Dame Cathedral

dbp:France dbp:Paris_(city)

dbp:Paris_Hilton

dbp-ont:locatedIn

dbp-ont:locatedIn

db
p-

on
t:l

oc
ate

dI
n

Figure 7.6: Relations between recognized instances indicate resolutions to ambiguities.

In consequence, when performing the Semantic Entity Recognition, ambiguities occur
in cases where a single entity in the text can be resolved with different instances from
the RDF graph. Figure 7.6 illustrates a scenario, in which the named entity “Paris”
can be resolved with different instances of an RDF graph. The goal is deciding which
instance from a set of ambiguously resolved instance candidates most likely refers to
the intended real world entity. The set of ambiguously resolved instance candidates is
defined as ambiguity group.

Definition 7.1 (Ambiguity group)

If a named entity in a text may be resolved with multiple instances from the RDF graph,
the association of the named entity with the set of instances is referred to as ambiguity
group.

The following example is derived from Figure 7.6. It illustrates the ambiguity group
consisting of a set of instances from DBpedia the entity “Paris” might refer to.

Example 7.5 (Ambiguity group)

“Paris”
←−−−−−−−−
rdfs:label


dbp:Paris (mythology)

dbp:Paris (city)

dbp:Paris Hilton

143

7 Processing the Semantic Entity Recognition

The presented approach exploits the existence of two different contexts to achieve
a disambiguation. On the one hand, the textual context is determined by an entity
reference and its surrounding co-occurring entity references in text. On the other hand,
the graph context is determined by the relationships between instances.

If the content of a text is covered by the domain of concern an RDF graph describes,
it is likely that two co-occurring entity references in text are associated with a formal
relationship between corresponding instances in the RDF graph. Example 7.6 illustrates
this hypothesis more concisely.

Example 7.6 (Resolving co-occurrences with formal relationships.)

Two named entities “Paris” and “Notre Dame Cathedral” occur in this sentence:

“Notre Dame de Paris also known as Notre Dame Cathedral, is a Gothic,
Catholic cathedral.”

Here, the semantic link of “Paris” might refer to either the tragic ancient Greek
hero dbp:Paris (mythodology), the capital of France dbp:Paris (city), or the fe-
male celebrity dbp:Paris Hilton. The RDF graph, which is illustrated in Figure 7.6,
comprises contextual background knowledge about the relationships between these in-
stances:

1. A direct relationship associates dbp:Paris (city) with dbp:Notre Dame de Paris.

2. Both instances also share an indirect relationship by co-referring to dbp:France.

For disambiguating instances, both kind of relationships indicate that the semantic
link of “Paris” should refer to dbp:Paris (city) in this graph-based context.

For a textual context, a respective graph context exists as being part of the RDF
graph. Kleb and Abecker [2010] assume that, for co-occurring entities in the text, it
is likely that RDF triples exist between them within the RDF graph. Hence, for each
instance within an ambiguity group, a resolver may select the instance possessing the
highest degree of connections to other co-occurring instances. The algorithm of Kleb
and Abecker [2010] applies a spreading activation on an underlying RDF graph to find a
minimal spanning tree (referred to as Steiner graph) that connects recognized instances.
The shortest path between all kind of recognized instances may be very long. Especially
paths between mistakenly recognized instances may populate the resulting Steiner graph
with large numbers of irrelevant instances. Hence, Algorithm 7.2 was developed. Ex-
tending Kleb and Abecker [2010], the Algorithm 7.2 intends to find a minimal spanning
tree between ambiguity groups instead of single instances. This reduces the size of the
minimal spanning tree. Here, the minimal spanning tree between ambiguity groups is
defined as neighborhood graph.

144

7.5 Resolving ambiguous semantic entities

Algorithm 7.2 (Linkage-based ambiguity resolution)

Input: An RDF graph GRDF with a contained subset of instances whose datatype prop-
erty values were recognized in a text.

Output: A list of resolved instances.

1. Create a neighborhood graph Gneighbors with nodes vnei that correspond with
instances ine ∈ GRDF , which are referred to by a recognized named entity ne.

2. For each ne compute an ambiguity group SETne ⊂ Gneighbors.

3. Sort all SETne by ascending size 1.0 ≤ n ≤ maxcard(SETne) .

4. By increasing 1.0 ≤ s ≤ n or until all SETne are connected in Gneighbors,

a) For each node vi ∈ {SETne|card(SETne) = s}, populate Gneighbors with
instances and object properties of the symmetric concise bound descrip-
tion (see Section 3.3) of vi ∈ GRDF .

5. For each vi ∈ SETne choose vnei with the highest connectivity ratio.

Based on a link analysis in RDF graphs, the following connectivity metrics are applied
to disambiguate ambiguity groups (see Section 5.4.6):

• The degree of a node (see Definition 5.15)

• The capacity of a node (see Definition 5.16)

• The hub score of a node (see Definition 5.17)

• The authority score of a node (see Definition 5.17)

• The PageRank score of a node (see Definition 5.18)

Each of the presented node metrics assigns ratings to nodes. In terms of processing
ambiguity group with the Algorithm 7.2, those node(s) reaching the maximum rating are
taken for resolving the ambiguity. After disambiguating the set of recognized semantic
entities, a rating referred to as decidedness denotes the remaining amount of ambiguity
of recognized semantic entities.

145

7 Processing the Semantic Entity Recognition

Definition 7.2 (Decidedness)

Let recognized semantic entities consisting of an instance and a matching literal value
be represented as tuple (instance, literal). Decidedness is defined as the ratio of
the number of recognized URI references sharing the same literal value:

decidedness(instance, literal) =
1

|(instance, literal)|

In Section 7.9.6, the presented node metrics are evaluated on their use for resolving
ambiguity groups. With respect to the Hypothesis H.1, the presented disambiguation ap-
proach verifies the potential of utilizing RDF graphs in IE. Based on linkage knowledge
from RDF graphs about instances, mathematical ratings could be applied for disam-
biguating instances. Disambiguation is determined as hard problem in Computational
Linguistics (see Section 2.2.2). Hence, utilizing the information from RDF graphs en-
hances IE approaches, which is claimed by the Hypothesis H.1.

7.6 Rating relevance of semantic entities in text

The Information Retrieval (IR) community refers to a document as relevant if it addresses
a stated information need [Manning et al., 2008]. This can be transferred to the IE
domain, in which a relevant instance relates to the current information need of a user.
If an instance from an RDF graph remains outside this information need it is concerned
as irrelevant. In general, two reasons can be revealed that lead to the recognition of
irrelevant entities:

Irrelevant entity references For an entity reference in text, a correct instance is resolved
from the RDF graph. However, the originating entity reference is not considered as
relevant in terms of the textual context. For example, footers of Wikipedia pages
mention the entity “Wikimedia Foundation, Inc.” referring to the Wikimedia
Foundation. Except for articles about Wikipedia and the Wikimedia Foundation
itself, these entity references may be considered as irrelevant in terms of the overall
topic of the actual article.

Instances resolved incorrectly Depending on the limited scope of content in used RDF
graphs, it may occur that ambiguous literals are resolved incorrectly, because the
RDF graph does not describe the correct instance. For example, the term “con-
tact” occurs frequently in Web pages as label of a link that refers to the author’s
homepage, email address, or contact form. When using RDF data about movies
from the DBpedia, the entity contact will likely be resolved as a feature of the
same name.

146

7.6 Rating relevance of semantic entities in text

dbp:Notre_Dame_de_Paris

dbp:Paris_(city)

Contact

Notre Dame Cathedral

Paris

Gothic

dbp:Contact_(movie)

dbp:Gothic
relevant

not relevant / wrong

Figure 7.7: Some recognized semantic entities are more relevant than others.

In terms of RDF based IE, this information need is stated by the RDF graph repre-
senting the domain of concern. The presented approach uses structural knowledge from
the RDF graph for rating the relevance of recognized instances in text documents. In the
IR domain, a possible implementation of relevance applies statistical term distributions
on the underlying document corpus. These metrics can also be applied for rating the
relevance of recognized instances by considering the originating entity references. Com-
bining the graph based and the document corpus based approaches seems promising for
implementing an effective rating of relevance of recognized semantic entities.

Resulting from a concrete experiment, this example illustrates

Example 7.7 (Recognized entities without relevance)

“About the BBC, BBC Help, Contact Us”

Evaluating the Semantic Entity Recognition by using a documents corpus and an RDF
graph from BBC music (see also Section 7.9.1) it could be revealed that in all documents
the word “contact” was recognized as being the datatype property value of an equally
named band. However, in the text, the word “contact” was part of the Web page header
and meant to label a hyperlink to the Web site provider’s email address. Hence, the
resolved entity reference to a band was incorrect. The entity “contact” was completely
irrelevant. More details on this study are published in [Adrian et al., 2010].

147

7 Processing the Semantic Entity Recognition

In IR relevance metrics assign relevance values to documents in the result list. This
enables search engines to post-process result lists with rankings and filtering operations.
Transferring this approach to Semantic Entity Recognition results in rating the relevan-
cies of recognized entities for ranking purpose.

In Sections 6.4 and 6.5, a couple of statistical coefficients are proposed to rate terms
and instances being parts of semantic entities. In addition, the position in the text of a
token is also taken into consideration as coefficient for rating relevancies.

Definition 7.3 (Position)

The position of a semantic entity in the text is determined by the index of first occurrence
in text.

post,d = min(i|d[i] = t)

In summary, the following ratings are considered as suitable for ranking relevance of
recognized semantic entities:

Text corpus-based ratings are computed by calculating statistics on word occurrences.

The entity’s position in text: The position of the first occurrence in the text.

The entity’s term frequency: The term frequency of the entity reference in the
text (see Section 6.8).

The entity’s inverse document frequency: The overall inverse document frequency
of the entity reference in the text corpus (see Section 6.9).

Graph-based metrics are computed by calculating statistics on node connectivities in
RDF graphs. In consequence, the same set of algorithms (HITS, PageRank, node
degree, node capacity) that was applied to disambiguate entities can be reused
here.

The degree of a node: The node degree of incoming or outgoing edges of the
entity referent in the RDF graph (see Definition 5.15).

The capacity of a node: The node’s capacity of incoming and outgoing edges of
the entity referent in the RDF graph (see Definition 5.16).

The node’s authority rating: Authority values of the entity referent in the RDF
graph based on the HITS algorithm (see Definition 5.17).

The node’s hub rating: Hub values of the entity referent in the RDF graph based
on the HITS algorithm (see Definition 5.17) .

The PageRank of a node: Pagerank values of the entity referent in the RDF
graph based on the identically named algorithm(see Definition 5.18) .

148

7.7 Classifying semantic entities

In Section 7.9.9, each of the presented rating is evaluated on its use for ranking recog-
nized entities. Similar to Section 7.5, information from the RDF graph extends corpus
based rating statistics for ranking recognized instances. In terms of the RDF graph,
the notion of relevance is defined by the connectivity of the respective instance to other
recognized instances in text. Again, the application of information from the RDF graph
supports IE approaches, which is stated in the Hypothesis H.1.

7.7 Classifying semantic entities

In Section 6.8 an approach is described, which labels a document corpus with classes
of recognized named entities. By using such a corpus as training data, a classifier is
trained for predicting the classifications of entities by using classes from the RDF graph.
In general, this classification goal corresponds with the traditional NER and classification
where a predefined simple classification scheme consisting of location, person, and orga-
nization is used (see Section 2.2.2). In contrast to the traditional use of dictionaries, the
proposed approach uses datatype properties from the RDF graph. In detail, a maximum
entropy classifier (see Section 5.4.7) is applied to automatically learn types of semantic
entities that share similar feature distributions. The following example illustrates the
idea of labeling and classifying entities in text.

Example 7.8 (Labeling and classifying entities in text)

dbp:Place dbp:Person dbp:Person

“’I love this girl from Sparta ’, Paris said to Hector.”

The following machine learning features were used to describe the occurrence of classes
in text. They are categorized in context describing features, which contain information
of an entity surrounding textual context, and content describing features, which contain
information about the entity itself.

Context describing features — textual references to entities are embedded within a
textual context of the surrounding sentence or list. Context describing features
expose commonalities of these contexts. Different entities of the same type or
literals of the same property may share these commonalities. Verbs, for example,
may be good discriminators for classifying subjects or objects in sentences, such
as “In 1981, Ben was born in Munich.”.

Word Windows — For a given word in a sentence, take the n words before and
after this word the sentence. (e.g., for classifying “Ben” with a window of
length 4, split “In 1981”, Ben, “was born in Munich.”)

Word n-grams — Create conjunctions of n neighboring words. (e.g., “was born
in Munich.” results in “was born in”, “born in Munich” 3-grams)

149

7 Processing the Semantic Entity Recognition

Neighboring known entities — For a word in sentence add neighboring known
semantic entities in this sentence. (e.g., for classifying “Ben”, substitute “Ben
was born in Munich” with “Ben was born in LOCATION”)

Syntactic patterns — Substitute words with matching patterns in syntax (e.g.,
substitute “In 1981, Ben ” with “In DATE, Ben”)

Content describing features — Literal values of entities of similar types or proper-
ties often share similar structural patterns in their content. Simple examples are
strongly structured properties such as addresses, dates, or numeric values. But
in some cultures even person names share similar characteristics as shown by the
following examples: O’Brian, McDonald, Iben Fasid, Obradovic, van Elst

Prefixes/Suffixes — Add the first or last n characters of a word as a new feature.

Syntactic patterns — Substitute words with matching patterns in syntax (e.g., it
costs 10.53 $ — it costs PRIZE),

Combining the labeling approach presented in Section 6.8 and the feature extraction
and classification approach presented here, enables the training of a maximum entropy
classifier, which predicts the classes of recognized named entities. The quality of pre-
dicted classifications is investigated in Section 7.9.7. With respect to the claimed Hy-
pothesis H. 1, the ability to use RDF graphs to create training data for an entity classifier
shows the potentials of RDF for IE. Regarding the demanded increase of adaptability
in the Hypothesis H. 3, the presented labeling and classification approaches are a great
step towards adapting existing IE systems to completely new domains.

7.8 Predicting object properties between semantic entities

A text spoken in natural language refers to multiple named entities. Between recognized
instances of these co-occurring entities, the existence of semantic associations can be
assumed. Simple natural language sentences like illustrated in Example 7.9 consist of:

• A subject denoting a named entity,

• A predicate in terms of a verb phrase, and finally

• An object, which is again denoting a named entity.

Here, the association between both entities is determined by the verb.

150

7.8 Predicting object properties between semantic entities

Example 7.9 (Facts)

The following sentence refers to two entities, namely the author of this document and
his favorite meal.

“Benjamin likes eating Bavarian veal sausage”

The sentence associates both entities by using a verb phrase, which determines sausages
to be a marked preference of Benjamin.

Sentences may contain syntax structures such as sequences, nestings, or negations.
Verbs may be substantiated or paraphrased by using the whole treasury of language.
This complicates the algorithmic extraction of facts. Buitelaar et al. [2005] stated that
most facts in text are implicit and remain “under the surface”. Many facts can only be
reasoned if background knowledge about an assumed common sense exists.

Natural language processing algorithms that automatically recognize and extract for-
mal facts have problems coping with these language complexities (see Section 2.2.2).
Therefore, the problem of fact extraction is far from being solved, yet. Oren et al.
[2007] proposed the use of intrinsic structural knowledge from RDF graphs for suggest-
ing predicates in terms of RDF triples. The intention of this work was recommending
RDF properties from used vocabularies in order to further describing instances. Al-
Rajebah and Al-Khalifa [2010] summarized existing approaches for extracting semantic
relationships from Wikipedia. They concluded that the presented relation extraction
approaches depend on either structured text input (e.g., tabular like infoboxes consist-
ing of predicate-object pairs) or apply formal grammars on sentences in the plain text of
each article. In this work, a hybrid approach is investigated for extracting facts between
recognized semantic entities. Here, the structures of an underlying RDF graph are used
for interpreting co-occurring entities in plain text. Two approaches were implemented
based on the following models:

Markov chains Computing Markov chains on object properties between classes of in-
stances was already described in Section 6.4.3. The idea underlying the use of Markov
chains is to use the most probable object properties between the classes of two respec-
tive recognized instances for predicting object properties between these. For example,
the Markov chain which was computed on the RDF graph from BBC music determines
the object property mo:memberOf to most likely exist between an instance of the class
mo:MusicArtist and an instance of the class mo:MusicGroup.

Similarity-based collaborative filtering This approach is inspired by similarity-based
recommender systems [Koren and Bell, 2011] . Recommenders provide customers with
recommended products. The recommendation of products is based on the existence of
similar customers and the products they bought in the past. Here, the recommender

151

7 Processing the Semantic Entity Recognition

approach is transferred to IE by recommending object properties between recognized
instances. Recognized instances in text can be referred to as customers. Predicate-object
pairs of RDF triples can be referred to as products. Hence, at first, this similarity based
collaborative filtering creates an instance/predicate-object matrix (formerly referred to
as customer-product matrix) from recognized instances and existing RDF triples.

Example 7.10 (Instance/Predicate-object matrix)

Assuming the instances referred to as Benjamin, Michael, Kaiserslautern, DFKI to be
recognized in a text and the following RDF triples to exist in the RDF graph (Namespace
prefixes are not used in this example in order to facilitate matching each property later
on with headers matrix columns):

Ben l i v e s I n Ka i s e r s l au t e rn ;
a Person ;
works DFKI ;
t op i c AI .

DFKI lo ca t ed Ka i s e r s l au t e rn ;
a Organ i sat ion ;
t op i c AI .

Ka i s e r s l au t e rn a Town .
Michael a Person .

The RDF triples result in the instance/predicate-object matrix in Figure 7.8:

a Person a Town a Org lives KL works DFKI located KL topic AI

Ben 1 0 0 1 1 0 1

DFKI 0 0 1 0 0 1 1

KL 0 1 0 0 0 0 0

Michael 1 0 0 0 0 0 0


Figure 7.8: Instance/predicate-object matrix of triples in Example 7.10.

Based on this instance/predicate-object matrix, the similarity between instances is
computed by using standard similarity measures such as cosine similarities (see Definition
5.3) or correlation coefficients values (see Definition 5.8 of Pearson’s product momentum
coefficient). Figure 7.9 lists example similarity matrices derived from the matrix in
Figure 7.8.

The matrix in Figure 7.9a shows that calculating simple cosine similarities between
instances results in positive similarities even if these instances possess a different type.
These similarities lead to a propagation of properties with strongly typed signatures to
invalid instances with invalid classes (see matrix in Figure 7.10a, where the organiza-
tion DFKI is recommended with rdf:type foaf:Person). Hence, the calculation of

152

7.8 Predicting object properties between semantic entities


Ben 1 0.3 0 0.5

DFKI 0.3 1 0 0

KL 0 0 1 0

Michael 0.5 0 0 1


(a)cosine


Ben 1 0 0 0.4

DFKI 0 1 0 0

KL 0 0 1 0

Michael 0.4 0 0 1


(b)positive pearson


Ben 1 0 0 0.5

DFKI 0 1 0 0

KL 0 0 1 0

Michael 0.5 0 0 1


(c)cosine for equal

classification

Figure 7.9: Similarity values for matrix in Figure 7.8.

similarity between instances should result positive values if both instances are classi-
fied similarly. In Table 7.9c results of an extended similarity calculation are presented,
which allows only positive similarities between equally classified instances. Table 7.9b
illustrates that positive or zero values of a correlation matrix also can be used as sim-
ilarities. Although the correlation matrix in this example does not contain similarities
between instances of different classes, this behavior does not hold for other datasets
if they contain object properties, which are used independently from the classes of in-
stances, frequently.

The Algorithm 7.3 illustrates the use of the instance/predicate-object matrix and
a derived similarity matrix for adding new predicate-object pairs to the originating
instance/predicate-object matrix.

Algorithm 7.3 (Recommend property-value pairs for instances)

Input: An instance/predicate-object matrix, and similarity matrix similarity.

Output: An entailed instance/predicate-object matrix.

def recommend (matrix , s i m i l a r i t y) :
for row in range (matrix . rows ()) :
for c o l in range (matrix . columns ()) :

va lue = matrix [row] [c o l]
i f value != 0 :
for row2 in range (matrix . rows ()) :

sim = s i m i l a r i t y [row] [row2]
value2 = matrix [row2] [c o l]
ev idence = sim ∗ value2
value += evidence

matrix [row] [c o l] = value
return matrix

153

7 Processing the Semantic Entity Recognition

As a result of Algorithm 7.3, Figure 7.10 lists entailed instance/predicate-object ma-
trixes derived from using different similary matrixes.

a Person a Town a Org lives KL works DFKI located KL topic AI

Ben 1 0 0.3 1 1 0.3 1

DFKI 0.3 0 1 0.3 0.3 1 1

KL 0 1 0 0 0 0 0

Michael 1 0 0 0.5 0.5 0 0.5


(a)cosine

a Person a Town a Org lives KL works DFKI located KL topic AI

Ben 1 0 0 1 1 0 1

DFKI 0 0 1 0 0 1 1

KL 0 1 0 0 0 0 0

Michael 1 0 0 0.4 0.4 0 0.4


(b)cosine for equal classification

a Person a Town a Org lives KL works DFKI located KL topic AI

Ben 1 0 0 1 1 0 1

DFKI 0 0 1 0 0 1 1

KL 0 1 0 0 0 0 0

Michael 1 0 0 0.5 0.5 0 0.5


(c)positive pearson

Figure 7.10: Predicted values for matrix in Figure 7.8.

The matrix illustrated in Figure 7.10a was calculated by using standard cosine sim-
ilarities. It can be observed that it assigns several invalid predicate-object values to
instances (i.e., second row representing DFKI). In contrast, the matrix in Figure 7.10b is
calculated by restricting positive similarities by asserting equal classifications. Here, the
matrix does not contain any recommendations that would violate signatures of object
properties. The use of positive or zero valued correlation coefficients is shown in Fig-
ure 7.10c. In this example, the use of correlation coefficients seems to be more robust
against invalid predicate-object values (i.e., second row representing DFKI).

The quality of recommended predicate object pairs is experimentally investigated in
Section 7.9.10. Unfortunately, the calculation of cosine and correlation based similarity
matrices is expensive in terms of CPU load. The reason is, that it requires at minimum
a complexity of O(n2), where n denotes the size of the matrix. Hence, in Section 7.9.10
besides Markov chain based approaches the evaluation of recommender-based predicate
object pairs could only be performed on the BBC music corpus. The BBC music corpus

154

7.9 Experiments

contains the smallest amount of object properties (see Section 7.9.1). Nevertheless,
the use of knowledge from RDF graphs for predicting object properties between two
recognized instances in text indicates the general advantage of utilizing RDF in IE as
claimed in Hypothesis H. 1.

7.9 Experiments

Up to this point, guidelines and algorithms are proposed for implementing information
extractors that utilize knowledge from RDF graphs. The remainder sections describe
results from performed experiment. Experiments evaluate the effectiveness and the
efficiency of the presented approaches. Hereby is each experimental setting designed
to provide an answer to a respective question. The following outline summarizes these
questions and provides links to describing sections:

1. Do noun phrase filtering, prefix hashing, and suffix arrays provide a scalable basis
for recognizing semantic entities? (see Section 7.9.3)

2. What is the baseline of naive semantic entities recognition? (see Section 7.9.4)

3. How does the proper noun rating of datatype properties support the recognition
of semantic entities? (Section 7.9.5)

4. Which of the graph-based disambiguation approaches produces best results? (see
Section 7.9.6)

5. Does automatically labeling corpus data allow training classifiers to predict classes
of named entities? (see Section 7.9.7)

6. Can a disambiguation be performed based on entity classifications? (see Sec-
tion 7.9.8)

7. Which relevance rating approach produces the best ranking of a list of recognized
semantic entities? (see Section 7.9.9)

8. Is it possible to predict new object properties by using existing knowledge about
object properties between recognized instances ? (see Section 7.9.10)

The experiments are performed based on labeled corpora, each corpus consisting of
a document collection and a gold standard describing the set of semantic entities each
document refers to. Each set of semantic entities is considered as reference, which has
to be extracted by the Semantic Entity Recognition. A comparison between recognition
results and gold standard references is implemented by matching the URI values of
respective instances. In summary, each experimental test run consists of:

155

7 Processing the Semantic Entity Recognition

1. An RDF graph describing the domain of concern;

2. A document collection relating this domain of concern; and finally

3. A list defining URIs, which have to be recognized within a respective document.

7.9.1 Test Corpora

The following labeled corpora were created and used in conducted experiments:

Wikinews stories manually labeled with references to DBpedia instances

Wikinews is a free-content news source Wiki.4 This corpus contains 99 small sized
English documents with an average count of 262 words. As part of this work, in 2011,
six pupils labeled each document manually with references to instances of the DBpedia.
On average, each document is labeled with 11.5 instances.

Chapters from Project Gutenberg books manually labeled with DBpedia instances

Project Gutenberg is a public effort to digitize and archive cultural works for encouraging
the creation and distribution of eBooks.5 The corpus consists of 13 larger sized English
documents with an average count of 7 968 words. In 2011, six pupils labeled each
document manually with references to instances of the DBpedia. On average, each
document is labeled with 17 instances.

Articles from Wikipedia automatically labeled with DBpedia instances

Wikipedia is a free, collaborative, and multilingual encyclopedia Wiki.6 The corpus
consists of 209 randomly chosen English articles with an average count of 606 words. In
2010, these documents were crawled. For each document, contained hyperlinks to other
Wiki articles were resolved with corresponding DBpedia instances. The basis of this
resolution is the existence of foaf:page properties in the DBpedia RDF graph linking
the instances to the originating Wikipedia article. Finally, the hyperlinks were labeled
with resolved instances. On average, each document is labeled with 18 instances.

Web pages from BBC music with existing formal RDF descriptions

BBC music is a Web portal about music artists hosted by the British Broadcasting
Corporation (BBC).7 The corpus consists of 12 464 small sized documents with an

4http://wikinews.org
5http://project-gutenberg.org
6http://wikipedia.org
7http://www.bbc.co.uk/music

156

http://wikinews.org
http://project-gutenberg.org
http://wikipedia.org
http://www.bbc.co.uk/music

7.9 Experiments

average word count of 444 words. For each document, BBC provides a formal RDF
description of contained instances including respective labels. These instances within
the RDF data are used as gold standard. Thereby, on average each document is labeled
with 8 instances.

RDF data from BBC music The RDF graph aggregated from the documents’ RDF
data consists of a total of 86 656 instances with assigned literals. A total of 104 120 dis-
tinct literals are to these instances by using 6 datatype properties. Most commonly used
datatype properties are foaf:name with a count of 36 384 triples and rdfs.label with a
count of 33 897 triples. Except links to the musicbrainz review portal anf rdf:type state-
ments, a total of 20 object properties are in use. The object properties mo:member of

and mo:member are frequently used to relate music artists with music groups. The class
hierarchy consists of 6 classes, 4 of them classify entities of the Music Ontology8. The
remainder classifies blank nodes as birth and death dates.

Web pages from BBC nature with existing formal RDF descriptions

BBC nature is a Web portal providing information about nature and wildlife hosted
by the British Broadcasting Corporation (BBC).9 The corpus consists of 1174 medium
sized documents with an average word count of 847 words. For each document, BBC
provides a formal RDF description of contained instances including respective labels.
These instances within the RDF data are used as gold standard. Thereby, on average
each document is labeled with 32.5 instances.

RDF data from BBC nature The RDF graph aggregated from the documents’ RDF
data consists of a total of 8 722 instances with assigned literals. 9 490 distinct literal val-
ues exist within the graph. Literal values are assigned to instances by using 17 different
datatype properties. Most commonly used properties are rdfs:label with 4 173 counts
and dc:title with 4 769 counts. Remaining datatype properties are defined within
the Wildlife Ontology vocabulary10. Except rdf:type, owl:sameAs, rdfs:seeAlso, 26
object properties are used to associate instance with each other. Again, the Wildlife
Ontology is used. The class hierarchy consists of 38 classes, which are mostly defined by
the Wildlife Ontology.

7.9.2 Evaluation metrics

In general, evaluation runs within the experiments result in a list of recognized instances
represented as list of URI values. By using the reference list of URI values from the

8http://purl.org/ontology/mo/
9http://www.bbc.co.uk/nature

10http://purl.org/ontology/wo/

157

http://purl.org/ontology/mo/
http://www.bbc.co.uk/nature
http://purl.org/ontology/wo/

7 Processing the Semantic Entity Recognition

relevant
instances

recognized
instances

relevant
recognized
instances

relevant
not recognized

instances

not relevant
recognized
instances

Figure 7.11: Sets of relevant and recognized instances.

gold standard of a respective corpus, extraction results can be rated according to well-
known metrics such as recall and precision. These metrics are coined and used by the
IR community Manning et al. [2008]. But also the IE community rates the quality of
extraction results by using these metrics.

Figure 7.11 illustrates the correlation between recognized instances and instances,
which are denoted as relevant by an underlying gold standard.

Based on the sets of relevant and recognized instances precision and recall can be
defined as follows:

Definition 7.4 (Precision)

Precision describes the amount of relevant instances within the set of retrieved instances.

precision =
|relevant recognized instances|
|recognized instances|

Definition 7.5 (Recall)

Recall describes the amount of relevant instances that could be recognized.

recall =
|relevant recognized instances|

|relevant instances|

158

7.9 Experiments

Definition 7.6 (F1-measure)

The harmonic F1-measure describes the harmonic mean between recall and precision.

F1 =
2 ∗ recall ∗ precision

recall + precision

When analyzing extracted results in ranked lists, the IR community applies the fol-
lowing average precision metric.

Definition 7.7 (Average precision)

Average precision is the average precision about relevant instances inside the retrieved
result list at rank r.

average precision(text) =

∑n
r=1 precision(ir) ∗ is relevant(ir)∑n

r=1 is relevant(ir)

The binary function is relevant returns 1 if the current statement stmtr on rank r is
relevant to the search.

is relevant(instancer) =

{
1 if instancer ∈ relevant instances,

0 else .

Definition 7.8 (Mean average precision)

Mean average precision averages the values of Average Precision over all text documents
of the text corpus used in the evaluation setting.

mean average precision(corpus) =

∑|corpus|
j=1 average precision(textj))

|corpus|

Within the following experiments, results are rated by using these metrics.

7.9.3 Accelerating the recognition of semantic entities

The goal of this experiment is to prove the effectivity and efficiency of the application of
noun phrase filtering, prefix hashing, and suffix arrays to recognizing semantic entities.
Utilizing large RDF graphs for recognizing semantic entities involves the matching of
millions of literal values in natural language text. For this reason, the noun phrase
filtering mechanism is proposed in Section 7.2. In order to show the potentials of filtering
text for noun phrases, Table 7.1 presents frequencies of noun phrases and other words in

159

7 Processing the Semantic Entity Recognition

documents. The counts were calculated based on 100 documents, each chosen randomly
from the English Wikipedia.

words noun phrases

text contains amounts of 75% 25%

text noun phrases

distinct words in 11% 89%

Table 7.1: Comparison of frequencies between noun phrases and other words in text.

It can be observed that only 25% of all the words of a text are determined as noun
phrases, but exactly these noun phrases contain 89% of the distinct words of a text.
Consequently, the filtering of noun phrases involves a reduction of 75% of recurring words
occurring in these documents. Hence, the application of noun phrase filtering reduces
the number of suffixes that have to be considered when building a suffix array. Still, the
distinct remainder of these words form 89% of all distinct words in these documents.
This ensures the conservation of a text’s nature.

The suffix array algorithm, which is proposed in Section 7.3, reduces the length of
prefixes by cutting them after a fixed count of characters. Based on all literals of the
DBpedia RDF graph, the histogram of literals and their respective length in Figure 7.12
shows that the cut after 100 characters does not result in missing a significant number
of literal values in subsequent string matching operations.

1 13 25 37 49 61 73 85 975 9 17 21 29 33 41 45 53 57 65 69 77 81 89 93
 1

 10

 100

 1 000

 10 000

 100 000

1 000 000

length of literal

co
un

t o
f l

ite
ra

ls

Figure 7.12: Histogram of length of literals in DBpedia.

In databases hash functions are commonly used for increasing the efficiency of com-
parisons in join operations. Hence, a hashing of literal values and suffix array entries is

160

7.9 Experiments

built on the prefix of each literal or (filtered) word in a document. Figure 7.13 presents
the number of results returned by the Query 7.2. The chart illustrates corresponding
numbers of computed hash values on a scale of increasing prefix lengths.

1 2 3 4 5 6 7 8 9 10
 1

 10

 100

 1 000

 10 000

 100 000

1 000 000

10 000 000

100 000 000

number of query results
number of hash values
number of query result per hash

prefix length

nu
m

be
r o

f v
al

u e
s

Figure 7.13: Count of query results in terms of prefix lengths.

It can be observed that the increase of prefix lengths involves an increase of hash values.
Conversely, it reduces the number of query results. The average number of query results
per hash value decreases but converges after a prefix length of four characters.

Table 7.2 lists response times of the Query 7.2 in terms of used string based or integer
based hash values. Independent from the length of the prefix, the use of integers as
hash values (which are computed by the hash function of the Definition 6.2) decreases
response times constantly to a degree of 19% of the time needed by a string based hash
function. This measurement was performed on a Laptop possessing a 1.8 Ghz Celeron
with 3GB memory.

Based on the integer-based hashing of prefixes, Figure 7.14 illustrates the response
times of the Query 7.2 and CPU times of a subsequent prefix comparison of query
results and suffix array entries. Due to the reduced amount of query results, the increase
of the prefix length involves a strong decrease of CPU time needed to compute the
prefix comparison. Conversely, the query response increases. The accumulated time of
the query response (computed remotely) and the comparison time (computed locally)
decreases slightly when increasing the prefix length.

In summary, the performed experiments confirm the effectivity and efficiency of noun
phrase filtering, prefix hashing with integer values, and suffix arrays to recognizing se-
mantic entities, even in large RDF graphs such as provided by the DBpedia. In terms
of prefix length, the best experiences are made by setting the length to four characters.

161

7 Processing the Semantic Entity Recognition

prefix length string hash integer hash saving

1 28s 5s 19%

2 80s 16s 19%

3 193s 37s 19%

4 252s 49s 19%

5 276s 54s 19%

6 286s 56s 19%

7 288s 56s 19%

8 283s 55s 19%

9 273s 53s 19%

10 259s 50s 19%5

Table 7.2: Response times of the Query 7.2 of string or integer based hash values.

7.9.4 Naive recognition of semantic entities

In general, a baseline approach is determined by the simplest uninformed implementa-
tion that solves the problem to at least some degree. Transferred to Semantic Entity
Recognition, the baseline for evaluating the quality of recognizing semantic entities is
determined by the implementation described in Section 7.4. Because the longest match
filtering does not utilize any kind of relational background knowledge from the RDF
graph, apart from known literals, it is defined as baseline implementation. Table 7.3
shows that on the Wikinews corpus the longest match filtering strategy slightly increased
precision ratios without influencing the recall.

matching strategy precision recall F1

use all matches 0.05 0.73 0.09

filter longest match 0.08 0.73 0.14

Table 7.3: Recognized rates of longest match and all matches strategies.

By using this naive baseline implementation, Table 7.4 illustrates evaluation results
for each of the applied test corpora.

It can be observed that baseline results are rated with values of high recall and low
precision. Table 7.4 indicates that the amount of instances within RDF data and the
size of documents have a negative influence on precision ratios.11 The reason for recall

11 This conclusion based on this data is of course only an estimate. It should be approved with more

162

7.9 Experiments

1 2 3 4 5 6 7 8 9 10
0

1

10

100

query response time with integer
hash
comparison time
cumulated time

prefix length

tim
e

in
 s

ec
on

d s

Figure 7.14: Processing times needed for querying and comparing literals.

corpus wordsavg RDF graph instances precision recall F1

wikinews 262 DBpedia 8 013 297 0.01 0.74 0.02

wikipedia 606 DBpedia 8 013 297 0.004 0.65 0.01

gutenberg 7968 DBpedia 8 013 297 0.004 0.66 0.01

BBC music 444 BBC music 86 656 0.04 0.92 0.08

BBC nature 847 BBC nature 8 722 0.17 0.91 0.29

Table 7.4: Instance recognition results.

values below 1.0 is the variety of modified syntactic representations of named entities
in natural language text. Generally, it is possible to implement comparison operators
between literal values and text segments more efficiently by using approaches such as
n-gram decomposition, edit distances, or stemmers. It was decided not to use such fuzzy
comparators within conducted experiments, as they would distort resulting ratings when
focusing on measuring the value of utilizing RDF data.

Despite the quality of results, the application of the baseline approach to recogniz-
ing semantic entities shows the simplicity and effectivity of utilizing RDF graphs (see
Hypothesis H.1).

7.9.5 Filtering entity recognition by datatype properties

In RDF graphs, instances of classes are described by a variety of datatype properties.
As described in Section 6.6 not all kind of datatype properties are suitable to be used as

details by experiments on more data. Unfortunately, labeled data rarely exists and labeling data is
very expensive. Hence, such a formal evaluation goes beyond the scope of this work.

163

7 Processing the Semantic Entity Recognition

a basis for recognizing entities in text. Figure 7.15 illustrates histograms of ambiguity
values of datatype properties in three RDF graphs. It can be seen that only the minority
of all datatype properties possesses suitable ambiguity values near 1.0. In case of the
DBpedia, some properties reach ambiguity ratios above 10 000.

1 10 100

(a)BBC music

1 10 100 1000

(b)BBC nature

 1 10 100 1 000 10 000 100 000

(c)DBpedia

Figure 7.15: Histograms of ambiguity ratios of datatype properties.

Using these datatype properties values in entity recognition algorithms results in a
high amount of recognized instance candidates whose literals match with single text
segments. This explains the low degree of precision of the presented baseline approach.

Hence, the ratings described in Section 6.6 (i.e., coverage, ambiguity document fre-
quency) were applied to filter out appropriate datatype properties. Table 7.5 presents the
top three ranked datatype properties for three RDF graphs. The ranking was calculated
by aggregating the rating values of each datatype properties for all existing classes.12

In terms of the DBpedia, it can be seen that the rating of rdfs:label is outstanding
compared to the remaining properties. In both BBC datasets, the first two datatype
properties possess similar ratings.

The three bar charts in Figure 7.16 illustrate the quality of extraction results when

12The aggregation of rating values was calculated by this query: SELECT property, sum(rating) FROM
proper noun rating GROUP BY property ORDER BY SUM(rating) DESC

164

7.9 Experiments

precision recall F-measure
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Top 1
Top 2
Top 3
baseline

(a)BBC music

precision recall F-measure
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Top 1
Top 2
Top 3
baseline

(b)BBC nature

precision recall F-measure
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

Top 1
Top 2
Top 3
baseline

(c)DBpedia

Figure 7.16: Histograms of ambiguity ratios of datatype properties.

165

7 Processing the Semantic Entity Recognition

DBpedia
∑

rating BBC music
∑

rating BBC nature
∑

rating

rdfs:label 23.16 ov:sortLabel 2.79 rdfs:label 6.35

foaf:name 3.5 foaf:name 2.39 dc:title 5.05

dbp-ont:review 1.1 dc:title 0.85 wo:speciesName 0.94

Table 7.5: Rankings of the top three datatype properties.

using either the top one, top two, or top tree datatype properties. These results were
generated by using the corpora from BBC music, BBC nature, and Wikinews. Results
by using the Wikipedia and Gutenberg corpus, which also depend on the DBpedia, look
similar than results produced by the Wikinews corpus. In all datasets, the baseline, i.e.,
a recognition by using all datatype properties, always returns worst results in terms of
F1-measure and precision. In terms of recall it can compete with the filtering approach.
In Figure 7.16a, it can be seen the restricted use of rdfs:label does not cover the whole
range of instances, which results in low precision and recall ratios. By adding dc:title,
recall ratios increase and exceed the baseline. Figure 7.16b illustrates a similar scenario
like before. In terms of the DBpedia in Figure 7.16c, it can be seen that an increase
of datatype properties decreases precision ratios. The reason for this are the excellent
rating values of the rdfs:label property as shown in Table 7.5.

This experiment approves the value of proper name ratings of used datatype properties
within an RDF graph. By using the best-rated datatype properties, a higher precision
of results can be recognized.

7.9.6 Graph-based disambiguation

In Section 7.5 a couple of graph-based algorithms were proposed to be used as a basis for
resolving ambiguously resolved instances. The intention of the conducted experiments
is to reveal, which of these algorithms performs best. This experimental settings are
based on the Wikinews, the BBC music, and the BBC nature corpora. The following
algorithms and parametric settings were evaluated:

• degree: The degree of a node.

• auth: The authority value of a node from the HITS algorithm.

• hub: The hub value of a node from the HITS algorithm.

• hits+: The sum of authority and hub values of a node.

• hits(*): The product of authority and hub values of a node.

• cap: The capacity of a node.

166

7.9 Experiments

• pr: The PageRank values of a node from the equally named algorithm.

• random: A random selector, which is used as baseline approach.

The disambiguation was performed on results of the baseline of instance recognition,
which used all kinds of datatype properties. This forced the occurrence of ambiguities in
extraction results, because of the use of datatype properties with high ambiguity ratios.

Table 7.6 lists precision, recall, and F1 measure ratios, which were achieved by each
algorithm on each corpus. The ratios express how well the algorithms selected the correct
instance of an ambiguity group.

wikinews degree hits(+) auth hits(*) pr cap hub random

precision 0.4 0.39 0.39 0.38 0.38 0.26 0.23 0.20

recall 0.51 0.50 0.49 0.49 0.49 0.34 0.32 0.29

F1 0.44 0.44 0.43 0.43 0.43 0.30 0.27 0.24

BBC music degree hits(+) auth hits(*) pr cap hub random

precision 0.085 0.076 0.076 0.076 0.076 0.066 0.066 0.056

recall 0.288 0.248 0.248 0.248 0.248 0.178 0.178 0.138

F1 0.131 0.116 0.116 0.116 0.116 0.097 0.097 0.080

BBC nature hits(*) degree hits(+) hub cap auth pr random

precision 0.827 0.799 0.795 0.743 0.453 0.480 0.474 0.299

recall 0.184 0.184 0.181 0.179 0.106 0.094 0.087 0.079

F1 0.301 0.299 0.295 0.289 0.172 0.157 0.147 0.125

Table 7.6: Comparison of graph-based disambiguation algorithms.

On all three datasets, the applied graph-based algorithms performed better than the
random baseline approach. On average, the resolutions performed by using the node
degrees produce best results. In addition to this, the computation of a node’s degree
is very simple compared to the Eigenvalue-based computations of PageRank or HITS
values. Finally, it can be concluded that based on the connectivity of recognized instances
the best resolution of ambiguous instances can be achieved by using simply the node
degrees as ratings. Consequently, the limits of the presented disambiguation algorithms
are determined by the overall connectivity of an RDF graph. If relevant instances do
not possess even a single relation to neighboring instances, the disambiguation will fail
to resolve these from the ambiguity sets.

The conducted experiment shows that in RDF graphs the utilization of knowledge
about links between instances allows the application of link analyzes based algorithms

167

7 Processing the Semantic Entity Recognition

for disambiguating recognized instances. This confirms the Hypothesis H.1.

7.9.7 Entity classification on automatically generated training data

The goal of this experiment is to examine to what degree the automatically labeling of
raw corpus data with Semantic Entity Recognition results is suitable to train a named
entity classifier. Hence, this experiment evaluates the quality of classification results of
classifiers trained on automatically generated training data (see Section 7.7).

The corpus and dataset used for this experiment are:

The ConLL2003 corpus consisting of labeled news stories from Reuters. The labeled
types of entities are: person, organization, location, and miscellaneous. The forth
class miscellaneous is used as kind of residue class for all the other entity types in
this corpus. More information on this corpus was already described in Section 6.9.1.
The manually created labels of the ConLL2003 corpus were used for training a
supervised classifier as reference model.

The DBpedia RDF graph as it is described in Section 6.9.1.

Aligning ConLL labels with DBpedia classes The goal is to use recognized semantic
entities from the DBpedia dataset for automatically labeling the text of the ConLL2003
corpus. Results of this experiment reveal how a maximum entropy model trained on
either the manually labeled or the automatically labeled corpus differs in its prediction
accuracy. The first three classes of the ConLL2003 corpus were related to corresponding
classes in the DBpedia ontology. Table 7.7 illustrates these corresponding classes.

class frequency in RDF graph

dbp-ont:Organisation 147 889

dbp-ont:Person 363 751

dbp-ont:Place 462 349

foaf:Person 296 595

foaf:Person
⋂

dbp-ont:Person 171 881

foaf:Person ∪ dbp-ont:Person 488 465

Table 7.7: DBpedia classes corresponding with ConLL2003 labels.

It can be observed that two individual but overlapping classes exist in the DBpedia
representing persons. Based on the clustering approach presented in Section 6.3, these
two correlating classes are merged. In the following analyzes the union of both is used.

168

7.9 Experiments

class nick label name surname gName fName title

dbp-ont:Organisation 0.076 0.995 0.951 0.001 0.006 0.000 0.004

dbp-ont:Person 0.022 0.992 0.922 0.449 0.467 0.002 0.027

dbp-ont:Place 0.01 0.996 0.888 0.000 0.000 0.000 0.000

foaf:Person 0.012 1.000 1.000 0.953 0.958 0.002 0.008

Table 7.8: Coverage of datatype properties used classes of the DBpedia.

Table 7.8 illustrates coverage ratios for datatype properties of each class.
The datatype properties rdfs:label and foaf:name cover most of the instances of

all three classes. The distributions of the other datatype properties are dominated by
instances of both types of persons. Based on the good ratings of the datatype properties
rdfs:label, it was used as basis for recognizing matching named entities in the news
stories of the ConLL2003 corpus.

Investigating the Independence of class labels In order to investigate the uniqueness
of each class, Table 7.9 illustrates correlation coefficients between DBpedia labels and
ConLL2003 labels (see Section 5.4.4).

DBpedia ConLL2003

person place organ. person location organ.

person 1.00 -0.44 -0.59 0.85 -0.50 -0.44

DBpedia place -0.44 1.00 -0.34 -0.28 0.46 0.02

organ. -0.59 -0.34 1.00 -0.49 -0.22 0.64

person 0.85 -0.28 -0.49 1.00 -0.42 -0.37

ConLL2003 location -0.50 0.46 -0.22 -0.42 1.00 -0.02

organ. -0.44 0.02 0.64 -0.37 -0.02 1.00

Table 7.9: Pearson correlation coefficient matrix.

Interestingly, it can be observed that the ConLL2003 labels representing organizations
and locations share a higher degree of positive correlation than the other labels do. The
same statistical pattern is valid for the automatically annotated labels from the DBpedia
dataset. This statistical rationale indicates the ambiguous usage of location names. The
reason is, that often news stories name sport teams similar to the countries and cities
the team members play for (e.g., “Germany bet England 2:1”). In consequence, lower
rates of precision and recall are expected when predicting locations.

169

7 Processing the Semantic Entity Recognition

Text corpora The maximum entropy classifier was trained on four versions of labeled
training data:

Manual The original, manually labeled training set of the ConLL2003 corpus consists
of 19 277 training instances.

Automatic This denotes the same training data as above, but it is now labeled with
known semantic entities of the DBpedia database. This leads to a reduced amount
of 8 495 training instances, because the DBpedia does not know all the entities
labeled by hand.

Automatic+ By adding raw unlabeled data of the ConLL2003 corpus to the above
training set extended the training set to 14 677 instances.

Automatic++ This corpus just consists of the automatically labeled raw data that
resulted in 34 219 training instances without the original training corpus of the
“Automatic” configuration.

Precision Recall F1
0

0.2

0.4

0.6

0.8

1

0.69

0.85
0.76

Organisation

Precision Recall F1

0.78

0.94
0.85

Location

Precision Recall F1

0.82

0.92
0.86

Person

automatic
automatic+
automatic++
manual

Figure 7.17: Accuracy of classification results on ConLL2003 test data.

Quality of classification results The quality of the classifier’s results is shown in Fig-
ure 7.17. Precision, recall and F-measure values result from the comparison between the
classifier’s results and gold standard labels of the official ConLL2003 test corpus. Above
each group consisting of three bars, the value of the classifier, which was trained on the
manually labeled corpus, is printed as reference “upper line”. Except the decreasing
precision values of organizations, which correlate with decreasing or stagnating recall
values of locations, it can be observed that the larger the training corpus is the better
the expected results are. In case of persons and organizations the automatic labeling

170

7.9 Experiments

dbp-ont:Person

dbp-ont:Place

dbp-ont:Event

dbp-ont:Work

dbp-ont:Organisation

0.5 0.6 0.7 0.8 0.9 1

Precision
Recall
F1

Figure 7.18: Accuracy of classification results in a 10-fold cross validation.

approach produces similar precision ratios like the manual labeled corpus. Unfortu-
nately, the correlation between locations and organizations had a negative impact on
the accuracy of recognition rates for locations and organizations.

In order to prove the consistency of the automatically generated labels, a 10-fold cross
validation was performed on the largest training corpus (i.e., automatic++). Here, labels
were added covering the classes dbp-ont:Event and dbp-ont:Work as they are described
by the DBpedia ontology and are mentioned within the News stories. Figure 7.18 shows
that all F1-values are exceed 0.8 and vary around 0.9 independently from the underlying
classes. This is a strong evidence that the labeling generation produces consistent results
and can be used to train classifiers.

Window and n-gram features

This investigation begins with a feature analyzes on the impact of window and n-gram
features. The chart in Figure 7.19 presents harmonic F-measure values of a classifier
that was trained on four different configurations of the ConLL 2003 corpus. Each axis
represents a parameter setting consisting of a window size W and an n-gram conjunction
n. The window sizes from 3 to 4 words before and after the entity candidate were evalu-
ated. Within a window, the contained words are combined to partial n-gram sequences
from length 1 to 4. By inspecting the values of the manually labeled corpus, it can be
seen that results of a bag of words approach (that is n-grams of length 1) decrease in
F-measure with an increasing window size. For n-grams of length 2 and 3, increasing
the window size beyond 4 has no impact on the F-measure rates. In order to compute a
limited number of features, we decided to use a default parameter setting of W = 4 and
n = 3 without n-grams of length four.

171

7 Processing the Semantic Entity Recognition

W=4, n=[1,2,3,4]

W=3, n=[1,2,3]

W=4, n=[1,2,3]

W=2, n=[1,2]

W=3, n=[1,2]

W=4, n=[1,2]

W=2, n=[1]

W=3, n=[1]

W=4, n=[1]

0 0.2 0.4 0.6 0.8 1

0.724

0.721

0.721

0.717

0.722

0.715

0.693

0.681

0.644

Automatic
Automatic+
Automatic++
Manual

Figure 7.19: Comparison of window lengths (W) and n-gram conjunctions.

Context and content features

This investigation analyzes which feature type, context, content, or a combination of
both performs best. Figure 7.20 presents the results of this evaluation. The reference
values of the manual corpus shows that content features perform better than context
features. A conjunction of both feature types results in a slight increase of quality.

Learning curves Analyzing the learning curves of classifiers being trained on either
context or content features, it can be observed that the use of both feature types on
manually labeled data results in the largest area under the curve. Both feature type
curves indicate that content features are probably easier to learn than context features.
The reason for this is that different news articles refer to similar topics. Within the
19 277 training examples of the original ConLL corpus, only 3 949 distinct persons, 1
464 distinct locations, and 2 665 distinct organizations are mentioned. Compared to
this, the automatically labeled version consists only of 1 437 persons, 903 locations, and
531 organizations. This low degree of distinct values explains the dominant impact of
content features on the classification accuracy.

172

7.9 Experiments

manual
automatic

automatic+
automatic++

0

0.2

0.4

0.6

0.8

1

both
content
context

Figure 7.20: Comparison between content and context features.

0.13% 5% 20% 40% 60% 80% 100%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Both
Content
Context

training size

F1

0.13% 5% 20% 40% 60% 80% 100%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Both
Content
Context

training size

F1

(a) (b)

Figure 7.21: Learning curves of maximum entropy model trained on manually labeled
data (a) or automatically labeled data (b).

Neighboring semantic entities as features A special type of context features are neigh-
boring semantic entities occurring in lists or tables (e.g., Peter, Paul, an Mary). The
classification of yet unknown entity candidates is embedded within an entity recognition
process. Hence, it is possible using the position of recognized known entities in surround-
ing text. The investigation reveals the impact of neighboring entities in context features
on the classification accuracy. Figure 7.22 presents the progression of accuracy values
along an increasing probability that a neighboring entity is taken as context feature. The
progression within the manually labeled data is as expected. Precision and recall values
slightly increase for increasing probabilities. Surprisingly, the precision curves of persons
and places on the automatically labeled data set decrease for increasing probabilities.

173

7 Processing the Semantic Entity Recognition

Person Organisation Place

manual

automatic

(a) (b) (c)

(d) (e) (f)

0.00 0.10 0.30 0.50 0.70 0.90 1.00

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
R

0.00 0.10 0.30 0.50 0.70 0.90 1.00

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
R

0.00 0.10 0.30 0.50 0.70 0.90 1.00

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
R

0.00 0.10 0.30 0.50 0.70 0.90 1.00

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
R

0.00 0.10 0.30 0.50 0.70 0.90 1.00

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
R

0.00 0.10 0.30 0.50 0.70 0.90 1.00

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
R

Figure 7.22: Impact of known semantic entities on context features. X-axis describes
the probability that a neighboring entity is part of the feature vector.

The two confusion matrices in Tables 7.10a and 7.10b reveal that the class location
suffers from over generalization. Most mistakes of misclassified examples classify these as
locations. By increasing the probability of neighboring semantic entities to one, a couple
of these misclassified examples are now again misclassified as persons and organizations.
This also explains the decreasing recall values for places on automatically labeled data.

Again, the ambiguous usage of organizations and locations invokes problems while
training a classifier on automatically labeled data.

Thresholding certainties of class predictions.

A mechanism for creating a threshold that regulates classification accuracies from either
focusing on high recall or high precision values is proposed. Classification results of
a maximum entropy classifier are represented as list of probabilities. Each possible
classification is assigned with the probability. Based on these probabilities, the threshold
is defined as the highest probability minus second-highest probability. If this subtraction
exceeds the passed threshold, the predicted classification is assumed as certain enough,

174

7.9 Experiments

sem.entity Locat Person Organ

Location 1 452 50 19

Person 906 442 145

Organ 970 25 76

(a)probability=0

sem.entity Locat Person Organ

Location 1 164 370 3

Person 940 437 217

Organ 853 54 186

(b)probability=1

Table 7.10: Confusion matrices listing two types of context features.

else the result is labeled as uncertain. Figure 7.23 lists precision, recall, and F-measure
progressions for each feature type, and a combination of both on the manually and
automatically labeled dataset along a range of threshold between 0.0 to 0.9.

0.0 0.1 0.3 0.5 0.7 0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
R
F

0.0 0.1 0.3 0.5 0.7 0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
R
F

0.0 0.1 0.3 0.5 0.7 0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
R
F

context content both

manual

automatic

0.0 0.1 0.3 0.5 0.7 0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
R
F

0.0 0.1 0.3 0.5 0.7 0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
R
F

0.0 0.1 0.3 0.5 0.7 0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
R
F

(a) (b) (c)

(d) (e) (f)

Figure 7.23: Correlation between threshold and classification accuracies.

These curves demonstrate that on the manually labeled corpus, general precision ratios
may reach values above 0.9 with a recall above 0.3. Even on automatically labeled data
precision values stay above 0.8. Unfortunately, the recall values fall to a range around 0.1.
Hence, certainty threshold provide a means for heightening precision ratios of classifiers
that were trained on automatically labeled training data.

175

7 Processing the Semantic Entity Recognition

Predicting properties and types of semantic entities

The preceding study concentrated on predicting classes such as person, organization,
or location to entities. The following side study investigates the prediction of different
RDF properties for similar types of entities. Therefore, the corpus provided by the Pascal
Challenge on Evaluating Machine Learning for Information Extraction is used [Ireson
et al., 2005]. It consists of a simple vocabulary and labeled text documents, which are
call for papers taken from scientific mailing lists. Figure 7.24 shows the general ontology
used to markup text passages.

Workshop Conference

name: <string>

acronym: <string>

homepage: <URL>

date: <date>

camera ready copy due: <date>

paper submission: <date>

notification of acceptance: <date>

person: <string>

location: <string>

general properties

name: <string>

acronym: <string>

homepage: <URL>

classes

Figure 7.24: Pascal ontology of workshops and conferences.

In addition to the contained entity type person, location, url, conference, and work-
shop, the vocabulary contains datatype properties, i.e., paper submission date, notifi-
cation of acceptance date, and camera ready copy due. The Pascal corpus is used for
evaluating the quality of feature types in cases where the entity class remains the same
but the datatype property changes.

The same set of features was analyzed like in the original classification scenario but
no significant conspicuousness could be revealed. Hence, a comparison was performed
on the classifier’s accuracies about either predicted properties or types of entities of the
Pascal corpus. Figure 7.25 reveals that predicting properties is much more complicated
than predicting types. Whereas in the case of predicted types the F-measure ratio
of dates is above 0.95, the same F-measure ratios decrease to 0.8 and below for all
predicted properties of type date. Interestingly, the classifier is not able to distinguish
between conference and workshop homepages. Workshop homepages received higher
values because of their higher probability (0.77) of occurrence in data.

In contrast to the irregularities of threshold performance curves that occurred in the
ConLL2003 corpus (see Figure 7.26), the precision curves increase monotonously up to
a threshold of 0.7. The precision and recall curves in Figure 7.26 indicate a positive

176

7.9 Experiments

paper submission date
notification of acceptance date

camera ready copy date
date

person
locat ion

conference acronym
workshop acronym

workshop homepage
conference homepage

conference name
workshop name

locat ion

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

person

acronym

locat ion

name

date

homepage

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Precision
Recall
F1

(a) (b)

Figure 7.25: Classifier’s accuracies of predicted properties (a) and types (b).

correlation between increasing the threshold and precision values.
Finally, it can be concluded that the classification experiments showed that it is pos-

sible train classifiers to automatically labeled corpus data. This allows an adaption of
the IE system to a given domain of concern if it is described in RDF and an unlabeled
document corpus exists for training purpose. This confirms the hypotheses H.1 and H.3.

The experiment performed on the Pascal corpus revealed that it is possible to use ex-
actly the same classification approach for training a classifier to learn labeling recognized
entities with datatype properties.

177

7 Processing the Semantic Entity Recognition

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Properties

workshoppapersubmissiondate workshopnotificationofacceptancedate person location
conferenceacronym date workshophomepage conferencehomepage
workshopacronym workshopname workshoplocation conferencename
workshopcamerareadycopydate conferencehompage workshopdate average

threshold

re
ca

ll

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.5

0.6

0.7

0.8

0.9

1.0

Types

threshold

p
re

ci
si

on

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Types

person
acronym
location
name
person
acronym
location
name
conference hompage
date
homepage
average

threshold

re
ca

ll

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

threshold

p
re

ci
si

on

Figure 7.26: Correlation between threshold and classification accuracies.

178

7.9 Experiments

dbp:OlympicResult
dbp:ChemicalCompound

dbp:Drug
dbp:MusicGenre

dbp:Protein
dbp:AnatomicalStructure

dbp:EthnicGroup
dbp:Disease

dbp:Planet
dbp:Species
dbp:Device

dbp:Beverage
dbp:Award

dbp:Activity
dbp:Organisation

dbp:MeanOfTransportation
dbp:Infrastructure

dbp:Event
dbp:Work

dbp:Person
dbp:Place

0 0.25 0.5 0.75 1

original baseline ideal type classifier

Figure 7.27: Precision ratios of an ideal type classifier on ambiguous entities.

7.9.8 Classification-based disambiguation

The goal of this investigation is to reveal the performance of an entity classification
model that is applied to resolve ambiguously recognized entities. If, for example, the
entity “Paris” occurs in a text, a classifier would decide based on the surrounding textual
context that Paris is more likely meant to refer to a city, instead of a person. Figure 7.27
illustrates precision values of classification-based disambiguation approaches on class
level. The experiment is performed on the Wikipedia corpus. For each class, the bar
chart in Figure 7.27 presents precision values of three approaches:

1. The precision value of the original recognition results with an average of 0.35.

2. The precision of a baseline approach that votes for those instances whose classifi-
cation is dominating the respective ambiguity set. The average is 0.4.

179

7 Processing the Semantic Entity Recognition

3. The precision of an ideal classifier that is capable to predict the correct entity type
for every literal value in text. The precision values of the ideal classifier reached
an average 0.78.

Interestingly, the precision values of the common entity classes such as places, per-
sons, works, and events stay below a value of 0.5. A reason for this is that instances
within ambiguity sets often share these classes. Based on the analysis of Section 7.9.7
it can be asserted that, depending on the amount of existing training, the disambigua-
tion performance of a resulting classifier stays between the performance ratios of the
baseline approach and the ideally asserted classifier. For example, training a classifier
on randomly chosen and automatically labeled Wikipedia articles results in a precision
ratio of 0.34 on the Wikinews corpus. It mainly consists of the common entity classes.
In summary, the classification-based disambiguation is possible but not suitable to be
performed on all types of classes used within an RDF graph. It can be used as additional
indicator for disambiguating semantic entities.

7.9.9 Ranking extraction results by relevance

This experiment analyzes the performance of a number of rating metrics for ranking
recognized semantic entities by relevance. The following metrics were investigated.

Text corpus-based metrics are computed by calculating statistics on word occurrences.

POS: The position of the first occurrence in the text, as it was defined in Sec-
tion 7.6.

TF: The term frequency of the entity reference in the text (see Section 6.8).

IDF: The overall inverse document frequency of the entity reference in the text
corpus (see Section 6.9).

Graph-based metrics are computed by calculating statistics on node connectivities in
RDF graphs.

DEG: The node degree of incoming or outgoing edges of the entity referent in the
RDF graph (see Definition 5.15).

CAP: The node’s capacity of incoming and outgoing edges of the entity referent
in the RDF graph (see Definition 5.16).

PR: Pagerank values of the entity referent in the RDF graph based on the identi-
cally named algorithm (see Definition 5.18) .

HUB: Hub values of the entity referent in the RDF graph based on the HITS
algorithm (see Definition 5.17) .

AUTH: Authority values of the entity referent in the RDF graph based on the
HITS algorithm (see Definition 5.17).

180

7.9 Experiments

The naive baseline approach determines the most naive approach for implementing a
ranking. A comparison with this baseline should indicate how well an entity ranker
performs.

RANDOM: A random floating point number between zero and one. The random
ranking is used as baseline in this experiment.

The experiments are conducted on all five test corpora described in Section 7.9.1.
Results are rated in terms of mean average precision (MAP) ratios as described in
Section 7.9.2. Table 7.11 lists MAP values for each of the described types of metrics on
all five corpora. The maximal achieved MAP value is highlighted in bold letters.

metric BBCmusic BBCnature Wikinews Wikipedia Gutenberg

0 POS 0.825 0.457 0.254 0.147 0.169

1 TF 0.711 0.391 0.2 0.15 0.046

2 IDF 0.704 0.395 0.218 0.158 0.045

3 AUTH 0.667 0.406 0.443 0.341 0.279

4 HUB 0.339 0.504 0.409 0.244 0.331

5 PR 0.657 0.407 0.426 0.376 0.208

6 DEG 0.36 0.518 0.4 0.225 0.325

7 CAP 0.661 0.406 0.484 0.38 0.323

8 RANDOM 0.419 0.39 0.235 0.128 0.053

Table 7.11: Mean average precision ratios of ranking metrics on each corpus.

Considering text corpus-based metrics, Table 7.11 shows that the metric IDF and
POS perform well for ranking instances by relevance. Hence, it can be stated that
entity references to relevant instances occur frequently in beginning of text documents.
If a reference to single instances occurs very frequently in a document corpus, it is most
likely irrelevant to a specific information need. Values of TF are often nearby the random
MAP ratings, indicating that the term frequency of entity references does not correlate
with the notion of relevance.

Considering the graph based metrics, the results on both BBC corpora (music, nature)
significantly differ from results on the DBpedia related corpora (Wikinews, Wikipedia,
Gutenberg). Figure 7.28 allows a further investigation on this phenomenon. It illustrates
the correlations coefficients between the five corpora in terms of the computed rankings.
The degree of red denotes the strength of a positive correlation. The index numbers from
0 to 4 correspond with the ordering of the columns of Table 7.11 (BBCmusic, BBCnature,
Wikinews, Wikipedia, Gutenberg).

181

7 Processing the Semantic Entity Recognition

0 1 2 3 4

0

1

2

3

4

0

0.2

0.4

0.6

0.8

1

Figure 7.28: Ranking correlations between the five test corpora.
0. BBC music, 1. BBC nature, 2. Wikinews,

3. Wikipedia, and 4. Gutenberg

It can be seen that both BBC corpora do not correlate in terms of rankings. They
also do not correlate to any of the DBpedia related corpora. Conversely, the DBpedia
related corpora (Wikinews, Wikipedia, Gutenberg) share correlating rankings between
each other. This leads to the conclusion that the underlying RDF graph has a stronger
impact on the computation of ratings than the documents within the corpora have.
Table 7.11 shows that DBpedia related corpora share high rated ratings computed on
the basis of the node capacity (CAP) metric.

In order to combine multiple metrics for further enhancing the quality of rankings, it is
helpful investigating statistical correlations between each metric. Therefore, Spearman’s
rank correlation coefficient, which is a specialized correlation coefficient for investigating
dependencies between rankings was applied.

Definition 7.9 (Spearman’s rank correlation coefficient)

Spearman correlations can be defined as an extension of Pearson’s product momentum,
which was already explained in Section 5.4.4. In addition to Pearson’s product mo-
mentum, which analyzes the strength and direction of a linear dependency between two
variables, Spearman’s rank correlation computes the product momentum on the rank
of each of the variable’s values. The rank is the index of the specific value within an
ordered list of all values of the respective variable. Hence, Spearman’s rank correlation
analyzes the monotonicity of the dependency between two variables.

182

7.9 Experiments

Figure 7.29 illustrates heat maps on correlation matrices. Each index denotes a met-
ric corresponding to this numbered enumeration: 0. BBC music, 1. BBC nature, 2.
Wikinews, 3. Wikipedia, and 4. Gutenberg. Again, the degree of red denotes the strength
of a positive correlation. Negative correlations do not occur in this scenario, which indi-
cates the absence of reverse rankings. The heat map of the Gutenberg corpus is equal to
the heat maps of the Wikinews (Fig. 7.29c) and Wikipedia (Fig. 7.29d) corpora. Hence,
it was spared adding it to Figure 7.29.

It can be observed that strong correlations exist between the rankings produced by
the graph-based metrics. Above all, the metrics AUTH, PR, and CAP share strong
correlations across all test corpora. DBpedia related corpora possess higher correlations
between graph-based metrics than the others.

Because of the low correlations between graph-based and corpus-based metrics, it
can be assumed that combining both kind of ratings results in higher rated rankings.
Table 7.12 lists the top-ranked MAP ratings, on average and for each test corpus.

best combination BBCmusic BBCnature Wikinews Wikipedia Gutenberg

AUTH·HUB·CAP·POS·IDF 0.82 0.53 0.46 0.37 0.37

AUTH·POS 0.88 0.46 0.44 0.36 0.29

HUB·PR·DEG·CAP·POS·IDF 0.69 0.54 0.41 0.30 0.38

CAP 0.66 0.41 0.48 0.38 0.32

PR·CAP·IDF 0.80 0.41 0.45 0.42 0.21

HUB·PR·DEG·CAP·POS 0.57 0.54 0.41 0.26 0.38

Table 7.12: Best rankings from all kinds of combinations of metrics.

On average, the combination of metrics achieved similar or higher MAP ratios com-
pared to the individual metrics. In general, AUTH·HUB ·CAP·POS·IDF produces the
highest valued ratings. The remainder rows show the best rated ranking of each corpus.
Despite the Wikinews corpus, the combination of metrics rated best combine corpus
based statistics with graph based statistics. In general, the authority scores of the HIT
algorithm (AUTH) and PageRank values (PR) result in similar rankings. Within the
DBpedia related corpora, the node capacity (CAP) performs better than the combina-
tion of both HIT scores (HUB and AUTH). The corpus based metrics POS and IDF
seem to enhance ratings on average.

The experiment confirms the Hypothesis H.1. Utilizing link knowledge in RDF graphs
allows rating recognized instances by relevance. On average, combining knowledge from
RDF graphs and text corpora increases the performance of ranking recognized entities.
AUTH·HUB·CAP·POS·IDF work as default setting. However, on a new RDF graph the
evaluation of metrics and combinations should result in an increase of MAP values.

183

7 Processing the Semantic Entity Recognition

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8
0

0.2

0.4

0.6

0.8

1

(a)BBC nature

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)BBC music

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8
0

0.2

0.4

0.6

0.8

1

(c)Wikinews

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8
0

0.2

0.4

0.6

0.8

1

(d)Wikipedia

Figure 7.29: Correlation heat maps between rankings:
(0. AUTH, 1. HUB, 2. PR, 3. DEG, 4. CAP, 5. RANDOM,

6. POS, 7. TF, 8. IDF).

184

7.9 Experiments

7.9.10 Predicting object properties

This experiment investigates the possibility to predict new object properties between
recognized instances by using knowledge about existing object properties. In Section 7.8
two fact prediction approaches are presented, the first using Markov chains, the second
using recommender technologies.

The experimental setup is initialized as a leave one out cross evaluation. For each set
of recognized instances, the set of RDF triples of these and between these instances is
generated, with object properties as predicates. For a set of n RDF triples, where each
respective subject and object was recognized in text, n test runs are made. Within each
test run ri with 0 < i ≤ n, the triple of index i is taken out of the set. The fact predictor
is now evaluated on re-predicting exactly the taken RDF triple.

In Table 7.13, results of this cross evaluation runs are illustrated. For each evaluation
run, the prediction accuracy and the overall number of predicted triples is listed. The
simple Markov chain based approach (mc) is evaluated on parameter 0 < k ≤ 5 denoting
the k most probable object properties between two instances of a certain class.

accuracy count of predicted triples

approach BBC music BBC nature Wikinews BBC music BBC nature Wikinews

mc 1 0.56 0.93 0.46 118 253 57

mc 2 0.57 0.93 0.48 199 256 111

mc 3 0.57 0.93 0.49 228 256 156

mc 4 0.57 0.93 0.51 230 256 195

mc 5 0.57 0.93 0.51 230 256 232

mc 1 (card) 0.47 0.54 0.01 101 239 6

mc 2 (card) 0.48 0.54 0.04 182 242 59

mc 3 (card) 0.48 0.54 0.04 210 242 104

mc 4 (card) 0.48 0.54 0.07 213 242 143

mc 5 (card) 0.48 0.54 0.07 213 242 180

cf(cos) 0.41 NA NA 26 NA NA

cf(cor) 0.36 NA NA 4 NA NA

Table 7.13: Leave one out evaluation results of fact predictors.

In addition, the Markov-chain-based approach is extended by utilizing knowledge
about cardinalities of object properties (see Section 6.4.2). If a given instance possesses
less or equal RDF triples with an object property having average subject cardinality on
the global RDF graph, the predicted RDF triple of this object property is considered as
valid. Otherwise, if the given instance possesses more RDF triples of this object property

185

7 Processing the Semantic Entity Recognition

than the mean cardinality, the predicting is rejected. Finally, the recommender based
approach is investigated (cf) on predicting facts by using either cosine similarities (cos)
or correlation coefficients (cor).

The highest accuracy is achieved by using the simple Markov chain approach. It can
be observed that an increase of k most probable object properties does not increase the
accuracy significantly. Instead, the number of predicted facts increases. The cardinality
restriction leads to an decrease of predicted facts, but it also decreases accuracy ratios
significantly. Unfortunately, the collaborative filtering approach is based on a compu-
tational expensive correlation or cosine similarity matrix. Therefore, within the scale
of minutes results could only be produces for documents within the BBC music corpus
as this is the corpus with the smallest amount of object properties. Here, the achieved
accuracy can not reach the performance of the Markov chain based approach, but in
terms of the count of triples, it generates only a fraction of predictions.

Nevertheless, this experiment shows that the restrictive use of co-occurring instances
and known links between them is sufficient for predicting reasonable object properties
between not yet linked instances. This approves the Hypothesis H.1.

7.10 Summary and Conclusion

This chapter illustrated the utilization of RDF graphs for implementing information
extractors, which is closely related to the Hypothesis H.1.

7.10.1 Summary

The following information extractors were covered and experimentally evaluated:

Filtering text for proper names (see Section 7.2) Experiments conducted in Sec-
tion 7.9.3 approve the question if noun phrase filtering provide a scalable basis for rec-
ognizing semantic entities. The application of noun phrase chunking to the Semantic
Entity Recognition involves language dependency. Hence, required technologies for ap-
plying the Semantic Entity Recognition to a specific language are:

1. The actual language must be recognized by a language identifier.

2. A word and sentence tokenizer must exist for this specific language.

3. POS-tagging on this language is required.

4. A text chunker on this language is needed.

Spotting text for datatype property values (see Section 7.3) Further experiments
presented in Section 7.9.3 show that the application of prefix hashing and suffix arrays
provide a scalable basis to spot for datatype properties.

186

7.10 Summary and Conclusion

Linking named entities to formal instances (see Section 7.4) In Section 7.9.4, eval-
uation results of a naive baseline approach recognizing semantic entities are presented.

Resolving ambiguous semantic entities (see Section 7.5) Section 7.9.6 investigates
the application of link-based RDF graph metrics to resolve multiple instance references
for a single recognized entity. Here, the node degree performed best on the test datasets
(see Section 7.9.1). By nature, the presented linkage based disambiguation approaches
require the existence of formal associations between instances inside the RDF graph.

In addition to using graph statistics, Section 7.9.8 evaluates the application of entity
classifiers to disambiguate instances by classification. By nature, this approach should
be applied in domains possessing large class hierarchies such as the DBpedia. Here, it
could be revealed that the classification-based disambiguation performs best on more
specialized class definitions. The probability that instances of these classes share la-
beling literal values is much lower than in case of more general entity classes such as
organizations, persons, or locations.

Rating relevance of semantic entities in text (see Section 7.6) The application of
text corpus and graphs based metric was analyzed in Section 7.9.9. Here, it could be
revealed that the factor combination AUTH·HUB·CAP·POS·IDF produces best rank-
ings. Combining the information from RDF graphs and from text corpora results in an
increase of performance for ranking relevance of recognized entities.

Classifying semantic entities (see Section 7.7) Section 7.9.7 investigates in detail
the creation of automatically labeled corpus data to train classifiers. In terms of the
DBpedia, it is possible to train a classifier on such data. However, especially the tested
recall values stay significantly below the manually labeled counterparts. Furthermore, a
large amount of training data is needed. Whereas the manually labeled corpus needed
219 554 words for producing 19 277 training instances (a frequency of 15 words per
label), the automatically labeled corpus needed 1 804 299 words for producing 34 219
training instances (a frequency of 75 words per label). A problem of such an automatic
labeling approach is that it faces problems in cases of ambiguous usage of similar literal
values in different labeling contexts. This was the case in Reuter’s news articles in terms
of locations and organizations.

The application of maximum entropy classifiers to predict either type or properties
of semantic entities showed that it is possible to train a useful machine-learning model.
The overall type of analyzed features was taken from standard approaches and especially
the use of text windows and n-grams resulted produced good results. The evaluation
of more sophisticated features such as neighboring semantic entities revealed that the
underlying classes of predicted and neighboring types have to be distinct in their values.
Otherwise, the application of this feature type produces worse results. In general, it

187

7 Processing the Semantic Entity Recognition

could be observed that content-based features resulted in higher qualities and better
learning curves. Nevertheless, context-based features are independent from memorized
labels and thus of high importance for classifying unknown semantic entities.

Predicting object properties between semantic entities (see Section 7.8) In Sec-
tion 7.9.10 two RDF graph based approaches for predicting form the perspective of an
RDF graph yet unknown object properties are evaluated. Within a leave one out cross
evaluation, the Markov chain based predictor produced best accuracy ratios, but also
predicted the highest amount of respective RDF triples. The similarity based recom-
mender approach has a large computational complexity. It produces the lowest accuracy
ratios, but also the lowest amount of predicted triples.

7.10.2 Conclusion

The presented utilization of RDF graphs within IE resulted in contributing the following
solutions listed in Section 1.3:

Contribution 2 covers the successful integration of domain information from RDF graphs
into information extractors and therefore covers each of the presented information
extractor in this chapter.

Contribution 3 focuses on the value of using formal vocabularies to specify the kind of
information to extract from text. The experiment in Section 7.9.5 about filter-
ing useful datatype properties provides further information on this, as datatype
properties are part of the vocabulary used within an RDF graph.

Contribution 5 is dedicated to training named entity classifiers with automatically la-
beled training data (see Section 7.7), in which labels correspond with classes used
within an RDF graph.

Contribution 6 covers the increase of adaptability by initializing an IE system with
different RDF graphs describing different domains of concerns. This contribution
could be created by successfully evaluating the presented information extractors on
three different RDF graphs and five different document corpora (see Section 6.9.1).

188

8 Incorporating SPARQL and RDF
serializations into Information Extraction

. . . utilities are available to treat . . . other formats
as RDF so that you can issue SPARQL queries
against these data sources . . . , which is one of
the most powerful aspects of the SPARQL/RDF
combinations.

(DuCharme [2011], SPARQL Working Group)

The Semantic Web intends using RDF and SPARQL for pro-
cessing and filtering formal information on the Web. Repre-
senting IE results from natural language text in RDF extends
this use case to unstructured content of Web pages. Following
DuCharme’s statement about the power of combining RDF
and SPARQL, such a representation allows the filtered ex-
traction of information from text by offering a SPARQL in-
terface to the content of this text. By using the terms of
the vocabulary of an underlying RDF graph, representing the
current domain of concern, RDF based IE provides a machine-
interpretable perspective on arbitrary Web pages in terms of
this domain. Users can filter the content with specific bits of
information by using these terms in SPARQL queries.

This chapter outlines the application of RDF, SPARQL to
IE results. First, Section 8.1 introduces four post-processing
operations, namely ranking, serializing, annotating, and filter-
ing. Next, Section 8.2 provides details on ranking IE results
in plain result lists. Section 8.3 describes the serialization of
IE results in RDF. Based on RDF results, Section 8.4 shows
the application of annotating originating text sources with IE
results. Next, Section 8.5 presents the use of of SPARQL
to specifying IE templates describing an information demand
in terms of the underlying RDF graph. Finally, Section 8.6
summarizes and concludes the presented features.

189

8 Incorporating SPARQL and RDF serializations into Information Extraction

document

RDF graph

pre-processing

processing

extraction
result

feature models

corpus

post-processing

annotated document

clusteringlearning

miningestimating rating

aligning

serializing annotating

ranking filtering

literals classes properties

entities relevance ambiguities

query

Figure 8.1: The architecture of an RDF based IE system.

8.1 Post-processing IE results

The architecture of an RDF based IE system, which is illustrated in Figure 8.1, repre-
sents IE results in RDF format.1 A post-processing of these results offers transformations
for ranking, filtering, serializing, and annotating extracted information. Following Gr-
ishman’s long-term goals on IE, the presented post-processing operations enable users
(humans as well as machines) to work with IE results by choosing the best suitable
representation format for reaching the goals they are aiming at (see Section 2.2).

Ranking extracted information by relevance corresponds with Grishman’s long-term
goal of “picking out the most useful bits”. Here, the ranking of semantic entities
is implemented based on rating mechanisms (see Section 7.6). In consequence,
extracted entities can be, similarly to Google search results, returned as sorted list
ranked by relevance metrics. More details are given in Section 8.2.

Serializing the extracted information into syntax formats such as XML, JSON, CSV,
or specializations on RDF such as TURTLE or RDF/XML means representing
information machine-understandable. This corresponds directly with Grishman’s
demand of “presenting extraction results in your preferred language”. Section 8.3
focusses on representing and processing IE results in RDF.

1See Section 5.3, where Figure 8.1 is referred to as Figure 5.7 for introducing the Semantic Entity
Recognition process.

190

8.2 Ranking IE results

Annotating Web pages with IE results in terms of an underlying RDF graph enriches the
natural language content of respective pages with formal and therefore machine-
understandable hints. Section 8.4 presents an annotation of Web pages utilizing
RDFa, which is a serialization format of RDF extending the HTML syntax. Hence,
this post-processing is also subsumed by Grishman’s demand of “presenting extrac-
tion results in your preferred language”.

Filtering extracted information based on explicit facets (in terms of RDF properties) is
a pillar of this work (see abstract of Chapter 1). Section 8.5 addresses SPARQL
as aid for specifying the properties of instances the user is interested in extracting
from text. The underlying intention of these filters is motivated by Grishman’s
demand for presenting IE results “at the right level of detail”.

natural
language

text

extract

annotate

SPARQL
query

RDF graph

filter

query result

populate

Figure 8.2: Cycle between extracting information and annotating formal knowledge.

In general, the application of RDF to representing IE results as well as the usage of
SPARQL for requesting IE results confirms with the statement of the Hypothesis H.2.
Figure 8.2 illustrates the impacts of the conducted investigations to the interface in
between natural language text and RDF graphs. Extracting information from text based
on first, an RDF graph and second, a filtering SPARQL query allows populating the
underlying RDF graph with additional, yet unknown information from text. Annotating
the originating text with formal information in terms of an RDF graph allows enriching
the natural language text with additional information from the RDF graph. Please refer
to Figure 3.6 illustrating the application of this scenario within the scope of the Semantic
Web.

8.2 Ranking IE results

In Section 7.6, rating metrics are investigated for ranking recognized instances according
to average precision ratings. In IR, sorted lists are used to return query results ranked
by decreasing relevance values. Relevance values are computed by the relevance metrics

191

8 Incorporating SPARQL and RDF serializations into Information Extraction

Figure 8.3: A list of recognized instances sorted by relevance.

introduces in Section 7.6. A result list sorted by relevance ratings can be paginated to
hold, for example, the best-rated k = 10 entries.

With respect to the state-of-the-art, the most popular aim of OBIE is to recognize
formal instances within natural language text (see Chapter 4). Especially when using
large knowledge bases (here, RDF graphs) recognized instances in text may be rated
within a range from not relevant to relevant.

Transferring the relevance ranking from IR to IE, the list-based ranking of recognized
entities allows users inspecting, for example, only the most relevant k entities of a docu-
ment. Figure 8.3 illustrates a screenshot of the Nepomuk Semantic Desktop. For a given
document content, this sidebar is intended tagging documents with recognized instances
of an underlying RDF graph [Adrian et al., 2008a]. In general, the user interface renders
the type of instances by the use of visual icons. The label of each instance is presented

192

8.3 Serializing extraction results in RDF

as hyperlink. Clicking on the link opens a new window with background information
about the respective instance. The relevance of each recognized instance is visualized by
using the horizontal blue energy bars. On the righter side, the user is able to accept each
instance as tag for the given document by clicking on the button labeled with “save”.
The slider on the top of the window allows regulating the number of results presented
to the user. Lowering the value of this slider results in filtering instances, results in ren-
dering only a number of k best rated instances. Section 9.2.2 provides more information
on this use case.

8.3 Serializing extraction results in RDF

The aim of RDF based IE is the utilization of RDF graphs as basis for extracting relevant
information from text and representing the information again in RDF. For this reason,
IE results have to be transformed into a graph-based format. The final output of the IE
system is in an RDF graph describing recognized semantic entities, and the respective
datatype and object property values. In detail, the following categories of information
elements have to be covered in an RDF document representing an IE result.

The document may contain metadata such as the title, authors, date of creation and
last change, the language, or its file format. Especially, the information of last
change dates is important when extracting information from Web pages with evolv-
ing content, such as http://www.slashdot.com. Here, the Aperture framework
allows extracting exactly this kinds of metadata from documents and representing
it in RDF format2.

The RDF graph underlying the RDF based IE system defines the system’s current do-
main of concern. It defines the vocabulary, i.e., the classes, object properties, and
datatype properties for describing the respective domain. The graph also lists con-
crete instances within this domain and describes these by the use of classifications,
datatype property, and object property values. The RDF graph is identified by a
URI, e.g., http://dbpedia.org.

Information recognized by the IE system consists of instances, which are results of the
Semantic Entity Recognition. Recognized instances, their matching datatype prop-
erties, classifications, and object properties are represented as a graph identified
by the following URI pattern:

Definition 8.1 (URI of a graph representing recognized information)

http://[domain]?graph=[RDFgraph]&doc=[doc]#recognized

2http://aperture.sourceforge.com

193

http://www.slashdot.com
http://dbpedia.org
http://aperture.sourceforge.com

8 Incorporating SPARQL and RDF serializations into Information Extraction

Here, the parameters domain, RDFgraph, and doc of this URI pattern are defined
as follows:

Definition 8.2 (URI pattern of named graphs)

domain denotes the the Internet domain of the deployed OBIE system.
(e.g., http://scoobie.dfki.de).

RDFgraph denotes the URI of the underlying RDF graph.
(e.g., http://dbpedia.org).

doc denotes the URI of the Web document.
(e.g., http://www.spiegel.de).

All URI strings passed as HTTP GET parameters (graph, doc) have to be URL
encoded for generating a valid URI.

Predicted information consists of entities and respective properties that have not yet
being instantiated by within the RDF graph. It denotes new information, yet
“unknown” to the RDF graph. Predicted information is represented as RDF graph
identified by the following URI pattern.

Definition 8.3 (URI of a graph representing predicted information)

http://[domain]?graph=[RDFgraph]&doc=[doc]predicted

In summary, an RDF based IE result comprises four graphs, describing the source doc-
ument, the originating domain of concern, the recognized information, and the predicted
information. Hence, RDF syntax is needed that supports the description of multiple RDF
graphs within a single RDF document, e.g., the TriG syntax [Bizer and Cyganiak, 2007].
Example 8.1 illustrates the serialization of IE results in an RDF document consisting of
four named RDF graphs. The example contains RDF graphs that contain statements
about the document metadata, recognized instances, known information about these
instances from the underlying domain, and finally novel predicted assumptions3.

3Please consider that although Paul Rogers acted with Queen, he is not really a member. However, in
terms of the music ontology, the prediction of the mo:member relationship between both instances is
a good approximation of reality.

194

http://scoobie.dfki.de
http://dbpedia.org
http://www.spiegel.de

8.4 Annotating IE results in Web pages

Example 8.1 (RDF serialized IE result)

Assuming the Web page http://example.org would contain the following text.

“Paul Rogers interpretation of ”Queen’s Born to Love You” was amazing.”

The RDF graph representing the respective IE result would be look like the following:
http://scoobie.dfki.de?graph=http://dbpedia.org&doc=http://example.org#

@pref ix dc : <http :// pur l . org /dc/ e lements /1.1/>
@pref ix dbp : <http :// dbpedia . org / r e sou r c e/>
@pref ix mo: <http :// pur l . org / onto logy /mo/>
@pref ix r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#>

<http :// example . org> = {
<http :// example . org> dc : t i t l e ‘ ‘ Queen and Paul Rogers ’ ’ .
} .

: r e cogn i z ed = {
dbp : Queen a mo: MusicGroup ; r d f s : l a b e l ”Queen” .
dbp : Paul Rogers a mo: Mus icArt i s t ; r d f s : l a b e l ”Paul Rogera” .
dbp : Born to love you a dbp−ont :Work ; dc : t i t l e ”Born to Love You” .
} .

<http :// dbpedia . org> = {
dbp : Brian May mo:member dbp : Queen .
dbp : Roger Taylor mo:member dbp : Queen .
dbp : Freddy Mercury mo:member dbp : Queen .
} .

: p r ed i c t ed = {
dbp : Paul Rogers a mo:member dbp : Queen .
} .

8.4 Annotating IE results in Web pages

Retroactively annotating text with IE results (see Figure 8.2) allows linking recognized
entities in text segments to datatype properties and respective instances within a under-
lying RDF graph. One can say it bridges the gap between the Web of documents and
the Web of data [Adrian, 2010]. The challenge of this approach is serializing IE results
within the content of the originating text.

RDFa offers a specialized syntax for embedding RDF data into attributes of HTML
elements [Adida et al., 2011]. in Example 8.2, the HTML+RDFa snippet illustrates markup
wrapping the noun phrase “Karl-Theodor zu Guttenberg”.

195

http://example.org
http://scoobie.dfki.de?graph=http://dbpedia.org&doc=http://example.org#

8 Incorporating SPARQL and RDF serializations into Information Extraction

Example 8.2 (RDFa data in HTML elements.)

< !−− HTML content extended wi th RDFa annota t ions . −−>
<BODY p r e f i x=”dbp=ht tp : // dbpedia . org / r e sou r c e /

f o a f=ht tp : //xmlns . org / f o a f /0 .1/ ”> . . .
<SPAN about=”dbp:Karl−Theodor zu Guttenberg ”

property=” foaf :name ”>Karl−Theodor zu Guttenberg

The RDFa content annotates the phrase “Karl-Theodor zu Guttenberg” as value of a
foaf:name of the corresponding DBpedia instance dbp:Karl-Theodor zu Guttenberg.
Section 9.1.3 illustrates more details on the application of RDFa annotations.

Query 8.1 (SPARQL template)

An IE templa te s p e c i f i e d as SPARQL s e l e c t query .
Via , named graphs , i t r e f e r s to the four k inds o f IE r e s u l t s .
Here , document metada i s de f ined as d e f a u l t graph .

PREFIX ob ie : <http :// s coob i e . d f k i . de?graph=http :// dbpedia . org&
doc=http :// example . com#>

PREFIX dbp−ont : <dbp−ont :>
PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#>
PREFIX dc : <http :// pur l . org /dc/ e lements /1.1/>

SELECT ∗ # the data sources
FROM <http :// s p i e g e l . de> # e x i s t i n g document metadata
FROM NAMED <http :// dbpedia . org> # the under l y ing RDF graph
FROM NAMED ob ie : p r ed i c t ed # pred i c t e d t r i p l e s by the IE system
FROM NAMED ob ie : r e cogn i z ed # recogn i z ed t r i p l e s by the IE system

WHERE { # the f i l t e r e xp r e s s i on s
?doc dc : t i t l e ? t i t l e ; dc : pub l i shed ? date .
GRAPH ob ie : p r ed i c t ed { ? s1 r d f s : l a b e l ?name1 .}
GRAPH ob ie : r e cogn i z ed { ? s2 r d f s : l a b e l ?name2 .}
GRAPH <http :// dbpedia . org> { ? s1 rd f : type dbp−ont : Person .

? s2 rd f : type dbp−ont : Person .}
}

8.5 Filtering IE results by specifying templates in SPARQL

Based on the RDF representation of IE results, SPARQL queries can be specified defining
the properties of needed information (see Section 3.8). This is related to the Hypoth-
esis H.2 and was proposed in [Adrian et al., 2009d]. Query 8.1 illustrates a SPARQL
SELECT statement [SPARQL Working Group, 2008].

196

8.5 Filtering IE results by specifying templates in SPARQL

Here, the RDF graph representing document metadata is bounded as default graph.
Hence, it is possible to specify selection patterns outside a graph scope. The graphs
covering recognized, predicted information form the document as well as known infor-
mation from the underlying RDF graph are declared as named graphs. In consequence,
it is necessary to specify a respective selection pattern within the scope of the respective
graph URI.

By referring to multiple URIs identifying multiple documents and respective extraction
results, it is even possible to span queries across multiple documents and knowledge
bases. SPARQL is designed for querying RDF graphs that can be HTTP requested
by resolving the identifying URIs. Hence, by publishing IE results under specific URIs
allows to process them by SPARQL [DuCharme, 2011].

In terms of the DBpedia, Mendes et al. [2011] also propose the filtering of IE results
by using SPARQL queries. They focus on specifying the kind of information items that
should be recognized in text. In addition to a simple filtering, the following approaches
show how the RDF graph in combination with the SPARQL query can enhance the
extraction process, directly.

8.5.1 Extracting Filtering Statements from SPARQL templates

Besides the filtering of extraction results, SPARQL queries can be passed directly to
an RDF based IE system. Knowledge about these filtering patterns can be utilized for
reducing the amount of computations for generating an extraction result. With respect
to the Query 8.1, especially the filter expressions addressing recognized information and
the filtering expressions covering the underlying RDF graph are used for enhancing the
Semantic Entity Recognition process.

• GRAPH obie:recognized { ...} allows a direct filtering of recognized instances
by specifying classes and datatype properties.

• GRAPH <http://dbpedia.org> { ...} allows a filtering of recognized instances
and facts about these by specifying additional restrictions on respective properties.

Information about filtering datatype properties and classifications are suitable for re-
ducing the number of necessary string comparisons when spotting text for datatype
property values (see Section 7.3). Especially passing the set of relevant datatype prop-
erties decreases the number of candidate literals from the RDF graph. Reflecting the
SQL Query 7.1 below, the set of datatype properties is already part of the candidate
producing database lookup.

197

8 Incorporating SPARQL and RDF serializations into Information Extraction

Query 8.2 (Request datatype property values.)

−− The f i l t e r e xp r e s s i on s o f t h i s SQL query w i th in the implementat ion o f
−− the named r e co gn i t i on can be r e s t r i c t e d by pass ing the da ta type
−− p r o p e r t i e s s p e c i f i e d in the SPARQL temp la te .

SELECT DISTINCT L . l i t e r a l , L . index , S . p r ed i c a t e
FROM i n d e x l i t e r a l s L , symbols S
WHERE (S . p r ed i c a t e IN (

−− < l i s t o f da ta type p rope r t i e s>
) AND S . ob j e c t = L . index AND L . p r e f i x IN (

−− < l i s t o f hashed p r e f i x va lues>
)) ORDER BY L . l i t e r a l

8.5.2 Inferring Filtering Statements from SPARQL templates

The existence of an explicit RDF graph consisting of both vocabulary and instances
allows an entailment of manually created filtering expressions in SPARQL templates by
inferring additional classifications or properties. This supports cases, in which users do
not provide any explicit information about datatype properties in SPARQL templates.
Instead, they just specify a list of classes the recognized instances should possess. How-
ever, the statistics about proper names of datatype properties’ values, which are de-
scribed in Section 6.6, are suitable for inferring a set of relevant datatype properties.
Query 8.3 takes the cluster of a class (see Section 6.3) and a lower threshold of the
proper name rating as input an returns a list of datatype properties that a re suitable
for spotting literal values of instances of the respective class.

Query 8.3 (Inferring datatype properties for known instance classification.)

−−F i l t e r i n g da ta type p r o p e r t i e s wi th h igh proper name ra t i n g s .

SELECT property , r a t i ng
FROM proper noun rat ing
WHERE (cluster = ? AND r a t i ng > ?)

For example, filtering IE results in terms of the DBpedia by ?s a dbp-ont:Person

results in the inference of relevant datatype properties: rdfs:label and foaf:name

when using a threshold rating > 0.1. Increasing this threshold on ratings removes
foaf:name from the results.

Even in cases where only a desired object property is referred to within the SPARQL
template’s filter expressions is is possible to use the Markov chain described in Sec-
tion 6.4.3 for estimating classes of instances being most likely connected by the object
property, respectively. For example, The Query 8.4 takes an object property and a lower

198

8.6 Summary and Conclusion

threshold on the probability as input and returns domains and ranges of the given object
property.

Query 8.4 (Inferring classes from signatures of known object properties.)

−−Mining t ype s w i th in s i gna t u r e s o f o b j e c t p r o p e r t i e s .

SELECT sub j e c t AS domain , ob j e c t AS range , p r obab i l i t y
FROM markov chain
WHERE (p r ed i c a t e = ? AND p r obab i l i t y > ?)

For example, specifying ?s dbp-ont:birthplace ?o results in the inference of rele-
vant clusters: owl:Thing, dbp-ont:Place, dbp-ont:Cleric, dbp-ont:Person, dbp-ont:Athlete,

dbp-ont:PopulatedPlace, dbp-ont:Politician, and dbp-ont:Artist. Based on these classes
the entailment of datatype properties infers rdfs:label as relevant. Here, a threshold
on the average Markov probability of probability > 0.01 was taken.

8.6 Summary and Conclusion

Contributing to Hypothesis H.2, this chapter described the integration of RDF and
SPARQL into the input/output-interfaces of an RDF-based IE system.

8.6.1 Summary

This chapter exposed the benefits of representing IE results in RDF and querying these
with SPARQL.

• Section 8.1 illustrated general features of post-processing IE results, such as rank-
ing, serializing, annotating, and filtering.

• Ranking IE results by relevance in form of lists is shown in Section 8.2. This
enables users filtering the top k results or paginate the while result list in user
interfaces.

• Section 8.3 described how to serialize IE results in RDF based on named graphs.
Each graph represents information, which was recognized in text, predicted based
on the text content, known in the RDF graph, and formally known within the Web
document.

• The reverse annotation of natural language text with IE results was shown in
Section 8.4 by applying an RDFa serialization.

• Providing RDF results as named graphs allows the application of SPARQL queries.
Filtering expressions can span multiple extraction results and external RDF graphs

199

8 Incorporating SPARQL and RDF serializations into Information Extraction

describing several domains of concerns. Besides this feature for expressing even
complex information demands, the specific filter expressions are used to enhance
the efficiency of matching candidate RDF literals with the document’s text seg-
ments. The combined use of an RDF graph and a SPARQL query using the re-
spectively contained vocabulary for describing instances provides the application
of inference mechanisms entailing additional restrictions on classes and datatype
properties.

8.6.2 Conclusion

Finally, these emerging possibilities of utilizing RDF and SPARQL conforms the Hy-
pothesis H.2. The following contributions result from the presented integration and
processing of RDF serializations and SPARQL queries:

Contributions C.3 SPARQL is shown to be suitable for specifying IE templates. More
than that, it can enhance the extraction process as such. Due to the proposed
inference techniques, users may underspecify SPARQL queries to a certain degree.
The system is able to infer needed classifications and resulting datatype properties.

Contribution C.4 The serialization of IE results in RDF syntax and especially the re-
verse integration of IE results into Web pages by using RDFa enables machines to
interpret natural language text in terms of an underlying RDF graph.

200

9 Applications of RDF-based Information
Extraction

Who sees further a dwarf or a giant? Surely a
giant for his eyes are situated at a higher level
than those of the dwarf. But if the dwarf is placed
on the shoulders of the giant who sees further?

(Isaiah di Trani, c. 1200)

The presented approach of RDF based IE is implemented
based on Semantic Web technologies RDF and SPARQL.
Here, RDF based IE means extending traditional IE tech-
niques with features from RDF and SPARQL. This provides
IE applications with a potential to utilize and filter the in-
formation about a domain of concern from a respective RDF
graph. Finally, on the shoulders of Semantic Web technolo-
gies, a number of information extraction and filtering appli-
cations are implemented. They implement use cases with a
support for filtering, categorizing, and enriching natural lan-
guage text with information from RDF graphs.

This chapter outlines IE software systems and prototypes,
which were developed based on RDF-based IE. First, Sec-
tion 9.1 describes the RDF-based IE system SCOOBIE and
derived applications. Second, Section 9.2 address additional
application and experiments that base on results of this work.
Finally, Section 9.3 summarizes the presented applications and
addresses a position of their impact on Web users.

201

9 Applications of RDF-based Information Extraction

Figure 9.1: RDF-based IE-layer cake. Extraction logic is deployed as middleware
component that provides an RDF view on HTML data.

9.1 RDF-based Information Extraction Systems

As already mentioned in Section 3.10, the goal of implementing an RDF-based IE system
is deploying it within the technology stack of the Semantic Web. Figure 9.1 illustrates
this integration in terms of IE logic, providing RDF views on HTML content (the figure
is already printed on page 202). In detail, by using such an IE system, machines on the
Web are enabled to interpret the natural language content (or at least parts of it) of
a Web page in formal RDF terms related to an underlying RDF graph describing the
actual domain of concern.

9.1.1 SCOOBIE

The approaches presented in Chapters 5, 6, 7, and 8 were implemented and evaluated
based on the developed SCOOBIE prototype. At a glance, SCOOBIE is realized as
follows:

• SCOOBIE is developed in the Java programming language.

• SCOOBIE implements the architecture illustrated in Figure 5.7.

• SCOOBIE is based on a pipeline implementation of a finite state cascade consisting
of finite state transducer implementations related to each IE task.

• SCOOBIE stores RDF graphs in PostgresQL (see Section 6.2).

• The following Open Source libraries were used:

202

9.1 RDF-based Information Extraction Systems

Mallet is a machine-learning library implementing the CRF and maximum entropy
models [McCallum, 2002] described in Section 5.4.8 and 5.4.7.

Colt is a library implementing numeric algorithms on matrices1. Colt based ma-
trix operations are used for calculating covariance matrices (Section 5.4.4)
and implementing the hierarchical clustering (Section 5.4.3), the PCA (Sec-
tion 5.4.5), and finally the similarity-based recommendations of facts (Sec-
tion 7.8).

Jung is a graph implementation providing link analyzes algorithms.2 The Jung
graph implementation is used for computing graph metrics such as HITS
(Section 5.4.6), or PageRank (Section 5.4.6).

Sesame is an RDF library for handling RDF graphs and SPARQL.3 Sesame was
used to parse RDF graphs (Chapter 6) and SPARQL queries (Section 8.5)
and to serialize IE results into RDF (Section 8.3).

OpenNLP is a library providing text chunkers and POS taggers for English and
German.4 The text segmentation into sentences (Section 2.2.2) and POS
tagging (Section 2.2.2) was performed by using OpenNLP implementations.

Nutch is an IR library providing an implementation of a language detection.5 This
features was taken as basis for identifying the language of an incoming text
(Section 2.2.2).

PostgresQL is a relational database server.6 The PostgresQL database was used
for storing the domain describing RDF graph and for performing the SQL
queries described in Chapters 6 and 7.

The following Java code is based on the SCOOBIE library and illustrates a typical IE
program. In-line comments refer to related sections within this work.

1http://acs.lbl.gov/software/colt/
2http://jung.sourceforge.net/
3http://www.openrdf.org/doc/sesame2/system/
4http://nutch.apache.org/
5http://nutch.apache.org/
6http://www.postgresql.org/

203

http://acs.lbl.gov/software/colt/
http://jung.sourceforge.net/
http://www.openrdf.org/doc/sesame2/system/
http://nutch.apache.org/
http://nutch.apache.org/
http://www.postgresql.org/

9 Applications of RDF-based Information Extraction

Algorithm 9.1 (Java source code executing SCOOBIE)

// i n i t i a l i z i n g the under l y ing RDF graph
KnowledgeBase kb = new PostgresKB (// see Sec t ion 6.2

connect ion , // connect ion to po s t g r e s s e r v e r
dbName , // database con ta in ing the RDF graph
”http :// dbpedia . org ” // URI o f the RDF graph

) ;

// c r ea t i n g the Semantic Ent i t y Recogni t ion p i p e l i n e
Pipe l i n e pipe = new Pipe l i n e (kb) ; // see Sec t ion 5.3
pipe . c on f i gu r e (

l a nguag eC l a s s i f i c a t i o n , // see Sec t ion 2 . 2 . 2 . 2
wordTokenizer , // see Sec t ion 2 . 2 . 2 . 3
sentenceTokenizer , // see Sec t ion 2 . 2 . 2 . 3
posTagger , // see Sec t ion 2 . 2 . 2 . 4
nounPhraseChunker , // see Sec t ion 7.2
su f f i xAr rayBu i lde r , // see Sec t ion 5 . 4 . 1
namedEntityRecognizer , // see Sec t ion 7.3
regexEnt i tyRecognizer , // see Sec t ion 6.7
namedEnt i tyClas s i f i e r , // see Sec t ion 7.7
i n s tanceReso lve r , // see Sec t ion 7.4
instanceDisambiguator , // see Sec t ion 7.5
f a c tRe t r i e v a l , // see Sec t ion 3.3
instanceRater , // see Sec t ion 7.6
factRecommender // see Sec t ion 7.8

) ;

// s p e c i f y i n g the IE temp la te in SPARQL
St r ing template = ”SELECT ∗ FROM . . . WHERE { . . . }” ; // see Sec t ion 8.5

// c r ea t i n g an i n t e r n a l document r ep r e s en t a t i on o f a Web page
Document doc = pipe . createDocument (”http :// . . . ” , template) ;

// execu te p i p e l i n e
for (int s tep = 0 ; pipe . hasNext (s tep) ; s tep = pipe . execute (step , doc)) {
l og (” f i n i s h e d ”+ pipe . getTranducer (s tep)) ;
}

// s e r i a l i z e r e s u l t s in t u r t l e
Tu r t l e S e r i a l i z e r t u r t l e = new Tu r t l e S e r i a l i z e r () // see Sec t ion 8.3
Reader rd f = t u r t l e . s e r i a l i z e (doc , kb) ;

SCOOBIE is published as Open Source under the Lesser Gnu Public License (LGPL)
license. The source code is hosted at https://github.com/benjamin-adrian/scoobie.

204

https://github.com/benjamin-adrian/scoobie

9.1 RDF-based Information Extraction Systems

9.1.2 A comparative view on Semantic Entity Recognition systems

Referring to the related work in Section 4.2, the IE systems Zemanta, DBpedia Spot-
light, Open Calais, as well as a naive baseline implementation called DynaQ are com-
pared to SCOOBIE by requesting them for recognizing instances from the DBpedia in the
Wikinews corpus. The intention of this evaluation is to show how the generic approaches
of the RDF-based IE system SCOOBIE performs compared to specialized implementa-
tions. Zemanta and DBpedia Spotlight7 are instance recognizing systems specialized on
the DBpedia RDF graph. Open Calais is specialized on its own proprietary RDF graph,
which contains owl:sameAs links to instances within the DBpedia.

DynaQ is an IR engine [Reuschling et al., 2010]. It computes the top 10 rated key-
words from a given text by using the TF-IDF metric. These keywords are used to
query a TF-IDF -based vector space model indexing the English Wikipedia. Resulting
Wikipedia articles are resolved with corresponding DBpedia instances, which are re-
turned as recognized instances. The DynaQ-based approach is designed as a general
baseline implementation of recognizing instances.

SCOOBIE results are evaluated in different settings. SCOOBIEBL denotes the base-
line line implementation corresponding to Section 7.9.4. SCOOBIE denotes a standard
configuration, in which degree is used for disambiguating instances. SCOOBIETOP10

denotes a standard configuration, in which the top 10 rated results according to a ca-
pacity based relevance rating are returned (see Section 7.9.9).

Table 9.1 illustrates the comparison results in terms of precision, recall, and F1-
measure.

RDF-based IE system precision recall F1

Zemanta 0.39 0.38 0.38

DBpedia Spotlight 0.12 0.55 0.20

Open Calais 0.26 0.09 0.11

SCOOBIETOP10 0.42 0.53 0.46

SCOOBIE 0.23 0.68 0.31

SCOOBIEBL 0.01 0.74 0.02

DynaQ 0.03 0.07 0.04

Table 9.1: A system comparison of instance recognition services.

The Wikinews corpus consists of 100 News stories from Wikinews, which were labeled
manually by six annotators. In general, it can be seen that, Wikinews is a difficult

7DBpedia Spotlight was configured with the parameters support=30 and confidence=0.2

205

9 Applications of RDF-based Information Extraction

corpus for performing instance recognition. All systems produced results rated with
F1-measures below 0.5. DynaQ is confirmed as baseline, which resulted in the lowest
F1-rating of 0.04.

The SCOOBIEBL configuration resulted in best-rated recall and worst rated precision
ratings. Changing the configuration to SCOOBIE heightens precision but lowers re-
call ratios. This configuration is already competitive to the DBpedia Spotlight system.
When restricting to the top 10 rated instances in the SCOOBIETOP10 configuration,
an additional increase of precision can be achieved. It also reduces the recall ratio by
15. However, the system reaches a comparable performance like Zemanta.

Listing some particular issues of the DBpedia RDF graph, figures out that performance
can be increased by fixing ambiguities within the RDF graph.

• Multiple URIs exist for exactly the same instance. For example, dbp:Barack obama

and dbp:barack Obama exist containing the literal values “Barack obama” and
“barack Obama”. Both instances link to dbp:Barack Obama by owl:sameAs.

• Categories exist about instances. Both share the same literal values. For exam-
ple, dbp:Category:Barack Obama and dbp:Barack Obama exist and both share the
literal “Barack Obama”.

• DBpedia instances exist, which correspond with disambiguation pages of the Wikipedia
linking to possible instance referents. However these disambiguation instances pos-
sess the same literal values. For example, dbp:Queen is such a disambiguation
instance possessing the literal value “Queen”.

These three natures of the DBpedia produce noisy links and ambiguity groups, which
lead to error prone decisions by the proposed link-based disambiguation methods. Clean-
ing the RDF graph from those noisy instances would most likely enhance the precision
of results of at least the SCOOBIE system.

9.1.3 Epiphany

Adrian et al. [2010] propose the Epiphany service, which creates an RDFa serialization of
IE results within the original content of a Web page. Hence, it generates a new version of
a passed Web page consisting of additional RDFa markup. This allows creating multiple
perspectives on a Web page’s content relating to the domain of concern of the underlying
RDF graph [Adrian and Dengel, 2011]. Epiphany ’s generated RDFa markup integrates
metadata directly into text passages of Web pages and thus annotates and thereby links
these text passages as logical topics of the document to additional information provided
by external LOD datasets. Epiphany adds stylesheet information to the RDFa enhanced
Web page highlighting RDFa content with colored borders (see screenshot in Fig. 9.2a).

206

9.1 RDF-based Information Extraction Systems

(a)Highlighted RDFa markup in a Web page.

(b)Requesting instance information about from a LOD dataset.

Figure 9.2: The Epiphany service linking instances from LOD graphs to semantic
entities via RDFa.

In addition, a mouse click on an RDFa enriched phrases triggers an asynchronous HTTP
request to the URI address of the respective instance returning more information about
the semantic entity’s referent in RDF. Finally, the resulting RDF information is rendered
into an HTML template. Figure 9.2b shows such a rendered information result in style
of a light box.

Epiphany figures out that RDF based IE allows enriching Web pages content with
additional information on recognized instances from an RDF graph. It is required that
the RDF graph is published as LOD, which means each URI of a contained instance can
be requested for RDF information via HTTP.

207

9 Applications of RDF-based Information Extraction

Figure 9.3: Screenshot of the Sterntaler faceted Web search.

9.1.4 Sterntaler

The Epiphany application consumed IE results in RDF within the scope of a single Web
page. In addition, the implemented Sterntaler faceted search application aggregates and
utilizes RDF results from multiple Web documents. The goal of Sterntaler is to collect
facets in terms of properties of recognized instances. These facets are used to populate
of a set of typed filters. Sterntaler integrates into a Web search engine. The developed
prototype was implemented based on the Google API. For a returned search result
list of documents, Sterntaler aggregates the RDF graphs extracted by SCOOBIE into a
mashup underlying the complete search result. An analysis of instances’ properties (e.g.,
prices, ratings, names) and their respective values returns frequently used properties that
Sterntaler uses for rendering faceted filters. Here, each property’s values populates its
own filter.

Figure 9.3 shows the user interface of Sterntaler that used SCOOBIE on a LOD dataset
about products by Amazon.com. Extracted filters are about product prizes, product
ratings, product titles, and overall ratings. The user is now enabled to select certain filter
values. This causes Sterntaler to present only those documents in the result list whose
scenario graphs contain instances that have known properties and values corresponding
to the selected filters and values.

The Sterntaler application illustrates the impact of utilizing LOD in form of RDF
graphs and IE for enhancing the IR functionality of Web search engines. Based on

208

9.2 Additional applications and experiments

the existing information from the RDF graph, properties and respective values from
recognized instances are aggregated. This provides users with an interface for filtering
the returned list of documents in terms of structured facets. Here, the contribution
of RDF based IE is the automatic extraction of these facets in terms of properties of
recognized instances.

9.2 Additional applications and experiments

Based on this research, a number of additional applications and experiments were con-
ducted. Each application is implemented by using SCOOBIE either as software library
component or as service.

Figure 9.4: Rendering recognized semantic entities on top of a document image.

9.2.1 Labeling a digital document image

Although the focus of this work is set on extracting information from Web documents,
Adrian et al. [2009e] describe an additional experiment conducted on scanned docu-
ments. Based on a scanned document, an Optical Character Recognition (OCR) was
performed [Breuel, 2008]. This results in a plain text extraction contained in the doc-
ument. SCOOBIE processed this plain text by using an RDF graph from a Semantic
Desktop system (see Section 9.2.2). On top of the digitalized document image, a trans-
parent layer was placed. On this layer, a visual projection of the IE results was rendered.
Figure 9.4 illustrates parts of a screenshot of the developed user interface. It highlights

209

9 Applications of RDF-based Information Extraction

recognized entities. For a recognized entity in text, which is hovered by the mouse on
the respective document image, the user interface provides an image icon representing
the entity’s class, and the relevance ratio of the recognized entity in form of a vertical
bar. The user is enabled to acknowledge each recognized entity in order to categorize the
document with the respective instance referent of the underlying RDF graph. A similar
scenario was performed by Ebert et al. [2010] on handwritten text; this approach was
also implemented on the basis of SCOOBIE.

You dropped this file:

Open File2009_wm_idocument.pdf

application/pdf

iDocument Using Ontologies for Extracting Information

iDocument

Using Ontologies for Extracting Information from Text

Benjamin Adrian, Heiko Maus, Andreas Dengel
KM Department, German Research Center for Artificial
Intelligence (DFKI)

iDocument

Benjamin Adrian

Andreas Dengel

Heiko Maus

Kaiserslautern

Information Extraction

Showroom

DFKI

Benjamin Adrian

iDocument

Andreas Dengel

Heiko Maus

Kaiserslautern

Information Extraction

Showroom

DFKI

Proposed recommendations:

Select multiple tags: These tags will be added:

Figure 9.5: The Nepomuk DropBox providing recognized instances as tag
recommendations.

9.2.2 Semantic Desktop

The idea of a Semantic Desktop comprises an RDF graph describing a personal informa-
tion model of a single user [Sauermann et al., 2006]. Within the Gnowsis and Nepomuk
implementations of a Semantic Desktop, Dengel and Adrian [2011] applied SCOOBIE
for recognizing instances representing personal concepts of the respective user in text.

210

9.2 Additional applications and experiments

Figure 9.5 illustrates a screenshot of the Nepomuk DropBox [Groza et al., 2007]. Here,
the user receives recognized instances from a text document as categorizing tag recom-
mendations. The upper part of the window lists document metadata, extracted on the
basis of the Aperture library. The lower left quarter contains a list of tag recommen-
dations. The lower rightern quarter contains a list of tags, which are approved by the
user. The DropBox is associated with a folder in the file system. Whenever the user
drops a document into this folder, the DropBox appears. In a user study, Adrian et al.
[2009c] evaluated the quality of the Nepomuk internal instance recommender compared
to SCOOBIE results. Both systems produce different tag recommendations, which were
rated comparable by the users.

(a)Explanations about the recognized instance
“Nepomuk”.

(b)Explanations about “Nepomuk” in form of a
graph.

Figure 9.6: (a)Tabular-based and (b) graph-based explanations on IE results.

9.2.3 Explanations

Handling formal RDF data within intermediate results in the OBIE pipeline, allows
generating formal explanations on why, how, what, and where a semantic entity was ex-
tracted. Forcher et al. [2008b] used iDocument, which was an early version of SCOOBIE,
for integrating general explanations on IE results in a specialized user interface. For a
given text, Figure 9.6 illustrates background information from an RDF graph about a
recognized instance in form of explanations. Figure 9.6a shows on the left side a list of
recognized instances grouped by types. This user is able to accept instances as cate-
gories by using the checkboxes. Besides each instance is an icon in form of a magnifier.

211

9 Applications of RDF-based Information Extraction

When clicking on this icon, an explanation about this instance appears (here, about
the instance “Nepomuk”). In this visualization, the explanation on the right side of
Figure 9.6a provides background information from the RDF graph about the respective
instance. Figure 9.6b shows a graph-based rendering of this explanation. A document
symbol attached to an icon denotes that this instance is recognized in text. Forcher
et al. [2008a] proposed a generalized approach an integrating explanation aware com-
puting illustrating iDocument as showcase. Adrian et al. [2009a] continued the activities
on explanations by investigating a user study about the impact of explanations on rating
relevance of IE results within a Semantic Desktop environment.

9.2.4 Textual case-based reasoning

Textual case-based reasoning investigates transforming textual descriptions on solving
a problem (e.g., cooking a meal by using a recipe) into a formal case representation.
Such a case can be retrieved, reused, and adapted to similar problems. Roth-Berghofer
and Adrian [2010] developed a system based on SCOOBIE, which uses an underlying
RDF graph representing a case base, for transforming textual case descriptions to formal
RDF representations. Roth-Berghofer et al. [2010] proposed using the content enrich-
ment based on SCOOBIE for enhancing text-based case description with additional
information from LOD sources.

9.3 Summary and Conclusion

The applications presented in this chapter utilize a version of the RDF based IE SCOOBIE
in form of a software library or service. SCOOBIE allows processing and interpreting
the natural language content of documents in terms of an underlying RDF graph. The
extracted results follow the formal semantics of the underlying RDF graphs. Hence,
processing the document content in form of the IE results in RDF becomes as simple as
writing an ordinary Semantic Web application.

9.3.1 Semantic content enrichment

Section 9.1 introduces the SCOOBIE system and compares it with related work. SCOOBIE
is an open source reference implementation of the presented RDF based IE approach.
Next, Section 9.2 lists additional applications and experiments that relate to directly
SCOOBIE. The presented applications use and process IE results in similar ways.

• Epiphany automatically generates RDFa annotations for enriching text content
with additional information from RDF graphs. (see Section 9.1.3)

• Sterntaler provides an automated extraction of semantic facets for navigating and
filtering within a Web search result. (see Section 9.1.4)

212

9.3 Summary and Conclusion

• The Nepomuk DropBox supports users in categorizing documents within their per-
sonal information model by proposing category recommendations.(see Section 9.2.2)

In general, the RDF based IE solution enables applications to recognize instances
from RDF graphs in natural language text and represent the recognition results again in
RDF. Enriching the respective semantic entities with additional information from the
underlying RDF graph results in the following process for content enrichment.

Example 9.1 (Content enrichment)

This content enrichment process utilizes semantic entities for generating a semantic
mashup by combining the natural language text content with RDF content from the
RDF graph.

1. The enrichment process starts with analyzing text passages in original Web pages
from the perspective of a dedicated domain of concern.

“From Port Angeles I carried on towards Forks on highway 101.”

2. The RDF graph describing the domain of concern is utilized by the RDF-based
IE system to recognize semantic entities in text and annotate these with RDFa
markup.

From <a about=”dbp:Port Angeles ”
property=” foaf :name ”>Port Angeles

I c a r r i e d on towards
<a about=”dbp:Folks%2C Washington”

property=” foaf :name ”>Forks on highway 101 .

3. The RDFa markup consists of URIs, which are used by applications for requesting
additional information in RDF about the respective subject..

dbp : Folks\%2C\ Washington
rd f s : l a b e l ”Folks ” ;
geo : l a t ” 47 .95 ”ˆxsd : double ;
geo : long ”−124.38”ˆxsd : double ;
f o a f : d ep i c t i on <http :// upload . wikimedia . org / . . . /Forks WA . jpg> ;
r d f s : s eeAl so <http ://maps . goog l e . de/maps? l l =47 . 95 ,−124 .38> .

4. Finally, this information is aggregated or visualized in mashups (see Figures 9.2a,
9.2b, 9.3, 9.6).

213

9 Applications of RDF-based Information Extraction

9.3.2 Position

Inspired by creating LOD perspectives on Web Pages and applications such as Sterntaler
and Epiphany, Adrian [2010] proposed a position about the potentials of enriching Web
documents with information from LOD by generating RDFa markup. Three exemplary
user stories illustrate the impact of RDF-based IE on three use cases.

Provide Sarah with additional product offers and reviews. Sarah is a PHD student.
shes wants to buy a laptop and has a budget of 600$. Sarah has a tight schedule,
so her plan is to search online to compare different offers regarding to product
properties and existing reviews from customers. Fortunately, Sarah knows LOD
and she is happy to see a LOD wrapper that gives her access to Amazon.com data
in RDF format. She knows Amazon possess a large knowledge base about prod-
ucts and vendors, their offers, and user generated ratings and experience reports
about using these products. Sarah likes Amazon and its marketplace, but wants
to give all online vendors a chance. Finally, she wants the cheapest offer for the
best laptop she can get with 600$. Therefore, she wants a projection of Amazon’s
product data to products mentioned in Web pages of online shops she found while
searching Google products.

Stimulate Pete’s imagination while reading a book Pete is a high school student. He
is reading Stephanie Meyer’s exciting vampire thriller on his iPad. Pete loves to
have a more colorful imagination about concrete sets and locations where actions
take place in. Therefore, he installed a fancy App that uses data from the DB-
pedia and the LinkedGeoData to produce a mashup on Google maps and Google
Streetview. This app provides him with scenery pictures, satellite images, and links
to additional background information about heritages, famous buildings, battle-
grounds, etc. Pete enjoys looking at real pictures and maps around the primeval
forests near the small town Folks in Washington, USA, which is the set of this
book on vampires, American natives, and werewolves.

Keep Tom up-to-date with relevant posts from Twitter and Facebook. Tom is an emer-
gent entrepreneur. He really knows about the power of social platforms like Twit-
ter or Facebook. Tom knows many experts, friends, and customers inside these
platforms and he likes to know about their opinion about some new technologies
and products Tom is reading about in blogs or other Web pages. Tom installed
a browser plugin that uses the RDF data published by Twitter and Facebook to
receive the latest tweets, comments, and blog entries from twitter and Facebook
from his contacts about topics mentioned in these Web pages.

214

9.3 Summary and Conclusion

9.3.3 Conclusion

Commercial services, such as Zemanta and Open Calais, show that the OBIE function-
ality, even when being tied to a single domain of concern, provides great potentials for
indexing and enriching text content. Adrian et al. [2010] describe this as bridging the
gap between the Web of Documents and the Web of Data. Compared to specialized
OBIE, the presented RDF-based IE approach is fa more general as it can adapt to any
kind of domain of concern as long as the contained data is published as RDF graph.
More specifically, Adrian and Dengel [2011] describe the use case of utilizing RDF from
LOD datasets about a certain field of knowledge (e.g., information about products, en-
cyclopedias, music) as a perspective that provides a specialized point of view on Web
documents by emphasizing those parts of the document content, for which additional
information exists. Agents are enabled to requesting RDF graphs within the Web of
Data for more information about recognized semantic entities.

Epiphany, Sterntaler, and the tools Sarah, Pete, and Tom are using, utilize RDF data
that is published as LOD for enriching semantic entities with formal markup. This
markup explicates the reference between a phrase in text and the instance within a data
set. The tools of Sarah, Pete, and Tom depend on different LOD sources enriching
the document content with additional information. The tools are based on the content
enrichment process, which is made possible by the proposed RDF-based IE approach
and LOD.

215

10 Concluding Information Extraction on
the Semantic Web

It’s Not Information Overload. It’s Filter Failure.

(Clay Shirky, 2008)

This work is introduced by Clay Shirky’s quote on information
overload. He demands effective filtering mechanisms for avoid-
ing effects of information overloading. RDF based IE filters
natural language text content by means of domain knowledge
from an existing RDF graph. The proposed approaches facili-
tate the implementation of efficient information filtering tools
demanded by Shirky. Hereby, the underlying research com-
bines the state-of-the-art from two disciplines. On the one
hand, it utilizes Semantic Web technology formalizing infor-
mation for an open exchange on the Web. On the other hand,
it extends IE methods of Computational Linguistics. Finally,
the presented approach extends the Semantic Web technol-
ogy stack by providing RDF views on the natural language
content of Web pages.

This chapter summarizes and concludes the presented RDF-
based IE technologies. Section 10.1 recapitulates the initial re-
search hypotheses and summarizes the efforts spent on proving
these. Section 10.2 reviews the lessons learned on perform-
ing IE on the Semantic Web. The conclusion of the major
outcomes and contributions is described in Section 10.4. Sec-
tion 10.5 discusses the predicted impact of RDF-based IE on
the Semantic Web handling and filtering information in near
future search and browsing applications.

217

10 Concluding Information Extraction on the Semantic Web

10.1 Summary

This work investigated IE approaches utilizing information, which is formalized in terms
of RDF. The underlying motivation and intention of the activities spent on this area
of research was to gain insights on how to incorporate RDF into IE-systems in order to
verify the following hypotheses (see Section 1.2):

The utilization of RDF into IE . . .

H.1 . . . enhances the IE process.

H.2 . . . facilitates design of IE-interfaces.

H.3 . . . involves domain adaptability.

These hypotheses result from a state-of-the-art analysis on open challenges in IE and
Semantic Web research (see Chapters 2 and 3). In common, the existing related work
focuses on single domains of concerns and does not provide any research insights on
how each single component of an RDF graph can be used for supporting IE algorithms
(see Chapter 4). Computational foundations were investigated and evaluated for passing
information from RDF graphs to IE algorithms by using tools, such as matrices from
linear algebra, metrics from statistics, probabilities from stochastics,and their combined
use in form of machine learning models (see Chapter 5). These foundations facilitate
clearly defining the Semantic Entity Recognition problem. Pre-processing techniques
were proposed for representing and rehashing information from RDF graphs for being
utilized by information extractors (see Chapter 6). Covering the complete IE process,
particular information extractors were enhanced by utilizing the information from RDF
graphs. They were evaluated on different RDF graphs and document corpora (see Chap-
ter 7). With respect to the input-output-interface of respective IE systems, IE templates
in terms of SPARQL queries as well as RDF serializations of IE results were developed
(see Chapter 8). The overall RDF-based IE approach resulted in a series of applications,
namely: SCOOBIE, Epiphany, and Sterntaler (see Section 9.1).

10.2 Discussion

The efforts spent on investigating the use of RDF within IE approaches involved issues,
which can be summarized by the following question:

“Does an RDF graph, formally describing a domain of concern, provide
enough information for information extractors to solve their respective

goals?”

218

10.3 Lessons-learned

The answer is, it depends on the nature of the respective RDF graph. In Section 9.1.2,
some natures of the DBpedia graph were illustrated, which irritated the resolution and
disambiguation of instances. The experiments performed on the datasets, i.e., DBpedia,
BBC music, and BBC nature, revealed that the quality of information extractors is
influenced by the specific graph content. Of course, this is caused by the different
statistics and model, which result from pre-processing these RDF graphs. The thresholds
used for clustering correlating classes or computing with probabilities in Markov chains
differ between RDF graphs. In addition, the metrics used for disambiguating or rating
recognized instances may also perform differently on different RDF graphs. Developers
should be aware of the fact that, even though RDF-based IE increases the amount
of adaptability, the exchange of RDF graphs always involves a recalibration of the IE
system.

An interesting result of the relevance rating experiment (see Section 7.9.9) was the
increase of result quality when applying a combined usage of text corpus and graph based
metrics. It raises the question, if a combined usage of the statistics from text corpora
and an RDF graphs increases the performance of information extractors, in general.

10.3 Lessons-learned

In this work, many lessons about the natures of utilized RDF graphs could be learned
when applying these within information extractors:

• Nearly all RDF graphs in the LOD cloud apply rdfs:label as basic naming prop-
erty for all kind of instances and classes. However, modeling different naming
properties to different classes facilitates the classification of named entities. There
is much more semantic in recognizing in text a person name than just a name.
Anyway, persons do have different names than companies, places, products, or
songs. Hence, classes on a taxonomic level such as persons, places, or organiza-
tions should possess their own naming properties which could be subsumed by
rdfs:label.

• The classification of instances should always be grounded on shared datatype and
object properties. The reason is that the distinction between politicians and artists
without using specialized datatype properties or object properties or respective
values cannot be recognized by any machine learning model. This was the reason
for clustering correlating classes in the pre-processing step (see Section 6.3).

• The nature of any formal instance is defined by its possessed properties. Adding
specialized relationships with restrictions on classes of domain and range between
instances increases the degree of formal semantics describing the nature of respec-
tive instances. This facilitates the application of link-based graph algorithms for
classifying, disambiguating, and rating recognized instances.

219

10 Concluding Information Extraction on the Semantic Web

• An owl:sameAs unification should be performed before utilizing the RDF graph in
IE applications. This object property indicates that two URI references actually
refer to the same thing: the individuals have the same “identity” [Bock et al.,
2009]. Hence, a unification of both individuals results in a merged number of
properties and values. It also avoids a disambiguation, as both URI represent the
same instance.

• Classes, datatype and object properties without any instantiations do not carry any
meaning that could be used for enhancing information extractors. The counted
bias of instantiated vocabulary items (properties or classes) in RDF graphs is
important as it influences resulting statistics. Uniform distributions of classes and
properties propose a best possible utilization within information extractors. This
holds especially when predicting new classes or properties.

10.4 Conclusion

In general, the activities performed in this work (Chapters 6 to 8) result in a number
of scientific contributions to the Semantic Web and Information Extraction research.
These are summarized in the following list. For a more detailed description, please refer
to Section 1.3.

C.1 Incorporating RDF into IE enables information extractors to utilize additional
background knowledge.

C.2 Incorporating RDF into IE involves the extension of traditional NER.

C.3 By utilizing terms from the formal vocabularies, which are used in RDF data sets,
SPARQL queries are applied for specifying IE templates that describe which types
of information the IE-system should extract from text.

C.4 In order to deploy the application of RDF-enhanced Information Extraction (IE)
into the general architecture of a Semantic Web, this work illustrates how to for-
malize extraction results in RDF.

C.5 A method was developed to use the knowledge of an RDF graph for automatically
labeling a text corpus with named entity classifications.

C.6 The investigated methods and applications are adaptable to various RDF graphs,
as they were evaluated successfully on a number of different RDF graphs.

These conclusions relate to the originating research hypotheses. On a more technical
level, the evaluation results provided us with the following realizations:

220

10.5 Future Work

• The matrix representation of RDF graphs is suitable to perform efficient compu-
tations on contained semantics (see Section 5.4.2).

• The application of prefix hashed suffix arrays to recognizing property values in
text scales to dimensions up to hundreds of millions of literals in RDF graphs (see
Section 7.4).

• The representation of RDF graphs in the proposed relational database schema
ensures a scaling, caching, querying access to information from RDF graphs within
the scope of information extractors (see Section 6.2).

• The proposed clustering of correlating classes based on hierarchical clustering on
a correlation matrix produces excellent results (see Section 6.3).

• The use of link-based metrics in combination with document-based statistics allows
the rating of recognized instances by relevance. Such a rating is suitable for filtering
irrelevant instances or for selecting the top rated k results (see Section 7.6).

Finally, the results of this research extended the state-of-the-art of the Semantic Web
technology stack by providing RDF views on the natural language content of Web pages.
The developed SCOOBIE system is published as Open Source at https://github.com/
benjamin-adrian/scoobie.

10.5 Future Work

The research on Semantic Web based IE approaches is still emerging. The evaluation of
existing services in Section 9.1.2 reveals that currently, the performance of such systems
is not ready for being used in enterprise applications. Because of experiences of this
work, we recommend investigating on the following research objectives.

10.5.1 Short-term investigations

Tensor representation of RDF graphs Instead of using a two-dimensional matrix for
representing RDF graphs (see Section 5.4.2), Franz et al. [2009] proposed using
three-dimensional tensors. Their research objective was focusing on rating RDF
triples in RDF graphs by relevance. Therefore, they generalized the Eigenvalue-
based PageRank algorithm to work on three dimensional tensors. It has to be
investigated if the representation in tensors enhances the disambiguation and rat-
ing, as well as the prediction of new relations between recognized instances.

Optimal count of clustering correlating classes Section 6.3 described the clustering of
correlating classes. The resulting approaches have to be parametrized specifying

221

https://github.com/benjamin-adrian/scoobie
https://github.com/benjamin-adrian/scoobie

10 Concluding Information Extraction on the Semantic Web

the number of clusters. Sugar and James [2003] describe an approach to automat-
ically estimating a good number of clusters. It is based on k-means clustering, but
we recommend transferring it to the hierarchical clustering, which was applied in
this work.

Combining graph-based disambiguation with text-based statistics Mendes et al. [2011],
the researchers of the DBpedia Spotlight system implemented the disambiguation
of instances on the basis of textual descriptions about each instance in combination
with the textual context around each recognized entity in text. It seems promising
combining the graph-based disambiguation (see Section 7.5) evaluated in this work
with the text-based approach of DBpedia Spotlight.

Train sequence taggers for classifying named entities The proposed training of named
entity classifiers, as described in Section 7.7, is based on a relational maximum
entropy classifier (see Section 5.4.7). It seems promising evaluating the use of
sequence taggers, such as a CRF (see Section 5.4.8), which is an extension of a
maximum entropy model, for classifying named entities.

Application of semantic roles Computational Linguistics comprise the notion of for-
malizing the meaning of events in sentences by introducing constraints on the
arguments of event predicates [Jurafsky and Martin, 2008]. Semantic roles define
signatures on predicates specifying, for example, “is employed at” to associate an
agent of kind person with an agent of kind organization. Palmer et al. [2005] de-
scribe Proposition Bank, an annotated corpus of semantic roles. The association
of roles from Proposition Bank with object properties from an RDF graph should
facilitate the classification of named entities in text and the recognition of relations
between named entities in a sentence.

Semi-supervised learning Hearst [1992] proposed a semi-supervised learning approach
for recognizing taxonomic relationships. The automatically labeling of training
data described in Section 6.8 may be extended with similar bootstrapping tech-
niques in order to enhance coverage of labeled entities in corpus.

Distributions of standard test corpora The algorithms developed and investigated in
this research are evaluated on different corpora (see Section 7.9.1). All efforts spent
on creating these corpora were part of this research. The OBIE research community
would benefit from providing a series of gold standard corpora. A significant system
comparison can only be provided by evaluating OBIE systems and algorithms based
on such gold standard corpora. Hence, we strongly recommend its creation.

Deploy SPARQL endpoints on the basis of SCOOBIE Following the contribution of
this work, we recommend deploying SCOOBIE as open Web service. It should

222

10.5 Future Work

provide one or multiple SPARQL endpoints relating to RDF graphs, such as DB-
pedia or Freebase.

10.5.2 Long-term investigations

In addition to these technical issues, investigating the following rather general issues,
would facilitate the implementation of RDF based IE systems:

Extend ontology languages to represent proper names. In Section 5.1, the sign the-
ory of Peirce is combined with the semantics of proper names from text and in-
stances from RDF graphs. Unfortunately, it is not possible to distinguish the
natures of datatype properties in clearly representing either labels (e.g., “sweet-
heart”), attributes (e.g., “1.73m”), or proper names (e.g., “Benjamin Adrian”) in
RDF graphs. Very frequently rdfs:label or derived datatype properties are used
for describing labels and names for all classes of instances within the RDF graph.
However, assigning well-defined proper naming datatype properties for each class
preserves a higher degree of formalism. Based on a match between a noun phrase
in text and such a proper naming datatype property value, the information ex-
tractor is capable to infer the type of the respective semantic entity, directly. This
facilitates the disambiguation of word senses and would enhance the performance
of the automatically labeling of corpus data.

Extend the functional capabilities of SPARQL. Extending the Semantic Web with a
query language, the SPARQL specification is defined upon the stateless HTTP
protocol. This results in the absence of cursor concepts, which leads to a large
consumption of a channel’s bandwidth and client’s memory when requesting large
portions of data. This is the case, when looking for matching datatype property
values in text. Here, hundreds of thousands of results may be received at once,
when matching the word “gold” with the, for example, the DBpedia. Such a
massive amount of data clearly exceeds the capacity and answer time of networks
and applications. Hence, we used a relational database as back-end. However, as
soon as SPARQL endpoints provide functionality for such scalable requests, they
could serve as native back-ends for RDF based IE systems. This would increase the
adaptability of such systems, as they would be able connecting to any SPARQL
endpoint, which is available on the Web.

Complete the DOM API to create elements within plain text content. The serializa-
tion of IE results in RDFa requires the creation of HTML elements around phrases
in text. The Document Object Model (DOM) of HTML is an API to let programs
access, create, and modify elements. Unfortunately, it lacks the support for creat-
ing elements, such as <DIV> or , in plain text. These elements are required
to append RDF in attributes. Hence, adding such a functionality to the World

223

10 Concluding Information Extraction on the Semantic Web

Wide Web Consortium (W3C)’s DOM specification facilitates the serialization of
IE results in Web pages via RDFa. Of course, such a modification creates devel-
opment costs for browser vendors and other API implementers. Therefore, it is
considered as a long-term goal.

Investigate the recognition of structural natures of RDF graphs. Using information from
RDF graphs, i.e., proper names of instances and links between instances, can be
facilitated if some natures of the RDF graph are explicitly known. The following
questions should give an impression on the impact of such an investigation:

Is the graph between instances fully connected or does it contain a number of
unconnected clusters? The RDF graph of DBpedia is fully connected, the graphs of
BBC nature and BBC music not. As shown in Sections 7.9.6 and 7.9.9, connectivity
influences the effective application of link metrics to disambiguating and rating
recognized instances in text.

How many class hierarchies are used within the RDF graph? How balanced, in
numbers of instantiations, are these hierarchies? Do they overlap? The clustering
of and labeling with classes in Chapter 6 illustrates the effects of class hierarchies
to IE tasks.

10.6 Acknowledgments

Activities on this work accompanied a series of research projects, which resulted in a list
of contributions.

DocuTag, German research funding, Stiftung Rheinland-Pfalz für Innovation, [Adrian
et al., 2008a]

iDocument, German research funding, Stiftung Rheinland-Pfalz für Innovation, [Adrian
et al., 2009b]

Nepomuk, EU FP6 research funding, Grant FP6-027705, [Dengel and Adrian, 2011]

Perspecting, German research funding, BMBF, Grant 01IW08002, [Adrian et al., 2010],
[Dengel and Adrian, 2011]

REMIX, German research funding, Zentrales Innovationsprogramm Mittelstand (ZIM),
Grant KF2013005SM9, [Adrian and Dengel, 2011]

SemoPad, German research funding, Stiftung Rheinland-Pfalz für Innovation, [Adrian
and Schwarz, 2011]

224

Bibliography

B. Adida, I. Herman, M. Sporny, and M. Birbeck. RDFa 1.1 Primer, rich structured
data markup for web documents. Technical report, World Wide Web Consortium, 4
2011. URL http://www.w3.org/TR/rdfa-primer/. 22, 195

B. Adrian. Potentials of enriching the Web of Documents with Linked Data by generating
RDFa markup. In V. Presutti, F. Scharffe, and V. Svatek, editors, Proceedings of
the 1st Workshop on Knowledge Injection into and Extraction from Linked Data.
Workshop on Knowledge Injection into and Extraction from Linked Data (KIELD-
2010), volume 631, pages 66–67. CEUR-WS, 2010. 195, 214

B. Adrian and A. Dengel. Believing Finite-State cascades in Knowledge-based Infor-
mation Extraction. In A. Dengel, K. Berns, T. Breuel, F. Bomarius, and T. Roth-
Berghofer, editors, KI 2008: Advances in Artificial Intelligence. German Conference
on Artificial Intelligence (KI), Kaiserslautern, Germany, volume 5243 of Lecture Notes
in Computer Science, LNCS, pages 152–159. Springer, 2008. ISBN 978-3-540-85844-7.
38, 39

B. Adrian and A. Dengel. Linked Open Data Perspectives: Incorporating Linked Open
Data into Information Extraction on the Web. it - Information Technology, 53(3):
117–124, 5 2011. 206, 215, 224

B. Adrian and S. Schwarz. Using Suffix Arrays for Efficient Recognition of Named
Entities in Large Scale. In A. König, A. Dengel, K. Hinkelmann, K. Kise, R. J.
Howlett, and L. C. Jain, editors, Knowlege-Based and Intelligent Information and
Engineering Systems, volume 6882 of Lecture Notes in Computer Science, pages 420–
429. Springer, 2011. ISBN 978-3-642-23862-8. 137, 138, 224

B. Adrian, H. Maus, and A. Dengel. DocuTag - Semantische Dienste für das Tagging
von Dokumenten in Unternehmen: Kompetenzzentrum für das Büro der Zukunft. In
B. Klempt, D. J. Ohl, C. Janssen-Neumann, U. Mayer, and G. Fischer, editors, Stiftung
Rheinland-Pfalz für Innovation Jahresbericht 2007, pages 39–41. Stiftung Rheinland-
Pfalz für Innovation, 2008a. 192, 224

B. Adrian, G. Neumann, A. Troussov, and B. Popov, editors. Proceedings 1st Inter-
national and KI-08 Workshop on Ontology-based Information Extraction Systems.
Ontology-based Information Extraction Systems (OBIES-08), located at KI 2008,
September 23-26, Kaiserslautern, Germany, volume 400, 2008b. DFKI, CEUR. 66

225

http://www.w3.org/TR/rdfa-primer/

Bibliography

B. Adrian, B. Forcher, T. Roth-Berghofer, and A. Dengel. Explaining Ontology-Based
Information Extraction in the NEPOMUK Semantic Desktop. In T. Roth-Berghofer,
N. Tintarev, and D. B. Leake, editors, Workshop 10@IJCAI-09: Explanation-aware
Computing (ExaCt 2009). International Joint Conference on Artificial Intelligence
(IJCAI-09), July 11-12, Pasadena,, California, United States, pages 94–101. AAAI,
7 2009a. 212

B. Adrian, J. Hees, L. van Elst, and A. Dengel. iDocument: Using Ontologies for Extract-
ing and Annotating Information from Unstructured Text. In B. Mersching, M. Hund,
and Z. Aziz, editors, KI 2009: Advances in Artificial Intelligence. German Conference
on Artificial Intelligence (KI-2009), September 15-18, Paderborn, Germany, volume
5803 of Lecture Notes in Artificial Intelligence, LNAI, pages 249–256. Springer-Verlag,
Heidelberg, 9 2009b. ISBN 978-3-642-04616-2. 224

B. Adrian, M. Klinkigt, H. Maus, and A. Dengel. Using iDocument for Document
Categorization in Nepomuk Social Semantic Desktop. In A. Paschke, H. Weigand,
W. Behrendt, K. Tochtermann, and T. Pellegrini, editors, Proceedings of I-KNOW 09
and I-SEMANTICS 09. International Conference on Semantic Systems (iSemantics-
09), September 2-4, Graz, Austria, pages 638–643. Verlag der Technischen Universität
Graz, Graz, 9 2009c. ISBN 978-3-85125-060-2. 211

B. Adrian, H. Maus, and A. Dengel. iDocument: Using Ontologies for Extracting Infor-
mation from Text. WM2009: 5th Conference on Professional Knowledge Management,
3 2009d. 196

B. Adrian, H. Maus, M. Kiesel, and A. Dengel. Towards Ontology-based Information Ex-
traction and Annotation of Paper Documents for Personalized Knowledge Acquisition.
In K. Hinkelmann and H. Wache, editors, WM2009: 5th Conference on Professional
Knowledge Management. Conference on Professional Knowledge Management (WM-
2009), March 25-27, Solothurn, Switzerland, volume P-145 of Lecture Notes in Infor-
matics, LNI. GI, Gesellschaft für Informatik, Bonn, 3 2009e. ISBN 978-3-88579-239-0.
209

B. Adrian, , J. Hees, I. Herman, M. Sintek, and A. Dengel. Epiphany: Adaptable RDFa
Generation Linking the Web of Documents to the Web of Data. In Proceedings of
EKAW 2010 - Knowledge Engineering and Knowledge Management by the Masses,
Lecture Notes in Informatics, LNI. Springer-Verlag, Heidelberg, October 2010. 147,
206, 215, 224

N. I. Al-Rajebah and H. S. Al-Khalifa. Semantic Relationship Extraction and Ontology
Building using Wikipedia: A Comprehensive Survey. International Journal of Com-
puter Applications, 12(3):6–12, December 2010. Published By Foundation of Computer
Science. 151

226

Bibliography

C. Allauzen and M. Mohri. N-Way Composition of Weighted Finite-State Transducers.
Int. J. Found. Comput. Sci., 20(4):613–627, 2009. 39

J. Allen. Natural Language Understanding. Benjamin/Cummings Publishing Company,
Inc., redwood City, CA 94065, 2 edition, 1994. ISBN 978-0805303346. 30

J. Alpert and N. Hajaj. We knew web was big. Official Google blog, July 2008. URL
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html. 21

D. Appelt, J. Hobbs, J. Bear, D. Israel, and M. Tyson. FASTUS: A Finite-State Pro-
cessor for Information Extraction From Real-World Text. In Proc. Int. Joint Conf.
on Artificial Intelligence, 1993. 38

D. E. Appelt and D. J. Israel. Introduction to Information Extraction Technology. A
tutorial prepared for IJCAI-99, Stockholm, Schweden, 1999. URL http://www.ai.

sri.com/~appelt/ie-tutorial/IJCAI99.pdf. 38

N. Bach and S. Badaskar. A review of relation extraction, 2007. URL http://www.cs.

cmu.edu/~nbach/papers/A-survey-on-Relation-Extraction.pdf. 47, 48

D. Becket. RDF/XML): Syntax Specification (Revised). Technical report, World Wide
Web Consortium, 2 2004. URL http://www.w3.org/TR/rdf-syntax-grammar/. 53

D. Beckett and T. Berners-Lee. Turtle - Terse RDF Triple Language. Team
submission, W3C, 2007. URL http://www.w3.org/TeamSubmission/turtle/.
http://www.w3.org/TeamSubmission/turtle/. 26, 53

T. Berners-Lee. Linked data. World wide web design issues, July 2010. URL http:

//www.w3.org/DesignIssues/LinkedData.html. 61

T. Berners-Lee and D. Connolly. Notation3 (N3): A readable RDF syntax. Tech-
nical report, World Wide Web Consortium, 1 2008. URL http://www.w3.org/

TeamSubmission/n3/. 53

T. Berners-Lee and M. Fischetti. Weaving the Web : The Original Design and Ultimate
Destiny of the World Wide Web by its Inventor. Harper San Francisco, sep 1999.
ISBN 0062515861. 25

T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,
284(5):34–43, 2001. ISSN 0036-8733. 22, 51, 52

C. Bizer and R. Cyganiak. The TriG Syntax. Technical report, FU Berlin, 7 2007. URL
http://www.wiwiss.fu-berlin.de/suhl/bizer/TriG/Spec/. 58, 194

C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The Story So Far. International
Journal on Semantic Web and Information Systems, 5(3):1–22, 2009a. 61

227

http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
http://www.ai.sri.com/~appelt/ie-tutorial/IJCAI99.pdf
http://www.ai.sri.com/~appelt/ie-tutorial/IJCAI99.pdf
http://www.cs.cmu.edu/~nbach/papers/A-survey-on-Relation-Extraction.pdf
http://www.cs.cmu.edu/~nbach/papers/A-survey-on-Relation-Extraction.pdf
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/TeamSubmission/n3/
http://www.w3.org/TeamSubmission/n3/
http://www.wiwiss.fu-berlin.de/suhl/bizer/TriG/Spec/

Bibliography

C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak, and S. Hellmann.
DBpedia - A crystallization point for the Web of Data. Web Semantics, 7:154–165,
September 2009b. ISSN 1570-8268. 58, 119

C. Bock, A. Fokoue, P. Haase, R. Hoekstra, I. Horrocks, A. Ruttenberg, U. Sattler,
and M. Smith. OWL 2 web ontology language structural specification and functional-
style syntax. Technical report, World Wide Web Consortium, 10 2009. URL http:

//www.w3.org/TR/owl2-syntax/. 57, 79, 220

K. Bontcheva, V. Tablan, D. Maynard, and H. Cunningham. Evolving GATE to meet
new challenges in language engineering. Natural Language Engineering, 10(3–4):349–
373, 2004. ISSN 1351-3249. 38, 66, 69

S. Brants, S. Dipper, S. Hansen, W. Lezius, and G. Smith. The TIGER treebank. In
Proceedings of the Workshop on Treebanks and Linguistic Theories, Sozopol, 2002. 41,
136

T. Breuel. The OCRopus Open Source OCR System. In B. Yanikoglou and K. Berkner,
editors, Proceedingsof the Document and Retrival XV, IS&T/SPIE 20th Annual Sym-
posium 2008. DRR-2008, January 16-31, San Jose, CA, United States, volume 6815.
SPIE, 2008. 209

C. Brewster, F. Ciravegna, and Y. Wilks. Background and Foreground Knowledge in Dy-
namic Ontology Construction Viewing Text as Knowledge Maintenance. In R. Dieng-
Kuntz and F. Gandon, editors, KCAP 2003 Workshop on Knowledge Management and
the Semantic Web, pages 9–16. KCAP, 2003. A revised version of a paper presented
at SIGIR 03. 65

D. Brickley and R. V. Guha. RDF vocabulary description language 1.0: RDF schema.
Technical report, World Wide Web Consortium, 2 2004. URL http://www.w3.org/

TR/2004/REC-rdf-schema-20040210/. 58, 78

D. Brickley and L. Miller. FOAF Vocabulary Specification 0.98, January 2010. URL
http://xmlns.com/foaf/spec/20100809.html. 58

J. Broekstra, A. Kampman, and F. V. Harmelen. Sesame: A Generic Architecture for
Storing and Querying RDF and RDF Schema. In I. Horrocks and J. Hendler, editors,
The Semantic Web – ISWC 2002, Lecture Notes in Computer Science, pages 54–68.
Springer Berlin / Heidelberg, 2002. 100

P. Buitelaar, P. Cimiano, and B. Magnini, editors. Ontology Learning from Text: Meth-
ods, Evaluation and Applications, volume 123 of Frontiers in Artificial Intelligence
and Applications. IOS Press, Amsterdam, The Netherlands, July 2005. 65, 67, 72,
151

228

http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/
http://xmlns.com/foaf/spec/20100809.html

Bibliography

P. Buitelaar, P. Cimiano, S. Racioppa, and M. Siegel. Ontology-based Information
Extraction with SOBA. In Proceeding of LREC, Genoa, Italy, 5 2006. 69

J. J. Carroll and P. Stickler. RDF Triples in XML. In Proceedings of the Extreme Markup
Languages 2004 Conference, 2004. URL http://conferences.idealliance.org/

extreme/html/2004/Stickler01/EML2004Stickler01.html. 53, 58

J. J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named graphs, provenance and trust.
In Proceedings of the 14th international conference on World Wide Web, WWW ’05,
pages 613–622, New York, NY, USA, 2005. ACM. ISBN 1-59593-046-9. 58

N. Chomsky. Three models for the description of language. Information Theory, IRE
Transactions on, 2(3):113– –124, September 1956. ISSN 0096-1000. 31, 39

P. Cimiano. Ontology Learning and Population from Text: Algorithms, Evaluation
and Applications. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. ISBN
0387306323. 15, 66, 67, 72

P. Cimiano, A. Pivk, L. Schmidt-Thieme, and S. Staab. Learning Taxonomic Rela-
tions from Heterogeneous Sources. In Proceedings of the ECAI Ontology Learning and
Population Workshop, 2004. 46, 48

R. Cole, editor. Survey of the state of the art in human language technology. Cambridge
University Press, New York, NY, USA, 1997. ISBN 0-521-59277-1. 40

J. Cowie and W. Lehnert. Information Extraction. Communications of the ACM, 39(1):
80–91, 1996. 35, 49

J. Cowie and Y. Wilks. Information Extraction. In R. Dale, H. Moisl, and H. Somers,
editors, Handbook of Natural Language Processing. Marcel Dekker, New York, 2000.
49

H. Cunningham. Information Extraction, Automatic. Encyclopedia of Language and
Linguistics, 2nd Edition, 5:665–677, November 2006. 49

H. Cunningham, D. Maynard, and V. Tablan. JAPE: A Java Annotation Patterns
Engine (Second Edition). Research Memorandum CS–00–10, Department of Computer
Science, University of Sheffield, 2000. 43

H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE: A framework and
graphical development environment for robust NLP tools and applications. In 40th
Anniversary Meeting of the ACL, Proceedings, 2002. 43

G. DeJong. Prediction and substantiation: A new approach to natural language pro-
cessing. Cognitive Science, 3(3):251–273, 1979. ISSN 0364-0213. 35

229

http://conferences.idealliance.org/extreme/html/2004/Stickler01/EML2004Stickler01.html
http://conferences.idealliance.org/extreme/html/2004/Stickler01/EML2004Stickler01.html

Bibliography

G. F. DeJong. An overview of the FRUMP system. In W. G. Lehnert and M. H.
Ringle, editors, Strategies for Natural Language Processing, pages 149–176. Lawrence
Erlbaum, Hillsdale, NJ, 1982. 35

K. Dellschaft and S. Staab. Strategies for the Evaluation of Ontology Learning. In
Proceeding of the 2008 conference on Ontology Learning and Population: Bridging
the Gap between Text and Knowledge, pages 253–272, Amsterdam, The Netherlands,
2008. IOS Press. ISBN 978-1-58603-818-2. 121

A. Dengel and B. Adrian. Helping People Remember: Coactive Assistance for Personal
Information Management on a Semantic Desktop. In A. Fred, J. L. G. Dietz, K. Liu,
and J. Filipe, editors, Knowledge Discovery, Knowlege Engineering and Knowledge
Management, volume 128 of Communications in Computer and Information Science,
pages 3–16. Springer Berlin Heidelberg, 2011. ISBN 978-3-642-19032-2. 210, 224

B. DuCharme. Learning SPARQL. Oreilly & Assoc. Inc., 2011. ISBN 1449306594. 189,
197

R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-Interscience,
New York, second edition, 2001. 26, 87, 88, 90, 94, 97

T. Dunning. Statistical identification of language. Technical report, MCCS 94-273, New
Mexico State University, 1994. 40

S. Ebert, M. Liwicki, and A. Dengel. Ontology-based information extraction from hand-
written documents. In Proceedings of the 12th International Conference on Frontiers
in Handwriting Recognition. International Conference on Frontiers in Handwriting
Recognition (ICFHR-10), November 16-18, Kolkata, India, pages 483–488, 2010. 210

P. Elango. Coreference Resolution: A Survey. Technical report, University of Wisconsin
Madison, 2005. 46

D. W. Embley, D. M. Campbell, R. D. Smith, and S. W. Liddle. Ontology-based ex-
traction and structuring of information from data-rich unstructured documents. In
CIKM ’98: Proc. of the 7th international conference on Information and knowledge
management, pages 52–59, New York, NY, USA, 1998. ACM. ISBN 1-58113-061-9.
66, 69

D. W. Embley, C. Tao, and S. W. Liddle. Automatically Extracting Ontologically
Specified Data from HTML Tables of Unknown Structure. In Proceedings of the 21st
International Conference on Conceptual Modeling, ER ’02, pages 322–337, London,
UK, UK, 2002. Springer-Verlag. ISBN 3-540-44277-4. 70, 71

230

Bibliography

B. Endres-Niggemeyer. Ontology-based information extraction in agents’ hands. In
Proceedings 1st International and KI-08 Workshop on Ontology-based Information
Extraction Systems, volume 400, pages 15–21. DFKI, 2008. 70

J. R. Finkel, T. Grenager, and C. Manning. Incorporating non-local information into
information extraction systems by Gibbs sampling. In Proceedings of the 43rd An-
nual Meeting on Association for Computational Linguistics, ACL ’05, pages 363–370,
Stroudsburg, PA, USA, 2005. Association for Computational Linguistics. 43

B. Forcher, B. Adrian, and T. Roth-Berghofer. Explanations in the information ex-
traction system iDocument. Künstliche Intelligenz (KI), Schwerpunkt: Erklärungen
(2/08):32–34, 5 2008a. 212

B. Forcher, B. Adrian, and T. Roth-Berghofer. Explanation Styles in iDocument. In
T. Roth-Berghofer, S. Schulz, D. Bahls, and D. B. Leake, editors, Proceedings of
the Third International Workshop on Explanation-aware Computing. International
Workshop on Explanation-aware Computing, in Conjunction with 3rd, located at 18th
European Conference on Artificial Intelligence ECAI 2008, July 21-22, Patras, Greece,
volume 39, pages 144–156. CEUR-WS.org, Aachen, 2008b. 211

T. Franz, A. Schultz, S. Sizov, and S. Staab. TripleRank: Ranking Semantic Web
Data by Tensor Decomposition. In Proceedings of the 8th International Semantic
Web Conference, ISWC ’09, pages 213–228, Berlin, Heidelberg, 2009. Springer-Verlag.
ISBN 978-3-642-04929-3. 221

D. Freitag. Machine Learning for Information Extraction in Informal Domains. PhD
thesis, Carnegie Mellon University, Nov. 1998. URL http://www.cs.cmu.edu/afs/

cs/user/dayne/www/ps/diss-freitag.ps. 43

D. Freitag. Machine Learning for Information Extraction in Informal Domains. Mach.
Learn., 39:169–202, May 2000. ISSN 0885-6125. 43

R. Gaizauskas and Y. Wilks. Information Extraction: Beyond Document Retrieval.
Journal of Documentation, 54(1):70–105, 1998. 49

B. Greene and G. Rubin. Automatic grammatical tagging of english. Technical report,
Department of Linguistics, Brown University, Providence, Rhode Island, 1981. 41

R. Grishman. Information Extraction: Techniques and Challenges. In SCIE ’97: Int.
Summer School on IE, pages 10–27, London, UK, 1997. Springer. ISBN 3-540-63438-X.
49

R. Grishman. The Proteus Project at New York University, 2002. URL http://nlp.

cs.nyu.edu. 33, 34

231

http://www.cs.cmu.edu/afs/cs/user/dayne/www/ps/diss-freitag.ps
http://www.cs.cmu.edu/afs/cs/user/dayne/www/ps/diss-freitag.ps
http://nlp.cs.nyu.edu
http://nlp.cs.nyu.edu

Bibliography

R. Grishman and B. Sundheim. Message Understanding Conference-6: a brief history.
In Proceedings of the 16th conference on Computational linguistics, pages 466–471,
Morristown, NJ, USA, 1996. Association for Computational Linguistics. 35, 38

T. Groza, S. Handschuh, K. Moeller, G. A. Grimnes, L. Sauermann, E. Minack, C. Mes-
nage, M. Jazayeri, G. Reif, and R. Gudjónsdóttir. The NEPOMUK Project - On the
way to the Social Semantic Desktop. In Proceedings of International Conferences on
new Media technology (I-MEDIA-2007) and Semntic Systems (I-SEMANTICS-07),
Graz, Austria, September 5-7., pages 201–210, 9 2007. 211

T. R. Gruber. A Translation Approach to Portable Ontologies Specifications. Knowledge
Acquisition, 5(2):199–220, 1993. 59

S. Handschuh, S. Staab, and F. Ciravagna. S-CREAM — Semi-automatic CREAtion of
Metadata. In 13th International Conference on Knowledge Engineering and Knowl-
edge Management (EKAW02), Proceedings, pages 358–372, Siguenza, Spain, 2002.
69

P. Hayes. RDF Semantics. Technical report, World Wide Web Consortium, 2 2004. URL
http://www.w3.org/TR/rdf-mt/. 55

M. A. Hearst. Automatic acquisition of hyponyms from large text corpora. In Proceedings
of the 14th conference on Computational linguistics - Volume 2, COLING ’92, pages
539–545, Stroudsburg, PA, USA, 1992. Association for Computational Linguistics. 45,
48, 222

P. Hitzler, M. Krötzsch, and S. Rudolph. Foundations of Semantic Web Technologies.
Chapman & Hall/CRC, 2009. 26

J. Hobbs and D. Israel. Principles of template design. In HLT ’94: Proc. of the workshop
on Human Language Technology, pages 177–181, Morristown, NJ, USA, 1994. ACL.
ISBN 1-55860-357-3. 37, 49

J. R. Hobbs. The generic information extraction system. In MUC5 ’93: Proceedings
of the 5th conference on Message understanding, pages 87–91, Morristown, NJ, USA,
1993. ACL. ISBN 1-55860-336-0. 37

D. Huynh, S. Mazzocchi, and D. Karger. Piggy Bank: Experience the Semantic Web
inside your web browser. Web Semantics, 5(1):16–27, 2007. ISSN 1570-8268. 70

N. Ireson, F. Ciravegna, M. E. Califf, D. Freitag, N. Kushmerick, and A. Lavelli. Eval-
uating machine learning for information extraction. In Proceedings of the 22nd inter-
national conference on Machine learning, ICML ’05, pages 345–352, New York, NY,
USA, 2005. ACM. ISBN 1-59593-180-5. 43, 176

232

http://www.w3.org/TR/rdf-mt/

Bibliography

I. Jacobs and N. Walsh. Architecture of the World Wide Web, Volume One. Recom-
mendation, W3C, 2004. URL http://www.w3.org/TR/webarch/. 22, 25

P. Jain, P. Hitzler, P. Z. Yeh, K. Verma, and A. P. Sheth. Linked Data is Merely More
Data. AAAI Spring Symposium ”Linked Data Meets Artificial Intelligence”, 2010. 62

E. T. Jaynes. Information Theory and Statistical Mechanics. The Physical Review, 106
(4):620–630, Mai 1957. 93

D. Jurafsky and J. H. Martin. Speech and Language Processing: An Introduction to Natu-
ral Language Processing, Computational Linguistics and Speech Recognition (Prentice
Hall Series in Artificial Intelligence). Prentice Hall, 2 edition, 2008. ISBN 0130950696.
25, 26, 30, 33, 38, 40, 42, 47, 48, 93, 222

J. Kärkkäinen, P. Sanders, and S. Burkhardt. Linear work suffix array construction. J.
ACM, 53:918–936, November 2006. ISSN 0004-5411. 85

J. Kleb and A. Abecker. Entity Reference Resolution via Spreading Activation on RDF-
Graphs. In L. Aroyo, G. Antoniou, E. Hyvönen, A. ten Teije, H. Stuckenschmidt,
L. Cabral, and T. Tudorache, editors, The Semantic Web: Research and Applications,
7th Extended Semantic Web Conference, Proceedings, Part I, volume 6088 of Lecture
Notes in Computer Science, pages 152–166. Springer, 2010. ISBN 978-3-642-13485-2.
144

J. M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM, 46:
604–632, September 1999. ISSN 0004-5411. 92

G. Klyne and J. J. Carroll. Resource Description Framework (RDF): Concepts and
Abstract Syntax. Technical report, World Wide Web Consortium, 2 2004. URL
http://www.w3.org/TR/rdf-concepts/. 55, 57

Y. Koren and R. M. Bell. Advances in Collaborative Filtering. In F. Ricci, L. Rokach,
B. Shapira, and P. B. Kantor, editors, Recommender Systems Handbook, pages 145–
186. Springer, 2011. ISBN 978-0-387-85819-7. 151

F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory, 47:498–519, 2001. 95

N. Kushmerick. Finite-State Approaches to Web Information Extraction. In SCIE, pages
77–91, 2002. 38

M. Labsky. Information Extraction from Websites using Extraction Ontologies. PhD
thesis, University of Economics Prague, 2008. 71

233

http://www.w3.org/TR/webarch/
http://www.w3.org/TR/rdf-concepts/

Bibliography

J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional Random Fields: Prob-
abilistic Models for Segmenting and Labeling Sequence Data. In Proceedings of the
Eighteenth International Conference on Machine Learning, ICML ’01, pages 282–289,
San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc. ISBN 1-55860-778-
1. 95

A. N. Langville, Carl, and D. Meyer. A survey of eigenvector methods of web information
retrieval. SIAM Review, 47(1):135–161, March 2009. 92

Y. Li and K. Bontcheva. Hierarchical, perceptron-like learning for ontology-based in-
formation extraction. In WWW ’07: Proceedings of the 16th international conference
on World Wide Web, pages 777–786, New York, NY, USA, 2007. ACM. ISBN 978-1-
59593-654-7. 68, 69

A. Maedche and S. Staab. Ontology Learning for the Semantic Web. IEEE Intelligent
Systems, 16:72–79, March 2001. ISSN 1541-1672. 66

A. D. Maedche. Ontology Learning for the Semantic Web. Kluwer Academic Publishers,
Norwell, MA, USA, 2002. ISBN 0792376560. 72

C. D. Manning, P. Raghavan, and H. Schtze. Introduction to Information Re-
trieval. Cambridge University Press, New York, NY, USA, 2008. ISBN 0521865719,
9780521865715. 114, 146, 158

F. Manola, E. Miller, and B. McBride. RDF Primer. Technical report, World Wide Web
Consortium, 2 2004. URL http://www.w3.org/TR/rdf-primer/. 22, 53, 54, 57

A. K. McCallum. MALLET: A Machine Learning for Language Toolkit., 2002. URL
http://mallet.cs.umass.edu. 38, 136, 203

P. Mendes, M. Jakob, A. Garcia-Silva, and C. Bizer. Dbpedia spotlight: Shedding
light on the web of documents. In Proceedings of the 7th International Conference on
Semantic Systems (I-Semantics), September 2011. 70, 137, 197, 222

D. Nadeau and S. Sekine. A survey of named entity recognition and classification.
Lingvisticae Investigationes, 30(1):3–26, January 2007. ISSN 0378-4169. 38, 43, 45

R. Navigli. Word sense disambiguation: A survey. ACM Comput. Surv., 41:10:1–10:69,
February 2009. ISSN 0360-0300. 46

C. Nedellec and A. Nazarenko. Ontologies and Information Extraction. CoRR, ab-
s/cs/0609137, 2006. 72

234

http://www.w3.org/TR/rdf-primer/
http://mallet.cs.umass.edu

Bibliography

A. Y. Ng, A. X. Zheng, and M. I. Jordan. Link analysis, eigenvectors and stability. In
Proceedings of the 17th international joint conference on Artificial intelligence - Vol-
ume 2, pages 903–910, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers
Inc. ISBN 1-55860-812-5, 978-1-558-60812-2. 92

K. Nigam, J. Lafferty, and A. Mccallum. Using Maximum Entropy for Text Classifica-
tion. In IJCAI-99 Workshop on Machine Learning for Information Filtering, pages
61–67, 1999a. 93, 94

K. Nigam, J. Lafferty, and A. Mccallum. Using Maximum Entropy for Text Classifica-
tion. In IJCAI-99 Workshop on Machine Learning for Information Filtering, pages
61–67, 1999b. 41

OpenLink Software Documentation Team. 16. RDF Data Access and Data Management.
OpenLink Software, August 2011. URL http://docs.openlinksw.com/virtuoso/

rdfdatarepresentation.html. last visited: 2001, 18 Aug. 100

E. Oren, S. Gerke, and S. Decker. Simple Algorithms for Predicate Suggestions Us-
ing Similarity and Co-occurrence. In Proceedings of the 4th European conference on
The Semantic Web: Research and Applications, ESWC ’07, pages 160–174, Berlin,
Heidelberg, 2007. Springer-Verlag. ISBN 978-3-540-72666-1. 151

L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking:
Bringing Order to the Web. Technical Report 1999-66, Stanford InfoLab, November
1999. URL http://ilpubs.stanford.edu:8090/422/. Previous number = SIDL-
WP-1999-0120. 92

M. Palmer, D. Gildea, and P. Kingsbury. The Proposition Bank: An Annotated Corpus
of Semantic Roles. Computational Linguistics, 31:71–106, March 2005. ISSN 0891-
2017. 222

C. S. Peirce. Mathematical Philosophy, volume IV of The New Elements of Mathematics.
Carolyn Eisele, ed., Mouton Publishers, The Hague, Netherlands, 1976. Humanities
Press, Atlantic Highlands, 1976. ISBN 90 279 3035 X. 76, 116

A.-V. Pietarinen. Peirce’s Pragmatic Theory of Proper Names. Transactions of the
Charles S. Peirce Society, 46(3):341–363, 2010. 116

B. Popov, A. Kiryakov, D. Manov, D. Ognyanoff, and M. Goranov. KIM - Semantic An-
notation Platform. In Second International Semantic Web Conference (ISWC2003),
Proceedings, volume 124, pages 834–849. Springer-Verlag Heidelberg, 2003. ISBN 3-
540-20362-1. 69

235

http://docs.openlinksw.com/virtuoso/rdfdatarepresentation.html
http://docs.openlinksw.com/virtuoso/rdfdatarepresentation.html
http://ilpubs.stanford.edu:8090/422/

Bibliography

B. Popov, A. Kiryakov, D. Ognyanoff, D. Manov, and A. Kirilov. KIM – a semantic
platform for information extraction and retrieval. Natural Language Engineering, 10
(3-4):375–392, 2004. 65, 68

E. Prud’hommeaux and A. Seaborne. SPARQL query language for RDF. W3C rec-
ommendation, World Wide Web Consortium, 2008. URL http://www.w3.org/TR/

rdf-sparql-query/. 60

C. Reuschling, S. Agne, and A. Dengel. DynaQ - Faceted Search for Document Retrieval.
In DAS ’10: Proceedings of the 9th IAPR International Workshop on Document Analy-
sis Systems. IAPR International Workshop on Document Analysis Systems (DAS-10),
June 9-11, Boston,, MA, United States. ACM, 2010. 205

T. Roth-Berghofer and B. Adrian. From Provenance-awareness to Explanation-
awareness—When Linked Data Is Used for Case Acquisition from Texts. In C. Marling,
editor, ICCBR 2010 Workshop Proceedings. Provenance-Aware Case-Based Reason-
ing: Applications to Reasoning, Metareasoning, Maintenance and Explanation (PA-
CBR-2010), located at ICCBR 2010, July 19-22, Alessandria, Italy, pages 103–106. Di-
partimento di Informatica Università del Piemonte Orientale ”A. Avogadro”, Alessan-
dria, 6 2010. 212

T. Roth-Berghofer, B. Adrian, and A. Dengel. Case Acquisition from Text: Ontology-
based Information Extraction with SCOOBIE for myCBR. In I. Bichindaritz and
S. Montani, editors, Case-Based Reasoning Research and Development: 18th Interna-
tional Conference on Case-Based Reasoning. International Conference on Case-Based
Reasoning (ICCBR-2010), in Conjunction with 18th, July 19-22, Alessandria, Italy,
volume 6176 of Lecture Notes in Artificial Intelligence, LNAI, pages 451–464. Springer
Verlag, Heidelberg, 7 2010. ISBN 978-3-642-14273-4. 212

N. Sager. Syntactic analysis of natural language. Advances in Computers, 8:153–188,
1967. 35

N. Sager. Natural Language Information Processing: A Computer Grammar of English
and Its Applications. Addison-Wesley Pub. Co., 1981. ISBN 0201067692. 35

H. Saggion, A. Funk, D. Maynard, and K. Bontcheva. Ontology-based Information
Extraction for Business Applications. In Proceedings of the 6th International Semantic
Web Conference (ISWC 2007), Busan, Korea, November 2007. 69

L. Sauermann, G. A. Grimnes, M. Kiesel, C. Fluit, H. Maus, D. Heim, D. Nadeem,
B. Adrian, and A. Dengel. Semantic Desktop 2.0: The Gnowsis Experience. In
International Semantic Web Conference. Volume 4273 of Lecture Notes in Computer
Science, number 4273 in Lecture Notes in Computer Science, pages 887–900. Springer,
11 2006. 210

236

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

Bibliography

R. C. Schank and R. P. Abelson. Scripts, Plans, Goals and Understanding: an Inquiry
into Human Knowledge Structures. L. Erlbaum, Hillsdale, NJ, 1977. 35

J. R. Searle. Minds, brains, and programs. Behavioral and Brain Sciences, 3(03):417–
424, 1980. 59

S. C. Shapiro. Encyclopedia of Artificial Intelligence. John Wiley & Sons, Inc., New
York, NY, USA, 2nd edition, 1992. ISBN 0471503053. 30

C. Shirky. It’s Not Information Overload. It’s Filter Failure. Keynote at Web 2.0 Expo,
September 2008. URL http://www.web2expo.com/webexny2008/public/schedule/

detail/4817. 21

M. Sintek, M. Junker, L. van Elst, and A. Abecker. Using Information Extraction Rules
for Extending Domain Ontologies. In Workshop on Ontology Learning. CEUR-WS.org,
2001. 69

SPARQL Working Group. Sparql query language for rdf, 2008. URL http://www.w3.

org/2001/sw/wiki/index.php?title=SPARQL&oldid=1374. 60, 196

M. M. Stark and R. F. Riesenfeld. Wordnet: An electronic lexical database. In Proceed-
ings of 11th Eurographics Workshop on Rendering. MIT Press, 1998. 37

P. Stickler. CBD - concise bounded description. Technical report, World Wide Web
Consortium, June 2005. URL http://www.w3.org/Submission/CBD/. 55

C. A. Sugar and G. M. James. Finding the Number of Clusters in a Dataset: An
Information-Theoretic Approach. Journal of the American Statistical Association, 98
(463):750–763, 2003. ISSN 01621459. 105, 222

C. Sutton and A. McCallum. An Introduction to Conditional Random Fields for Re-
lational Learning. In L. Getoor and B. Taskar, editors, Introduction to Statistical
Relational Learning. MIT Press, 2006. URL http://www.cs.umass.edu/~casutton/

publications/crf-tutorial.pdf. 95

E. F. Tjong Kim Sang and S. Buchholz. Introduction to the CoNLL-2000 shared task:
chunking. In Proceedings of the 2nd workshop on Learning language in logic and the 4th
conference on Computational natural language learning - Volume 7, ConLL ’00, pages
127–132, Stroudsburg, PA, USA, 2000. Association for Computational Linguistics. 42

E. F. Tjong Kim Sang and F. De Meulder. Introduction to the CoNLL-2003 shared
task: language-independent named entity recognition. In Proceedings of the seventh
conference on Natural language learning at HLT-NAACL 2003 - Volume 4, CONLL
’03, pages 142–147, Stroudsburg, PA, USA, 2003. Association for Computational Lin-
guistics. 43, 120

237

http://www.web2expo.com/webexny2008/public/schedule/detail/4817
http://www.web2expo.com/webexny2008/public/schedule/detail/4817
http://www.w3.org/2001/sw/wiki/index.php?title=SPARQL&oldid=1374
http://www.w3.org/2001/sw/wiki/index.php?title=SPARQL&oldid=1374
http://www.w3.org/Submission/CBD/
http://www.cs.umass.edu/~casutton/publications/crf-tutorial.pdf
http://www.cs.umass.edu/~casutton/publications/crf-tutorial.pdf

Bibliography

B. Todorovic, S. Rancic, I. Markovic, E. Mulalic, and V. Ilic. Named entity recognition
and classification using context Hidden Markov Model. In Neural Network Applications
in Electrical Engineering, 2008. NEUREL 2008. 9th Symposium on, pages 43–46,
September 2008. 43, 45

A. Tori. Zemanta service. Zemanta, 2008. URL http://developer.zemanta.com/

docs/Zemanta_API_companion. 70

H. Uszkoreit. What is Computational Linguistics, 2000. URL http://www.coli.

uni-saarland.de/~hansu/what_is_cl.html. 30

W3C. Linked data, 2010a. URL http://www.w3.org/standards/semanticweb/data.
61

W3C. Vocabularies, 2010b. URL http://www.w3.org/standards/semanticweb/

ontology. 58, 59

M. E. Wall, A. Rechtsteiner, and L. M. Rocha. Singular Value Decomposition and
Principal Component Analysis. ArXiv Physics e-prints, 8 2002. 90

K. Wilkinson, C. Sayers, H. A. Kuno, and D. Reynolds. Efficient RDF Storage and
Retrieval in Jena2. In I. F. Cruz, V. Kashyap, S. Decker, and R. Eckstein, editors,
SWDB, pages 131–150, 2003. 100

Y. Wilks. Information Extraction as a Core Language Technology, What is IE? In
SCIE ’97: Int. Summer School on IE, pages 1–9, London, UK, 1997. Springer. ISBN
3-540-63438-X. 35, 49

D. C. Wimalasuriya and D. Dou. Ontology-based information extraction: An intro-
duction and a survey of current approaches. Journal of Information Science, 36(3):
306–323, 2010. 15, 66, 67, 68, 69, 72

R. Yangarber and R. Grishman. Customization of Information Extraction Systems. In
Proceedings of International Workshop on Lexically Driven Information Extraction,
July 1997. 49

238

http://developer.zemanta.com/docs/Zemanta_API_companion
http://developer.zemanta.com/docs/Zemanta_API_companion
http://www.coli.uni-saarland.de/~hansu/what_is_cl.html
http://www.coli.uni-saarland.de/~hansu/what_is_cl.html
http://www.w3.org/standards/semanticweb/data
http://www.w3.org/standards/semanticweb/ontology
http://www.w3.org/standards/semanticweb/ontology

	Introduction
	Motivation
	Hypotheses
	Contributions
	Prerequisites
	Terminology
	Outline

	Computation on natural language
	Processing natural language
	Syntactics
	Semantics
	Pragmatics

	Information Extraction
	Historic outline
	State-of-the-Art

	Unsolved and emerging challenges
	Contributions

	Representing knowledge on the Web
	Computing with semantics in the Semantic Web
	Resource Description Framework
	Representing instance knowledge
	Representing properties
	Representing classes
	Representing multiple RDF graphs
	Vocabularies
	Querying with SPARQL
	Utilizing RDF from the Web
	Unsolved and emerging challenges
	Contributions

	Ontology-based Information Extraction
	Ontologies in Information Extraction
	Ontology-based Information Extraction Systems
	Extraction ontologies
	Unsolved and emerging challenges
	Contributions

	Foundations for utilizing RDF in Information Extraction
	Linking URIs and textual references
	RDF components
	Literals
	Datatype properties
	Types
	Instances
	Object properties

	Semantic entity recognition process
	Required technological fundamentals
	Suffix arrays
	Matrix computations
	Hierarchical clustering
	Descriptive statistics
	Principle component analysis
	Link analysis in graphs
	Maximum entropy models
	Conditional Random Field

	Summary and Conclusion
	Summary
	Conclusion

	Preprocessing feature descriptions from text and RDF graphs
	Features in Information Extraction
	A relational model of RDF data
	Clustering correlating classes in RDF graphs
	Hierarchical clustering
	Principle Component Analysis

	RDF graph statistics
	Usage statistics of datatype properties
	Estimating cardinalities
	Estimating characteristic relations between classes

	Text corpus statistics
	Term and document frequencies
	Combining text corpus with RDF graph statistics

	Mining datatype properties for proper names
	Aligning datatype properties with regular expressions
	Automatically labeling a text corpus with classes
	Experiments and evaluations
	Datasets
	Clustering classes in DBpedia
	Proper name mining in DBpedia
	Learning a Markov chain from DBpedia
	Matching regular expressions with DBpedia literals
	Labeling the ConLL 2003 Corpus

	Summary and conclusion
	Summary
	Conclusion

	Processing the Semantic Entity Recognition
	Information Extractors
	Filtering text for proper names
	Spotting text for datatype property values
	Linking named entities to formal instances
	Resolving ambiguous semantic entities
	Rating relevance of semantic entities in text
	Classifying semantic entities
	Predicting object properties between semantic entities
	Experiments
	Test Corpora
	Evaluation metrics
	Accelerating the recognition of semantic entities
	Naive recognition of semantic entities
	Filtering entity recognition by datatype properties
	Graph-based disambiguation
	Entity classification on automatically generated training data
	Classification-based disambiguation
	Ranking extraction results by relevance
	Predicting object properties

	Summary and Conclusion
	Summary
	Conclusion

	Incorporating SPARQL and RDF serializations into Information Extraction
	Post-processing IE results
	Ranking IE results
	Serializing extraction results in RDF
	Annotating IE results in Web pages
	Filtering IE results by specifying templates in SPARQL
	Extracting Filtering Statements from SPARQL templates
	Inferring Filtering Statements from SPARQL templates

	Summary and Conclusion
	Summary
	Conclusion

	Applications of RDF-based Information Extraction
	RDF-based Information Extraction Systems
	SCOOBIE
	A comparative view on Semantic Entity Recognition systems
	Epiphany
	Sterntaler

	Additional applications and experiments
	Labeling a digital document image
	Semantic Desktop
	Explanations
	Textual case-based reasoning

	Summary and Conclusion
	Semantic content enrichment
	Position
	Conclusion

	Concluding Information Extraction on the Semantic Web
	Summary
	Discussion
	Lessons-learned
	Conclusion
	Future Work
	Short-term investigations
	Long-term investigations

	Acknowledgments

	Bibliography

