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Abstract

Groups with automatic structure (automatic groups for short) have recently received a lot
of attention in the literature. They have been shown to have many nice properties, and
consequently it has been asked whether these results can be carried over to monoids with
automatic structure. Here we show that there exist finitely presented monoids with auto-
matic structure that cannot be presented through finite and convergent string-rewriting
systems, thus answering a question in the negative that is still open for the class of auto-
matic groups. Secondly, we present an automatic monoid that has an exponential Dehn
function, which establishes another difference to the class of automatic groups. In fact,
both our example monoids are bi-automatic.

1 Introduction

In recent years the computational aspect has become more and more prominent in combi-
natorial group and semigroup theory. Given a semigroup, a monoid, or a group through
some finite description, one wishes to effectively determine information about its algebraic
structure. Although in general not much information on the algebraic structure presented
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can be extracted from a finite presentation, various methods have been used successfully in
certain instances.

The classical approach is based on the Todd-Cozeter method of enumerating the cosets of
a group G with respect to a subgroup H, which, however, is essentially limited to the case of
subgroups of finite index [TC36, Lee63, Sim94]. For the case of monoids a related method for
solving the task of determining the cardinality of a finite monoid can be found in [McN97].

Another approach is based on the notion of a convergent presentation. A (monoid-)
presentation (3; R) is called convergent if the string-rewriting system R is convergent, that
is, the reduction relation induced by R is both noetherian and confluent. The presentations
of this form are of particular interest, because the reduction relation induced by a convergent
string-rewriting system R yields a unique irreducible string for each congruence class of the
Thue congruence generated by R. Hence, if a monoid M has a finite presentation of this form,
then it has a decidable word problem. In fact, for the class of finite convergent presentations,
the wuniform word problem is decidable, which implies that for this class various decision
problems can be solved that are undecidable in general. For example, the problem of deciding
whether the monoid presented is actually a group is decidable for this class [Ott86, BO93].

When dealing with finitely generated subgroups of groups that are given through finite
convergent presentations, then in some instances information about the subgroups can be
obtained by using the theory of prefiz-rewriting systems, which can be seen as a variant of
coset enumeration [Kuh91, KMO94]. Gilman [Gil84] considers groups that are given through
finite, monadic, and convergent string-rewriting systems. His approach is based on performing
computations with regular sets, and it can also be interpreted as a generalization of coset
enumeration. Corresponding considerations had already led Book to the result that for
monoid-presentations involving finite, monadic, and confluent string-rewriting systems, all
those properties of Thue congruences are decidable that can be expressed through linear
sentences [Boo82b, Boo83].

During the 1980’s Epstein et al developed the notion of groups with automatic structure
[Eps92]. A finitely generated group G has an automatic structure if it has a finite set of
generators Y and a regular set S C 3* of representatives, which, however, need not be
unique, such that the following tasks can be performed by finite state acceptors:

(1.) Given two elements u,v € S, decide whether or not they both represent the same
element of the group G.

(2.) For a € %, if two elements u,v € S are given, decide whether or not ua and v represent
the same element of the group G.

Thus, the set of representatives is accepted by some finite state acceptor, the so-called
word acceptor, the finite state acceptor of (1.) is called the equality recognizer, and the finite
state acceptors of (2.) are called the multiplier automata.

Although the definition mentions explicitly a set of generators 3. for the group considered,
it turns out that the existence of an automatic structure is independent of the finite set of
generators chosen. Further, the word problem for each automatic group can be solved in
quadratic time, and the Dehn function of such a group has a quadratic upper bound, that is,
automatic groups are hyperbolic [Eps92]. Finally, each automatic group is finitely presented
and it satisfies the homological finiteness condition F' Py, [Al0o92], and hence, each automatic
group has finite derivation type [CO96].

If the group G has a finite convergent presentation (3; R), then the set of irreducible
strings IRR(R) is a regular set of unique representatives for the group G, and so also condition
(1.) above is satisfied. But in general there need not exist multiplier automata in this



situation. And indeed, there exist finitely presented groups that do admit finite convergent
presentations, but that do not have an automatic structure [Ger92]. However, it is still not
known whether each automatic group admits a finite convergent presentation.

Recently, the notion of automatic structure has been generalized to monoids [Hud96].
Automatic monoids do also have word problems that are decidable in quadratic time, but it
turns out that for monoids the existence of an automatic structure does indeed depend on the
actually chosen set of generators. Also an automatic monoid need not be finitely presented
[Tho97].

In this paper we also consider the class of automatic monoids. We will present some ex-
amples showing that further properties do not carry over from automatic groups to automatic
monoids. First we present a monoid N that has a finite, noetherian, and weakly confluent
presentation as well as an infinite left-regular, weight-reducing, and confluent presentation.
This monoid has an automatic structure, but it does not have finite derivation type. Hence, it
does not admit any finite convergent presentation. This shows that the class of monoids that
have a finite convergent presentation and the class of automatic monoids are incomparable
under inclusion. For the class of monoids this provides a negative anwer to the open problem
mentioned above. Further, it proves that the property of having a finite, noetherian, and
weakly confluent presentation is not sufficient to imply that the monoid considered has finite
derivation type.

Our second example consists of a finitely presented monoid that is automatic, but that
has an exponential Dehn function. In fact, both our example monoids are bi-automatic.

This paper is structured as follows. In the next section we restate some definitions and
notation regarding monoid-presentations and string-rewriting systems, and we present the
definition of an automatic structure for a finitely generated monoid in full detail. In Sections
3 and 4 we present the two example monoids mentioned above, providing detailed proofs
for the properties we are interested in. The paper closes with a short discussion of the
consequences of our results and some open problems.

2 Automatic monoids

First we restate some definitions regarding string-rewriting systems and monoid-presentations
in order to establish notation. For additional information the reader is asked to consult the
literature, where the monograph by Book and Otto [BO93] is our main reference on string-
rewriting systems, and the monograph by Hopcroft and Ullmann [HU79] is our main reference
on automata theory. Then we give the definition of an automatic structure for a monoid, and
we restate some recent results on automatic monoids.

Let ¥ be a finite alphabet. Then X1 denotes the set of all non-empty strings over X,
and ¥* := T U {\} denotes the set of all strings over ¥ including the empty string A. For
u, v € X*, the concatenation of u and v is simply written as uv, and exponents are used to
abbreviate strings, that is, u® := X, u' := u, and ™! := u™u for all u € ¥* and integers
n > 1. For u € ¥*, the length of u is denoted by |u|.

For ' C ¥, nr : ¥* — I'" denotes the projection, that is, o is the morphism that is
induced by the mapping a — a (a € T') and b — A (b € £ \T"). Further, the I'-length of a
string u € ¥* is defined as |u|r := |7r(u)].

A string-rewriting system R on Y is a subset of 3* x 3*, the elements of which are called
(rewrite) rules. Usually these rules will be written in the form £ — r to improve readability.
By dom(R) we denote the domain of R, which is the set dom(R) :={£ € * |Ire T*: ({ —
r) € R}. The system R is called length-reducing if |¢| > |r| holds for each rule (¢ — r) of R.



A string-rewriting system R on ¥ induces several binary relations on ¥*, the simplest of
which is the single-step reduction relation —g:

uw—gpviff dz,y € ¥*3(L - r) € R:u = zly and v = zry.

Its reflexive and transitive closure —7% is the reduction relation induced by R. If u =% v,
then u is an ancestor of v and v is a descendant of u (mod R). A string u is called reducible
(mod R), if there exists a string v such that uw —g v holds; otherwise, u is irreducible.
By IRR(R) we denote the set of all irreducible strings, and by RED(R) we denote the set
of all reducible strings (mod R). Obviously, RED(R) = ¥* - dom(R) - ¥* and IRR(R) =
Y*NRED(R). Thus, if R is finite or left-regular, then RED(R) and IRR(R) are both regular
sets. Here the system R is called left-regular if dom(R) is a regular set.

The reflexive, symmetric, and transitive closure <33 of —g is a congruence on X*, the
Thue congruence generated by R. For u € ¥*, [u]g := {v € ¥* | u &}, v} is the congruence
class of u (mod R). The set Mg := {[u]r | v € £*} of congruence classes is a monoid under
the operation [u]g o [v|g = [uv]g with identity [A]g. It is the factor monoid ¥*/ <%, and
it is uniquely determined (up to isomorphism) by ¥ and R. Accordingly, the ordered pair
(3; R) is called a (monoid-) presentation of Mg with generators ¥ and defining relations R.
The monoid Mgy, is called finitely generated if it has a presentation (3; R) with a finite set of
generators 3, and it is called finitely presented if it has a finite presentation.

For u,v € ¥*, if u <% v, then there exists a derivation

U=wWy<>RWL <R..- R Wy =7,

where < denotes the symmetric closure of the single-step reduction relation —g. The
derivation above is said to be of length m. Let dgr : ¥* x ¥* — N be the function defined by

min{m | Jwg, w1, ..., wy, € X*:
— — 3 *
dr(u,v) == U=wy FRWI R ... PRWy =v} , ifueho,

0 , otherwise,

that is, dr(u,v) is the length of the shortest derivation from u to v, if u <3} v holds. This
function is called the derivational complexity of the string-rewriting system R.
Further, for n € N, we define

dr(n) = max{dgr(u,v) | u,v € ¥, [u| + [v] < n}.

Then ég : N — N is the isoperimetric function (or Dehn function) of R.

Although the Dehn function 0z is defined explicitly for the string-rewriting system R (or
the presentation (X; R)), it is essentially an invariant of the monoid Mg. For two functions
fsg : N = N, we write f < g if there are positive integers a, 3, and 7 such that f(n) <
a-g(B-n)+v-n holds for all n € N, and we call two functions f,g : N — N equivalent
(f ~g),if f <gand g < f both hold.

Proposition 2.1. [MO85, Pri95] Let (¥1; R1) and (22; R2) be two finite presentations of the
same monoid, that is, Mg, = Mp,. Then the Dehn functions dg, and g, are equivalent.

We are in particular interested in presentations involving string-rewriting systems of cer-
tain restricted forms. A string-rewriting system R on ¥ is called

— noetherian if there is no infinite sequence of reduction steps of the form uy —g u1 —r
U2 7R --- >R U; 7R ---;



— weight-reducing if there exists a weight-function ¢ : ¥ — Ny such that ¢(£) > ¢(r)
holds for each rule (£ — ) of R, where ¢ is extended to a morphism from ¥* to NN;

— confluent, if, for all u,v,w € ¥*, u =% v and v —% w imply that v and w have a
common descendant (mod R);

— convergent, if it is noetherian and confluent.

If R is convergent, then each congruence class [u]g contains a unique irreducible string
ug, which thus can serve as the normal form for each string in [u]g. Since ug can be obtained
from u by a finite sequence of reduction steps, the word problem is decidable for each finite
convergent string-rewriting system.

A presentation (3; R) involving a convergent string-rewriting system R is called a con-
vergent presentation. Since the decidability of the word problem is an invariant of finitely
generated monoids, we have the following result.

Proposition 2.2. If a monoid has a finite convergent presentation, then it has a decidable
word problem.

It is easily seen that a weight-reducing string-rewriting system is noetherian. In fact, if
R is a finite, weight-reducing, and confluent string-rewriting system on X, then the word
problem for R can be solved in linear time [BO93], and dg(n) ~ n, that is, the Dehn function
of R is linearly bounded.

Finally, we come to the main definition of this section, that is, the definition of an auto-
matic structure for a monoid-presentation.

Let X be a finite alphabet. We will be interested in certain subsets of ¥* x ¥* that are
accepted by finite state acceptors (fsa). To make this precise we proceed as follows.

Let # be an additional symbol. We define a finite alphabet ¥4 as

Sy = ((BU{#) x BUu{#D) ~{# #)}-

This alphabet is called the padded extension of 3. A mapping v : ¥* x 3¥* — E*# is then
defined as follows:

if u :=aias---a, and v := b1by - - - by,, where aq,...,a,,b1,...,b, € X, then
(a’la bl)(a’Qa b2) e (a’ma bm)(a’m-f-l, #) e (a’na #)a if m < n,
v(u,v) :=q (a1,b1)(az,b2) -+ (@m, bm), if m=n,
(a1,b1)(a2,b2) - -+ (an, bp) (#: bny1) - -+ (#:bm),  ifm>n.

Now a subset L C X* x ¥* will be called synchronously regular, if v(L) C E*# is accepted by
some finite state acceptor.

An automatic structure for a finitely generated monoid-presentation (X; R) consists of a
fsa W over 3, a fsa M_ over ¥4, and fsa’s M, (a € X) over Ly satisfying the following
conditions:

(0.) L(W) C ¥* is a complete set of (not necessarily unique) representatives for the monoid
Mg, that is, L(W) N [u]g # 0 holds for each u € ¥*,

(1.) L(M=) = {v(u,v) | u,v € L(W) and u <3}, v}, and

(2.) for alla € £, L(M,) = {v(u,v) | u,v € L(W) and ua <} v}.



The fsa W is called the word acceptor, M is the equality recognizer, and the M, (a € %)
are the multiplier automata for the automatic structure. The language C := L(W) is a set of
representatives for the monoid Mg, the language L_ := L(M_) is the equality language, and
L, := L(M,) is the multiplication language for a. A monoid-presentation is called automatic
if it admits an automatic structure, and a monoid is called automatic if it has an automatic
presentation.

Groups with automatic structure have been investigated thoroughly. It is known that the
word problem of an automatic group can be solved in quadratic time, that its Dehn function
is bounded from above by a polynomial of degree 2, that the existence of an automatic
structure is independent of the chosen set of generators, and that each automatic group
is finitely presented. Large classes of groups have been identified that are automatic, and
various closure properties have been established for the class of automatic groups. For a
detailed treatment of this class of groups see the monograph by Epstein [Eps92].

Until recently the automatic monoids did not receive much attention. This may partly
be due to the fact that they do enjoy only a few of the nice properties that the automatic
groups have.

Proposition 2.3. [Tho97]
(a) The word problem for an automatic monoid can be solved in quadratic time.

(b) For monoids the existence of an automatic structure depends on the chosen set of gen-
erators.

(¢) An automatic monoid is not necessarily finitely presented.

Finally, an automatic structure for a monoid-presentation (X; R) is a bi-automatic struc-
ture if there exist fsa’s M, (a € ¥) over ¥4 such that,

(3.) foralla € ¥, L(M,) = {v(u,v) | u,v € L(W) and au <% v}.

For a € &, L := L(M,) is the left-multiplication language for a.

For bi-automatic groups the conjugacy problem is decidable [Eps92], but it actually is
an open problem whether or not each automatic group is in fact bi-automatic. Bi-automatic
groups have been considered in detail by Gersten and Short [GS91].

3 Automatic monoids and convergent presentations

There exist finitely presented monoids, in fact groups, that admit finite convergent presenta-
tions, but that do not have an automatic structure [Ger92]. On the other hand, it is currently
not known whether each automatic group admits a finite convergent presentation. Here we
answer this question in the negative for the more general class of automatic monoids.

Let ¥ :={a,b,c,d, A,WW}, and let R be the following finite string-rewriting system on X:

R := {abbc — abc,da — Aabb, WA — A}

By N we denote the monoid that is given through the presentation (X; R).
In this section we will establish various properties of the monoid N. We begin with some
simple observations.



Lemma 3.1.
(a) The string-rewriting system R is weight-reducing.
(b) The string-rewriting system R is not confluent.
Proof.
(a) Let ¢ : X — Ny be the weight-function that is induced by the following assignment:
d— 4, s— 1forall s € {a,b,c, A, W}.
Then ¢(£) > ¢(r) holds for each rule (£ — r) € R, and so R is indeed weight-reducing.

(b) Since dabbc — g dabc —r Aab®c and dabbc — Aab*c, where Aab®c, Aab*c € IRR(R), we
see that R is not confluent. |

Let R*° denote the string-rewriting system
R® := RU {ab®c — ab®""'c|n > 1}.

Lemma 3.2. The string-rewriting system R is weight-reducing, confluent, left-reqular, and
equivalent to R.

Proof. Obviously, R* is weight-reducing with respect to the weight-function ¢. The only
critical pairs of R* are of the form (Aab®"2c,dab®"~'c), since Aab*"*?c +peo dab®"c — peo
dab®le. But Aab®t2c - peo Aab®™ e and dab®™ lc = peo Aab®™tlc, and so we see that
they resolve. Hence, R* is indeed confluent.

Obviously, R is left-regular, since dom(R) = {ab®"c | n > 1} U {da, W A} is a regular
set. Finally, »g C — g, since R C R, and — g C %, since, for all n > 1, ab*"*2¢c <3
W Aab® ¢ <3 g Wdab®c <% Wdab® ¢ <3 g WAa* e <3 g ab® e holds. Thus, <% =
oo, that is, R and R* are equivalent. O

Using the left-regular convergent string-rewriting system R> each string can be reduced
to its irreducible descendant. Hence, the word problem is decidable for the monoid N.
Observe, however, that the results of O’Diinlaing [0’D83] do not apply to the system R,
since the left-regular systems considered by ()’Dl’lnl&ing are of a more restricted form than
R>. Nevertheless, the standard method of reducing a string to its irreducible descendant by
applying only left-most reduction steps, which Book originally developed for finite, length-
reducing, and confluent string-rewriting systems [Boo82a], can be adjusted to apply to R™.
Here it is important to notice that the string uab®®'c is irreducible mod R, whenever
the string uab®® is. Hence, after reducing the prefix uab®"c of the string w considered to
uab®™ ¢ the reduction process can proceed without scanning a suffix of uab®® 'c. This
yields the following result.

Corollary 3.3. There is a linear-time algorithm that, given a string w € ¥* as input, de-
termines the irreducible descendant wy of w mod R*°.

In particular, this gives the following.

Corollary 3.4. The word problem for the monoid N can be solved in linear time.



The subsystem Ry := {da — Aabb,/WA — A} of R is convergent. Further, for each
wy € IRR(Ry), if w —heo R, W2, then wy € IRR(Ry). Hence, for each string w € ¥*, there
is a reduction sequence of the form

W =R, W1 —Roo g, Wo € IRR(R™).

Thus, wy is of the form w; = ugab®™ cuy - - - Upp—1ab*™ cu,y,, where ug, U1, ..., Uy, & N* -
{ab®c | n > 1} - %, and wy = upab®™ ~teuy - - Uy 106" " Leuy,.

Since R is weight-reducing, the reduction w —% w; is of length at most c- |w| for some
constant ¢ > 1, and |w;| < |w|+ 2 |w|g < 3 - |w|. Further, we have the following technical
result.

Lemma 3.5. For all n > 1, ab®"c H}l%n—?» ab?—1c.

Proof by induction on n:
n = 1: ab?c < abe.

n = n + 1: ab®2¢c o5 WA 2¢ <5 Wdab*"c <—>}1{L—3 Wdab*~'c (by the induction
hypothesis) «<»g W Aab*" ¢ <3 ab®tlc, and so, ab®"t2c H‘gnﬂ)_‘c’ ab?" e, O

Thus, in R the above reduction sequence from w to wy can be simulated as follows:

w R wy = ugab®™ cuy - -+ Upy_1ab?™ cuyy,
H%{“_?’ upab®™ " Leuy - - - up_1ab?™™ cuyy,
H?m_?’ upab®™ " Leu - - - up_1ab*™ " Leu,, = wo,

that is, this derivation has length at most
m
- lwl+ ) (4ni —3) <c-fw| +4- |lwy| < (c+12) - |w.
i=1

Since wy € IRR(R™) is the unique representative of [wy]g, this gives the following result on
the Dehn function dg for N.

Corollary 3.6. dr is linearly bounded, that is, dr(n) < ¢y - n for some integer constant
C Z 1.

A string-rewriting system S is called confluent on [w]g for some string w if, for all z,y, z €
[w]s satisfying =% y and ¢ =% 2, y and z have a common descendant (mod S). The system
S is called weakly confluent if it is confluent on [r]g for each rule (¢ — r) € S [MNOZ93].

Although the system R is not confluent, it has at least the following weaker properties.

Lemma 3.7.
(a) The string-rewriting system R is confluent on [s|g for each s € ¥ U {A}.
(b) The string-rewriting system R is weakly confluent.

Proof.



(a) For all rules (¢ — r) € R® ~ {WA — A}, we have |{|, = |r|, = 1, while [WA|, = 0.
Hence, for all u,v € £¥, if u <3} v, then |u|, = |v]|,. In particular, if u =% v and
|v|q =0, then |u|, =0 and u —Twaoay U-

Let s € {\,b,¢,d, A,W}, and let u € [s]g. Then u =} s, and hence, |u|, =0 and
u —)’{‘WA_»\} s, that is, u =% s. Hence, R is confluent on [s]p.

Finally, observe that |r|, > 1 holds for each rule ({ — r) € R® N {WA — A}
Hence, for all u,v € £¥, if u =% v and |v|, = 0, then u _>EWA—>/\} v. Thus, for
u € [a]r, we see that u —%,c a implies that u —>’{‘WA_))\} a, and hence, u =% a. So R
is confluent on [a]g, too.

(b) For each rule (¢ — r) € R® \ {da — Aabb, WA — A}, we have |{|. = |r|. = 1, while
|da|. = |Aabb|. = |W A|. = 0. Hence, for all u,v € ¥, if u <3} v, then |u|. = |v|.. In
particular, if 4 =% v and |v|. = 0, then |u|. = 0 and u —da Aabb, W A2} V- Thus,
for u € [Aabb]r, we have u —}o Aabb, since Aabb € IRR(R*), and so u —7% Aabb.
Hence, R is confluent on [Aabblg.

It remains to show that R is confluent on [abc]g. From the proof of Lemma 3.1(b)
we see that R has the critical pair (Aab%c, dabc), which is in fact the only critical pair
of R. For u,v € IRR(R), if udab'cv —% w, then w = wib*cv for some w; € T*. Hence,
the set

{u#v | u,v € IRR(R), udab cv —% abc}

is empty. Analogously, for u,v € IRR(R), udabcv only has the direct descendant
uAab3cv, and hence, if udabcv —% w € IRR(R), then w = wib®cv for some w; € B*.
Hence, the set

{u#v | u,v € IRR(R), udabcv —% abc}

is empty, too. Thus, R is confluent on [abc]r by Theorem 2.1 of Otto [Ott87]. Hence,
the system R is weakly confluent. O

Based on the infinite convergent string-rewriting system R° we now establish the exis-
tence of an automatic structure for the presentation (X; R).

Theorem 3.8. The monoid N is automatic.

Proof. We consider the finite presentation (X; R). Since R is left-regular, convergent, and
equivalent to R, the set C' := IRR(R*) is a complete set of unique representatives of the
monoid N, and in addition C is a regular set. Hence, there exist a finite state acceptor W
over ¥ and a finite state acceptor M— over X4 such that L(W) = C and L(M-) = {v(u,v) |
u,v € Cand u <% v} = {v(u,u) | u € C}. It remains to verify the existence of the multiplier
automata M, for s € 2.

(1.) s := a : Let u € C. Then u can uniquely be written as u = u;(Wd)™ for some
uy € X - {Wd} and some m > 0. Hence, ua = u1(Wd)™a =5 uiab®™. If u; does
not end in d, then u;ab®™ € C; otherwise, u; = usd for some uy ¢ X* - {W}, and
u1ab®™ = usdab®™ — g ugAab®™t? € C. Hence, the multiplier automaton M, is to
accept the language L,, where

L, = {v(u,ua)|uae C}U
{v(uy(Wd)™, u1ab*™) | uy € Cyuy & X% - {d},m > 1}U
{v(uad(Wd)™, ug Aab*™+2) | ugy € C,ug & T* - {W},m > 0}.

Since L, is easily seen to be regular, a finite state acceptor M, accepting this language
clearly exists.



(2.) s := b : For each u € C, also ub € C. Hence, L, = {v(u,ub) | v € C}, which is
obviously regular.

(3.) s:=c:Letu € C. If u = u1ab® for some n > 1, then uc = ujab®"c —r= u1ab® ‘c €
C. Thus,

L. = {v(wab®, u1ab™ tc) |u; € Cyuy & &% - {d},n > 1}U
{v(u,uc) | uc € C},

which is regular.

(4.) s € {d, W} : For each u € C, ud € C and uW € C. Thus, Lg and Ly are regular as
in (2.).

(5.) s:=A:LetueC. Ifu=u W, then uAd =u;WA — g u; € C; otherwise, uAd € C.
Thus
Ly ={v(uiW,u1) |miW € C} U{v(u,ud) | ud € C},

which is certainly regular.

Thus, C and the automata M; (s € ¥) for the languages L, constitute an automatic
structure for the presentation (X; R) of N. a

Actually, we obtain the following stronger result.
Corollary 3.9. The monoid N is bi-automatic.

Proof. We show that the automatic structure above can be extended to a bi-automatic
structure by providing the multiplier automata M (s € X) for left-multiplication.

(1.) s:=a :Let u € C. Ifu = b*™cuy for some n > 1, then au = ab® cu; —g= ab®lcu; €
C. Hence,
oL = {v(®cuy,ab®™ teur) | ug € Con > 13U
{v(u,au) | au € C},

which is clearly regular.

(2.) s € {byc, A} : If u € C, then bu,cu,Au € C. Hence, yL = {v(u,bu) | u € C} is
regular, and analogously for .L and L.

(3.) s :=d : Let u € C. If u = ab® 'uy for some n > 1 such that u; & {b} - X*, then
du = dab®™ 1u; — geo Aab®tluy € C. Analogously, if u = ab®*™u; for some n > 1 such
that u; & {c} - %, then du = dab®™u; — g Aab®"t?u; € C. Finally, if u = acuy, then
du = dacu; —pe Aab’cu; —peo Aabeu; € C. Hence,

oL = {v(auy, Aab?uy) | auy € Cyuy & {c} - Z*}U
{v(acuy, Aabcuy) | uy € C}U
{v(u,du) | du € C},
which is also regular.
(4.) s := W : For u € C, if u = Auy, then Wu = W Au; — g u;. Hence,
wL ={v(Aui,u;) | Au; € C}U {v(u, Wu) | Wu € C},

which is also regular.
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_ Thus, the multiplier automata M, (s € ¥) do exist, and hence, C, M (s € X), and
M (s € ¥) give a bi-automatic structure for the presentation (X; R) of N. O

Despite all the nice properties that the monoid N has, we will show in the following that
it does not admit a finite convergent presentation. To this end we will prove that the monoid
N does not satisfy one of the conditions that are necessary for admitting a finite convergent
presentation. See the recent paper by Kobayashi and Otto [OK97] for an overview on these
conditions. One of these conditions is the property of having finite derivation type, which
was introduced by Squier in [SOK94]. Here we will verify that the monoid N does not have
finite derivation type.

We restate the definitions in short that underly the notion of finite derivation type. In
our presentation we follow the exposition in [CO94], which differs slightly from the original
definitions given by Squier [SOK94].

Let (3; S) be a monoid-presentation. With (3; S) we associate an infinite graph I'(3; S) :=
(V,E,o,7,71), which is defined as follows:

(a) V :=X* is the set of vertices,
(b) E:={(u,(t,7),v,¢) | u,v € T*,(¢,r) € S,e € {1,—1}} is the set of edges,

(¢) 0,7 : E — V are mappings, which assign an initial vertex o(e) and a terminal vertex
7(e) to each edge e € E as follows:

wly, if e=1 urv, if =1
U(u,(ﬁ,r),'u,e) Z:{ if e=_1 },T(U,(f,’l"),’U,E) ::{ if e=—-1 }’

UTV, ubv,

(d) and ! : E — E is a mapping, which assigns an inverse edge e~! € E to each edge
e € E as follows:
(’U,, (ea 7"), v, 8)_1 = ('u'a (ea 7‘), v, _5)'

By P(I'(%;S)) we denote the set of all paths in I'(X; S), where a path (w) of length 0 from
w to w is added for each w € V. The mappings o, 7, and ~! can easily be extended to paths.
Further, o denotes the concatenation of paths. The free monoid X* induces a two-sided action
on I'(3; S) through zey := (zu, (¢,r),vy,¢) for all z,y € ¥* and e = (u, (¢,r),v,e) € E.
Obviously, this action can be extended to a two-sided action on P(I'(X;S)). Finally, by
P®)(T(2; 8)) we denote the set of all pairs of parallel paths in T'(3; ), that is,

PO(2;8)) = {(p,q) | p,q € P(T(%;9)),0(p) = 0(q), and 7(p) = 7(q)}-

Next we consider certain equivalence relations on P(I'(3; S)) that are called homotopy
relations. Let

D = {((/\, (€1,71), TU2,€1) © (V17, (£2,72), A, €2),
(u1z, (b2, 72), A, €2) © (A, (b1,71), 202, €1)) |
x € ¥* 1,69 € {1, -1}, (b1,71), (2,72) € S satisfying

o £, if g=1 o e, if g =1 . }
ul—{”’ i gi:_l},and Uz—{gi’ i e = —1 ,1=1,2¢,
which is called the set of disjoint derivations, and let

I:={(eoe™!, (w)) | eisan edge with o(e) = w,w € B*},

which is the set of inverse derivations. Notice that D U T C P?)(I'(Z;S)) holds. Now an
equivalence relation ~ C P(?)(I'(X; S)) is called a homotopy relation if it satisfies the following
conditions:
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(a) DUI C ~,
(b) if p ~ ¢, then xpy ~ zqy for all z,y € ¥*, and

(¢) if p,q1,q2,7 € P(I'(%5;5)) satisty 7(p) = olq1) = o(g2), 7(q1) = 7(g2) = o(r), and
q1 > g, then pogror~pogyor.

The collection of all homotopy relations on P(I'(X;S)) is closed under arbitrary inter-
section. Since P(?)(I'(X;9)) itself is a homotopy relation, each subset B C P®)(I'(%;5)) is
contained in a smallest homotopy relation ~p on P(I'(X; S)), which is accordingly called the
homotopy relation generated by B.

The monoid-presentation (X;.5) is said to have finite derivation type, FDT for short, if
there exists a finite subset B C P()(I'(%; S)) which generates P (I'(2;S)) as a homotopy
relation.

Squier has established the following results on the property FDT.

Proposition 3.10. [SOK94]

(a) If (X1;51) and (X9;S2) are two finite presentations of the same monoid, then (31;S1)
has FDT if and only if (£2;S2) has FDT.

(b) If M has a finite convergent presentation, then M has FDT.

Because of part (a) of this proposition the property FDT is actually a property of finitely
presented monoids.

We claim that the monoid N does not have FDT. In [SOK94] Squier presents a finitely
presented monoid with a decidable word problem that does not have FDT. Our proof will
follow the one given by Squier.

Theorem 3.11. The monoid N does not have FDT.

Proof. Let I' denote the graph that is associated with the finite presentation (X;R), and
let ', denote the graph that is associated with the presentation (3; R*). Obviously, I' is a
subgraph of I'o,. In order to simplify the notation we introduce names for the rules of R*:

(ra) da — Aabb
(’I‘A) WA — A
(P,) ab®™c — ab®™™ lc, n>1.

In R* we have the following critical pairs:
Aab®2c <, dab®™c —p, dab®'c (n > 1).
These pairs can be resolved as follows:
Aab®™2c —p, , Aab* e+, dab®™ e (n > 1).
Let By be the following set of pairs of parallel paths in ['y:
By :={(rq b co A-Pyi1,d- Pyorg-b"""'c) [n > 1},

where the names of the rules of R* are also used to denote the corresponding edges of I'.
From the results of Squier [SOK94] it follows that ~p, = P (I'y).
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For each n > 1, the rule P, is a consequence of the rules rq,74, and Py:
abbb®*"c <, W Aabbb*"c <, Wdab**c —p, Wdab®" ¢ —,, W Aab*" e —,, ab®" .
Accordingly, for all n > 1, we can define a path P, inductively as follows:

-6)1 = P17 B
P = r;l ~ab? 2o W - ra_l b coWd-PpoW -rq-b"""lcory -ab®tle, n> 1.

Observe that P, € P(T), and that (P,, B,) € P®(T'y) hold for all n > 1. We define a
mapping f from 'y, to I' as follows. On the subgraph I' C ', f is the identity. On the
additional edges of T's,, which are of the form u- P, -v and u- P, ! -v, u,v € £*, n > 2, f is
defined by

fu-Pp-v) = u-P,-v

Fu-P~l.v) = u-Pl.p }forallu,’uEZ*, and n > 2.
- = u-P7l.

Then f : 'y, — I' is a mapping of graphs, and it follows from [SOK94], Corollary 3.7, that
~p = PA)(T) holds, where B := {(f(p), f(¢)) | (p,q) € B1}. Thus, B is an infinite homotopy
basis for P)(T).

Now assume that the monoid N does have FDT. Then there exists a finite subset By C B
such that By is already a homotopy basis for P(2)(T"), that is, ~5, = P@(T). Let C; denote
the following set of pairs of parallel paths in I'y:

C1 = {(Pn, P) | n > 2},
and let Cy := C; U By. For (p,q) € P®)(I'y),
p =~c, f(p) =B, f(9) ~c, ¢
and so ~¢, = P®)(T'y,). Since f(B;1) = B D By, we can choose a subset B} of B; as follows:
B :={(rqa - b""coA-Pyy1,d-Pyore -b*""1c) | (14 - b*"co A- Poi1,d-Ppor,- " 1e) € By}

For (p,q) € Bo, p ~pjuc, ¢, and hence, C}, := C1UB} is another homotopy basis for P()(T',).

Finally, let
Dy = {(Pyy1,73 - ab*2coW . r b b coWd - PyoW -rq - b teory -ab®™lc) | n > 1},

and let Dy := D U B). Then P, ~p, P, for all n > 1, and so ~p, = P®(T).

Next we decompose the system R into two parts:
R':= R® ~\ {(r,) da — Aabb} and R" := {(r,) da — Aabb}.

By N’ we denote the monoid that is given through the presentation (X; R'), and by g : ¥* —
N' we denote the corresponding quotient morphism. On N’ we consider the binary relation
that is induced by Ry := {(da, Aabb)}, and we introduce the graph I'ys := T'(N’, Ryv) that
is associated with (N', Rys). The vertices of 'y are the elements of the monoid N, and its
edges are of the form (g(u), (da, Aabb), g(v),e) with u,v € ¥* and ¢ € {1,—1}. In order to
simplify the notation this edge will be denoted as g(u) - 75 - g(v) or even as u - 75 - v.

The morphism g : ¥* — N’ can be extended to a mapping from I'y, to T'pr. If € =
(u, (¢ = r),v,€) is an edge of 'y, such that (¢ — r) € R/, then g(o(e)) = g(7(e)) in N’, and
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so g(e) := (g(ulv)) is just the corresponding path of length 0. If e = (u, (da — Aabb),v,¢),
then g(e) := (g(u), (da, Aabb), g(v),e) = g(u) - ¢ - g(v) is an edge of I'yr.
In T'p» we choose a set of pairs of parallel paths as follows:

Enr :={(g9(p),9(q)) | (p,q) € Do},
that is,

By = (@6, Wory - 8co W ory- 5 1) [ n > 1}
U {(rq-b*"c,re - 02" te) | (g b*"co A- Pyy1,d- Pyor, -b*"tc) € By}

Claim 1: ~p , = PG (T'y).

Proof. Let (p,q) € P (T'y). Choose wi,wy € X* such that g(w;) = o(p)(= o(g)) and
g(wa) = 7(p)(= 7(q)). Then w; 50 wo, and there are paths pi,q1 € P(T'y), both leading
from w; to we, such that g(p;) = p and g(q1) = ¢. Hence, (p1,q1) € PP (['y), and thus,
P1 ~p, q1. By [SOK94], Corollary 3.7, this yields p = g(p1) ~g,, 9(q1) = q. Hence, En is a
homotopy basis for P(2)(T'y»). O

Let I:=={n>1]| (rq- b?"coA-P,yi,d-P,or,- b>"~lc) € By}, that is, I is a finite subset
of N. Let m € N be an index such that m ¢ I. By E,, we denote the following subset of
PO(T )

En = {((ab®™ ), W -r ;- 0?Mco W -1y - B?™ L)}
U {(re - b*c,rq - b*"1c) | n € NN {m}}.

Since 7, - b*"c ~g,. Ta" b*"~L¢ holds for all n € N~ {m}, it follows that
(ab*™le) g, Wer L b?coW -1y - b%c g, W-r,l - b*coW v, - b2 L

holds for all n > 1. Hence, En» C ~p, , which in turn implies that ~p = p®) (T'nv) by
Claim 1.

This statement will now lead to a contradiction. Let h : N’ — N denote the quotient
morphism, and let 77 and 75 denote the following subsets of V:

Ty = N-W, and
Ty := b*"¢-N.

Then, for v € ¥*, [u]g € Ty if and only if there exists some u; € £* such that u <5 v W,
and [u|g € T if and only if u <7}, b2™ ey for some uy € XF.

Since the letter W does not occur as a suffix of the left-hand side of any rule of R*°, the
irreducible descendant of a string of the form u; W has necessarily the form w|W. Since W
does not occur in the right-hand side of any rule of R*, we see that, for u € ¥*, [u]gp € Th
holds if and only if v = u; Wuy for some ui,us € X* satisfying ug =% A. Analogously, since
no non-empty suffix of b*™c is a prefix of the left-hand side of any rule of R®, we have, for
all u € X%, [u]gr € Ty if and only if the normal form uy of v mod R*® has the prefix b*"c.
Thus, [b*"c|r € Ty, but [b"cv]g € T» for all n € N\ {2m} and all v € T*.

Finally, we define a mapping hy : P(I'ys) — N as follows:

hr(p) := the number of edges e = (g(u), (da, Aabb), g(v),€) of p for which
h(g(uw)) € Ty and h(g(v)) € T» hold.

Claim 2: For all (p,q) € P@(Ty1), if p ~g,, ¢, then hr(p) = hr(g) mod 2.
Proof. It suffices to show that hr(p) = hr(g) mod 2 holds for all pairs (p,q) of the form
(p,q) = (9(u)prg(v), g(u)q1g(v)) € P@(Tn), where (p1,q1) € DUIU Ey, and u,v € 5*.
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(1.) For (p1,q1) = (eoe™!,(c(e))), where e is an edge of 'y, the result is trivially true.

(2.) Let (p1,q1) = ((g(N), (da — Aabb), g(zusz),e1) o (9(v1x), (da — Aabb),g(N),e2),
(9(u1%), (da — Aabb), g(}),e2) 0 (g(A), (da — Aabb), g(zv2),e2)),

_ | da if =1 _f Aabb if g =1 .
Whereuz_{Aabb ifsi:—l}andvz_{da ifei:—l}’z_l’Q’

and z € X*. Then

hr((g(w), (da — Aabb), g(zugv),e1)) = hr((g(w), (da — Aabb), g(zvav), €2))
and

hr((g(uv17), (da — Aabb), g(v), e2)) = hr((9(uu17), (da — Aabb), g(v), €2)),

since zugv <} wvev and uviz <7 wuiz hold. Thus, hr(p) = hr(g).
(3.) If (p1,91) € E,, we have to consider two subcases:
(i) If (p1,q1) = ((ab®™Fle), W - vt b*Mco W -1y - B2 Lc), then

hr(p) = hr(g(u)p1g(v)) = hr((uab®*™ev)) = 0, and
hr(q) = hr(g(u)q19(v)) = hr(g(uW)-rzt - g(0*™cv) 0 g(uW) rq - g(B*™ ' ev)) = 0,
since h(g(uW)) € Ty.

(ii) If (p1,q1) = (rq - b*"c, 74 - B*"~Lc) for some n € N\ {m}, then

hr(p) = hr(g(u)prg(v)) = hr(g(u) - ra - g(b*"cv)) =0,

since h(g(b*"cv)) € T, and

hr(q) = hr(g(u)gig(v)) = hr(g(u) - 7q - g(b*" ev)) = 0,

since h(g(b*"tcv)) & To. a

To conclude we consider the paths p := r, - ¥*™c and ¢ := 7, - b*" !¢ in T'y». We have
o(p) = g(dab®™ 'c) = o(q) and 7(p) = g(Aab®™*'c) = 7(g) in T v, that is, (p, q) € PO (T ).
Since h(g(\)) € Ty and h(g(b*™c)) € Ty, we have hy(p) = 1, while h(g(b>™ 'c)) ¢ T implies
that hr(q) = 0. Thus, (p,q) € ~g,,, contradicting the above statement that ~p, = PO(T )
holds. Hence, the monoid N does not have finite derivation type. O

Because of Proposition 3.10(b) this result has the following consequence.
Corollary 3.12. The monoid N does not have a finite convergent presentation.

Hence, we see that the class of monoids that have a finite convergent presentation and the
class of finitely presented monoids that are (bi)-automatic are incomparable under inclusion.
Further, this result shows that a monoid with an easily decidable word problem need not have
finite derivation type even if it has a finite, noetherian, and weakly confluent presentation.
Hence, Proposition 3.10(b) cannot be strengthened to this class of presentations.
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4 Automatic monoids and Dehn functions

As mentioned before the Dehn function of an automatic group is bounded by a quadratic
function. The Dehn function of the automatic monoid N considered in the previous section
is even bounded by a linear function. Here, however, we will show that Dehn functions
of automatic monoids are in general not bounded by polynomial functions at all. For this
we present a finitely presented (bi-)automatic monoid the Dehn function of which grows
exponentially.

Let ¥ ={0,1,¢,8}, and let R consist of the following 4 rules:

08 — 18,
1$ — ¢8,
0¢ — 10,
1¢ — ¢O0.

Lemma 4.1. The system R is convergent.

Proof. If we order the alphabet ¥ by taking § > 0 > 1 > ¢, then we see that with
respect to the length-lexicographical ordering >ey induced by >, £ >y 7 holds for each rule
(¢ — r) € R. Hence, R is noetherian.

The left-hand sides of the rules of R do not overlap. Hence, R does not admit any critical
pairs, that is, R is also confluent. O

Thus, the set IRR(R) of irreducible strings is a regular set of unique representatives of
the monoid M presented by (X; R). Obviously, IRR(R) = {$,¢}* - {0,1}*. Thus, for all
n > 1, ¢"$ is the only irreducible element in the set {0,1,¢}™ - {8}. Since R is convergent
and length-preserving, this immediately yields the following.

Lemma 4.2. For all u € {0,1, ¢}*, we have u$ —% ¢,
Based on this observation we now establish the following result.
Lemma 4.3. The presentation (X; R) is bi-automatic.

Proof. We take C to be the set IRR(R). Then

L. = {v(wy,ws)|wi,ws € IRR(R), wy <> wa}
= {v(w,w) | w € IRR(R)}, which is obviously regular.

For u € IRR(R), we have u0,ul € IRR(R). Hence,

Ly = {V(w1,w2) | w1, Wy € IRR(R), w10 (—)E ’wg}
= {v(u,u0) |u € IRR(R)}, and

L; = {v(u,ul) |u€IRR(R)}, which are regular, too.
Now let u = ujug, where u; € {$,¢}* and up € {0,1}*. Then

U1¢ if U = )\,
u¢ =5 ur¢0’ if ug=1° (i>1),
U1’U,310i+1 if Ug = U301i (Z Z O),
and
§ u1$ if ug =\,
u TR { u1¢/"21$ if uy #X  (cf. Lemma 4.2).
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It is easily seen that the sets L¢ and Lg are regular.
Further, ¢u, $u € IRR(R),

Oug if U = A?
Ou =% 1%0uy if uy =¢" (i >1),
¢ujug if |ui|g >0 (cf. Lemma 4.2)

and
1u2 if ur = /\,

lu =5 ¢17 0uy if ug=¢" (5> 1),
¢uug if |uilg >0 (cf. Lemma 4.2).

Hence, also the sets ¢L, sL, oL, and 1L are regular. Thus, (2; R) is indeed bi-automatic. O

There are no overlaps between the left-hand sides of the rules of R. Thus, if u = u;fuy for
some u1,us € X* and somerule ({ — r) € R, and ifu = wy =g w1 =g ... =g Wy € IRR(R)
is a reduction sequence, then there exists an index k£ > 0 such that the following conditions
are satisfied:

wg = v1fve, Wit1 = virve, and u; S v, = 1,2.

Based on this observation we will now establish the following result.

Lemma 4.4. Let u € ¥* and up € IRR(R) such that u <%, ug. Then there ezists an integer
ny € N such that each reduction sequence u = wy — g w1 — g --- =R Ug has length n,.

Proof. If u is irreducible, then v = ug and n, = 0. So let us assume that u is reducible. For
n, we choose the length of a shortest reduction sequence that reduces u to wug.

Claim: Every reduction sequence u = wy —g ... =g ug has length n,,.

Proof. Assume that there is a reduction sequence u = wg —g ... 2R Wy — R Ug that is of
length larger than n,. Choose a reduction sequence u = v9 —r v1 =g ... =R Up, = Up Of
length n,, such that the length of the common initial part of these two sequences is as large as
possible, that is, there is an index j > 0 such that, fori = 0,1,..., j, w; = v;, but wj 1 # vj41.
Since w; = wvj, this means that w; = v; can be factored as w; = v; = fl1gloh for some
f,9,h € ¥* and somerules ({; — ;) € R, i = 1,2, where wj1 = frigloh and vj11 = fligrah,
or vice versa, wjy1 = fligrah and vjy1 = friglsh. Let us assume the former. By the
observation above there exists an index k > j + 1 such that vy = f'41¢' =g f'r1g’ = vk,
where f —7% f’ and groh —7% ¢’ describe the effect of the subsequence v;j11 —% vg. Now we
can construct another reduction sequence as follows:

U = Y9 —>R-.--—R vVj = fﬁlgégh —R frlgégh —R f’l"lg’f'Qh —)E
f'rig = vky1 =R Vki2 R - =R Vn, = Uo-
This sequence has length n,,, and its initial part of length 54 1 coincides with the correspond-
ing initial part of the given reduction sequence u = wy =R ... =R Wy —R U, contradicting

the choice of the sequence v = v9 =g ... =g vVp, = uo. Thus, all reduction sequences from
u to ug have length n,,. 0O

For n € N, let f(n) denote the length of the reduction sequences that reduce the string
0™$ to its irreducible representative ¢"$.

n—1 .
Lemma 4.5. f(n) =2""1+ 3" j.2"77 —2 for alln > 1.
j=1
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Proof. First we describe reduction sequences from 0™$ to ¢"$ inductively:
n=1: 08 —-r 1$ —r ¢$, that is, f(1) =2.
n—n+1: 0MH§ = 0078 -1 0¢"$ -7 108 -2 17¢$ -7 ¢0"8
—>J;z(n) ¢¢"8 = ¢" 1S, that is, f(n+1)=2-f(n)+2n +2.
Based on this recursion we now prove the statement about f(n) by induction:
n=1: f(1) =2 =22-2

n—1

n—on+l: fln+l) = 2-f(n)+2n+2 = 2"1242. 3 .27 T — 44+ 2n+2
—
n—1 ) !
— 2n+2+2j.2n+1—J+2n_2
j=1
= 2n+2+fjj-2n+1—j—2. i
j=1

Finally, we complete our investigation of the presentation (X; R) by proving the following

result on the distance function dg.

Lemma 4.6. dg(u$,¢"$) = nyg for all u € {0,1, ¢}, n > 0.

Proof. By Lemma 4.2 u$ <% ¢"$ for all w € {0,1,¢}", n > 0, and by Lemma 4.4,
u$ =v9 =R ... >R Uy = ¢"$ implies that m = n,g.

Now let u$ = wy <>g ... <> g wy = ¢"$ be a derivation of minimal length from u$
to ¢"$. We claim that this derivation is in fact a reduction sequence, which then yields
L= dR(’U,$,¢n$) = Nyg-

Assume to the contrary that, for some index j, we have w; <—g w;+1, and let this index
j be chosen maximal. Then u$ = wy <—>§z Wj <R Wjt1 =R Wjt2 —R -.. =g wy = ¢"8.
Observe that j + 1 < £, since wy = ¢"$ is irreducible. Since R is convergent, there is a
reduction sequence

w;j =go <R YL R --- R gk = ¢
Hence,

Wjt1 DR Wjt2 R ... 2pwe=¢"% and wjy1 2rwW; 2R G1 DR ... PR G =¢"3
are two reduction sequences from w;1 to ¢"$. By Lemma 4.4 they both have the same length
£—j—1, which implies that k = £—j—2. Hence, u$ = wo 3% w; 2r g1 2R --- Hr g = ¢"$
is a derivation from u$ to ¢"$ that has length j + k = £ — 2. This obviously contradicts the

choice of the original derivation. Thus, the derivations of minimal length from u$ to ¢"$ are
in fact reduction sequences. O

Combining Lemma 4.5 and Lemma 4.6 we obtain the following result.

Corollary 4.7.
a) dg(0"$, ¢"$) = 2"+1 + ni:ij 277 — 2 for allm > 1.
j=
b) 6r(2n +2) > 2"+ + nz_:llj -2n=J — 2 for all n > 1.
Thus, we can summarizje_our results as follows.

Theorem 4.8. There exists a finite convergent monoid-presentation that is bi-automatic
such that the corresponding Dehn function grows exponentially.
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5 Concluding remarks

While the monoids with automatic structure share some of the nice properties of the groups
with automatic structure [Tho97], we have seen that this is not true for the rate of growth of
their Dehn functions. While the Dehn function of an automatic group only grows quadrati-
cally, that of an automatic monoid may grow exponentially. This is true even if the finitely
presented monoid considered is bi-automatic, and if it is given through a finite convergent
presentation.

On the other hand, we have seen that a bi-automatic monoid may not have a finite
convergent presentation even if it is finitely presented, has an easily decidable word problem,
and has a linearly bounded Dehn function. However, the question remains open whether
each automatic group has a finite convergent presentation.

The monoid N considered in Section 3 is given through a finite, weight-reducing, and
weakly confluent string-rewriting system, from which we obtained an infinite, weight-reduc-
ing, and confluent string-rewriting system that is left-regular. Since abb <% Wda holds,
but abb is not congruent to any string of shorter length, we see that no length-reducing
and confluent string-rewriting system is equivalent to R. If, however, we introduce three
additional letters f, g, and h as short forms for the strings bc, da, and dW, respectively,
then we obtain a left-regular, length-reducing, and confluent string-rewriting system 7°° on
I':=XU{f,g,h} such that (I'; T*) is another presentation of the monoid N.

References

[Alo92] J.M. Alonso. Combings of groups. In G. Baumslag and C.F. Miller III, editors,
Algorithms and Classification in Combinatorial Group Theory, Math. Sciences
Research Institute Publ. 23, pages 165-178. Springer-Verlag, New York, 1992.

[BO93] R.V. Book and F. Otto. String-Rewriting Systems. Springer-Verlag, New York,
1993.

[Boo82a] R.V.Book. Confluent and other types of Thue systems. J. Association Computing
Machinery, 29:171-182, 1982.

[Boo82b] R.V.Book. The power of the Church-Rosser property in string-rewriting systems.
In D.W. Loveland, editor, 6th Conference on Automated Deduction, Lecture Notes
in Computer Science 138, pages 360-368. Springer-Verlag, Berlin, 1982.

[Boo83] R.V. Book. Decidable sentences of Church-Rosser congruences. Theoretical Com-
puter Science, 24:301-312, 1983.

[CO94] R. Cremanns and F. Otto. Finite derivation type implies the homological finite-
ness condition F' Ps. Journal of Symbolic Computation, 18:91-112, 1994.

[CO96] R. Cremanns and F. Otto. For groups the property of having finite derivation type
is equivalent to the homological finiteness condition F'P3. Journal of Symbolic
Computation, 22:155-177, 1996.

[Eps92] D.B.A. Epstein. Word Processing In Groups. Jones and Bartlett Publishers, 1992.

[Ger92] S.M. Gersten. Dehn functions and 11-norms of finite presentations. In G. Baum-
slag and C.F. Miller ITI, editors, Algorithms and Classification in Combinato-
rial Group Theory, Math. Sciences Research Institute Publ. 23, pages 195-224.
Springer-Verlag, New York, 1992.

19



[Gil84]

[GS91]
[HUT7Y]

[Hud96]

[KMO94]

[Kuh91]
[Lee63]

[McN97]

[MNOZ93]

[MOS5]

[O’D83]

[0K97]

[Ot86]
[Ot87]

[Pri95]

R.H. Gilman. Computations with rational subsets of confluent groups. In J. Fitch,
editor, Proc. EUROSAM 8/, Lecture Notes in Computer Science 174, pages 207—
212. Springer-Verlag, Berlin, 1984.

S.M. Gersten and H.B. Short. Rational subgroups of biautomatic groups. Annals
of Mathematics, 134:125-158, 1991.

J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, Reading, M.A., 1979.

J.F.P. Hudson. Regular rewrite systems and automatic structures. In J. Almeida,
G.M.S. Gomes, and P.V. Silva, editors, Semigroups, Automata and Languages,
pages 145-152. World Scientific, Singapure, 1996.

N. Kuhn, K. Madlener, and F. Otto. Computing presentations for subgroups of
polycyclic groups and of context-free groups. Applicable Algebra in Engineering,
Communication and Computing, 5:287-316, 1994.

N. Kuhn. Zur Entscheidbarkeit des Untergruppenproblems fur Gruppen mit
kanonischen Darstellungen. Dissertation, Universitat Kaiserslautern, 1991.

J. Leech. Coset enumeration on digital computers. Proc. Cambridge Philos. Soc.,
59:257-267, 1963.

R. McNaughton. The finiteness of finitely presented monoids. Report No. 97-2,
Department of Computer Science, Rensselaer Polytechnic Institute, Troy, N.Y.,
March 1997.

K. Madlener, P. Narendran, F. Otto, and L. Zhang. On weakly confluent monadic
string-rewriting systems. Theoretical Computer Science, 113:119-165, 1993.

K. Madlener and F. Otto. Pseudo-natural algorithms for the word problem for
finitely presented monoids and groups. Journal of Symbolic Computation, 1:383—
418, 1985.

C. ()’Dﬁnlaing. Infinite regular Thue systems. Theoretical Computer Science,
25:171-192, 1983.

F. Otto and Y. Kobayashi. Properties of monoids that are presented by finite
convergent string-rewriting systems - a survey. In D.Z. Du and K. Ko, editors,
Advances in Algorithms, Languages and Complezity, pages 226—-266. Kluwer Aca-
demic Publ., Dordrecht, 1997.

F. Otto. On deciding whether a monoid is a free monoid or is a group. Acta
Informatica, 23:99-110, 1986.

F. Otto. On deciding the confluence of a finite string-rewriting system on a given
congruence class. Journal Computer System Sciences, 35:285-310, 1987.

S.J. Pride. Geometric methods in combinatorial semigroup theory. In J. Fountain,
editor, Proc. of Int. Conf. on Semigroups, Formal Languages, and Groups, pages
215-232. Kluwer Academic Publ., Dordrecht, 1995.

20



[Sim94]

[SOK94]

[TC36]

[Tho97]

C.C. Sims. Computation With Finitely Presented Groups, volume 48 of Ency-
clopedia of Mathematics and its Applications. Cambridge University Press, New
York, 1994.

C.C. Squier, F. Otto, and Y. Kobayashi. A finiteness condition for rewriting
systems. Theoretical Computer Science, 131:271-294, 1994.

J.A. Todd and H.S.M. Coxeter. A practical method for enumerating cosets of a
finite abstract group. Proc. Edinburgh Math. Soc., 5:26-34, 1936.

R.M. Thomas. Automatic semigroups. Talk at the Conference on Semigroups
and Applications, St. Andrews, Scotland, July 1997.

21



