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V. Summary 

Due to their N-glycosidase activity, ribosome-inactivating proteins (RIPs) are attractive 

candidates as antitumor and antiviral agents in medical and biological research. In the first 

part, we have successfully cloned two different truncated gelonins into pET-28a(+) vectors 

and expressed intact recombinant gelonin (rGel), recombinant C-terminally truncated gelonin 

(rC3-gelonin) and recombinant N- and C-terminally truncated gelonin (rN34C3-gelonin). 

Biological experiments showed that: 

 The recombinant truncated-gelonins are still having a specific structure that does not 

allow for internalization into cells.  

 Truncation of gelonin leads to partial or complete loss of N-glycosidase as well as 

DNase activity compared to intact recombinant gelonin (rGel).  

 C-and N-terminal amino acid residues are involved in the catalytic and cytotoxic 

activities of recombinant gelonin. 

In the second part, an immunotoxin composed of gelonin and methotrexate (MTX) has been 

studied as a potential tool of gelonin delivery into the cytoplasm of cells. Results of many 

experiments showed that: 

 The methotrexate-gelonin conjugate is able to reduce the viability of MCF-7 cell in a 

dose-dependent manner (ID50, 10 nM) as shown by MTT and significantly induce 

direct and oxidative DNA damage as shown by the alkaline comet assay.  

 The positive charge plays an important role in the DNase activity as well as the N-

glycosidase activity of gelonin.  

 Conjugation of methotrexate to gelonin permits delivery of the conjugate into the 

cytoplasm of cancer cells and exerts a measurable toxic effect. 

In the third part, we have isolated and characterized two ribosome-inactivating proteins (RIPs) 

type I, gelonin and GAP31, from seeds of Gelonium multiflorum. Results of many 

experiments showed that: 

 Both RIPs inhibit protein synthesis by a rabbit reticulocyte lysate with 50% inhibition 

at 4.6 and 2 ng/ml for gelonin and GAP31, respectively. 

 The amino acid sequence of gelonin and GAP31 peptides - obtained by proteolytic 

digestion - are consistent with the amino acid sequence published by Rosenblum et al 

and Huang et al, respectively. 

 Gelonin and GAP31- isolated from the seeds of Gelonium multiflorum- consists of at 

least three different post-translationally modified forms. 

 The N-glycan core of gelonin is N-acetyl-D-glucosamine. While, the N-glycan core of 

GAP31 is fucose-α(1-6)-N-acetyl-D-glucosamine. 

 Standard plant paucimannosidic N-glycosylation patterns (GlcNAc2Man2-5Xyl0-1 and 

GlcNAc2Man6-12Fuc1-2Xyl0-2) were identified using electrospray ionization MS for 

gelonin (making up 4.5% of the total molecular mass) and GAP31 (making up 9.4% of 

the total molecular mass), respectively. 
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1.  Introduction 

1.1. Ribosome-inactivating proteins (RIPs) 

Ribosome-inactivating proteins (RIPs) are toxins able to specifically and irreversibly inhibit 

protein synthesis in eukaryotic cells. RIPs are widely distributed in nature but are found 

predominantly in plants, bacteria and fungi (Table 1). Most plant and bacterial RIPs, such as 

gelonin and Shiga toxins, exert their toxic effects through binding to the large 60S ribosomal 

subunit on which they act as N-glycosidases by specifically cleaving the adenine base A4324 

in the 28S ribosomal rRNA subunit (Olsnes & Pihl, 1973; Endo et al., 1987; Stirpe et al., 

1992; Barbieri et al., 1997; Peumans et al., 2001; Begam et al., 2006). The simple removal of 

one adenine base renders the 60S ribosome unable to bind elongation factor 2, with consquent 

arrest of protein synthesis (Montanaro et al., 1975). Besides their activity on rRNA, certain 

RIPs display a variety of anti-microbial activities in-vitro, such as anti-fungal, anti-bacterial, 

and broad-spectrum anti-viral activities against both human and animal viruses, including the 

human immunodeficiency virus, HIV (Zarling et al., 1990). 

1.1.1.  Classification of RIPs 

RIPs are classified into three groups based on their physical properties (Fig. 1). Type I RIPs, 

such as saporin (from soapwort, Saponaria officinalis ), is composed of a single polypeptide 

chain of approximately 30 kDa (Barbieri et al.,1993). Type II RIPs, like ricin and abrin, are 

highly toxic heterodimeric proteins with enzymatic and lectin properties in separate 

polypeptide subunits, each of approximate MW of 30 kDa. One polypeptide with RIP activity 

(A-chain) is linked to a galactose binding lectin (B-chain) through a disulfide bond (Olsnes & 

Pihl 1973;1982; Barbieriet al., 2004).The lectin chain can bind to galactosyl moieties of 

glycoproteins and/or glycolipids found on the surface of eukaryotic cells (Olsnes & Sandvig 

1988; Steeves et al., 1999) and mediate retrograde transport of the A-chain to the cytosol. 

Once it reaches the cytosol, the RIP has access to the translational machinery and readily 

disrupts protein synthesis. On the other hand, type III RIPs, such as maize proRIPs, are 

synthesized as inactive precursors (ProRIPs) that require proteolytic processing events to form 

an active RIP (Walsh et al., 1991).  

1.1.2.  Structure  

More than 15 type II RIPs and 50 type I RIPs have been sequenced and/or cloned. A 

comparison between the type I RIPs and the A-chain of type II RIPs reveals high sequence 

similarity between the amino-terminal and core sequences of RIPs. While, the difference in 

carboxyl-terminal sequences explains why some RIPs activities are conserved whereas other 

activities are not. Although, the B-chains of different type II RIPs share high sequence 

similarity and virtually identical 3-dimensional structures, there are pronounced differences in 

sugar binding specificity. These differences in lectin activity and specificity are important 
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because the toxicity and cytotoxicity of type II RIPs is determined by the binding of the B-

chain to a sugar-containing receptor on the cell surface (Battelli et al., 1997). 

 

Table 1: List of various RIPs dependent on their origin. 

Source scientific name  RIP Type MW (kDa) Glycosylated  

Plant 

 

 

Bacteria 

 

Fungi 

 

 

Abrus precatorius 

Ricinus communis  

Gelonium multiflorum  

Saponaria officinalis 

 

C. diphtheriae 

E. coli O157:H7 

 

Aspergillus giganteus 

Aspergillus restrictus 

 

abrin  

ricin  

gelonin  

saporin 

 

diphtheria toxin 

Shiga toxin 

 

α-sarcin  

restrictocin 

 

II 

II 

I 

I 

 

II 

II 

 

I 

I 

 

65 

65 

30 

29.5 

 

62 

68 

 

17 

17 

 

Yes 

Yes 

Yes 

No 

 

No 

Yes 

 

No 

No 

 

1.1.3.  Toxicity mechanism 

Ribosome-inactivating proteins (RIPs) interfere with protein biosynthesis by catalyzing the 

depurination of a specific nucleotide in a ribosomal RNA sequence called the α-sarcin/ricin 

loop (Fig. 2). Depurination occurs when a nucleotide loses its nucleobase, becoming an abasic 

site that is incapable of participating in base pairing. The first identified RIPs, ricin and abrin, 

are potent toxic heterodimeric proteins. Endo and co-workers in 1987 described how ricin 

recognizes a highly conserved region in the large 28S rRNA and hydrolytically cleaves a 

specific N-C glycosidic bond between an adenine and the nucleotide on the RNA. 

The B-chain binds to galactosyl moieties of glycoproteins and/or glycolipids on the cell 

surface and facilitates the internalization of the enzymatic chain. Entry occurs by receptor 

mediated endocytosis. From there, the protein moves by retrograde trafficking to the 

endoplasmic reticulum (ER) via the trans-Golgi network and Golgi apparatus. In the ER, the 

disulfide bond between the two chains can be reduced by protein disulfide isomerase. The 

separated A-chain can inactivate ribosomes, thus arresting protein synthesis and killing the 

cell (Sandvig & van Deurs, 2000; Sandvig & van Deurs, 2002).  

In contrast, type I ribosome-inactivating proteins (RIP-I), which lack a B subunit, are much 

less toxic than type II because of poor ability to enter cells, and internalized much less 

efficiently by cells, mainly by non-specific fluid phase pinocytosis and mannose receptor-
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mediated endocytosis (Madan & Ghosh, 1992; Colaco et al., 2002), or through the α2-

macroglobulin receptor (Cavallaro,1995) and consequently have relatively low toxicity. 

 

 

Figure 1: Schematic representation of the mature forms of RIPs type I, type II and type III. 

 

 

Figure 2: Schematic representation of the depurination of the α-sacrin/ricin loop by RIPs. 
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1.1.4.  Gelonium multiflorum 

Gelonium multiflorum is a plant in the Euphorbiaceae family. It grows widely throughout 

tropical and subtropical areas especially in Asia and Africa. This plant has been reported to 

possess different medicinal applications like skin infection and lymphatic disorders, treatment 

of hepatic and gum diseases, and treatment of inflammatory-related diseases (Tewtrakul et al., 

2011). Some phytochemical components of G. multiflorum can be applied in many areas of 

medicine, like anti-cancer (Rosenblum et al., 1992; Lee et al., 2008), anti-parasitic (Surolia & 

Misquith, 1996), anti-viral (Foa-Tomasi et al., 1982), anti-allergic (Cheenpracha et al., 2006), 

anti-fungal, and anti-bacterial activities. Also, this plant has been reported to provide various 

chemical compounds as alkaloids, cardiac glycosides, flavonoids (Das & Chakravarty, 1993), 

lactones and proteins (Stirpe et al., 1980; Bourinbaiar & Lee-Huang, 1996). 

 

1.1.4.1. Gelonium multiflorum proteins  

There are two different RIP (type I) sequences from Gelonium multiforum reported in the 

literature. A comparison of the two amino acid sequences is shown in Fig. 3. The first 

reported full-length sequence will be referred as gelonin (Rosenblum et al., 1995). The protein 

contains 258 amino acids and is based upon Edman sequence analysis of the native protein. 

The protein has a MW of 28.8 kDa, and has a pI of pH 8.9, as calculated using online “MS-

digest”. 

 

Gelonin      1 GLDTVSFSTKGATYITYVNFLNELRVKLKPEGNSHGIPLLRK--GDDPGKCFVLVALSNDN  59 

GAP31        1 GLDTVSFSTKGATYITYVNFLNELRVKLKPEGNSHGIPLLRKKCDDPGKCFVLVALSNDN 60 
 

Gelonin    60 GQLAEIAIDVTSVYVVGYQVRNRSYFFKDAPDAAYEGLFKNTIKNPLLFGGKTRLHFGGS  119 
GAP31      61 GQLAEIAIDVTSVYVVGYQVRNRSYFFKDAPDAAYEGLFKNTIK--------------TRLHFGGS 112 

 
Gelonin  120 YPSLEGEKAYRETTDLGIEPLRIGIKKLDENAIDNYKPTEIASSLLVVIQMVSEAARFTF 179 

GAP31    113 YPSLEGEKAYRETTDLGIEPLRIGIKKLDENAIDNYKPTEIASSLLVVIQMVSEAARFTF 172 
 

Gelonin  180 IENQIRNNFQQRIRPANNTISLENKWGKLSFQIRTSGANGMFSEAVELERANGKKYYVTA  239 

GAP31    173 IENQIRNNFQQRIRPANNTISLENKWGKLSFQIRTSGANGMFSEAVELERANGKKYYVTA 232 
 

Gelonin  240 VDQVKPKIALLKFVDKDPE 258 

GAP31    233 VDQVKPKIALLKFVDKDPK 251 

Figure 3: Alignment of gelonin sequence published by Rosenblum et al. 1995 (top) and GAP31 

sequence published by Huang et al., 1999(down). 
 

The second protein sequence (Fig. 3), referred as GAP31 (Huang et al., 1999). The protein 

consists of 251 amino acids and is based upon Edman sequence analysis of the native protein. 

The protein has a MW of 28.2 kDa and a pI of pH 9.1, as calculated using online “MS-
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digest”. However, the gelonin sequence differs from the GAP31 sequence in three positions as 

is illustrated in Fig. 3. First, there is one additional lysine and one additional cysteine residue 

(Lys43 and Cys44) in the GAP31 sequence, which are not found in the gelonin sequence. 

Secondly, there is a stretch of 8 amino acids (NPLLFGGK) between Lys103 and Thr112 in 

the gelonin sequence, which is not present in the GAP31 sequence. Finally, the last amino 

acid differs between the two molecules. Also, both proteins were reported to be glycosylated 

(Rosenblum et al. 1995; Li et al., 2010). 

 

1.1.4.2. Gelonin 

Gelonin is a 30 kDa single-chain ribosome-inactivating protein (type I) and was originally 

isolated from the seeds of Gelonium multiflorum (Stirpe et al., 1980). Gelonin is highly 

effective in cell free systems but relatively non-toxic to intact cells because it is not able to 

cross the plasma membrane at levels that are therapeutically useful due to lack of a 

carbohydrate-binding domain (B-chain). However, the cytotoxity of gelonin can be enhanced 

if entry into the cell cytoplasm is facilitated. This can be achieved by conjugating gelonin to 

the acetylcholine receptor in order to treat autoimmune Myasthenia Gravis in rats (Urbatsch et 

al., 1993; Hossann et al., 2006), to humanized anti-CD33 monoclonal antibody in order to 

treat leukemia (Pagliaro et al., 1998), or to luteinizing hormone in order to design an 

hormonotoxin (Singh, 1991; Singh & Curtiss, 1993; Singh & Curtiss, 1994). Entry of gelonin 

into cells can be facilitated by electrical pulses (Mir et al., 1988), shock waves (Delius et al., 

1999; Kodama et al., 2003), or photochemical internalization (Selbo et al., 2002). 

Gelonin consists of 258 amino acid residues, contains 21 lysine residues and approximately 

23% sequence homology with other scRIPs such as trichosanthin, ricin D and abrin A 

(Rosenblum et al., 1995). The primary sequence and structure of the gelonin precursor is 

shown in Figs. 3 and 4.  

Falasca et al., 1982 reported that gelonin is a glycoprotein with sugar residues making up to 

4.5% of the total molecular mass. The glycosylation motif is mainly composed of mannose, 

glycosamine and xylose. 

Recombinant gelonin (rGel): A recombinant, de-glycosylated version of gelonin (rGel) has 

been expressed in bacteria and is biologically equi-potent to the natural substance (Nolan et 

al., 1993; Hossann et al., 2006). The rGel consists of 251 amino acid residues (Hossann et al., 

2006). Structurally, gelonin belongs to the alpha helix + beta sheet class of proteins (Fig. 4). 

The N-terminal region (1–100 residues) has a predominantly beta secondary structure (Levitt 

& Chothia, 1976; Richardson, 1981). Six strands, β1, β4, β5, β6, β7 and β8, form a mixed 

beta sheet, in which the central four strands are antiparallel; and the two outer pairs are 

parallel (Richardson, 1981). The C-terminal region (101–247 aa) has a predominantly alpha-

helical structure. The helical regions, except for short segments of type 310 (123–125 and 

237–239 aa), are all of the alpha-helix type (Barlow & Thornton, 1988). There are two 
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distinct structural domains, one large (domain 1) and one small (domain 2). Domain one 

consists of residues 3–32 and 40–187, while domain two consists of residues 33–39 and 188–

247. The residues Tyr74, Arg169, Gly111, Glu166, Tyr113, Trp198 form the active site of 

gelonin, and are located at the cleft between domains one and two (Hosur et al., 1995; Kim & 

Robertus, 1992). 

 

 

Figure 4: The gelonin primary structure. 

 

1.1.4.3. Gelonium Anti-HIV Protein (GAP31) 

GAP31 is a member of the type I ribosome-inactivating plant toxin family and has been also 

isolated from the seeds of Gelonium multiflorum (Lee-Huang et al., 1991). It is a 31 kDa 

single-chain ribosome-inactivating protein that inactivates the ribosomal 60S subunit by 

cleaving rRNA and inhibiting protein synthesis. Similar in action to other plant toxins such as 

gelonin, GAP31 has the powerful N-glycosidase activity and induces cell death by the same 

mechanism as gelonin. GAP31 is not toxic to intact cells, human spermatocytes or intact 

animals (Schreiber et al., 1999; Lee-Huang et al., 2000). 

GAP31 has been reported to exhibit various medical actions such as inhibition of de novo 

HIV-1 infection, cell-to-cell transmission of the virus, viral replication in already infected 

cells, affecting multiple targets of HIV-1 including viral entry, viral genome integration and 

topology of viral DNA (Lee-Huang et al., 1991; Lee-Huang et al., 1995; Arazi et al., 2002; 

Lee-Huang et al., 2003). In addition to HIV-1, it is effective against herpes simplex viruses 

(HSV) (Bourinbaiar & Lee-Huang, 1996) and human herpes virus 8 (HHV8) (Sun et al., 

2001). Moreover, GAP31 exerts a powerful anti-tumor activity against melanoma, brain and 

breast cancer cell lines (Rybak et al., 1994) and prevents tumor development in SCID mice 

xenografted with human breast tumor (Lee-Huang et al., 2000). In addition to tumor and viral 
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targets, GAP31 modulates the expression of host genes related to tumorigenesis, signal 

transduction, apoptosis, proliferation, stress and infection (Lee-Huang et al., 2003). 

Structure: GAP31 consists of 251 amino acid residues (Fig. 3) and two cysteine residues 

(Cys44 and Cys50) are well positioned to form a disulfide bond (Huang et al., 1999). The 

structure of GAP31 is highly homologous to other type I RIPs and the A-chain of type II 

RIPs. Also, the GAP31 molecule contains eight major helices and three beta sheets, one of six 

strands and two of two strands (Li et al., 2010) (Fig. 5).  

 

 

Figure 5: Structure of GAP31 with adenine at its binding pocket (Li et al., 2010). 

 

Catalytic mechanism: Li et al., 2010 reported the active site of GAP31 to be located in a 

cleft of the molecule formed largely by residues highly conserved for RIPs (Fig. 3). Where, 

the active site including Tyr74, Arg169, Gly111, Gln166, Tyr113 and Trp198. There is a 

number of hydrogen bonding interactions between these residues, such as Arg169/Glu166. In 

addition, water molecules participate in the catalytic reaction. Arg169, Gly111 and Val75 at 

the active center are involved in hydrogen bonding with adenine. The guanidinium group of 

Arg169 is at a hydrogen-bonding distance from N3 of the adenine. The carbonyl oxygens of 

Gly111 and Val75 are capable of forming hydrogen bonds with the N7 and N1 of the adenine, 

respectively. In addition, Arg169 plays an important role in the RNA glycosidase mechanism 

of RIPs, either to protonate N3 of adenine, or to act as a strong electrostatic stabilizing group 

to promote electron withdrawal from C1′ to N9 of adenine.  
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1.2. Immunotoxin (ITs) 

Immunotoxins are protein-based drugs combining a target-specific binding domain with a 

cytotoxic domain. The target-domain binds to a surface antigen on a cell, enters it by 

endocytosis, and the cytotoxic domain kills it. Plants and fungi produce a number of 

molecules with defensive functions, to protect themselves against pathogens and predators. 

These defense proteins include ribosome-inactivating proteins. Also, these proteins have a 

broad spectrum of activities, encompassing anti-proliferative, anti-tumor, immunomodulatory, 

anti-viral, anti-fungal and anti-insect activities (Kreitman, 2006). Many efforts have been 

made in research into ITs as anticancer agents, dependent on the observation that a single 

molecule of toxin in the cytosol is sufficient to kill the cell. 

 

1.3. Methotrexate (MTX) 

The MTX is an anti-metabolite and anti-folate drug (Fig. 6). It is used in treatment of acute 

leukemia, osteogenic sarcoma (Garnett et al., 1985; Mir et al., 2008), rheumatoid arthritis 

(Cronstein, 2005; Zuo et al., 2009), and for the induction of medical abortions (Mol et al., 

2008).  

 Mechanism of action 

MTX inhibits dihydrofolate reductase (DHFR), an enzyme that catalyzes the conversion of 

dihydrofolate to the active tetrahydrofolate (Tian & Cronstein, 2007). After entering the cell, 

MTX is polyglutamated (Glu) by the the enzyme folylpolyglutamate synthase. MTX and its 

polyglutamates inhibit the enzyme dihydrofolate reductase, thereby blocking the conversion 

of dihydrofolate (FH2) to tetrahydrofolate (FH4). Folic acid is needed for the de novo 

synthesis of the nucleoside thymidine, required for DNA synthesis. Also, folate is needed for 

purine base synthesis, so all purine synthesis will be inhibited (Aggarwal et al., 2006). MTX, 

therefore, inhibits the synthesis of DNA, RNA, thymidylates, and proteins (Kobayashi et al., 

2002) (Fig. 7).  

 

Figure 6: Chemical structure of Methotrexate. 
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 MTX uptake 

The first step in the cellular action of MTX is its entry into the cell, which can be mediated by 

three different routes (Fig. 7): the reduced folate carrier (Kaufman et al., 2004), membrane-

associated folate receptors (MFRs), or a proton-coupled (low pH) folate transporter (PCFT). 

PCFT is mainly involved in intestinal uptake of folate. The membrane-associated folate 

receptor (MFR) is rarely expressed or inaccessible in most normal cells (Da & Rothenberg, 

1996; Weitman et al., 1994). However, it is up-regulated in select cancers of epithelial origin 

(Parker et al., 2005), and in more than 90% of non-mucinous ovarian carcinomas. Also, MFR 

is expressed at high to moderate levels in malignant tissues of epithelial origin, particularly 

the ovary (Toffoli et al., 1997), uterus, kidney, head and neck (Ross et al., 1994), 

endometrium (Wu et al., 1999), brain (Weitman et al., 1994), breast cancer (Hartmann et al., 

2007), and mesothelium (Bueno et al., 2001). 

The reduced folate carrier (RFC) is expressed in human normal and cancer cells (Gruner & 

Weitman, 1998; Weitman et al., 1992; Kaufman et al., 2004). 

 

Figure 7: Mechanism of action of MTX 

Transport of MTX across the membrane occurs through the reduced folate carrier (a) or folate receptor 

(b). Inside the cell the conversion to polyglutamated (Glu) MTX is catalyzed by folyl polyglutamate 

synthase (c). Both free and polyglutamated MTX inhibit DHFR (d) preventing the reduction of 

dihydrofolate (FH2) to FH4. Subsequently, thymidylate (TMP) synthesis (e) is reduced, which 

ultimately inhibits DNA synthesis (f). Polyglutamated MTX has an increased inhibitory effect on 

purine biosynthesis (f) required for RNA production (Chabner & Roberts, 2005). 
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1.4. Research goals 

Actually, this work is divided into three parts.  

A- Biological activity of truncated mutants of the ribosome-inactivating protein 

gelonin  

B- Synthesis and characterization of an anti-cancer candidate, MTX-gelonin 

conjugate  

C- Isolation and characterization of two RIPs, gelonin and GAP31, from the seeds of 

Gelonium multiflorum  

Part A. 

Ribosome-inactivating proteins (RIP) are a class of plant proteins, which inhibit protein 

synthesis via the catalytic cleavage of an N-glycosidic bond in the 28S rRNA from 60S 

subunit of eukaryotic ribosomes (Begam et al., 2006).  

Recombinant gelonin has no active mechanism of cell entry and hence, it is relatively non-

toxic to intact cells (Nolan et al., 1993). It cannot get into cells in significant concentrations 

(Stirpe et al., 1980). This gives gelonin very low systemic toxicity alone.  

In the first part, we have cloned and expressed two truncated gelonins in order 

 To investigate the relationship between the conformational structure of recombinant 

gelonin and its possibility to pass through the cell membrane as well as its function. 

 To measure the cytotoxicity of recombinant gelonin and truncated gelonin. 

Finally, this work may be useful in understanding the role of C- and N-terminal amino acid 

residues in gelonin activity as well as cellular intoxication. With a better understanding of 

these roles, we can engineer more effective agents with more therapeutic uses. 

 

Part B. 

The treatment and cure of cancer is an important field of medical research. This part is 

focused on synthesis and characterization of an anti-cancer candidate, MTX-gelonin 

conjugate. In our study, we tried to generate a highly potent immunotoxin with a potential 

application in tumor-targeted drug delivery. In order to realize this aim, we chose a plant 

toxin, gelonin, as the main compound of the planned therapeutic agent. This protein is a type I 

RIP that is unable to bind to the cell surface and therefore is non-toxic to intact cells. To 

achieve the desired toxicity effect on target cells, we chemically joined gelonin to MTX. The 

anti-folate MTX displays significant tumoricidal activity against a variety of human 

malignancies (Frei, 1985; Gurdag et al., 2006). MTX contains carboxyl as well as amino 

groups which make the chosen molecule an optimal binding partner for proteins. We decided 

to use MTX because of its ability to interact with reduced folate receptors which are highly 

expressed in cancer cells (Parker et al., 2005). Thus, MTX may be useful to improve protein 

target delivery and cytotoxicity inside the cancer cell. 
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Part C. 

For many years researchers believed that there is only one protein isolated from Gelonium 

multiflorum seeds. Many previous studies reported the isolation of gelonin (30 kDa) alone 

(Stirpe et al., 1992; Rosenblum et al. 1995), whereas another studies reported the isolation of 

GAP31 alone (Lee-Huang et al., 1991; Huang et al., 1999; Li et al., 2010), and another studies 

confused gelonin with GAP31 (Brigotti et al., 1995; Katiyar et al., 2011).  

In order to decide whether one or two proteins are isolated from Gelonium multiflorum seeds, 

we performed in-gel tryptic and Arg-C digest for 30 and 31-kDa bands followed by MALDI-

TOF MS (positive mode) and ESI ion-trap MS. Data achieved by this analysis were compared 

with calculated values obtained from online “MS digest” of gelonin and GAP31 sequences. 

The present study also was aimed to determine the composition and structures of the N-

glycans profile of a given glycoprotein. For this purpose; the N-glycan pattern was released 

by enzymatic deglycosylation endo-β-N-acetylglucosaminidase H (Endo H) and/or peptidyl-

N-glycosidase F (PNGase F) followed by MS detection.  
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2. Materials 

2.1.  Cells 

2.1.1.  MCF-7 cell line  

The human (Homo sapiens) breast adenocarcinoma cell line MCF-7 was established in 1973 

by Herbert Soule and isolated from a 69-year-old Caucasian woman. The cells express the 

estrogen receptor. The epithelial-like, adherent cells grow in monolayer cultures as small 

aggregates (Fig. 8). The cell line was kindly provided by Prof. Dr. Elke Richling (toxicology, 

chemistry department, TU Kaiserslautern). 

 

 

Figure 8: MCF-7 cells in monolayer culture. 

 

2.2. Bacterial strains 

E. coli strains Genotype Reference 

BL21 (DE3) F
-
ompT gal [dcm] [lon] hsdSB (rB-,mB-) λ(DE3) Novagen 

XL-1 blue recA1, endA1, gyrA96, thi-1, hsdR17, supE44, relA1, 

lac [F'proAB lacIqZΔM15 Tn10 (Tet
R
)] 

Stratagene 
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2.3. Plasmid constructs 

All plasmids described below have already been used in the laboratory. 

pET-28a-(+) vectors: The pET-28a-(+) vectors carry an N-terminal His- 

Tag/thrombin/T7•Tag configuration plus an optional C-terminal His-Tag sequence. In 

addition, the vector contains a multiple cloning site (MCS158-203), kanamycin resistance 

gene (813bp), f1 origin, T7 promoter, Lac operator, LacI and pBR322 origin (Novagen). 

pET-gel plasmid: The pET-gel expression plasmid was constructed in the work group of 

Prof. Dr. Wolfgang E. Trommer and published by Hossann et al., 2006. 

pUC18 plasmid: The pUC18 plasmid was obtained from MBI Fermentas and used as a 

substrate in DNase like activity tests. 

 

2.4. Enzymes 

Restriction endonucleases: Type II restriction endonucleases were obtained from MBI 

Fermentas. The enzymes were used with optimized buffers supplied by the company. 

Lysozyme: Lysozyme is a single chain polypeptide of 129 amino acids cross-linked with four 

disulfide bridges. It hydrolyzes the glycosidic bond of the bacterial mureine. 

Thrombin: Thrombin is an endoprotease that specifically cleaves the sequence 

LeuValProArg GlySer (Novagen, Darmstadt). 

Trypsin: Trypsin is a serine protease that specifically cleaves at the carboxylic side of lysine 

and arginine residues of protein and yields peptides of molecular weights that can be analyzed 

by mass spectrometry. The enzyme was purchased from Sigma (Aldrich) and (Promega). 

Arg-C: Endoproteinase Arg-C - isolated from Clostridium histolyticum - is a cysteine 

proteinase and cleaves peptide bonds at the carboxyl side of arginine residues. The enzyme 

was purchased from Roche Applied Science. 

PNGase F: PNGaseF (peptide: N-glycosidase F) -purified from Flavobacterium 

meningosepticum- is an amidase that cleaves between the innermost GlcNAc and asparagine 

residues of high mannose, hybrid, and complex oligosaccharides from N-linked glycoproteins. 

The enzyme was purchased from New England Biolabs (NEB). 

Endo H: Endoglycosidase H is a glycosidase which cleaves the bond in the diacetylchitobiose 

core of oligosaccharides between two N-acetylglucosamine (GlcNAc) subunits directly 

proximal to the asparagine residue to which the suger is attached, generating a truncated sugar 

molecule with one N-acetylglucosamine residue remaining on the asparagine. The enzyme 

was purchased from New England Biolabs (NEB). 
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2.5. Antibody 

Antibody Dilution Properties Manufacturer 

Anti-poly-Histidine antibody 1:1000 Mouse monoclonal Sigma-Aldrich 

Anti-Mouse IgG (Fc specific)–

Alkaline phosphatase 

1:1000 peroxidase conjugate Sigma-Aldrich 

2.6. Chemicals 

Amersham Pharmacia Biotech L-[U-
14

C]-valine 

AppliChem (Darmstadt) Agar, glycerol, glycine, TEMED, Tris (hydroxymethyl) 

aminomethane, Tween® 20. 

Merck (Darmstadt) Ethanol, Nickel sulfate. 

PAA (Cölbe) RPMI 1640, RPMI without phenol red, Trypsin-ETDA, 

non-essential amino acids. 

Promega (USA) Rabbit reticulocyte lysate system, Untreated. 

Roth (Karlsruhe) acrylamide, agarose, rotiszint ecoplus, LB-Medium 

Serva (Heidelberg) 

 

Ammonium persulfate (APS), ampicillin (Amp), 

bromophenol blue, creatine phosphate, CM52-cellulose, 

Coomassie Brilliant Blue R 250, ethidium bromide 

(EtBr), hemin, penicillin G potassium salt, sodium 

dodecyl sulfate. 

Sigma (Aldrich) 

 

Dicyclohexylcarbodiimide (DCC), dihydrofolic acid, 

imidazole; iodoacetamide, L-valine, methotrexate, 

NADPH tetrasodium salt, N-hydroxysuccinimide, 

sephadex G75. 

Sigma (Taufkirchen) Dimethylsulfoxide (DMSO), dithiothreitol (DTT), 

isopropanol, phenylmethanesulfonyl fluoride (PMSF). 

2.7. Detection, purification and synthesis kits 

Kit name Manufacturer 

BCA Protein Assay Kit  

GeneJet
™

 Gel Extraction Kit 

Pierce 

MBI Fermentas 
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QIAprep Spin
®
 Miniprep Kit 

HiTrap Chelating Column 

Jet star Plasmid Purification Kit 

Thrombin Cleavage Capture Kit 

Qiagen 

Amersham Pharmacia Biotech 

Genomed (Löhne) 

Novagen (Darmstadt) 

2.8.  Instruments 

Autoclave 

Automatic pipettes 

Bi-Distiller apparatus 

Centrifuges 

 

 

 

Incubator 

 

 

Concentrator 

Electric power apparatus 

Electroporator 

ESI ion-trap mass  

MALDI- Ultraflex-TOF-TOF 

Peristaltic pump 

PH meter 

Sterile syringe 

Spectrophotometer 

 

Systec V65 

Eppendorf Research (10-1000) 

QCS Bi 18E 

Beckman J2-21 Centrifuge (Rotors JA-14, JA-20) 

Eppendorf Table Centrifuge 5415C and 5414 

Eppendorf Table-top cooling centrifuge 5810R 

VWR Galaxy 16DH 

New Brunswick Scientific CO2 Innova
@

CO-17 

Heraeus Cytoperm 8080 (with gas flow) 

Thermo Scientific SHKA4000 (with shaking) 

Sartorius Vivaspin6 and 20 

Biometra P 25/30 

BioRad Gene Pulser II  

Bruker Daltonics Esquire 3000
+
 

Bruker Daltonics 

Pharmacia P-1 and P-3 

Schütt Labortechnik 535 Multi Cal 

Sartorius (Göttingen) 

Beckman DU 640 

Thermo Scientific Genesys 10UV 
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Thermomixer 

Tissue culture plastic ware 

Ultra-Sound sonicator 

Eppendorf 5355 

Greiner 

Branson Sonorex RK 106 

 

2.9. Software 

Program Name Company / Organization 

BLAST 

ChemSketch Freeware (Free) 

Clone Manger 6 

Comet Assay IV  

Corel Draw 

Data analysis
TM 

3.4 

Doc It  

Esquire control 6.2 

MS Office 

MS-Digest 

NEBcutter V2.0 

NCBI 

Advanced Chemistry Development 

Sci Ed Central 

Perceptive Instruments 

Corel  

Bruker Daltonics 

UVP 

Bruker Daltonics 

Microsoft 

http://prospector.ucsf.edu/prospector 

http://tools.neb.com/NEBcutter2/index.php 

 

http://prospector.ucsf.edu/prospector
http://tools.neb.com/NEBcutter2/index.php
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3. Methods 

3.1. Molecular biological methods 

3.1.1. Preparation of competent E. coli cells 

One clone of E. coli strain BL21 (DE3) was grown at 37°C overnight in 5 ml LB medium. 

Two ml of this culture were added to 200 ml LB medium and incubated at 37°C for 3-5 h 

until OD600 reached 0.4-0.5. The culture was incubated for 20 min on ice and centrifuged at 

1000 g for 15 min (Eppendorf 5415C rotor). Cells must remain cold for the rest of the 

procedure: The pellet was resuspended in 30 ml of cold 0.1 M CaCl2. The resuspended cells 

were transferred into 50 ml polypropylene falcon tubes, and incubated on ice for 30 mins. The 

culture was centrifuged at 4
o
C for 10 min at 3000 g (2500 rpm). The media were removed and 

the pellet was resuspended in 8 ml cold 0.1M CaCl2 containing 15% glycerol. The cells were 

stored in aliquots of 100 µl, frozen in liquid N2, and stored at -80°C.  

 

3.1.2. Transformation of competent cells 

Approximately 1 ng of plasmid DNA was mixed with competent E. coli and incubated for 30 

min on ice, and then heat shocked for 2 min at 42°C and incubated on ice for 2 min. 500 µl 

LB medium was added to the bacteria and incubated for 60 min at 37°C on a thermomixer. 

20-30 µl of the bacterial suspension was plated on LB agar plates containing ampicillin or 

kanamycin. The plates were incubated overnight at 37°C. 

 

LB medium: (pH 7.0, autoclaved and stored at 4°C): 

Tryptone 10 g 

Yeast extract 5 g 

NaCl 10 g 

H2O bidest 1 l 

 

3.1.3. LB-agar plate 

500 ml of LB medium containing 7.5 g of bactoagar were autoclaved. After cooling to 40-

50°C, the antibiotic stock solutions were added (60 µg/ml). After mixing the solution (10 ml) 

was poured to sterile Petri dishes of 10 cm diameter. The dishes were dried in a sterile 

atmosphere and finally stored at 4°C in the dark room. 
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3.1.4. Preparation of plasmid DNA 

 Small-scale preparation of plasmid DNA 

The QIAprep
TM

 Spin Miniprep Kit was used if DNA of high purity was necessary. 2 -10 ml of 

LB medium with a proper antibiotic was inoculated with a single colony and incubated at 

37°C and 300 rpm for 10-12 h. 2-5 ml of the overnight culture was divided in 2.5 ml micro-

centrifuge tubes and centrifuged at 13000 rpm for 10 min. The media were removed and the 

pellets were resuspended in 250 μl of resuspension buffer P1 until no cell clumps were 

visible. 250 μl of lysis buffer P2 was added and mixed by inverting 4-6 times. After addition 

of 350 μl of neutralization buffer N3, the mixture was inverted and centrifuged at 13000 rpm 

for 10 min. The supernatants were applied from the tube to a QIAprepTM spin column placed 

in a 2 ml collection tube. The columns were centrifuged at 13000 rpm for 1 min and the flow-

through was discarded. Each column was washed by adding 0.75 ml of washing buffer PE and 

centrifuging for 1 min at 13000 rpm. The flow-through was discarded again and the residual 

washing buffer was removed by centrifuging as before. The spin column was placed in a fresh 

1.5 ml micro-centrifuge tube, and 50 μl of elution buffer EB (10 mM Tris, pH 7.5) was added. 

After 1 min, the tube was centrifuged as before. The plasmid preparations were stored at –

20°C. 

 Large-scale preparation of plasmid DNA (Maxi preparation) 

The preparation of plasmid DNA in the µg range (maxi prep) was carried out by using the 

manufacturer protocol of the JETStar Plasmid MaxiPrep Kit (Genomed, Löhne). 

A single colony of E. coli XL-1 blue was inoculated into 3 ml LB medium containing 7.5 µl 

ampicillin (60 mg/ml) and grown for 6-8 h at 37°C with shaking. Then, 200 µl of the starter 

bacterial culture was used to inoculate 200 ml LB and cultured overnight with shaking at 

37°C. Cells were harvested by centrifugation for 20 min at 4°C and 5000 rpm (Beckman 

Centrifuge, JA-14 Rotor) and all traces of medium were removed carefully. The pellet was re-

suspended in 10 ml solution E1. Then, 10 ml of solution E2 were added and mixed gently and 

incubated at RT for 5 min. Thereafter, 10 ml solution E3 were added for neutralization, mixed 

immediately by inverting the tube 5 times and centrifuged for 20 min at 20°C and 15000 rpm 

(Beckman Centrifuge, JA-14 Rotor). The supernatant was applied to a column, which was 

equilibrated by adding 30 ml of solution E4. Then, the lysate was allowed to run through the 

column by gravity flow. The column was then washed with 60 ml of solution E5 and allowed 

to empty by gravity flow. The column was eluted with 15 ml of solution E6 and the eluted 

DNA was precipitated by adding 10.5 ml of isopropanol after incubation overnight at -20°C. 

The samples were centrifuged at 4°C for 40 min and 9500 rpm (Beckman Centrifuge, JA-14 

Rotor), all isopropanol was removed and the pellet was washed with 5 ml of 70% ethanol and 

centrifuged for 40 min at 4°C and 9500 rpm (Beckman Centrifuge, JA-14 Rotor). The pellet 

was air-dried for 10-20 min, dissolved in 1 ml of sterile H2O and stored at –20°C. 
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Solution E1: Final concentration Solution E2: F. concentration 

Tris   

EDTA 

50 

10 

mM 

mM 

NaOH 

SDS 

200 

1 

mM 

% (w/v) 

RNase (final concentration 100 µg/ml E1) 

pH 8.0, adjusted with HCl, stored at 4°C 

stored at RT. 

Solution E3:   Solution E4:  

Potassium acetate 3.1 M NaCl 

Sodium acetate 

TritonX-100 

600 

100 

0.15 

mM 

mM 

% 

pH 5.5, adjusted with acetic acid,  

stored at RT. 

pH 5.0, adjusted with acetic acid, stored 

at RT. 

Solution E5:   Solution E6:  

NaCl 

Sodium acetate  

800 

100 

mM 

mM 

NaCl 

Tris 

1250 

100 

mM 

mM 

PH 5.0, adjusted with acetic acid, RT pH 8.5, adjusted with HCl, stored at RT 

 

3.1.5. Determination of nucleic acid concentration 

The concentration of nucleic acids was determined by measuring the absorption at 260 nm 

(Beckman DU640 Spectrophotometer). The optical density at 260 nm of 1 (OD260=1) is 

equivalent to 50 µg/ml of double-stranded DNA, 40 µg/ml RNA, 37 µg/ml single-stranded 

DNA, or 30 µg/ml oligonucleotides in a 1 cm cuvette (Sambrook et al., 1989).  

 

3.1.6. DNA sequencing 

DNA sequencing was done at the immunology and genetic center at the TU Kaiserslautern. 
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3.1.7. Restriction analysis  

Digestion of DNA with restriction enzymes was performed using type II restriction 

endonucleases. The sample volume and the amount of enzyme were adjusted according to the 

amount of DNA. For the analysis of mini-preparations approximately 1000 ng plasmid DNA 

was digested with 5 U of restriction enzyme in a final volume of 20 µl. 

The restriction digestions were performed for 1 hour at 37°C. DNA fragments obtained from 

the restriction digestions were directly analyzed by agarose gel electrophoresis. 

 

Restriction mixture:    

 Plasmid DNA  

10X Buffer (enzyme specific) 

Restriction enzyme (10 U/µl)  

1 

2 

0.5 

µg 

µl 

µl 

 H2O bidest to 20 µl 

 

3.1.8. Agarose gel electrophoresis 

DNA fragments were separated electrophoretically on horizontal agarose gels in 1X TAE 

buffer. The DNA samples were mixed with 10X DNA loading buffer and run at 7.5 V/cm². 

When the DNA samples or dye had migrated a sufficient distance through the gel, the 

fragments were visualized by staining the gel in 1X TAE buffer or H2O containing 10 µl of 10 

mg/ml ethidium bromide for 20-30 min at RT. The gel was washed with H2O to remove the 

background staining and the DNA fragments were visualized under UV light (254 nm) and 

photographed. The estimation of the sizes of the DNA fragments was done by comparison 

with a size standard marker 1 kb DNA ladder (MBI Fermentas GmbH). 

 

TAE (50X):  Final concentration 

 Tris 

EDTA 

Acetic acid 

121 

18.6 

28.6 

g/l 

g/l 

ml 

 Adjusted pH 8.0 with acetic acid, autoclaved and stored at RT 
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DNA loading buffer: 

 Ficoll ® 400 

Orange G 

10% 

0.01% 

(w/v) 

(w/v) 

 

 H2O and stored at -20°C 

3.1.9. Extraction and purification of DNA fragments from agarose gel 

The extraction and purification of DNA fragments from agarose gels was carried out by using 

the manufacturer’s protocol of the GeneJET™ Gel Extraction Kit (Fermentas GmbH). The 

DNA fragment of interest is excised from an agarose gel using a clean scalpel or razor blade, 

placed in a 1.5 ml micro-centrifuge tube. The gel was mixed with binding buffer (1:1 v/w) 

and incubated at 50-60°C for 10 min until the gel slice is completely dissolved. An 800 µl of 

the solubilized gel solution was transferred to the GeneJET™ purification column and 

centrifuged for 1 min and 13000 rpm. The flow-through was discarded. The column was 

washed by adding 0.7 ml of washing buffer and centrifuging for 1 min at 13000 rpm. The 

flow-through was discarded again and the residual washing buffer was removed by 

centrifuging as before. The spin column was placed in a fresh 1.5 ml micro centrifuge tube 

and 50 μl of elution buffer was added to the centre of the column. After 1 min, the tube was 

centrifuged as before. The DNA fragment was stored at - 20°C. 

 

3.1.10. Ligation reaction 

The ligation reaction was performed by using the enzyme T4 ligase, which catalyzes the 

formation of a phosphodiester bond between 3'-OH and free 5'-phosphate of double-stranded 

DNA fragments. 

 

Ligation reaction:  

  Vector DNA 

Insert DNA 

Ligase 10X buffer 

T4 DNA ligase 

Nuclease-free H2O to 

150 

X 

2 

2 

20 

ng 

ng 

µl 

µl 

µl 

The components were mixed and incubated at 16°C for 20 h prior to transformation. 
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3.1.11. ELISA 

The basic principle of an ELISA is to use an enzyme (connected to a secondary antibody) to 

detect the binding of antigen (Ag) to the primary antibody (Ab). The enzyme converts a 

colorless substrate (chromogen) to a colored product, indicating the presence of Ag:Ab 

binding, which can be detected spectro-photometerically. The plate’s wells were coated with 

protein (2 µg) in 100 µl of coating buffer and incubated at 4°C overnight. The wells were 

saturated with 200 µl of blocking solution (1% BSA in PBS) for 90 min at room temperature. 

After blocking, the wells were washed with PBS-Tween three times (200 µl/well). The first 

antibody was added and incubated for 1 h at room temperature (100 µl/per well). The wells 

were washed three times with PBS-Tween. After washing, the secondary antibody was added 

and incubated for 1 h at room temperature (100 µl/well). The wells were continuously washed 

with PBS-Tween four times. The substrate buffer was added and incubated for 30 min at 

room temperature (100 µl/well) and the color developed in 30 min was measured at 405 nm 

using a microtiter plate reader. 

 

Coating buffer: A: 100 ml     0.2 M Na2CO3 (2.12 g ad 100 ml)  

B: 100 ml     0.2 M NaHCO3 (1.68 g ad 100 ml)  

Working solution: 8.5 ml A + 4 ml B /pH 10.6/ H2O bidest to 50 ml 

PBS buffer (pH7.2): PBS-Tween: 

Na2HPO4 

NaH2PO4  

NaCl 

H2O bidest to 

0.92 

8.18 

0.35 

1 

g  

g  

g  

l 

PBS 

Tween 20 

H2O bidest to 

100 

0.45 

1 

ml 

ml 

l  

Block solution:  

1% BSA in PBS buffer (250 mg BSA in 25 ml PBS) 

Substrate buffer (pH 9.8): Substrate solution: 

NaN3  

MgCl2*6H2O 

DEA  

H2O bidest to 

0.2 

0.1 

97 

1 

g  

g 

ml 

l 

15 mg p-nitrophenyl phoshate + 15 ml 

substrate buffer 
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3.2. Cell biology methods 

3.2.1. Culture of MCF-7 cells 

MCF-7 cells cultured in an 175 cm
2
 cell-culture flask were maintained in RPMI 1640 

supplemented with 10% (w/v) fetal bovine serum, 1% non-essential amino acids and 0.5% 

(w/v) antibiotic. For sub-culturing, 80-90% confluent flask was rinsed twice with 10-15 ml 1 

× PBS, treated with 3 ml trypsin-EDTA for approximately 2-3 min and the reaction was 

stopped by adding 5 ml of growth medium with 10% FBS which contains trypsin inhibitors. 

For treatment, cells were plated in 2.5 ml of medium on culture dishes of 60 mm diameter. 

After 24 h the medium was changed. A volume of 2.5 ml medium per 60 mm culture dish was 

added. The incubation of MCF-7 cells was performed in CO2 incubators. 

 

3.2.2. Freezing of cells 

The cells from a 175 cm
2
 culture flask grown to 90-95% confluency were washed with 15 ml 

1X PBS. Then 3 ml of Trypsin/EDTA was applied to detach the cells. After suspension in 7 

ml complete RPMI 1640 (to a total volume of 10 ml) and centrifugation at room temperature 

and 1000 rpm for 5 min (Heraeus Labofuge A), the cell pellet was resuspended in 800 μl 

complete RPMI 1640 and filled in a 1.5 ml eppendorf cup. Then, 200 μl DMSO was added 

dropwise. The cells were cooled down to 4°C and then to -20°C before they were finally 

stored at -80°C. 

 

3.2.3. Treatment of MCF-7 with different compounds 

Freshly isolated MCF-7 was allowed to attach for 24 h and culture medium was changed. 

After 24 h the MCF-7 was treated with different concentrations of the tested protein or drug. 

For MTT test the cells were treated for 72 h, for comet assay the cells were treated for 24 h 

before harvesting without changing the medium.  

 

3.3. Protein isolation, purification and characterization 
methods 

 

3.3.1. Expression and purification of recombinant gelonin (rGel) by 

Ni2+ affinity chromatography 

One single colony of BL21 (DE3)/pET-gel that was grown on an LB plate (80 μg/ml 

kanamycin) was picked and inoculated into 20 ml of LB medium at 37°C and 225 rpm 

overnight. This culture was used to inoculate 1l of the same medium. The culture was 

incubated at 37 °C at 220 rpm until an optical density at 600 nm of 0.7 was reached. IPTG 

was added to give a final concentration of 1 mM, and the culture was incubated overnight at 
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identical conditions. The cells were harvested by centrifugation at 6400 g for 30 min at 4°C. 

The pellets were suspended in 50 ml of suspension buffer. The suspension was sonified 15 

times for 8 s each in an ice-water bath. The non-soluble parts were removed by centrifugation 

(30000 g for 30 min at 4
o
C). The supernatant was loaded on a HiTrap Chelating HP column 

that had been loaded with nickel ions (1 M NiSO4) and equilibrated with loading buffer 

(Suspension buffer). After removal of impurities by washing buffer (20 mM phosphate buffer 

containing 100 mM imidazole, 500 mM sodium chloride, and 1.5 mM PMSF, pH 7.2), 

gelonin was eluted with 500 mM imidazole in 20 mM phosphate buffer containing 500 mM 

sodium chloride and 1.5 mM PMSF, pH 7.2. The fractions containing gelonin were finally 

subjected to dialysis against 20 mM phosphate, pH 7.2, at 4°C overnight. 

For removal of the His-tag in solution, recombinant gelonin was diluted to a concentration of 

0.2 mg/ml using the buffers supplied with the thrombin kit from Novagen (Darmstadt, 

Germany) and incubated with 1 of mU thrombin per µg of protein for 16 h at RT. 

 

Pellet washing buffer:    Final concentration 

Tris 

H2O 

pH 7.2 /RT 

1.2114 

500 

g 

ml 

20  mM 

Suspension buffer: 
    

NaH2PO4 

Imidazol 

NaCl 

H2O 

2.7598  

1.3616  

29.22 

1 

g 

g 

g 

l 

20 

20 

500 

mM 

mM 

mM 

pH 7.2 /RT, before use add 1 ml PMSF/l 

PMSF stock solution: 
  

PMSF 

2-Propanol 

0.31  

2.36 

g 

ml 

  

Lysozyme stock solution: Lysozyme 10 mg/ml of 100 mM Tris, pH 8  

IPTG stock solution: IPTG 1 M sterile by filtration, store at -20 C 
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3.3.2.  Isolation of native gelonin (Gel) 

Gelonin was isolated from the seeds of Gelonium multiflorum using the method established in 

the research group of Prof. Dr. Trommer in modification of the original method as described 

by Stirpe et al., 1980. 

23 g of the peeled seeds were transferred to 400 ml of 5 mM NaH2PO4 buffer, containing 0.14 

M NaCl, pH 7.4 (bidistilled water, 4°C) and crushed with a mixer 10 times for 30 s at 4°C. 

The result was a milky homogenate which was stirred overnight at 4°C. The next day the 

homogenate was filtered with a cloth made of mull and the suspension was centrifuged 30 

min at 30000 g (4°C). After the centrifugation the fat was decantated with a plastic spoon. 

The supernatant was dialyzed 6 x 50 minutes against 5 l of 5 mM NaH2PO4 buffer, containing 

5 mM EDTA pH 6.5. After dialysis the precipitate was removed, and the remaining solution 

was applied to an ion exchange column (IEC, Fractogel TSK CM 650 M) with a flow rate of 

3.3 ml/min. The column itself had been prepared as follows: 40 ml of the carrier material was 

suspended in 500 ml of 1 M NaCl and equilibrated for 30 minutes while temporarily 

slurrying. Then it was washed with 2 l of bidistilled water using a suction filter (pore size 2). 

The gel was resuspended in 2 l of 0.5 M NaOH and after 30 min it was washed with 

bidistilled water until it was neutral. The same procedure was carried out with 0.5 M HCl. 

Afterwards the gel was washed with 500-1000 ml of 5 mM NaH2PO4 buffer, containing 5 

mM EDTA pH 6.5 (until the pH of the washing solution was 6.5) and filled into an 

appropriate column. After application of the gelonin, the column was washed with buffer over 

night until no protein absorption could be measured with a photometer. The next day the 

protein on the column was eluted using a gradient of 0-0.3 M NaCl in the same buffer (2 x 

500 ml). The protein fractions eluted at 0.12 M NaCl were collected and concentrated using a 

centrifugal filter device (Centriprep-10, cutoff: 10 kDa). The purity of the sample was 

determined by means of sodium dodecyl sulfate polyacrylamide gel electrophoresis and the 

concentration by means of BCA assay. 

 

3.3.3. Isolation of GAP31 

Homogeneous GAP31 was isolated from mature seeds of Gelonium multiflorum. 

 Initial extraction 

Shelled seeds were extracted with PBS -10 mM sodium phosphate buffer, pH 9.2, containing 

0.15 M NaCl- (4 gm : 25 ml) using a mixer 10 times for 30 s at 4°C. The extract was stirred 

gently overnight followed by centrifugation at 16000 g for 30 min to remove cell debris. 

 Size fractionation by sephadex G75 column chromatography 

The homogenate (4 ml) was applied to a sephadex G75 column (1.5x70 cm) with flow rate 2 

ml/min with10 mM Tris, 50 mM NaCl pH 7.2. The solution was fractionated to 3 fractions. 
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Fraction 1 contained GAP31 and a protein of about 22 kDa, fraction 2 contained gelonin and 

fraction 3 contained non protein compounds. The fraction containing GAP31 was 

concentrated by ammonium sulfate precipitation (80% saturation) at 4°C overnight. The 

precipitate was dissolved in and dialyzed against 5 mM Na phosphate, pH 6.4. 

 Cationic exchange by CM 52 cellulose column chromatography 

The dialyzed sample was applied to a CM 52 cellulose column with a flow rate of 2 ml/min 

and washed by the same buffer overnight. The protein was eluted using a gradient of 0-0.3 M 

NaCl in the same buffer (2x500 ml). The eluted protein was dialyzed against 5 mM Na 

phosphate, 5 mM EDTA, pH 6.5. The purity of the sample was determined by means of SDS-

PAGE and the concentration by means of the BCA assay. 

 

3.3.4. Determination of protein concentration 

Protein concentration was determined by the methods of Bradford (Bradford et al., 1976) or 

BCA assay (Smith et al., 1985) using bovine serum albumin as a standard.  

 

3.3.5. Enzymatic deglycosylation of purified protein  

3.3.5.1. N-glycan release by PNGase F 

10 µg of proteins were heated with denaturing buffer (1 µl) in a 10 µl total reaction volume at 

100°C for 10 minutes. After protein denaturation a 2 µl of 10XG7 reaction buffer, 2 µl 10% 

of NP40, 1-2 µl of PNGase F (500000 units/ml) and H2O was added to make the final volume 

20 µl. The reaction mixture was incubated at 37 °C overnight. The reaction buffer, denaturing 

buffer and NP40 were obtained from New England Biolabs (Frankfurt am Main, Germany). 

 

3.3.5.2. N-glycan release by Endo H 

20 µg of proteins were heated with 1 µl of 10X denaturing buffer in a 10 µl total reaction 

volume at 100°C for 10 minutes. After protein denaturation, 2 µl of 10XG5 reaction buffer, 1-

5 µl of Endo H (500000 U/ml) and H2O was added to make the final volume 20 µl. The 

reaction mixture was incubated at 37 °C overnight. The reaction buffer and denaturing buffer 

were obtained from New England Biolabs (Frankfurt am Main, Germany). 

 

3.3.5.3. Release and isolation N-glycan by Endo H and PNGase F  

N-glycans were released from gelonin and GAP31 by treatment with Endo H followed by 

PNGase F according to the protocol described above. Proteins and oligosaccharides were 

precipitated by adding 4 volume of -20°C acetone, and the mixtures were incubated at -20°C 
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for 1 h. Samples were centrifuged at 13,000g at 4°C for 10 min, and the salt containing 80% 

acetone supernatant was discarded. The pellet was extracted twice by trituration in small 

volumes of ice-cold 60% aqueous methanol. Pooled methanol supernatants contained the 

Endo H-released oligosaccharides and were concentrated by evaporation. The glycoprotein 

pellet was dissolved with 0.05 M NaOH, and immediately adjusted to pH 8.5. PNGase F was 

added, and the mixture was incubated overnight at 37°C. N-linked oligosaccharides were 

isolated by solvent precipitation/extraction exactly as described above. The released N-glycan 

was dissolved in H2O/MeOH/acetic acid (49:49:2), and analyzed by ESI-MS. 

 

 

Figure 9: Scheme showing the cleavage sites of PNGase F and Endo H enzymes. 

 

3.4. Enzymatic digestion 

3.4.1. In-gel tryptic digestion 

Purified proteins were subjected to electrophoresis on a 12% SDS-polyacrylamide gel and 

visualized by staining with Coomassie Blue. Purified bands were excised, and gel slices were 

washed three times with 50% acetonitrile in 25 mM NH4HCO3, soaked in 100% acetonitrile, 

and dehydrated by speed–vac for 10 min. 150 µl of 10 mM DTT in 100 mM NH4HCO3 was 

added to the dried gel pieces, and incubated at 56°C for 1 hr. The supernatant was removed 

and 150 µl of 55 mM iodoacetamide in 100mM NH4HCO3 was added to the gel pieces, which 

were then vortexed. These suspensions were allowed to stand at RT in the dark for 45 min. 

The supernatant was removed and discarded. The gel pieces were washed with aqueous 

NH4HCO3 (150 µl, 100 mM) for 10 min. The supernatant was discarded, and the gel pieces 

were dehydrated by treatment with acetonitrile (0.1 ml, 50% 25 mM NH4HCO3) twice. The 

gel pieces were dried as described above. To each gel, 0.1 ml of trypsin solution (12.5 ng/µl, 

50 mM NH4HCO3) was added and incubated at 37°C for 19 hr. The supernatant was separated 

in a new tube, extracted twice, with 50μl of 50% acetonitrile/0.1% TFA (with mixing) for 30 

minutes each time, at RT. Tryptic peptides were desalted with C18 ZipTip
TM 

(OMIX), eluted 

with 0.6 μl of 10 mg/ml 2,5-dihydroxybenzoic acid (DHB) in 50% acetonitrile, 0.1% (v/v) 

TFA, applied onto the target plate and allowed to air dry. The peptide masses were measured 

by MALDI-TOF/TOF mass spectrometer (Ultraflex MALDI-TOF-TOF, Bruker Daltonics) 
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using positive reflector mode. The peptide calibration standard II (Bruker Daltonics, 

Germany) was used as the close external calibration. 

 

3.4.2. In-gel Arg-C digestion  

Endoproteinase Arg-C - isolated from Clostridium histolyticum - is a cysteine proteinase that 

cleaves peptide bonds at the carboxyl side of arginine residues. Protein bands were subjected 

to electrophoresis and visualized by staining with Coomassie Blue and reduced by DTT but 

not subjected to iodoacetamide. The gel pieces were rehydrated in 85 µl of incubation buffer 

(100 mM Tris-HCl, 10 mM CaCl2, pH 7.6). To each sample, 5 µl of Arg-C (0.5 µg , 50 mM 

Tris-HCl, 10 mM CaCl2, 5 mM EDTA, pH 8), 10 µl of activation solution (50 mM DTT, 5 

mM EDTA) and 100 µl of incubation buffer were added and the gel pieces were incubated at 

37°C overnight for digestion. The supernatant was separated in a new tube, extracted twice, 

with incubation buffer containing 1% acetic acid. 

 

Solution Name: Composition 

100 mM ammonium 

bicarbonate 

ammonium bicarbonate 

HPLC water up to  

395.3 

50 

mg 

ml 

100 mM ammonium 

bicarbonate in 50% 

acetonitrile  

ammonium bicarbonate 

HPLC acetonitrile 

HPLC water up to  

Store at RT 

395.3 

25 

50 

mg 

ml 

ml 

10 mM DTT  

 

dithiothreitol (DTT) 

100 mM ammonium bicarbonate up to  

(MAKE FRESH) 

7.71 

5 

mg 

ml 

50 mM IAA  

 

 iodoacetamide 

ammonium bicarbonate 

(MAKE FRESH) 

56 

6.06 

 

mg 

ml 

20 mM ammonium 

bicarbonate in 50% 

acetonitrile  

100mM ammonium bicarbonate 

HPLC water 

10 

15 

ml 

ml 
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 HPLC acetonitrile 

Store at RT 

25 ml 

40 mM ammonium 

bicarbonate in 10% 

acetonitrile  

 

100 mM ammonium bicarbonate 

HPLC acetonitrile 

HPLC water 

Store at RT 

20 

5 

25 

ml 

ml 

ml 

50 mM acetic acid  

 

Acetic acid (100%) 

HPLC water  up to  

Store at RT 

144 

50 

µl 

ml 

Trypsin solution  

 

 

 

trypsin (Promega) 

50 mM acetic acid 

40 mM ammonium bicarbonate in 10% 

acetonitrile up to  

aliquot into 100  μl, store at -80C 

100 

100 

 

5 

 

µg 

µl 

 

ml 

50% acetonitrile/1% 

TFA  

 

HPLC acetonitrile 

TFA 

HPLC water up to  

25 

0.5 

50 

ml 

ml 

ml 

 

3.5. Mass spectrometry 

 

3.5.1. MALDI-TOF-MS analysis 

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-

MS) is a soft ionization technique used in mass spectrometry and based on an ultraviolet 

absorbing matrix. This analytical tool allows the detection of compounds by separating the 

ions by their mass-to-charge ratios using a mass spectrometer.  
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3.5.2. ESI-MS analysis 

Electrospray ionization (ESI) is a technique used in mass spectrometry to produce ions. The 

liquid containing the analyte of interest is dispersed by electrospray into a fine aerosol. The 

aerosol is sampled into the first vacuum stage of a mass spectrometer through a capillary, 

which can be heated to aid further solvent evaporation from the charged droplets. The solvent 

evaporates from a charged droplet until it becomes unstable upon reaching its Rayleigh limit. 

At this point, the droplet deforms and emits charged jets in a process known as Coulomb 

fission. During the fission, the droplet loses a small percentage of its mass (1.0-2.3%) along 

with a relatively large percentage of its charge (10-18%). 

 

3.6. Preparation of MTX-gelonin conjugate  

 Activation process of MTX with DCC and NHS 

The activation process of MTX with DCC and NHS is an established technique already used 

to generate the first macromolecular prodrug of MTX that has reached the clinic (Stehle et al. 

1997; Riebeseel et al. 2002). The coupling reaction between MTX-NHS active ester and 

gelonin was carried out as described previously (Garnett et al., 1985). Briefly, MTX (30 mg) 

was dissolved in DMF (0.4 ml) and activated by NHS (15.2 mg/0.1 ml of DMF) and DCC 

(27.26 mg/0.1 ml of DMF) at RT for 1 h and then 18 h at 4°C in the dark. The precipitate of 

the reaction product was removed by centrifugation, and the supernatant containing the active 

ester derivative was concentrated under reduced pressure at 37°C and stored in the dark at -

20°C. 

 Preparation of MTX-linked gelonin 

The conjugate was prepared by incubating the active ester of MTX with gelonin in PBS, pH 

8.5 (6:1 molar ratio of MTX and gelonin) under stirring at 4°C overnight. MTX-gelonin 

conjugate was dialyzed with PBS, pH 8.5; overnight. The concentration of MTX in the 

conjugate was determined by its absorbance at 370 nm using a molar absorbance coefficient 

of 6.5x10³ M
-1

cm
-1

. The conjugate was stored at -20°C.  

 

3.7. Toxicity measurments 

3.7.1. MTT cell proliferation assay 

The MTT proliferation assay measures the activity of the mitochondrial and cytosolic 

dehydrogenases of living cells. Thereby the faintly yellow tetrazolium MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) penetrates into the cell and there its 

tetrazolium ring is opened by the succinate-reductase system in the cytosol and active 
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mitochondria resulting in the water insoluble purple formazan (Mosmann, 1983; Scudiero et 

al., 1988). The generated intracellular formazan can be solubilized with acidic isopropanol 

and the absorbance of this colored solution can be quantified by a spectrophotometer at a 

wavelength of 570 nm (Fig. 10). In general, the MCF-7 cells were seeded at a density of 

100000 cells/well in the 6-well, microassay plate and incubated for 24 h. The different 

proteins or PBS, as a control, were then added in varying concentrations to the culture media, 

and the mixture was incubated for another 72 h at 37°C. At the end of the experiment, the 

cells were washed once with 1 ml of warm RPMI without phenol red and thereafter 1 ml of 

1X MTT solution was added to each well. Then, the plates were returned to the cell culture 

incubator for 2 to 4 hours. When the purple precipitate was clearly visible under the 

microscope the MTT solution was removed and 1 ml of acidic isopropanol was added, 

resuspended and carried over into cups. After a centrifugation at 13000 rpm for 3 min the 

absorbance was measured at 570 nm and a background of 650 nm (Beckman, UV DU
®
 640 

spectrophotometer).  

The cell viability (%) was calculated according to the following equation: 

Cell viability (%) = [OD570 (sample)] / [OD570 (control)] × 100 

Where the optical density OD570 (sample) and OD570 (control) represented measurements 

from wells treated with each sample and that with PBS treatment, respectively 

 

Figure 10: Conversion of MTT to formazan by NADH-dependent reductases. 

 

10x MTT Solution: 

MTT 5 mg 

RPMI without phenol red 1  ml 

The solution was sterilized by filtration and stored at 4°C protected from light. 
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Acidic Isopropanol:   Final concentration 

HCl (37%) 1.66  µl 0.04 mM 

absolute isopropanol up to  500 ml  

 

3.7.2. DNase activity assay 

One microgram of pUC18 was incubated with different
 
concentrations of gelonin, MTX-

gelonin and MTX in 20 µl of reaction buffer at 37°C for
 
2 h. The samples were

 
analyzed in a 

1% agarose gel and visualized by staining with
 
0.05% ethidium bromide.  

Reaction buffer (pH 7.5): 

Tris-HCl 50 mM 

KCl 50 mM 

MgCl2 10 mM 

 

3.7.3. The inhibition of protein synthesis in-vitro 

The rabbit reticulocyte lysate translation system plays an important role in the investigation of 

transcriptional and translational regulation. The procedure was performed in 96 well micro-

titer plates. To examine the toxicity of the fusion protein, a series of samples were diluted as 

follows 1x10
-7.5 

M, 1x10
-8.5

 M, 1x10
-9.5 

M, 1x10
-10.5

 M, 1x10
-11.5

 M to 1x10
-12.5 

M. 5 µl 

solution taken out from each diluted sample was added into a well of the test plate and mixed 

with 40 µl complement lysate, incubated at 37ºC for 5 min. Then 10 µl of master mixture 

containing L-(U-
14

C)-valine, 100 µCi was added into each well and incubated 10 min again. 

After that, two parallel 5 µl culture from each well were added into 1 ml of pre-cooled 

distilled water, mixed with 500 µl valine (1mg/ml) at 37ºC for 15 min (each sample should be 

repeated). Finally, the protein precipitated by 4 ml 25% TCA (two times) was dried on glass 

microfiber filters under vacuum. The microfiber was incubated with 3 ml scintillations 

cocktail of B-counter (Beckman LS1701) for 2 h at RT. It was then assayed for the 

radioactivity. 

Solution A:    Solution B:   

H2O bidest 250 µl Tris 242 mg 

Glycerol 250 µl KCl 373 mg 

Creatin kinase 2.5 mg Ethylene glycol 90 ml 
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   H2O bidest 

 pH 8.2 

10 

 

ml 

 

   Hemin 65.2 mg 

Solution C:   Solution D:   

Creatine phosphate 6.7 mg MgCl*6H2O 9.5 mg 

H2Obidest 100 µl KCl 1.45 g 

   H2Obidest 10 ml 

Solution E:  

L-(U-
14

C)-valine (100 µCi/ml) was purchased from Amersham 

Solution F: Amino acid solution   

alanine; leucine 7.5  mM 

aspartate; glutamate; glycine; histidine; lysine; serine 5 mM 

arginine; asparagine; glutamine; isoleucine; phenylalanine; proline; 

threonine; tryptophan; tyrosine 

3.75  mM 

cysteine; methionine 2.5  mM 

Complement Lysate:   MasterMix:   

Lysate (Promega) 970 µl Solution C 50 µl 

Solution A 10 µl Solution D 50 µl 

Solution B 20 µl Solution E 40 µl 

   Solution PBS 40 µl 

   Solution F 20 µl 

Valine solution:   8% TCA solution: 

NaOH 1 M 80 g TCA / 1 l H2Obidest 

 

H2O2 0.5 M 25% TCA solution:  

 

Valine 100 mg 50 g TCA / 200 ml H2Obidest 
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H2Obidest up to 100 ml Scintillations cocktail: Rotiszint ecoplus 

3.7.4. Dihydrofolate reductase assay 

The inhibitory effect of gelonin, MTX−gelonin conjugates and MTX on the target enzyme 

DHFR was evaluated in a cell-free dihydrofolate reductase (DHFR) assay. The assay is based 

on the ability of dihydrofolate reductase to catalyze the reversible NADPH-dependent 

reduction of dihydrofolic acid to tetrahydrofolic acid.  

                                                       DHFR 

Dihydrofolic acid + NADPH + H
+
                   Tetrahydrofolic acid + NADP

+
 

At pH 7.5, the equilibrium of the reaction lies relatively far to the right, and the reaction goes 

essentially to completion in the forward direction. The reaction progress was monitored by the 

decrease in absorbance at 340 nm.  

% of inhibition = DHFR activity (control) - DHFR activity (MTX or conjugate) X 100 

                                                        DHFR activity (control) 

Briefly, the reaction mixture contained PBS buffer, pH 7.5, 60 µM NADPH, 50 μM 

dihydrofolate, and 1.5x10
–3

 U DHFR was incubated for 5 min at 37°C with various 

concentrations of MTX, its conjugates, or control PBS. The reaction was then initiated by the 

addition of dihydrofolic acid, and the enzyme activity was determined spectro-

photometrically at 340 nm. 

 

3.7.5. Comet assay and evaluation of (oxidative) DNA breakage 

The comet assay, also known as single-cell gel electrophoresis assay (SCGE assay), is a 

simple method for measuring deoxyribonucleic acid (DNA) strand damage and other DNA 

alterations at the level of a single cell (Singh et al. 1988). Cells embedded in agarose on a 

microscope slide are lysed with detergent and high salt to form nucleoids containing 

supercoiled loops of DNA linked to the nuclear matrix. Electrophoresis at high pH results in 

structures resembling comets, observed by fluorescence microscopy; the intensity of the 

comet tail relative to the head reflects the number of DNA breaks. 

As an additional step the repair enzyme, formamidopyrimidine glycosylase (FPG), was 

employed for the detection of oxidative DNA base damage, in particular 8-OH guanine, but 

also of other damaged purines. Strictly taken, the difference of DNA fragmentation 

introduced following FPG treatment of the cells and the damage that occurred without 

applying the repair enzyme represents the amount of a specific class of DNA damage which is 

due to the enzyme’s action. 
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Procedure: 

DNA strand breaks were analyzed by the comet assay as described by Valentin-Severin and 

co-workers (2003). The inclusion of the digestion step with the bacterial enzyme FPG was 

performed according to Schaefer et al. (2006).  

 Agarose preparation 

0.5% LMPA (low melting point agarose) and 1.0% NMA (normal melting point agarose) 

were heated in the microwave until the agarose dissolved. NMP agarose was kept hot at 80°C 

in a water bath. While, LMP agarose was equilibrated at 40°C in a water bath. 

 Slide precoating 

Agarose-precoated slides were prepared by adding 40 µl 1.0% NMA to each slide and allow 

the agarose to air-dry to a thin film. In the middle of each slide, 2X65 µl of 1.0% NMA was 

added, covered with a cover slip and kept at 4°C to allow solidification of agarose. 

 Sample preparation 

MCF-7 was treated with different concentration of gelonin, MTX-gelonin or MTX for 24 h. 

The cells were rinsed twice with PBS and trypsinated. The cells were gently removed. Using a 

hemocytometer, cell density was adjusted to about 7x10
4
 cells per gel and the adequate 

volume of cell suspension was transferred to a 2.0 ml microtube in a total volume of 1 ml 

serum-containing DMEM. Cells were centrifuged (10 min, 2000 rpm, 4°C) and the pellet was 

rapidly mixed with 65 μl of LMA (40°C), distributed onto a glass microscope slide pre‐coated 

with a layer of normal melting point agarose, covered with a coverslip and kept at 4°C for 5 

min until the agarose layer hardened.  

 Cell Lysis, FPG enzyme treatment and electrophoresis 

The coverslips were removed and the slides submerged in a (horizontal) staining jar 

containing freshly prepared lysis solution (pH 10) and the cells were lysed overnight at 4°C to 

liberate DNA. Subsequently, the slides were washed three times for 5 min in cold FPG 

enzyme buffer (1X) at 4°C. After the last washing step the slides were put on a slide porter on 

ice, and FPG solution (300x diluted) or enzyme buffer (1X) alone as the control (50 μl/gel and 

two gels per treatment) was gently pipetted on the slides, covered with a coverslip and 

incubated for 30 min at 37°C on a water bath (Collins et al., 1996). Following FPG treatment, 

the coverslips were gently removed and the slides were placed horizontally in an 

electrophoresis chamber that was put on ice. Directly, the slides were exposed to alkaline 

denaturation buffer (pH 13).The high pH allows unwinding of the DNA (20 min). 

Electrophoresis was conducted keeping the electrophoresis solution in the chamber for 20 min 

at 300 mA (25 mV constant). The slides were removed from the electrophoresis chamber and 

neutralized by washing 3 times for 5 min with cold neutralization buffer. DNA was stained 
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with ethidium bromide (40 µl, 10 µg/ml) and viewed microscopically with a Zeiss Axioskop 

20, equipped with filter set 15 (excitation, BP 546/12; emission, LP 590).  

Fifty individual comets per slide and two slides per concentration were evaluated under a 

fluorescence microscope and analyzed using computerized image analysis system Comet IV 

(Perceptive Instruments). DNA migration is directly expressed as mean tail intensity (TI %) 

from one slide. 

 

Comet assay solutions: 

If not indicated otherwise, all solutions for comet assay were prepared with autoclaved 

bidistilled water. 

 

Lysing stock solution (pH 10): Final Concentration 

NaCl 

Titriplex III 

Tris 

H2O bidest 

N-laurylsarcosin 

Store at 4 °C 

 

146.1 

37.2 

1.2 

1 

10 

g 

g 

g 

l 

g 

2.5 

100 

10 

M 

mM 

mM 

Lysing working solution: Prepare freshly on the day of the experiment. 

Lysing stock solution 

DMSO 

Triton X-100 

89 

10 

1 

ml 

ml 

ml 

 

Denaturation and electrophoresis stock solutions: 

NaOH 

Na2EDTA  

Store at room temperature 

 

40  g/ 100ml 

7.4 g/ 100ml 

10 

200 

N 

mM 

Denaturation and electrophoresis Buffer, pH13: 

NaOH (10N) 

Na2EDTA (200 mM)  

H2Obidest 

30 

5 

1 

ml 

ml 

l 

300 

1 

mM 

mM 

Prepare freshly on the day of the experiment with cold H2Obidest. 

 

PBS for agarose (pH 7.4):   

NaCl 

KCl 

KH2PO4 

Na2HPO4 

8 

0,2 

0,2 

1,15 

g 

g 

g 

g  
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H2O bidest 1 l 

 

Neutralisation buffer: 

Tris 

H2O bidest 

PH 7.5 with HCl, store at 4 °C. 

 

48,5  

1 

g  

l 

NMA: LMA: 

0.5% in PBS 

Heat in microwave, maintain at  

80 °C in a water bath 

 

0.7% in PBS 

Heat in microwave, maintain at 37°C 

in a water bath 

FPG enzyme buffer stock solution (10x):  

HEPES  

KCl  

EDTA  

BSA  

H2O 

95  

74.6  

1.96 

2 

1 

g 

g 

g 

g 

l 

Adjust to pH 8 with KOH store at -20 °C 

 

FPG enzyme stock solution (100x): FPG enzyme working solution 

(3000x): 

FPG enzyme 1x 

Glycerol 

FPG enzyme buffer 1x 

10 

100 

1 

μl 

µl 

ml 

FPG aliquot (100x) 1: 30 of enzyme 

Buffer1x 

Keep on ice 

Prepare aliquots of 25 μl or 40 μl (–80°C)  
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4. Results & Discussion 

4.1. Part A 

4.1.1. Recombinant gelonin (rGel) 

The pET-gel plasmid had been constructed in the work group of Prof. Dr. Wolfgang E. 

Trommer and was published by Hossann et al. (2006) (for compelet DNA squence see 

“appendix“). The gene encoding the gelonin sequence has been inserted in the pET-28a 

vector, whereas the gelonin gene was attached to N-terminal His-tag gene via a thrombin 

cleavage site. Also, the pET-gel plasmid (6089 bps) is under the control of the strong 

bacteriophage T7 transcription promoter. The target gelonin gene is expressed when the T7 

RNA polymerase promoter is induced by inducers like IPTG (Fig. 11). 
 

 
 

Figure 11: Construction of the plasmid pET-gel (Hossann et al., 2006). 

 

 Expression of pET-gel in E. coli BL21 

The pET-gel plasmid containing the fusion gene was transformed into E.coli BL-21 

competent cells and then plated overnight on an LB-agar plate containing kanamycin. Many 

colonies were growing on the plate. Only one colony was allowed to grow in LB media 

containing kanamycin overnight. 20 µl of the E.coli BL-21/pET-gel was inoculated in fresh 
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LB medium (1 l) containing kanamycin, and incubated in a shaking incubator at 37°C until 

the OD600 reached approximately 0.6~0.7 and was immediately induced by IPTG (final conc. 

1 mM) for another 4 h growing at the same temperature. Recombinant bacterial cells were 

collected by centrifugation and lysed by sonication. The supernatants were collected and 

loaded on a HiTrap Chelating HP column. Elution was performed with increasing imidazole 

concentrations. From 1 l expression cultures about 2.6±0.2 mg of pure gelonin was routinely 

obtained (Fig. 12). 

 

 
 

Figure 12: A; SDS–PAGE of recombinant gelonin was obtained by affinity chromatography on a 

nickel chelating column. Lane M, protein standard; lane 1, supernatant of cell lysate; lane 2, flow-

through with 20 mM imidazole; lane 3, washing step with 100 mM imidazole; lane 4, elution step with 

500 mM imidazole (rGel).B; SDS–PAGE of native rGel with His-tag (G-H) and rGel without His-tag 

(G) obtained after thrombin treatment. 

 

MGSSHHHHHH SSGLVPRGSH MGLDTVSFST KGATYITYVN FLNELRVKLK PEGNSHGIPL LRKKCDDPGK 

                  6X His-Tag      T. site                        gelonin (251aa) 

CFVLVALSND NGQLAEIAID VTSVYVVGYQ VRNRSYFFKD APDAAYEGLF KNTIKTRLHF GGSYPSLEGE 

KAYRETTDLG IEPLRIGIKK LDENAIDNYK PTEIASSLLV VIQMVSEAAR FTFIENQIRN NFQQRIRPAN 

NTISLENKWG KLSFQIRTSG ANGMFSEAVE LERANGKKYY  VTAVDQVKPK IALLKFVDKD PK 

 

Figure 13: The amino acid sequence of His-tag fusion recombinant gelonin. 
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The expressed protein contains 251 amino acids (aa) of rGel and an extra 21-aa sequence 

containing an His-tag and a thrombin-cleavable peptide (LVPRGS) at the N-terminus 

(MGSSHHHHHHSSGLVPRGSHM) (Fig. 13). The expressed rGel constitutes ≈2–3% of the 

total E. coli cellular proteins. The calculated MW of the rGel is 30.47 or 28.74 kDa for native 

or thrombin-treated rGel, respectively. 

 

4.1.2.  Truncated gelonins 

4.1.2.1. Cloning of recombinant C-terminally truncated gelonin 

(rC3-gelonin) 

The pET-28a(+) and pET-gel were digested with SalI and NdeI. After restriction enzyme 

digestion, the linearized plasmid DNA was predicted to be 5310 bps and the insert was 

predicted to be 742 bps. Fig. 14 lane 2 shows two intense bands of the pET-gel product after 

digestion with SalI and NdeI. The smaller band corresponds to 742 bps of the truncated C3-

gelonin gene. Fig. 14, lane 3 shows one intense band of the pET-28a(+)-5310bps-product 

after digestion with SalI and NdeI. The difference between a 5369 bps pET-28a plasmid and 

pET-28a(+)-5310bps-product was 59 bps-fragments which are not readily detectable by 

agarose gel electrophoresis. 

Both the plasmid product band and insert DNA-product band were extracted by Gene JET™ 

Gel extraction Kit (Fermentas GmbH). The DNA concentrations were detected by measuring 

the absorption at 260 nm (Beckman DU640 Spectrophotometer). 

 

 Ligation of insert into plasmid 

Ligation of the C3-gelonin DNA insert into linearized pET-28a plasmid involved the 

formation of four new phosphodiester bonds between adjacent 5'-phosphate and 3'-hydroxy 

groups. Bacteriophage T4-DNA ligase was used to catalyze the formation of these 

phosphodiester bonds. The ligation reaction was performed according to the protocol 

described in the materials chapter. 20 µl ligation reaction mixture, 150 ng of the restriction 

enzyme digest pET-28a(+) plasmid, 125 ng of insert (742 bps) and T4-DNA ligase were used 

(Fig.15). The reaction product was transformed into E. coli BL-21 competent cells and then 

plated overnight on an LB-agar plate containing kanamycin. 

Many colonies were growing on the plate. Only one colony was allowed to grow in LB media 

containing kanamycin and the circular plasmid was isolated and purified by QIAprep
TM

 Spin 

Miniprep Kit (Qiagen). 
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 DNA Sequencing 

The isolated plasmid was sequenced at the Nano-Bio-Center at the TU Kaiserslautern. It was 

confirmed that the C3-gelonin DNA was correctly inserted into the pET-28a plasmid in 

frame. The new plasmid chart is shown in Fig. 16. The resulting plasmid was named pET-C3-

gelonin, encoding a fusion protein composed of mature gelonin with three amino acid 

residues less. (For compelet DNA squence see “appendix“).  

 

 

Figure 14: Agarose gel electrophoresis of pET-gel and pET-28a(+) plasmids cleaved by double 

enzymatic hydrolysis. (1) DNA marker; (2) pET-gel digested with both SalI and NdeI; (3) Vector 

pET28a digested with both SalI and NdeI. 

Figure 15: Diagram of the coding strand of the 5310 bps (F1) and 742 bps (F2) fragments obtained 

after double enzymatic restriction (SalI and NdeI) of the pET-28a(+) and pET-gel, respectively. 

Ndel                                                          F1                                                                Sall     
   
5'-TATGGCTGCC---------------------------5310 bps--------------------------AGCTTG             -3' 
3'-    ACCGACGG-----------------------------------------------------------------TCGAACAGCT -5' 
 
Sall                                                            F2                                                             Ndel 
 
5'-TCGACGAATT---------------------------742 bps---------------------------CAGGCCCA      -3' 
3'-         GCTTAA------------------------------------------------------------------GTCCGGGTAT -5' 
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Figure 16: Construction of plasmid pET-C3-gel. The expression plasmid pET-C3-gel was prepared by 

inserting the SalI and NdeI-digested pET-gel plasmid into pET-28a(+) that also had been digested with 

SalI and NdeI. 

 

 Expression and purification of rC3-gelonin in E. coli  

The rC3-gel was expressed and purified by the same protocol which was used in expression 

and purification of rGel. From 1 l expression cultures about 3.6±0.2 mg of pure rC3-gelonin 

was routinely obtained (Fig. 17). Fig. 16 shows the construct of the expression vector pET-

C3-gel. The expressed protein contains 248 amino acids of C3-gel plus an extra 21-aa 

sequence containing a His-tag and a thrombin-cleavable peptide (LVPRGS) at the N-terminus 

(MGSSHHHHHHSSGLVPRGSHM). In addition, an extra 12- aa sequence containing a His-

tag (LAAALEHHHHHH) at the C-terminus (Fig. 18). The expressed recombinant C3-gel 

constitutes ≈3–5% of the total E. coli cellular proteins. The calculated MW of the 

recombinant C3-gel is 31.38 or 29.636 kDa for native or thrombin treated C3-gel, 

respectively. 
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Figure 17: SDS–PAGE showing the purification of recombinant gelonin by affinity chromatography 

on a nickel chelating column. Lane 1 and 7, protein marker; lane 2, supernatant of cell lysate; lane 3, 

flow-through with 20 mM imidazole; lane 4, washing step with 100 mM imidazole; lane 5, elution 

with 500 mM imidazole (recombinant C3-gelonin) and lane 6, recombinant C3-gelonin (5 μg) after 

thrombin cleavage. 

 

H2N-MGSSHHHHHH SSGLVPRGSH MGLDTVSFST KGATYITYVN FLNELRVKLK PEGNSHGIPL  

                     6XHis-Tag           T. Site                       rC3-gel   248aa 

LRKKCDDPGK CFVLVALSND NGQLAEIAID VTSVYVVGYQ VRNRSYFFKD APDAAYEGLF KNTIKTRLHF 

GGSYPSLEGE KAYRETTDLG IEPLRIGIKK LDENAIDNYK PTEIASSLLV VIQMVSEAAR FTFIENQIRN 

NFQQRIRPAN NTISLENKWG KLSFQIRTSG ANGMFSEAVE LERANGKKYY VTAVDQVKPK IALLKFVDK 

LAAALEHHHHH H-COOH 6XHis-Tag 

Figure 18: The amino acid sequence of rC3-gelonin. 

 

4.1.2.2 Cloning of recombinant N- and C-terminally truncated 

gelonin (rN34C3-gelonin) 

The pET-28a(+) and pET-gel were digested with SalI and NcoI. After restriction enzyme 

digestion, the linearized plasmid DNA was predicted to be 5252 bps and the insert was 

predicted to be 634 bps. Fig. 19 lane 2 shows two intense bands of pET-gel product after 

digestion with SalI and NcoI. The smaller band revealed a 634 bps of truncated gelonin gene. 

Fig. 19 lane 3 shows one intense band of pET-28a(+)-5252 bps-product after digestion with 

SalI and NcoI. The difference between a 5369 bps pET-28a plasmid and pET-28a(+)-5252 

bps-product was a 117 bps-fragment which are not readily detectable by agarose gel 

electrophoresis. 
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Both the plasmid product band and insert DNA-product band were extracted by Gene JET™ 

Gel extraction Kit (Fermentas GmbH). The DNA concentrations were detected by measuring 

the absorption at 260 nm (Sambrook et al, 1989). 
 

 

Figure 19: Agarose gel electrophoresis of pET-gel and pET-28a(+) plasmids cleaved by double 

enzymatic hydrolysis. (1) DNA marker; (2) pET-gel digested with both SalI and NcoI; (3) Vector 

pET28a digested with SalI and NcoI. 

 

For the 20 µl ligation reaction mixture, 150 ng of the 5252 bps, restriction enzyme digest 

pET-28a(+) plasmid and 108 ng of insert (634 bps) were used (Fig. 20). The ligation reaction 

was performed by T4-DNA ligase as described above. The reaction product was transformed 

into E. coli BL-21 competent cells and then plated overnight on an agar plate containing 

kanamycin. Many colonies were growing on the plate. Only one colony was grown in LB 

media containing kanamycin, and the circular plasmid was isolated and purified by 

QIAprep
TM

 Spin Miniprep Kit (Qiagen). 

 

NcoI                                                        F1                                                               SalI  
 
5-CATGGTATAT------------------------------5252 bps----------------------AGCTTG           -3 
3-         CATATA-----------------------------------------------------------------TCGAACAGCT -5 
SalI                                                            F2                                                            NcoI 
 
5-TCGACGAATT------------------------------634 bps-----------------------GAATGC            -3 
3-         GCTTAA-----------------------------------------------------------------CTTACGGTAC -5 

Figure 20: Diagram of the coding strand of the 5252 bps (F1) and 634 bps (F2) fragments obtained 

after double enzymatic restriction (SalI and NcoI ) of the pET-28a(+) and pET-gel, respectively. 
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 DNA Sequencing 

The new isolated plasmid was sequenced at the Nano-Bio-Center at the TU Kaiserslautern. It 

was confirmed that the N34C3-gelonin DNA was correctly inserted into the pET-28a plasmid 

in frame. The new plasmid is shown in Fig. 21 and was named pET-N34C3-gelonin. (For 

compelet DNA squence see “appendix“) 

 

 

Figure 21: Construction of plasmid pET-N34C3-gel. 

 

 Expression and purification of rN34C3-gelonin in E. coli 

The rN34C3-gel was expressed and purified by the same protocol which was used for 

expression and purification of rGel. From 1 l expression cultures about 1.2±0.1 mg of pure 

rN34C3-gelonin was routinely obtained (Fig. 22). The expressed protein contains 214 amino 

acid residues of rN34C3-gel and an extra 12-aa sequence containing a His-tag 

(LAAALEHHHHHH) at the C-terminus (Fig. 23). The expressed recombinant N34C3-gel 

constitutes ≈1–2% of the total E. coli cellular proteins. The calculated MW of the recombinant 

N34C3-gel is 26.906 kDa.  
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Figure 22: SDS–PAGE of rN34C3-gelonin purified by affinity chromatography on a Ni
2+

 chelating 

column. Lane 2, protein marker; lane 3, supernatant of cell lysate; lane 4, flow-through with 20 mM 

imidazole; lane 5, washing step with 100 mM imidazole; lane 1, elution step with 500 mM imidazole 

(rN34C3-gelonin). 

 

MGIPLLRKK CDDPGKCFVL VALSNDNGQL AEIAIDVTSV YVVGYQVRNR SYFFKDAPDA AYEGLFKNTI 

                        N34C3-gel 

KTRLHFGGSY PSLEGEKAYR ETTDLGIEPL RIGIKKLDEN AIDNYKPTEI ASSLLVVIQM VSEAARFTFI 

ENQIRNNFQQ RIRPANNTIS LENKWGKLSF QIRTSGANGM FSEAVELERA NGKKYYVTAV DQVKPKIALL 

KFVDKLAAAL EHHHHHH   6XHis-Tag 

Figure 23: The amino acid sequence of rN34C3-gelonin. 
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Figure 24: Diagram illustrating the strategy used for cloning of different gelonin genes. 
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4.1.3.  Characterization and toxicity of gelonins 

4.1.3.1. Characterization of His-proteins by ELISA 

The isolated proteins were characterized by ELISA (see methods). As shown in Fig. 25 all the 

gelonin forms exert positive reaction with anti-His-tag antibody but with different intensity. 

The rC3-gelonin was about 3.5 or 4-fold more intense than that of rGel or rN34C3-gelonin, 

respectively. Also, the response of N-terminal His-tag protein was 1.5 fold more intense than 

that of the C-terminal His-tag protein. 

 

 

Figure 25: Characterization of the fusion proteins using an ELISA against the anti-His-tag. 

 

4.1.3.2. In-vitro cytotoxicity  

The previous data indicated that gelonin is relatively non-toxic to intact cell, due to an 

incapability to penetrate cell membranes. Therefore we tested whether rGel, rC3-gel and 

rN34C3-gel are able to inhibit proliferation of MCF-7 cells through measurement of the 

mitochondrial and cytosolic dehydrogenases activities of living cells by the MTT assay. The 

MCF-7 cells were incubated for 72 h at 37 °C with different concentration (10, 50, 100 nM) 

of full length or truncated gelonins. As shown in Fig. 26, the rGel and its truncated forms did 

not cause any detectable inhibition of cell growth at concentrations up to 100 nM.  
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Figure 26: Cytotoxicity of rGel, rC3-gel, and rN34C3-gel against MCF-7 cells. Various doses of each 

protein were added to the culture plates containing ~100 000 cells/plate. The plates were incubated for 

72 h at 37 °C under an atmosphere of 5 % CO2 in humidified air in an incubator. The amount of 

remaining cells in the wells was assessed by MTT assay and then compared with those of untreated 

cells in the control plates. Values were represented as mean ± SD. Each experiment was performed in 

triplicate. 

 

4.1.3.3. DNase-like activity test 

The DNase-like activity of gelonin and its truncated forms was tested on the supercoiled 

plasmid pUC18 DNA as a substrate. As shown in Fig. 27 both the gelonin and rC3-gelonin 

exert a powerful DNase activity via DNA degradation into fragments of different sizes as 

evidenced by the appearance of a smear, the disappearance of the supercoiled form and the 

appearance of the linearized and nicked forms of plasmid DNA. Interestingly, the N- and C-

terminally truncated gelonin (rN34C3-gelonin) exerts a weak DNase activity against DNA 

plasmid through conversion of supercoiled DNA into linear and nicked forms, but no small 

DNA fragment was observed. 
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Figure 27: DNase activity of truncated gelonins. Lane 1, control; lanes 2–4, rGel; Lanes 5–7, rC3-gel; 

lanes 8–10, rN34C3-gel. A concentration series of proteins (100, 200, 400 ng) in the presence of 1000 

ng dsDNA, SC, supercoiled form; L linearized; N, nicked forms. 

 

4.1.3.4. In-vitro translation assay 

The ability of gelonin and its truncated forms to inhibit protein synthesis was tested in a rabbit 

reticulocyte lysate-based in-vitro translation assay. The decrease in the incorporation of [
14

C]-

valine in the nascent peptides was taken as a measure of protein synthesis inhibition by the 

toxin. As shown in Fig. 28 both rGel and rC3-gelonin caused a dose-dependent inhibition of 

protein synthesis with an IC50 of 2.4 and 9 ng/ml, respectively. Most notably, the N- and C-

terminally truncated gelonin (rN34C3-gelonin) had no effect on protein synthesis. 
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Figure 28: Inhibition of in-vitro translation by gelonin and the fusion protein. The incorporation of 

[
14

C]-valine into the nascent peptides was followed in a cell-free translation assay at various 

concentrations of gelonin and the fusion protein with BSA as standard after 10 min incubation and 40 

min incubation. 

 

4.1.4.  Discussion   

The pET-gel plasmid containing the gelonin gene was constructed by molecular cloning in the 

work group of Prof. Dr. Wolfgang E. Trommer and published by Hossann et al. (2006). The 

recombinant gelonin was isolated by Ni
2+

 affinity chromatography and characterized by SDS-

PAGE (Fig. 13). 

In this work, we have successfully cloned two truncated gelonins into pET-28a(+) vectors and 

produced two new recombinant plasmids called pET-C3-gel and pET-N34C3-gel (Figs. 17 

and 22). Also, both recombinant proteins can be expressed and isolated by the method used 

for rGel. Further, it was found that the three recombinant proteins can be also characterized by 

ELISA using anti-His-tag antibody (Fig. 25). Interestingly, the protein containing His-tag at 

N- and C-terminus has more intensity than that of the protein containing one His-tag. 

Table 2 shows a summary of different pET plasmids and their size. In addition, three 

recombinant gelonins were expressed and purified: intact rGel, C-terminally truncated (rC3-

gelonin) and N- and C-terminally truncated gelonin (rN34C3-gelonin). 
 

Table 2: A summary of different pET plasmids and different truncated gelonins 

Plasmid name Size in bps Protein 

expressed  

MW kDa 

+ His-tag 

MW kDa 

–His-tag 

Yield (mg) (from 

1 l culture) 

pET-gel 6089 rGel 30.47 28.58 2.6±0.2 

pET-C3-gel 6052 rC3-gelonin 31.381 29.49 3.6±0.2  

pET-N34C3-gel 5886 rN34C3-gelonin 26.90 26.90 1.2±0.1  
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4.1.4.1. Gelonin and its truncated forms did not induce MCF-7 cell 

death 

Gelonin is an N-glycosidase that cleaves a specific adenine from mammalian ribosomal RNA 

thereby ablating protein synthesis and resulting in cell death. As with many toxins of this 

class, rGel does not bind to or become internalized into cells at levels that are toxic unless it is 

conjugated or fused to a targeting moiety (Rosenblum et al., 1991). Our results are in line with 

previous studies (Rosenblum et al., 1992) showing that the rGel is non-toxic to intact cell 

because it is not able to cross the cell membrane at levels that are therapeutically useful due to 

lack of a carbohydrate- binding domain (B-chain). However, previous studies (Li et al., 2007) 

show that rGel inhibits cell growth of K562 tumour cells. This may be due to different cell 

lines used. 

Also, it was found that neither rC3-gelonin nor rN34C3-gelonin has any inhibiting effect on 

MCF-7 cell lines (Fig. 26).  
 

4.1.4.2. N-terminal amino acid residues are involved in regulation 

of gelonin DNase activity  

DNase activities of purified rGel and truncated mutant gelonins were determined using 

pUC18 as substrate (Fig. 27). Experiments with rGel and rC3-gelonin indicated that these 

type I RIPs exhibit nuclease activity toward double-stranded DNA. On the other hand, N-

terminal truncated gelonin has a weak DNase activity. Many previous studies (Roncuzzi & 

Gasperi-Campani, 1996; Nicolas et al., 1997A; Nicolas et al., 1998; Nicolas et al., 2000) 

reported that gelonin exerts single- and double-stranded oligonucleotide degradation by the 

removal of adenines, followed by generation of unstable products with several abasic sites 

and resulting in strand breakage and duplex melting, respectively. 

A missing of thirty four amino acid residues leads to loss of proper gelonin folding and the 

DNase activity is decreased (Fig. 27) which is in line with Li et al., 2007. Our data together 

with other previous data shows that the intact rGel has higher DNase activity than truncated 

forms. 

4.1.4.3. C-and N-terminal amino acid residues are involved in 

regulation of gelonin N-glycosidase activity  

Biological activities of purified rGel and truncated mutant gelonins were determined in a cell-

free in-vitro translation system of non-treated rabbit reticulocyte lysate. The relationship 

between the percentage of the protein synthesis inhibition at different doses of rGel and its 

truncated forms was determined (Fig. 28). The IC50 of rGel was found to be 2.4 ng which is in 

line with (Hossann et al., 2006). The IC50 of rC3-gelonin was 9.0 ng. But, the rN34C3-gelonin 

has no effect on protein synthesis.  

However, six amino acid residues (Tyr74, Arg169, Gly111, Glu166, Tyr113 and Trp198) 

build up the active site of the adenine binding pocket (Hosur et al., 1995) are conserved in 

rN34C3-gelonin sequence. But, this protein has lost the N-glycosidase activity because the 
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amino acid residues in the N-terminal domain may be important to stabilize the interactions 

between the bases of the RNA and RIP. Also, three C-terminal amino acid residues are not 

involved in forming the active site pocket but may lead to a partial change in the 

conformational structure of the gelonin active site and reduce the N-glycosidase activity. 

Together, these data suggest that C-and N-terminal amino acid residues are involved in 

gelonin N-glycosidase activity. 

 

4.1.5. Conclusion 

In the present study, we have successfully cloned two different truncated gelonins into pET-

28a(+) vectors and expressed intact rGel, rC3-gelonin and rN34C3-gelonin. Biological 

experiments showed that all these recombinant gelonins have no inhibiting effect on MCF-7 

cell lines. This data suggests that the truncated-gelonins are still having a specific structure 

that does not allow for internalization into cells. Further, truncation of gelonin leads to partial 

or complete loss of N-glycosidase as well as DNase activity compared to intact rGel. Our data 

suggest that C-and N-terminal amino acid residues are involved in the catalytic and cytotoxic 

activities of rGel. In addition, the intact gelonin should be selected as a toxin in the 

immunoconjugate rather than truncated gelonin. 
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4.2. Part B 

 

4.2.1. Chemistry 

The methotrexate-gelonin (MTX-gelonin) conjugate was prepared in two steps: (1) activation 

of MTX with N,N-dicyclohexylcarbodiimide (DCC) and N-hydroxysuccinimide (NHS), and 

(2) coupling of MTX to gelonin.  

Activation of the carboxyl groups of MTX with DCC and NHS for coupling the drug 

covalently to molecules amino groups, such as peptides or proteins, is an established 

technique (Rosowsky & Yu, 1978; Kulkarni et al., 1981). The activated MTX-NHS esters 

were reacted further with amino groups of gelonin. The reaction products were characterized 

by MALDI-TOF (Ultraflex MALDI-TOF-TOF, Bruker Daltonics) after in-gel tryptic 

digestion. 

The active ester method not only yields the desired MTX α- and γ-isomers but also bis-

derivatives and several byproducts (Riebeseel et al. 2002). In order to find out more details 

about the structure of the MTX-gelonin conjugates we isolated intermediates of the synthesis, 

namely esters of MTX. The α- and γ-MTX-NHS active esters are very unstable due to their 

high reactivity. To generate a stable intermediate without changing its structure an excess of 

methanol was added to the activation reaction. The stable methyl ester mix was separated by 

column chromatography and subsequently analyzed by electrospray-ionization (ESI). 

 

4.2.1.1. Synthesis of MTX-NHS active ester 

The formation of active MTX ester was performed in this work according to the protocol 

described in methods. The carboxyl groups of nonreactive MTX were activated by DCC to 

react directly with NHS and to yield activated NHS esters (Fig. 29). The product mixture 

contained α-, γ-MTX-NHS monoesters, MTX-NHS bis-ester (α and γ), and several by-

products (e.g. N-acylisourea derivatives) (Rosowsky &Yu, 1978). The white precipitate (N,N-

dicyclohexyl-urea) was removed, and the activated MTX-NHS ester was concentrated by 

evaporation. 

To find out more details about the components present in the MTX-methyl ester mix, the 

mixture was subjected to column chromatography and analyzed by ESI. To perform column 

chromatography, we used silica gel as the stationary phase and 95:5 THF/H2O (V/V) as the 

mobile phase. Five fractions were collected and subsequently analyzed by ESI under positive 

ionization conditions. We found two fractions of high purity, No. 1 and 5, containing MTX-

dimethyl ester and MTX-mono-methyl ester respectively. MTX-dimethyl ester with the 

molecular formula C18H20N8O (COOCH3)2 has the calculated mono-isotopic MW of 482.2 
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Da. The m/z spectrum in Fig. 30B shows dominant ions at m/z 483.2, which are consistent 

with the expected protonated molecular ions, (482.2+H
+
). MTX-mono-methyl ester, 

C19H21N8O3(COOCH3), with MW 468.2 Da was also suggested by the program in M+nH
+
 

mode to achieve a value identical to the experimental one (Fig. 30A).  

 

Figure 29: Synthesis of the MTX-gelonin conjugate. 

 

4.2.1.2. Synthesis and characterizations of MTX-gelonin conjugate 

The MTX-gelonin conjugate was synthesized by reaction between gelonin and MTX-NHS 

ester in a molar ratio 1:6. Under conjugation conditions the active ester of MTX could react 

with amino groups of lysine residues forming an amide linkage between MTX and gelonin. 

The conjugate was dialyzed against PBS (pH 8.5) until the free MTX ester disappeared in 

PBS (pH 8.5). Molar ratio of MTX to gelonin in the conjugate was 5:1. Analysis of the final 

purified conjugate using SDS-PAGE shows a band (~32kda) that confirms the conjugation. It 

was found that all gelonin used for conjugate synthesis was bound to MTX as shown by the 

absence of additional bands in lane3 representing free protein. However, the broadness of the 
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conjugate bands compared with the free gelonin suggests that the synthesis product is a 

mixture of conjugates carrying a diverse number of MTX molecules (Fig. 31). 

 

 

 

Figure 30: ESI-MS analysis spectra display molecular charge of A; MTX-mono-methyl ester (E1, 

experimental; S1, simulated) and B, MTX-dimethyl ester (E2, experimental; S2; simulated). 
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Figure 31: Characterization of gelonin and 

conjugate. SDS–PAGE showing lane 1: 

Marker; lane 2: gelonin (30kDa); lane 3: 

MTX-Gel (~32kda). 

 

 

4.2.1.3. Characterizations of MTX-binding sites by MALDI 

To obtain a detailed structural analysis of the N-linked MTX we used in-gel tryptic digestion 

followed by MALDI-TOF analysis using DHB as a matrix. Data achieved by this analysis 

were compared with calculated values obtained from online digestion of gelonin “MS-digest”. 

Trypsin is a serine protease which cleaves proteins by hydrolyzing peptide bonds at the 

carboxyl side of lysyl (K) and arginyl (R) residues. The MTX- gelonin conjugate band of ~32 

kDa (Fig.31, lane3) was excised and subjected to enzymatic digestion by trypsin as described 

in "Methods". The resulting peptide mixtures were analyzed by MALDI-TOF positive mode 

(Ultraflex MALDI-TOF-TOF, Bruker Daltonics).  

It was found that the observed peptides in the MALDI-MS spectra (Fig. 32 and Table 3) cover 

more than 60% of the gelonin amino acid sequence. Interestingly, the peaks at m/z 

1054,1134,1758,1949 and 1910 disappear and new peaks at m/z 1491, 1571, 2195, 2348 and 

2386 appear. However, these observed peptide signals do not correspond to any calculated 

values. So, we assumed that the practically measured mass of these fragments was increased 

due to modification with MTX (MW of 438 Da) linked to K or R residues of gelonin. 

Furthermore, we detected the exact lysine or arginine residue positions which bonded to MTX 

by comparison of modified and non-modified peptide sequences at approximately the same 

position (Table 4). Peptide sequence at position 1-10 carries only one amino acid, K10, which 

is capable of modification with MTX. So, we identified K10, K27, K207, K251 and R130 as 

possible modification sites (Table 4). Also, a glycosylation site at position 192-204 (Table 3) 

was detected. The peak appearing at m/z of 2495 was attributed to a peptide with m/z of 1470 

carrying an additional 1023 Da sugar moiety. 
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Figure 32: MALDI-MS TOF spectra display molecular ions of peptides obtained after in-gel trypsin 

digestion of gelonin (top) and MTX-gelonin conjugate (down). 

 

Table 3: Assignment of peaks from Trypsin cleavage of MTX-gelonin conjugates (MALDI analysis).  

Peptides  Position Observed Calculated 

(R)SYFFK(D) 

(R)KGDDPGK(C) 

(K)LSFQIR(T) 

(R)NNFQQR(I) 

(R)FTFIENQIR(N) 

(R)ETTDLGIEPLR(I) 

(K)DAPDAAYEGLFK(N) 

83-87 

42-48 

208-213 

186-191 

177-185 

131-141 

88-99 

692.097 

713.950 

763.865 

806.776 

1168.224 

1244.249 

1297.214 

691.345 

716.357 

763.446 

806.390 

1167.615 

1243.652 

1296.610 
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(K)NTIKNPLLFGGK(T) 

(K)YYVTAVDQVKPK(I) 

(-)GLDTVSFSTK(G) 

(R)LHFGGSYPSLEGEK(A) 

(K)LKPEGNSHGIPLLR(K) 

(K)WGKLSFQIR(T) 

 (K)LKPEGNSHGIPLLRK(G) 

(R)TSGANGMFSEAVELER(A) 

(R)TSGANGM*FSEAVELER(A) 

(K)GATYITYVNFLNELR(V) 

(K)TRLHFGGSYPSLEGEK(A) 

(R)VKLKPEGNSHGIPLLR(K) 

(R)LHFGGSYPSLEGEKAYR(E) 

(K)YYVTAVDQVKPKIALLK(F) 

(R)IRPANNTISLENK(W) 

100-111 

235-246 

1-10 

114-127 

28-41 

205-213 

28-42 

214-229 

214-229 

11-25 

112-127 

26-41 

114-130 

235-251 

192-204 

1304.234 

1411.382 

1491.358 

1521.441 

1531.619 

1571.570 

1657.533 

1698.559 

1714.581 

1774.763 

1778.741 

2195.118 

2348.084 

2386.284 

2495.227 

1301.757 

1410.762 

1054.541 

1520.738 

1530.875 

1134.641 

1654.937 

1697.779 

1713.774 

1773.917 

1777.886 

1758.038 

1910.939 

1949.147 

1469.807 

 

Table 4: Determination of sites modified with MTX. 

MTX-modified Modification 

position 

Non-modified 

position peptides position peptides 

1-10 
26-41 
114-130 
205-213 
235-251 

(-)GLDTVSFSTK(G) 
(R)VKLKPEGNSHGIPLLR(K) 
(R)LHFGGSYPSLEGEKAYR(E) 
(K)WGKLSFQIR(T) 
(K)YYVTAVDQVKPKIALLK(F) 

K10 
K27 

R130 
K207 
K251 

---- 
28-41 
114-127 
208-213 
235-246 

------- 
(K)LKPEGNSHGIPLLR(K) 
(R)LHFGGSYPSLEGEK(A) 
(K)LSFQIR(T) 
(K)YYVTAVDQVKPK(I) 
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4.2.2. Biology 

4.2.2.1. Inhibitions of cell proliferation by MTX-gelonin conjugate 

The toxicity of gelonin, MTX-gelonin, and MTX for MCF-7 cells was determined by an MTT 

assay. Cells were exposed to various concentrations (10 nM, 50 nM, and 100 nM) of gelonin, 

MTX-gelonin, and (6.6 nM, 33 nM, and 66 nM) MTX for 48 h in RPMI-1640 medium. The 

results of cytotoxic activity in-vitro were expressed as ID50– the dose which inhibits 

proliferation rate of the tumor cells by 50% compared with untreated cells. As shown in Fig. 

33, gelonin itself did not cause any detectable inhibition of cell growth, simply as it could not 

enter the cells and MTX had no effect on cell viability at concentrations up to 66 nM. 

Treatment with MTX-gelonin reduced cell viability in a concentration-dependent fashion, 

resulting in 50%, 62%, or 70% cell death at 10 nM, 50nM or 100nM, respectively. These 

Results clearly demonstrated that MTX was able to successfully transduce an otherwise cell-

impermeable protein toxin into cancer cells for possible therapeutic purposes. 

 

 

 

Figure 33: Cytotoxicity of native gelonin, MTX-gelonin, and MTX against MCF-7 cells. Various 

doses of each compound were added to the culture plates containing ~100 000 cells/plate. The plates 

were incubated for 48 h at 37°C under an atmosphere of 5% CO2 in humidified air in an incubator. 

The amount of remaining cells in the wells was assessed by MTT assay and then compared with those 

of untreated cells in the control plates. Values were represented as mean ± SD. Each experiment was 

performed in triplicate. 
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4.2.2.2. DNA Fragmentation Induced by MTX-gelonin 

The comet assay, as generally used, detects strand breaks by virtue of their ability to relax 

supercoils of DNA and to allow DNA loops to extend to form a comet tail when an electric 

field is applied. The intensity of DNA in the tail reflects the DNA break frequency. 

The MCF-7 cells were incubated with various concentrations (10nM, 50nM, and 100nM) of 

gelonin, MTX-gelonin, and (6.6 nM, 33 nM, and 66 nM) MTX for 24 h. DNA damage was 

not observed in MCF-7 cells treated with gelonin or MTX (Fig. 34) compared with controls. 

In addition, the extent of DNA damage was not enhanced in the presence of FPG glycosylase 

compared with controls. MTX-gelonin treatment caused a distinct direct DNA breakage (TI% 

> 20) in a dose-dependent manner. Additional oxidative DNA breakage (FPG‐sensitive sites) 

was observed in the presence of FPG glycosylase. 

 

 

Figure 34: DNA damage (TI %) in MCF-7 cells exposed to gelonin, MTX-gelonin and MTX at 

different concentrations for 24 h in the absence or presence of FPG repair enzyme.  
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4.2.2.3. In-vitro translation test 

The ability of gelonin, MTX-gelonin or MTX to inhibit protein synthesis was tested in a 

rabbit reticulocyte lysate-based in-vitro translation assay. The decrease in the incorporation of 

[
14

C]-valine in nascent peptides was taken as a measure of protein synthesis inhibition by the 

toxin. Native gelonin inhibited translation by 50% at a concentration of 4.6 ng/ml, MTX-

gelonin conjugate was less active, exhibiting a 50% inhibition of protein biosynthesis at 50.5 

ng/ml whereas MTX alone has no inhibiting effect on protein synthesis in a reticulocyte in-

vitro translation system (Fig. 35). 

 

 

Figure 35: Inhibition of protein synthesis in the cell-free translational system from rabbit reticulocyte 

lysate assay by gelonin, MTX-gelonin and MTX. 

 

4.2.2.4. DNase-like activity assay 

To investigate whether coupling of MTX to gelonin affected its DNase activity, a DNase 

activity assay was carried out, using pUC18 as a substrate. We found that gelonin degraded 

double-stranded DNA into fragments of different size as evidenced by the appearance of a 

smear, while no significant degradation was caused by MTX-gelonin and MTX (Fig. 36). 

These results indicate that the conjugation of gelonin to MTX is able to abolish in-vitro 

DNase activities of the native gelonin. 
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Figure 36: DNase activity of gelonin, MTX-gelonin, and MTX, Lane 1, control; lanes 2–4, gelonin; 

Lanes 5–7, MTX-gelonin; Lanes 8–10, MTX. A concentration series of proteins (100, 200, 400 ng) in 

the presence of 1000 ng dsDNA. 

 

4.2.2.5. DHFR Inhibition Activities of MTX and the Conjugates  

The enzyme inhibition activities of free MTX and the conjugated MTX were evaluated in a 

cell-free assay (Fig. 37). This is based on the reduction of dihydrofolate to tetrahydrofolate by 

the enzyme DHFR in the presence of NADPH.  
 

 

Figure 37: DHFR inhibition by free MTX and conjugates. 

 

As can be seen from Fig. 37, free and the conjugate of the MTX showed concentration-

dependent inhibitory activity against the target enzyme. Free MTX showed an IC50 value of 7 

nM which agrees with previous work (Ma & Kovacs 2000; Pignatello et al., 2000). The 

conjugated MTX showed an IC50 value of 50 nM. Interestingly, the conjugate was less 

effective against DHFR by about 20% at higher concentration. This result suggested that 
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conjugation with gelonin might alter the binding affinity of MTX with dihydrofolate 

reductase, leading to the partial loss of its anti-folate activity. 

 

4.2.3. Discussions 

To date, a lot of research is focusing on finding new systems to improve drug delivery and 

specificity, particularly in therapeutic areas such as cancer treatment. In order to reach this 

goal, tremendous efforts were undertaken to develop tumor-selective drugs by conjugating 

anti-cancer drugs to hormones, antibodies, and vitamins. Among them, folic acid and its 

analogs show a great deal of promise as a tumor-homing agent. Thus, the folate enhances the 

differential specificity of conjugated anti-cancer drugs by targeting the folate receptor. 

The FR can actively internalize bound folates and folate conjugated compounds via receptor-

mediated endocytosis (Kamen & Capdevila, 1986; Corona et al., 1998; Kamen & Smith, 

2004). It has been found that FR is up-regulated in more than 90% of non-mucinous ovarian 

carcinomas. The FR density also appears to increase as the stage of the cancer increases 

(Elnakat et al., 2004). 

MTX is an anti-metabolite and anti-folate drug that is used for chemotherapy either alone or 

in combination with other agents (Kulkarni et al., 1981; Pignatello et al., 2000). The uptake of 

MTX occurs via the folate receptor and reduced folate carrier on the cell surface which is 

highly expressed in rapidly dividing (cancer) cells (Elnakat et al., 2004; Parker et al. 2005). 

Gelonin is a plant protein which can powerfully reduce the protein-synthetic capacity of 

eukaryotic ribosomes but is relatively non-toxic to intact cells because lack of a B-chain 

(Stirpe & Barbieri, 1986; Endo et al., 1988). One of the most important problems of effective 

anti-tumor gelonin activity is a selective transport of gelonin to cancer cells. One of the means 

to accomplish this goal is to use the carriers with a high affinity for target cells.  

In this part, gelonin has been coupled to MTX to create a potent immunotoxic agent with 

specificity against cancer cells. In addition, we digested the synthesized product with trypsin 

and analyzed thus obtained peptide fragments by MALDI-TOF MS (Fig. 32). The peptides 

attributed to gelonin covered more than 60% of the amino acid sequence (Table 3). Five 

peptide sequences were identified carrying covalently bonded MTX. Thus, the exact bonding 

positions of MTX to the appropriate amino acids were K10, K27, K207, K251 and R130 (Table 4). 

 

4.2.3.1. MTX-conjugate is toxic to intact cells 

The MCF-7 cell growth inhibitory effect of MTX-gelonin was measured by the MTT assay 

(Fig. 33). We have demonstrated that a conjugate formed by covalently linking gelonin to 

MTX is a potent inhibitor of MCF-7cell growth. It was found that ID50 of conjugate in MCF-

7cells is 10 nM. In contrast, an unconjugated gelonin showed no detectable cell-growth 

inhibition when incubated with MCF-7 cells at 100 nM because the lack of toxicity of gelonin 

to intact cells. We infer that the lack of detectable cytotoxicity is due to lack of toxin cytosolic 

delivery. 
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In addition, MTX had also no detectable cell-growth inhibition when incubated with MCF-7 

cells at 66 nM. This would be in line with another study (Vibet et al., 2007). However, 

Riebeseel et al., 2002 reported the ID50 values for the MTX of 22 nM incubated for 7 days 

with MCF-7 cell lines. This can be explained by different incubation times. Our data suggest 

that the MCF-7 cell growth inhibitory effect of the conjugate is related to action of gelonin 

and not related to action of MTX.  

The higher growth inhibition activity of MTX conjugate can be envisaged to be related to 

three different aspects:  (a) cellular uptake, (b) intracellular gelonin release from the 

conjugate, and (c) the high ribosomal inhibitory effect of gelonin (Fig. 38). 

 

 

Figure 38: The expected mechanism of the growth inhibition activity of MTX-gelonin conjugate. FR, 

folate receptor; RFC, reduced folate carrier; R; ribosome. 

 

Therefore, the folate receptor endocytosis is presumably responsible for cellular uptake of 

MTX-gelonin with subsequent lysosomal degradation to an active form of gelonin and MTX. 

The active form of gelonin exerts its action on the ribosome subunit, resulting in inhibition of 

protein synthesis, cell cycle alterations, and growth inhibition of tumor cells. 

This hypothesis was supported by previous experimental results (Shen et al., 1981; Kralovec 

et al., 1989; Leamon et al., 1991; Atkinson et al., 2001; Kóczán et al., 2002) have shown that 

the mode of action of the MTX conjugates involves binding to the cell-surface, subsequent 

endocytic internalization, localization in the lysosomal system, and degradation by lysosomal 

enzymes to liberate the drug. 
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4.2.3.2. Genotoxic effects of MTX-gelonin in MCF-7 cells 

The comet assay is one of the most popular techniques for genotoxicity assessment. 

Moreover, it permits both qualitative and quantitative assessment of DNA damage at very low 

levels in any eukaryotic cell (Hartmann et al., 2003).  

In the MCF-7 cell, MTX-gelonin induced distinct direct and oxidative DNA damage 

compared with the control or free gelonin (Fig. 34). Further, both gelonin and MTX do not 

have any effect on DNA, although the mechanism involved is not completely known. Gelonin 

has been shown to inhibit protein synthesis by specific irreversible damage to the 28S subunit 

of the ribosomal RNA. The damage to the protein synthesis pathway can subsequently cause 

mitochondrial stress by the loss of the mitochondrial membrane potential, oxidative stress and 

production of reactive oxygen species, finally leading to apoptosis (Narayanan et al., 2005). 

Previous reports (Narayanan et al., 2005) suggest that RIPs are also capable of inducing cell 

damage by apoptosis. Ricin has been shown to induce oxidative stress in mice (Kumar et al., 

2003; Kumar et al., 2007; Muldoon et al., 1992), trichosanthin, a type I RIP, is able to 

generate high levels of ROS in human chorio-carcinoma cells (Zhang et al., 2001) and Shiga 

toxin has also be found to induce DNA lesions in human umbilical vein endothelial cells 

(Brigotti et al., 2002). 

 

4.2.3.3. Amino groups are involved in regulation of gelonin DNase 

and N-glycosidase activities 

DNase activities of gelonin, MTX-gelonin, and MTX were determined using pUC18 as 

substrate (Fig.36). Experiments with gelonin indicated that it acts directly on DNA by 

introduction of selective cleavages into supercoiled covalently closed circular DNA molecules 

of pUC18 plasmid. These type I RIPs exhibit nuclease activity toward double-stranded DNA. 

Native plant gelonin exerts single- and double-stranded oligonucleotide degradation (Nicolas 

et al., 1997B; Nicolas et al., 1998; Nicolas et al., 2000). While, gelonin in the MTX-gelonin 

conjugate has no DNase activity. This study is in agreement with previous studies (Singh et 

al., 1989; Singh & Sairam, 1989; Singh et al., 2001) which reported that any modification of 

amino groups of gelonin leads to partial or complete loss of DNase activities compared to 

native gelonin. 

In another experiment, we determined the biological activity of purified gelonin, MTX-

gelonin, and MTX in the non-treated rabbit reticulocyte lysate system (Fig. 35). Conjugation 

of MTX to gelonin via amino modification results in an 11-fold decrease in activity of the 

toxin in-vitro translation assay. This study is in good agreement with previous studies (Brust 

et al., 1987) which reported that decrease of gelonin toxicity with increasing degree of 

modification by N-[4-(maleimidomethyl)-cyclohexylcarbonyoxy]succinmide and 2-

iminotholane. The results in both experiments can be explained through binding of amino 

groups of gelonin with MTX resulting in loss of gelonin activity.  

 



RESULTS & DISCUSSION 

67 
 
 

4.2.3.4. The MTX α- and γ-carboxyl groups are involved in MTX 

anti-folate activity 

We also tested the effect of the conjugate on the DHFR activity. The conjugate was less 

effective against MTX target enzyme DHFR by about 20% (Fig. 37). Our result suggested 

that coupling of gelonin to α- and γ-carboxyl groups of MTX could alter the binding affinity 

of MTX with DHFR, leading to partial loss of its anti-folate activity. Assessment of drug 

activity by the inhibition of dihydrofolate reductase showed some loss in the capacity of MTX 

to inhibit the enzyme when conjugated compared to an equi-molar amount of the free drug 

(Fig. 37). Such losses of dihydrofolate reductase inhibition have been reported previously 

when MTX was conjugated to several different macromolecules (Kulkarni et al., 1981; 

Deguchi et al., 1986; Fitzpatrick and Garnett et al., 1995), and is probably due to the 

interference of the MTX binding to the active site of the enzyme (Baker, 1969.) This result 

suggested that conjugation of a gelonin might alter the binding affinity of MTX with 

dihydrofolate reductase, leading to the partial loss of its anti-folate activity as compared to 

free MTX. 

 

4.2.4. Conclusion 

An immunotoxin composed of gelonin, a basic protein of 30 kDa isolated from the Indian 

plant Gelonium multiflorum and the cytotoxic drug MTX has been studied as a potential tool 

of gelonin delivery into the cytoplasm of cells. Results of many experiments showed that, on 

the average, about 5 molecules of MTX were coupled to one molecule of gelonin. The MTX-

gelonin conjugate is able to reduce the viability of MCF-7 cell in a dose-dependent manner 

(ID50, 10 nM) as shown by MTT assay and significantly induce direct and oxidative DNA 

damage as shown by the alkaline comet assay. However, in-vitro translation toxicity MTX-

gelonin conjugates have IC50, 50.5 ng/ml which is less toxic than that of gelonin alone IC50, 

4.6 ng/ml. Also, the DNase activity test showed that gelonin loses of DNase activity compared 

to gelonin itself. It can be concluded that the positive charge plays an important role in the 

DNase activity as well as the N-glycosidase activity of gelonin. Furthermore, conjugation of 

MTX with gelonin through α- and γ-carboxyl groups leads to the partial loss of its anti-folate 

activity compared to free MTX. 

These results, taken together, indicate that conjugation of MTX to gelonin permits delivery of 

the gelonin into the cytoplasm of cancer cells and exerts a measurable toxic effect. 

 

Finally, further experimental approaches are needed to  

 Characterize the structural properties of MTX-gelonin conjugate in more details.  

 Know how the MTX-gelonin conjugate exerts DNA damage inside the cell. 

 Test anti-tumor properties of the MTX-gelonin conjugate in vivo. 
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4.3. Part C. 

The SDS-PAGE analysis of Gelonium extract showed numerous bands which corresponded to 

different molecular weight proteins. Interestingly, two close bands appeared at 30 kDa and 31 

kDa revealing two separate proteins (Fig. 40A). In order to identify these two proteins 

isolated from Gelonium multiflorum seeds, we needed to implement two steps: (1) peptide 

fragmentation by trypsin, and (2) peptide fragmentation by Arg-C.  

The cleavage products were analyzed by MALDI-TOF and ESI ion-trap mass spectrometry 

(Esquire 3000
+
, Bruker Daltonics).  

 

4.3.1. Protein isolation and toxicity  

4.3.1.1. Gelonin isolation and purification 

Gelonin (30 kDa) was isolated and purified from Gelonium multiflorum seeds by two methods 

as described in “Methods” (see 3.3.2).  

For large scale, the first method by ion exchange chromatography was applied, where gelonin 

fractions were eluted, collected, dialyzed and concentrated. The gelonin purity was checked 

by means of SDS-PAGE (Fig. 40B) and its quantity estimated by means of the BCA assay. 

The total amount of gelonin isolated from 23 g seeds was about 56 mg. Upon concentrating 

the samples about 10% were lost. 

Gelonin can also be isolated by gel filtration through a sephadex G75 column which was 

previously equilibrated with 10 mM Tris, 50 mM NaCl, pH 7.2. The gelonium extract was 

loaded on sephadex G75 column which resulted in two peaks (Fig. 39). The electrophoretic 

analysis of the first fraction on SDS-PAGE revealed two bands (31 kDa and 22 kDa) and the 

second fraction revealed a single band (30 kDa) (Fig. 40D). The fractions collected between 

27-33 min contained pure gelonin. 3.6±0.2 mg of gelonin as isolated from 4 g of seed. 

 

4.3.1.2. GAP31 isolation and purification 

The GAP31 was isolated and purified from Gelonium multiflorum seeds by the method as 

described in “Methods” (see 3.3.3). The purity of the sample was determined by means of 

SDS-PAGE (Fig. 40D) and the concentration by means of the BCA assay. The total amount 

of protein isolated from 4 g was 300 µg. 
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Figure 39: Sephadex G-75 column chromatography of Gelonium seed proteins. The homogenate (4 

ml) was subjected to gel chromatography on a sephadex G-75 column (1.5 x 70 cm). The elution was 

performed with 10 mM Tris, 50 mM NaCl pH 7.2 at a flow rate of 2 ml/min. Three fractions were 

collected and checked by SDS-PAGE. 

 
 

 

 

 

 

 

 

 

Figure 40: SDS-PAGE of (A) the Gelonium 

multiflorum homogenate. (B) Gelonin isolated 

by ion exchange column. (C) The fractions 

obtained by sephadex G-75 column. F1: 

GAP31 and 22kDa proteins, F2: gelonin. (D) 

Isolated proteins. GA: GAP31, M: marker, G: 

gelonin. 
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4.3.1.3. Protein synthesis inhibitory activity 

To compare the N-glycosidase activity of the gelonin and GAP31 toxins, these materials were 

assayed by in-vitro protein translation in which [
14

C]-valine is incorporated into isolated 

rabbit reticulocytes. An inhibition curve for the GAP31 was compared to that of native 

gelonin. As shown in Fig. 41, the IC50 values for the gelonin and GAP31 molecules were 

found to be 4.6 and 2 ng/ml, respectively. 

 

Figure 41: Inhibition of in-vitro translation by gelonin and GAP31. The incorporation of [
14

C]-valine 

into the nascent peptides was followed in a cell-free translation assay at various concentrations of 

gelonin and GAP31 with BSA as standard. 

 

4.3.2. Peptide mapping 

To determine the structural differences of gelonin and GAP31 amino acid compositions, 30 

kDa and 31 kDa bands were enzymatically (trypsin and Arg-C) digested into peptides and 

subsequently compared with the Rosenblum and Huang primary structures, as reference 

peptide profile.  

 

4.3.2.1. In-gel tryptic gelonin digestion  

The gelonin band of ~30 kDa (Fig. 40B) was excised and subjected to enzymatic digestion by 

trypsin as described in "Methods". The resulting peptide mixtures were analyzed by MALDI-

TOF positive mode (Ultraflex MALDI-TOF-TOF, Bruker Daltonics). It was found that the 

observed peptides in the MALDI-MS spectra (Fig. 42 and Table 5) cover 78% of the gelonin 
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(Rosenblum sequence) amino acid sequence. Most notably, a signal at m/z 1103.752 

corresponding to the peptide sequence N104-R113
 
(theoretical molecular mass, 1102.63 Da) 

was clearly detected in the spectrum of gelonin.  
 

 

Figure 42: MALDI-MS TOF spectra display molecular ions [M + H]
+
 of peptides obtained after in-gel 

trypsin digestion of gelonin. An overall gelonin protein sequence coverage of 78% was obtained. 

 

The characteristic ions (2170.1, 2493.55, 2659.1, and 2791.6) were recorded in the MALDI-

MS mass spectrum. However, these observed peptide ions do not correspond to any 

theoretical (unmodified) tryptic peptides. So, we conclude that the measured mass of these 

fragments was increased due to modification with N-glycans (701, 1023, 1188, and 1351 Da) 

linked to N196 of 
192

IRPAN
Gly

NTISLENK
204

 peptide. These ions were corresponding to the 
192

IRPAN
Gly

NTISLENK
204

 peptide (theoretical molecular mass, 1469.8 Da) with sugar 

compositions GlcNAc2ManXyl, GlcNAc2Man3Xyl, GlcNAc2Man4Xyl, and 

GlcNAc2Man5Xyl, respectively.  

To confirm further the identity of the peptides, the gelonin (30 kDa) band was subjected to an 

in-gel tryptic digestion, and the resulting peptide mixtures were analyzed by ESI-MS positive 

mode. The peptides attributed to gelonin (Rosenblum sequence) covered 53% of the amino 

acid sequence (Fig. 43, Table 6). Interestingly, a signal at m/z 1105 corresponding to peptide 

sequence N104-R113
 
was observed in the spectrum of gelonin. As well as, the presence of an 

abundant doubly charged [M + 2H]
+2

 peptide ion at m/z 1247.4 that does not match any 
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calculated values. So, we assumed that these signal matches perfectly with the glycosylated-

peptide sequence 
192

IRPAN
Gly

NTISLENK
204

, where the theoretical mass of the peptide I192-

K204 is 1469.8 and the mass difference 1023 corresponds to the glycosylation motif 

GlcNAc2Man3Xyl linked to N196 of gelonin, respectively. A signal at m/z 2681.3 was 

observed which indicated peptide I192-K204 with a glycosylation motif GlcNAc2Man4Xyl + 

Na (1211 Da). 

Although, the gelonin sequence has two potential sites for glycosylation N81 and N196, the 

ESI spectra showed the peak [M + 3H] at m/z 964.7 which correspond to peptide sequence 

N81-K87
. 
This peak has the theoretical m/z value of 961.4. This proves that the glycosylation 

modification is not located at N81. 
 

Table 5: Assignment of peaks from Trypsin cleavage of gelonin (MALDI analysis) 

Peptides  position observed calculated 

NFQQR 

NPLLFGGKTR 

FTFIENQIR 

ETTDLGIEPLR 

YYVTAVDQVKPK 

DAPDAAYEGLFK 

LHFGGSYPSLEGEK 

LKPEGNSHGIPLLR 

KYYVTAVDQVKPK 

TSGANGM(Oxidation)FSEAVELER 

VKLKPEGNSHGIPLLR 

GATYITYVNFLNELR 

TRLHFGGSYPSLEGEK 

LHFGGSYPSLEGEKAYR 

GATYITYVNFLNELRVK 

TSGANGM(Oxidation)FSEAVELERANGK 

IRPANNTISLENK 

GLDTVSFSTKGATYITYVNFLNELR 

LDENAIDNYKPTEIASSLLVVIQM(Oxidation)VSEAAR 

CFVLVALSNDNGQLAEIAIDVTSVYVVGYQVR 

Carbamidomethyl 

186-191 

104-113 

177-185 

131-141 

88-99 

235 -246 

114-127 

28-41 

234-246 

214-229 

26-41 

11-25 

112-127 

114-130 

11-27 

214-233 

192-204 

1-25 

147-176 

49-80 

806.637 

1103.752 

1168.503  

1244.570  

1297.534  

1411.722 

1521.720  

1531.929  

1538.314 

1714.429  

1758.478 

1774.721  

1776.764 

1910.708  

2002.543  

2083.664  

2493.555  

2809.942  

3307.315  

3513.860 

806.3904 

1102.636 

1167.346 

1243.395 

1296.415 

1410.651 

1520.679 

1530.875 

1538.857 

1713.774 

1758.038 

1773.917 

1777.886 

1910.939 

2001.335 

2083.971 

1470.678 

2809.440 

3305.767 

3512.809 
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Figure 43: ESI-MS spectrum, in positive mode, of gelonin peptides obtained by in-gel tryptic 

digestion. 

Table 6: Assignment of peaks from in-gel tryptic cleavage of gelonin (ESI analysis) 

Sequence Position 

(Rosenblum) 

(m/z)exp charge 

state 

(m/z)cal 

IALLK 

FTFIENQIR 

YYVTAVDQVKPK 

SYFFK 

LKPEGNSHGIPLLR 

NNFQQR 

FVDKDPE 

TSGANGM=OFSEAVELER 

GATYITYVNFLNELR 

LHFGGSYPSLEGEK 

NRSYFFK 

IRPAN(Gly)NTISLENK 

NPLLFGGKTR 

YYVTAVDQVKPK 

247-251 

177-185 

88-99 

83-87 

28-41 

186-191 

252-258 

214-229 

11-25 

114-127 

81-87   

192-204 

104-113 

235 246 

557.3 

1167.3 

1296.3 

691.2 

765.8 

807.8 

849.3 

856.4 

887.7 

761.2 

964.4 

1247.7 

1105.5 

706.2 

1+ 

1+ 

1+ 

1+ 

2+ 

1+ 

1+ 

2+ 

2+ 

2+ 

1+ 

2+ 

1+ 

2+ 

557.4 

1167.4 

1296.6 

691.3 

1530.6 

806.3 

849.3 

1713.7 

1773.9 

1521.6 

962.2 

1470.6 

1103.3 

1411.6 

 

4.3.2.2. In-gel tryptic GAP31 digestion 

In a separate experiment, the 31 kDa band (Fig. 40D) was excised and subjected to enzymatic 

digestion by trypsin. The masses of the peptide fragments from each digest set were measured 

by MALDI as well as ESI mass spectrometry. 

In a MALDI spectrum (Fig. 44) we were able to identify 20 different peptides derived from 

in-gel tryptic cleavage of 31 kDa (GAP31) which correspond to theoretical tryptic peptides of 

the GAP31 sequence (Huang et al. 1999) (Tab. 7). These peptides were attributed to cover 

70% of the amino acid sequence (Fig. 46). Interestingly, a signal appeared at m/z 734.411 

corresponding to the peptide sequence N101-R106. This peptide missed eight amino acids 
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(NPLLFGGK) which were observed in the MALDI spectra of gelonin. A signal at m/z 

3798.111 was observed. However, this observed peptide signal does not correspond to any 

calculated values. So, we assumed that the mass of this fragment peak corresponded to the 

peptide sequence I185-K197.
 
The mass difference (m/z 2329) indicates the mass of the 

glycosylation motif on N189. 

ESI-MS spectra from GAP31 (trypsin-digest) are shown in Fig. 45, and the observed 

fragments are listed in Table 8. Ten peptides could be identified in the theoretical digest of the 

predicted 31 kDa protein. These peptides were found to cover 36% of the amino acid 

sequence (Fig. 46). 

The GAP31 sequence has two potential sites for glycosylation N82 and N189. The MALDI 

spectra showed the peak [M + H]
+
 at m/z 962.04 which is corresponding to peptide sequence 

N82-K88
 
. This peak had a theoretical m/z value of 961.4. This proved that the glycosylation 

modification is not located at N82, and N-glycosylation is at N189. 

 

 

Figure 44: MALDI-MS TOF spectra display molecular ions [MH]
+
 of peptides obtained after in-gel 

trypsin digestion of GAP31. Overall GAP31 protein sequence coverage of 70% was obtained. 
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Table 7: Assignment of peaks from trypsin cleavage of GAP3 (MALDI-MS analysis). 

Peptides Position Observed Calculated 

NTIKTR 

KCDDPGK 

FVDKDPK 

NRSYFFK 

IALLKFVDK 

GLDTVSFSTK 

WGKLSFQIR 

FTFIENQIR 

IRPANNTISLENK 

ETTDLGIEPLR 

DAPDAAYEGLFK 

YYVTAVDQVKPK 

LHFGGSYPSLEGEK 

LKPEGNSHGIPLLR 

AYRETTDLGIEPLR 

ETTDLGIEPLRIGIK 

LKPEGNSHGIPLLRK 

TSGANGM(Oxidation)FSEAVELER 

GATYITYVNFLNELR 

TRLHFGGSYPSLEGEK 

YYVTAVDQVKPKIALLK 

TSGANGM(Oxidation)FSEAVELERANGK 

101-106 

43-49 

245-251 

82-88 

240-248 

1 –10 

198-206 

170-178 

185-197 

124-134 

89-100 

228-239 

107-120 

28-41 

121-134 

124-138 

28-42 

207-222 

11- 25 

105- 120 

228 -244 

207 -226 

734.411 

762.094 

847.083 

962.432 

1045.559 

1055.419 

1136.784 

1167.581 

3798.111 

1244.666 

1295.665 

1411.797 

1521.501 

1531.654 

1633.464 

1654.647 

1659.306 

1711.488 

1773.370 

1779.613 

1945.255 

2080.331 

732.863 

762.345 

848.451 

961.489 

1046.660 

1054.179 

1135.362 

1166.615 

1470.678 

1243.652 

1296.610 

1410.651 

1520.679 

1530.809 

1633.854 

1654.937 

1658.984 

1713.774 

1773.917 

1777.974 

1949.147 

2083.971 

 

 

Figure 45: ESI-MS spectrum, in positive mode on an ESI ion-trap MS, of GAP31 peptide obtained by 

in-gel tryptic digestion. 
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Table 8: Assignment of peaks from in-gel tryptic cleavage of GAP31 (ESI analysis) 

Sequence Position (m/z)exp charge state 

IALLK 
ETTDLGIEPLR 
YYVTAVDQVKPK 
NTIKTR 
LSFQIR 
NNFQQR 
GATYITYVNFLNELR 
GLDTVSFSTK 
FTFIENQIR 
DAPDAAYEGLFK 

240-244 
124-134 
228-239 
101-106 
201-206 
179-184 
11-25 
1-10 
170-178 
89 100 

557.2 
622.3 
705.7 
733.4 
765.8 
807.8 
887.2 
1053.5 
1167.4 
1299.0 

1+ 
2+ 
2+ 
1+ 
1+ 
1+ 
2+ 
1- 
1+ 
1+ 

 

1     GLDTVSFSTK GATYITYVNF LNELRVKLKP EGNSHGIPLL RK-GDDPGKC FVLVALSNDN      59 
1     GLDTVSFSTK GATYITYVNF LNELRVKLKP EGNSHGIPLL RKKCDDPGKC FVLVALSNDN     60 

 

 

60  GQLAEIAIDV TSVYVVGYQV RNRSYFFKDA PDAAYEGLFK NTIKNPLLFG GKTRLHFGGS    119 
61  GQLAEIAIDV TSVYVVGYQV RNRSYFFKDA PDAAYEGLFK NTIK------------------TRLHFGGS   112 

 

 

120 YPSLEGEKAY RETTDLGIEP LRIGIKKLDE NAIDNYKPTE IASSLLVVIQ MVSEAARFTF          179 
113 YPSLEGEKAY RETTDLGIEP LRIGIKKLDE NAIDNYKPTE IASSLLVVIQ MVSEAARFTF          172 

 

 

180 IENQIRNNFQ QRIRPANNTI SLENKWGKLS FQIRTSGANG MFSEAVELER ANGKKYYVTA    239 
173 IENQIRNNFQ QRIRPANNTI SLENKWGKLS FQIRTSGANG MFSEAVELER ANGKKYYVTA     232 

 

 

240 VDQVKPKIAL LKFVDKDPE 258  
233 VDQVKPKIAL LKFVDKDPK 251    

 

 

Figure 46: Overview of peptides generated by in-gel tryptic cleavage of gelonin (top) and GAP31 

(bottom) and indicated beneath the sequences. Red arrows, peptides resulting from specific cleavage 

of gelonin with trypsin showed in MALDI spectra (      ) and ESI spectra (           ). Black arrows, 

peptides resulting from specific cleavage of GAP31 with trypsin showed in MALDI spectra (          ) 

and ESI spectra (         ). 
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4.3.2.3. In-gel Arg-C digestion of gelonin 

Because the tryptic peptides are very short, we performed additional experiments with Arg-C 

before and after PNGase F treatment. Arg-C cleaves peptide bonds at the carboxyl side of 

arginine resulting in a limited number of fragments, while PNGase F is an amidase that 

hydrolyzes nearly all types of N-glycan chains from glycopeptides/proteins.  

The 30 kDa band was excised, destained, digested with Arg-C and analyzed by MALDI-TOF. 

The resulting peptide mass spectra (Fig. 47A) matched the theoretical peak mass predicted by 

MS-digest software (Table 9) and provided 73% of total sequence coverage (Fig. 48). 

Interestingly, a signal at m/z 3779 corresponding to peptide sequence N81-R113 was observed 

only in the spectrum of gelonin. These data suggest that gelonin (Rosenblum) has 258 aa and 

is unglycoslyted at N81. The molecular ions at m/z 2741.14 and 3342.83 were observed. 

However, these observed peptide signals do not correspond to any calculated values. So, we 

assumed that the practically measured masses of these fragments were increased due to N-

glycan modification at N196 and corresponded to the glycosylated-peptide sequence P194-

R213
 
(calculated m/z=2316.64) plus, 425 and 1025.93, respectively.  

In a second experiment, gelonin was treated with PNGase F, digested with Arg-C and 

analyzed by MALDI-TOF. MS spectra are shown in Fig. 47B, and the observed fragments are 

listed in Table 9. 66% of the amino acid sequence coverage was obtained (Fig. 48). The 

signals at m/z 3318.11,
 
3610.36, and 3772.5 disappeared and were replaced by m/z 2588.54 

which corresponded to the peptide sequence I192-R213.
 
The mass differences indicate the 

masses of the glycosylation motifs on N196. 

Table 9: Assignment of peaks from Arg-C cleavage of gelonin (A) glycosylation (B) following 

deglycosylation by PNGase F 

Peptide Position Observed A Calculated Observed B 

NNFQQR 

FTFIENQIR 

ETTDLGIEPLR 

TSGANGM(=O)FSEAVELER 

VKLKPEGNSHGIPLLR 

LHFGGSYPSLEGEKAYR 

FTFIENQIRNNFQQR 

GLDTVSFSTKGATYITYVNFLNELR 

PAN(GLY)NTISLENKWGKLSFQIR 

NRSYFFKDAPDAAYEGLFKNTIKNPLLFGGKTR 

IGIKKLDENAIDNYKPTEIASSLLVVIQM(=O)VSEAAR 

186-191 

177-185 

131-141 

214-229 

26 -41 

114-130 

177-191 

1 -25 

192- 213 

81 -113 

142-176 

806.466 

1167.838 

1243.467 

1714.078 

1758.280 

1910.423 

1955.592 

2809.263 

3318,11 

3779.357 

3846.690 

806.390 

1167.615 

1243.652 

1714.859 

1758.038 

1910.939 

1954.988 

2809.440 

2316.641 

3778.944 

3845.072 

806.542 

1168.323 

1244.183 

-------- 

1759.128 

1911.898 

----------- 

2811.078 

2318.651 

3779.842 

3846.516 
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Figure 47: MALDI-MS TOF spectra display molecular ions [M+] of peptides obtained after in-gel 

Arg-C digestion of gelonin (A) glycosylation, and (B) following deglycosylation by PNGase F. 

 

1 GLDTVSFSTK  GATYITYVNF  LNELRVKLKP  EGNSHGIPLL  RKGDDPGKCF  VLVALSNDNG  QLAEIAIDVT  
 
 

71 SVYVVGYQVR  NRSYFFKDAP  DAAYEGLFKN  TIKNPLLFGG  KTRLHFGGSY SLEGEKAYR  ETTDLGIEPL  
 
 

141RIGIKKLDEN  AIDNYKPTEI  ASSLLVVIQM  VSEAARFTFI  ENQIRNNFQQ  RIRPANNTI  LENKWGKLSF  
 
 
 

211QIRTSGANGM  FSEAVELERA  NGKKYYVTAV  DQVKPKIALL  KFVDKDPE 
 
 

Figure 48: Overview of peptides generated by in-gel digestion of gelonin with Arg-C. (Red arrows, 

peptides resulting from specific cleavage of intact gelonin with Arg-C; and green arrows, peptides 

resulting from specific cleavage of gelonin with Arg-C following PNGase F deglycosylation). 
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4.3.2.4. In-gel Arg-C digestion of GAP31 

GAP31 (~31kDa) protein bands were excised, destained, digested with Arg-C and analyzed 

with MALDI. MS spectra are shown in Fig. 49A, and the observed fragments are listed in 

Table 10. 66% of the amino acid sequence coverage was obtained (Fig. 50). Interestingly, 

there was a single peak at m/z 2683.168 corresponding to the peptide sequence S84-R106. 

This peptide is missing the eight-amino acid sequence (NPLLFGGK) that is present in the 

corresponding Arg-C peptide (S83-R113) which is observed in gelonin. 

In a second experiment, GAP31 was treated with PNGase F, digested with Arg-C, and 

analyzed with MALDI. MS spectra are shown in Fig. 49B, and the observed fragments are 

listed in Table 10. 60% of the amino acid Sequence coverage was obtained (Fig. 50). The 

molecular ion at m/z 2320.841, corresponding to the deglycosylated peptide P187-R206 

(theoretical molecular mass, 2320.841Da), was clearly detected. 

Table 10: Assignment of peaks from Arg-C cleavage of GAP31 (A) glycosylation (B) following 

deglycosylation by PNGase F 

Peptide Position Observed A Calculated Observed B 

NNFQQR 

FTFIENQIR 
ETTDLGIEPLR 
TSGANGMFSEAVELER 
TSGANGM(=O)FSEAVELER 
VKLKPEGNSHGIPLLR 
LHFGGSYPSLEGEKAYR 
SYFFKDAPDAAYEGLFKNTIKTR 
GLDTVSFSTKGATYITYVNFLNELR 
IGIKKLDENAIDNYKPTEIASSLLVVIQM(=O)VSEAAR 
PAN(Gly)NTISLENKWGKLSFQIR 

179-184 

170-178 
124-134 
207-222 
207-222 
26-41 
107-123 
84-106 
1-25 
135-169 
185-206 

806.869  

1167.895  
1243.616  
1697.846 
1713.392  
1758.431 
1910.757  
2683.168  
2809.414  
3845.665  
4974.091 

806.390 

1167.615 
1243.652 
1697.779 
1713.774 
1758.038 
1910.939 
2682.356 
2809.440 
3845.072 
2316.641 

806.686  

1167.884  
1243.954  
1697.904  
1713.990  
1758.259  
1911.876 
2683.261  
--------- 
3845.379 
2317.841 
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Figure 49: MALDI-MS TOF spectra display molecular ions [M] of peptides obtained after in-gel Arg-

C digestion of GAP31 (A) glycosylation, and (B) following deglycosylation by PNGase F 

 

1 GLDTVSFSTK  GATYITYVNF  LNELRVKLKP  EGNSHGIPLL  RKKCDDPGKC  FVLVALSNDN  GQLAEIAIDV 

 

71TSVYVVGYQV RNRSYFFKDA  PDAAYEGLFK  NTIKTRLHFG  GSYPSLEGEK  AYRETTDLGI  EPLRIGIKKL   

  

141DENAIDNYKP  TEIASSLLVV  IQMVSEAARF  TFIENQIRNN  FQQRIRPANN  TISLENKWGK  

LSFQIRTSGA 

  

211NGMFSEAVEL  ERANGKKYYV  TAVDQVKPKI  ALLKFVDKDP  K 

 

Figure 50: Overview of peptides generated by in-gel digestion of GAP31 with Arg-C. (Violet arrows, 

peptides resulting from specific cleavage of intact GAP31 with Arg-C; and blue arrows, peptides 

resulting from specific cleavage of GAP31 with Arg-C following PNGase F deglycosylation). 
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4.3.3. ESI-MS characterization of proteins 

Gelonin was initially analyzed under acidic electrospray mass spectrometry conditions, in a 

1:1 methanol:water solution with 1% acetic acid. The predominant mass spectrum of positive 

ions is shown in Figure 51A, where multiply charged protein ions were observed in the range 

700-1600 upon ESI of gelonin. Where as, the signals in the region m/z 100-400 were observed 

(singly charged). They are most probably due to peptides that originate from the gelonin 

fragmentation process.  

From the ESI-spectrum we can conclude that there are at least 3 different species (A, B, and 

C). These species are most likely different glycoforms of gelonin. The results for the three 

species are displayed below: Deconvolution (“de-charging”) of the spectrum gave a protein 

molecular weight (MW) of 29850.79±0.45, 30013.41±0.67 and 30175.6±1.08 Da, which is in 

good agreement with the theoretical MW of gelonin with different glycosylation patterns (Fig. 

52). As shown in Tables. 11, 12 and 13, the masses are significantly higher than the most 

abundant mass calculated for gelonin amino acid sequences (Rosenblum = 28825.12 g/mol). 

This result implies that different post-translational modifications are attached to gelonin. 

These modifications are probably sugar residues since it was shown that gelonin contains 

mannose, glucosamine, and xylose (Daubenfeld et al., 2005). The mass difference between A 

and B or B and C of about 163 g/mol are probably due to one additional molecule of mannose 

attached to the protein. 

 

 

Figure 51: ESI-MS of gelonin (51A) and Enlargement of charge state 28
+
 (51B). 
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Table 11: The most abundant masses of gelonin species A 

m/z n1 (calc.) n1 M/ g mol
-1

 

996.59 

1030.64 

1067.11 

1106.53 

1149.2 

1194.16 

1244.67 

1299.33 

1358.2 

29.98 

28.99 

28.00 

27.00 

25.99 

25.01 

24.00 

22.99 

21.99 

30 

29 

28 

27 

26 

25 

24 

23 

22 

29850.77 

29851.32 

29851.08 

29849.31 

29850.9 

29852.86 

29848.08 

29851.2 

29851.61 

 

Table 12: The most abundant masses of gelonin species B 

m/z n1 (calc.) n1 M / g mol
-1

 

910.57 

938.18 

969.11 

1001.19 

1037.63 

1072.67 

1112.87 

1154.14 

1201.59 

1251.76 

1305.93 

32.99 

32.02 

31.00 

30.00 

28.95 

28.00 

26.99 

26.02 

24.99 

23.99 

23.00 

33 

32 

31 

30 

29 

28 

27 

26 

25 

24 

23 

30013.08 

30017.88 

30011.41 

30012.7 

30013.55 

30013.19 

30009.37 

30016.23 

30014.75 

30011.99 

30013.39 

 

Table 13: The most abundant masses of gelonin species C 

m/z 

 

n1 (calc.) n1  M / g mol
-1

 

888.18 

915.21 

945.94 

974.66 

1007.14 

1041.76 

1079.24 

1118.78 

1162.09 

1208.19 

34.01 

33.00 

31.93 

30.99 

29.99 

28.99 

27.98 

26.99 

25.98 

24.99 

34 

33 

32 

31 

30 

29 

28 

27 

26 

25 

30172.99 

30168.93 

30181.38 

30174.7 

30175.14 

30175.8 

30179.94 

30175.59 

30176.73 

30174.92 
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Figure 52: Deconvolution spectrum of Gelonin  

 

Table 14: Composition and molecular masses of gelonin species as observed in the mass 

spectra 

species structure Composition  MSexp/Da MScalc/Da 

A 

B (A+Man) 

C (A+2Man) 

Gel-GlcNAc2Man3Xyl 

Gel-GlcNAc2Man4Xyl 

Gel-GlcNAc2Man5Xyl 

C1339H2116N351O414S3 

C1345H2126N351O419S3 

C1351H2136N351O424S3 

29850.79±0.45 

30013.41±0.67 

30175.60±1.08 

29851.4 

30013.6 

30175.77 

 

In another experiments, GAP31 was also analyzed under acidic electrospray mass 

spectrometry conditions, in a 1:1 methanol:water solution with 1% acetic acid. The ESI mass 

spectrum of positive ions is shown in Figure 53, where multiply charged protein ions were 

observed in the range 600-1200. From the ESI-spectrum we can conclude that there are at 

least 3 different species (A, B, and C). These species are most likely different glycoforms of 

GAP31. The deconvoluted mass obtained over several charge states was shown to be 

29697.02±1.13, 30624.20±1.15, and 31083.40±1.9 Da, which is in excellent agreement with 

the theoretical MW of GAP31 with different glycosylation patterns (Fig. 54, Table 18). As 

shown in Tables. 15, 16 and 17, the masses are significantly higher than the most abundant 

masses calculated for the GAP31 amino acid sequence (Huang = 28173.4 g/mol).  
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Figure 53: ESI-MS of GAP31 (concentrated and dialyzed). 

 

Table 15: The most abundant masses of GAP31 species A 

m/z n1 (calc.) n1  M / g mol
-1

 

849.8 

874.2 

901.1 

929.1 

959.1 

990.3 

1025.2 

1061.4 

1100.7 

34.98 

34.01 

32.99 

31.99 

30.99 

30.02 

28.99 

28.00 

27.00 

35 

34 

33 

32 

31 

30 

29 

28 

27 

29699.51 

29697.53 

29697.9 

29697.34 

29697.27 

29698.79 

29701.8 

29691.2 

29691.9 

 

Table 16: The most abundant masses of GAP31 species B 

m/z n1 (calc.) n1  M / g mol
-1

 

766.6 

786.1 

807 

828.9 

851.9 

875.7 

901.1 

929.1 

958 

988.1 

1021.1 

40.00 

39.00 

37.99 

36.99 

35.99 

35.01 

34.02 

32.99 

32.00 

31.02 

30.02 

40 

39 

38 

37 

36 

35 

34 

33 

32 

31 

30 

30624 

30618.9 

30628 

30632.3 

30623.89 

30623.25 

30621.4 

30627.3 

30624 

30619.84 

30623.4 
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Table 17: The most abundant masses of GAP31 species C 

m/z n1 (calc.) n1  M / g mol
-1

 

798 

818.9 

841.4 

864.2 

889.1 

915 

943.1 

972.3 

1003.4 

1037.4 

1073.1 

1111 

38.99 

38.00 

36.98 

36.00 

34.99 

34.00 

32.99 

31.99 

31.00 

29.98 

28.99 

28.00 

39 

38 

37 

36 

35 

34 

33 

32 

31 

30 

29 

28 

31083 

31080.2 

31094.8 

31075.2 

31083.5 

31076 

31089.3 

31081.6 

31074.4 

31092 

31090.9 

31080 

 

 

Figure 54: Deconvoluted spectrum of GAP31 

 

Table 18: Composition and molecular masses of GAP31 species (ESI-MS spectra) 

species structure Composition  MSexp/Da MScalc/Da 

A 

B 

C 

GAP31-GlcNAc2Man6Fuc 

GAP31-GlcNAc2Man10Fuc2Xyl 

GAP31-GlcNAc2Man12Fuc2Xyl2 

C1326H2105N344O419S4 

C1361H2163N344O447S4 

C1378H2191N344O461S4 

29697.02±1.13 

30624.20±1.15 

31083.40±1.9 

29698.2 

30625.1 

31080.5 
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4.3.4. Enzymatic deglycosylation 

 

In order to determine the composition and structures of the N-glycans of the gelonin and 

GAP31 proteins, the two proteins were treated with peptidyl-N-glycosidase F (PNGase F) 

before and after Endo H to release the N-linked carbohydrates. The N-glycans’ masses 

obtained by ESI-MS were compared with molecular masses calculated from N-linked 

oligosaccharide structures commonly found in Gelonium seeds. 

Enzymatic deglycosylation reduced the molecular mass of both proteins. SDS-PAGE shows 

that two bands were observed for both proteins (Fig. 55). 

 

 

Figure 55: SDS-PAGE of purified and deglycosylated gelonin and GAP31. Lane 1, GAP31; lane 2, 

marker; lane 3, GAP31 after deglycosylation with PNGase F; lane 4, gelonin; and lane 5, gelonin after 

deglycosylation with PNGase F; +CHO, glycosylated; -CHO, deglycosylated protein. 
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4.3.4.1. Enzymatic gelonin deglycosylation 

 N-glycan released by PNGase F 

Treatment of gelonin with the N-glycan-specific endoglycosidase peptide-N-glycosidase F 

(PNGase F) resulted in a discernible difference in apparent molecular weight on SDS–PAGE 

(Fig. 55), implying the presence of N-glycosylation. The released N-glycans were desalted 

and their mass determined by ESI-MS. The mass data revealed a range of singly charged 

species from approximately 769 to 1362 Da (Fig. 56A). This mass series corresponds with a 

high degree of accuracy to the mass of an N-linked, high-mannose composition series 

GlcNAc2Man2–5Xyl. Hence, the 768 ion was correlated with [M + Na]
+
 ions of 

GlcNAc2Man2. The next three most abundant ions (1083.5, 1203.9, and 1362.1) were 

correlated with [M + 2Na]
+
 , [M + H]

+
 , [M ] ions of GlcNAc2Man3Xyl (calculated m/z 1083), 

GlcNAc2Man4Xyl (calculated m/z 1204), and GlcNAc2Man5Xyl (calculated m/z 1362), 

respectively.  

 N-glycan released by Endo H and PNGase F 

The N-glycans were released from gelonin by treatment with Endo H. As shown in Figure 

56B, the ESI-MS spectra showed three main ions (546.1, 856.7, and 1202.8), indicating the 

existence of oligomannose type N-glycans. Hence, the 546.1 ion was correlated with [M + 

H]
+
 ions of GlcNAcMan2 (calculated m/z 545.4). The next two most abundant ions (856.7, 

and 1202.8) were correlated with [M + H2O]
+
 ions of GlcNAcMan3Xyl (calculated m/z 855.7) 

and [M + H2O+ Na]
+
 ion of GlcNAcMan5Xyl (calculated m/z 1202), respectively.  

Gelonin was found to be sensitive to Endo H deglycosylation, indicating the presence of 

complex and oligomannose N-glycans structures. 

In the same experiments, the glycoprotein pellet - obtained after Endo H digestion - was 

treated with PNGase F and analyzed by ESI-MS. As shown in Figure 56C, the largest m/z 

measured was 205.1, which is in good agreement with the calculated m/z of the [M + H]
+ 

ion 

of GlcNAc (calculated m/z 204). 
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Figure 56: ESI-MS spectrum of released N-glycan from gelonin by (A) PNGase F treatment; (B) 

Endo H treatment; (C) PNGase F treatment after Endo H treatment. 



RESULTS & DISCUSSION 

89 
 
 

4.3.4.2. Enzymatic GAP31 deglycosylation 

 

 N-glycan released by PNGase F 

N-glycans were released from GAP31 by treatment with PNGase F alone according to the 

protocol described above and then analyzed directly by ESI-MS. As shown in Figure 57A, the 

N-glycan obtained after PNGase F digestion exhibited three main ions (1570.5, 2453.3, and 

2933.2). Hence, the 2453.3 ion was correlated with [M + H]
+
 ions of GlcNAc2Man10Fuc2Xyl 

(calculated m/z 2452.18). The other ions (1570.5 and 2933.2) were correlated with [M + 

2Na]
+
 and [M + Na]+ ions of GlcNAc2Man6Fuc (calculated m/z 1570.3) and 

GlcNAc2Man12Fuc2Xyl2 (calculated m/z 2932.58), respectively. 

 

 N-glycan released by Endo H and PNGase F  

In another experiment, N-glycans were released from GAP31 by treatment with Endo H. As 

shown in Figure 57B, the ESI-MS spectra showed four main ions (1833.3, 2148, 2414 and 

2576.3), indicating the existence of complex type N-glycan. Hence, the complex N-glycan 

with one pentose residue, GlcNAcMan9Xyl, was detected at m/z 1833.3 as a singly charged 

anion, containing one sodium adduct (calculated m/z 1832.5). The complex oligosaccharides 

containing both fucose and pentose, GlcNAcMan11FucXyl2 and GlcNAcMan12FucXyl2, were 

detected as singly charged ions at m/z 2414 and 2576.3 (calculated m/z 2413.9 and 2575.2), 

respectively. The other ion 2148 was correlated with [M]
+
 ion of GlcNAcMan11Fuc 

(calculated m/z 2148). The mass difference of 162 Da between singly charged ions at m/z of 

2414 and 2576.3 indicate the presence of a mannose residue. 

In the same experiments, the glycoprotein pellet - obtained after Endo H digestion - was 

treated with PNGase F and analyzed by ESI-MS. As shown in Figure 57C, the largest m/z 

measured was 368.9, which is in good agreement with the calculated m/z of the [M + H2O]
+
 

ion of GlcNAcFuc (calculated m/z 368.3). The other peaks observed in the ESI-MS spectra 

may probably be attributed to noise derived from the fragmentation of N-glycan patterns. 
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Figure 57: ESI-MS spectrum, in positive mode, of N-glycan from GAP31 obtained by (A) PNGase F 

treatment; (B) Endo H treatment; (C) PNGase F treatment after Endo H treatment. 
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4.3.5. Discussion 

We have isolated and characterized two RIP proteins (gelonin and GAP31) that constitute 

about 40 % of the total soluble proteins from the seeds of Gelonium multiflorum. Gelonin and 

GAP31 were extracted and purified by means of a size-exclusion chromatographic procedure 

(Fig. 40) and ion exchange chromatography. However, the isolation of GAP31 demanded 

more effort due to its lower yield upon purification. Both gelonin and GAP31 exert N-

glycosidase activity as shown in a cell-free in-vitro translation system of non-treated rabbit 

reticulocyte lysate (Fig. 42). The IC50 of gelonin and GAP31 were found to be 4.6 (Hossann et 

al., 2006) and 2 ng/ml, respectively. 

The ESI-MS analysis of gelonin and GAP31 exhibited at least three different species that are 

both modified by post-translational N-glycosylation patterns (Tables 14 and 18). 

In the trypsin digest, a peptide corresponding to the N104-R113 was clearly detected in the 

spectrum of the 30 kDa protein (Fig. 43). In the Arg-C digest, a peptide corresponding to the 

N81-R113 was clearly observed only in the spectrum of the 30 kDa (Fig. 48). These results 

confirm the Rosenblum sequence to be the correct sequence for the 30 kDa protein. The eight 

amino acid insert was not detected in the tryptic and Arg-C digest of the 31 kDa protein (Fig. 

50). These results prove that the 31 kDa protein corresponds to the Huang sequence (GAP31). 

 

4.3.5.1. Characterization of the glycosylation sites  

There are two possible glycosylation sites in gelonin (N81 and N196). The peptides 

containing unglycosylated N81 were identified in both trypsin and Arg-C digests. A mass of 

964.7 Da was obtained for the tryptic peptide, in agreement with the theoretical value of the 

N81-K87 peptide (Fig. 43, Table 6). The molecular ion at m/z 3779 corresponding to peptide 

sequence N81-R113 was obtained for the Arg-C peptide (Fig. 48A, Table 9). This proves that 

the glycosylation modification is not located at N81 which is in line with previous studies 

(Barbieri et al., 1993; Daubenfeld et al., 2005). 

The GAP31 sequence has also two potential sites for glycosylation N82 and N189. In trypsin 

digest the peptides containing unglycosylated N82 were identified. The MALDI spectra 

showed the peak [M + H]
+
 at m/z 962.04 which is corresponding to peptide sequence N82-

K88. This peak has a theoretical m/z value of 961.4. This proves that the glycosylation 

modification is not located at N82 which is in line with previous studies (Li et al., 2010). 

 

4.3.5.2. Structures of N-linked glycan 

ESI-MS analysis of N-glycans released with PNGase F from gelonin revealed mixtures of 

oligosaccharides. In addition, a certain low amount of high-mannose N-glycans was detected. 

Most of the structures could be assigned by calculation to paucimannosidic-type (small 

complex-type) N-glycans, expected to contain Xyl residues. The highly abundant 
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polysaccharides released from gelonin are high-mannose and paucimannosidic-type N-glycan 

series containing pentose (GlcNAc2Man2-5Xyl0-1) which are known as typical vacuole-type N-

glycans (Lerouge et al. 1998).  

The N-glycan released with PNGase F from the 30 kDa glycoprotein after Endo H revealed an 

intense ion which can be observed at m/z 205.1 and corresponds to the calculated m/z of the 

[M + H]
+ 

ion of GlcNAc (calculated m/z 204). Our result leads to the conclusion that, the N-

glycan core of gelonin is N-acetyl-D-glucosamine. The total sugar composition of the glycan 

chains of gelonin amounts to a 4.5% neutral sugar content which agrees with previous work 

(Falasca et al., 1982; Daubenfeld et al., 2005). Figure 53A shows the ESI-MS spectrum of 

GAP31 N-glycans. Hence, two complex-type structures, GlcNAc2Man6Fuc and 

GlcNAc2Man12Fuc2Xyl2, were detected as singly charged sodium adducts at m/z 1570.5 and 

2933.2, respectively. In addition, the complex-type N-glycan containing both pentose and 

deoxyhexose residues (GlcNAc2Man10Fuc2Xyl) were detected as singly charged ions at m/z 

2453.3. Thus, the proposed glycosylation pattern for GAP31, GlcNAc2Man6-12Fuc1-2Xyl0-2, 

constitutes a mixture of paucimannosidic-type and complex-type. Our result leads to the 

conclusion that, the sugar residues of GAP31 amount to 9.4% of the total molecular mass. 

Further, the N-glycan released with PNGase F from the 31 kDa glycoprotein after Endo H 

revealed an intense ion which can be observed at m/z 368.9 and corresponds to the calculated 

m/z of the [M + H2O]
+
 ion of GlcNAcFuc. Our result leads to the conclusion that, the N-

glycan core of GAP31 is α(1-6) fucose residue linked to the reducing terminal N-acetyl-D-

glucosamine.  

 

4.3.6. Conclusion 

We have isolated and characterized two ribosome-inactivating proteins (RIPs) type I, gelonin 

and GAP31, from seeds of Gelonium multiflorum. Both proteins exhibit RNA-N-glycosidase 

activity. The amino acid sequences of gelonin and GAP31 were identified by MALDI and ESI 

mass spectrometry. Gelonin and GAP31 peptides - obtained by proteolytic digestion (trypsin 

and Arg-C) - are consistent with the amino acid sequence published by Rosenblum and 

Huang, respectively. Further structural characterization of gelonin and GAP31 (tryptic and 

Arg-C peptide mapping) showed that the two RIPs have 96% similarity in their sequence. 

Thus, these two proteins are most probably isoforms arisen from the same gene by alternative 

splicing. The ESI-MS analysis of gelonin and GAP31 exhibited at least three different post-

translationally modified forms. A standard plant paucidomannosidic N-glycosylation pattern 

(GlcNAc2Man2-5Xyl0-1 and GlcNAc2Man6-12Fuc1-2Xyl0-2) was identified using electrospray 

ionization MS for gelonin on N196 and GAP31 on N189, respectively. Based on these results, 

both proteins are located in the vacuoles of Gelonium multiflorum seeds.  
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6. Appendix 

 The DNA sequence of the pET-gel plasmid (6089 bps) 

˃ATCCGGATATAGTTCCTCCTTTCAGCAAAAAACCCCTCAAGACCCGTTTAGAGGCCCCAAGGGGTTATGCTAGTTATTGCTCAGCGGTGGCAGC
AGCCAACTCAGCTTCCTTTCGGGCTTTGTTAGCAGCCGGATCTCAGTGGTGGTGGTGGTGGTGCTCGAGTGCGGCCGCAAGCTTGTCGACGGAGC
TCGAATTCTTATTATTTCGGATCTTTGTCGACGAATTTCAGCAGCGCAATTTTCGGTTTCACCTGATCAACCGCGGTCACATAATATTTTTTGCC
GTTCGCACGTTCGAGCTCCACCGCTTCGCTGAACATGCCGTTCGCGCCGCTGGTACGAATCTGGAAGCTCAGCTTGCCCCATTTGTTTTCCAGGC
TAATGGTGTTGTTCGCCGGACGGATCCGCTGCTGGAAGTTGTTACGAATCTGGTTTTCAATGAAGGTGAAACGCGCCGCTTCGCTCACCATCTG
AATCACCACCAGCAGGCTGCTCGCAATTTCGGTCGGTTTATAGTTATCAATCGCGTTTTCATCCAGTTTTTTAATGCCAATACGCAGCGGTTCAA
TGCCCAGATCGGTGGTTTCACGATACGCTTTTTCGCCTTCTAGACTCGGATAGCTGCCGCCGAAATGCAGACGGGTTTTAATGGTGTTTTTGAAC
AGGCCTTCATACGCCGCATCCGGCGCATCTTTGAAGAAATAGCTACGGTTACGCACCTGATAGCCCACCACATACACGCTGGTCACATCAATCGC
AATTTCCGCTAGCTGGCCGTTATCGTTGCTCAGCGCCACCAGCACGAAGCATTTGCCCGGATCATCGCATTTTTTACGCAGCAGCGGAATGCCAT
GGCTGTTGCCTTCCGGTTTCAGTTTCACACGCAGTTCGTTCAGGAAGTTCACATAGGTAATATAGGTGGCGCCTTTGGTGCTGAAGCTCACGGT
ATCCAGGCCCATATGGCTGCCGCGCGGCACCAGGCCGCTGCTGTGATGATGATGATGATGGCTGCTGCCCATGGTATATCTCCTTCTTAAAGTTA
AACAAAATTATTTCTAGAGGGGAATTGTTATCCGCTCACAATTCCCCTATAGTGAGTCGTATTAATTTCGCGGGATCGAGATCTCGATCCTCTA
CGCCGGACGCATCGTGGCCGGCATCACCGGCGCCACAGGTGCGGTTGCTGGCGCCTATATCGCCGACATCACCGATGGGGAAGATCGGGCTCGCC
ACTTCGGGCTCATGAGCGCTTGTTTCGGCGTGGGTATGGTGGCAGGCCCCGTGGCCGGGGGACTGTTGGGCGCCATCTCCTTGCATGCACCATTC
CTTGCGGCGGCGGTGCTCAACGGCCTCAACCTACTACTGGGCTGCTTCCTAATGCAGGAGTCGCATAAGGGAGAGCGTCGAGATCCCGGACACCA
TCGAATGGCGCAAAACCTTTCGCGGTATGGCATGATAGCGCCCGGAAGAGAGTCAATTCAGGGTGGTGAATGTGAAACCAGTAACGTTATACGA
TGTCGCAGAGTATGCCGGTGTCTCTTATCAGACCGTTTCCCGCGTGGTGAACCAGGCCAGCCACGTTTCTGCGAAAACGCGGGAAAAAGTGGAA
GCGGCGATGGCGGAGCTGAATTACATTCCCAACCGCGTGGCACAACAACTGGCGGGCAAACAGTCGTTGCTGATTGGCGTTGCCACCTCCAGTCT
GGCCCTGCACGCGCCGTCGCAAATTGTCGCGGCGATTAAATCTCGCGCCGATCAACTGGGTGCCAGCGTGGTGGTGTCGATGGTAGAACGAAGCG
GCGTCGAAGCCTGTAAAGCGGCGGTGCACAATCTTCTCGCGCAACGCGTCAGTGGGCTGATCATTAACTATCCGCTGGATGACCAGGATGCCATT
GCTGTGGAAGCTGCCTGCACTAATGTTCCGGCGTTATTTCTTGATGTCTCTGACCAGACACCCATCAACAGTATTATTTTCTCCCATGAAGACGG
TACGCGACTGGGCGTGGAGCATCTGGTCGCATTGGGTCACCAGCAAATCGCGCTGTTAGCGGGCCCATTAAGTTCTGTCTCGGCGCGTCTGCGTC
TGGCTGGCTGGCATAAATATCTCACTCGCAATCAAATTCAGCCGATAGCGGAACGGGAAGGCGACTGGAGTGCCATGTCCGGTTTTCAACAAAC
CATGCAAATGCTGAATGAGGGCATCGTTCCCACTGCGATGCTGGTTGCCACGATCAGATGGCGCTGGGCGCAATGCGCGCCATTACCGAGTCCGG
GCTGCGCGTTGGTGCGGATATCTCGGTAGTGGGATACGACGATACCGAAGACAGCTCATGTTATATCCCGCCGTTAACCACCATCAAACAGGAT
TTTCGCCTCTGGGGCAAACCAGCGTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTG
AAAAGAAAAACCACCCTGGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACT
GGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTAAGTTAGCTCACTCATTAGGCACCGGGATCTCGACCGATGCCCTTGAGAGCCTTCAACCC
AGTCAGCTCCTTCCGGTGGGCGCGGGGCATGACTATCGTCGCCGCACTTATGACTGTCTTCTTTATCATGCAACTCGTAGGACAGGTGCCGGCAG
CGCTCTGGGTCATTTTCGGCGAGGACCGCTTTCGCTGGAGCGCGACGATGATCGGCCTGTCGCTTGCGGTATTCGGAATCTTGCACGCCCTCGCT
CAAGCCTTCGTCACTGGTCCCGCCACCAAACGTTTCGGCGAGAAGCAGGCCATTATCGCCGGCATGGCGGCCCCACGGGTGCGCATGATCGTGCT
CCTGTCGTTGAGGACCCGGCTAGGCTGGCGGGGTTGCCTTACTGGTTAGCAGAATGAATCACCGATACGCGAGCGAACGTGAAGCGACTGCTGC
TGCAAAACGTCTGCGACCTGAGCAACAACATGAATGGTCTTCGGTTTCCGTGTTTCGTAAAGTCTGGAAACGCGGAAGTCAGCGCCCTGCACCA
TTATGTTCCGGATCTGCATCGCAGGATGCTGCTGGCTACCCTGTGGAACACCTACATCTGTATTAACGAAGCGCTGGCATTGACCCTGAGTGATT
TTTCTCTGGTCCCGCCGCATCCATACCGCCAGTTGTTTACCCTCACAACGTTCCAGTAACCGGGCATGTTCATCATCAGTAACCCGTATCGTGAG
CATCCTCTCTCGTTTCATCGGTATCATTACCCCCATGAACAGAAATCCCCCTTACACGGAGGCATCAGTGACCAAACAGGAAAAAACCGCCCTTA
ACATGGCCCGCTTTATCAGAAGCCAGACATTAACGCTTCTGGAGAAACTCAACGAGCTGGACGCGGATGAACAGGCAGACATCTGTGAATCGCT
TCACGACCACGCTGATGAGCTTTACCGCAGCTGCCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCA
CAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCGCAGCCATGACCCAGTCA
CGTAGCGATAGCGGAGTGTATACTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATATGCGGTGTGAAATACCGCAC
AGATGCGTAAGGAGAAAATACCGCATCAGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATC
AGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAA
CCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACC
CGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCT
TTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCAC
GAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGC
CACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTA
TTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTT
TTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGA
AAACTCACGTTAAGGGATTTTGGTCATGAACAATAAAACTGTCTGCTTACATAAACAGTAATACAAGGGGTGTTATGAGCCATATTCAACGGGA
AACGTCTTGCTCTAGGCCGCGATTAAATTCCAACATGGATGCTGATTTATATGGGTATAAATGGGCTCGCGATAATGTCGGGCAATCAGGTGCG
ACAATCTATCGATTGTATGGGAAGCCCGATGCGCCAGAGTTGTTTCTGAAACATGGCAAAGGTAGCGTTGCCAATGATGTTACAGATGAGATGG
TCAGACTAAACTGGCTGACGGAATTTATGCCTCTTCCGACCATCAAGCATTTTATCCGTACTCCTGATGATGCATGGTTACTCACCACTGCGATC
CCCGGGAAAACAGCATTCCAGGTATTAGAAGAATATCCTGATTCAGGTGAAAATATTGTTGATGCGCTGGCAGTGTTCCTGCGCCGGTTGCATT
CGATTCCTGTTTGTAATTGTCCTTTTAACAGCGATCGCGTATTTCGTCTCGCTCAGGCGCAATCACGAATGAATAACGGTTTGGTTGATGCGAG
TGATTTTGATGACGAGCGTAATGGCTGGCCTGTTGAACAAGTCTGGAAAGAAATGCATAAACTTTTGCCATTCTCACCGGATTCAGTCGTCACT
CATGGTGATTTCTCACTTGATAACCTTATTTTTGACGAGGGGAAATTAATAGGTTGTATTGATGTTGGACGAGTCGGAATCGCAGACCGATACC
AGGATCTTGCCATCCTATGGAACTGCCTCGGTGAGTTTTCTCCTTCATTACAGAAACGGCTTTTTCAAAAATATGGTATTGATAATCCTGATAT
GAATAAATTGCAGTTTCATTTGATGCTCGATGAGTTTTTCTAAGAATTAATTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAAC
AAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGAAATTGTAAACGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAAT
CAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGG
AACAAGAGTCCACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCT
AATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAA
CGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCC
GCGCTTAATGCGCCGCTACAGGGCGCGTCCCATTCGCCA 



APPENDIX 

103 
 
 

 The DNA sequence of the pET-C3-gelonin plasmid (6052 bps) 

˃ATCCGGATATAGTTCCTCCTTTCAGCAAAAAACCCCTCAAGACCCGTTTAGAGGCCCCAAGGGGTTATGCTAGTTATTGCTCAGCGGTGGCAGC
AGCCAACTCAGCTTCCTTTCGGGCTTTGTTAGCAGCCGGATCTCAGTGGTGGTGGTGGTGGTGCTCGAGTGCGGCCGCAAGCTTGTCGACGAATT
TCAGCAGCGCAATTTTCGGTTTCACCTGATCAACCGCGGTCACATAATATTTTTTGCCGTTCGCACGTTCGAGCTCCACCGCTTCGCTGAACATG
CCGTTCGCGCCGCTGGTACGAATCTGGAAGCTCAGCTTGCCCCATTTGTTTTCCAGGCTAATGGTGTTGTTCGCCGGACGGATCCGCTGCTGGAA
GTTGTTACGAATCTGGTTTTCAATGAAGGTGAAACGCGCCGCTTCGCTCACCATCTGAATCACCACCAGCAGGCTGCTCGCAATTTCGGTCGGTT
TATAGTTATCAATCGCGTTTTCATCCAGTTTTTTAATGCCAATACGCAGCGGTTCAATGCCCAGATCGGTGGTTTCACGATACGCTTTTTCGCCT
TCTAGACTCGGATAGCTGCCGCCGAAATGCAGACGGGTTTTAATGGTGTTTTTGAACAGGCCTTCATACGCCGCATCCGGCGCATCTTTGAAGA
AATAGCTACGGTTACGCACCTGATAGCCCACCACATACACGCTGGTCACATCAATCGCAATTTCCGCTAGCTGGCCGTTATCGTTGCTCAGCGCC
ACCAGCACGAAGCATTTGCCCGGATCATCGCATTTTTTACGCAGCAGCGGAATGCCATGGCTGTTGCCTTCCGGTTTCAGTTTCACACGCAGTTC
GTTCAGGAAGTTCACATAGGTAATATAGGTGGCGCCTTTGGTGCTGAAGCTCACGGTATCCAGGCCCATATGGCTGCCGCGCGGCACCAGGCCGC
TGCTGTGATGATGATGATGATGGCTGCTGCCCATGGTATATCTCCTTCTTAAAGTTAAACAAAATTATTTCTAGAGGGGAATTGTTATCCGCTC
ACAATTCCCCTATAGTGAGTCGTATTAATTTCGCGGGATCGAGATCTCGATCCTCTACGCCGGACGCATCGTGGCCGGCATCACCGGCGCCACAG
GTGCGGTTGCTGGCGCCTATATCGCCGACATCACCGATGGGGAAGATCGGGCTCGCCACTTCGGGCTCATGAGCGCTTGTTTCGGCGTGGGTATG
GTGGCAGGCCCCGTGGCCGGGGGACTGTTGGGCGCCATCTCCTTGCATGCACCATTCCTTGCGGCGGCGGTGCTCAACGGCCTCAACCTACTACT
GGGCTGCTTCCTAATGCAGGAGTCGCATAAGGGAGAGCGTCGAGATCCCGGACACCATCGAATGGCGCAAAACCTTTCGCGGTATGGCATGATA
GCGCCCGGAAGAGAGTCAATTCAGGGTGGTGAATGTGAAACCAGTAACGTTATACGATGTCGCAGAGTATGCCGGTGTCTCTTATCAGACCGTT
TCCCGCGTGGTGAACCAGGCCAGCCACGTTTCTGCGAAAACGCGGGAAAAAGTGGAAGCGGCGATGGCGGAGCTGAATTACATTCCCAACCGCG
TGGCACAACAACTGGCGGGCAAACAGTCGTTGCTGATTGGCGTTGCCACCTCCAGTCTGGCCCTGCACGCGCCGTCGCAAATTGTCGCGGCGATT
AAATCTCGCGCCGATCAACTGGGTGCCAGCGTGGTGGTGTCGATGGTAGAACGAAGCGGCGTCGAAGCCTGTAAAGCGGCGGTGCACAATCTTC
TCGCGCAACGCGTCAGTGGGCTGATCATTAACTATCCGCTGGATGACCAGGATGCCATTGCTGTGGAAGCTGCCTGCACTAATGTTCCGGCGTTA
TTTCTTGATGTCTCTGACCAGACACCCATCAACAGTATTATTTTCTCCCATGAAGACGGTACGCGACTGGGCGTGGAGCATCTGGTCGCATTGGG
TCACCAGCAAATCGCGCTGTTAGCGGGCCCATTAAGTTCTGTCTCGGCGCGTCTGCGTCTGGCTGGCTGGCATAAATATCTCACTCGCAATCAAA
TTCAGCCGATAGCGGAACGGGAAGGCGACTGGAGTGCCATGTCCGGTTTTCAACAAACCATGCAAATGCTGAATGAGGGCATCGTTCCCACTGC
GATGCTGGTTGCCAACGATCAGATGGCGCTGGGCGCAATGCGCGCCATTACCGAGTCCGGGCTGCGCGTTGGTGCGGATATCTCGGTAGTGGGA
TACGACGATACCGAAGACAGCTCATGTTATATCCCGCCGTTAACCACCATCAAACAGGATTTTCGCCTGCTGGGGCAAACCAGCGTGGACCGCTT
GCTGCAACTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAACCACCCTGGCGCCCAATACGCAAA
CCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGT
AAGTTAGCTCACTCATTAGGCACCGGGATCTCGACCGATGCCCTTGAGAGCCTTCAACCCAGTCAGCTCCTTCCGGTGGGCGCGGGGCATGACTA
TCGTCGCCGCACTTATGACTGTCTTCTTTATCATGCAACTCGTAGGACAGGTGCCGGCAGCGCTCTGGGTCATTTTCGGCGAGGACCGCTTTCGC
TGGAGCGCGACGATGATCGGCCTGTCGCTTGCGGTATTCGGAATCTTGCACGCCCTCGCTCAAGCCTTCGTCACTGGTCCCGCCACCAAACGTTT
CGGCGAGAAGCAGGCCATTATCGCCGGCATGGCGGCCCCACGGGTGCGCATGATCGTGCTCCTGTCGTTGAGGACCCGGCTAGGCTGGCGGGGTT
GCCTTACTGGTTAGCAGAATGAATCACCGATACGCGAGCGAACGTGAAGCGACTGCTGCTGCAAAACGTCTGCGACCTGAGCAACAACATGAAT
GGTCTTCGGTTTCCGTGTTTCGTAAAGTCTGGAAACGCGGAAGTCAGCGCCCTGCACCATTATGTTCCGGATCTGCATCGCAGGATGCTGCTGGC
TACCCTGTGGAACACCTACATCTGTATTAACGAAGCGCTGGCATTGACCCTGAGTGATTTTTCTCTGGTCCCGCCGCATCCATACCGCCAGTTGT
TTACCCTCACAACGTTCCAGTAACCGGGCATGTTCATCATCAGTAACCCGTATCGTGAGCATCCTCTCTCGTTTCATCGGTATCATTACCCCCAT
GAACAGAAATCCCCCTTACACGGAGGCATCAGTGACCAAACAGGAAAAAACCGCCCTTAACATGGCCCGCTTTATCAGAAGCCAGACATTAACG
CTTCTGGAGAAACTCAACGAGCTGGACGCGGATGAACAGGCAGACATCTGTGAATCGCTTCACGACCACGCTGATGAGCTTTACCGCAGCTGCCT
CGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAA
GCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCGCAGCCATGACCCAGTCACGTAGCGATAGCGGAGTGTATACTGGCTTAACTA
TGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATATGCGGTGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCT
CTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACA
GAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATA
GGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCT
GGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGC
TCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATC
CGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTA
GGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCT
TCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAA
AAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAACAAT
AAAACTGTCTGCTTACATAAACAGTAATACAAGGGGTGTTATGAGCCATATTCAACGGGAAACGTCTTGCTCTAGGCCGCGATTAAATTCCAAC
ATGGATGCTGATTTATATGGGTATAAATGGGCTCGCGATAATGTCGGGCAATCAGGTGCGACAATCTATCGATTGTATGGGAAGCCCGATGCGC
CAGAGTTGTTTCTGAAACATGGCAAAGGTAGCGTTGCCAATGATGTTACAGATGAGATGGTCAGACTAAACTGGCTGACGGAATTTATGCCTCT
TCCGACCATCAAGCATTTTATCCGTACTCCTGATGATGCATGGTTACTCACCACTGCGATCCCCGGGAAAACAGCATTCCAGGTATTAGAAGAAT
ATCCTGATTCAGGTGAAAATATTGTTGATGCGCTGGCAGTGTTCCTGCGCCGGTTGCATTCGATTCCTGTTTGTAATTGTCCTTTTAACAGCGAT
CGCGTATTTCGTCTCGCTCAGGCGCAATCACGAATGAATAACGGTTTGGTTGATGCGAGTGATTTTGATGACGAGCGTAATGGCTGGCCTGTTG
AACAAGTCTGGAAAGAAATGCATAAACTTTTGCCATTCTCACCGGATTCAGTCGTCACTCATGGTGATTTCTCACTTGATAACCTTATTTTTGA
CGAGGGGAAATTAATAGGTTGTATTGATGTTGGACGAGTCGGAATCGCAGACCGATACCAGGATCTTGCCATCCTATGGAACTGCCTCGGTGAG
TTTTCTCCTTCATTACAGAAACGGCTTTTTCAAAAATATGGTATTGATAATCCTGATATGAATAAATTGCAGTTTCATTTGATGCTCGATGAGT
TTTTCTAAGAATTAATTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGC
CACCTGAAATTGTAAACGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTTTTTAACCAATAGGCCGAAATCGGCAA
AATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTCCACTATTAAAGAACGTGGACTCCAAC
GTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTTTTTGGGGTCGAGGTGCCGTAAAGCAC
TAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGAAAGGAAGGGAAGAAAGCGAAAGGAG
CGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATGCGCCGCTACAGGGCGCGTCCCATTCG
CCA 
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 The DNA sequence of the pET-N34C3-gelonin plasmid (5886 bps) 

˃ATCCGGATATAGTTCCTCCTTTCAGCAAAAAACCCCTCAAGACCCGTTTAGAGGCCCCAAGGGGTTATGCTAGTTATTGCTCAGCGGTGGCAGC
AGCCAACTCAGCTTCCTTTCGGGCTTTGTTAGCAGCCGGATCTCAGTGGTGGTGGTGGTGGTGCTCGAGTGCGGCCGCAAGCTTGTCGACGAATT
TCAGCAGCGCAATTTTCGGTTTCACCTGATCAACCGCGGTCACATAATATTTTTTGCCGTTCGCACGTTCGAGCTCCACCGCTTCGCTGAACATG
CCGTTCGCGCCGCTGGTACGAATCTGGAAGCTCAGCTTGCCCCATTTGTTTTCCAGGCTAATGGTGTTGTTCGCCGGACGGATCCGCTGCTGGAA
GTTGTTACGAATCTGGTTTTCAATGAAGGTGAAACGCGCCGCTTCGCTCACCATCTGAATCACCACCAGCAGGCTGCTCGCAATTTCGGTCGGTT
TATAGTTATCAATCGCGTTTTCATCCAGTTTTTTAATGCCAATACGCAGCGGTTCAATGCCCAGATCGGTGGTTTCACGATACGCTTTTTCGCCT
TCTAGACTCGGATAGCTGCCGCCGAAATGCAGACGGGTTTTAATGGTGTTTTTGAACAGGCCTTCATACGCCGCATCCGGCGCATCTTTGAAGA
AATAGCTACGGTTACGCACCTGATAGCCCACCACATACACGCTGGTCACATCAATCGCAATTTCCGCTAGCTGGCCGTTATCGTTGCTCAGCGCC
ACCAGCACGAAGCATTTGCCCGGATCATCGCATTTTTTACGCAGCAGCGGAATGCCATGGTATATCTCCTTCTTAAAGTTAAACAAAATTATTT
CTAGAGGGGAATTGTTATCCGCTCACAATTCCCCTATAGTGAGTCGTATTAATTTCGCGGGATCGAGATCTCGATCCTCTACGCCGGACGCATCG
TGGCCGGCATCACCGGCGCCACAGGTGCGGTTGCTGGCGCCTATATCGCCGACATCACCGATGGGGAAGATCGGGCTCGCCACTTCGGGCTCATG
AGCGCTTGTTTCGGCGTGGGTATGGTGGCAGGCCCCGTGGCCGGGGGACTGTTGGGCGCCATCTCCTTGCATGCACCATTCCTTGCGGCGGCGGT
GCTCAACGGCCTCAACCTACTACTGGGCTGCTTCCTAATGCAGGAGTCGCATAAGGGAGAGCGTCGAGATCCCGGACACCATCGAATGGCGCAAA
ACCTTTCGCGGTATGGCATGATAGCGCCCGGAAGAGAGTCAATTCAGGGTGGTGAATGTGAAACCAGTAACGTTATACGATGTCGCAGAGTATG
CCGGTGTCTCTTATCAGACCGTTTCCCGCGTGGTGAACCAGGCCAGCCACGTTTCTGCGAAAACGCGGGAAAAAGTGGAAGCGGCGATGGCGGA
GCTGAATTACATTCCCAACCGCGTGGCACAACAACTGGCGGGCAAACAGTCGTTGCTGATTGGCGTTGCCACCTCCAGTCTGGCCCTGCACGCGC
CGTCGCAAATTGTCGCGGCGATTAAATCTCGCGCCGATCAACTGGGTGCCAGCGTGGTGGTGTCGATGGTAGAACGAAGCGGCGTCGAAGCCTG
TAAAGCGGCGGTGCACAATCTTCTCGCGCAACGCGTCAGTGGGCTGATCATTAACTATCCGCTGGATGACCAGGATGCCATTGCTGTGGAAGCT
GCCTGCACTAATGTTCCGGCGTTATTTCTTGATGTCTCTGACCAGACACCCATCAACAGTATTATTTTCTCCCATGAAGACGGTACGCGACTGGG
CGTGGAGCATCTGGTCGCATTGGGTCACCAGCAAATCGCGCTGTTAGCGGGCCCATTAAGTTCTGTCTCGGCGCGTCTGCGTCTGGCTGGCTGGC
ATAAATATCTCACTCGCAATCAAATTCAGCCGATAGCGGAACGGGAAGGCGACTGGAGTGCCATGTCCGGTTTTCAACAAACCATGCAAATGCT
GAATGAGGGCATCGTTCCCACTGCGATGCTGGTTGCCAACGATCAGATGGCGCTGGGCGCAATGCGCGCCATTACCGAGTCCGGGCTGCGCGTTG
GTGCGGATATCTCGGTAGTGGGATACGACGATACCGAAGACAGCTCATGTTATATCCCGCCGTTAACCACCATCAAACAGGATTTTCGCCTGCTG
GGGCAAACCAGCGTGGACCGCTTGCTGCAACTCTCTCAGGGCCAGGCGGTGAAGGGCAATCAGCTGTTGCCCGTCTCACTGGTGAAAAGAAAAA
CCACCCTGGCGCCCAATACGCAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGGAAAGCGGG
CAGTGAGCGCAACGCAATTAATGTAAGTTAGCTCACTCATTAGGCACCGGGATCTCGACCGATGCCCTTGAGAGCCTTCAACCCAGTCAGCTCCT
TCCGGTGGGCGCGGGGCATGACTATCGTCGCCGCACTTATGACTGTCTTCTTTATCATGCAACTCGTAGGACAGGTGCCGGCAGCGCTCTGGGTC
ATTTTCGGCGAGGACCGCTTTCGCTGGAGCGCGACGATGATCGGCCTGTCGCTTGCGGTATTCGGAATCTTGCACGCCCTCGCTCAAGCCTTCGT
CACTGGTCCCGCCACCAAACGTTTCGGCGAGAAGCAGGCCATTATCGCCGGCATGGCGGCCCCACGGGTGCGCATGATCGTGCTCCTGTCGTTGA
GGACCCGGCTAGGCTGGCGGGGTTGCCTTACTGGTTAGCAGAATGAATCACCGATACGCGAGCGAACGTGAAGCGACTGCTGCTGCAAAACGTC
TGCGACCTGAGCAACAACATGAATGGTCTTCGGTTTCCGTGTTTCGTAAAGTCTGGAAACGCGGAAGTCAGCGCCCTGCACCATTATGTTCCGG
ATCTGCATCGCAGGATGCTGCTGGCTACCCTGTGGAACACCTACATCTGTATTAACGAAGCGCTGGCATTGACCCTGAGTGATTTTTCTCTGGTC
CCGCCGCATCCATACCGCCAGTTGTTTACCCTCACAACGTTCCAGTAACCGGGCATGTTCATCATCAGTAACCCGTATCGTGAGCATCCTCTCTC
GTTTCATCGGTATCATTACCCCCATGAACAGAAATCCCCCTTACACGGAGGCATCAGTGACCAAACAGGAAAAAACCGCCCTTAACATGGCCCGC
TTTATCAGAAGCCAGACATTAACGCTTCTGGAGAAACTCAACGAGCTGGACGCGGATGAACAGGCAGACATCTGTGAATCGCTTCACGACCACG
CTGATGAGCTTTACCGCAGCTGCCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTG
TAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCGCAGCCATGACCCAGTCACGTAGCGATA
GCGGAGTGTATACTGGCTTAACTATGCGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATATGCGGTGTGAAATACCGCACAGATGCGTAA
GGAGAAAATACCGCATCAGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCA
AAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAG
GCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACT
ATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTC
GGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCG
TTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAAC
AGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTGGTATCT
GCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTG
CAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGT
TAAGGGATTTTGGTCATGAACAATAAAACTGTCTGCTTACATAAACAGTAATACAAGGGGTGTTATGAGCCATATTCAACGGGAAACGTCTTGC
TCTAGGCCGCGATTAAATTCCAACATGGATGCTGATTTATATGGGTATAAATGGGCTCGCGATAATGTCGGGCAATCAGGTGCGACAATCTATC
GATTGTATGGGAAGCCCGATGCGCCAGAGTTGTTTCTGAAACATGGCAAAGGTAGCGTTGCCAATGATGTTACAGATGAGATGGTCAGACTAAA
CTGGCTGACGGAATTTATGCCTCTTCCGACCATCAAGCATTTTATCCGTACTCCTGATGATGCATGGTTACTCACCACTGCGATCCCCGGGAAAA
CAGCATTCCAGGTATTAGAAGAATATCCTGATTCAGGTGAAAATATTGTTGATGCGCTGGCAGTGTTCCTGCGCCGGTTGCATTCGATTCCTGT
TTGTAATTGTCCTTTTAACAGCGATCGCGTATTTCGTCTCGCTCAGGCGCAATCACGAATGAATAACGGTTTGGTTGATGCGAGTGATTTTGAT
GACGAGCGTAATGGCTGGCCTGTTGAACAAGTCTGGAAAGAAATGCATAAACTTTTGCCATTCTCACCGGATTCAGTCGTCACTCATGGTGATT
TCTCACTTGATAACCTTATTTTTGACGAGGGGAAATTAATAGGTTGTATTGATGTTGGACGAGTCGGAATCGCAGACCGATACCAGGATCTTGC
CATCCTATGGAACTGCCTCGGTGAGTTTTCTCCTTCATTACAGAAACGGCTTTTTCAAAAATATGGTATTGATAATCCTGATATGAATAAATTG
CAGTTTCATTTGATGCTCGATGAGTTTTTCTAAGAATTAATTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAACAAATAGGGGT
TCCGCGCACATTTCCCCGAAAAGTGCCACCTGAAATTGTAAACGTTAATATTTTGTTAAAATTCGCGTTAAATTTTTGTTAAATCAGCTCATTT
TTTAACCAATAGGCCGAAATCGGCAAAATCCCTTATAAATCAAAAGAATAGACCGAGATAGGGTTGAGTGTTGTTCCAGTTTGGAACAAGAGTC
CACTATTAAAGAACGTGGACTCCAACGTCAAAGGGCGAAAAACCGTCTATCAGGGCGATGGCCCACTACGTGAACCATCACCCTAATCAAGTTT
TTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCCTAAAGGGAGCCCCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGAGA
AAGGAAGGGAAGAAAGCGAAAGGAGCGGGCGCTAGGGCGCTGGCAAGTGTAGCGGTCACGCTGCGCGTAACCACCACACCCGCCGCGCTTAATG
CGCCGCTACAGGGCGCGTCCCATTCGCCA 

 



ACKNOWLEDGEMENTS 

105 
 
 

7. Acknowledgements 

First of all, I would like to take this opportunity to express my deepest sense of gratitude and 

admiration to my supervisor, Prof. Dr. Wolfgang E. Trommer for providing me with the 

opportunity to work in his research group and for providing patient guidance, numerous and 

excellent ideas, and continuous efforts to revise my thesis. 

 

I would like to thank Dr. R. Philipp for solving all types of computer problems and for the 

unforgettable time. 

 

I would like to give my best wishes to all colleagues in our group, i.e. Christian, Doreen, Elke, 

Jessica, Michaela, Mohammed Chakour, Sandra and Valentina for their assistance and for 

providing a pleasant team atmosphere.  

 

I would like to thank Jennifer Meyer for MALDI analysis. Special thanks go to Fabian 

Menges who spared his precious time to perform ESI.  

 

My special thanks go to Frau Carolin Fluck and their consistent support and particularly for 

their friendship. 

 

I would like to thank Mohamed Lisfi and Abdel-Rahim Madhour for their assistance and 

particularly for their friendship. 

 

Finally, I would like to dedicate this work to my family (my father, my mother, my wife and 

my children Fatma, Sohaila, and Salma). 
 



CURRICULUM VITAE 

106 
 
 

8. Curriculum Vitae 

Personal data 

Name  Mohamed Mohamed Mohamed Abd El Fattah Badr  

Date of birth 16/02/1977 

Place of birth El Menofyia, Egypt. 

Nationality Egyptian 

Marital status   Married 

Address Ashma, El Shouhada, El Menofyia, Egypt 

E-mail Mohamed_badr180@yahoo.com 

Education  

83-88 Ashma Primary School, El Menofyia, Egypt 

88-91 Al-azhar Middle School, El Shouhada, El Menofyia, Egypt 

91-95 Al-azhar high school, El Shouhada, El Menofyia, Egypt 

95-2000 Faculty of Pharmacy, Al-azhar University, Cairo, Egypt.  

(B. Sc. in pharmaceutical sciences) 

2003-2005 Diploma, postgraduate courses in biochemistry, Al-azhar University, 

Cairo, Egypt. 

3/2008-5/2009 Department of Chemistry/Biochemistry, Technical University of 

Kaiserslautern, Germany. 

Master Thesis: The influence of endoplasmic reticulum stress on 

hypoxia-inducible factor-1-dependent plasminogen activator inhibitor-1 

expression 

Supervisor: Prof. Dr. T. Kietzmann 

6/2009- till now Department of Chemistry/Biochemistry, Technical University of 

Kaiserslautern, Germany. 

Thesis: The ribosome-inactivating protein gelonin and parts thereof to be 

employed for a potential treatment of cancer 

Supervisor: Prof. Dr. Wolfgang E. Trommer 

 

mailto:Mohamed_badr180@yahoo.com


 

107 
 
 

 

Eidesstattliche Erklärung 

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig angefertigt und keine 

anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt habe. 

Ich versichere außerdem, dass diese Dissertation weder in gleicher noch in anderer Form 

bereits in einem anderen Prüfverfahren vorgelegen hat. 

 

Kaiserslautern, den 26/04/2012                                                 (                              ) 

                                                                                                      Mohamed Badr          

 


