
Minimization and Parameter Estimation for Seminorm

Regularization Models with I-Divergence Constraints

T. Teuber∗, G. Steidl∗ and R. H. Chan†

July 23, 2012

Abstract

This papers deals with the minimization of seminorms ‖L · ‖ on R
n under the constraint

of a bounded I-divergence D(b,H·). The I-divergence is also known as Kullback-Leibler
divergence and appears in many models in imaging science, in particular when deal-
ing with Poisson data. Typically, H represents here, e.g., a linear blur operator and L
is some discrete derivative operator. Our preference for the constrained approach over
the corresponding penalized version is based on the fact that the I-divergence of data
corrupted, e.g., by Poisson noise or multiplicative Gamma noise can be estimated by sta-
tistical methods. Our minimization technique rests upon relations between constrained
and penalized convex problems and resembles the idea of Morozov’s discrepancy principle.
More precisely, we propose first-order primal-dual algorithms which reduce the problem
to the solution of certain proximal minimization problems in each iteration step. The
most interesting of these proximal minimization problems is an I-divergence constrained
least squares problem. We solve this problem by connecting it to the corresponding I-
divergence penalized least squares problem with an appropriately chosen regularization
parameter. Therefore, our algorithm produces not only a sequence of vectors which con-
verges to a minimizer of the constrained problem but also a sequence of parameters which
convergences to a regularization parameter so that the penalized problem has the same
solution as our constrained one. In other words, the solution of this penalized problem
fulfills the I-divergence constraint. We provide the proofs which are necessary to un-
derstand our approach and demonstrate the performance of our algorithms for different
image restoration examples.

1 Introduction

Regularized ill-posed problems were rigorously investigated by mathematicians since the early
60s of the last century, see for example the seminal book [39] and the survey paper [34]. One
of the best examined models in R

n is

argmin
x∈Rn

{
λ

2
‖b−Hx‖22 + ‖Lx‖22

}
, λ > 0,

where b ∈ R
n is the H-transformed and perturbed signal. The known linear transform

operator H ∈ R
n,n is in general not invertible or ill-conditioned. The linear operator L ∈ R

m,n
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in the regularization term enforces some regularity of the minimizer. Examples are discrete
derivative operators or nonlocal operators as considered in [31, 55]. A key issue of this
model is the determination of a suitable regularization parameter λ, which balances the data
fidelity with the regularity of the solution. Several techniques were developed to address this
topic, e.g., Morozov’s discrepancy principle [44], the L-curve criterion [41], the generalized
cross-validation [59], normalized cumulative or residual periodogram approaches [35, 51] and
variational Bayes’ approaches [2, 46]. In this paper, we will adapt the simple idea of the
discrepancy principle, which chooses the regularization parameter such that the norm of the
defect ‖b−Hx‖2 equals some known error.
When dealing with image processing applications the above model is often replaced by

argmin
x∈Rn

{
λ

2
‖Hx− b‖22 + ‖Lx‖

}
(1)

with certain norms ‖ · ‖ on R
m to get an edge-preserving restoration model. Note that

any seminorm on R
n can be written in the form ‖L · ‖ with an appropriate linear operator

L ∈ R
m,n. The frequently applied approach of Rudin, Osher and Fatemi [50] involves for

example TV (x) := ‖ |∇x| ‖1 as regularization term, where L = ∇ denotes a discrete gradient
operator and ‖ | · | ‖1 the mixed ℓ1-norm. Recently, also the constrained model

argmin
x∈Rn

{
TV (x) subject to ‖Hx− b‖22 ≤ τ

}
(2)

was handled in [45], which has the advantage that some knowledge on the noise allows to
estimate the parameter τ rather than the regularization parameter λ. Similarly, in [15], the
authors consider the problem from the point of view of the penalized problem (1). They
propose a primal-dual algorithm with a predictor-corrector scheme [18] which resembles in
some way the method in [30]. Rather than fixing λ in all iterations, they tune λ in each
iteration step such that the corresponding parameter sequence converges to some optimal λ̂
with the property that the minimizer x̂ of the corresponding penalized problem which is also
computed by the algorithm fulfills ‖Hx̂ − b‖2 ≤ τ . However, independently of the point of
view of the authors, a common ingredient of all these algorithms is the fact that the solution
t̂(λ) of the least squares problem with penalized ‖H · −b‖22 term

argmin
t∈Rn

{
λ

2
‖Ht− b‖22 + ‖a− t‖22

}
, λ > 0

is given analytically and that moreover f(λ) := ‖Ht̂(λ) − b‖22 = τ2 has a unique solution λ,
which can be computed by certain methods, see [15, 32].
Note that other constrained models and corresponding efficient algorithms were recently pro-
posed for image processing and sparsity promoting tasks, see e.g., [19, 21, 27, 57, 60].
In this paper, we are interested in the I-divergence D(b,H·) instead of the squared ℓ2-norm
‖H · −b‖22 as data fidelity term, which is more appropriate if the data is corrupted, e.g., by
Poisson noise or multiplicative noise, cf. [3, 40, 42, 55, 62]. Poisson data typically occurs in
imaging processes where the images are obtained by counting particles, e.g., photons, that hit
the image domain, see [6]. Multiplicative noise often appears as speckle in applications like
laser, ultrasonic [14, 58] or synthetic aperture radar (SAR) imaging [12, 43]. In the following,
we want to solve the I-divergence constrained problem

argmin
x≥0

{‖Lx‖ subject to D(b,Hx) ≤ τ} , (3)
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where we also have to cope with a non-negativity constraint which is inherent in most appli-
cations. As for the above least squares - TV problems we propose primal-dual algorithms.
Again these algorithms will relate the constrained problem to the penalized one

argmin
x≥0

{‖Lx‖+ λD(b,Hx)} (4)

with an appropriate regularization parameter via the discrepancy principle. Note that the
penalized I-divergence - TV problem was also approached by Bregman-EM-TV methods [13].
Our primal-dual algorithms restrict the problem to the iterative solution of certain proximal
minimization problems, see [4]. All these simpler proximal minimization problems can be
solved by meanwhile standard methods except the I-divergence least squares problem

argmin
t∈Rn

{
1

2
‖t− a‖22 subject to D(b, t) ≤ τ

}
. (5)

Here, we use that there exists an analytical expression for the minimizer t̂(λ) of the penalized
least squares problem

argmin
t∈Rn

{
1

2
‖t− a‖22 + λD(b, t)

}
, λ > 0

and that moreover,
f(λ) := D(b, t̂(λ)) = τ

has a unique solution λ which can be computed, e.g., by Newton’s method. Once we have
found this λ, we can compute t̂(λ) using the analytical expression. Of course, this t̂(λ) solves
our constrained problem (5). As end product our algorithm computes the minimizer x̂ of
(3) and as a by-product the regularization parameter λ̂ such that x̂ is also a solution of the
penalized problem (4) with this regularization parameter.

The structure of this paper is as follows: In Section 2 we provide the basic notation and a
theorem on the general relation between constrained and penalized convex problems. Since
an important step of our minimization algorithms consists in the solution of least squares
problems with constrained I-divergence we study these problems in Section 3. Section 4 ana-
lyzes the penalized problem (4) and the constrained problem (3). We will see that under mild
assumptions both problems have solutions and that different solutions of the same problem
leave ‖L · ‖ and H· fixed. Moreover, we clarify the relation between the constrained and the
penalized problem, which is central for understanding the convergence properties of the subse-
quent algorithms. In Section 5, we deal with the minimization of the constrained problem by
primal-dual algorithms. First, we introduce the dual problems and consider their relations to
the primal ones. Then, we apply an ADMM algorithm together with an algorithm proposed
in Section 3 to solve the appearing inner least squares problems with I-divergence constraints.
We prove that on the one hand this algorithm converges to a solution of (3) and on the other
hand computes the regularization parameter λ̂ such that the penalized problem (4) has the
same solution. Next, we discuss the application of other primal-dual algorithms. The main
ingredient of all these algorithms is again the solution of inner least squares problems with
I-divergence constraints. In Section 6, we show how to determine appropriate choices for the
parameter τ in the cases of Poisson noise and multiplicative Gamma-distributed noise. In
contrast to the regularization parameter λ in (4) a reasonable value for τ in (3) can usually
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be directly determined by statistical considerations if the type of noise corrupting the data
is known. Section 7 demonstrates the performance of our algorithms both for the denoising
of images containing multiplicative Gamma-distributed noise and for deblurring images cor-
rupted by Poisson noise. We finish the paper with conclusions in Section 8. The Appendix
contains some auxiliary lemmas and provides standard relations on dual problems.

2 Notation and Basic Relations

In this paper we deal with functions Φ : Rn → R ∪ {+∞}. By levτΦ := {x : Φ(x) ≤ τ}
we denote the (lower) level sets of Φ. For x∗ ∈ R

n, where Φ(x∗) is finite, the subdifferential
∂Φ(x∗) of Φ at x∗ is the set

∂Φ(x∗) := {p ∈ R
n : 〈p, x− x∗〉 ≤ Φ(x)− Φ(x∗) ∀x ∈ R

n}.

If Φ is proper, convex and x∗ ∈ ri(domΦ), then ∂Φ(x∗) 6= ∅. The Fenchel conjugate function
of Φ is defined by

Φ∗(p) := sup
x∈Rn

{〈p, x〉 − Φ(x)}.

Let ‖ · ‖ be a norm on R
n with dual norm ‖ · ‖∗ := max‖x‖≤1〈·, x〉. By B‖·‖(r) := {x ∈ R

n :
‖x‖ ≤ r} we denote the ball with respect to ‖ · ‖ with center 0 and radius r and by

ιS(x) :=

{
0 if x ∈ S,

+∞ otherwise

the indicator function ιS of a set S 6= ∅. For a norm we have

∂‖x‖ =

{
B‖·‖∗(1) if ‖x‖ = 0,

{p ∈ R
n : 〈p, x〉 = ‖x‖, ‖p‖∗ = 1} otherwise

(6)

and
‖p‖∗ = ιlev1‖·‖∗(p).

For the indicator function of a convex set S 6= ∅ it holds for x ∈ S that ∂ιS(x) = NS(x),
where NS denotes the normal cone to S at x ∈ S and ι∗S = σS with the support function
σS(x) := supy∈S〈x, y〉. Moreover, σ∗S = ιS if S is in addition closed. For S := R

n
≥0 and x ≥ 0,

we have for example

∂ιRn
≥0
(x) = NR

n
≥0
(x) = I1 × . . .× In, where Ik :=

{
(−∞, 0] if xk = 0,

{0} if xk > 0
(7)

and ι∗
R
n
≥0

= σRn
≥0

= ιRn
≤0
.

For given b ∈ R
n
>0 and 1n denoting a vector consisting of n ones, the discrete I-divergence

also known as generalized Kullback-Leibler divergence is defined by

D(b, t) :=

{
〈1n, b log

b
t − b+ t〉 if t > 0,

+∞ otherwise,

cf. [20]. Note that

D(b, t) = 〈1n, t− b log t〉 − 〈1n, b− b log b〉 for t > 0.
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The function D(b, ·) is strictly convex and has b as unique minimizer, where D(b, b) = 0.
Since D(b, ·) is proper, convex and continuous, the level sets

levτD(b, ·) := {t ∈ R
n : D(b, t) ≤ τ}

are convex and closed. Moreover, levτD(b, ·) 6= ∅ if and only if τ ≥ 0. Using the agreement
that 0 log 0 := 0 it is possible to generalize the definition of the I-divergence to b ≥ 0. In this
paper we restrict our attention to b > 0. The conjugate function of D(b, ·) is given by

D∗(b, p) :=

{
−〈b, log(1n − p)〉 if p < 1n,
+∞ otherwise.

Finally, it will be useful to notice the following well-known relation between constrained and
penalized convex problems, see, e.g., [38, 19].

Theorem 2.1. For proper, convex, lower semi-continuous functions F,G : Rn → R∪{+∞},
where F is continuous, the problems

argmin
x∈Rn

{G(x) + λF (x)}, λ ≥ 0 (8)

and
argmin
x∈Rn

{G(x) subject to F (x) ≤ τ} (9)

are related as follows:
i) Assume that domF ∩ domG 6= ∅. Let x̂ be a minimizer of (8). If λ = 0, then x̂ is also
a minimizer of (9) if and only if τ ≥ F (x̂). If λ > 0, then x̂ is also a minimizer of (9) for
τ := F (x̂). Moreover, this τ is unique if and only if x̂ is not a minimizer of G.
ii) Assume that ri(levτF )∩ri(domG) 6= ∅. Let x̂ be a minimizer of (9). If x̂ is not a minimizer
of F , then there exists a parameter λ ≥ 0 such that x̂ is also a minimizer of (8). If x̂ is in
addition not a minimizer of G, then λ > 0.

Concerning i) we mention that in case the minimizer of (8) is not unique, say x̂1 6= x̂2, the
relation F (x̂1) 6= F (x̂2) can appear. Concerning ii) note that there may exist in general
various parameters λ corresponding to the same parameter τ . For examples we refer to [19].

We will apply Theorem 2.1 with respect to the functions F := D(b,H·) and G := ‖L ·‖+ιRn
≥0
.

Then we will see that for appropriately chosen τ and a solution x̂ of (9) there exists a unique
λ such that x̂ is also a solution of (8).

3 Least Squares - I-Divergence Problems

The main part of our algorithms for solving (3) will consist in the solution of least squares
problems with constrained I-divergence, i.e., in solving problems of the form

argmin
t∈Rn

{
1

2
‖t− a‖22 subject to D(b, t) ≤ τ}, τ ≥ 0 (10)

with a ∈ R
n. Therefore, we deal with these simpler problems first. We will solve these

constrained least squares problems by utilizing the corresponding penalized problems

argmin
t∈Rn

{
1

2
‖t− a‖22 + λD(b, t)}, λ ≥ 0. (11)
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Both problems have a solution which is moreover unique, since the functionals are coercive
and strictly convex. If a = b > 0, then the solution is given by t̂ = a for all τ, λ ≥ 0. If a 6= b,
we obtain the solution by the following theorem.

Theorem 3.1. Let a, b ∈ R
n with b > 0 and a 6= b be given.

i) Let λ = 0. Then problem (11) has the solution t̂ = a. This is also a solution of (10) if and
only if a > 0 and τ ≥ D(b, a). For λ > 0 problem (11) has the solution

t̂ = g(a, λ) =
1

2

(
a− λ+

√
(a− λ)2 + 4λb

)
, (12)

where the notation has to be understood componentwise. In particular, t̂ 6∈ {a, b}. The
function

f(λ) := D(b, g(a, λ)) = 〈1n, g(a, λ)〉 − 〈b, log g(a, λ)〉 − 〈1n, b− b log b)〉

is strictly decreasing and t̂ is also the solution of (10) exactly for τ = D(b, g(a, λ)).
ii) Let τ = 0. Then problem (10) has the solution t̂ = b and there does not exist λ ≥ 0 such
that t̂ = b is the solution of (11). Let τ > 0. Then the unique solution t̂ > 0 of problem (10)
has the following properties: If a > 0 and D(b, a) ≤ τ , then t̂ = a and this is also the solution
of (11) exactly for λ = 0. Otherwise t̂ 6∈ {a, b} and there exists a unique λ > 0 such that t̂ is
also the solution of (11).

Proof. i) Let λ = 0. Then problem (11) has obviously the solution t̂ = a, which can only be
a solution of (10) if and only if a > 0 and D(b, a) ≤ τ .
Let λ > 0. Then the minimizer of (11) can be computed separately for each component with
index i = 1, . . . , n. Setting the gradient of

1

2
(ai − ti)

2 + λD(bi, ti) =
1

2
(ai − ti)

2 + λ(ti − bi log ti)− bi + bi log bi

to zero, we obtain the quadratic equation

t2i − ti(ai − λ)− biλ = 0,

which has the positive solution

t̂i =
1

2

(
ai − λ+

√
(ai − λ)2 + 4λbi

)
.

This proves (12). Since a 6= b, b > 0 and λ > 0, we see that t̂ 6∈ {a, b}.
Let t̂ = t̂(λ) = g(a, λ). Next, we prove that f(λ) = D(b, t̂(λ)) is strictly decreasing. Since f
is up to a constant the sum of the functions t̂i(λ) − bi log t̂i(λ), i = 1, . . . , n, it is sufficient
to show that the monotonicity relation holds true in one dimension, i.e., for n = 1. Thus, it
remains to prove that

f ′(λ) = t̂′(λ)− t̂′(λ)
b

t̂(λ)
< 0,

where

t̂′(λ) =
1

2

(
−1 +

λ− a+ 2b√
(a− λ)2 + 4λb

)
=

−t̂(λ) + b√
(a− λ)2 + 4λb

. (13)
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We see that t̂′(λ) = 0 if and only if a = b, which is not possible by assumption. Further, we
have

f ′(λ) =
t̂′(λ)

t̂(λ)
(t̂(λ)− b) =

t̂′(λ)

t̂(λ)
(−t̂′(λ))

√
(a− λ)2 + 4λb

= −
(t̂′(λ))2

t̂(λ)

√
(a− λ)2 + 4λb < 0. (14)

Finally, we obtain the rest of the assertion i) by applying Theorem 2.1i).
ii) Let τ = 0. Then, problem (10) has obviously the solution t̂ = b. By part i) it follows
immediately that t̂ = b is not a solution of (11) for any λ ≥ 0.
Let τ > 0 and let t̂ > 0 be the unique solution of (10). If a > 0 and D(b, a) ≤ τ , then
obviously t̂ = a and this is also the solution of (11) for λ = 0. By i) we see that t̂ = a cannot
be a solution of (11) for λ > 0. If a is not componentwise positive or τ < D(b, a), then t̂ = a
is not the solution of (10). Moreover, t̂ = b is also not the solution of (10) by the following
argument: Since τ > 0 and D(b, ·) is continuous there exists a neighborhood of b such that
D(b, t) ≤ τ for all t in this neighborhood, in particular for t = b−µ(b−a) and µ small enough.

Then 1
2‖b− µ(b− a)− a‖22 =

(1−µ)2

2 ‖a− b‖22 is smaller than 1
2‖a− b‖22 for µ > 0.

Now we can apply Theorem 2.1 ii) and conclude that there exists a unique λ > 0 such that t̂
is also a solution of (11). This completes the proof. �

Note that it was proved in [7] that for strictly convex, coercive and differentiable functions
λD(b, ·) + Ψ, λ > 0, the minimizer t̂(λ) has the property that D(b, t̂(λ)) and Ψ(t̂(λ)) are,
respectively, a decreasing and an increasing function of λ. Of course our least squares -
I-divergence model fits into this setting. However, Theorem 3.1 describes D(b, t̂(λ)) more
detailed in our special case.
Based on Theorem 3.1 we can use the following algorithm to find the solution t̂ of the least
squares problem with I-divergence constraint (10):

Algorithm I (Solution of (10))
Input: a, b ∈ R

n, b > 0 and τ > 0.
Find λ̂ as the unique solution of

f(λ) = τ

by Newton’s method. Set

t̂ := g(a, λ̂) =
1

2

(
a− λ̂+

√
(a− λ̂)2 + 4λ̂b

)
.

Using (13) and (14) we obtain for the derivative required in the Newton method

f ′(λ) = −
n∑

i=1

(−gi(ai, λ) + bi)
2

gi(ai, λ)
√(

ai − λ
)2

+ 4λbi

.

4 Seminorm - I-Divergence Problems

In the following, let H ∈ R
n,n be such that {Hx : x ≥ 0}∩R

n
>0 6= ∅, i.e., we have for the cone

K := {x ∈ R
n
≥0 : Hx > 0} 6= ∅.
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This is for example fulfilled if H has only nonnegative entries and contains no zero row. It
guarantees that

τ0 := min
x≥0

D(b,Hx) (15)

is finite. Note that infx≥0D(b,Hx) is indeed attained, i.e., argminx≥0D(b,Hx) 6= ∅ as shown
in Lemma A.1 in the appendix. If b ∈ {Hx : x ≥ 0}, we obtain τ0 = 0. Otherwise, we have
τ0 > 0. Besides, levτD(b,H·) 6= ∅ for τ ≥ τ0.
For L ∈ R

m,n we are now interested in solving the constrained minimization problem

(P1,τ ) argmin
x≥0

{‖Lx‖ subject to D(b,Hx) ≤ τ} , τ ≥ τ0, (16)

which is closely related to the penalized problem

(P2,λ) argmin
x≥0

{‖Lx‖+ λD(b,Hx)} , λ ≥ 0. (17)

Setting

τL := min
x∈N (L), x≥0

D(b,Hx) (18)

it holds that τL = +∞ if L is for example invertible. In the following, we will assume that
τ0 < τL, i.e.,

argmin
x≥0

D(b,Hx) ∩ N (L) = ∅.

Example 4.1. In image restoration the minimizers of functions involving the TV seminorm
and the I-divergence often lead to good results. In this case, L = ∇ is a discrete gradient
operator as (30) with N (L) = {α1n : α ∈ R}. Moreover, H is often a blur operator which has
usually nonnegative entries, contains no zero row and fulfills the condition H∗1n = 1n. In
this case, we automatically have K 6= ∅.
The bound τL can here be obtained as follows: With (18) and the structure of N (L) we have
to find the minimizer of the function α 7→ D(b, αh), α > 0, where h := H1n. Due to the
condition H∗1n = 1n, it holds that 〈1n, h〉 = n. Setting the derivative with respect to α of the
function

D(b, αh) = 〈1n, αh− b log(αh)〉 − 〈1n, b− b log b〉

= αn− 〈1n, b log(αh)〉 − 〈1n, b− b log b〉

to zero we obtain

0 = n−
〈1n, b〉

α
⇔ α =

〈1n, b〉

n
.

This is minimizer of the function D(b, ·h), since its second derivative is larger than zero for
α > 0. Thus, we have

α1n = argmin
x∈N (L), x≥0

D(b,Hx) with α =
〈1n, b〉

n
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and

τL = D(b, αh) = αn− 〈1n, b log(αh)〉 − 〈1n, b− b log b〉

= −〈b, log(αh)〉+ 〈b, log b〉

=

〈
b, log

(
n

〈1n, b〉

b

h

)〉
.

Next, let us see under which conditions it holds that τ0 = τL. Since K 6= ∅ and D(b,H·) is
continuous on its domain, we know by Fermat’s rule that x̂ ∈ argminx≥0D(b,Hx) if and only
if x̂ ≥ 0 and

0 ∈ ∇D(b,H·)(x̂) + ∂ιRn
≥0
(x̂) = H∗

(
1n −

b

Hx̂

)
+NR

n
≥0
(x̂) ⇔ H∗ b

Hx̂
− 1n ∈ NR

n
≥0
(x̂).

Since NR
n
≥0
(x) = {0} for all x > 0, we can conclude with x̂ = α1n > 0 that

τ0 = τL ⇔ H∗ b

h
= α1n.

If H is invertible, this is only possible if b = αh.

The following theorem clarifies the existence of a minimizer of the above problems and some
of its properties.

Theorem 4.2. Let H ∈ R
n,n be such that K 6= ∅ and L ∈ R

m,n fulfill N (H) ∩ N (L) = {0}.
Then the following relations are valid:

i) The problems (P1,τ ) and (P2,λ) have a solution.

ii) If x̂, x̃ are solutions of (P2,λ) for λ > 0, then

‖Lx̂‖ = ‖Lx̃‖ and Hx̂ = Hx̃. (19)

iii) Let in addition argminx≥0D(b,Hx) ∩ N (L) = ∅ and τ0 < τ < τL. If x̂, x̃ are solutions
of (P1,τ ), then (19) holds true with D(b,Hx̂) = τ .

Note that (19) implies
D(b,Hx̂) = D(b,Hx̃).

Proof. i) The assertion is a consequence of Lemma A.2 applied to the setting

R
n = R(H∗)⊕N (H) = R(L∗)⊕N (L)

with N (H) ∩ N (L) = {0} and G := ‖L · ‖, g := G|R(L∗), J := ιRn
≥0

and F defined problem
dependent below. Note that domG = R

n and g has nonempty and bounded level sets levβg
for β ≥ 0.
In case of problem (P1,τ ) we use F := ιlevτD(b,H·) and f := F |R(H∗). Since τ ≥ τ0, we have
that domF ∩ domG ∩ dom J 6= ∅. Clearly, levαf is nonempty and bounded for α ≥ 0.
In case of problem (P2,λ) with λ = 0 any x̂ ∈ N (L) with x ≥ 0 is a solution. For λ > 0 we use
F := λD(b,H·) and f := F |R(H∗). Since K 6= ∅, we have that domF ∩ domG ∩ dom J 6= ∅.
Clearly, levαf is nonempty and bounded for α ≥ τ0.
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ii) This assertion is a direct consequence of Lemma A.3 with F := D(b,H·), G := ‖L · ‖+ ιRn
≥0

and R
n = R(H∗)⊕N (H).

iii) For problem (P1,τ ) the first relation in (19) is straightforward. Next, we prove that
D(b,Hx̂) = τ for any solution x̂ of (P1,τ ). We know by [8, Proposition 4.7.2] that since
levτD(b,H·)∩R

n
≥0 6= ∅ and ‖L · ‖ is continuous on its domain R

n, there exists v ∈ ∂‖L · ‖(x̂)
such that

〈x− x̂, v〉 ≥ 0 ∀x ∈ levτD(b,H·) with x ≥ 0. (20)

We have that v = L∗∂‖Lx̂‖. Since τ < τL, we know that x̂ 6∈ N (L). Thus, by (6), v = L∗p̂
for some p̂ ∈ R

m with ‖p̂‖∗ = 1 and 〈p̂, Lx̂〉 = 〈v, x̂〉 = ‖Lx̂‖ > 0. Hence, there exists at least
one index i0 ∈ {1, . . . , n} such that vi0 > 0 and x̂i0 > 0.
If D(b,Hx̂) < τ , then we conclude by the continuity of D(b,H·) that there exists a neigh-
borhood of x̂ such that D(b,Hx) < τ for all x in this neighborhood. Since x̂ ≥ 0, we obtain
that for small enough η > 0 the vector x = (x1, . . . , xn)

T with xi := x̂i − ηvi if x̂i > 0 and
xi := 0 otherwise, lies in this neighborhood and fulfills x ≥ 0. Using this x in (20) we obtain
−η
∑

i∈I v
2
i ≥ 0, where I ⊂ {1, . . . , n} denotes the set of indices with x̂i > 0. Since i0 belongs

to I, this is a contradiction and consequently D(b,Hx̂) = τ .
To see the second relation in (19) assume that there exist two solutions x̂ = x̂1 + x̂0 ≥ 0
and x̃ = x̃1 + x̃0 ≥ 0 of (P1,τ ) with x̂1, x̃1 ∈ R(H∗), x̂1 6= x̃1 and x̂0, x̃0 ∈ N (H). Let
x = µx̂+ (1− µ)x̃, µ ∈ (0, 1), so that x ≥ 0. Since D(b,H·) is strictly convex on R(H∗), we
have D(b,Hx) < τ . On the other hand, we obtain

‖Lx‖ ≤ µ‖Lx̂‖+ (1− µ)‖Lx̃‖ = ‖Lx̂‖

so that x is also a minimizer of (P1,τ ), which is impossible, since we know from the previous
part of the proof that any minimizer has to fulfill D(b,Hx) = τ . This completes the proof.

�

Lemma 4.3. Let H ∈ R
n,n be such that K 6= ∅, L ∈ R

m,n fulfill N (H) ∩ N (L) = {0} and
argminx≥0D(b,Hx) ∩ N (L) = ∅. Let x̂ be a solution of (P2,λ) with D(b,Hx̂) 6= τL. Then
x̂ 6∈ N (L) and

λ =
‖Lx̂‖

〈1n, b−Hx̂〉
.

Proof. Since K 6= ∅, we obtain by Fermat’s rule that x̂ ∈ argminx≥0{‖Lx‖ + λD(b,Hx)} if
and only if x̂ ≥ 0 and

0 ∈ ∂
(
‖L · ‖+ λD(b,H·) + ιRn

≥0

)
(x̂),

0 ∈ L∗∂‖Lx̂‖+ λH∗∇D(b,Hx̂) + ∂ιRn
≥0
(x̂),

0 ∈ L∗∂‖Lx̂‖+ λH∗

(
1n −

b

Hx̂

)
+NR

n
≥0
(x̂),

λH∗

(
b

Hx̂
− 1n

)
∈ L∗∂‖Lx̂‖+NR

n
≥0
(x̂).

By (6) this is fulfilled if and only if

λH∗

(
b

Hx̂
− 1n

)
= L∗p̂2 + p̂3
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for some p̂3 ∈ NR
n
≥0
(x̂) and p̂2 ∈ R

m with ‖p̂2‖∗ = 1, 〈p̂2, Lx̂〉 = ‖Lx̂‖ > 0 if Lx̂ 6= 0 and

‖p̂2‖∗ ≤ 1 otherwise. This implies

λ

〈
b−Hx̂

Hx̂
,Hx̂

〉
= λ 〈b−Hx̂, 1n〉 = 〈L∗p̂2 + p̂3, x̂〉 = 〈p̂2, Lx̂〉+ 〈p̂3, x̂〉.

Since p̂3 ∈ NR
n
≥0
(x̂), it holds by (7) that 〈p̂3, x̂〉 = 0. If x̂ 6∈ N (L), we thus obtain λ =

‖Lx̂‖
〈1n,b−Hx̂〉 . If x̂ ∈ N (L), then x̂ can only be a solution of (P2,λ) if x̂ ∈ argminx∈N (L), x≥0D(b,Hx).

But then we have the contradiction D(b,Hx̂) = τL. �

Using the previous considerations we can prove the following theorem on the relation between
solutions of (P1,τ ) and (P2,λ).

Theorem 4.4. Let H ∈ R
n,n be such that K 6= ∅, L ∈ R

m,n fulfill N (H) ∩ N (L) = {0} and
N (L) ∩ argminx≥0D(b,H·) = ∅. If x̂ is a solution of (P1,τ ) with τ0 < τ < τL, then there
exists a unique λ > 0 such that x̂ is also a solution of (P2,λ). Moreover, λ does not depend
on the chosen solution of (P1,τ ).

Proof. Let x̂ be a solution of (P1,τ ) for τ0 < τ < τL. We want to apply Theorem 2.1ii) with
F := D(b,H·) and G := ‖L · ‖ + ιRn

≥0
. Since τ > τ0, we have that ri(levτF ) ∩ domG 6= ∅,

which replaces the regularity assumption in the theorem, since ιRn≥0 is a polyhedral function.
Since τ < τL, we have that x̂ ≥ 0 is not a minimizer of G, i.e., x̂ 6∈ N (L). Further, x̂
is not a minimizer of F by the following argument: Assume that x̂ ≥ 0 is a minimizer of
D(b,H·). Since D(b,H·) is continuous and τ > τ0, we obtain that x = (x1, . . . , xn)

T with
xi = x̂i + η(0 − x̂i) = (1 − η)x̂i if x̂i > 0 and xi = 0 otherwise also fulfills D(b,Hx) ≤ τ for
sufficiently small η > 0. But then we get the contradiction

G(x) = ‖Lx‖+ ιRn
≥0
(x) = (1− η)‖Lx̂‖ < ‖Lx̂‖+ ιRn

≥0
(x̂) = G(x̂).

Thus, by Theorem 2.1ii) there exists λ > 0 such that x̂ is also a solution of (P2,λ). By
Lemma 4.3 this λ is uniquely determined and by Theorem 4.2iii) it does not depend on the
chosen solution of (P1,τ ). �

5 Minimization of Seminorms with Constrained I-Divergence

In this section, we compute a solution of (P1,τ ) for τ0 < τ < τL. First, we will apply an ADMM
algorithm together with Algorithm I to solve the appearing inner least squares problems with
I-divergence constraints. We prove that on the one hand this algorithm converges to a
solution of (P1,τ ) and on the other hand computes the regularization parameter λ̂ such that
the penalized problem (P2,λ̂) has the same solution. Then, we discuss the application of other
primal-dual algorithms. The main ingredient of all these algorithms is again the solution of
inner least squares problems with I-divergence constraints.
To understand the structure of the algorithms we have to involve the dual problems of (P1,τ )
and (P2,λ), which will be done in the next subsection.
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5.1 Primal and Dual Problems

To understand the structure of the algorithms we have to involve the dual problems of (P1,τ )
and (P2,λ). The problems (P1,τ ) and (P2,λ), λ > 0 can be rewritten as

(P1,τ ) argmin
x∈Rn

y∈R2n+m

{
〈0, x〉︸ ︷︷ ︸
=:f1(x)

+ ιlevτD(b,·)(y1) + ‖y2‖+ ιy3≥0(y3)︸ ︷︷ ︸
:=f2(y1,y2,y3)

s.t.



H
L
I




︸ ︷︷ ︸
A

x =

(
y1
y2
y3

)
}
, (21)

(P2,λ) argmin
x∈Rn

y∈R2n+m

{
〈0, x〉+ λD(b, y1) + ‖y2‖+ ιy3≥0(y3) s.t.

(
H
L
I

)
x =

(
y1
y2
y3

)
}
.

Using the duality relations in Appendix A.2, in particular (32), and the fact that f∗1 (p) = 0
for p = 0 and f∗1 (p) = +∞ otherwise, we obtain that the dual problems of (P1,τ ) and (P2,λ),
λ > 0, are given by

(D1,τ ) argmin
p=(pT

1
,pT

2
,pT

3
)T
{σlevτD(b,·)(p1) + ιlev1‖·‖∗(p2) + ιRn

≤0
(p3) s.t. H∗p1 + L∗p2 + p3 = 0},

(D2,λ) argmin
p=(pT

1
,pT

2
,pT

3
)T

{
λD∗

(
b,
p1
λ

)
+ ιlev1‖·‖∗(p2) + ιRn

≤0
(p3) s.t. H∗p1 + L∗p2 + p3 = 0

}
.

Note that ιlevτD(b,·)(Hx) = ιlevτD(b,H·)(x) and H
∗NlevτD(b,·) = NlevτD(b,H·).

The following theorem provides the Karush-Kuhn-Tucker optimality conditions and relates
the solutions of the dual and primal problems. In the following, let SOL(X) denote the
solution set of problem (X).

Lemma 5.1. Let H ∈ R
n,n be such that K 6= ∅ and L ∈ R

m,n such that N (H)∩N (L) = {0}.
Let τ > τ0 and λ > 0. Then the following relations hold true:

x̂ ∈ SOL(P1,τ )
p̂ ∈ SOL(D1,τ )

}
⇔

{
p̂1 ∈ NlevτD(b,·)(Hx̂), p̂2 ∈ ∂‖Lx̂‖, p̂3 ∈ NR

n
≥0
(x̂)

such that H∗p̂1 + L∗p̂2 + p̂3 = 0,
(22)

and

x̂ ∈ SOL(P2,λ)
p̂ ∈ SOL(D2,λ)

}
⇔

{
p̂1 = λ(1n − b

Hx̂), p̂2 ∈ ∂‖Lx̂‖, p̂3 ∈ NR
n
≥0
(x̂)

such that H∗p̂1 + L∗p̂2 + p̂3 = 0.
(23)

Since SOL(P1,τ ) and SOL(P2,λ) are nonempty, the proof follows by standard arguments from
the duality theory of convex functions, cf. [10].
The following subsections describe algorithms to solve (P1,τ ).

5.2 ADMM Involving Least Squares Problems with I-Divergence Con-

straints

We apply the ADMM algorithm for solving (P1,τ ) as in the PIDSplit+ algorithm in [53], see
also [9, 28]. Considering (P1,τ ) in the form (21) we obtain the following algorithm:
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Algorithm (ADMM for solving (P1,τ ))

Initialization: q
(0)
1 = q

(0)
2 = q

(0)
3 = 0, y

(0)
1 = Hb, y

(0)
2 = Lb, y

(0)
3 = b and γ > 0.

For k = 0, 1, . . . repeat until a stopping criterion is reached:

x(k+1) = argmin
x∈Rn

{
‖q

(k)
1 +Hx− y

(k)
1 ‖22 + ‖q

(k)
2 + Lx− y

(k)
2 ‖22 + ‖q

(k)
3 + x− y

(k)
3 ‖22

}
,

y
(k+1)
1 = argmin

y1∈Rn

{
ιlevτD(b,·)(y1) +

γ

2
‖q

(k)
1 +Hx(k+1) − y1‖

2
2

}
, (24)

y
(k+1)
2 = argmin

y2∈Rm

{
‖y2‖+

γ

2
‖q

(k)
2 + Lx(k+1) − y2‖

2
2

}
,

y
(k+1)
3 = argmin

y3∈Rn

{
ιy3≥0(y3) +

γ

2
‖q

(k)
3 + x(k+1) − y3‖

2
2

}
,

q
(k+1)
1 = q

(k)
1 +Hx(k+1) − y

(k+1)
1 ,

q
(k+1)
2 = q

(k)
2 + Lx(k+1) − y

(k+1)
2 ,

q
(k+1)
3 = q

(k)
3 + x(k+1) − y

(k+1)
3 .

Note that this is a so-called scaled ADMM algorithm where q = p/γ replaces the dual variable
p. The above minimization problems are strictly convex problems, which have a unique
solution.
The first minimization problem in the algorithm is a least squares problem whose unique
solution is given by the solution of a linear system of equations:

x(k+1) = (HTH + LTL+ I)−1
(
HT(y

(k)
1 − q

(k)
1 ) + LT(y

(k)
2 − q

(k)
2 ) + (y

(k)
3 − q

(k)
3 )
)
. (25)

This linear system of equations can often be efficiently solved by a conjugate gradient (CG)
method. Sometimes, when the orthogonal decomposition of HTH + LTL + I is known, it is
even possible to solve it explicitly. This is in particular the case for Gaussian blur matrices
H and the discrete gradient L = ∇ with reflecting boundary conditions. In this case, the
matrix HTH + LTL+ I can be diagonalized by the discrete cosine II transform.
Denoting by PC the orthogonal projection onto a set C we obtain further

y
(k+1)
2 =

(
I − PB‖·‖∗ (1/γ)

)(
q
(k)
2 + Lx(k+1)

)
,

y
(k+1)
3 = PR≥0

(
q
(k)
3 + x(k+1)).

The orthogonal projection onto B‖·‖∗(1/γ) can be easily computed for the ℓp-norms with
p = 1,∞ and their mixed versions, see, e.g., [24, 54, 63].

The interesting part is the computation of y
(k+1)
1 in (24). Setting a(k+1) := q

(k)
1 +Hx(k+1) we

see that
y
(k+1)
1 = argmin

t∈Rn

{
γ

2
‖t− a(k+1)‖22 subject to D(b, t) ≤ τ}.

By Theorem 3.1ii) we have the following: If a(k+1) > 0 and D(b, a(k+1)) ≤ τ , then

y
(k+1)
1 = a(k+1) and λk+1 = 0.

Otherwise, there exists a unique λk+1 > 0 such that

y
(k+1)
1 = argmin

t∈Rn

{
γ

2
‖t− a(k+1)‖22 + λk+1D(b, t)}.
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By Theorem 3.1i) we obtain that

y
(k+1)
1 =

1

2

(
a(k+1) −

1

γ
λk+1 +

√(
a(k+1) −

1

γ
λk+1

)2
+ 4

1

γ
λk+1 b

)
,

where λk+1 is the unique solution of

f(λ) = D

(
b, g

(
a(k+1),

λ

γ

))
= τ

and g : Rn ×R>0 → R
n is defined by (12). This solution can be computed, e.g., by Newton’s

method with initial value λk. In summary we have:

Algorithm II (ADMM with inner Newton iterations)

Initialization: q
(0)
1 = q

(0)
2 = q

(0)
3 = 0, y

(0)
1 = Hb, y

(0)
2 = Lb, y

(0)
3 = b, λ0 = 0 and γ > 0.

For k = 0, 1, . . . repeat until a stopping criterion is reached:

x(k+1) = (HTH + LTL+ I)−1
(
HT(y

(k)
1 − q

(k)
1 ) + LT(y

(k)
2 − q

(k)
2 ) + (y

(k)
3 − q

(k)
3 )
)
,

a(k+1) = q
(k)
1 +Hx(k+1),

If a(k+1) > 0 and D(b, a(k+1)) ≤ τ, then

λk+1 = 0,

y
(k+1)
1 = a(k+1),

Otherwise

Find λk+1 as solution of D

(
b, g

(
a(k+1),

λ

γ

))
= τ by Newton’s method initialized by λk,

y
(k+1)
1 = g

(
a(k+1),

λk+1

γ

)
,

y
(k+1)
2 =

(
I − PB‖·‖∗ (1/γ)

)(
q
(k)
2 + Lx(k+1)

)
,

y
(k+1)
3 = PR≥0

(
q
(k)
3 + x(k+1)),

q
(k+1)
1 = a(k+1) − y

(k+1)
1 ,

q
(k+1)
2 = q

(k)
2 + Lx(k+1) − y

(k+1)
2 ,

q
(k+1)
3 = q

(k)
3 + x(k+1) − y

(k+1)
3 .

The convergence of the algorithm is ensured by the following theorem. In particular, we
obtain that the sequence {λk}k converges to the regularization parameter λ̂ > 0 such that
x̂ = limk→∞ x(k) is both a solution of (P1,τ ) and of (P2,λ̂).

Theorem 5.2. Let b ∈ R
n, b > 0 and L ∈ R

m,n, H ∈ R
n,n such that N (L)∩N (H) = {0} and

argminx≥0D(b,Hx) ∩ N (L) = ∅. Let τ0 < τ < τL. Then the sequence {(x(k), y(k), q(k), λk)}k
generated by the ADMM Algorithm II converges to (x̂, ŷ, q̂, λ̂), where x̂ is a solution of (P1,τ )

and (P2,λ̂), λ̂ > 0 and p̂ = γq̂ is a solution of the dual problems (D1,τ ) and (D2,λ̂). Further,

ŷ = (HT LT I)Tx̂ holds true.
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Proof. 1. The convergence of {(x(k), y(k), q(k))}k to (x̂, ŷ, q̂), where x̂ ∈ SOL(P1,τ ), p̂ = γq̂ ∈
SOL(D1,τ ) and ŷ = (HT LT I)Tx̂ follows from general convergence results of the ADMM, see,
e.g., [26, 29, 52].
2. It remains to prove the convergence of {λk}k. By part 1 of the proof we have that a(k) =

Hx(k) + q
(k−1)
1 converges to â = ŷ1 + q̂1 and that g(a(k), λk

γ ) converges to ŷ1. Furthermore, it
follows by componentwise computation that

g

(
a(k),

λk
γ

)
=

1

2

(
a(k) −

1

γ
λk +

√(
a(k) −

1

γ
λk
)2

+ 4
1

γ
b λk

)
= y

(k)
1 ,

⇔

√(
a(k) −

1

γ
λk
)2

+ 4
1

γ
b λk = 2y

(k)
1 −

(
a(k) −

1

γ
λk
)
,

⇔
1

γ
λk(b− y

(k)
1 ) = y

(k)
1 (y

(k)
1 − a(k)),

⇔ λk(b− y
(k)
1 ) = −y

(k)
1 p

(k)
1 , p

(k)
1 := γq

(k)
1 . (26)

Note that g(a(k), 0) = a(k), a(k) > 0 is also contained in this setting. By Theorem 4.2iii)
we know that b − Hx̂ = b − ŷ1 6= 0, i.e., bi − ŷ1,i 6= 0 at least for one index i ∈ {1, . . . , n}.

Thus, we see in the ith equation in (26) that λk → λ̂ = −ŷ1,i p̂1,i/(bi − ŷ1,i) as k → ∞. Now,
(22) implies that p̂2 = γq̂2 ∈ ∂‖Lx̂‖ and p̂3 = γq̂3 ∈ NR

n
≥0
(x̂) with H∗p̂1 + L∗p̂2 + p̂3 = 0.

Moreover, we have by (26) and since Hx̂ > 0 that

λ̂ (b−Hx̂) = −(Hx̂) p̂1,

λ̂ (1n −
b

Hx̂
) = p̂1.

Since τ < τL, it holds that x̂ 6∈ N (L). Hence, λ̂ = 0 would imply p̂1 = 0 and thus further
0 = L∗p̂2 + p̂3 with ‖p̂2‖∗ = 1, 〈p̂2, Lx̂〉 = ‖Lx̂‖ > 0. But then 0 = 〈x̂, L∗p̂2 + p̂3〉 and with
(7) we have 0 = 〈Lx̂, p̂2〉 = ‖Lx̂‖, which yields a contradiction. Consequently, λ̂ > 0 and
x̂, p̂ fulfill the right-hand of (23). Therefore, they are also solutions of (P2,λ̂) and (D2,λ̂),
respectively. �

5.3 Other Primal-Dual Algorithms

Finally, we want to comment on other algorithms to solve (P1,τ ). In particular, these algo-
rithms avoid solving the linear system of equations (25) in the computation of x(k+1). We
emphasize that the purpose of this paper is not to compare different algorithms, but to show
that our idea can be incorporated into several existing techniques.
Let us start with the Arrow-Hurwitz method [1], which was first used in image processing
(with some speedup suggestions) in [65] under the name primal-dual hybrid gradient algorithm
(PDHG). In general this algorithm computes a solution of

argmin
x∈Rn,y∈Rd

{f1(x) + f2(y) subject to Ax = y}

as follows:

Algorithm (Arrow-Hurwitz Method, PDHG)
Initialization: x(0) = 0, p(0) = 0 and s, t > 0 with st < 1

‖A‖2
2

.

15



For k = 0, 1, . . . repeat until a stopping criterion is reached:

x(k+1) = argmin
x∈Rn

{
f1(x) + 〈p(k), Ax〉+

1

2s
‖x− x(k)‖22

}

= argmin
x∈Rn

{
1

2
‖x− (x(k) − sA∗p(k))‖22 + sf1(x)

}
,

p(k+1) = argmin
p∈Rd

{
f∗2 (p)− 〈p,Ax(k+1)〉+

1

2t
‖p− p(k)‖22

}

= argmin
p∈Rd

{
1

2
‖p− (p(k) + tAx(k+1))‖22 + tf∗2 (p)

}
.

For our setting (21) with f1 = 0 the first step results in x(k+1) = x(k) − sA∗p(k). The second
step of the algorithm can be decoupled into two parts, see [16, 65]:

y(k+1) = argmin
y∈Rd

{
f2(y) +

t

2
‖
1

t
p(k) +Ax(k+1) − y‖22

}
, (27)

p(k+1) = p(k) + t(Ax(k+1) − y(k+1)). (28)

For f2 as in our setting (21) and q(k) := p(k)/t these two steps are exactly those of the ADMM
algorithm for updating y = (yT

1 , y
T

2 , y
T

3 )
T and q = (qT1 , q

T

2 , q
T

3 )
T, where we have to replace γ

by t now. The Arrow-Hurwitz method was improved by involving an extrapolation step by
Pock et al. in [47]. The convergence of the algorithm was proved in [16] (with some speedup
suggestions). Using this extrapolation idea for the dual variable in its simplest form, the first
step of the algorithm becomes

x(k+1) = argmin
x∈Rn

{
1

2
‖x− (x(k) − sA∗(2p(k) − p(k−1)))‖22 + sf1(x)

}
.

We summarize the algorithm which we call PDHGMp (PDHG with modified dual variable p)
for our special setting:

Algorithm III (PDHGMp with inner Newton iterations)

Initialization: (y(0)) =
(
(y

(0)
1 )T, (y

(0)
2 )T, (y

(0)
3 )T

)
T

with y
(0)
1 = Hb, y

(0)
2 = Lb, y

(0)
3 = b and

q(0) = 0 and s, t > 0 with st < 1
‖(HTLTI)‖2

2

.

For k = 0, 1, . . . repeat until a stopping criterion is reached:

x(k+1) = x(k) − st(HT LTI)(2q(k) − q(k−1)),

y(k+1) as in Algorithm II with γ := t,

q(k+1) as in Algorithm II.

Another algorithm which resembles in some way the dual method in [30] was proposed for
solving problem (1)/(2) in [61]. The method in [30] uses a predictor-corrector scheme [18] in
the alternating direction iterations for the dual variable. This algorithm can be adapted to
our setting (21) as follows:
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Algorithm (PDHG with Predictor-Corrector Step)
Initialization: x(0) = 0, p(0) = 0 and s, t > 0 with st < 1

2‖A‖2
2

For k = 0, 1, . . . repeat until a stopping criterion is reached:

p(k+
1

2
) = argmin

p∈Rd

{
1

2
‖p− (p(k) + tAx(k))‖22 + tf∗2 (p)

}

x(k+1) = argmin
x∈Rn

{
1

2
‖x− (x(k) − sA∗p(k+

1

2
))‖22 + sf1(x)

}
,

p(k+1) = argmin
p∈Rd

{
1

2
‖p− (p(k) + tAx(k+1))‖22 + tf∗2 (p)

}
.

Note that the update steps for p can be splitted again as in (27)-(28).

This algorithm is efficient in the special case when H = I is the identity matrix, e.g., for
denoising problems in imaging. Instead of (21) the simpler constraint problem

argmin
x∈Rn

{‖Lx‖ subject to D(b, x) ≤ τ} , τ > 0 (29)

has to be solved, which can be rewritten as

argmin
x∈Rn

{
ιlevτD(b,·)(x)︸ ︷︷ ︸

f1(x)

+ ‖y‖︸︷︷︸
f2(y)

subject to Lx = y
}
.

Using that f∗2 (p) = ιlev1‖·‖∗(p) the above algorithm becomes

Algorithm IV (ADM with predictor-corrector step for minimizing (29))
Initialization: x(0) = b, p(0) = Lb, λ0 = 0, s, t > 0 with st < 1

2‖L‖2
2

.

For k = 0, 1, . . . repeat until a stopping criterion is reached:

p(k+
1

2
) = PB‖·‖∗ (1)

(p(k) + t Lx(k)),

x(k+1) = argmin
x∈Rn

{
1

2
‖x− (x(k) − sLTp(k+

1

2
))‖22 subject to D(b, x) ≤ τ

}
,

p(k+1) = PB‖·‖∗ (1)
(p(k) + t Lx(k+1)).

The update step for the primal variable x requires again the solution of a least squares problem
with I-divergence constraints, which can be done by Algorithm I as follows:

h(k+1) = x(k) − sLTp(k+
1

2
),

If h(k+1) > 0 and D(b, h(k+1)) ≤ τ, then

λk+1 = 0,

x(k+1) = h(k+1),

Otherwise

Find λk+1 as solution of D(b, g(h(k+1), sλ)) = τ by Newton’s method initialized by λk,

x(k+1) = g(h(k+1), sλk+1).

A convergence proof of the algorithms can be given similarly to [61].
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6 Choosing a Suitable Value for τ

As already pointed out in the introduction problems of the form (16) or rather (17) have
been studied in the literature for the removal of Poisson or multiplicative Gamma noise in
images, respectively, cf., [3, 40, 42, 55]. Here, it is typically assumed that x ≥ 0 represents
the original image vector and b is a corrupted version of x, which possibly underwent some
linear transformation modeled by H and Hx is either corrupted by Poisson or multiplicative
Gamma noise. To obtain a good reconstruction x̂ of the original, noise-free image vector by
(16) or (17), respectively, suitable values for λ and τ need to be chosen. In contrast to the
regularization parameter λ in (17) a reasonable value for τ in (16) can usually be directly
determined by statistical considerations if the type of noise corrupting the data is known. To
see this, let us first consider only one noisy pixel bi > 0. Since this pixel is supposed to be
corrupted by noise, it can be viewed as one realization of a random variable Bt with the given
noise statistics. To determine now a reasonable value τ we may assume for a moment that
the noise-free value t = (Hx)i of bi is known and we may ask what mean value we can expect
for our I-divergence term D(bi, t) for different noisy realizations bi of Bt:

Lemma 6.1. i) Let Bt be a Poisson distributed random variable with expectation value

E(Bt) = t > 0. For t large enough it holds that

E

(
Bt log

Bt

t
−Bt + t

)
=

1

2
+O

(1
t

)
.

ii) Let V be a Gamma distributed random variable with density

pV (v) =
KK

Γ(K)
vK−1 exp(−K v) 1v≥0(v), K ≥ 1

and set Bt := t V . Then, we have

E

(
Bt log

Bt

t
−Bt + t

)
= t
(
ψ(K + 1)− log(K)

)
,

where ψ(x) := ∂
∂x log Γ(x) = Γ′(x)

Γ(x) represents the digamma function and

Γ(x) :=
∫∞
0 exp(−s) sx−1 ds denotes the gamma function.

Proof. The proof of i) can be found in [64]. To prove ii) we use the definition of Bt and the
fact that E(V ) = 1 so that

E

(
Bt log

Bt

t
−Bt + t

)
= E

(
t V log V − t V + t

)

= t
(
E(V log V )− E(V ) + 1

)

= tE(V log V ).

Further, we obtain that

E(V log V ) =
KK

Γ(K)

∞∫

0

vk log v exp(−Kv) dv

= ψ(K + 1)− log(K)
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(Ψ(x) =
∫∞
0

exp(−s)
s − exp(−xs)

1−exp(−s) ds) so that finally,

E

(
Bt log

Bt

t
−Bt + t

)
= t

(
ψ(K + 1)− log(K)

)
.

�

Summing these results up over the whole image vectors we immediately obtain the following
theorem:

Theorem 6.2. Let B = (B1, . . . , Bn) be a random vector and t = (t1, . . . , tn) ∈ R
n
>0.

i) If each Bi is Poisson distributed with expectation value ti for i = 1, . . . , n, then it holds

that

E(D(B, t) ) =
1

2
n+

n∑

i=1

O
( 1
ti

)
.

ii) If all Vi are Gamma distributed and Bi := ti Vi for i = 1, . . . , n, we have

E(D(B, t) ) =
( n∑

i=1

ti

)(
ψ(K + 1)− log(K)

)
=
( n∑

i=1

E(Bi)
)(
ψ(K + 1)− log(K)

)
.

This result shows that in case of Poisson noise and pixels with high original intensities ti the
expectation value of D(B, t) is approximately 1

2 n and thus, τ = 1
2 n is a good choice in (16).

On the other hand, if the given image is corrupted by multiplicative Gamma noise, case ii)
shows that

τ =
( n∑

i=1

E(Bi)
)(
ψ(K + 1)− log(K)

)

is a reasonable choice, where
∑n

i=1 E(Bi) can well be approximated by
∑n

i=1 bi. The following
remark outlines the range of values τ we can expect for varying K:

Remark 6.3. Using standard results for the digamma function ψ, see, e.g., [33, Sec. 8.36],
it is not hard to show for case ii) that

• E(D(B, t) ) is a strictly decreasing function in K (K ≥ 1),

• for K = 1 we have

E(D(B, t) ) = (1− c)
( n∑

i=1

E(Bi)
)

≈ 0.423
( n∑

i=1

E(Bi)
)
,

where c = 0, 577... denotes the Euler-Mascheroni constant,

• E(D(B, t) ) → 0 for K → ∞.
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7 Numerical Examples

Next, we want to illustrate the theoretical results of the former sections by numerical exper-
iments with images corrupted by Poisson and multiplicative Gamma noise, respectively. For
this purpose, we use for ‖Lx‖ the mixed l1-norm ‖ | · | ‖1 and set L to be either a matrix
modeling non-local similarities, see Remark 7.1, or the discrete gradient operator

∇ :=

(
I ⊗D
D ⊗ I

)
, D :=




−1 1
0 −1 1

. . .
. . .

−1 1
0




(30)

with ⊗ denoting the tensor product (Kronecker product) of matrices. In the latter case, ‖Lx‖
becomes the discrete total variation TV (x) := ‖ |∇x| ‖1 mentioned in the introduction.
We apply the peak signal to noise ratios (PSNRs) defined by

PSNR = 10 log10
|maxx0 −minx0|

2

1
N ‖x− x0‖22

for a quantitative comparison of the images x, where x0 denotes the original image which we
want to reconstruct.
For solving problem (16), all algorithms are implemented in MATLAB and executed on a
computer with an Intel Core i7-870 Processor (8M Cache, 2.93 GHz) and 8 GB physical
memory.

7.1 Deblurring Facing Poisson Noise

Figure 1: Left: Original image with values scaled to [0, 3000] so that the brightest pixels
correspond to 3000 detected photons. Middle: Corrupted image blurred by a Gaussian kernel
(standard deviation 1.3) and contaminated by Poisson noise. Right: Restoration result by
the I-divergence constrained model (16) with total variation seminorm.

Our first test image in Figure 1 shows a part of the ’cameraman’ image, which has been
corrupted by a Gaussian blur and contaminated by Poisson noise. The image gray values are
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here interpreted as photon counts in the range [0, 3000]. For synthetically adding Poisson
noise to the noise-free image we applied the MATLAB routine imnoise(X,’poisson’). This
procedure assumes for data given in double precision that the input image X consists of the
number of detected photons divided by 1012 - the maximal number of detectable photons.
Therefore, we divided our given image by 1012 before applying this procedure and afterwards
we scaled back again.
Computing the usually unknown value D(b,Hx) for these test images yields a value of
0.5046n, which is close to the estimate τ = 0.5n derived in Section 6. To restore the
corrupted image we now solve the constrained minimization problem (16) with the total vari-
ation seminorm and τ = 0.5n, which yields the good reconstruction depicted in Figure 1
(right). The minimization is here performed by the ADMM Algorithm II. As a by-product
of the algorithm we obtain by Theorem 5.2 that the penalized problem (17) yields the same
solution for the regularization parameter of λ = 134.9. As illustrated in Figure 2 the conver-
gence speed of the iterates x(k) and λ(k) depends as usual on the chosen parameter γ > 0.
Compared to a simplified version of Algorithm II for the penalized problem with fixed λ we
see on the right that for our constrained problem Algorithm II is only slightly slower for equal
values of γ.
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Figure 2: Convergence speed of x(k) and λ(k) in Algorithm II when computing the restored
image in Figure 1 (right). Left: Iterates λ(k) for different parameters γ. Right: Evolution of
the mean square errors 1

N ‖x(k)−x∗‖22 between the intermediate results x(k) and a sufficiently
converged reference result x∗.

7.2 Denoising Facing Multiplicative Gamma Noise

TV Regularization Our second example in Figure 3 shows a 512× 512 aerial image cor-
rupted by multiplicative Gamma noise. The obtained restoration result by solving the con-
strained problem (16) with H := I, total variation seminorm and τ =

(∑n
i=1 bi

)(
ψ(K +

1) − log(K)
)
≈ 2.64n is depicted on the right. For computing this solution we used again

Algorithm II with a CG method for solving the occurring linear system of equations. Since
H is the identity matrix here, the non-negativity of x is guaranteed by the I-divergence con-
straint. Therefore, we can simplify the algorithm by omitting the constraint x ≥ 0 and thus
the variables y3 and q3 in the algorithm. This is equally true for the PDHGMp Algorithm
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PSNR: 22.63 PSNR: 27.03

Figure 3: Left: Original image of the French city of Nı̂mes (512×512) with values in the range
[1, 256], see also [25]. Middle: Image corrupted by multiplicative Gamma noise (K = 10).
Right: Restoration result by the I-divergence constrained model (16) with total variation
seminorm (γ = 0.015).

III, where s t < 1/‖L‖22 is guaranteed for s t < 1/8. Alternatively, we can also use the
predictor-corrector ADM Algorithm IV, here. In Table 1 a speed comparison between these
algorithms for ’trial and error’ optimized parameters γ, s and t with respect to ‖x(k)−x∗‖∞ is
provided, where x∗ is a reference result obtained after sufficiently converged Algorithm IV. As
the comparison shows Algorithm III is fastest here followed by Algorithm IV if we optimize s
and t disregarding the theoretical convergence constraints s t < 1/‖L‖22 and s t < 0.5/‖L‖22 ,
respectively. For the non-optimized values s = 1/16 and t = 1 used in [61] Algorithm IV
performs worse.
The ADMM Algorithm II is slightly slower than Algorithms III and IV with optimized val-
ues s and t, here. However, this algorithm has the benefit that we only need to optimize
one instead of two parameters and that convergence is theoretically assured for any γ > 0.
Strategies for an adaptive parameter selection of γ for ADMM have been studied in [11, 36]
and it is future work to adapt these methods for our algorithms. To get additionally a feeling
about the performances compared to solving the penalized problem (17) we also executed
Algorithm II with fixed, already optimized λ. In this case the algorithm is faster, but not
significantly compared to the case where λ has to found by inner Newton iterations.

Nonlocal Regularization As mentioned in the introduction alternatively to the total
variation seminorm, nonlocal terms ‖ |Lx| ‖1 can also be used in the restoration models.
These methods often lead to better restoration results than TV-regularized approaches, but
are computationally more demanding, since the matrix L is adapted to the image and is
not as sparse as the discrete gradient matrix. For multiplicative Gamma noise appropriate
nonlocal matrices L can be constructed as follows, compare [31, 55, 56]:

Remark 7.1. We start with a zero weight matrix w ∈ R
N,N . For every image pixel i we
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Algorithms
Parameters Number of Computation

γ s t iterations times

‖x(k) − x∗‖∞ < 3

Algorithm II: ADMM 0.042 – – 36 2.5 sec

Algorithm II: ADMM with fixed λ = 3.2286 0.035 – – 33 1.6 sec

Algorithm III: PDHGMp – 6.4 0.06 32 1.0 sec

Algorithm IV: ADM with predictor-corr. step – 3.18 1
17 70 2.1 sec

” – (1)
(

1
16

)
(222) (6.2 sec)

‖x(k) − x∗‖∞ < 1

Algorithm II: ADMM 0.055 – – 66 4.9 sec

Algorithm II: ADMM with fixed λ = 3.2286 0.058 – – 67 3.9 sec

Algorithm III: PDHGMp – 5.4 0.08 52 1.4 sec

Algorithm IV: ADM with predictor-corr. step – 3.06 1
17 95 2.8 sec

” – (1)
(

1
16

)
(284) (7.9 sec)

Table 1: Computation times required by the algorithms to compute x(k) with specified max-
imal pixel differences to the sufficiently converged reference result x∗ of size 512 × 512 in
Figure 3. The times are averaged here over 100 runs of the algorithms.

compute for all j within a search window of size ω × ω around i the distances

da(i, j) :=

⌈ l−1

2
⌉∑

h1=−⌈ l−1

2
⌉

⌈ l−1

2
⌉∑

h2=−⌈ l−1

2
⌉

ga(h1, h2) s
(
f
(
i+ (h1, h2)

)
, f
(
j + (h1, h2)

))
,

where s(fi, fj) := K log
(2+fi/fj+fj/fi

4

)
and ga represents a discrete normalized Gaussian of

mean 0 and standard deviation a. The parameter l controls here the size of the image parts
being compared. For a predefined bound m̃ = 5 we select the k ≤ m̃ ’neighbors’ j 6= i of i for
which da(i, j) takes the smallest values and the number of nonzero elements in the row w(j, ·)
is smaller than 2m̃. Here, we set w(i, j) = w(j, i) = 1, which causes several weights w(j, ·)
to be already non-zero before we actually reach pixel j. To avoid that the number of non-zero
weights becomes too large, we set the number of chosen neighbors to k := min{m̃, 2m̃−r} with
r being the number of non-zero weights w(i, ·) before the selection. Finally, we construct the
matrix L ∈ R

mN,N with m = 2m̃ so that L consists of m blocks of size N × N , each having
maybe some zero rows and rows with −1 as diagonal element plus one additional nonzero
value 1 whose position is determined by the nonzero weights w(i, j).

For these matrices the constrained problem (16) with the estimated bound τ = 2.64n leads
to even better restoration results than the total variation seminorm, see Figure 4.
Table 2 shows a time comparison of the algorithms for solving problem (16) with these nonlocal
matrices. The PDHGMp Algorithm III is here again slightly faster than the other algorithms.
However, compared to approximately 7.2 seconds which we require for the construction of the
matrix L, the time differences between the algorithms are almost negligible, here.
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PSNR: 21.79

PSNR: 26.53 PSNR: 26.77

Figure 4: Top: Parts of the images depicted in Fig. 3 (left and middle). Bottom: Restored
images by the I-divergence constrained model (16) with total variation seminorm (left) and
a nonlocal term (right), respectively.

8 Conclusions

In this paper we have proposed primal-dual algorithms for solving I-divergence constrained
minimization problems. The main advantage of these models over penalized ones is the fact
that the constraining parameter τ can be estimated by statistical methods if some knowledge
on the (type of) noise is available. However, our minimization algorithms implicitly involve
I-divergence penalized problems in the following sense:

• Our algorithm requires the solution of an I-divergence constrained least squares problem
in each iteration step. To solve this problem we remember that the solution t̂(λ) of a
least squares problem with penalized I-divergence is given analytically and depends of
course on the regularization parameter λ. Fortunately, there exists a unique parameter
λ such that f(λ) := D(b, t̂(λ)) = τ. Given τ , we first compute this λ by Newton’s
method and compute t̂(λ) afterwards using its analytical expression.

• Despite a solution x̂ of the I-divergence constrained problem our algorithm produces a
regularization parameter for the penalized problem such that this problem has the same
solution, i.e., fulfills a discrepancy principle D(b,Hx̂) = τ .
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Algorithms
Parameters Number of Computation
γ s t iterations times

‖x(k) − x∗‖∞ < 3

Algorithm II: ADMM 0.044 – – 34 1.27 sec

Algorithm II: ADMM with fixed λ = 6.4454 0.029 – – 23 0.75 sec

Algorithm III: PDHGMp – 2.1 1
17 58 0.94 sec

Algorithm IV: ADM with predictor-corr. step – 4 1
80 30 1.05 sec

‖x(k) − x∗‖∞ < 1

Algorithm II: ADMM 0.047 – – 46 1.50 sec

Algorithm II: ADMM with fixed λ = 6.4454 0.035 – – 44 1.09 sec

Algorithm III: PDHGMp – 1.5 1
12 95 1.46 sec

Algorithm IV: ADM with predictor-corr. step – 2.4 1
47 67 2.28 sec

Table 2: Computation times required by the algorithms to compute x(k) with specified max-
imal pixel differences to the sufficiently converged reference result x∗ of size 180× 180 shown
in Figure 4 (right). The times are averaged here over 100 runs of the algorithms.

Future directions of research may include the modification of our approach to spatially
adapted regularization parameter selection, see [17, 23, 37], and the application of multi-
plicative iterative update rules for incorporating the non-negativity constraint, cf. [5, 22].
For the first task, further estimates of appropriate parameters τ will be useful. Moreover,
the determination of the parameters inherent in the algorithms, i.e., γ and s, t is ongoing
research.

A Appendix

A.1 Auxiliary Lemmata

The first lemma ensures the existence of τ0 in (15).

Lemma A.1. Let H ∈ R
n,n with K 6= ∅. Then argminx≥0D(b,Hx) 6= ∅ holds true.

Proof. Let τ0 := infx≥0D(b,Hx) and x(n) ≥ 0 be a sequence with limn→∞D(b,Hx(n)) = τ0.

We have the unique decomposition x(n) = x
(n)
1 + x

(n)
0 with x

(n)
1 ∈ R(H∗) and x

(n)
0 ∈ N (H).

Since D(b,H·) is lower level-bounded on R(H∗) and limn→∞D(b,Hx
(n)
1 ) = τ0, the sequence

{x
(n)
1 } is bounded. Thus, there exists a convergent subsequence {x

(nj)
1 } with limj→∞ x

(nj)
1 =

x̂1 ∈ R(H∗) and since D(b,H·) is continuous,

lim
j→∞

D(b,Hx
(nj)
1 ) = D(b,Hx̂1) = τ0. (31)

We still have that x(nj) = x
(nj)
1 + x

(nj)
0 ≥ 0 for some x

(nj)
0 ∈ N (H). By the following reasons

there exists x̂0 ∈ N (H) such that x̂ := x̂1 + x̂0 ≥ 0: Assume that this is not the case.
Then, the affine space x̂1 +N (H) and the polyhedral cone R

n
≥0 have an empty intersection.
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By [48, p. 175, Corollary 19.3.3] both sets can be strongly separated by a hyperplane, i.e.,
‖x̂1 + v − z‖ ≥ δ > 0 for all v ∈ N (H) and all z ≥ 0. Thus,

δ ≤ ‖x̂1 − x
(nj)
1 + x

(nj)
1 + v − z‖ ≤ ‖x̂1 − x

(nj)
1 ‖+ ‖x

(nj)
1 + v − z‖ ∀v ∈ N (H), ∀z ≥ 0.

However, this is a contradiction, since the last summand becomes zero for v = x
(nj)
0 ∈ N (H)

and some z ≥ 0, and ‖x̂1 − x
(nj)
1 ‖ becomes arbitrary small for j large enough.

Finally, we conclude by (31) that there exists x̂ ∈ argminx≥0D(b,Hx). �

Next, we provide some useful lemmas which were applied in Section 4. The first lemma is a
generalization of a lemma from [19].

Lemma A.2. Let Rn be decomposed as orthogonal sums R
n = U1 ⊕ U2 and R

n = V1 ⊕ V2 of
subspaces U1, U2 and V1, V2, where U2 ∩ V2 = {0}. Let F,G : Rn → R ∪ {+∞} be proper,
convex, lower semi-continuous functions with

F (x) = F (x+ u2), G(x) = G(x+ v2)

for all x ∈ R
n, u2 ∈ U2 and v2 ∈ V2. Set f := F |U1

and g := G|V1
and assume that

the level sets levαf , levβg are nonempty and bounded for some α, β ∈ R. Moreover, let
J : Rn → R ∪ {+∞} be a proper, lower semi-continuous function which is bounded from
below. If domF ∩ domG ∩ domJ 6= ∅, then F +G+ J attains its finite minimum.

Proof. Since f, g are proper, convex and lower semi-continuous and levα(f), levβ(g) are
nonempty and bounded for some α, β ∈ R, we know that f and g are level-bounded, i.e.,
all their level sets are bounded, cf. [48, Cor. 8.7.1]. Moreover, by the lower semi-continuity
of f and g all these level sets are compact. With the properness and again the lower semi-
continuity of f and g we can further conclude that f and g are bounded from below. Without
loss of generality we may therefore assume f ≥ 0, g ≥ 0, J ≥ 0, which yields also that F ≥ 0
and G ≥ 0.
Now, we want to show that F+G+J is level-bounded. Since domF∩domG∩dom J 6= ∅, there
exist α̃, β̃, γ̃ ∈ R with levα̃(F )∩levβ̃(G)∩levγ̃(J) 6= ∅. Following the same arguments as in [19,
Lemma 3.1 i)] we obtain by U2 ∩ V2 = {0} and the boundedness of levα̃+β̃(f) and levα̃+β̃(g)
that levα̃+β̃(F ) ∩ levα̃+β̃(G) is bounded. Since F,G ≥ 0, the level set levα̃+β̃(F + G) ⊆
levα̃+β̃(F )∩levα̃+β̃(G) is bounded as well and non-empty due to the fact that levα̃+β̃(F+G) ⊇
levα̃(F )∩ levβ̃(G) 6= ∅. Since F +G is proper, convex and lower semi-continuous, this implies
by [48, Cor. 8.7.1] that F + G is level-bounded and with J ≥ 0 we obtain that F + G + J
is level-bounded, too. Using now that domF ∩ domG ∩ dom J 6= ∅ and that F , G and J
are proper and lower semi-continuous, we know that F + G + J is also proper and lower
semi-continuous. Thus, it finally follows by [49, Thm. 1.9] that F + G + J attains its finite
minimum. �

The next lemma is taken from [19].

Lemma A.3. Let the Euclidean space R
n be decomposed into the direct sum R

n = U1⊕U2 of
two subspaces U1, U2 and let F : Rn → R∪{+∞} be a convex function which is strictly convex
on U1 and which inheres the translation invariance F (x) = F (x+u2) for all x ∈ R

n and u2 ∈
U2. Furthermore, let G : Rn → R ∪ {+∞} be any convex function with domF ∩ domG 6= ∅.
Then all x̂, x̃ ∈ argminx∈Rn{F (x) +G(x)} fulfill x̂− x̃ ∈ U2 and F (x̂) = F (x̃), G(x̂) = G(x̃).
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A.2 Duality

Let f1 : Rn → R ∪ {+∞}, f2 : Rd → R ∪ {+∞} be proper, convex, lower semi-continuous
functions and A ∈ R

d,n. Then the primal problem

(P ) min
x∈Rn

{f1(x) + f2(Ax)}

can be rewritten as

(P ) min
x∈Rn,y∈Rd

{f1(x) + f2(y) subject to Ax = y}.

Using the Lagrangian L(x, y, p) = f1(x) + f2(y) + 〈p,Ax − y〉 the primal and dual problems
read

(P ) min
x∈Rn,y∈Rd

max
p∈Rd

{f1(x) + f2(y) + 〈p,Ax− y〉} ,

(D) max
p∈Rd

min
x∈Rn,y∈Rd

{f1(x) + f2(y) + 〈p,Ax− y〉}

and applying the definition of the conjugate function this becomes

(P ) min
x∈Rn

max
p∈Rd

{f1(x)− f∗2 (p) + 〈p,Ax〉} ,

(D) max
p∈Rd

min
x∈Rn

{f1(x)− f∗2 (p) + 〈p,Ax〉} .

For the minimizers p̂ of the dual problem we have that

p̂ ∈ argmin
p∈Rd

{
f∗2 (p)− min

x∈Rn
{f1(x) + 〈p,Ax〉}

}

=argmin
p∈Rd

{
f∗2 (p) + max

x∈Rn
{〈−A∗p, x〉 − f1(x)}

}

=argmin
p∈Rd

{f∗2 (p) + f∗1 (−A
∗p)}. (32)
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