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Summary

Image restoration and enhancement methods that respect important features such as
edges play a fundamental role in digital image processing. In the last decades a large
variety of methods have been proposed. Nevertheless, the correct restoration and
preservation of, e.g., sharp corners, crossings or texture in images is still a challenge,
in particular in the presence of severe distortions. Moreover, in the context of im-
age denoising many methods are designed for the removal of additive Gaussian noise
and their adaptation for other types of noise occurring in practice requires usually
additional efforts.

The aim of this thesis is to contribute to these topics and to develop and analyze new
methods for restoring images corrupted by different types of noise:

First, we present variational models and diffusion methods which are particularly well
suited for the restoration of sharp corners and X junctions in images corrupted by
strong additive Gaussian noise. For their deduction we present and analyze different
tensor based methods for locally estimating orientations in images and show how to
successfully incorporate the obtained information in the denoising process. The ad-
vantageous properties of the obtained methods are shown theoretically as well as by
numerical experiments. Moreover, the potential of the proposed methods is demon-
strated for applications beyond image denoising.
Afterwards, we focus on variational methods for the restoration of images corrupted
by Poisson and multiplicative Gamma noise. Here, different methods from the lit-
erature are compared and the surprising equivalence between a standard model for
the removal of Poisson noise and a recently introduced approach for multiplicative
Gamma noise is proven. Since this Poisson model has not been considered for multi-
plicative Gamma noise before, we investigate its properties further for more general
regularizers including also nonlocal ones. Moreover, an efficient algorithm for solving
the involved minimization problems is proposed, which can also handle an additional
linear transformation of the data. The good performance of this algorithm is demon-
strated experimentally and different examples with images corrupted by Poisson and
multiplicative Gamma noise are presented.
In the final part of this thesis new nonlocal filters for images corrupted by multiplica-
tive noise are presented. These filters are deduced in a weighted maximum likelihood
estimation framework and for the definition of the involved weights a new similarity
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measure for the comparison of data corrupted by multiplicative noise is applied. The
advantageous properties of the new measure are demonstrated theoretically and by
numerical examples. Besides, denoising results for images corrupted by multiplicative
Gamma and Rayleigh noise show the very good performance of the new filters.
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Zusammenfassung

Methoden zur Restaurierung und Verbesserung von digitalen Bildern, die wichtige
Strukturen wie zum Beispiel Kanten erhalten, spielen eine grundlegende Rolle in der
digitalen Bildverarbeitung. Obwohl im Laufe der letzten Jahrzehnte eine Vielzahl sol-
cher Methoden entwickelt wurde, ist die korrekte Restauration und Erhaltung von
beispielsweise scharfen Ecken, Kreuzungen oder Texturen insbesondere in stark degra-
dierten Bildern immer noch eine Herausforderung. Überdies sind viele Methoden zum
Entrauschen von Bildern auf additives Gauß’sches Rauschen zugeschnitten und deren
Anpassung für andere Arten von in der Praxis auftretendem Rauschen ist typischer-
weise nicht ohne Weiteres möglich.

Ziel dieser Arbeit ist es einen Beitrag zu diesen Themen zu leisten und neue Methoden
zur Restauration von Bildern mit unterschiedlichen Arten von Rauschen aufzuzeigen
und zu analysieren:

Im ersten Teil der Arbeit werden Variationsmethoden und Diffusionsverfahren vorge-
stellt, die insbesondere dafür geeignet sind scharfe Ecken und X-förmige Kreuzungen
beim Entrauschen von Bildern zu erhalten, die starkes additives Gauß’sches Rauschen
aufweisen. Für deren Herleitung werden verschiedene Tensor-basierte Methoden zur
lokalen Bestimmung von Richtungen in Bildern vorgestellt und analysiert. Anschlie-
ßend wird gezeigt wie die hierdurch gewonnenen Richtungsinformationen erfolgreich
zum Entrauschen verwendet werden können. Die sehr guten Eigenschaften der entwi-
ckelten Methoden werden theoretisch sowie durch numerische Experimente belegt. Des
Weiteren wird das Potenzial der Methoden für Anwendungen über das Entrauschen
von Bildern hinaus aufgezeigt.
Anschließend werden Variationsmethoden zur Restauration von Bildern untersucht, die
Poisson- und multiplikatives Rauschen aufweisen. Hier werden verschiedene Methoden
aus der Literatur verglichen und die überraschende Äquivalenz zwischen einem Stan-
dardmodell zum Entfernen von Poisson-Rauschen und einem kürzlich vorgeschlagenen
Modell für multiplikatives Gamma-Rauschen bewiesen. Da das für Poisson-Rauschen
entwickelte Modell bisher nicht für multiplikatives Gamma-Rauschen in Betracht ge-
zogen wurde, werden die Eigenschaften des Modells für allgemeinere, auch nicht-lokale
Regularisierer weiter untersucht. Darüber hinaus wird ein effizienter Algorithmus zum
Lösen des im Modell enthaltenen Minimierungsproblems vorgestellt, welcher es auch
erlaubt eine zusätzliche lineare Transformation der Daten zu berücksichtigen. Die Effi-
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zienz des Algorithmus wird experimentell belegt und es werden verschiedene Beispiele
für Bilder mit Poisson- und multiplikativem Gamma-Rauschen gezeigt.
Im letzten Teil der Arbeit werden neue nicht-lokale Filter zum Entfernen von multipli-
kativem Rauschen vorgestellt. Diese Filter basieren auf einem gewichteten Maximum-
Likelihood Ansatz und für die Definition der im Ansatz enthaltenen Gewichte wird eine
neues Ähnlichkeitsmaß zum Vergleich von mit multiplikativem Rauschen behafteten
Daten hergeleitet. Die vorteilhaften Eigenschaften des neuen Maßes werden theoretisch
und experimentell belegt. Zudem zeigen Ergebnisse für Bilder mit multiplikativem
Gamma- und Rayleigh-Rauschen die hohe Leistungsfähigkeit der neuen Filter.
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CHAPTER 1
Introduction and Overview

A major goal in digital image processing is the enhancement of images and the re-
moval of noise and other distortions without destroying important image features
such as edges, corners or texture. In the last decades a large variety of methods have
been proposed in particular for the restoration of images corrupted by additive white
Gaussian noise. Such approaches include

• variational models like the Rudin, Osher, Fatemi (ROF) model [176], the Breg-
manized total variation (TV) method [155], the total generalized variation ap-
proach [30] or the nonlocal model [121],

• PDE-based methods including the nonlinear diffusion method of Perona and Ma-
lik [159], Weickert’s anisotropic edge- and coherence-enhancing diffusion [212,
213, 214], the curvature based method of Tschumperlé [206] or approaches within
the Beltrami framework [119, 196, 197],

• nonlinear filtering approaches such as bilateral filters [158] or the nonlocal means
filter [39],

• sparsity-based methods incorporating for example wavelets [66] or learned dictio-
naries [74, 138].

These types of methods are often closely interrelated. There exist for example relations
between certain variational models and diffusion methods as outlined in [34, 184, 203,
216, SST08] and PDE-based methods are also closely connected to iterative filtering.
Moreover, some methods like for example the BM3D filter [56] belong to more than
one group.

In the context of, e.g., variational methods the restored image û is determined as the
minimizer of an appropriate energy functional. For a given, possibly noisy or otherwise
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1. Introduction and Overview

degraded measurement f this energy is typically of the form

F (u) = Hf (u) + λJ(u), λ > 0, (1.1)

where the data fidelity functionalHf relates each candidate u to the given measurement
f and the regularizer J incorporates additional a priori knowledge about the image
to be reconstructed. The functional Hf is in most cases determined by maximum a
posteriori (MAP) estimation so that it equals − log pF |U(f |u) up to additive terms
which do not depend on u. The involved function pF |U is directly related to the noise
statistics and represents the conditional probability distribution function for observing
f given that u is the original image. For images corrupted by additive white Gaussian
noise the often considered data fidelity term Hf (u) =

1
2
‖f − u‖2L2

is usually deduced
in this way.
The choice of the regularizer J is a challenging part in the design of a variational model,
which can significantly influence the quality of the results. Typically, J is chosen to
impose some regularity conditions on the images u. Since this a priori knowledge favors
however certain types of images, it can easily lead to undesired effects in the results.
It is for example well known that though the ROF model [176] restores edges very
well, it enforces piecewise constant results, leads to a loss of contrast and introduces
rounding artifacts at sharp corners in the images, cf. [7, 49]. As we will see in more
detail in Section 2.2 rounding artifacts can also be observed for other image restoration
methods, especially for images contaminated by strong noise. As illustrated, e.g., in
[86] the correct restoration of junctions and fine structures is also often a problem.

In many real-world applications the additional difficulty arises that the occurring noise
is neither additive nor Gaussian distributed. Here, the question is typically how to
adapt existing methods to other types of noise. Although the data fidelity term of
variational methods can for example be determined as described above and some
standard regularizer could be used, this must not lead to a good variational model
as we will show for images corrupted by multiplicative Gamma noise in Section 3.3.
Also the adaptation of nonlinear filters to non-Gaussian noise is not straightforward.
In the case of the nonlocal means filter [39] a central question is for example how
to determine for two given, noisy pixels with known noise distribution whether their
original values have been the same or not.

Contributions

In the following, we will present solutions for some of these problems. The contribu-
tions of this thesis are three-folded:

2



Figure 1.1: Three different images corrupted by strong additive Gaussian noise.

Anisotropic image restoration facing additive Gaussian noise

In the first part we concentrate on regularization and diffusion methods for restoring
images corrupted by additive Gaussian noise. We show how to define new models
which respect not only edges but preserve also corners and crossings like the ones
contained in the images in Figure 1.1. In [ST09a, ST09b] parts of these results have
been published. To start with, we show that the concepts of anisotropic regularization
and diffusion are related to each other under appropriate assumptions. Besides, we
analyze in detail the two-dimensional structure tensor of Förstner and Gülch [85] and
the double orientation tensors of Aach et al. [2, 148] for locally estimating up to two
significant orientations per image pixel. Here, we prove amongst other things that the
eigenvectors of the two-dimensional structure tensor can also be computed by appropri-
ate weighted vector means, cf. results in [SST12], and we present modifications of this
tensor which allow to determine the shape parameters of rotated and sheared shapes in
images. Afterwards, inspired by the work [20] of Berkels et al. and theoretical results
of Esedoglu and Osher in [75] we incorporate the obtained orientation information
for the definition of new anisotropic regularization methods. Furthermore, we present
theoretical results showing that our new methods are well suited to preserve shapes
with sharp corners and X junctions in images. Using the presented relation between
anisotropic regularization and diffusion models we also deduce related anisotropic dif-
fusion models with very similar properties. As a third alternative we study special
discrete infimal convolution regularizers. Here, we show the existence and unique-
ness of a solution of the corresponding variational model and its ability to preserve
crossings. Moreover, we provide detailed explanations for an efficient implementation
of each approach. Due the anisotropy of the proposed methods the discretizations
have to be carefully chosen here to guarantee that orientation information is correctly
handled. The good performance of the proposed methods are finally demonstrated
by numerical experiments. To illustrate the potential of the proposed methods also
for applications beyond image denoising, examples for building segmentation in aerial

3



1. Introduction and Overview

Figure 1.2: Two real-world examples showing a human nucleus which is blurred and corrupted by
Poisson noise (left) and a synthetic aperture radar image corrupted by multiplicative noise (right).

images are included. Here, additional use is made of Canny’s edge detector [45] and
the windowed Hough transform [53].

Variational approaches for Poisson and multiplicative noise

In the second part we focus on variational models for restoring images corrupted by
Poisson and multiplicative noise. We analyze and compare different approaches for the
restoration of images corrupted by multiplicative Gamma noise and prove based on
results of Grasmair in [99] the surprising equivalence of a subproblem of the model pro-
posed in [192] and a standard variational method for the removal of Poisson noise con-
sidered, e.g., in [15, 114, 129, 180]. This second model involves Csiszár’s I-divergence
as data fidelity term and the total variation (TV) semi-norm as a regularizer. We
show for the corresponding discrete models and one-dimensional signals that these
results can also be generalized to other regularizers like the nonlocal ones studied in
[91]. Besides, further good properties of the generalized I-divergence model are proven
like the existence of a maximum-minimum principle. For the minimization of the
involved variational problems which may also include an additional linear, possibly
ill-conditioned transformation of the data we propose an efficient algorithm based on
the alternating direction method of multipliers (ADMM). To be able to automatically
adapt the parameter involved in ADMM we consider a slightly modified variant of the
approach presented in [26, 105]. The good performance of the final algorithm with and
without the iterative parameter adaptation strategy is demonstrated in comparison to
other existing algorithms for blurred images corrupted by Poisson noise. Moreover,
numerical experiments document that the I-divergence model with TV and nonlo-
cal regularizers is well suited for the restoration of images corrupted by multiplicative
Gamma noise. To highlight the practical relevance of Poisson and multiplicative noise,
restorations results for the microscopy and synthetic aperture radar images displayed
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in Figure 1.2 are presented. Parts of the results outlined here have been published in
[ST10, SST10].

Nonlocal filtering facing multiplicative noise

In the third part we present a new similarity measure and nonlocal filters for images
corrupted by multiplicative noise. Most of these results are contained in [TL12a,
TL12b]. The proposed filters are generalizations of the nonlocal means filter [39],
which is known to be well suited for the removal of additive Gaussian noise. To adapt
this filter to other noise models the involved patch comparison has first of all to be
performed by a suitable noise dependent similarity measure. For the deduction of such
a measure we study the probabilistic measure recently proposed in [60]. This measure is
analyzed in the context of conditional density functions and its properties are examined
for data corrupted by additive and multiplicative noise. Since we can show that it has
unfavorable properties for multiplicative noise, a new similarity measure is deduced,
which consists of a probability density function specially chosen for this type of noise.
The properties of this new measure are studied theoretically as well as by numerical
experiments. Furthermore, we prove that it is closely related to several of the similarity
measures studied very recently in [59, 62]. In contrast to the standard measure for
additive Gaussian noise the measure deduced here relies on the quotients of the noisy
data values rather than their differences. Best approximations under such optimality
conditions have also be studied in [SSTM10], which is however out of the scope of this
thesis. To finally obtain our nonlocal filters we apply a weighted maximum likelihood
estimation framework as in [60], which incorporates again the noise statistics. The
weights occurring in these filters are defined using the new similarity measure and
different adaptations are presented to further improve the results. Finally, restoration
results for synthetic and real-word examples corrupted by multiplicative Gamma and
Rayleigh noise are presented, which demonstrate the very good performance of the
new nonlocal filters.

Outline

The organization of the subsequent chapters is as follows:

In Chapter 2 we deduce the announced corner and junction preserving anisotropic
denoising methods for images corrupted by additive Gaussian noise. We start in Sec-
tion 2.1 by introducing the variational and diffusion models of interest and investigate
the relation between the concepts of anisotropic regularization and diffusion. In Sec-
tion 2.2 existing image restoration methods are examined with respect to their ability
to preserve sharp corners and junctions in images. Afterwards, different tensors for
locally estimating orientation information in images are analyzed in Section 2.3, which
are then applied in Sections 2.4 – 2.6 for the definition of our new anisotropic models.
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1. Introduction and Overview

The good properties of these methods are proven theoretically and demonstrated by
numerical experiments in Section 2.7.

In Chapter 3 we focus on variational methods for the removal of Poisson and multi-
plicative noise. Here, we start after some preliminaries in Section 3.1 by highlighting
the practical relevance of these types of noise in Section 3.2. In Section 3.3 known
variational methods for Poisson and multiplicative Gamma noise are then presented
and compared. The equivalence of a subproblem of the model proposed in [192] and
the variational model with the I-divergence data fidelity term and the TV regularizer
is established in Section 3.4. In addition, further properties of the second model with
a more general regularizer are shown for discrete functionals in Section 3.5. To be
able to solve the occurring minimization problems in an efficient manner we apply a
special variant of the alternating direction method of multipliers. In Section 3.6 this
approach, our final algorithm and other algorithms from the literature are presented.
The efficiency of our new algorithm is demonstrated for blurred images corrupted by
Poisson noise in Section 3.7 and numerical results show the good properties of the I-
divergence model with TV and nonlocal regularizers for the removal of multiplicative
noise.

Next, we present a new similarity measure and nonlocal filters for general multiplica-
tive noise models in Chapter 4. We first recall the definition of the standard nonlocal
means filter in Section 4.1 and review on existing approaches for the adaptation of this
filter to general noise models. In Section 4.2 we then revisit the similarity measure
proposed in [60]. We analyze it in the framework of conditional density functions and
study its properties for data corrupted by additive and multiplicative noise. Since it
turns out to be well suited for additive noise but to have unfavorable properties for
multiplicative noise, we deduce our new measure given by a noise dependent prob-
ability density function in Section 4.3. The advantages of this measure are shown
theoretically as well as by different examples and experiments. Moreover, relations to
other similarity measures recently studied in [59, 62] are investigated in Section 4.4.
The proposed nonlocal filters are finally deduced by maximum likelihood estimation
in Section 4.5. The involved weights are defined using our new similarity measure
and different modifications are presented, which further improve the results. Finally,
the very good performance of the new filters is demonstrated for images corrupted by
multiplicative Gamma and Rayleigh noise in Section 4.6.

InChapter 5 we close with conclusions. Details on the computation of the probability
density functions occurring in former chapters are provided in Appendix A.
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As pointed out in the introduction the correct restoration of advanced image features
like sharp corners, junctions or texture is an often occurring problem in image denois-
ing. In this chapter we therefore present new anisotropic regularization and diffusion
methods for restoring and enhancing images corrupted by additive white Gaussian
noise. The proposed methods have the benefit that in contrast to many state-of-
the-art methods they are not only edge-preserving but are also able to restore sharp
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2. Anisotropic Smoothing Facing Additive Gaussian Noise

corners and X junctions in the presence of strong noise. An outline of the structure of
this chapter is provided above.

To fix the notation, let Ω ⊂ R2 denote an open, convex and possibly bounded set
with Lipschitz boundary ∂Ω. Throughout this chapter, all continuous gray value
images are considered to be functions u : Ω → R. If u is partially differentiable,
we set ∇u = (∂x1u, ∂x2u)

T. Moreover, the MATLAB routine imagesc is applied
for visualizing the images, which implements an affine gray value scaling setting the
minimal image value to black and the maximal gray value to white.

2.1 Methods of Interest

To start with, we introduce the anisotropic regularization and diffusion methods we
are many interested in and show how these methods can be related to each other.

Isotropic and anisotropic regularization A common approach to denoise an
image f ∈ L2(Ω) corrupted by additive white Gaussian noise is to compute a minimizer
of the energy minimization problem

argmin
u∈L2(Ω)

{
1

2
‖f − u‖2L2

+ λJ(u)

}
, (2.1)

where λ > 0 denotes the so-called regularization parameter and J : L2(Ω) → R≥0 ∪
{+∞} an appropriate regularization functional. Aside from other properties, J is
usually convex. This guarantees that the whole minimization problem is convex, which
makes it in general much easier to solve.
For the first part of this chapter we restrict our attention to functionals J which can
be written in the form

J(u) =

∫

Ω

φ(∇u(x), x) dx ∀ u ∈ C1(Ω) (2.2)

with φ : R2 × S → R≥0 ∪ {+∞}, an open set S fulfilling Ω ⊂ S and an appropriate
generalization of J for u ∈ L2(Ω) \ C1(Ω). We call J an isotropic regularizer if and

only if for every x ∈ Ω there exists a function φ̃x : R≥0 → R so that

φ(p, x) = φ̃x
(
|p |2

)
∀ p =

(
p1
p2

)
∈ R2 with |p | :=

√
p21 + p22, (2.3)

i.e., φ is radially symmetric with respect to p. If this is not the case, (2.2) is called an
anisotropic regularizer .

An interesting class of regularizers fitting into this framework can for example be ob-
tained by setting φ(p, x) = ϕ(p) with ϕ : R2 → R denoting a positively homogeneous,
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2.1 Methods of Interest

convex and even function with ϕ(0) = 0 and ϕ(x) > 0 for x 6= 0. In this case, we have
that

J(u) =

∫

Ω

ϕ(∇u) dx, (2.4)

where the (anisotropic) total variation (TV) semi-norm

∫

Ω

ϕ(∇u) dx := sup
V ∈C1

c (Ω,R
2)

V ∈Wϕ a.e.

−
∫

Ω

u(x) divV (x) dx (2.5)

defines J for general functions u ∈ L2(Ω), cf. [75]. The involved set

Wϕ := {x ∈ R2 : 〈x, y〉 ≤ ϕ(y) ∀ y ∈ R2}

denotes the so-called Wulff shape of ϕ.
If we set, e.g., ϕ(x) := |x| =

√
x21 + x22, the functional J defined by (2.4) is according

to the above definition an isotropic regularizer. Moreover, the Wulff shape of ϕ is the
unit circle Wϕ = {x ∈ R2 :

√
x21 + x22 ≤ 1} and thus, the minimization problem (2.1)

becomes the well-known Rudin-Osher-Fatemi (ROF) model [50, 176], see also [52].
For ϕ(x) := ‖x‖1 = |x1|+ |x2| it holds that Wϕ = {x ∈ R2 : max{|x1|, |x2|} ≤ 1}, i.e.,
the Wulff shape of ϕ is the unit square with edges parallel to the axes, and J is the
anisotropic TV regularizer studied, e.g., in [48, 107].

Isotropic and anisotropic diffusion As already mentioned in the introduction
there exist also many PDE-based image denoising and enhancement methods. For
images f corrupted by additive Gaussian noise a common approach is, e.g., to use a
diffusion model of the form





∂
∂t
u(t, x) = div (D(∇uσ)(t, x) ∇u(t, x) ) ∀ (t, x) ∈ (0, T )× Ω,

(D(∇uσ)(t, x)∇u(t, x) )T n(x) = 0 ∀ (t, x) ∈ (0, T )× ∂Ω,

u(0, x) = f(x) ∀ x ∈ Ω,

(2.6)

cf. [11, 206, 213], where n(x) denotes the outward normal at x to ∂Ω. The function

uσ(t, ·) := Kσ ∗ u(t, ·) for t ∈ (0, T )

represents here a smoothed version of u(t, ·) obtained by convolving u(t, ·) with a
Gaussian Kσ of mean 0 and standard deviation σ. The restored image is finally set to
be the diffused image u(t̂, ·) after an appropriate diffusion time t̂ ∈ (0, T ).
The first equation of this diffusion model is the so-called diffusion equation describing
the change of the image over time. Its properties depend highly on the choice of the
diffusion tensors D(∇uσ)(t, x), t ∈ (0, T ), x ∈ Ω, which are supposed to be symmetric
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2. Anisotropic Smoothing Facing Additive Gaussian Noise

and positive definite 2× 2 matrices. The second equation of (2.6) contains Neumann
boundary conditions and guarantees that no flux

j := −D(∇uσ)∇u

occurs over the boundary of the image region. The initial state of the diffusion process
is given by the corrupted image f as stated by the last equation of the model.

If the diffusion tensors D(∇uσ) can be substituted by a scalar-valued diffusivity func-
tion, i.e.,

D(∇uσ)∇u = g(∇uσ)∇u
for some function g(∇uσ) : (0, T ) × Ω → R>0, we call the diffusion model (2.6)
isotropic. In this case, the flux directs always in the direction of the gradients ∇u.
On the contrary, if the direction of the flux varies from the gradient direction, the
diffusion model is called anisotropic. These definitions equal the ones given in [213]
and may vary from others used in the literature. According to these definitions the
diffusion model proposed by Perona and Malik in [159] belongs for example to the
class of isotropic models, although they called their model originally anisotropic.

An example of an anisotropic diffusion approach according to the above definition
is, e.g., the edge-enhancing diffusion (EED) model of Weickert, cf. [212, 213]. This
method uses the matrices

J0(∇uσ) := ∇uσ∇uTσ , σ > 0 (2.7)

to define appropriate diffusion tensors. Obviously, J0 is a rank 1 matrix with spectral
decomposition

J0(∇uσ) =

(
cosα − sinα
sinα cosα

)

︸ ︷︷ ︸
=:Q

(
|∇uσ|2 0

0 0

)(
cosα sinα

− sinα cosα

)

︸ ︷︷ ︸
QT

,

where α is defined such that ∇uσ = |∇uσ|(cosα, sinα)T. The diffusion tensors for
EED are set to

D(∇uσ) := g(J0(∇uσ)) = Q

(
g(|∇uσ|2) 0

0 1

)
QT

for a nonnegative monotonically decreasing diffusivity function g : R≥0 → R>0 with
g(0) = 1 as, e.g.,

g(x2) =

{
1 if x = 0,

1− exp
(

−Cm
(x2/λ2)m

)
otherwise.

(2.8)
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2.1 Methods of Interest

Since J0(∇uσ) = J0(−∇uσ), i.e., J0 does not distinguish between left and right direc-
tions, the same holds true for the diffusion tensors D(∇uσ). Moreover, the definition
of D(∇uσ) leads to the negative flux

D(∇uσ)∇u = g(|∇uσ|2)
∇uTσ∇u
|∇uσ|2

∇uσ + 1
(∇u⊥σ )T∇u
|∇uσ|2

∇u⊥σ for |∇uσ| 6= 0,

which is in general not parallel to ∇u and thus confirms that EED is indeed of
anisotropic nature.

Link between regularization and diffusion models As examined, e.g., in [34,
184, 203, 216, SST08], certain types of regularization and diffusion models are closely
related to each other. To establish a relation between the variational model (2.1) with
regularizer (2.2) and corresponding diffusion models, we suppose that

(I) φ is a finite function in C2(R2 × S), where S is an open set with Ω ⊂ S,

(II) for all p ∈ R2 and x ∈ Ω there exists a symmetric and positive definite matrix
A(p, x) ∈ R2,2 such that

∇p φ(p, x) = A(p, x) p with ∇p := (∂p1, ∂p2)
T. (2.9)

Remark 2.1.1 The positive definiteness of A(p, x) guarantees that

∇p φ(p, x) = A(p, x) p 6= 0 ∀ p ∈ R2 \ {0}.

Thus, φ(·, x) with fixed x ∈ S can only have an extremum for p = 0. Since for p = 0
the Hesse matrix of φ with respect to p is given by

Hp φ(0, x) = A(0, x),

we immediately obtain by the positive definiteness of A(0, x) that any function φ
fulfilling the above conditions must have a minimum at p = 0 for fixed x ∈ S. Beyond
that no other local or global extrema can exist.

Now, to see how the considered models are interrelated, we compute for u ∈ C2(Ω) the
Euler-Lagrange equation of the energy functional

F (u) =
1

2
‖f − u‖2L2

+ λ

∫

Ω

φ(∇u(x), x) dx.

With D(∇u)(x) := A(∇u(x), x) for all x ∈ Ω it is given by

0 = u− f − λ div(∇p φ(∇u, · ) )
= u− f − λ div(D(∇u)∇u) on Ω (2.10)
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2. Anisotropic Smoothing Facing Additive Gaussian Noise

with boundary conditions

0 = nTD(∇u)∇u on ∂Ω. (2.11)

Here, n : ∂Ω → R2 denotes again the function of outward normals to the image
boundary ∂Ω. Equation (2.10) could here be viewed as a steady-state of a diffusion-
reaction equation, cf., e.g., [213, Sec. 1.4]. However, we prefer to rewrite it further in
the form

u− f

λ
= div (D(∇u)∇u)

and to interpret the resulting equation as one time step of an implicit time discretiza-
tion of the diffusion equation

∂

∂t
u(t, ·) = div

(
D(∇u)(t, ·)∇u(t, ·)

)
, D(∇u)(t, ·) = A(∇u(t, ·), ·) (2.12)

with the initial condition u(0, ·) = f . In this way we finally obtain with (2.11) and
σ = 0 a diffusion model of the form (2.6). Hence, we showed that whenever φ fulfills
conditions (I) and (II), we can deduce for the variational model (2.1) with regularizer
(2.2) a related diffusion model. By the subsequent considerations we will see that
the deduced diffusion model is isotropic, respectively anisotropic if and only if the
considered regularizer J is isotropic, respectively anisotropic for sufficiently smooth
functions u:

To start with, let us assume that φ fulfills conditions (I) and (II) and J defined in (2.2)

is isotropic. Then, we know that for every x ∈ Ω there exists a function φ̃x fulfilling
(2.3) and consequently,

∇p φ(p, x) = ∇p φ̃x
(
|p |2

)
= 2 φ̃′

x(|p |2) p.

By (2.9) we have further

D(∇u)(t, x)∇u(t, x) = A(∇u(t, x), x) ∇u(t, x)
= 2 φ̃′

x(|∇u(t, x) |2) ∇u(t, x) ∀ (t, x) ∈ (0, T )× Ω.

Since φ̃′
x is a scalar-valued function, this implies that the deduced diffusion model with

diffusion equation (2.12) is also isotropic.

To show the opposite direction, let us assume that the obtained diffusion model is
isotropic. Then, there must exist a scalar-valued function g : R2 × Ω → R so that for
every possible gradient sequence ∇u : (0, T )× Ω → R2 we have

D(∇u)(t, x)∇u(t, x) = g(∇u(t, x), x)∇u(t, x) ∀ (t, x) ∈ (0, T )× Ω.

By (2.9) and the relation D(∇u)(t, x) = A(∇u(t, x), x) this leads to

∇p φ(p, x) = A(p, x)p = g(p, x) p ∀ p ∈ R2, x ∈ Ω.
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2.2 Properties of Existing Methods and Motivation

Now, let q1, q2 ∈ R2 be two arbitrary points with |q1| = |q2|. Then, there exist constants
r ∈ R≥0 and α1, α2 ∈ [0, 2π) so that q1 = r(cosα1, sinα1)

T and q2 = r(cosα2, sinα2)
T

and we define γ : [α1, α2] → R2 by

γ(α) = r

(
cosα
sinα

)
.

Since γ is continuously differentiable, it holds by [127, p. 96/99f] that

φ(q2, x)− φ(q1, x) =

∫

γ

∇p φ(p, x) dp =

α2∫

α1

〈∇p φ(γ(α), x), γ
′(α) 〉 dα

=

α2∫

α1

g(γ(α), x) 〈 γ(α), γ′(α) 〉 dα

=

α2∫

α1

g(γ(α), x) 〈 r
(
cosα
sinα

)
, r

(
− sinα
cosα

)
〉 dα

= 0

for all x ∈ Ω and thus, φ(q1, ·) = φ(q2, ·). Hence, φ is radially symmetric with respect
to p, which finally implies that the regularizer J in (2.2) is isotropic.

As a last remark we want to point out one further class of closely related methods:

Remark 2.1.2 As outlined in [199, 200, 217, 218, 219] there exists also a direct rela-
tion of the considered regularization and diffusion models to anisotropic (Haar) wavelet
shrinkage. By establishing this relation coupled shrinkage rules can be deduced which
allow also highly anisotropic filtering with simple wavelet filters.

2.2 Properties of Existing Methods and Motivation

Apart from the presented methods there exists of course a large variety of other ap-
proaches for restoring images corrupted by additive Gaussian noise. In the following,
we will comment on some of these approaches including the already mentioned ones
and pay special attention to their ability to preserve sharp corners in images corrupted
by strong noise.

A first commonly applied variational denoising method is the above mentioned ROF
model [50, 176], which is well-known for its edge-preserving properties. A review
on this approach can for example be found in [52]. Applied to a noisy image of
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2. Anisotropic Smoothing Facing Additive Gaussian Noise

Figure 2.1: Comparison of different denoising methods, see also [203]. Top left: Original image.
Top middle: Corrupted image by strong white Gaussian noise of standard deviation 150. Top right:
Denoised image by ROF with λ = 1000. This result can be improved at the slightly bumpy edges by
increasing λ, but then the vertices become even more rounded. The usually observed loss of contrast
has been compensated by the MATLAB routine imagesc, here. Bottom: Denoised images using the
isotropic diffusion equation (2.13) with diffusivity (2.8), σ = 3, m = 4, C4 = 3.31488, λ = 10 and
stopping times t = 400 (left) and t = 3000 (middle). For the moderate diffusion time t = 400 noisy
pixels survive at edges, which is not the case for EED with m, Cm, λ as set before, σ = 2.5 and
t = 400 (right). However, both methods suffer from rounding artifacts at vertices.

rotated rectangles as displayed in Figure 2.1 (top middle), it preserves the edges of the
rectangles very well, cf. Figure 2.1 (top right). Unfortunately, since the regularization
parameter must be chosen rather large to eliminate the noise, it creates rounding
artifacts at the corners of the rectangles. A theoretical study of this effect has for
example been provided in [7, 49]. In addition, the result suffers typically from a loss
of contrast in the gray values. This effect has been compensated by an affine rescaling
of the gray values, here. Alternatively, the more sophisticated approach proposed in
[42, 43, 155] could be used.

Another well-known image restoration method is the isotropic diffusion approach pre-
sented by Perona and Malik in [159]. With a slight modification of Catté et al. in
[46] to make the problem well-posed, see also [118, 226], the diffusion equation for this

14



2.2 Properties of Existing Methods and Motivation

approach reads
∂

∂t
u(t, x) = div

(
g(|∇uσ(t, x)|2)∇u(t, x)

)
, (2.13)

where g : R≥0 → [0, 1] is again a scalar-valued diffusivity function. Since g is supposed
to be decreasing with g(0) = 1, the flux becomes smaller for high absolute gradient
values. Thus, the diffusion is lowered at important image features such as edges, which
results again in an edge preserving method. However, lowering the diffusion at edges
also implies that noisy pixels survive there for a long time as demonstrated in Figure 2.1
(bottom left). Of course, if we diffuse sufficiently long, these pixels are smoothed, too,
but the vertices of the denoising result become again rounded as visible at Figure 2.1
(bottom middle). At least the first effect can be avoided by an appropriate anisotropic
diffusion method like Weickert’s EED. Here, the diffusion tensors allow a diffusion
perpendicular to the gradient directions and thus, the noisy pixels are also cleaned
along the edges. However, we are still confronted with rounded vertices as visible in
Figure 2.1 (bottom right).
A different approach for adapting a PDE to the local geometry of an image has been
proposed in [205, 206]. Here, Tschumperlé suggests to estimate the local structures
by the so-called structure tensor originally introduced in [85] and then to perform the
diffusion along integral curves deduced from the structure tensors. It has been shown
that the solution of the considered curvature-based PDE can be approximated by
successively convolving the initial image with one-dimensional Gaussians along these
integral curves, which leads to ’curved’ filtering. As a result, this method is very
flexible with respect to different shapes. However, rounding artifacts occur again at
corners in the presence of strong noise.

Apart from the described regularization and PDE-based methods there exist various
nonlinear filtering approaches. For example, we observed that bilateral filters [157, 204]
cannot cope with this large amount of noise. We obtained much better results by the
recently proposed nonlocal means (NL means) filter [39], at least if we apply this
method iteratively. Results of this filter will be presented later on in Section 2.7.

To ideally incorporate geometric information into the restoration process further meth-
ods have been proposed. For the special case of images with rotated rectangular
shapes the topic of vertex preserving image simplification was for example addressed
by Berkels et al. in [20], who suggested a regularization approach based on theoretical
results of Osher and Esedoglu in [75]. This method leads finally to an alternating
two step algorithm, which estimates in the first step the rotation angles of the rect-
angles by minimizing a functional containing first and second order derivatives of the
rotation angles. In the second step the restored image is then compute. A simpler
method for finding the rotation angles which includes only first order derivatives has
been presented in [203, SST08]. In Subsection 2.3.2 we will also show how this can be
done using an adapted structure tensor.
For arbitrary images various papers deal further with the smoothing of normal vectors
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2. Anisotropic Smoothing Facing Additive Gaussian Noise

through the minimization of certain energy functionals [95, 120, 137, 166, 209, 228]
and then incorporating this information into a subsequent denoising step. However,
these minimization procedures are in general computationally much more expensive
than the orientation estimation approaches we will present in the following. Instead
of estimating one normal vector per pixel we will use special tensors to estimate more
than one significant orientation per image point. This orientation information will
then be used to define new anisotropic regularization and diffusion methods which are
capable of preserving sharp corners in images.
Besides, we will also focus on approaches for the estimation of local orientations at
crossings and appropriate methods for their preservation. An approach specially de-
signed for such structures has for example been presented by Scharr in [182]. This
approach is based on one of the orientation estimation tensors presented in [2, 148]
and uses the second order partial derivatives of the image to design an appropriate
higher order diffusion process. In [86] another nonlinear diffusion method has been
proposed by Franken and Duits. Here, each image is first transformed into a so-called
orientation score by introducing an additional third dimension, which guarantees that
crossed lines are separated from each other. Then, anisotropic diffusion is performed
on the orientation score and finally a back transformation is applied to obtain the final
denoised image. Apart from 2D image data this approach has also been extended to
HARDI (high angular resolution diffusion imaging) data as presented in [68].

2.3 Orientation Estimation

For the definition of our new anisotropic models we have to find appropriate methods
to capture the local orientations in images first. For this purpose, we will study dif-
ferent tensors for locally estimating orientations in this section. Of course, there exist
also other techniques like for example the already mentioned methods for estimating
normals proposed in [95, 120, 137, 166, 209, 228], shearlets [102, 126, 225], curvelets
[44] or the Riesz-Laplace wavelet transform based method presented in [208] to name
only a few others.
For the subsequent considerations, we make a distinction between the terms ’orienta-
tions’ and ’directions’. If two vectors differ only by their sign, we say that they share
the same orientation. However, they are considered to point in opposite directions.

2.3.1 Classical Structure Tensor

We start by recalling an orientation estimation approach based on the classical struc-
ture tensor of Förstner and Gülch [85]. This approach is especially well suited if there
exists only one predominant orientation in each part of an image.
To deduce this tensor theoretically, let Ω ⊂ R2 be an image part of interest. For
simplicity, we set Ω = Bε(0), where Bε(0) is the open ball around 0 with radius ε.
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2.3 Orientation Estimation

Moreover, we ideally assume that this part of the image corresponds to a function
f : Ω → R which has constant values along an orientation r ∈ R2 with |r| = 1, i.e.,
f = ϕ(sT·) for s := r⊥ = (r2,−r1)T and a univariate, sufficiently smooth function
ϕ : [−ε, ε] → R. This implies that

∂

∂r
f(x) = rT ∇f(x) = rT ϕ′(sTx) s = 0 ∀ x ∈ Ω.

Hence, we have for every nonnegative weight function w : Ω → R that

0 =

∫

Ω

w(y)
(
rT∇f(y)

)2
dy = rT

(∫

Ω

w(y)∇f(y)∇f(y)T dy
)
r. (2.14)

If ϕ is not constant, the symmetric, positive semidefinite 2× 2 matrix

J :=

∫

Ω

w(y)∇f(y)∇f(y)T dy =

(∫

Ω

w(y)
(
ϕ′(sTy)

)2
dy

)
ssT

has rank one and r is an eigenvector of J with eigenvalue 0.
However, in applications we often deal with noisy images and thus, equation (2.14)
may not hold in such situations. To handle this, a presmoothing step with the 2D
Gaussian Kσ of standard deviation σ is performed and the gradients in J are substi-
tuted by ∇fσ := ∇(Kσ ∗ f), where ∗ represents the ordinary convolution operator. As
a consequence, (2.14) holds at least approximately and the orientation vector r can be
considered to be a minimizer of the weighted least squares expression

min
r
rTJ r subject to |r| = 1,

i.e., a normed eigenvector belonging to the smallest eigenvalue of J .
Since in natural images the significant orientations usually vary between image parts,
we need to compute r for every image region. For this purpose, we consider Ω to be
the whole image domain again and use w = Kρ(·−x) (truncated outside B3ρ(x)) with
ρ ≥ 0 to estimate the orientation r in the neighborhood of each image point x. In
detail, we set

Jρ(x) :=
∫

Ω

w(x− y)∇fσ(y)∇fσ(y)T dy =
(
Kρ ∗

(
∇fσ∇fT

σ

) )
(x) (2.15)

and thus attach to each image point a 2×2 matrix, the so-called structure tensor. This
tensor is a smoothed variant of the tensor J0 defined in (2.7). Note that the convolution
is meant componentwise here and a generalization to nonlinear structure tensors was
presented in [33]. Alternatively to the above derivation, a similar definition can be
deduced from a least squares problem in the Fourier domain as done in [24, Chapter

17



2. Anisotropic Smoothing Facing Additive Gaussian Noise

10.3]. Like J the tensors Jρ(x) are all symmetric and positive semidefinite. Thus,
they have an eigendecomposition and the eigenvalues λ1, λ2 are always nonnegative.
As the following theorem shows the eigenvectors and eigenvalues can even be explicitly
determined:

Theorem 2.3.1 (Eigenvectors and eigenvalues of Jρ)
For all x ∈ Ω, let α be defined by ∇fσ(x) = |∇fσ(x)| (cosα(x), sinα(x))T for
|∇fσ(x)| 6= 0 and set α(x) to an arbitrary value in [0, 2π) otherwise. Moreover, define

∇2αfσ := |∇fσ|
(
cos(2α)
sin(2α)

)
= R(α)∇fσ with R(α) =

(
cosα − sinα
sinα cosα

)
, (2.16)

i.e., ∇2αfσ are the gradients of f where the angles of the vectors have been doubled.
Then, for all x ∈ Ω the eigenvalues λ1(x), λ2(x) of Jρ(x) with λ1(x) ≥ λ2(x) are given
by

λ1/2(x) =
1

2

(
(Kρ ∗ |∇fσ|2)(x) ± |v(x)|

)
, where v(x) := (Kρ ∗ |∇fσ|∇2αfσ)(x).

If λ1(x) > λ2(x) and for the components vi(x), i = 1, 2, of v(x) it holds that v1(x) > 0
or v2(x) 6= 0, then any eigenvectors r1(x), r2(x) corresponding respectively to λ1(x),
λ2(x) fulfill

r1(x) ‖ R
(
− β(x)

2

)
v(x) and r2(x) ⊥ R

(
− β(x)

2

)
v(x) (2.17)

with β(x) being the angle of v(x), i.e., v = |v| (cos β, sin β)T.
On the other hand, if λ1(x) > λ2(x), v1(x) < 0 and v2(x) = 0, it holds that

r1(x) ‖ (0, 1)T and r2(x) ‖ (1, 0)T. (2.18)

Proof: For a symmetric matrix X =

(
x1,1 x1,2
x1,2 x2,2

)
∈ R2,2 straightforward calculations

show that the eigenvalues λ1 ≥ λ2 of X are given by

λ1/2 =
1

2

(
x1,1 + x2,2 ±

√
(x1,1 − x2,2)2 + 4x21,2

)
. (2.19)

Besides, if λ1 > λ2, a short calculation shows that any eigenvector r1 to λ1 fulfills

r1 ‖
{
(λ1 − x2,2, x1,2)

T if x1,2 6= 0 or x1,1 > x2,2,

(0, 1)T otherwise.
(2.20)
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2.3 Orientation Estimation

Since the convolution in the definition of the structure tensor is meant componentwise,
it follows by (2.19) that the eigenvalues λ1(x) ≥ λ2(x) of Jρ(x), x ∈ Ω, are given by

λ1/2 =
1

2

(
Kρ ∗ (∂x1fσ)2 +Kρ ∗ (∂x2fσ)2

±
√

(Kρ ∗ (∂x1fσ)2 −Kρ ∗ (∂x2fσ)2 )2 + 4 (Kρ ∗ ∂x1fσ ∂x2fσ)2
)
.

=
1

2

(
Kρ ∗ |∇fσ|2 ±

√(
Kρ ∗ ((∂x1fσ)2 − (∂x2fσ)

2)
)2

+
(
Kρ ∗ 2 ∂x1fσ ∂x2fσ

)2
)
.

With α fulfilling ∇fσ = |∇fσ| (cosα, sinα)T it holds that

Kρ ∗
(
((∂x1fσ)

2 − (∂x2fσ)
2)

2 ∂x1fσ ∂x2fσ

)
= Kρ ∗

(
|∇fσ|

(
cosα − sinα
sinα cosα

)
∇fσ

)

= Kρ ∗ |∇fσ|∇2αfσ

and thus,

λ1/2 =
1

2

(
Kρ ∗ |∇fσ|2 ± |v|

)
with v := Kρ ∗ |∇fσ|∇2αfσ.

Now, let us denote by vi(x), i = 1, 2, the components of v(x) and define β(x) by v(x) =
|v(x)| (cos β(x), sin β(x))T. If λ1(x) > λ2(x) and the components zi,j(x), i, j = 1, 2, of
Jρ(x) fulfill z1,2(x) = 1

2
v2(x) 6= 0 or z1,1(x)− z2,2(x) = v1(x) > 0, it follows by (2.20)

that for any eigenvector r1(x) belonging to λ1(x) we have

r1(x) ‖ 1

2

(
v1(x) + |v(x)|

v2(x)

)
=

1

2
|v(x)|

(
cos β(x) + 1
sin β(x)

)
. (2.21)

Since sin β = 2 sin β
2
cos β

2
and cos β = (cos β

2
)2 − (sin β

2
)2 we obtain further

(
cos β(x) + 1
sin β(x)

)
= 2 cos β(x)

2

(
cos β(x)

2

sin β(x)
2

)
= 2 cos β(x)

2
R
(
− β(x)

2

)(cos β(x)
sin β(x)

)

so that inserting this in (2.21) yields

r1(x) ‖ cos β(x)
2

|v(x)| R
(
− β(x)

2

)(cos β(x)
sin β(x)

)
‖ R

(
− β(x)

2

)
v(x).

On the other hand, if λ1(x) > λ2(x), z1,2(x) = 0 and z1,1(x) − z2,2(x) = v1(x) < 0, it
follows by (2.20) that

r1(x) ‖ (0, 1)T.

Finally, the eigenvector r2(x) belonging to λ2(x) has to fulfill r2(x) ⊥ r1(x), which
finishes the proof. �
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Figure 2.2: Visualization of the information provided by the structure tensors (σ = 2.5, ρ = 8) for the
noisy image in Figure 2.1 (top middle). Top: Normalized eigenvectors r1 scaled by the corresponding
eigenvalues λ1 (left) and orientation angles of r2 given by ∠(r2, (1, 0)

T) mod π (right). Bottom:
Eigenvalues λ1 (left) and λ2 (right).

A particular consequence of this theorem is that if we are only interested in the eigen-
vectors of Jρ and not its eigenvalues, we do not need the structure tensors. Instead, we
can directly compute the weighted vector means v and apply (2.17)/(2.18) to obtain
the orientations r1 and r2.

An example illustrating the information provided by the structure tensor is given in
Figure 2.2. Here, we can see that in homogeneous image regions, where |∇fσ| ≈ 0,
it holds that λ1 ≈ λ2 ≈ 0 and the eigenvectors may point in any directions. On the
other hand, if there is exactly one dominant orientation like in the neighborhood of
straight edges, we have λ1 ≫ λ2 ≥ 0 and the orthogonal eigenvectors r1 = r⊥, r2 = r
approximate the orientations of the gradient and the isophote of the edge, respectively.
Near one of the vertices it further holds that λ1 ≥ λ2 ≫ 0, but since r1 ⊥ r2, it is not
possible to obtain both orientations of the neighboring edges. Instead, the orientations
of the eigenvectors are somewhere in between the gradient, respectively the isophote
orientations of the neighboring edges. Thus, this can course rounding artifacts at
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2.3 Orientation Estimation

vertices if used for image restoration methods.

2.3.2 Adaptations of the Structure Tensor for Special Shapes

For images containing only special shapes the information provided at vertices can be
improved by estimating directly the parameters of the shapes.

Rotated rectangular shapes If we know for example that an image contains only
rectangular shapes which may be rotated, one possibility is to modify the classical
structure tensor as follows: Defining the angles α by ∇fσ = |∇fσ| (cosα, sinα)T for
|∇fσ| 6= 0, i.e.,

α =

{
arccos

∂x1fσ
|∇fσ | if ∂x2fσ ≥ 0,

2π − arccos
∂x1fσ
|∇fσ | if ∂x2fσ < 0,

and setting ∇2αfσ := |∇fσ| ( cos(2α), sin(2α) )T as in (2.16), we can replace the tensors

∇fσ(∇fσ)T by ∇2αfσ (∇2αfσ)
T

in the definition of the structure tensor (2.15) and obtain the modified tensors

Jρ
(
∇2αfσ

)
:= Kρ ∗

(
∇2αfσ (∇2αfσ)

T
)
.

Since cos(2·) and sin(2·) are π periodic and ∇2αfσ (∇2αfσ)
T = (−∇2αfσ) (−∇2αfσ)

T,
the new tensors Jρ

(
∇2αfσ

)
can only distinguish between angles α mod π

2
. Hence,

Jρ
(
∇2αfσ

)
does not distinguish between orthogonal edges and has thus the benefit

that the orientations of its eigenvectors do not vary around vertices of rectangular
shapes.
The tensors Jρ

(
∇2αfσ

)
can now be easily used to estimate the rotation angles of the

shapes. We only need to determine the spectral decomposition of these tensors and
reverse the angle doubling process. In detail, we compute for each image point x ∈ Ω
the angle α2,ρ(x) of the eigenvector belonging to the largest eigenvalue of Jρ

(
∇2αfσ

)
(x)

and take α2,ρ(x)/2 as smooth approximation of the rotation angle. According to
Theorem 2.3.1, these angles can of course also be determined by directly computing

v := Kρ ∗ |∇fσ|∇4αfσ

and setting the rotation angles to one fourth of the angles of these vectors. Here, deter-
mining the spectral decomposition of Jρ

(
∇2αfσ

)
(x) has the benefit that the eigenvalues

provide additional information about the reliability of the estimates. If we have for
example λ1(x) ≥ λ2(x) ≫ 0 at some image point x ∈ Ω, we know that the image
region around x must also contain differently oriented structures.
Figure 2.3 shows that the results of the proposed local angle smoothing process are at
least competitive to ones of the global minimization method proposed in [SST08]. As
we will see later on, such angle estimates can be successfully used for vertex-preserving
image denoising.
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Figure 2.3: Left: Original image of different rotated rectangles. Middle: Estimated rotation angles by
the variational angle adaptation method proposed in [SST08] (σ = 0.5, µ = 10000). Right: Estimated
rotation angles by our new structure tensor method (σ = 0.5, ρ = 13).

·
(

∂x1f(x)
∂x2f(x)

)

S

S−1

·

(

∂x1f(x)
0

)

Figure 2.4: Illustration of the considered shear operators.

Sheared shapes Next, we focus on images consisting of sheared non-rotated shapes
and estimate the corresponding shape operators using again a modified structure ten-
sor. As illustrated in Figure 2.4 we set

S = S(ζ) :=

(
1 0
ζ 1

)
, ζ ∈ R (2.22)

to be the shear matrices which transform the gradients of the considered parallelograms
back into ordinary rectangles. In other words, if a pixel x ∈ Ω belongs to a non-
horizontal edge of a sheared rectangle with shear parameter ζ, then it is likely that

S(ζ) ∇fσ(x) =
(
1 0
ζ 1

)(
∂x1fσ(x)
∂x2fσ(x)

)
=

(
∂x1fσ(x)

ζ ∂x1fσ(x) + ∂x2fσ(x)

)
=

(
∂x1fσ(x)

0

)
,

which is equivalent to

ζ = −∂x2fσ(x)
∂x1fσ(x)

if ∂x1fσ(x) 6= 0.

Hence, we can estimate the shear parameters by the gradients of the two non-horizontal
edges of each sheared rectangle. To get only those gradients, we locate the horizontal
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2.3 Orientation Estimation

edges and the corners of the sheared rectangles and downsize the gradients at those
locations to reduce their influence on the structure tensor. In detail, we compute

∇̃fσ̃ := we(∇fσ̃)wv(∇fσ̃)∇fσ̃, (2.23)

using the following weight functions: Let λ1, λ2 be the eigenvalues of the classical
structure tensors Jρ with presmoothing of standard deviation σ̃. In order to downsize
∇fσ̃ at vertices, we multiply these gradients by

wv(∇fσ̃) :=
{
ϕv

(∣∣λ2
λ1

∣∣ |∇fσ̃|2
)

if λ1 > 0,

1 otherwise,

where ϕv has the properties of a diffusivity function, i.e., it is decreasing and ϕv(0) = 1.
Here,

∣∣λ2
λ1

∣∣ |∇fσ̃|2 plays the role of a corner detector, since at vertices we typically have
λ1 ≥ λ2 ≫ 0, while λ1 ≫ λ2 at straight edges as outlined in Subsection 2.3.1.
To enforce ∇fσ̃ to become small at horizontal edges we further apply

we(∇fσ̃) :=
{
ϕe
(∣∣∂x1fσ̃
∂x2fσ̃

∣∣) if |∂x2fσ̃| > 0,

1 otherwise,

where ϕe is a sigmoidal function, i.e., it is monotone increasing with ϕe(x) = 0 for
x ≤ 0 and ϕe(x) = 1 for x ≥ 1.

For the modified gradients (2.23) and a non-radial two-dimensional Gaussian

K(ρx,ρy)(x1, x2) :=
1

2πρxρy
e
−1
2

((
x1
ρx

)2
+
(
x2
ρy

)2)

we now compute the modified structure tensors

J(ρx,ρy)
(
∇̃fσ̃

)
:= K(ρx,ρy) ∗

(
∇̃fσ̃ ∇̃fT

σ̃

)

and determine the eigenvectors v = (v1, v2)
T belonging to the largest eigenvalues. In

general, we propose to use an anisotropic Gaussian with ρx 6= ρy to better adapt the
smoothing to the geometry of the shapes. Finally, we set the shear parameters ζ to be

ζ :=

{
−v2
v1

if v1 > 0,

0 otherwise.

Examples of estimated shear parameters are given later on in Section 2.7, Figures 2.11
and 2.12.
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2. Anisotropic Smoothing Facing Additive Gaussian Noise

2.3.3 Double Orientation Estimation

If we want to estimate the orientations of two edges at a vertex for arbitrary shapes, we
need a more sophisticated approach. For this purpose, we will proceed by investigating
the double orientation estimation procedure developed by Aach, Mota and others in
[2, 148]. We start by recalling the central ideas of this approach and prove additional
properties of the considered tensors. Note that a straightforward generalization for
estimating more than two orientations was provided in [149].

In the following, let Ω ⊂ R2 be an image domain of interest. For simplicity, we set
again Ω = Bε(0) and denote by ri, i = 1, 2, two orientation vectors with |ri| = 1
and r1 ∦ r2. Now, for two sufficiently smooth functions ϕi : [−ε, ε] → R, i = 1, 2,
we assume that an image f can be decomposed into two functions fi = ϕi(s

T
i ·) with

si := r⊥i , i = 1, 2, in one of the following ways: As depicted in Figure 2.5, we consider
f to fulfill either the transparent model

f(x) = f1(x) + f2(x) ∀x ∈ Ω (2.24)

or the occlusion model with Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅ and

f(x) =

{
f1(x) for x ∈ Ω1,

f2(x) for x ∈ Ω2.
(2.25)

Ω f1

f2 Ω2

Ω1
f1

f2

Figure 2.5: Illustration of the transparent model (left) and the occlusion model (right).

Transparent model If f fulfills the transparent model, the definitions of f1 and f2
imply for all x ∈ Ω that

0 =
∂2

∂r1∂r2

(
f1(x) + f2(x)

)
=

∂2

∂r1∂r2
f(x) = rT2 H(x) r1 = rT1 H(x) r2, (2.26)

where H(x) :=

(
∂x1x1f(x) ∂x1x2f(x)
∂x1x2f(x) ∂x2x2f(x)

)
denotes the Hessian of f at x ∈ Ω. Now, we

will rewrite this equation using the tensor (Kronecker) product notation ⊗ and the

24
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following relation: If B ∈ Rm,n is a matrix, b := vec(B) ∈ Rmn the corresponding
columnwise reshaped vector and M1, M2 are matrices of appropriate size, then

(M1 ⊗M2) b = vec
(
M2BMT

1 ). (2.27)

Applying this relation, equation (2.26) becomes

0 = (r1 ⊗ r2)
T h(x) = (r2 ⊗ r1)

Th(x) (2.28)

with h := vec(H) = (∂x1x1f, ∂x1x2f, ∂x1x2f, ∂x2x2f)
T. Since this holds true for all

x ∈ Ω, we also have

0 =

∫

Ω

w(x)(rT2 H(x) r1)
2 dx =

∫

Ω

w(x) (r1 ⊗ r2)
T h(x)h(x)T (r1 ⊗ r2) dx

= (r1 ⊗ r2)
T T (r1 ⊗ r2) = (r2 ⊗ r1)

T T (r2 ⊗ r1), (2.29)

where w : Ω → R denotes again a nonnegative weight function and

T :=

∫

Ω

w(x)h(x)h(x)T dx

is a symmetric, positive semidefinite 4 × 4 matrix. By (2.29) and since r1 ∦ r2, the
vectors r1⊗r2 and r2⊗r1 are two linearly independent eigenvectors of T with eigenvalue
0. However, instead of determining the orientations of r1 and r2 via the nullspace of
T , Aach et al. proposed to use a reduced model by skipping the double entry ∂x1x2f
in h. With (2.28) this leads to

0 = rTh̃(x), where h̃ := (∂x1x1f, ∂x1x2f, ∂x2x2f)
T (2.30)

and

r :=




r11r21
r11r22 + r12r21

r12r22


 with ri =

(
ri1
ri2

)
, i = 1, 2. (2.31)

Hence, our determining equation (2.29) becomes

0 = rT T r with T :=

∫

Ω

w(x) h̃(x)h̃(x)T dx (2.32)

and r is an eigenvector of the symmetric, positive semidefinite 3 × 3 matrix T with
eigenvalue 0. To describe T in more detail we introduce the notation

v⊗̃v := (v21, v1v2, v
2
2)

T,

which is a reduced version of the tensor product of v = (v1, v2)
T with itself. Further-

more, we denote by Πn the space of polynomials defined on [−ε, ε] with degree ≤ n.
Now, T can be characterized as follows:
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Proposition 2.3.2 Let f fulfill the assumptions of the transparent model. Then, the
matrix T is of the form T = S ΦST with S := (s1⊗̃s1, s2⊗̃s2) and

Φ :=

∫

Ω

w(x)

( (
ϕ

′′
1(s

T

1 x)
)2

ϕ
′′
1(s

T

1 x)ϕ
′′
2(s

T

2 x)

ϕ
′′
1(s

T

1 x)ϕ
′′
2(s

T

2 x)
(
ϕ

′′
2(s

T

2 x)
)2

)
dx. (2.33)

Moreover, if w is a positive weight function, it holds that

rank T =





0 if ϕi ∈ Π1, i = 1, 2,
1 if ϕi ∈ Π1 for exactly one i or ϕi ∈ Π2 \ Π1, i = 1, 2,
2 otherwise.

Proof: By

∂x1x1f(x) = s211 ϕ
′′
1(s

T
1 x) + s221 ϕ

′′
2(s

T
2 x),

∂x1x2f(x) = s11s12 ϕ
′′
1(s

T
1 x) + s21s22 ϕ

′′
2(s

T
2 x),

∂x2x2f(x) = s212 ϕ
′′
1(s

T
1 x) + s222 ϕ

′′
2(s

T
2 x)

we have that h̃(x) = S
(
ϕ

′′
1(s

T
1 x), ϕ

′′
2(s

T
2 x)
)T

, which implies with (2.32) further T =
S ΦST.
Since r1 ∦ r2, the matrix S ∈ R3,2 has full rank 2 and thus, the rank of T is determined
by Φ. If w is positive, it holds that Φ and consequently T are zero matrices if and
only if ϕi ∈ Π1, i = 1, 2. On the other hand, if ϕi /∈ Π1, i = 1, 2, we have

detΦ = ‖ϕ′′
1(s

T
1 ·)‖2L2,w(Ω) ‖ϕ

′′
2(s

T
2 ·)‖2L2,w(Ω) −

∣∣〈ϕ′′
1(s

T
1 ·), ϕ′′

2(s
T
2 ·)
〉
L2,w(Ω)

∣∣2.

Here, Schwarz’s inequality guarantees that
∣∣〈ϕ′′

1(s
T
1 ·), ϕ′′

2(s
T
2 ·)
〉
L2,w(Ω)

∣∣ ≤ ‖ϕ′′
1(s

T
1 ·)‖L2,w(Ω) ‖ϕ

′′
2(s

T
2 ·)‖L2,w(Ω),

where equality is attained if and only if the involved functions are multiples of each
other. Consequently, Φ has rank 1 if and only if either exactly one of the functions ϕi
fulfills ϕ

′′
i (s

T
i x) = 0 for all x ∈ Ω or ϕ

′′
2(s

T
2 x) = λϕ

′′
1(s

T
1 x) with λ ∈ R\{0}.

In the first case, we see by setting x = t si that ϕ
′′
i (t) = 0 holds for all t ∈ [−ε, ε] if

and only if ϕi is linear. In the second case, we can use x = t s2, t ∈ [−ε, ε], to obtain

ϕ
′′
2(t) = λϕ

′′
1(t s

T
1 s2) = λϕ

′′
1(s

T
1 s1 t s

T
1 s2) = ϕ

′′
2(t (s

T
1 s2)

2) = λϕ
′′
1(t (s

T
1 s2)

3) = . . . (2.34)

Since r1 ∦ r2, we have |sT1 s2| < 1 and thus, (2.34) yields ϕ
′′
i (t) = ϕ

′′
i (0) so that the

functions ϕi, i = 1, 2, have to be quadratic on [−ε, ε]. �

Note that matrix T in (2.29) has a similar structure, namely T = S ΦST with S :=
(s1⊗s1, s2⊗s2). Moreover, this proposition implies that the structure of the nullspace
N (T ) of T , i.e., the space of the eigenvectors belonging to the eigenvalue 0, can be
described as follows:
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2.3 Orientation Estimation

Remark 2.3.3 If rank T = 2 (vertex case), then (2.32) yields that N (T ) = {c r :
c ∈ R}. Straightforward computations shows further that STr = (0, 0)T, i.e., r is
orthogonal to s1⊗̃s1 and s2⊗̃s2, respectively.
If rank T = 1 and only ϕj is linear or constant (edge case), we have

N (T ) =
{



ri1c1
ri1c2 + ri2c1

ri2c2


 : c =

(
c1
c2

)
∈ R2

}
with i 6= j. (2.35)

If rank T = 1 and both functions ϕi, i = 1, 2, are quadratic, then

N (T ) = span{r, γ1(s1⊗̃s1) + γ2(s2⊗̃s2)},
where γ1 := α1〈s1⊗̃s1, s2⊗̃s2〉 + α2 ‖s2⊗̃s2‖22, γ2 := −α1 ‖s1⊗̃s1‖22 − α2〈s1⊗̃s1, s2⊗̃s2〉
and αi := ‖ϕ′′

i (s
T
i ·)‖L2,w(Ω), i = 1, 2.

There exist several possibilities to determine the vectors ri with |ri| = 1, i = 1, 2, up
to the sign from eigenvectors v ∈ N (T ). It is not hard to check that the following
approach from [2] is one possibility:

Remark 2.3.4 Assume that rank T = 2 and we have found an eigenvector v of T
with eigenvalue 0, i.e., v = (v1, v2, v3)

T = c r ∈ N (T ). If v1 6= 0, then

r1 =
1√

v21 + y21
(v1, y1)

T , r2 =
1√

v21 + y22
(v1, y2)

T (2.36)

are the sought orientations, where y1, y2 are the solutions of the quadratic equation
y2−v2y+v1v3 = 0. If v1 = 0, then yi = 0 for one i and we set ri := (v2, v3)

T /
√
v22 + v23

and r3−i := (0, 1)T.
In the case that rank T = 1 with ϕ2 being linear and ϕ1 not, let v be again an
eigenvector of T with eigenvalue 0, i.e., v is an element of the nullspace N (T ) provided
in (2.35). Obviously, this implies that v has the same structure as (2.31) with r1 and
some second vector c ∈ R2 \ {(0, 0)T}. Thus, we can compute r1, c/|c| by the same
procedure as just described for rank T = 2, where c/|c| plays the role of r2. To
distinguish r1 from c/|c|, we may use a second eigenvector u ∈ N (T ) which has to be
linearly independent from v. After decomposing this vector into r1 and some vector
c̃/|c̃|, we can identify r1 as the conform orientation of both decompositions.

Occlusion model For the occlusion or covering model (2.25) we can deduce similar
results as for the transparent model. Here, the definition of f1 and f2 implies that

0 =
∂

∂r1
f(x)

∂

∂r2
f(x) = (rT1 ∇f(x)) (rT2 ∇f(x)) = rT1 ∇f(x)(∇f(x))Tr2

= rT1 G(x) r2 = rT2 G(x) r1 ∀ x ∈ Ω, (2.37)
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2. Anisotropic Smoothing Facing Additive Gaussian Noise

where G(x) :=

(
(∂x1f(x))

2 ∂x1f(x) ∂x2f(x)
∂x1f(x) ∂x2f(x) (∂x2f(x))

2

)
. Rewriting this equation using

tensor products we obtain further

0 = (r2⊗r1)Tg(x) = (r1⊗r2)Tg(x) with g :=
(
(∂x1f)

2, ∂x1f ∂x2f, ∂x1f ∂x2f, (∂x2f)
2
)T
.

In its reduced form with r defined as in (2.31) this matches

0 = rT g̃(x) with g̃ :=
(
(∂x1f)

2, ∂x1f ∂x2f, (∂x2f)
2
)T
.

Since this relation holds true for all x ∈ Ω, it finally implies that

0 = rT C r for C :=

∫

Ω

w(x) g̃(x)g̃(x)T dx (2.38)

with any nonnegative weight function w : Ω → R. Thus, r is an eigenvector of the
symmetric, positive semidefinite 3 × 3 matrix C with eigenvalue 0. Moreover, the
following proposition holds true:

Proposition 2.3.5 If an image f fulfills the assumptions of the occlusion model, then
C is of the form

C = α1(s1⊗̃s1)(s1⊗̃s1)T + α2(s2⊗̃s2)(s2⊗̃s2)T with αi :=

∫

Ωi

w(x)
(
ϕ

′
i(s

T

i x)
)4
dx,

i = 1, 2. For a positive weight function w, the rank of C is ν ∈ {0, 1, 2} if and only if
exactly 2− ν of the functions ϕi are constant on Ωi, i = 1, 2.

Proof: For i = 1, 2 we obtain by
(
∂x1fi(x)

)2
=

(
ϕ

′
i(s

T
i x)
)2
s2i1,

∂x1fi(x) ∂x2fi(x) =
(
ϕ

′
i(s

T
i x)
)2
si1 si2,(

∂x2f(x)
)2

=
(
ϕ

′
i(s

T
i x)
)2
s2i2

that g̃(x) =
(
ϕ

′
i(s

T
i x)
)2(

si⊗̃si
)

for all x ∈ Ωi and consequently

C =

∫

Ω1

w(x)g̃(x)g̃(x)T dx +

∫

Ω2

w(x)g̃(x)g̃(x)T dx

= α1

(
s1⊗̃s1

)(
s1⊗̃s1

)T
+ α2

(
s2⊗̃s2

)(
s2⊗̃s2

)T
.

The rest of the assertion follows immediately by the definition of αi, i = 1, 2. �

Due to Proposition 2.3.5 the eigenvectors of C with eigenvalue 0 can be described as
follows:
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2.4 Shape Preserving Anisotropic Regularization

Remark 2.3.6 If rank C = 2, then N (C) = {c r : c ∈ R}. If rank C = 1 and the
function ϕi is not constant on Ωi, then

N (C) =
{



ri1c1
ri1c2 + ri2c1

ri2c2


 : c =

(
c1
c2

)
∈ R2

}
.

The vectors ri with |ri| = 1, i = 1, 2, can again be reconstructed up to the sign from
a basis of N (C) as described in Remark 2.3.4.

Double orientation tensors Since in natural images the significant orientations
are not the same in all image parts, we finally want to compute tensors T and C for
every image point. For this purpose, we consider Ω to be the whole image domain
again and use w = Kρ(· − x) (truncated outside B3ρ(x)) with ρ > 0 to detect the
orientation in the neighborhood of each image point x. Since in practice we are often
confronted with noisy images, we further use fσ instead of f in the definition of the
tensors. As a result, we obtain the double orientation tensors

Tρ(x) :=

∫

Ω

Kρ(x− y) h̃σ(y)h̃σ(y)
T dy =

(
Kρ ∗ (h̃σh̃Tσ )

)
(x)

and Cρ(x) :=

∫

Ω

Kρ(x− y) g̃σ(y)g̃σ(y)
T dy =

(
Kρ ∗ (g̃σg̃Tσ )

)
(x) ∀ x ∈ Ω

with h̃σ :=
(
∂x1x1fσ, ∂x1x2fσ, ∂x2x2fσ

)T
and g̃σ :=

(
(∂x1fσ)

2, ∂x1fσ ∂x2fσ, (∂x2x2fσ)
2
)T
.

These tensors differ from the classical structure tensor (2.15) only by the definition
of the vectors g̃σ and h̃σ. To determine candidates for the significant orientations r1,
r2 at each image point, we will compute an eigenvector to the smallest eigenvalue of
the appropriate tensor and decompose it as described in Remark 2.3.4. An example
of estimated orientation vectors is given in Figure 2.6. Since ρ is chosen rather large
here, we obtain the same orientations in the whole image domain.

2.4 Shape Preserving Anisotropic Regularization

Now, we want to use these orientation estimation methods in the context of anisotropic
regularization. The considered approaches are inspired by the work [20] of Berkels et
al. as well as theoretical results of Esedoglu and Osher in [75]. To motivate the applied
regularizers, we will first study a particular anisotropic regularizer in detail and prove
different results showing which shapes are preserved by this variational approach.
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2. Anisotropic Smoothing Facing Additive Gaussian Noise

Figure 2.6: Noisy images and the estimated double orientations (σ = 2, ρ = 25) by the occlusion
model (left) and the transparent model (right),respectively.

2.4.1 Shape Preservation

For the subsequent considerations we set Ω = R2 and consider regularization methods
of the form (2.1) with J defined by (2.4) with ϕ(x) = ‖x‖1, i.e.,

J(u) :=

∫

R2

|∂x1u|+ |∂x2u| dx. (2.39)

The following theorem, cf. [75, Prop. 3.3], provides necessary and sufficient conditions
for û to be a minimizer of (2.1) for general regularizers J :

Theorem 2.4.1 For a proper, convex, lower semi-continuous (l.s.c.) and positively
homogeneous functional J : L2(Ω) → R≥0 ∪ {+∞} the minimization problem (2.1)
has a unique solution and û ∈ L2(Ω) is the solution if and only if

i) û = f − λv̂,

ii) v̂ ∈ CJ := {v ∈ L2(Ω) : 〈v, w〉 ≤ J(w) ∀ w ∈ L2(Ω)},

iii) 〈û, v̂〉 = J(û).

The special functional (2.4) with Ω = R2 fulfills the above assumptions and we have
that v̂ ∈ CJ if there exists a vector field V̂ ∈ L∞(R2,R2) such that

v̂ := − div V̂ ∈ L2(R
2) and V̂ ∈ Wϕ a.e. on R2.

Note that part iii) ensures here that J(û) <∞. Although the first part of this theorem
is somehow standard, we add the proof for completeness.

Proof: Let F : L2(Ω) → R ∪ {+∞} be defined by

F (u) = 1
2
‖f − u‖2L2

+ λJ(u).
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2.4 Shape Preserving Anisotropic Regularization

Obviously, F is proper and l.s.c. Since the first term of F is strictly convex and
coercive, and J is convex and bounded from below, we know that F is also strictly
convex and coercive. Using that F is defined on the Hilbert space L2(Ω), it finally
follows by [73, p. 35] that the minimization problem (2.1) has a unique solution.
By [73, p. 21] we know that û is the minimizer of (2.1) if and only if

0 ∈ û− f + λ∂J(û), i.e.,
f − û

λ
∈ ∂J(û).

By [73, p. 22] this is equivalent to

û ∈ ∂J∗
(
f − û

λ

)
,

where J∗ denotes the conjugate function of J . Setting v̂ := f−û
λ

so that û = f − λv̂,
we obtain further

f − λv̂ ∈ ∂J∗(v̂).

This inclusion holds true if and only if

v̂ = argmin
v∈L2(Ω)

{
1

2
‖f
λ
− v‖2L2

+
1

λ
J∗(v)

}
. (2.40)

Since J is proper, convex and positively homogeneous, it follows that J∗ is the indicator
function

ιCJ (v) :=

{
0 v ∈ CJ ,

∞ otherwise

of the closed, convex set CJ := {v ∈ L2(Ω) : 〈v, w〉 ≤ J(w) ∀ w ∈ L2(Ω)}. Thus,
(2.40) can be rewritten as

v̂ = argmin
v∈CJ

‖f − λv‖2L2
,

i.e., λv̂ is the orthogonal projection of f onto CλJ . It remains to show that this is
equivalent to condition iii). If λv̂ is the orthogonal projection of f onto CλJ , the
projection theorem implies for all w ∈ CλJ that

〈f − λv̂, w − λv̂〉 ≤ 0 and thus, 〈f − λv̂, w〉 ≤ 〈f − λv̂, λv̂〉.

Since J(u) = J∗∗(u) = supw∈CJ 〈u, w〉, see, e.g., [73, p. 18], we obtain

λJ(f − λv̂) = sup
w∈CλJ

〈f − λv̂, w〉 = 〈f − λv̂, λv̂〉, i.e., J(û) = 〈û, v̂〉.

Conversely, let v̂ ∈ CJ fulfill iii). By the definition of CλJ we have for all w ∈ CλJ that

〈f − λv̂, w〉 ≤ λJ(f − λv̂), and thus, 0 ≤ −〈f − λv̂, w〉+ λJ(f − λv̂).
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2. Anisotropic Smoothing Facing Additive Gaussian Noise

Since J(û) = 〈û, v̂〉, it follows that

0 ≤ 〈f − λv̂, λv̂ − w〉 ∀ w ∈ CλJ

and the projection theorem finally yields that λv̂ is the orthogonal projection of f onto
CλJ .
For the second part of the assertion, it is easy to see that the regularizer J defined in
(2.4) with (2.5) is nonnegative, proper and positively homogeneous. Following the lines
of [3] it is also not hard to prove that (2.4) is convex and weakly lower semi-continuous,
which also implies lower semi-continuity. Thus, (2.4) fulfills the assumptions of the
first part. The rest of the assertion follows by definition (2.5) and a limit argument in
[75]. �

Using Theorem 2.4.1, we can prove the following corollary:

Corollary 2.4.2 Let 1A : R2 → {0, 1} be the characteristic function of the set
A ⊂ R2, i.e., 1A(x) = 1 for x ∈ A and 1A(x) = 0 otherwise. Moreover, denote by
û the solution of the minimization problem (2.1) with J defined by (2.39).

i) If f := c 1R is the given initial image with c > 0 and some rectangle R :=
(−a, a)× (−b, b), where a, b > 0, then

û =
(
c− λ

a+ b

ab

)
1R for λ ≤ ab

a+ b
c .

ii) If f := c1 1R1 + c2 1R2 with c1, c2 > 0, R1 := (−l, l) × (−a, a), R2 := (−b, b) ×
(−l, l) and 0 < a, b < l, then

û =
(
c1 − λ

1

a

)
1R1 +

(
c2 − λ

1

b

)
1R2 for λ ≤ min {a c1, b c2} .

Proof: The prove of part i) was given for c = 1 in [75, Claim 4.2] and generalizes
straightforwardly for c 6= 1. To show part ii) we define

η(ξ) =





−1 if ξ < −1,
ξ if − 1 ≤ ξ ≤ 1,
1 if ξ > 1.

Now, we need to verify that the vector field V̂ = (V̂ (1), V̂ (2)) : R2 → R2 given by

V̂ (1)(x1, x2) = −η
(x1
b

)
1(−l,l)(x2),

V̂ (2)(x1, x2) = −η
(x2
a

)
1(−l,l)(x1)
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2.4 Shape Preserving Anisotropic Regularization

fulfills the conditions of Theorem 2.4.1: Obviously, V̂ ∈ L∞(R2,R2) and for all x ∈ R2

it holds that
V̂ (x1, x2) ∈ Wϕ = {y ∈ R2 : max{|y1|, |y2|} ≤ 1}

with

v̂ := − div V̂ =
1

a
1R1 +

1

b
1R2 ∈ L2(R

2).

Hence, v̂ ∈ CJ and û = f − λv̂. Using [75, Claim 3.2] and the anisotropic coarea
formula given in [99, 154] we can show that for d1 := c1 − λ 1

a
, d2 := c2 − λ1

b
and

λ ≤ min {a c1, b c2} it holds that

J(û) = 2 d1(2l + 2a) + 2 d2(2l + 2b)

= d1
1

a
2a (2l − 2b) + d2

1

b
2b (2l − 2a) + (d1 + d2)

(1
a
+

1

b

)
2a 2b

= 〈û, v̂〉,

which finishes the proof. �

This corollary shows that rectangles with edges parallel to the coordinate axes and +
junctions are preserved by the solution of (2.1) with regularizer (2.39) if the regular-
ization parameter λ is small enough. Since the critical values λ depend directly on
the shape parameters a, b and the gray values c, c1, c2, it also implies that for larger
values λ thin lines and low contrasted objects are removed first.

Theoretical results for a discrete setting Similar results can also be obtained
for a discretized version of (2.1) and (2.39). To deduce these results, we consider
discrete quadratic images f := (f(x1, x2))

n−1
x1,x2=0 ∈ Rn,n and their columnwise reshaped

vectors f := vec(f) ∈ RN with N := n2. Instead of partial derivatives we use forward
differences now so that the discrete counterpart of the gradient reads

D =

(
Dx1

Dx2

)
:=

(
IN ⊗H1

H1 ⊗ IN

)
or D :=

(
H0 ⊗H1

H1 ⊗H0

)
, (2.41)

where IN denotes the identity matrix of size N ×N and

H0 :=
1

2




1 1
1 1

. . .

1 1
2



, H1 :=




−1 1
−1 1

. . .

−1 1
0




(2.42)

are Haar matrices with reflecting boundary conditions. Moreover, problem (2.1) be-
comes

argmin
u∈RN

{
1

2
‖f − u‖22 + λJ(u)

}
, (2.43)
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2. Anisotropic Smoothing Facing Additive Gaussian Noise

and the functional (2.39) reads

J(u) := ‖Du‖1. (2.44)

The solution of (2.43) can be characterized as in the continuous setting, cf. [SST08]:

Proposition 2.4.3 Let J : RN → R≥0 ∪ {+∞} be a proper, convex, l.s.c. and
positively homogeneous functional. Then, the minimization problem (2.43) has a
unique solution. This solution is given by û ∈ RN if and only if conditions i) - iii) of
Theorem 2.4.1 hold true, where L2(Ω) has to be replaced by RN with the Euclidean
inner product.
For the special functional (2.44) we have that v̂ ∈ CJ if and only if there exists a
vector V̂ ∈ R2N such that

v̂ := DTV̂ and ‖V̂ ‖∞ ≤ 1.

Proof: The first part of the proof of Theorem 2.4.1 remains true for general real
Hilbert space, i.e., also for the N -dimensional Euclidean space. The second part of
the assertion was proven in [SST08] for general gauge functions ϕ. �

As in the continuous case, we can show that for small enough λ rectangles and +
junctions are preserved by the solution of (2.43) with J defined by (2.44). However,
due to the image boundaries one has to be careful with the discretization.

Corollary 2.4.4 Let x1,0, x2,0 ≥ 0 and x1,0 + a, x2,0 + b ≤ n − 2. Moreover, denote
by û the solution of minimization problem (2.43) with J defined by (2.44).

i) For f := c 1R with c > 0 and the discrete rectangle R := {x1,0 + 1, . . . , x1,0 +
a} × {x2,0 + 1, . . . , x2,0 + b}, it holds that

û =
(
c− λ

2(a+ b)

ab

)
1R for λ ≤ ab

2(a+ b)
c

if D is the second matrix defined in (2.41) and Hi, i = 0, 1, are modified such
that Hi(0, 0) = 0, Hi(n− 1, n− 1) = (−1)i, i = 0, 1.

ii) For f := c1 1R1 + c2 1R2 with c1, c2 > 0 and R1 := {x1,0 + 1, . . . , x1,0 + a} ×
{0, . . . , n− 1}, R2 := {0, . . . , n− 1} × {x2,0 + 1, . . . , x2,0 + b} we have

û =
(
c1 − λ

2

a

)
1R1 +

(
c2 − λ

2

b

)
1R2 for λ ≤ min

{a
2
c1,

b

2
c2
}

if D is one of the matrices defined in (2.41) and Hi, i = 0, 1, are modified such
that H0(n− 1, 0) = 1, H1(0, 0) = 0, Hi(n− 1, n− 1) = (−1)i, i = 0, 1.
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Figure 2.7: Sketch of the image f examined in Corollary 2.4.4 ii).

Proof: Part i) of the assertion was proven in [203, SST08].
The image f considered in part ii) is depicted in Figure 2.7. For

V̂ (1)(x1, x2) :=





1 if x1 ∈ {0, . . . , x1,0},
1− 2

a
(x1 − x1,0) if x1 ∈ {x1,0 + 1, . . . , x1,0 + a},

−1 if x1 ∈ {x1,0 + a+ 1, . . . , n− 1}

and

V̂ (2)(x1, x2) :=





1 if x2 ∈ {0, . . . , x2,0},
1− 2

b
(x2 − x2,0) if x2 ∈ {x2,0 + 1, . . . , x2,0 + b},

−1 if x2 ∈ {x2,0 + b+ 1, . . . , n− 1}

it holds that ‖V̂ ‖∞ ≤ 1. Moreover, v̂ = DTV̂ = 2
a
1R1 +

2
b
1R2 for both choices of

D in (2.41), where H0, H1 are modified as follows: H0(n − 1, 0) = 1, H1(0, 0) = 0,
Hi(n− 1, n− 1) = (−1)i, i = 0, 1. Thus,

û = f − λv̂ =
(
c1 −

2

a
λ
)
1R1 +

(
c2 −

2

b
λ
)
1R2 = d11R1 + d21R2

with d1 := c1 − 2
a
λ and d2 := c2 − 2

b
λ. For λ ≤ min{a

2
c1,

b
2
c2} this implies

J(û) = 2(n+ a) d1 + 2(n+ b) d2

= (n− b) a
2

a
d1 + (n− a) b

2

b
d2 + ab

(2
a
+

2

b

)
(d1 + d2)

= 〈û, v̂〉.

Hence, the conditions of Proposition 2.4.3 are fulfilled and û is the sought minimizer.
�
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2. Anisotropic Smoothing Facing Additive Gaussian Noise

v1
v2

Figure 2.8: Shape with edge orientations v1 and v2.

2.4.2 A New Anisotropic Regularization Method

Having the regularizer (2.39) in mind, we now want to introduce a slightly different
functional, which can preserve also other shapes than the ones considered in Corol-
lary 2.4.2. If an image contains for example rotated parallelograms like the one de-
picted in Figure 2.8 or X junctions with edge orientations v1, v2, the idea is to consider
the regularizer (2.4) with

ϕV (x) = ‖V x‖1 = |〈v1, x〉|+ |〈v2, x〉| and V := (v1, v2)
T ∈ R2,2

instead of ϕ(x) = ‖x‖1. This modification can be motivated by the following consid-
erations: Assume that V is invertible, i.e., v1 ∦ v2, and f is an image of a rotated
parallelogram or respectively an X junction. If the edges are orientated like v1 and v2,
the transformed image fV := f(V T·) shows a rectangle or respectively a + junction
with edges parallel to the coordinate axes. By setting y := V Tx, dy = |detV | dx we
obtain
∫

R2

1
2
(f − u)2 + λ ‖V∇u‖1 dy = |detV |

∫

R2

1
2

(
f(V Tx)− u(V Tx)

)2
+ λ ‖V ∇yu(V

Tx)‖1 dx

= |detV |
∫

R2

1
2
(fV − uV )

2 + λ ‖∇uV ‖1 dx.

Consequently, û minimizes the left-hand side if and only if the transformed image
ûV := û(V T·) minimizes

1

2
‖fV − uV ‖2L2

+ λ

∫

R2

‖∇uV ‖1 dx. (2.45)

Thus, if we minimize
1

2
‖f − u‖2L2

+ λ

∫

R2

‖V∇u‖1 dx

for sufficiently small λ, Corollary 2.4.2 implies that shapes like the one in Figure 2.8
and appropriate X junctions are preserved. The Wulff shape of ϕV := ‖V · ‖1 has
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2.4 Shape Preserving Anisotropic Regularization

exactly the shape depicted in Figure 2.8. Using that V −1 = 1
det(V )

(
v⊥2 , −v⊥1

)
we have

in detail

WϕV = {x ∈ R2 : 〈x, y〉 ≤ ‖V y‖1 ∀ y ∈ R2 }
= {x ∈ R2 : 〈x, V −1z〉 ≤ ‖z‖1 ∀ z ∈ R2 }
= {x ∈ R2 : 〈(V −1)Tx, z〉 ≤ ‖z‖1 ∀ z ∈ R2 }
= {x ∈ R2 : max{ |〈v⊥1 , x〉|, |〈v⊥2 , x〉| } ≤ |det(V )| }.

The orientations of the structures in a natural image u : Ω → R may of course vary
from image region to image region. Therefore, we will in the following replace the
single matrix V ∈ R2,2 by a whole tensor field V : Ω → R2,2. To determine this
tensor field from a possibly noisy initial image f : Ω → R, we apply one of the models
presented in Section 2.3. Hence, our proposed anisotropic regularization method can
be summarized as follows:

Algorithm 2.4.5 For a possibly noisy initial image f : Ω → R proceed as follows:

Step 1: Orientation estimation

Estimate the orientation matrices V from the initial image f by one of the
methods described above:

• Case 1: Rotated rectangular shapes If the initial image contains up
to noise mainly rotated rectangular shapes, estimate the rotation angles α
of the shapes by the adapted structure tensor in Subsection 2.3.2 and set

V (x) = R(−α(x)) =
(

cosα(x) sinα(x)
− sinα(x) cosα(x)

)
∀ x ∈ Ω.

• Case 2: Sheared shapes If we are confronted with sheared shapes, de-
termine the shear parameters as described in Subsection 2.3.2 and set

V (x) = S(ζ(x)) =

(
1 0

ζ(x) 1

)
∀ x ∈ Ω.

• Case 3: Arbitrary double orientations If the initial image can locally
be described by one of the double orientation models in Subsection 2.3.3,
estimate the orientations r1, r2 by the appropriate double orientation tensor
and set

V (x) = (r1(x), r2(x))
T ∀ x ∈ Ω.
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2. Anisotropic Smoothing Facing Additive Gaussian Noise

Step 2: Anisotropic regularization

Using these orientation matrices V and an appropriately chosen regularization
parameter λ, determine the regularized image û by solving

argmin
u∈L2(Ω)

{ 1

2
‖f − u‖2L2

+ λ

∫

Ω

‖V∇u‖1 dx
}
. (2.46)

As outlined in [100, 132] it is also possible to make the orientation matrices V in (2.46)
directly dependent on u rather than f .

2.4.3 Discretization and Minimization

To minimize the functional in (2.46) numerically, we compute the minimizer of its
discrete counterpart

argmin
u∈RN

{ 1

2
‖f − u‖22 + λ‖ VD︸︷︷︸

M

u‖1
}
, (2.47)

where f, u ∈ RN are columnwise reshaped image vectors, D ∈ R2N,N is a discrete
gradient operator and V ∈ R2N,2N a matrix containing the orientation matrices V (i, j)
for all image points i ∈ {0, . . . ,m− 1}, j ∈ {0, . . . , n− 1}. For simplicity we consider
only the case that m = n, since the generalization for m 6= n is straightforward. We
set D to be second matrix in (2.41), which equals the choice in [SST08]. The matrix
V is thus defined by

V =

(
diag(vec(v1,1)) diag(vec(v1,2))
diag(vec(v2,1)) diag(vec(v2,2))

)
with V (i, j) =

(
v1,1(i, j) v1,2(i, j)
v2,1(i, j) v2,2(i, j)

)
.

To avoid possible checkerboard effects, we extend (2.47) by adding the additional
term λν‖(H1⊗H1)u‖1, where ν ≥ 0 is a very small constant and H1 is matrix defined
in (2.42). This additional term penalizes diagonal differences so that checkerboard
patterns are avoided. For more details see [SST08, Section 2.2]. To include this term

directly into (2.47) we only need to substitute M by M̃ = (MT, ν(H1 ⊗H1)
T)T.

Instead of minimizing (2.47) directly, the minimizer û can also be determined via its
dual formulation û = f − λMTŴ , where Ŵ ∈ R2N is a minimizer of the quadratic
functional with linear constraints

argmin
W∈R2N

‖f − λMTW‖22 subject to ‖W‖∞ ≤ 1. (2.48)

There exist various numerical methods for solving either (2.47) or (2.48). One possi-
bility is for example to minimize (2.48) by second-order cone programming (SOCP).
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2.5 A Related Anisotropic Diffusion Model

For this purpose, (2.48) has to reformulated appropriately as

min
t∈R,W∈R2N




t

W




T


1
0
...
0


 subject to



f − λMTW

t
1


 ∈ LN+2

r ,

−Wi,Wi ≤ 1, i ∈ {1, . . . , 2N},

where LN+2
r denotes the rotated second-order cone defined by

LN+2
r :=

{
(x̄, xN+1, xN+2)

T ∈ RN+2 : ‖x̄‖22 ≤ 2xN+1xN+2, xN+2 ≥ 0
}
.

Now, a software package like for example MOSEK [1] can be applied to solve this
problem. For literature on SOCP we refer to [6, 147].
For solving (2.48) directly we can for example use forward-backward splitting (FBS)
as , e.g., outlined in [188, Sec. 3, Algorithm 2]. Note that this leads to the same algo-
rithm as the gradient descent reprojection algorithm proposed in [48]. Alternatively,
also Nesterov’s algorithm [151] or the fast iterative shrinkage thresholding algorithm
(FISTA) of Beck and Teboulle [17, 18] can be applied. The primal-dual hybrid gradient
method (PDHG) studied in [51, 77, 231] is also a possibility. All these algorithms have
the benefit that they are simple to implement and no additional software packages are
required.

2.5 A Related Anisotropic Diffusion Model

2.5.1 The Model

As outlined in Section 2.1 we can establish a relation between a variational method of
the form (2.1) with regularizer (2.2) and a corresponding diffusion model if φ fulfills
the conditions (I) and (II) in Section 2.1, i.e., if φ is a finite function in C2(R2 × S),
where S is an open set with Ω ⊂ S, and if for all p ∈ R2 and x ∈ Ω there exists a
symmetric and positive definite matrix A(p, x) ∈ R2,2 such that

∇p φ(p, x) = A(p, x) p with ∇p = (∂p1 , ∂p2)
T. (2.49)

In case of the minimization problem (2.46) we have

φ(p, x) = ‖V (x) p ‖1 = |〈v1(x), p〉|+|〈v2(x), p〉| with V = (v1, v2)
T =

(
v1,1 v1,2
v2,1 v2,2

)
.

Since this function is not in C2(R2 × Ω), we approximate it by

φε(p, x) =
√
|〈v1(x), p〉|2 + ε2 +

√
|〈v2(x), p〉|2 + ε2
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2. Anisotropic Smoothing Facing Additive Gaussian Noise

for a small constant ε > 0. If V can be extended to a tensor field Ṽ : S → R2,2

with Ṽ ∈ C2(S,R2,2), this provides a finite extension of φε so that φε ∈ C2(R2 × S).
Moreover, it holds that

∇p φε(p, x) =




v1,1(x) 〈v1(x),p〉√
|〈v1(x),p〉|2+ε2

+ v2,1(x) 〈v2(x),p〉√
|〈v2(x),p〉|2+ε2

v1,2(x) 〈v1(x),p〉√
|〈v1(x),p〉|2+ε2

+ v2,2(x) 〈v2(x),p〉√
|〈v2(x),p〉|2+ε2




= V (x)T




1√
|〈v1(x),p〉|2+ε2

0

0 1√
|〈v2(x),p〉|2+ε2


V (x) p.

Setting

A(p, x) := V (x)T




1√
|〈v1(x),p〉|2+ε2

0

0 1√
|〈v2(x),p〉|2+ε2


V (x)

the function φε fulfills obviously condition (2.49). Moreover, for all p ∈ R2 and x ∈ Ω
there exists a matrix M(p, x) such that A(p, x) = M(p, x)TM(p, x). Thus, A(p, x) is
symmetric and positive definite if v1 ∦ v2.
Hence, if V fulfills the above smoothness conditions and v1 ∦ v2, then φε has all the
required properties and according to Section 2.1 the minimization problem (2.46) is
related to the diffusion model





∂
∂t
u(t, x) = div (D(∇uσ)(t, x) ∇u(t, x) ) ∀ (t, x) ∈ (0, T )× Ω,

(D(∇uσ)(t, x)∇u(t, x) )T n(x) = 0 ∀ (t, x) ∈ (0, T )× ∂Ω,

u(0, x) = f(x) ∀ x ∈ Ω

(2.50)

with σ = 0 and

D(∇uσ)(t, x) = V (x)T




1√
|〈v1(x),∇uσ(t,x)〉|2+ε2

0

0 1√
|〈v2(x),∇uσ(t,x)〉|2+ε2


V (x).

Setting g : R≥0 → R to be the TV-related diffusivity g(s) = 1/
√

|s|2 + ε2, see, e.g.,
[52], and defining (V (x) p)i := 〈vi, p〉 for p ∈ R2, i = 1, 2, the matrices V considered
in Algorithm 2.4.5 correspond to the following diffusion tensors:

• Rotated rectangular shapes For estimated rotation angles α we have

D(∇uσ) := R(−α)T
(
g( (R(−α)∇uσ)1 ) 0

0 g( (R(−α)∇uσ)2 )

)
R(−α) (2.51)

with R(α) =

(
cosα − sinα
sinα cosα

)
.
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2.5 A Related Anisotropic Diffusion Model

• Sheared shapes For estimated shear parameters ζ we obtain

D(∇uσ) := S(ζ)T
(
g(∂x1uσ) 0

0 g(ζ ∂x1uσ + ∂x2uσ)

)
S(ζ) (2.52)

with S(ζ) =

(
1 0
ζ 1

)
.

• Arbitrary double orientations For estimated orientations r1, r2 by one of
the double orientation tensors it holds that

D(∇uσ) := V T

(
g(〈r1,∇uσ〉) 0

0 g(〈r2,∇uσ〉)

)
V (2.53)

with V = (r1, r2)
T.

Note that the TV-related diffusivity g is a ’boundary case’ between forward and back-
ward diffusion, see [65, p. 57], [213]. The diffusion model (2.50) with the new diffusion
tensors can of course also be applied for other diffusivity functions g. If we use for
example the Perona-Malik diffusivity

g(s) =
1

1 + |s|2
γ2

, γ > 0 (2.54)

proposed in [159], the diffusion model (2.50) is related to a variational approach with a
non-convex regularization term. Since in such cases, (2.50) maybe ill-posed for σ = 0,
cf. [226], we propose to choose σ > 0 as in [46] so that the resulting diffusion model
is again well-posed. As done for EED or coherence-enhancing diffusion [214] it is also
possible to estimate the orientation information for the diffusion tensors directly from
u rather than f . With these additional modifications the deduced anisotropic diffusion
model can be summarized as follows:

Algorithm 2.5.1 For an initial image f : Ω → R, a diffusivity function g : R≥0 → R,
σ ≥ 0 and a stopping time t̂ ∈ (0, T ) proceed as follows:

Compute the diffused image u(t̂, ·) of the anisotropic diffusion model (2.50) using
one of the diffusion tensors (2.51)–(2.53) defined above. Here, the involved orien-
tation estimates α, ζ and r1, r2 are computed with respect to the current image
u(t, ·) following the appropriate procedure described in Subsections 2.3.2/2.3.3.
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2. Anisotropic Smoothing Facing Additive Gaussian Noise

2.5.2 Discretization

As before, our numerical implementation is based on a finite difference approach, where
u ∈ RN , N = mn, denotes again the columnwise reshaped image vector corresponding
to an image U ∈ Rm×n. To discretize the diffusion model (2.50) in time an explicit
time discretization is applied. For the partial spatial derivatives we use central differ-
ences with an additional smoothing filter of the form 1

16

(
3 10 3

)
orthogonal to the

derivative direction as suggested by Weickert and Scharr in [181, 215]. Consequently,
we end up with an iterative scheme of the form

u(k+1) = u(k) + τ Q(u(k)) u(k), (2.55)

u(0) = f,

where τ > 0 represents a fixed time step size and Q(u(k)) ∈ RN×N the iteration matrix
corresponding to the spatial derivatives. With

D(∇uσ(i, j)) =
(
ai,j bi,j
bi,j ci,j

)

denoting the diffusion tensor at pixel (i, j), all non-vanishing entries of the (i + nj)th

row of Q(u(k)) are represented by the stencil displayed in Figure 2.9. At the boundaries
of U we apply reflecting boundary conditions and set

ai,0 = ai,n−1 = bi,0 = bi,n−1 = 0 ∀i ∈ {0, . . . , n− 1}
b0,j = bn−1,j = c0,j = cn−1,j = 0 ∀j ∈ {0, . . . , n− 1}

ensuring that (D(∇uσ(i, j))∇u(i, j) )T n(i, j) = 0 for all boundary pixels.
An alternative to this scheme is for example the nonnegativity discretization of We-
ickert [213]. However, this discretization is less accurate and lacks to be rotationally
invariant as outlined in [181, 215].

Since the central value of the stencil in Figure 2.9 is the negative sum of all the other
values, the sum over all entries of the stencil is zero. Due to the reflecting boundary
conditions this guarantees that the row sums of Q(u(k)) are zero. Since Figure 2.9
implies further that Q(u(k)) is symmetric, the column sums of Q(u(k)) are zero, too.
Hence, the iterative scheme (2.55) preserves the average gray value, i.e.,

1

N

N∑

i=1

fi =
1

N

N∑

i=1

u
(k)
i ∀ k ∈ N.

Since there may appear however negative matrix entries in I + τQ(u(k)), the iterates
do not in general fulfill a min-max principle like the nonnegativity discretization with
small enough time step size, cf. [181, 213, 215].
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9ai–1,j–1 30bi–1,j–1 + 30bi–1,j −9ai–1,j–1 − 9ai–1,j+1 −30bi–1,j − 30bi–1,j+1 9ai–1,j+1

+18bi–1,j–1 +30ci–1,j–1 + 30ci–1,j +9ci–1,j–1 + 9ci–1,j+1 +30ci–1,j + 30ci–1,j+1 −18bi–1,j+1

+9ci–1,j–1 +100ci–1,j +9ci–1,j+1
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Figure 2.9: Discretization stencil (multiplied by 322) of div(D(∇uσ)∇u) at location (i, j) as suggested
in [181, 215]. The entries of this stencil are the reshaped, non-vanishing entries of the (i+ nj)th row
of Q(u(k)). The (i+nj)th entry of the vector Q(u(k))u(k) can be obtained by summing up the values
of the componentwise product of this stencil with the 5× 5 image patch of U centered at U(i, j).

To avoid possible checkerboard effects, which may appear in the presence of strong
noise, the scheme (2.55) can be extended by the additional term ν(Ĩ − I)u(k) with a
very small parameter ν ≥ 0. The low pass filter matrix Ĩ is set to be a 5-band Toeplitz
matrix with band 1

16
(−1, 4, 10, 4,−1), here. Since this is a discretization of the identity

filter of consistency order 4, this additional term has no influence on the consistency
order of the original scheme, see [181, Section 9.5] for more details. Moreover, it leads
again to a symmetric iteration matrix with a row sum of zero. Consequently, the
resulting scheme preserves the average gray value, too.

2.6 Anisotropic Infimal Convolution Regularization

2.6.1 Infimal Convolution Regularization and Shape
Preservation

Before we proceed with numerical examples, we want to consider an alternative regu-
larizer to (2.39) given by
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2. Anisotropic Smoothing Facing Additive Gaussian Noise

J(u) = (J1�J2)(u) := inf
u1,u2

u=u1+u2

{J1(u1) + J2(u2)}. (2.56)

The operator � denotes here the so-called infimal convolution well-known in the field
of convex analysis. Possible choices for J1, J2 which are closely related to (2.39) are,
e.g.,

∫
Ω
|∂x1u1| dx and

∫
Ω
|∂x2u2| dx as first considered in [50]. With these functionals

the already discretized functional J reads as

J(u) = inf
u1,u2

u=u1+u2

{‖Dx1u1‖1 + ‖Dx2u2‖1} (2.57)

with Dxi ∈ RN,N representing again a discrete derivative operator in direction xi,
i = 1, 2.

In general, assuming that the functions Ji : R
N → R ∪ {+∞}, i = 1, 2, are proper,

convex and l.s.c. does not necessarily imply that J = J1 � J2 has these properties.
Setting, e.g., N = 1, J1(u) = u and J2(u) = c with some constant c ∈ R, it follows
that J(u) = −∞. Hence, J has not even to be proper if J1 and J2 are proper. To
show that (2.57) has these properties nevertheless, we define the so-called recession
function of a proper, convex, l.s.c. function Ψ : RN → R ∪ {+∞} by

(Ψ0+)(v) := lim
λ→∞

Ψ(u+ λv)−Ψ(u)

λ
, u ∈ domΨ

with domΨ := {u ∈ RN : Ψ(u) < +∞} denoting the domain of Ψ. Here, Ψ0+ is
well-defined, i.e., (Ψ0+)(v) is independent of the choice of u. With these definitions
we can now state the following proposition, cf. [SST11]:

Proposition 2.6.1 Let J : RN → R ∪ {+∞} be the infimal convolution of functions
Ji : R

N → R ∪ {+∞}, i = 1, . . . ,m, i.e.,

J(u) = (J1 � . . .� Jm)(u) = inf
u1,...,um

u=u1+···+um

m∑

i=1

Ji(ui) ∀u ∈ RN .

Then, J has the following properties:

i) J is positively homogeneous, i.e, J(λu) = λJ(u) for all λ > 0, u ∈ RN , if all Ji
for i = 1, . . . ,m are positively homogeneous.

ii) If all Ji are proper and convex for i = 1, . . . ,m, then J is convex.

iii) If Ji is proper, convex, l.s.c. for all i = 1, . . . ,m and

(J10
+)(u1) + . . .+ (Jm0

+)(um) ≤ 0, (2.58)

(J10
+)(−u1) + . . .+ (Jm0

+)(−um) > 0 (2.59)
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2.6 Anisotropic Infimal Convolution Regularization

imply that u1+ . . .+um 6= 0, then J is proper, convex and l.s.c. and the infimum
in the definition of J(u) is attained for any u ∈ RN . In particular, the above
implication holds if Ji(u) = Ji(−u) for all u ∈ RN .

iv) If Ji(u) := ‖Liu‖ with Li ∈ RNi,N , i = 1, . . . ,m, and some norm ‖ · ‖ in RNi ,
then J is continuous.

Proof: If the functions Ji, i = 1, . . . ,m, are positively homogeneous, it follows
straightforwardly that

J(λu) = inf
u′1,...,u

′
m

λu=λu′1+...+λu
′
m

m∑

i=1

Ji(λu
′
i) = λ inf

u′1,...,u
′
m

u=u′1+...+u
′
m

m∑

i=1

Ji(u
′
i) = λJ(u)

for all λ > 0, u ∈ RN and thus, J is positively homogeneous.
For the proof of ii) we refer to [173, p. 33] and also the first part of iii) can be
found in [173, p. 76]. The last part of iii) is clear, since Ji(u) = Ji(−u) implies
u ∈ dom Ji ⇔ −u ∈ dom Ji and we have

(Ji0
+)(−v) = lim

λ→∞

Ji(u− λv)− Ji(u)

λ
= lim

λ→∞

Ji(−u− λv)− Ji(−u)
λ

= lim
λ→∞

Ji(u+ λv)− Ji(u)

λ
= (Ji0

+)(v).

Thus, in this case there exist no u1, . . . , um ∈ RN for which (2.58) and (2.59) are
fulfilled simultaneously.
Finally, to prove iv) we consider

J(u+h) = inf
u1,...,um

u+h=u1+...+um

m∑

i=1

‖Liui‖ = inf
u1,...,um−1

{
m−1∑

i=1

‖Liui‖+ ‖Lm(u+ h−
m−1∑

i=1

ui)‖
}
.

Since

‖Lm(u−
m−1∑

i=1

ui)‖ − ‖Lmh‖ ≤ ‖Lm(u+ h−
m−1∑

i=1

ui)‖ ≤ ‖Lm(u−
m−1∑

i=1

ui)‖+ ‖Lmh‖

we conclude that

J(u)− ‖Lmh‖ ≤ J(u+ h) ≤ J(u) + ‖Lmh‖.

This implies that |J(u+ h)− J(u)| → 0 if ‖h‖ → 0, which finishes the proof. �

More properties of the infimal convolution operator can be found in [16, 173, 201]. For
example in [16, Prop. 15.7] further conditions for J to be proper, convex and l.s.c. are
provided.
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2. Anisotropic Smoothing Facing Additive Gaussian Noise

Since the functions Ji(u) = ‖Dxiu‖1, i = 1, 2, are obviously proper, convex, positively
homogeneous and l.s.c. with Ji(u) = Ji(−u), Proposition 2.6.1 implies immediately
that their infimal convolution J = J1 � J2 in (2.57) is also proper, convex, positively
homogeneous, l.s.c. and even continuous.
Next, we will use this proposition to show that any minimization problem of the form

argmin
u∈RN

{1
2
‖f − u‖22 + λ (J1 � . . .� Jm)︸ ︷︷ ︸

J

(u)
}

with Ji(u) = ‖Liu‖1 (2.60)

has a unique solution û and û can be characterized by similar conditions as in Propo-
sition 2.4.3:

Theorem 2.6.2 For any matrices Li ∈ RNi,N , i = 1, . . . ,m, the minimization problem
(2.60) has a unique solution. This solution is given by û ∈ RN if and only if conditions
i) - iii) of Theorem 2.4.1 hold true, where L2(Ω) has to be replaced by RN with the
Euclidean inner product. In addition, we have that v̂ ∈ CJ if and only if there exists

a vector V̂ =
(
(V̂ (1))T, . . . , (V̂ (m))T

)T
with V̂ (i) ∈ RNi , i = 1, . . . ,m, such that

v̂ := LT

1 V̂
(1) = . . . = LT

mV̂
(m) and ‖V̂ ‖∞ ≤ 1.

Proof: Since the functions Ji(u) = ‖Liu‖1, Li ∈ RNi,N , i = 1, . . . ,m, are again
proper, convex, positively homogeneous and l.s.c. with Ji(u) = Ji(−u), Proposition
2.6.1 implies immediately that their infimal convolution J = J1 � . . . � Jm is also
proper, convex, positively homogeneous and l.s.c. Besides, it is easy to see that J is
nonnegative, since all Ji are nonnegative. Thus, the first part of the assertion follows
immediately by Proposition 2.4.3.
To prove the second part recall that for any proper, convex, l.s.c. and positively
homogeneous function ψ : RN → R ∪ {+∞} we have that ψ = σCψ := supv∈Cψ〈·, v〉,
i.e., ψ is the support function of the nonempty, closed, convex set

Cψ = {v ∈ RN : 〈v, w〉 ≤ ψ(w) ∀w ∈ RN},
see, e.g., [173, Cor. 13.2.1]. By [173, Thm. 13.2] the conjugate function of ψ is further
the indicator function ψ∗ = ιCψ . Hence, it holds that J = σCJ and Ji = σCJi with

CJi := {v = LT
i V

(i) : ‖V (i)‖∞ ≤ 1}, i = 1, . . . ,m, according to Proposition 2.4.3.
Since we know by [173, Thm. 16.4] that (J1 � . . . � Jm)

∗ = J∗
1 + . . . + J∗

m, we obtain
further

ιCJ = J∗ = J∗
1 + . . .+ J∗

m = ιCJ1 + . . .+ ιCJm = ιCJ1∩...∩CJm ,

which finally implies that

CJ =
m⋂

i=1

CJi = {v = LT
i V

(i) : ‖V (i)‖∞ ≤ 1, i = 1, . . . ,m}.

�
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2.6 Anisotropic Infimal Convolution Regularization

By this theorem we know in particular that the infimal convolution approach (2.60)
with Li = Dxi , i = 1, 2, has a unique solution. Similarly to Corollary 2.4.4 ii) it
can now be shown that this minimization problem preserves + junctions like the one
depicted in Figure 2.7 for appropriately chosen discrete derivative operators Dx1 , Dx2 .
Interestingly, the observed loss of contrast in the result û is significantly reduced
compared to the result deduced in Corollary 2.4.4 ii):

Corollary 2.6.3 Let x1,0, x2,0 ≥ 0 and x1,0+a, x2,0+b ≤ n−2. ForR1 := {x1,0 + 1, . . . ,
x1,0 + a} × {0, . . . , n − 1} and R2 := {0, . . . , n − 1} × {x2,0 + 1, . . . , x2,0 + b} set
f := c11R1 + c21R2 with c1, c2 > 0 as in Corollary 2.4.4 ii). Then, for the first matrices
Dx1 , Dx2 in (2.41) with H1(n − 1, n − 1) = −1 the solution of (2.60) with Li = Dxi ,
i = 1, 2, is given by

û =
(
c1−

n− b

n2 − ab
λ
)
1R1+

(
c2−

n− a

n2 − ab
λ
)
1R2 for λ ≤ min

{
n2 − ab

n− b
c1,

n2 − ab

n− a
c2

}
.

If Dx1 , Dx2 coincide with one of the choices in (2.41), the minimizer û of (2.60) with
Li = Dxi , i = 1, 2, is given by û = f for all λ ≥ 0.

Proof: To show the first part of the assertion, assume that Dx1 , Dx2 are given as on
the left of (2.41) with H1(n− 1, n− 1) = −1. Besides, set

V̂ (1)(x1, x2) :=





− n−b
n2−ab(x1 − x1,0) if x1 ∈ I

(2)
1 , x2 ∈ I

(1)
2 ∪ I(3)2 ,

− n−b
n2−ab a if x1 ∈ I

(3)
1 , x2 ∈ I

(1)
2 ∪ I(3)2 ,

− n−a
n2−ab(x1 + 1) if x1 ∈ I

(1)
1 , x2 ∈ I

(2)
2 ,

− n−a
n2−ab(x1 + 1)− n−b

n2−ab(x1 − x1,0) if x1 ∈ I
(2)
1 , x2 ∈ I

(2)
2 ,

− n−a
n2−ab(x1 + 1)− n−b

n2−ab a if x1 ∈ I
(3)
1 , x2 ∈ I

(2)
2 ,

0 otherwise,

V̂ (2)(x1, x2) :=





− n−a
n2−ab(x2 − x2,0) if x1 ∈ I

(1)
1 ∪ I(3)1 , x2 ∈ I

(2)
2 ,

− n−a
n2−ab b if x1 ∈ I

(1)
1 ∪ I(3)1 , x2 ∈ I

(3)
2 ,

− n−b
n2−ab(x2 + 1) if x1 ∈ I

(2)
1 , x2 ∈ I

(1)
2 ,

− n−b
n2−ab(x2 + 1)− n−a

n2−ab(x2 − x2,0) if x1 ∈ I
(2)
1 , x2 ∈ I

(2)
2 ,

− n−b
n2−ab(x2 + 1)− n−a

n2−ab b if x1 ∈ I
(2)
1 , x2 ∈ I

(3)
2 ,

0 otherwise,

for I
(1)
1 := {0, . . . , x1,0}, I(2)1 := {x1,0+1, . . . , x1,0+a}, I(3)1 := {x1,0+a+1, . . . , n− 1},

and I
(1)
2 := {0, . . . , x2,0}, I(2)2 := {x2,0+1, . . . , x2,0+ b}, I(3)2 := {x2,0+ b+1, . . . , n−1}.

Then, straightforward computations yield ‖V̂ (i)‖∞ ≤ 1, i = 1, 2, and

v̂ := DT
x1
V̂ (1) = DT

x2
V̂ (2) =

n− b

n2 − ab
1R1 +

n− a

n2 − ab
1R2 .
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2. Anisotropic Smoothing Facing Additive Gaussian Noise

Hence, v̂ ∈ CJ and we have

û = f − λv̂ = (c1 −
n− b

n2 − ab
λ) 1R1 + (c2 −

n− a

n2 − ab
λ) 1R2 = d1 1R1 + d2 1R2

with d1 := c1 − n−b
n2−abλ, d2 := c2 − n−a

n2−abλ so that

〈û, v̂〉 = (n− b) a
n− b

n2 − ab
d1 + (n− a) b

n− a

n2 − ab
d2 + ab (

n− b

n2 − ab
+

n− a

n2 − ab
) (d1 + d2)

=
a(n− b)2 + ab(n− b) + ab(n− a)

n2 − ab
d1 +

b(n− a)2 + ab(n− b) + ab(n− a)

n2 − ab
d2

= ad1 + bd2.

By the proof of Theorem 2.6.2 we know that

J(û) = sup
v∈CJ

〈û, v〉 ≥ 〈û, v̂〉 = ad1 + bd2.

On the other hand, for ũ1 = d2 1R2 , ũ2 = d1 1R1 we have that û = ũ1 + ũ2 and

J(û) = inf
u1,u2

û=u1+u2

{‖Dx1u1‖1 + ‖Dx2u2‖1} ≤ ‖Dx1ũ1‖1 + ‖Dx2 ũ2‖1 = bd2 + ad1

as long as λ ≤ min{n2−ab
n−b c1,

n2−ab
n−a c2}. This finally implies that

J(û) = ad1 + bd2 = 〈û, v̂〉 if λ ≤ min{n
2 − ab

n− b
c1,

n2 − ab

n− a
c2}

so that all conditions of Theorem 2.6.2 are fulfilled and û is the sought minimizer for
λ ≤ min

{
n2−ab
n−b c1,

n2−ab
n−a c2

}
.

To prove the second part of the assertion assume thatDx1 , Dx2 coincide with one of the
choices in (2.41). Besides, set û = f , ũ1 = c2 1R2 and ũ2 = c1 1R1 so that û = ũ1 + ũ2.
Then,

0 ≤ min
u∈RN

{ 1

2
‖f − u‖22 + λJ(u) } ≤ 1

2
‖f − û‖22 + λ(‖Dx1ũ1‖1 + ‖Dx2ũ2‖1) = 0

and thus, û is the sought minimizer for all λ ≥ 0. �

A new anisotropic infimal convolution approach Similarly to Subsection 2.4.2
we now want to adapt the regularizer (2.57) so that arbitrary X junctions can be
preserved. The idea here is to consider instead of (2.57) the discrete counterpart of
the functional

J(u) = inf
u1,u2

u=u1+u2

{∫

Ω

|rT1 ∇u1|+ |rT2 ∇u2| dy
}
, (2.61)
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2.6 Anisotropic Infimal Convolution Regularization

where r1, r2 ∈ R2, r1 ∦ r2, are supposed to have the same orientations as the lines of
the X junctions which shall be preserved. For r1 = (1, 0)T, r2 = (0, 1)T we obviously
have that (2.57) and the discretized version of (2.61) coincide. For differently oriented
vectors r1, r2 the regularizer (2.61) can be motivated similarly to the justification
of (2.46) in Subsection 2.4.2 as we will see in the following: For this purpose, set
V = (r1, r2)

T, fV = f(V T·) and uV = u(V T·). If we assume that u is an image of an
X junction with lines parallel to r1, r2, then the coordinate transformation y = V Tx
in uV will align the lines of the junction with the coordinate axes so that uV is an
image of a + junction. Moreover, for any image u it holds that

1

|detV |

(
1

2
‖f − u‖2L2

+ λ inf
u1,u2

u=u1+u2

{∫

R2

|rT1 ∇u1|+ |rT2 ∇u2| dy
})

(2.62)

=
1

2
‖f(V T· )− u(V T· )‖2L2

+ λ inf
u1,u2

u=u1+u2

{∫

R2

|rT1 ∇yu1(V
Tx)|+ |rT2 ∇yu2(V

Tx)| dx
}

=
1

2
‖fV − uV ‖2L2

+ λ inf
u1,V ,u2,V

uV =u1,V +u2,V

{∫

R2

|rT1 V −1 ∇u1,V |+ |rT2 V −1 ∇u2,V | dx
}

=
1

2
‖fV − uV ‖2L2

+ λ inf
u1,V ,u2,V

uV =u1,V +u2,V

{∫

R2

|(1, 0)∇u1,V |+ |(0, 1)∇u2,V | dx
}

=
1

2
‖fV − uV ‖2L2

+ λ inf
u1,V ,u2,V

uV =u1,V +u2,V

{∫

R2

|∂x1u1,V |+ |∂x2u2,V | dx
}
. (2.63)

Hence, û is the minimizer of (2.62) if and only if ûV = û(V T·) minimizes (2.63). Since
we showed, at least in a discrete setting, that minimizing (2.63) preserves in general
+ junctions, the energy functional (2.62) is a good choice if we want to preserve X
junctions with lines parallel to r1, r2.

To estimate appropriate vectors r1, r2 for each image point, we can use the orientation
tensors deduced from the transparent model in Subsection 2.3.3. However, in contrast
to (2.46) interchanging the orientations vectors r1(i, j) and r2(i, j) for some pixel
(i, j) influences in general the minimizer of (2.62). Therefore, we need to be careful
which vectors to assign to r1(i, j) or r2(i, j). For images f which are expect for noise
mainly dominated by two superimposed one-dimensional patterns, we will group the
orientations in such a way that the vector fields r1, r2 become as smooth as possible.
For more complicated structures more sophisticated approaches are required.
In any case, note that due to the infimum in (2.62) a general assumption of this model
is that the sought minimizer û can be decomposed into two images û1 and û2 so that
each ûi is almost constant in direction ri(i, j) at pixel (i, j). Hence, this assumption
should hold for any image to be reconstructed.
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2. Anisotropic Smoothing Facing Additive Gaussian Noise

2.6.2 Discretization and Minimization

The functional (2.62) leads for orientation vectors r1 = (r1,1, r1,2)
T, r2 = (r2,1, r2,2)

T

to the discretized minimization problem

argmin
u∈RN

{ 1

2
‖f − u‖22 + λ inf

u1,u2
u=u1+u2

{
‖V1D︸︷︷︸

M1

u1‖1 + ‖V2D︸︷︷︸
M2

u2‖1
}}

, (2.64)

where D = (DT
x1
, DT

x2
)T is again a discrete gradient operator and the matrices V1, V2

are defined by Vi = (diag(vec(ri,1)), diag(vec(ri,2))) for i = 1, 2.
As in Subsection 2.4.3 we restrict our attention to quadratic images and set D to be
second matrix in (2.41). Moreover, we add the term ν‖(H1⊗H1)u‖1 with ν ≥ 0 to each
function Ji(u) = ‖Miu‖1 to suppress the possible appearance of checkerboard patterns.

Again, this is the same as substituting each matrix Mi by M̃i = (MT
i , ν(H1 ⊗H1)

T)T.

Instead of determining the minimizer û of (2.64) directly, we can again solve the
corresponding dual problem

v̂ = argmin
v∈RN

1

2
‖f − λ v‖22 subject to v =MT

1 W1 =MT
2 W2,

‖Wi‖∞ ≤ 1, i = 1, 2

and set û = f − λ v̂. This problem can for example be solved by SOCP, cf. the
explanations in Subsection 2.4.3. Alternatively, we can also rewrite the primal problem
(2.64) in the form

(
û1
û2

)
= argmin

u1,u2∈RN

{ 1

2
‖f − u1 − u2‖22 + λ

(
‖M1u1‖1 + ‖M2u2‖1

)}

= argmin
u1,u2∈RN

{ 1

2

∥∥f − (IN , IN)

(
u1
u2

)∥∥2
2
+ λ

∥∥
(
M1 0N,N
0N,N M2

)(
u1
u2

)∥∥
1

}
, (2.65)

where 0M,N represents a zero matrix of sizeM×N and û = û1+ û2 denotes the sought
solution. Here, the vectors û1, û2 are in general not unique, although û has this
property. To solve (2.65) we can for example apply the alternating direction method
of multipliers (ADMM) [26, 76, 88, 93] or equivalently the alternating split Bregman
algorithm [96]. A detailed description of this approach has been provided in [SST11].

2.7 Numerical Experiments

Finally, we want to demonstrate the good performance of the proposed models by nu-
merical examples. For this purpose, all methods have been implemented in MATLAB
and are applied to test images with gray values in the range [0, 255]. The parameters
of the models are chosen with respect to the best visual results. Moreover, we use
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2.7 Numerical Experiments

Figure 2.10: Denoising results for the image at Figure 2.1 (top middle). Top left: Original image.
Top right: Denoised image using the variational approach proposed in Subsection 2.4.2 with σ = 2.5,
ρ = 20, λ = 800 and ν = 0.1. Bottom left: Denoised image by anisotropic diffusion with diffusion
tensors (2.51) adapted for rotated rectangles (σ = 2.5, ρ = 20) and Perona-Malik diffusivity (2.54)
(γ = 1.5). Bottom right: Denoised image after iterating two times the NL means filter (t = 30,
f = 10, h = 4000) available at [142]. The result is slightly worse than those of our methods.

again the MATLAB routine imagesc to visualize the images, which applies an affine
gray value scaling setting the minimal image value to black and the maximal gray
value to white.

2.7.1 Results for Images with Rotated or Sheared Shapes

To start with, we first concentrate on the restoration methods for images containing
rotated, respectively sheared shapes in Subsections 2.4.2 and 2.5.1. To discretize the
partial derivatives of the involved orientation tensors we apply again central differ-
ences with the additional smoothing filter 1

16

(
3 10 3

)
orthogonal to the derivative

direction, cf. Subsection 2.5.2. If not stated otherwise, we use for all diffusion experi-
ments the time step size τ = 0.1 and 4000 iterations, i.e., a diffusion time of t̂ = 400.
Besides, we choose ν = 0.001 to avoid any checkerboard effects.
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2. Anisotropic Smoothing Facing Additive Gaussian Noise

For our first example we denoised the initial test image in Figure 2.1 (top middle)
with our new anisotropic methods designed for images with rotated shapes. Figure
2.10 (top right) shows the result of the anisotropic regularization approach proposed in
Subsection 2.4.2. In contrast to the denoising results in Figure 2.1 the vertices of the
rectangles are well preserved here. This is also the case if we use the anisotropic diffu-
sion approach described in Algorithm 2.5.1 with the diffusion tensors (2.51) adapted
for rotated rectangles, see Figure 2.10 (bottom left). For comparison we also applied
iteratively the NL means filter [39] available at [142]. Since this method uses the in-
formation of similar patches in the neighborhood of each pixel, it shows at least after
two iterations also a good performance in the presence of strong noise. However, the
vertices are slightly more rounded.

For our next examples we applied the results of Section 2.3.2 to denoise images with
sheared shapes. The functions ϕv, ϕe are set to

ϕv (x) := e−(x/c)4 , c := 0.06 max
x∈Ω,

λ1(x)>0

{ ∣∣∣∣
λ2(x)

λ1(x)

∣∣∣∣ |∇fσ̃|2(x)
}
,

ϕe(x) := sin
(π
2
x
)
, x ∈ [0, 1]

with λ1, λ2 being the eigenvalues of the classical structure tensor Jρ used in Section
2.3.2. As displayed in Figure 2.11 (top right) the structure tensor adapted for sheared
shapes yields good estimates for the shear parameters of the noisy image at top left.
Moreover, Figure 2.11 (bottom) shows that our new restoration methods preserve the
vertices of the parallelograms very well.
Of course, these approaches can also be applied for more general shapes as long as all
vertices have one horizontal edge. An example with such shapes is given in Figure 2.12.
To test our method also on real–world data we included Figure 2.13. Here, the new
variational approach performs much better than ROF, since due to the estimated shear
parameters the shapes of the shadows are preserved much more accurately.

Regarding possible applications we applied our new angle estimation method also to
an image with differently oriented toy cars. As visible in Figure 2.14 (right), the
orientations of the cars are well estimated by our new approach and through the color
coding of the angles equally oriented cars are grouped together. In connection with
quality control this might for example be helpful to detect wrongly oriented objects
very easily.
Another application of our methods for rotated rectangular shapes is presented in
Figure 2.15. Here, we have extracted the cartoon of a real–world city area with
the anisotropic regularization method of Subsection 2.4.2. The result presented in
Figure 2.15 (top right) shows that the estimated rotation angles approximate well
the orientations of the houses. For this reason, their shapes are well preserved in
the cartoons while the details have been removed. If we now apply the Canny edge
detector [45] implemented in the MATLAB edge routine to the original image as well
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Figure 2.11: Top left: Noisy image of two sheared rectangles (ζ1 = 0.5 and ζ2 = −1) corrupted
by additive Gaussian noise of standard deviation 150. Top right: Estimated shear parameters ζ
for σ̃ = 5, ρ = 2, ρx = 35 and ρy = 20. Bottom left: Denoised image using the regularization
method proposed in Subsection 2.4.2 with the shear parameters ζ depicted at top right, λ = 1000
and ν = 0.1. Bottom right: Denoised image by the anisotropic diffusion approach with diffusion
tensors (2.52) adapted for sheared shapes (σ = 2.5) and Perona-Malik diffusivity (2.54) (γ = 1.5).

as to our simplified one, we see that the shapes of the houses are well extracted from
the simplified image without the details contained in the original one. The obtained
edge image can now be used, e.g., for building segmentation. A first overview on the
vast literature on this topic can be found in [144]. To be able to provide an example we
have implemented the windowed Hough transform for extracting rectangles presented
in [53]. The results are depicted in Figures 2.16 and 2.17. By using the edge image of
the cartoon in Figure 2.15 (bottom middle) instead of the original image we benefit
from a lower risk of detecting false positives as well as a reduction in the time required
for the segmentation.
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Figure 2.12: Top left: Noisy image corrupted by additive Gaussian noise of standard deviation
100. Top right: Estimated shear parameters ζ for σ̃ = 2, ρ = 1, ρx = 12 and ρy = 25. Bottom
left: Denoised image using the regularization method proposed in Subsection 2.4.2 with the shear
parameters at top right, λ = 600 and ν = 0.07. Bottom right: Denoised image by anisotropic diffusion
(σ = 1.5, 3000 iterations) with diffusion tensors (2.52) adapted for sheared shapes and Perona-Malik
diffusivity (2.54) (γ = 1.5).

2.7.2 Results for Images with Arbitrary Double Orientations

Next, we will focus on images with arbitrary double orientations. To discretize the
derivatives occurring in the double orientation tensors examined in Subsection 2.3.3
we apply the optimized 5× 5 filters suggested by Scharr in [182].
For our first example in Figure 2.18 we used a noisy image with various shapes and
restored it by ROF, nonlocal means and by the anisotropic regularization method pro-
posed in Subsection 2.4.2 using orientations estimated by the double orientation tensor
following the occlusion model. Similarly as in Figure 2.1 the result by ROF suffers
again from rounding artifacts at corners, since to remove all noise the regularization
parameter λ has been chosen rather large. A better result is obtained by the nonlocal
means filter. Nevertheless, as visible at bottom right the new anisotropic regulariza-
tion approach performs best due to the incorporated orientation information.
Figure 2.19 shows the performance of these methods also on a real world image of a
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2.7 Numerical Experiments

Figure 2.13: Left to right: Original image (copyright by [94]), noisy image corrupted by additive
Gaussian noise of standard deviation 70, restored image by the anisotropic regularization method
proposed for sheared shapes in Subsection 2.4.2 (σ̃ = 6, ρ = 1, ρx = ρy = 20, λ = 150, ν = 0.1), and
a denoised image by ROF (λ = 200) for comparison.
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Figure 2.14: Left: Real image of differently oriented toy cars. Right: Estimated orientations by the
new structure tensor method for rotated shapes (σ = 0.5, ρ = 15).

building. As expected, our new approach restores the shape of the building much bet-
ter than ROF. Unfortunately, both methods suffer from staircasing effects, which are
not present in nonlocal means result. On the other hand, due to the large smoothing
parameter necessary for this noise level, nonlocal means creates small blur artifacts
where our result shows sharp structures.

In our last example we finally want to point out the benefits of the anisotropic infimal
convolution approach presented in Subsection 2.6.1. For this purpose, Figure 2.20
shows results for an oriented texture consisting of two superimposed one-dimensional
patterns. This image can be well described by the transparent model so that it is
nearby to estimate its orientations by the corresponding tensor presented in Subsection
2.3.3. As displayed at bottom right the anisotropic infimal convolution approach
outperforms the regularization method proposed in Subsection 2.4.2 significantly for
this image. The reason is that the results of the approach of Subsection 2.4.2 are
either not smooth enough or for larger values λ too many details have been removed.
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Figure 2.15: Top left: Original image of a city area of Stuttgart (Germany). Top middle: Edges
detected by the Canny edge detector in the original image (σ = 0.5, thresh = [0.1, 0.3]). Top right:
Estimated rotation angles by the structure tensor adapted for rotated rectangles (σ = 0.5, ρ = 10).
Bottom left/middle: Cartoons generated by anisotropic regularization using the rotation angles at
top right, ν = 0.1 and λ = 50 (left), resp. λ = 100 (middle). Bottom right: Edges detected by the
Canny edge detector in the cartoon at bottom middle (σ = 0.5, thresh = [0.03, 0.12]).

Figure 2.16: Left: Part of the detected edges in
Figure 2.15 (bottom right). Right: Detected edges
+ segmented building (white line) by the windowed
Hough transform presented in [53].

Figure 2.17: Left: Another part of the de-
tected edges in Figure 2.15 (bottom right).
Right: Detected edges + segmented building
(white line) by the windowed Hough trans-
form presented in [53].

56



2.7 Numerical Experiments

Figure 2.18: Top: Noisy image corrupted by additive Gaussian noise of standard deviation 100 and
restored image by ROF (λ = 500). Bottom left: Denoised image by iterating two times the nonlocal
means filter [142] (t = 30, f = 5, h = 4000). Bottom right: Restored image by the anisotropic
regularization method proposed in Subsection 2.4.2 with double orientations estimated with respect
to the occlusion model (σ = 2, ρ = 6, λ = 900, ν = 0.02).

For comparison we have also implemented the diffusion method proposed by Scharr
in [182]. Nevertheless, the obtained result is also slightly worse than the one by our
infimal convolution approach.

57



2. Anisotropic Smoothing Facing Additive Gaussian Noise

Figure 2.19: Top: Noisy image corrupted by additive Gaussian noise of standard deviation 30 and
result by ROF (λ = 50). Bottom left: Denoised image by the nonlocal means filter [142] (t = 21,
f = 7, h = 1000). Bottom right: Result by the anisotropic regularization method proposed in
Subsection 2.4.2 with double orientations estimated with respect to the occlusion model (σ = 0.5,
ρ = 8, λ = 50, ν = 0.1).
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2.7 Numerical Experiments

Figure 2.20: Top, left to right: Original image (cf. [182]), noisy image corrupted by additive Gaussian
noise of standard deviation 10 and the result by the method of Scharr proposed in [182]. Bottom,
left to right: Denoised images by the anisotropic regularization method proposed in Subsection 2.4.2
with double orientations estimated with respect to the transparent model (σ = 2, ρ = 12, ν = 0.15,
λ = 4 (left), resp. λ = 10 (middle)) and finally the result by the infimal convolution approach (2.64)
(σ = 2, ρ = 12, λ = 40, ν = 0.03).
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In real-word applications we are often confronted with noise which is neither additive
nor Gaussian distributed. Typical examples are, e.g., Poisson noise or different types of
multiplicative noise. In the following, we proceed by outlining the practical relevance of
these types of noise in imaging. Afterwards, we study different variational approaches
for removing Poisson and multiplicative Gamma noise and show equivalence between
certain models. To finally compute the occurring minimizers an efficient algorithm
based on the alternating direction method of multipliers is proposed and its very good
performance is demonstrated by numerical examples.
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3. Variational Approaches Facing Poisson and Multiplicative Noise

3.1 Notation and Preliminaries

Before going into detail we fix some notation. First, all random variables occurring
in this chapter are named with capital letters and are supposed to be real-valued
and defined on a probability space (Ω,F , P ). As usual, Ω denotes the sample space,
F ⊂ 2Ω is a σ-algebra over Ω and P : F → [0, 1] represents the applied probability
measure. Moreover, the function pX stands either for the probability density function
of the random variable X if X is continuous or the probability mass function pX(k) :=
P (X = k) if X is discrete. Here, P (X = k) denotes the probability that X takes the
value k.
For any x with pX(x) > 0, the conditional density or respectively the conditional mass
function of a random variable Y given X = x is defined by

pY |X(· | x) :=
pY,X( · , x)
pX(x)

,

see, e.g., [101, p. 67/104]. For a continuous random variable Y it holds that

y∫

−∞

pY |X(t | x) dt = lim
ε→0+

P (Y ≤ y |X ∈ (x− ε, x+ ε]),

which shows the connections between a conditional density and the corresponding
conditional probability. Various rules for the calculation with conditional densities are
summarized in Appendix A, which will be used throughout this and the subsequent
chapter.

3.2 Poisson and Multiplicative Noise in Imaging

After these preliminaries we now want to outline the practical relevance of Poisson
and multiplicative noise in imaging.

3.2.1 Poisson Noise

Typically, Poisson noise appears in all applications where images are formed by count-
ing particles, usually photons, which arrive in the image domain, see, e.g., [22]. Here,
the number of particles ki ∈ N observed during a fix time interval [0, T ] at some posi-
tion i can be viewed as a realization of a discrete random variable Xi with probability
mass function

pXi(ki) = P (Xi = ki) =
λkii e

−λi

ki!
.

In short, we will write Xi ∼ Poisson(λi). Since the expectation value of Xi is
E(Xi) = λi, the parameter λi ≥ 0 stands for the expected number of occurrences
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3.2 Poisson and Multiplicative Noise in Imaging

at location i, which is typically proportional to length of the time interval T . If the
random variables Xi are pairwise independent for all locations i = 1, . . . , N , the joint
probability mass function of X = (Xi)i=1,...,N is given by

pX(k1, . . . , kN ) =
N∏

i=1

λkii e
−λi

ki!
. (3.1)

Real-world applications facing data corrupted Poisson noise include for example astro-
nomical imaging [28, 193, 194, 195], microscopy [35, 64, 124, 167], single particle emis-
sion computed tomography (SPECT) [156] or positron emission tomography (PET)
[35, 179, 180, 191]. Here, the recorded noisy data f = (fi)i=1,...,M with fi ∈ N can

often be interpreted as a realization of an independent random vector F̃ = (F̃i)i=1,...,M

such that
F̃i ∼ Poisson((Ku0)i), (Ku0)i ≥ 0, (3.2)

where u0 denotes the unknown noisefree image data we are interested in. The addi-
tional operator K models a possible transformation of the image data introduced by
the image acquisition process. In astronomical imaging or microscopy it is often a
convolution kernel corrupting the data even further.
For many applications u0 is known to be nonnegative, since it represents for example
density or intensity information. In addition, K is usually assumed to be linear and
nonnegativity preserving, which guarantees that (Ku)i ≥ 0 holds true for all possible
candidates u. If we interpret each candidate as a realization u = (ui)i=1,...,N of some
random vector U = (Ui)i=1,...,N with pU(u) > 0, the probability mass function in (3.1)

with λi := (Ku)i can be viewed as the conditional mass function of observing F̃ = f
given that U = u, i.e.,

pF̃ |U(f |u) =
M∏

i=1

(Ku)fii e
−(Ku)i

fi!
∀ f such that fi ∈ N, i = 1, . . . , N,

cf. [21, 22].

For some applications an additional random vector B = (Bi)i=1,...,M needs to be added

to F̃ to account for accidentally detected particles which have for example been emitted
from other sources than the object of interest. Examples include sky emission in
astronomy [128, 193, 194], reflections of the excitation light and auto-fluorescence of the
medium carrying the sample in fluorescence microscopy [22] or accidental coincidences
and attenuation in tomography [108, 109, 162, 224]. Here, we typically have again that
Bi ∼ Poisson(bi), where bi ≥ 0 stands for the average number of observed background

counts at location i. If all F̃i, Bi, i = 1, . . . ,M , are pairwise independent, this implies
that

Fi := F̃i+Bi ∼ Poisson((Ku0+b)i) and pF |U(f |u) =
M∏

i=1

(Ku+ b)fii e
−(Ku+b)i

fi!
, (3.3)
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3. Variational Approaches Facing Poisson and Multiplicative Noise

cf., e.g., [111, p. 119]. Hence, such effects can easily be included into the model.

Sometimes, it occurs that the data is also corrupted by noise which is not Poisson
distributed like for example read-out noise in the context of charge-coupled device
(CCD) cameras, cf. [193, 194, 195]. However, if the Poisson distributed noise is
dominating, the other noise sources can often be neglected, cf., [22]. Nevertheless,
there exist also some approaches trying to account for various types of noise like for
example Poisson noise and additive Gaussian noise, cf. [19, 128, 194].

3.2.2 Multiplicative Noise

In the case of multiplicative noise we assume that our given noisy data values fi can
be modeled as

fi = ui vi, i = 1, . . . , N,

where ui is again the original noisefree value of fi and vi denotes the corresponding
noise component. To incorporate the noise statistics, fi, ui and vi are supposed to be
realizations of continuous random variables Fi, Ui and Vi, respectively, with known
densities pV1 = . . . = pVN . Thus, Fi = Ui Vi, where all Ui and Vi are typically assumed
to be pairwise independent.
In practice, multiplicative noise occurs for example often as speckle [25, 97, 98, 207]
produced by various imaging systems. Real-world applications include but are not
limited to laser, ultrasonic [41, 202, 211] and synthetic aperture radar (SAR) imaging
[29, 139]. The exact statistics of the occurring noise represented by the density pVi
depend on different factors as for example outlined in [98, 123]. In case of fully

developed speckle, the magnitudes Ãi of the complex observations of these imaging
devices can be modeled as corrupted by multiplicative Rayleigh noise, cf. [98, 139]. To

see this in detail, let us assume that Ãi and Ai :=
√
Īi > 0 are realizations of random

variables Ãi and Ai, respectively, where Īi > 0 denotes the expected mean intensity
of the radiation measured at location i. Then, supposing that pAi(Ai) > 0 we know

from the literature that the conditional density function of Ãi given that Ai = Ai is

pÃi|Ai(Ãi|Ai) =
2Ãi
A2
i

exp

(
−Ã

2
i

A2
i

)
1R≥0

(Ãi).

With vi := Ãi/Ai and assuming that vi is a realization of a random variable Vi which

is independent from Ai, we obviously have that Ãi = Ai Vi and Proposition A.7 ii)
yields

pVi(vi) = pVi

(
Ãi
Ai

)
= Ai · pÃi|Ai(Ãi|Ai) =

vi
θ2

exp

(
− v2i
2θ2

)
1R≥0

(vi)

with θ = 1/
√
2. Consequently, Vi is a Rayleigh distributed random variable and

Ãi = Ai Vi can be considered as corrupted by multiplicative Rayleigh noise.
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3.2 Poisson and Multiplicative Noise in Imaging

Setting in a next step Ṽi := V 2
i , Īi := A2

i and Ii := Ã2
i = Īi Ṽi to obtain the corre-

sponding intensity data, it follows by Theorem A.1 that

pṼi(vi) =
1

2
√
|vi|

pVi

(√
|vi|
)
1R≥0

(vi) = exp(−vi) 1R≥0
(vi), (3.4)

i.e., the transformed random variables Ṽi are exponentially distributed with parameter
λ = 1. The intensities Ii = Ã2

i are thus corrupted by multiplicative exponentially
distributed noise and by Proposition A.7 ii) we have

pIi|Īi(Ii|Īi) =
1

Īi
exp

(
−Ii
Īi

)
1R≥0

(Ii) whenever pĪi(Īi) > 0.

Multilook data To improve the quality of such amplitude and intensity data, a
common approach in, e.g., SAR imaging is to average independent intensity observa-
tions I(j)

i = Īi Ṽ (j)
i , j = 1, . . . , L, of the same scene to obtain so-called multilook data,

where L denotes the number of looks, see, e.g., [25, 98, 139]. Setting

Ii :=
1

L

L∑

j=1

I(j)
i =

1

L

L∑

j=1

Īi Ṽ (j)
i = Īi

1

L

L∑

j=1

Ṽ
(j)
i = Īi Ṽi

with Ṽi :=
1
L

∑L
j=1 Ṽ

(j)
i we can easily see that such multilook data is still corrupted

by multiplicative noise. If all Ṽ
(j)
i are independent and exponentially distributed with

λ = 1 as in (3.4), we have by Lemma A.6 that Ṽi is further Gamma distributed with
density

pṼi(vi) =
LL

Γ(L)
vL−1
i exp(−Lvi) 1R≥0

(vi), (3.5)

where Γ denotes the Gamma function. Thus, Ii = Īi Ṽi is contaminated by multiplica-
tive Gamma noise and Proposition A.7 ii) implies that

pIi|Īi(Ii|Īi) =
LL

Γ(L)

IL−1
i

Īi
L

exp

(
−LIi

Īi

)
1R≥0

(Ii) whenever pĪi(Īi) > 0. (3.6)

For the corresponding amplitude data Ãi :=
√Ii = Ai Vi with Ai :=

√
Īi and

Vi :=

√
Ṽi we obtain by Corollary A.2 that

pVi(vi) = 2 vi pṼi(v
2
i ) 1R≥0

(vi) =
2LL

Γ(L)
v2L−1
i exp(−Lv2i ) 1R≥0

(vi). (3.7)

Hence, Vi is Nakagami distributed and the amplitude data Ãi = Ai Vi is corrupted by
multiplicative Nakagami distributed noise. Moreover, by Proposition A.7 ii) it holds
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that the conditional density of Ãi given that Ai = Ai is

pÃi|Ai(Ãi|Ai) =
2LL

Γ(L)

Ã2L−1
i

A2L
i

exp

(
−LÃ

2
i

A2
i

)
1R≥0

(Ãi) whenever pAi(Ai) > 0.

3.3 Variational Approaches by Bayesian Modeling

Now, let us assume that some noisy and possibly blurred or differently transformed
data f is given, where the noise statistics and the linear transformation are known. In
this case, a standard way for determining an estimate û of the original image data is
by maximum a posteriori (MAP) estimation, see, e.g., [103, 115, 153]. To be able to
apply this framework at least an estimate of the likelihood function pF |U(·|u) encoding
the noise statistics and the data formation process needs to be known. Moreover,
some a priori knowledge about the data to be reconstructed is required so that a
prior distribution pU can be defined. This prior encodes for each possible candidate
u how likely it is to actually observe it. Here, pF |U(·|u) and pU stand either for
conditional probability density functions if F , respectively U is a continuous random
vector or conditional mass functions if F , respectively U is discrete. If all the required
information is available, the a posteriori distribution pU |F (·|f) is also defined and an
estimate û of the noisefree image data can be determined from the noisy observation
f by solving

argmax
u

{pU |F (u|f)} = argmin
u

{− log pU |F (u|f)}. (3.8)

Hence, û is set to be one of the most likely candidates given the observation F = f .
Following Bayesian rules and neglecting constant terms which do not depend on u
problem (3.8) is equivalent to

argmin
u

{− log pF |U(f |u)− log pU(u)} (3.9)

with log 0 := −∞.

3.3.1 Variational Approaches for Poisson Noise

For the conditional mass function (3.3) corresponding to data corrupted by Poisson
noise it holds that

− log pF |U(f |u) =
N∑

i=1

(
(Ku+ b)i − fi log

(
(Ku+ b)i

)
+ log(fi!)

)
. (3.10)

With respect to (3.9) the additive term log(fi!) can here be neglected. In the following,
we will assume that f : Σ → R≥0, u : Ω → R and b : Σ → R≥0 are functions with
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3.3 Variational Approaches by Bayesian Modeling

open, bounded domains Ω,Σ ⊂ R2 and u ∈ U(Ω), f, b ∈ V(Σ) for some Banach spaces
U(Ω) and V(Σ). Since for most applications the noisefree image data is known to be
nonnegative, we set

pU(u) =

{
exp(−λJ(u)) if u ≥ 0,

0 otherwise
(3.11)

for λ > 0 and some functional J : U(Ω) → R≥0. Moreover, K : U(Ω) → V(Σ)
is supposed to be a linear, bounded and nonnegativity preserving operator so that
Ku ≥ 0 for all u ≥ 0. The resulting minimization problem corresponding to (3.9) with
the term (3.10) is given by

û = argmin
u∈U(Ω)
u≥0

{∫

Σ

Ku+ b− f log(Ku+ b) dx + λJ(u)

}
, (3.12)

cf. [22, 23], where K and b are supposed to be known. Thus, û denotes an estimate of
the original data u0 assuming that the relation between u0 and f is correctly described
by (3.3). To insured that (3.12) is well-defined, K, f and in particular J have to fulfill
some additional conditions. For details on this topic we refer to [35, 178] and references
therein.

In (3.12) the functional J plays usually the role of a regularizer with regularization
parameter λ and the integral term

Hf (u) :=

∫

Σ

Ku+ b− f log(Ku+ b) dx

is viewed as a data fidelity term. It is not hard to prove that Hf is convex. Moreover,
with v := Ku+ b it is up to additive terms that do not depend on u the same as

I(f, v) :=

∫

Σ

f log
f

v
− f + v dx =

∫

Σ

v − f log v + f log f − f dx,

which is known as Csiszár’s I-divergence [55] or generalized Kullback-Leibler diver-
gence. If I is finite, it coincides with the Bregman distance [32] of the (negative)
Boltzmann-Shannon entropy E(v) :=

∫
Σ
log v dx, cf. [169]. Therefore, it shares the

useful properties of a Bregman distance, in particular I(f, v) ≥ 0, which shows that
the functional Hf is bounded from below. In [169, 170] further properties of I have
been proven.

For choosing the regularizer J there exist many possibilities. A classical restoration
method related to J = 0 is for example the expectation-maximization (EM) algorithm
described in [63, 150, 170, 191] and references therein. This method can sometimes also
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be found under the name Richardson-Lucy algorithm due to [136, 171], and different
variants including for example [156] have been proposed.
A nontrivial regularizer which is frequently applied is the total variation (TV) semi-
norm

|u|BV := sup
V ∈C1

c (Ω,R
2)

‖ |V | ‖∞≤1

∫

Ω

u(x) div V (x) dx ∀ u ∈ L1(Ω). (3.13)

This regularizer is a special case of the anisotropic total variation (2.5) and reads for
L1(Ω) functions with weak first derivatives in L1(Ω) as

|u|BV =

∫

Ω

|∇u(x)| dx.

The corresponding space of functions of bounded variation is defined by

BV (Ω) = {u ∈ L1(Ω) : |u|BV <∞}
and forms a real Banach space with respect to the norm ‖u‖BV := ‖u‖L1 + |u|BV , cf.
[3, 8, 92, 145, 183, 210, 232]. Setting J := | · |BV and U(Ω) := BV (Ω) problem (3.12)
leads to the variational model

û = argmin
u∈BV (Ω)
u≥0

{∫

Σ

Ku+ b− f log(Ku+ b) dx + λ |u|BV
}
, (3.14)

which can for example be found in [15, 114, 129]. To keep terms simple we will refer
to this approach as the IDIV-TV method.

Alternatively to the total variation, nonlocal regularization terms of the form

J(u) =

∫

Ω

|∇wu| dx, |∇wu(x)| :=
(∫

Ω

(
u(y)− u(x)

)2
w(x, y) dy

)1/2
(3.15)

can be applied for some weight function w : Ω × Ω → R≥0. These regularizers have
been introduced and studied for variational models with L1 and L2 data fidelity terms
in [89, 90, 91, 121, 135, 160, 161, 229, 230]. Here, the involved weight functions are
typically chosen similarly to the weights of the nonlocal (NL) means filter [39] with
some modifications to fit the application at hand. In [178] a nice overview and anal-
ysis of nonlocal regularizers with non-symmetric weight functions has been provided.
Moreover, the variational model (3.12) has been applied with a nonlocal regularizer to
solve the inverse problem (3.2) facing Poisson noise.

As we will see in Section 3.4 model (3.12) with the total variation or nonlocal regular-
izers is not only well suited for restoring data corrupted by Poisson noise but also a
good choice for removing multiplicative Gamma noise. Before we explain this point in
more detail, we will have a closer look at some of the variational approaches suggested
in the literature for multiplicative Gamma noise.
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3.3.2 Variational Models for Multiplicative Gamma Noise

For the restoration of images f corrupted by multiplicative noise various methods have
been proposed in the literature like for example local linear minimummean square error
approaches [125, 130] or anisotropic diffusion methods [4, 123, 227]. Recently, also a
couple of variational approaches for removing multiplicative Gamma noise have been
presented. In this subsection, we will concentrate on variational methods including the
total variation as a regularizer. To examine the differences between the investigated
models we will have a look at their properties and apply them to the simplest possible
discrete signals f := (f1, f2)

T consisting of only two pixels so that the corresponding
discrete models are of the form

(û1, û2)
T = argmin

u=(u1,u2)T
{Hf1(u1) +Hf2(u2) + λ|u2 − u1|}. (3.16)

Log-model Facing multiplicative noise we know that f = u v. If the assumptions
u, v > 0 are reasonable, a first nearby idea is often to use a logarithmic transformation
to obtain transformed data log f = log u+ log v which is corrupted by additive noise.
With w := log u we may now apply for example the standard ROF model [52, 176] to

the noisy data f̃ := log f ∈ L2(Ω), f > 0, leading to the convex minimization problem

ŵ := argmin
w∈BV (Ω)

{
1

2

∫

Ω

(w − log f)2 dx+ λ|w|BV
}

with û := eŵ. (3.17)

Here, Ω is again considered to be an open, bounded and connected set with Lipschitz
boundary ∂Ω. In the following, we set further

fmin := ess inf f = sup
{
a ∈ R : µ({x ∈ Ω : f(x) < a}) = 0

}
,

fmax := ess sup f = inf
{
b ∈ R : µ({x ∈ Ω : f(x) > b}) = 0

}
,

i.e., fmin and fmax are respectively the essential infimum and essential supremum of
the given noisy image function f : Ω → R>0 with µ denoting the Lebesgue measure
on R2. Then, it is not hard to show that the minimizer of (3.17) has the following
properties:

Proposition 3.3.1 For the minimization problem (3.17) with f̃ = log f we have

i) Maximum-minimum principle:

log fmin ≤ ŵ ≤ log fmax a.e.

and therefore,
fmin ≤ û ≤ fmax a.e. (3.18)
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ii) (Logarithmic) mean value preservation:

∫

Ω

ŵ dx =

∫

Ω

f̃ dx and thus,

∫

Ω

log û dx =

∫

Ω

log f dx.

iii) L1-convergence to a constant solution:

lim
λ→∞

‖ŵ −mean
(
f̃
)
‖L1 = 0 with mean

(
f̃
)
:=

1

µ(Ω)

∫

Ω

f̃ dx.

Part i) of this proposition follows by standard results for the total variation, see, e.g.,
[122, Lem. 1] and the proof of [10, Thm. 4.1]. The proof of ii) can be found in [50]
and to prove iii) we can follow the lines of [11, p. 89] using the Poincaré inequality [9,
p. 302] and part ii).

In a discrete setting with an appropriate discretization the mean value preservation∑N
i=1 ŵi =

∑N
i=1 f̃i implies that

N∏

i=1

ûi =
N∏

i=1

fi.

Thus, the log-model (3.17) preserves the geometric mean rather than the arithmetic

mean. For λ → ∞ we even have that ŵi → 1
N

∑N
j=1 f̃j for all i = 1, . . . , N , and

therefore, û converges for increasing λ to a constant signal of value (
∏N

j=1 fj)
1/N . Due

to the assumption f = u v we know that

( N∏

j=1

fj

)1/N
=
( N∏

j=1

uj

)1/N ( N∏

j=1

vj

)1/N
.

Consequently, the preservation of the geometric mean of f is only reasonable if we
can assume that (

∏N
j=1 vj)

1/N = 1. However, if we consider all pixels fi, ui, vi to
be respectively realizations of corresponding random variables Fi, Ui, Vi fulfilling the
assumptions stated at the beginning of Subsection 3.2.2, it holds that

E
( 1

N

N∑

i=1

Fi

)
= E

( 1

N

N∑

i=1

UiVi

)
=

1

N

N∑

i=1

E(Ui)E(Vi) = E
( 1

N

N∑

i=1

Ui

)
E(Vk)

for k = 1, . . . , N . Since we know for, e.g., multiplicative Gamma noise that E(Vk) = 1,
k = 1, . . . , N , this implies that E

(
1
N

∑N
i=1 Fi

)
= E

(
1
N

∑N
i=1 Ui

)
and thus, the mean

value of f is likely to equal the mean value of u. However, since the geometric mean
of f is always smaller than its arithmetic mean provided that f is not constant, see,
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3.3 Variational Approaches by Bayesian Modeling

e.g., [112, p. 30], the solution û of (3.17) does in general not preserve the mean value
of f . Especially if f is corrupted by strong multiplicative noise, we must expect that
the mean value of û is a lot smaller than the mean of f . To examine this point in
more detail let us have a look at the following two pixel example:

Example (Two pixel signals)
The two pixel model (3.16) corresponding to (3.17) is given by

(ŵ1, ŵ2)
T = argmin

w=(w1,w2)T

{1
2
(w1 − log f1)

2 +
1

2
(w2 − log f2)

2 + λ|w2 − w1|
}

(3.19)

with (û1, û2)
T = (eŵ1 , eŵ2)T. For simplicity, let us assume that f1 ≥ f2 > 0. Then,

setting the subdifferential of the involved energy function to zero shows that with
increasing λ the solution (û1, û2)

T approaches (
√
f1f2,

√
f1f2)

T as follows:

û1 = f1 e
−λ, û2 = f2 e

λ for 0 ≤ λ <
1

2
log

f1
f2
,

û1 = û2 =
√
f1f2 for

1

2
log

f1
f2

≤ λ.

Supposing that f1 = c1u and f2 = c2u with c1 > c2 > 0 are two pixels corrupted
by multiplicative noise we obtain for λ ≥ 1

2
log f1

f2
= 1

2
log c1

c2
the constant solution

û1 = û2 =
√
f1f2 =

√
c1c2 u. Here, the critical value λ = log f1

f2
depends fortunately

only on the distortions c1, c2 and not on u. However, if c1, c2, c1 > c2 are chosen such
that f1+f2

2
= u, then

√
f1f2 < u.

Since the function g : [0, 1
2
log f1

f2
] → R defined by g(λ) = 1

2
(f1 e

−λ + f2 e
λ) is mono-

tonically decreasing with g(0) = 1
2
(f1 + f2) and g

(
1
2
log f1

f2

)
=

√
f1f2, the mean value

of (û1, û2)
T decreases monotonically to

√
f1f2 with increasing λ ∈ [0, 1

2
log f1

f2
] as de-

picted in Figure 3.1. Here, the difference between the arithmetic and geometric mean
of (f1, f2)

T can be arbitrarily large as we can easily verify by setting, e.g., f1 := cf ,
f2 :=

1
c
f with fixed f > 0 and increasing c ≥ 1.

Due to these observations model (3.17) does not seem to be an optimal choice for
removing multiplicative (Gamma) noise in images. A more sophisticated approach
for log-transformed data has for example been presented in [69, 70]. This method
combines curvelet shrinkage and TV regularization for the removal of multiplicative
Gamma noise.

AA-model Based on the MAP estimate (3.9) a different approach for multiplicative
Gamma noise has been proposed by Aubert and Aujol in [10]. For the deduction of this
model let us again assume that the discretized functions f , u and v with f = u v can be
considered as realizations of random vectors F = (F1, . . . , FN)

T, U = (U1, . . . , UN )
T
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λ

û1+û2
2

1
2
log f1

f2

√
f1f2

f1+f2
2

Figure 3.1: Graph illustrating the change in the mean value of the two-pixel signal (û1, û2)
T =

(eŵ1 , eŵ2)T solving (3.19) for increasing λ.

and V = (V1, . . . , VN )
T, respectively, where all Ui, Vi, i = 1, . . . , N , are pairwise

independent and each Vi is a Gamma distributed random variable with density (3.5).
Then, the conditional density (3.6) implies that

pF |U(f |u) =
N∏

i=1

pFi|Ui(fi|ui) =

(
LL

Γ(L)

)N N∏

i=1

fL−1
i

uLi
exp

(
−Lfi

ui

)
1R≥0

(fi)

whenever pU(u) > 0 and thus,

− log pF |U(f |u) = L
N∑

i=1

(
log ui +

fi
ui

)
− (L− 1)

N∑

i=1

log fi + C ∀ f ≥ 0

with C := N
(
log(Γ(L))−L logL

)
. Returning to the continuous setting and supposing

that pU is defined as in (3.11) with J(u) = |u|BV and u ∈ BV (Ω), the MAP approach
(3.9) finally leads for f > 0 to the non-convex minimization problem

argmin
u∈BV (Ω)
u>0

{∫

Ω

log u+
f

u
dx+ λ|u|BV

}
(3.20)

proposed in [10], where all terms which do not depend on u have been neglected.
As shown by Aubert and Aujol this minimization problem has for all f ∈ L∞(Ω)
with fmin > 0 at least one minimizer û which fulfills the maximum-minimum principle
(3.18). Moreover, restricting our attention to two pixel signals, further properties of
this minimizer can be deduced:

Example (Two pixel signals)
Let us assume that f = (f1, f2)

T with 0 < f2 ≤ f1 ≤ 3f2, which is for example the
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3.3 Variational Approaches by Bayesian Modeling

case if f1 = (1+ν) u and f2 = (1−ν) u with u > 0, 0 ≤ ν ≤ 1/2. Then, the minimizer
of the two pixel model (3.16) corresponding to (3.20) reads

û1 =
−1 +

√
1 + 4λf1
2λ

, û2 =
1−√

1− 4λf2
2λ

for 0 < λ <
2(f1 − f2)

(f1 + f2)2
,

û1 = û2 =
f1 + f2

2
for

2(f1 − f2)

(f1 + f2)2
≤ λ.

For f1 = (1+ ν) u and f2 = (1− ν) u representing to noisy pixels with the same initial
value u this means that we have to choose λ ≥ ν

u
to get back the original constant

signal (u, u)T. Since here the critical value λ = ν
u
is inversely proportional to u, we see

that with increasing λ noise survives unfortunately much longer for smaller values u.
Regarding the mean value of (û1, û2)

T it is not hard to show that

g :

(
0,

2(f1 − f2)

(f1 + f2)2

]
→ R defined by g(λ) =

1

4λ

(√
1 + 4λf1 −

√
1− 4λf2

)

is maximal for λ → 0 and λ = 2(f1−f2)
(f1+f2)2

, where limλ→0 g(λ) = g
(
2(f1−f2)
(f1+f2)2

)
= f1+f2

2
.

Furthermore, g reaches its minimum g(λ) =
√
f1f2 for λ = f1−f2

4f1f2
. Therefore, we have

again that √
f1f2 ≤ 1

2
(û1 + û2) ≤ 1

2
(f1 + f2) ∀ λ ≥ 0

and 1
2
(û1 + û2) varies with λ as depicted in Figure 3.2 (left).

Regarding these findings the AA-model (3.20) has thus also its shortcomings. Es-
pecially the non-convexity of (3.20) makes its minimization a lot more challenging
compared to other methods.

SO-model While the data fidelity term of the AA-model follows canonically from the
MAP approach related to multiplicative Gamma noise, the choice of the regularization
term is quite flexible. Replacing the regularizer |u|BV in (3.20) by | log u|BV and setting
w := log u as for the log-model we obtain the alternative minimization problem

ŵ = argmin
w∈BV (Ω)

{∫

Ω

w + fe−w dx+ λ|w|BV
}

with û = eŵ. (3.21)

This model is a special case of the approach considered by Shi and Osher in [192].
Indeed, their method involves the more general data fidelity term

Hf (u) =

∫

Ω

(a+ b)w + a f e−w +
b

2
f 2 e−2w dx, a, b ≥ 0,

which also includes the model proposed in [175]. A slight modification of (3.21) has
also been considered in [110], where the authors added a quadratic term to obtain a
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λ

û1+û2
2

1
4
f1−f2
f1f2

2(f1−f2)
(f1+f2)2

√
f1f2

f1+f2
2

λ

û1+û2
2

√
f1−

√
f2√

f1+
√
f2

f1−f2
f1+f2

1
2

(
f1+f2

2
+
√
f1f2

)

f1+f2
2

Figure 3.2: Graphs illustrating the changes in the mean values of the two pixel solutions (û1, û2)
T of

the AA-model (left) and SO-model (right) with increasing λ.

simple alternating minimization algorithm.
Compared to (3.20) the minimization problem (3.21) has the big advantage that it is
strictly convex and attains a unique minimum for f ∈ L∞(Ω) with fmin > 0 as we will
see in the next section. Moreover, û fulfills again the maximum-minimum principle
(3.18), cf. [113]. To examine further properties of the model let us have again a look
at the two pixel case:

Example (Two pixel signals)
For f = (f1, f2)

T with f1 ≥ f2 > 0 the solution of the two pixel model (3.16)
corresponding to (3.21) is given by

û1 =
f1

1 + λ
, û2 =

f2
1− λ

for 0 ≤ λ <
f1 − f2
f1 + f2

,

û1 = û2 =
f1 + f2

2
for

f1 − f2
f1 + f2

≤ λ.

Supposing that f1 = (1 + ν) u, f2 = (1 − ν) u, the original constant signal of value u
is reconstructed if λ ≥ ν, where in contrast to the AA-model the critical value λ = ν
is now independent of u.
Having a look at the function g : [0, f1−f2

f1+f2
] defined by g(λ) = 1

2

(
f1
1+λ

+ f2
1−λ
)
it is not

hard to show that g is convex and reaches its minimum g(λ) = 1
2

(
f1+f2

2
+
√
f1f2

)
for

λ =
√
f1−

√
f2√

f1+
√
f2
. Besides, g has a maximum of g(λ) = f1+f2

2
for λ = 0 and λ = f1−f2

f1+f2
.

Consequently, we know that

1

2

(f1 + f2
2

+
√
f1f2

)
≤ 1

2
(û1 + û2) ≤ 1

2
(f1 + f2) ∀ λ ≥ 0,

which shows that although the mean value of f is not preserved, the maximal deviation
of 1

2
(û1 + û2) from 1

2
(f1 + f2) is significantly less compared to the AA-model. The

changes in 1
2
(û1 + û2) with respect to λ are illustrated in Figure 3.2 (right).

74



3.4 Equivalence of the SO-Model and IDIV-TV

Regarding these observations the SO-model (3.21) seems to be a promising candidate
for restoring images corrupted by multiplicative (Gamma) noise.

3.4 Equivalence of the SO-Model and IDIV-TV

Interestingly, we can show that the minimizer

û = argmin
u∈BV (Ω)
u≥0

{∫

Ω

u− f log u dx + λ |u|BV
}

(3.22)

of the IDIV-TV model (3.14) with K(u) = u, b = 0 and the minimizer ŵ of the
SO-model (3.21) coincide in the sense that û = eŵ for

(I) Ω being an open, bounded and connected set with Lipschitz boundary ∂Ω,

(II) f ∈ L∞(Ω) with fmin > 0, which includes that fmax <∞.

This is quite surprising, since these models have been designed to restore images
corrupted by noise of totally different distributions. An intuitive justification for this
claim can be given by the following heuristic arguments:

Remark 3.4.1 (A heuristic explanation)
Let us assume for a moment that the minimization in (3.21) and (3.22) is restricted
to sufficiently smooth functions. Then, the convexity of the functionals in (3.21) and
(3.22) implies that the minimizers ŵ of (3.21) and û > 0 of (3.22) can be characterized
by the Euler-Lagrange equations

0 = 1− fe−ŵ − λ div
∇ŵ
|∇ŵ| and 0 = 1− f

û
− λ div

∇û
|∇û| , respectively

whenever |∇ŵ| 6= 0 and |∇û| 6= 0. Since ∇ew = ew∇w, we have for u := ew that
∇u(x) = 0 if and only if ∇w(x) = 0. Hence, setting ũ := eŵ implies that

∇ŵ
|∇ŵ| =

eŵ∇ŵ
eŵ|∇ŵ| =

∇ũ
|∇ũ| ,

which shows with the above Euler-Lagrange equations that û = eŵ. These arguments
work also for the anisotropic TV regularizers introduced in Section 2.1.

Of course, this justification has several gaps. To be able to give a precise proof we
need to take into account that the minimization in (3.21) and (3.22) is performed over
the whole of BV (Ω) ⊂ L1(Ω). Unfortunately, the involved data fidelity terms are
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Figure 3.3: Left: The integrand ϕ(x, ·) for f(x) = e−1 (dotted), f(x) = 1 (solid) and f(x) = e
(dashed). Middle: The integrand ψ(x, ·) for the same values of f(x). Right: The exponential
function (dashed) and the function gk defined in (3.30) for ak = −1 and bk = 1 (solid).

not continuous over Lp(Ω), 1 ≤ p < ∞, since their domains have an empty interior,
compare, e.g., [168, Lem. 4.1(ii)]. In the rest of this section we will show how to deal
with these facts.

For this purpose, we consider the integrands ϕ, ψ : Ω× R → [0,+∞] defined by

ϕ(x, s) := s+ f(x) e−s − log f(x)− 1, (3.23)

ψ(x, s) :=

{
s− f(x) log s+ f(x) log f(x)− f(x) for s > 0,

+∞ otherwise,
(3.24)

for which properties like continuity, lower semi-continuity, convexity and subdifferen-
tiability are always understood with respect to the second variable. It is not hard
to see that ϕ and ψ are proper, strictly convex and l.s.c. with respect to s as well
as measurable with respect to x. Since the sets domϕ(x, ·) and domϕ(x, ·) have in
addition a non-empty interior for every x, we know by [174, p. 176] that ϕ and ψ are
also normal in the sense defined in [174]. Besides, ϕ and ψ are nonnegative and for
fixed x ∈ Ω they attain their minimum 0 for s = log f(x) and s = f(x), respectively.
Figure 3.3 (left/middle) shows ϕ(x, ·), ψ(x, ·) for f(x) ∈ {e−1, 1, e}.

The integral functionals Sϕ, Sψ : L1(Ω) → [0,+∞] corresponding to our data fidelity
terms in (3.21) and (3.22) are now defined by

Sϕ(w) :=

∫

Ω

ϕ(x, w(x)) dx and Sψ(u) :=

∫

Ω

ψ(x, u(x)) dx, respectively.

Obviously, Sφ and Sψ are proper. Since ϕ and ψ are nonnegative and normal, we know
by [73, p. 239] that Sφ and Sψ are also nonnegative and l.s.c. Moreover, the fact that
ϕ and ψ are normal and strictly convex implies that Sφ and Sψ are strictly convex,
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too. By [174, p. 189] we thus have that

∂Sϕ(w) = {w∗ ∈ L∞(Ω) : w∗(x) ∈ ∂ϕ(x, w(x)) a.e.}

=

{
{1− fe−w} for 1− fe−w ∈ L∞(Ω),

∅ otherwise,

∂Sψ(u) = {u∗ ∈ L∞(Ω) : u∗(x) ∈ ∂ψ(x, u(x)) a.e.}

=

{{
1− f

u

}
for u > 0 a.e. and 1− f

u
∈ L∞(Ω),

∅ otherwise.

Hence, the equality
∂Sϕ(w) = ∂Sψ(e

w)

holds true.

Next, we define the functionals Tϕ, Tψ : L1(Ω) → [0,+∞] corresponding to (3.21) and
(3.22) by

Tϕ(w) := Sϕ(w) + λ |w|BV , Tψ(u) := Sψ(u) + λ |u|BV . (3.25)

The properties of Sϕ, Sψ and | · |BV , see, e.g., [3, 79, 183], immediately imply that Tϕ
and Tψ are proper, l.s.c. and strictly convex. Since we will show in the next lemma
that Tϕ and Tψ are also BV -coercive, the same arguments as, e.g., in [35, Thm. 5.4.7]
imply that there exist minimizers of both functionals and these minimizers are unique
due to the strict convexity of Tϕ and Tψ, respectively.
For the proof of the subsequent lemma we need the existence of constants Cφ, Cψ > 0
and Dφ, Dψ > 0 such that

ϕ(x, s) ≥ Cϕ|s| −Dϕ and ψ(x, s) ≥ Cψ|s| −Dψ. (3.26)

To obtain such constants set for example

a < min{0, log(fmin)}, b > max{0, log(fmax)},
Ca := 1− fmin e

−a < 0, Cb := 1− fmax e
−b > 0,

wa := a+ fmin e
−a − log(fmin)− 1, wb := b+ fmax e

−b − log(fmax)− 1,

ub := eb − fmax b+ fmax log(fmax)− fmax

and take

Cϕ = min{|Ca|, Cb}, Cψ = Cb,

Dϕ = max{Ca a− wa, Cb b− wb}, Dψ = Cb e
b − ub.

Lemma 3.4.2 Let Ω and f fulfill conditions (I), (II). Then, Tϕ and Tψ are BV -
coercive.
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Proof: In the following, we will concentrate on Tψ, since the arguments are the same
for Tϕ and Tψ. By the Poincaré inequality [9, p. 302] we know that there exists a
constant CP such that

‖u− ū‖L1 ≤ CP |u|BV , ū :=
1

µ(Ω)

∫

Ω

u(x) dx

with µ denoting again the Lebesgue measure on R2. Hence, we have

‖u‖L1 ≤ ‖u− ū‖L1 + |ū|µ(Ω) ≤ CP |u|BV + |ū|µ(Ω),
‖u‖BV ≤ (CP + 1)|u|BV + |ū|µ(Ω) ≤ C Tψ(u) + |ū|µ(Ω) (3.27)

for C := (CP + 1)/λ. By (3.26) it holds that

Sψ(u) ≥ Cψ

∫

Ω

|u(x)| dx−Dψ µ(Ω) ≥ µ(Ω)(Cψ|ū| −Dψ)

and consequently

|ū| ≤ 1

µ(Ω)Cψ
Sψ(u) +

Dψ

Cψ
≤ 1

µ(Ω)Cψ
Tψ(u) +

Dψ

Cψ
.

Thus, we finally obtain with (3.27) that

‖u‖BV ≤ (C + 1/Cψ)Tψ(u) + µ(Ω)Dψ/Cψ,

which implies that Tψ(u) → ∞ whenever ‖u‖BV → ∞. �

For another proof of the BV -coercivity of Tψ see [35, 178]. To finally show that the
solutions of (3.21) and (3.22) coincide we need the following theorem:

Theorem 3.4.3 i) Let u ∈ BV (Ω) and assume that h : R → R is a non-decreasing
and Lipschitz continuous function. Then, h(u) ∈ BV (Ω) and ∂|u|BV ⊂ ∂|h(u)|BV .

ii) Let φ : Ω × R → (−∞,+∞] be a measurable function and assume that there
exists a nonnegative function γ ∈ L1(Ω) and constants C > 0 and 1 ≤ p < ∞
such that

|φ(x, s)| ≤ C|s|p + γ(x) a.e. x ∈ Ω, ∀s ∈ R. (3.28)

Then, the functional Sφ is Lp-continuous if and only if (up to equivalent inte-
grands) φ(x, ·) is continuous for almost every x ∈ Ω.

The proof of i) can be found in [183, p. 148] and for ii) see [84, p. 442]. Besides, part i)
with non-decreasing and locally absolutely continuous functions h has been considered
in [99].

The final theorem of this section is a special instance of a more general theorem proved
by Grasmair in [99]. For the sake of completeness we give the prove for our special
setting. For a generalization including also anisotropic TV regularizers we refer to [99].
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Theorem 3.4.4 (Equivalence of the SO-model and IDIV-TV)
Let Tϕ and Tψ be given by (3.25) and assume that conditions (I) and (II) are fulfilled.
Then, ŵ is the minimizer of Tϕ if and only if û = eŵ is the minimizer of Tψ.

Proof: In the following we show that ŵ = argminw Tϕ(w) implies eŵ = argminu Tψ(u).
The reverse direction follows immediately since the minimizers of Tϕ and Tψ are unique.

The idea for the prove is to approximate the integrands ϕ, ψ and the exponential
function by ’nicer’ functions for which the ’adapted’ assertion follows immediately by
Theorem 3.4.3 and then to apply Γ-convergence arguments to get the final result.

1. To this end, choose a sequence of increasing intervals [ak, bk] ⊂ [ak+1, bk+1] such
that

⋃
k[ak, bk] = R and ak < min{0, log(fmin)}, bk > max{0, log(fmax)} for all k ∈ N.

Moreover, let

ξk(x) := 1− f(x)e−ak < 0, ζk(x) := 1− f(x)e−bk > 0.

and define the truncated continuous integrands corresponding to ϕ, ψ for x ∈ Ω by

ϕk(x, s) :=





ϕ(x, ak) + ξk(x)(s− ak) if s < ak,

ϕ(x, s) if s ∈ [ak, bk],

ϕ(x, bk) + ζk(x)(s− bk) if s > bk,

ψk(x, s) :=





ψ(x, eak) + ξk(x)(s− eak) if s < eak ,

ψ(x, s) if s ∈ [eak , ebk ],

ψ(x, ebk) + ζk(x)(s− ebk) if s > ebk .

The resulting functionals

Tϕ,k(w) := Sϕk(w) + λ|w|BV , Tψ,k(u) := Sψk(u) + λ|u|BV

are proper, convex and l.s.c. for any k ∈ N. Besides, by the same arguments as in the
proof of Lemma 3.4.2 we see that

Tϕ,k(w) ≥ C1‖w‖BV −D1, Tψ,k(u) ≥ C2‖u‖BV −D2 ∀ k ∈ N (3.29)

for some constants C1, C2, D1, D2 > 0 so that the sequences (Tϕ,k)k∈N and (Tψ,k)k∈N
are equi-coercive on BV (Ω). Here, recall that a sequence (Tk)k∈N is equi-coercive on a
metric space X if and only if there exists a l.s.c., coercive function F : X → (−∞,+∞]
such that Tk ≥ F for all k, see [57, Prop. 7.7]. Due to these properties of Tϕ,k and
Tψ,k there exist thus minimizers ŵk and ûk of Tϕ,k and Tψ,k, respectively, cf. the proof
of [35, Thm. 5.4.7].
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3. Variational Approaches Facing Poisson and Multiplicative Noise

Since f ∈ L∞(Ω) with fmin > 0, the functions ϕk fulfill condition (3.28) with Ck :=
max{|ess inf ξk|, ess sup ζk}, p := 1 and γk := ϕ(·, 0) ∈ L1(Ω). Therefore, we obtain by
Theorem 3.4.3 ii) that Sϕk is continuous on L1(Ω) (and on BV (Ω)). Now, set

gk(s) :=





eak + eak(s− ak) if s < ak,

es if s ∈ [ak, bk],

ebk + ebk(s− bk) if s > bk

(3.30)

as exemplified in Figure 3.3 (right). This truncated exponential function is a non-
decreasing, Lipschitz continuous function so that we know by Theorem 3.4.3 i) that
∂|w|BV ⊂ ∂|gk(w)|BV for all w ∈ BV (Ω). Furthermore, one can check by straightfor-
ward computation that ∂ϕk(x, s) = ∂ψk(x, gk(s)) and thus, ∂Sϕk(w) = ∂Sψk(gk(w)),
cf. [174, p. 189]. Consequently, it follows by [73, p. 26] that

∂Tϕ,k(w) = ∂Sϕk(w) + λ∂|w|BV ⊂ ∂Sψk(gk(w)) + λ∂|gk(w)|BV ⊂ ∂Tψ,k(gk(w)).

Now ŵk is a minimizer of Tϕ,k if and only if 0 ∈ ∂Tϕ,k(ŵk). Therefore, if ŵk is a
minimizer of Tϕ,k, then ûk = gk(ŵk) is a minimizer of Tψ,k.

2. The sequences
(
ϕk(x, w(x))

)
k∈N and

(
ψk(x, u(x))

)
k∈N are non-decreasing, nonneg-

ative and

lim
k→∞

ϕk(x, w(x)) = ϕ(x, w(x)), lim
k→∞

ψk(x, u(x)) = ψ(x, u(x)) ∀ x ∈ Ω

so that by the Monotone Convergence Theorem

lim
k→∞

Sϕk = Sϕ, lim
k→∞

Sψk = Sψ.

The fact that
(
ϕk(x, w(x))

)
k∈N and

(
ψk(x, u(x))

)
k∈N are non-decreasing also implies

that (Tϕ,k)k∈N and (Tψ,k)k∈N are non-decreasing. Therefore, we have by [27, p. 35]
that

Γ− lim
k→∞

Tϕ,k = lim
k→∞

Tϕ,k = Tϕ, Γ− lim
k→∞

Tψ,k = lim
k→∞

Tψ,k = Tψ. (3.31)

3. Let ŵ = argminw∈BV (Ω) Tϕ(w) and û = argminu∈BV (Ω) Tψ(u). Using that the
sequences (Tϕ,k)k∈N and (Tψ,k)k∈N are non-decreasing and bounded from above by Tϕ
and Tψ, respectively, it holds that

Kϕ := {w ∈ BV (Ω) : Tϕ,1(w) ≤ Tϕ(ŵ)} 6= ∅,
Kψ := {u ∈ BV (Ω) : Tψ,1(u) ≤ Tψ(û)} 6= ∅

and for any minimizers ŵk of Tϕ,k and ûk of Tψ,k we have

ŵk ∈ {w ∈ BV (Ω) : Tϕ,k(w) ≤ Tϕ(ŵ)} ⊂ Kϕ,

ûk ∈ {u ∈ BV (Ω) : Tψ,k(u) ≤ Tψ(û)} ⊂ Kψ.
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Hence,

min
w∈BV (Ω)

Tϕ,k(w) = min
w∈Kϕ

Tϕ,k(w), min
u∈BV (Ω)

Tψ,k(u) = min
u∈Kψ

Tψ,k(u) ∀k ∈ N

and since the sets Kϕ and Kψ are compact due to the coercivity of Tϕ,1 and Tψ,1, this
implies that the sequences (Tϕ,k)k∈N and (Tψ,k)k∈N are equi-mildly coercive according to
the definition provided in [27, p. 29]. Moreover, any sets of minimizers {ŵk}k∈N ⊂ Kϕ

and {ûk}k∈N ⊂ Kψ are precompact and thus, the sequences (ŵk)k∈N and (ûk)k∈N
admit convergent subsequences. With the Γ-convergence (3.31) and [27, Thm. 1.21]
we obtain further that

lim
k→∞

Tϕ,k(ŵk) = Tϕ(ŵ), lim
k→∞

Tψ,k(ûk) = Tψ(û)

and all convergent subsequences of (ŵk)k∈N and (ûk)k∈N converge in L1(Ω) to ŵ and
û, respectively.

4. Let (ŵn)n∈I , (ûn)n∈I := (gn(ŵn))n∈I , I ⊂ N, be subsequences converging in L1(Ω)
to ŵ and û, respectively. By [5, Theorem 13.6] there exists a subsequence (ŵm)m∈I1 ,
I1 ⊂ I, which converges a.e. to ŵ and the construction of gm yields that (gm(ŵm))m∈I1
converges a.e. to eŵ. On the contrary, we know that (gm(ŵm))m∈I1 converges in L1(Ω)
to û. Hence, there exists a subsequence (gk(ŵk))k∈I2 , I2 ⊂ I1 which converges a.e. to
û and consequently û = eŵ a.e. �

By this theorem we finally showed that the SO-model (3.21) and the IDIV-TV model
(3.22) provide exactly the same minimizers. Since the IDIV-TVmodel is well-examined
and has not been considered for multiplicative noise before, we will concentrate on
approaches related to this model in the subsequent sections.

3.5 Theoretical Results for the Discrete Setting

Next, we have a closer look at the discrete counterpart of the IDIV model (3.12) with
K(u) = u and b = 0. For this purpose, we work with columnwise reshaped image
vectors f, u ∈ RN . Operations like the multiplication or division of vectors or taking
the logarithm are meant componentwise, here. Moreover, we denote by D ∈ RmN,N

a matrix whose rows are zero or contain exactly one 1 and one −1. This matrix
represents either

i) some discretization of the gradient operator with m = 2 as for example the first
matrix introduced in (2.41), see also [47, 198], or

ii) a nonlocal operator with binary weights as introduced in [91], where m is asso-
ciated to the number of permitted neighbors, see Section 3.7 for more details.
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3. Variational Approaches Facing Poisson and Multiplicative Noise

For vectors p := (p1, . . . , pm)
T ∈ RmN with pk := (pj+(k−1)N)

N
j=1 we set |p| :=

(p2
1 + . . .+ p2

m)
1/2 ∈ RN and focus on the minimizers û of the problem

min
u∈RN

{
Hf (u) + λφ(Du)︸ ︷︷ ︸

J(u)

}
with f > 0, (3.32)

where

Hf (u) :=

{
〈1, u− f log u〉 if u > 0,

+∞ otherwise
and φ(p) := ‖ |p| ‖1. (3.33)

If D is defined according to i), this model is a discretized version of the IDIV-TV
model (3.22). If D is determined as in ii), the resulting functional J is a discretization
of the nonlocal regularizer (3.15) and we refer to (3.32) as the IDIV-NL model.

Independent of the chosen matrix D the functional in (3.32) is proper, l.s.c., coercive
and strictly convex and thus, it has a unique minimizer. The corresponding dual
problem of (3.32) is given by

− min
p∈RmN

{
H∗
f (−DTp) + λφ∗(λ−1p)

}
, (3.34)

cf. [12, p. 154f], with the conjugate functionals

H∗
f (v) =

{
−〈f, log(1− v)〉+ 〈f, log f − 1〉 if v < 1,

+∞ otherwise
and φ∗(p) = ιC(p)

for C :=
{
p ∈ RmN : ‖ |p| ‖∞ ≤ 1

}
. Fortunately, there exists no duality gap, i.e.,

(3.32) and (3.34) take the same value, and the minimizers û and p̂ are related via

−DTp̂ ∈ ∂Hf (û), p̂ ∈ λ ∂φ(Dû) so that û =
f

1 +DT p̂
. (3.35)

Moreover, û has a couple of desirable properties as the following proposition shows:

Proposition 3.5.1 The minimizer û of (3.32) has the following properties:

i) Maximum-minimum principle:

fmin ≤ ûi ≤ fmax ∀ i = 1, . . . , N,

where fmin and fmax are the values of the smallest and largest components of f .

ii) Averaging property:

1

N

N∑

i=1

fi
ûi

= 1.
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iii) Convergence to the mean gray value:
If the nullspace of D is N (D) = {v ∈ RN : v1 = . . . = vN}, then

lim
λ→∞

û = c 1N with c =
1

N

N∑

j=1

fj.

Proof: i) The first property follows in the same way as in [10, Theorem 4.1]. We only
have to verify that

J
(
min(u, fmax)

)
≤ J(u), J

(
max(u, fmin)

)
≤ J(u).

By the structure of φ and D we see that this is the case whenever

|min(ui, fmax)−min(uj, fmax)| ≤ |ui − uj|,
|max(ui, fmin)−max(uj, fmin)| ≤ |ui − uj|.

These inequalities are trivially fulfilled for ui = uj and thus, we can assume that
ui > uj. If fmax ≥ ui or uj ≥ fmax and fmin ≥ ui or uj ≥ fmin, both inequalities are
fulfilled. For ui > fmax > uj the first inequality becomes |fmax − uj| ≤ |ui− uj|, which
is also true. Similarly, we get for ui > fmin > uj the correct inequality |ui − fmin| ≤
|ui − uj|.
ii) The second property follows by (3.35) and since (1TND

T)T = D 1N = 0N . Namely,
we have

1

N

N∑

i=1

fi
ûi

=
1

N

N∑

i=1

fi(1 + (DTp̂)i)

fi
= 1 +

1

N

N∑

i=1

(DTp̂)i = 1 +
1

N
1TND

Tp̂ = 1.

iii) To prove the last part of the assertion we can proceed as in [11, p. 89]: Let
û(λ) := argminu∈RN{Hf (u) + λ‖ |Du| ‖1}. Obviously, it holds that

0 ≤ λ ‖ |Dû(λ)| ‖1 ≤ Hf

(
û(λ)

)
+ λ ‖ |Dû(λ)| ‖1 ≤ min

u∈RN
{Hf (u) + λ‖ |Du| ‖1}.

For ũ := c̃ 1N with some constant c̃ > 0 we have ‖ |Dũ| ‖1 = 0, which yields

0 ≤ λ ‖ |Dû(λ)| ‖1 ≤ Hf (ũ).

Consequently, we obtain

0 ≤ lim
λ→∞

‖ |Dû(λ)| ‖1 ≤ lim
λ→∞

1

λ
Hf (ũ) = 0
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so that limλ→∞ ‖ |Dû(λ)| ‖1 = 0. Since φ = ‖ | · | ‖1 is a norm, it follows that
limλ→∞ û(λ) ∈ N (D), i.e., limλ→∞ û(λ) = c 1N for some constant c ∈ R. Using
now part ii) we finally see that

1 = lim
λ→∞

1

N

N∑

i=1

fi
ûi(λ)

=
1

N

N∑

i=1

fi
c

=
1

c

1

N

N∑

i=1

fi

and thus, c = 1
N

∑N
i=1 fi. �

Facing multiplicative Gamma noise we know that fi = ûi vi. In this case the second
property implies that 1

N

∑N
i=1 vi = 1, which is desirable, since the expectation value of

any Gamma distributed random variable with density (3.5) is 1.
Property iii) shows that whenever the nullspace of D consists of all constant vectors,
f and û have at least for λ → ∞ the same mean gray value. Note that a matrix D
with this property is for example the first gradient discretization in (2.41).

As a last result of this section we will prove that the SO-model and IDIV-TV are also
equivalent in the discrete setting if m = 1:

Proposition 3.5.2 Let D ∈ RmN,N be a matrix, where m = 1. Then, the minimizer
û of (3.32) equals eŵ with ŵ being the minimizer of the discrete SO-model

ŵ := argmin
w∈RN

{ 〈1, w + fe−w〉+ λφ(Dw) }. (3.36)

Proof: The vectors û and ŵ are the minimizers of (3.32) and (3.36), respectively if
and only if

0 ∈ 1− f

û
+ λDT∂φ(Dû) and 0 ∈ 1− f e−ŵ + λDT∂φ(Dŵ).

Since 1− f
û
= 1− f e−ŵ for û = eŵ, we have to show that DT∂φ(Deŵ) = DT∂φ(Dŵ).

It is well-known, see, e.g., [9, Prop. 1.10] for the continuous case, that v ∈ DT∂φ(Dw)
if and only if v = DTp for some p ∈ RmN with ‖ |p| ‖∞ ≤ 1 and

〈p,Dw〉 = φ(Dw).

The last equation can also be written as

N∑

i=1

m−1∑

j=0

pi+jN(Dw)i+jN =
N∑

i=1

(m−1∑

j=0

(Dw)2i+jN

)1/2
. (3.37)

Setting di := ((Dw)i+jN)
m−1
j=0 , i = 1, . . . , N , and applying the Cauchy-Schwarz inequal-

ity to the inner sums on the left hand side, we see with ‖ |p| ‖∞ ≤ 1 that

N∑

i=1

|
m−1∑

j=0

pi+jN(Dw)i+jN | ≤
N∑

i=1

(m−1∑

j=0

p2i+jN

)1/2
‖di‖2 ≤

N∑

i=1

‖di‖2.
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Here and thus in (3.37), equality holds true if and only if for each i ∈ {1, . . . , N} we
either have

i) ‖di‖2 = 0 and (pi+jN)
m−1
j=0 is an arbitrary vector with

∑m−1
j=0 p

2
i+jN ≤ 1 or

ii) ‖di‖2 6= 0 and (pi+jN)
m−1
j=0 = α di with

∑m−1
j=0 p

2
i+jN = 1. The last two equalities

imply that α = 1/||di‖2 so that pi+jN = (Dw)i+jN/‖di‖2, j = 0, . . . ,m− 1.

Since the exponential function is strictly monotone and each row of D is either zero
or contains exactly one 1 and one −1, case i) appears for Dŵ if and only if it appears
for Deŵ. In the second case, if for j = 0, . . . ,m − 1 the (i + jN)–th row of D is 1 in
column ki+jN and −1 in column hi+jN , we get

pi+jN =
ŵki+jN − ŵhi+jN(m−1∑

j=0

(
ŵki+jN − ŵhi+jN

)2)1/2
for w := ŵ

and pi+jN =
eŵki+jN − eŵhi+jN

(m−1∑
j=0

(
eŵki+jN − eŵhi+jN

)2)1/2
for w := eŵ.

Form = 1 the right-hand sides are just the signs of ŵki+jN−ŵhi+jN and eŵki+jN−eŵhi+jN ,
respectively and coincide, since the exponential function is strictly increasing. Thus,
we finally showed for m = 1 and any p ∈ RmN with ‖ |p| ‖∞ ≤ 1 that

〈p,Dŵ〉 = φ(Dŵ) if and only if 〈p,Deŵ〉 = φ(Deŵ),

which finishes the proof. �

Note that this proof implies for the anisotropic setting where φ(p) := ‖p‖1 that the
discrete models provide also the same minimizers for m ≥ 2.

3.6 Minimization Algorithms

To actually compute minimizers of the discrete IDIV model

min
u∈RN

u≥0

{
Hf (Ku) + λφ(Du)

}
(3.38)

involving possibly also a linear, nonnegativity preserving transformationK, an efficient
algorithm is required. In the following, we will deduce such an algorithm based on
the alternating direction method of multipliers (ADMM). In this context, we will also
show how it is possible to incorporate multiple splittings into the standard ADMM
algorithm, compare also [187].
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3.6.1 ADMM and Multiple Splittings

In recent years splitting methods became increasingly popular for solving convex min-
imization problems of the form

argmin
u∈RN

{Ψ(u) + Φ(Cu)} (3.39)

for some matrix C ∈ RM,N and proper, convex and l.s.c. functionals Ψ : RN →
R ∪ {+∞} and Φ : RM → R ∪ {+∞}. One prominent member of this class is the
alternating direction method of multipliers (ADMM), which can be traced back to
[87, 88, 93]. A nice review article on this algorithm has been provided recently by
Boyd et al. in [26]. For problems of the form (3.39) this algorithm is equivalent to the
recently proposed alternating split Bregman algorithm [96] as shown by Esser in [76]
and to the Douglas-Rachford splitting algorithm [67, 134] applied to the dual problem
of (3.39), cf. [71, 87, 186, 188].

To derive the ADMM algorithm for solving (3.39) we need to consider the constrained
version of (3.39) given by

argmin
u∈RN ,w∈RM

{Ψ(u) + Φ(w)} subject to Cu = w. (3.40)

The method of multipliers applied to this constrained problem leads to the iterative
scheme

(u(k+1), w(k+1)) = argmin
u∈RN ,w∈RM

{
Ψ(u) + Φ(w) +

1

2γ
‖γ p(k) + Cu− w‖22

}
,

p(k+1) = p(k) +
1

γ
(Cu(k+1) − w(k+1)).

Minimizing alternatingly with respect to u and w and setting b(k) := γ p(k) yields the
following ADMM algorithm:

Algorithm 3.6.1 (Scaled ADMM algorithm)
Initialization: Choose w(0), b(0) and γ > 0.
For k = 1, . . . repeat until a stopping criterion is reached:

u(k+1) = argmin
u∈RN

{
Ψ(u) +

1

2γ
‖b(k) + Cu− w(k)‖22

}
, (3.41)

w(k+1) = argmin
w∈RM

{
Φ(w) +

1

2γ
‖b(k) + Cu(k+1) − w‖22

}
, (3.42)

b(k+1) = b(k) + Cu(k+1) − w(k+1). (3.43)
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By applying this algorithm we can exploit that it is often much easier to solve the
subproblems (3.41) and (3.42) instead of minimizing directly (3.39). Note here that if
the minimizer of (3.41) or (3.42) is not unique, an arbitrary one is chosen.

To ensure the convergence of this algorithm we will assume that

(I) the primal problem (3.39) has a solution,

(II) 0 ∈ int(CdomΨ− domΦ) and 0 ∈ int( domΨ∗ + CTdomΦ∗).

The set intA denotes the so-called interior of the set A defined by

intA = {x ∈ RN : ∃ε > 0 so that Bε(x) ⊂ A}

for Bε(x) = {y ∈ RN : ‖y−x‖2 < ε}. The assumptions (I) and (II) guarantee that the
primal problem (3.39) is well-posed, there also exists a solution of the corresponding
dual problem

argmin
p∈RM

{Ψ∗(−CTp) + Φ∗(p)} (3.44)

and the duality gap is 0, cf., e.g., [12, p. 155]. With these preliminaries we can state
the following theorem. For a proof based on convergence results for Douglas-Rachford
splitting we refer to [72, 87, 187, 188].

Theorem 3.6.2 (Convergence of ADMM)
Let conditions (I) and (II) be fulfilled. Then, the sequences (b(k))k∈N and (w(k))k∈N
generated by the ADMM Algorithm 3.6.1 converge for all starting values and any step
sizes γ > 0. Denoting by b̂ and ŵ the limits of these sequences, the vector p̂ := 1

γ
b̂ is

a solution of the dual problem (3.44). Furthermore, the sequence (u(k))k∈N calculated
by (3.41) converges to a solution of the primal problem (3.39) if one of the following
conditions is fulfilled:
i) The primal problem has a unique solution.
ii) The problem argmin

u∈RN

{
Ψ(u) + 1

2γ
‖b̂+ Cu− ŵ‖22

}
has a unique solution.

Whenever û converges, we have of course ŵ = Cû. Moreover, since p̂ = 1
γ
b̂ is a solution

of the dual problem, we know, e.g., by [12, Thm. 5.2.1] that û, ŵ and p̂ are related
via

−CTp̂ ∈ ∂Ψ(û) ⇔ û ∈ ∂Ψ∗(−CTp̂) and p̂ ∈ ∂Φ(ŵ) ⇔ ŵ ∈ ∂Φ∗(p̂).
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Multiple splittings In many applications more general problems of of the form

argmin
u∈RN

{
Ψ(u) +

r∑

i=1

fi(Ciu)
}

(3.45)

need to be solved, where Ci ∈ RMi,N , Ψ : RN → R∪{+∞} and fi : R
Mi → R∪{+∞}.

In these cases we can apply the splitting idea even further. Rewriting problem (3.45)
as

argmin
u∈RN ,wi∈RMi

{
Ψ(u) +

r∑

i=1

fi(wi)
}

subject to wi = Ciu

and setting Φ(w) :=
∑r

i=1 fi(wi) and C := (CT
1 , . . . , C

T
r )

T, we can apply again Algo-
rithm 3.6.1. Here, the subproblem (3.42) becomes

w(k+1) = argmin
wi∈RMi

{ r∑

i=1

fi(wi) +
1

2γ

∥∥∥∥



b
(k)
1
...

b
(k)
r


+



C1
...
Cr


u(k+1) −



w1
...
wr



∥∥∥∥
2}

.

Since the variables wi are not coupled, we can minimize separately with respect to
each wi, i = 1, . . . , r. Hence, the resulting iterative scheme reads as follows:

Algorithm 3.6.3 (Scaled ADMM with multiple splittings)

Initialization: Choose w
(0)
1 , . . . , w

(0)
r , b

(0)
1 , . . . , b

(0)
r and γ > 0.

For k = 1, . . . repeat until a stopping criterion is reached:

u(k+1) = argmin
u∈RN

{
Ψ(u) +

1

2γ

∥∥∥∥



b
(k)
1
...

b
(k)
r


+



C1
...
Cr


u−



w

(k)
1
...

w
(k)
r



∥∥∥∥
2}

,

w
(k+1)
1 = argmin

w1∈RM1

{
f1(w1) +

1

2γ
‖b(k)1 + C1u

(k+1) − w1‖2
}
,

...

w(k+1)
r = argmin

wr∈RMr

{
fr(wr) +

1

2γ
‖b(k)r + Cru

(k+1) − wr‖2
}
,

b(k+1) = b(k) +



C1
...
Cr


u(k+1) −



w

(k+1)
1
...

w
(k+1)
r


 .

As already described in [76] the here applied splitting can also be useful for functionals
consisting of only two additive terms where each is a concatenation of a proper, convex
and l.s.c. functional with a linear operator.

88



3.6 Minimization Algorithms

It is not hard to show that the conjugate of Φ is given by

Φ∗(p1, . . . , pr) =
r∑

i=1

f ∗
i (pi).

Hence, we can see by (3.44) that the dual problem of (3.45) with pT = (pT1 , . . . , p
T
r ) is

argmin
p∈RM

{Ψ∗(−CTp) +
r∑

i=1

f ∗
i (pi)}. (3.46)

Due to Theorem 3.6.2 we know that if conditions (I) and (II) are fulfilled, the se-
quences (b(k))k∈N and (w(k))k∈N generated by the ADMM Algorithm 3.6.3 converge, in
particular, p(k) := 1

γ
b(k) converges to a solution of the dual problem (3.46). Moreover,

the sequence (u(k))k∈N converges to the solution of the primal problem (3.45) if either
the primal problem or

argmin
u∈RN

{
Ψ(u) +

1

2γ
‖b̂+ Cu− ŵ‖22

}

has a unique solution. In these cases we know that the limits û, ŵ and p̂ fulfill Ciû = ŵi
for i = 1, . . . , r and are related via

−CTp̂ ∈ ∂Ψ(û) ⇔ û ∈ ∂Ψ∗(−CTp̂) and p̂i ∈ ∂fi(ŵi) ⇔ ŵi ∈ ∂f ∗
i (p̂i).

Iterative adaptation of the parameter γ In Algorithms 3.6.1 and 3.6.3 the
quantity γ is a fixed parameter for all iterations, which has to be chosen in advance.
Although Theorem 3.6.2 guarantees that ADMM convergences for any fixed γ, the
speed of convergence depends in practice crucially on its value.
For a small value we see in (3.41) and (3.42) that the functionals Ψ and Φ have nearly
no effect. Rewriting (3.41) and (3.42) with b(k) = γ p(k) in the form

u(k+1) = argmin
u∈RN

{
Ψ(u) +

1

2γ
‖Cu− w(k)‖22 + 〈p(k), Cu− w(k)〉

}
, (3.47)

w(k+1) = argmin
w∈RM

{
Φ(w) +

1

2γ
‖Cu(k+1) − w‖22 + 〈p(k), Cu(k+1) − w〉

}
(3.48)

shows that instead the optimality constraint Cu(k+1) = w(k+1) is enforced. On the
contrary, for a large value of γ the constraint Cu(k+1) = w(k+1) is nearly ignored.
Here, the conditions −CTp(k) ∈ ∂Ψ(u(k+1)) and p(k) ∈ ∂Φ(w(k+1)) are enforced and
thus the optimality condition 0 ∈ ∂Ψ(u(k+1)) + CT∂Φ(w(k+1)). To balance these two
extremes, γ has to be carefully chosen as we will also see later on in Section 3.7.
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To improve the performance of ADMM in general and to make the convergence speed
less dependent on the initially chosen γ, an interesting strategy for an iterative adap-
tation of γ has been reported in [26, 105]. Here, the idea is to evaluate the quantities

r(k+1) := Cu(k+1) − w(k+1) = b(k+1) − b(k) = γ(p(k+1) − p(k)),

s(k+1) := −1

γ
CT(w(k+1) − w(k))

at the end of each iteration and to adapt γ such that the ℓ2 norms of these two vectors
remain within a reasonable range of each other. By (3.47) and (3.48) it is not hard to
show that

s(k+1) ∈ ∂Ψ(u(k+1)) + CT∂Φ(w(k+1)).

Since the terms 1
2
‖Cu − w‖22 in (3.47) and (3.48) are however scaled by 1

γ
compared

to Ψ(u) and Φ(w), we propose here to use

r̃(k+1) :=
1

γ
(Cu(k+1) − w(k+1)) =

1

γ
(b(k+1) − b(k)) = p(k+1) − p(k)

instead of r(k+1) and to choose

γ(k+1) =





2 γ(k) if ‖s(k+1)‖2 > 10 ‖r̃(k+1)‖2,
1
2
γ(k) if ‖r̃(k+1)‖2 > 10 ‖s(k+1)‖2,

γ(k) otherwise

starting from an initial guess γ(0) > 0 similarly as in [26, 105]. Since b(k+1) is related
to the dual iterates p(k+1) via b(k+1) = γ(k) p(k+1) so far, this requires to rescale b(k+1)

by the factor γ(k+1)/γ(k) at the end of each iteration.
Although the convergence of ADMMwith this updating scheme is no longer guaranteed
by Theorem 3.6.2, we will show later on that it performs well in practice for our problem
at hand. Sets of conditions for which the convergence is still guaranteed theoretically
for adapted γ can be found in [105].

3.6.2 Minimization of the Discrete IDIV Model

Now, we want to apply the ADMM Algorithm 3.6.3 to the IDIV model (3.38), where
Hf and φ have been defined in (3.33), K ∈ RM,N is a positive matrix and f > 0. For
this purpose, we consider the equivalent unconstrained problem

argmin
u∈RN

{
Hf (Ku)︸ ︷︷ ︸
=:f1(Ku)

+λφ(Du)︸ ︷︷ ︸
=:f2(Du)

+ ιRN≥0
(u)

︸ ︷︷ ︸
=:f3(u)

}
(3.49)

and set

Ψ(u) = 〈0, u〉, Φ(w) =
3∑

i=1

fi(wi) and C =



C1

C2

C3


 =



K
D
IN


 .
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The ADMM scheme resulting from Algorithm 3.6.3 is given as follows. To guarantee
here that a solution exists and conditions (I) and (II) of Theorem 3.6.2 are fulfilled, we
impose the additional assumptions that K 6= 0M,N and N (K)∩N (D) = {0} similarly
as in [83]. If K is further injective, it is even ensured that (3.49) has a unique solution.

Algorithm 3.6.4 (PIDSplit+)

Initialization: w
(0)
1 = Kf , w

(0)
2 = Df , w

(0)
3 = f , b

(0)
1 = 0, b

(0)
2 = 0, b

(0)
3 = 0 and γ > 0.

For k = 1, . . . repeat until a stopping criterion is reached:

u(k+1) = argmin
u∈RN

{
‖b(k)1 +Ku− w

(k)
1 ‖22 + ‖b(k)2 +Du− w

(k)
2 ‖22 + ‖b(k)3 + u− w

(k)
3 ‖22

}
,

w
(k+1)
1 = argmin

w1∈RM

{
Hf (w1) +

1

2γ
‖b(k)1 +Ku(k+1) − w1‖22

}
,

w
(k+1)
2 = argmin

w2∈RmN

{
λφ(w2) +

1

2γ
‖b(k)2 +Du(k+1) − w2‖22

}
,

w
(k+1)
3 = argmin

w3∈RN

{
ιRN≥0

(w3) +
1

2γ
‖b(k)3 + u(k+1) − w3‖22

}
,

b
(k+1)
1 = b

(k)
1 +Ku(k+1) − w

(k+1)
1 ,

b
(k+1)
2 = b

(k)
2 +Du(k+1) − w

(k+1)
2 ,

b
(k+1)
3 = b

(k)
3 + u(k+1) − w

(k+1)
3 .

Output: ûapprox := w
(k+1)
3 .

Due to the constraint w = Cu we know that the limits have to fulfill w3 = u. Thus, we
can choose w

(k+1)
3 for ûapprox instead of u(k+1). Since w

(k)
3 is nonnegative for all k, this

guarantees that ûapprox ≥ 0. In case that K is the identity, note that the nonnegativity
of u is already ensured by Hf so that the terms and variables corresponding to the
nonnegativity constraint can be neglected.

The great benefit of PIDSplit+ is that the involved subproblems are easy to solve.
The iterates w

(k+1)
1 , w

(k+1)
2 , w

(k+1)
3 can be computed by the subsequent direct formulas

and since the matrix CTC = I +KTK +DTD is always positive definite, u(k+1) is the
solution of the following linear system of equations:

u(k+1) =
(
I +KTK +DTD

)−1
(
KT(w

(k)
1 − b

(k)
1 ) +DT(w

(k)
2 − b

(k)
2 ) + (w

(k)
3 − b

(k)
3 )
)
,

w
(k+1)
1 =

1

2

(
b
(k)
1 +Ku(k+1) − γ +

√(
b
(k)
1 +Ku(k+1) − γ

)2
+ 4γf

)
, (3.50)

w
(k+1)
2 = shrinkγλ

(
b
(k)
2 +Du(k+1)

)
,
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w
(k+1)
3 =

{
b
(k)
3 + u(k+1) if b

(k)
3 + u(k+1) ≥ 0,

0 otherwise.
(3.51)

The operator shrinkλ : R
mN → RmN is usually referred to as coupled shrinkage and is

given componentwise with p := (p1, . . . , pm)
T, pk := (pℓ+(k−1)N)

N
ℓ=1, as

shrinkλ
(
pk(i)

)
:=




pk(i)− λ pk(i)√∑m

j=1 p
2
j (i)

if

√
m∑
j=1

p2
j(i) ≥ λ,

0 otherwise

for k ∈ {1, . . . ,m} , i ∈ {1, . . . , N}, compare, e.g., [186]. Supposing reflecting bound-
ary conditions for our image, a separable blur kernel K and D to be the first gradient
discretization in (2.41), the matrix I + KTK + DTD can be diagonalized using the
discrete cosine transform DCT-II, cf., e.g., [104, 164]. Thus, solving the corresponding
linear system of equations requires in this case only O(N logN) arithmetic operations.
In all other cases a (preconditioned) conjugate gradient (PCG) method can be applied
due to the symmetry and positive definiteness of I +KTK +DTD.

Alternative algorithms For determining a minimizer of (3.49) also other algo-
rithms have been proposed in the literature. For example in [ST10] an alterna-
tive splitting algorithm has been provided for the case K = IN . Moreover, in [82]
Figueiredo and Bioucas-Dias first proposed an algorithm for the IDIV model (3.49)
without the constraint u ≥ 0, which has been added in [83]. The final algorithm of
the authors can be deduced from the ADMM Algorithm 3.6.3 for Ψ(u) = 〈0, u〉 and
Φ(w) =

∑3
i=1 fi(wi) with

argmin
u∈RN

{
〈1, Ku− f log(Ku)〉︸ ︷︷ ︸

=:f1(Ku)

+λφ(Du)︸ ︷︷ ︸
=:f2(u)

+ ιRN≥0
(u)

︸ ︷︷ ︸
=:f3(u)

}
,

i.e., (C1, C2, C3) := (K, IN , IN). This splitting differs from the one used for the deduc-
tion of PIDSplit+ by the fact that the operator D is contained in f2 rather than the
matrix C. The resulting algorithm is given as follows:

Algorithm 3.6.5 (PIDAL)

Initialization: w
(0)
1 = Kf , w

(0)
2 = f , w

(0)
3 = f , b

(0)
1 = 0, b

(0)
2 = 0, b

(0)
3 = 0 and γ > 0.

For k = 1, . . . repeat until a stopping criterion is reached:

u(k+1) = argmin
u∈RN

{
‖b(k)1 +Ku− w

(k)
1 ‖22 + ‖b(k)2 + u− w

(k)
2 ‖22 + ‖b(k)3 + u− w

(k)
3 ‖22

}
,

w
(k+1)
1 = argmin

w1∈RM

{
〈1, w1 − f logw1〉+

1

2γ
‖b(k)1 +Ku(k+1) − w1‖22

}
, (3.52)
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w
(k+1)
2 = argmin

w2∈RN

{
λφ(Dw2) +

1

2γ
‖b(k)2 + u(k+1) − w2‖22

}
, (3.53)

w
(k+1)
3 = argmin

w3∈RN

{
ιRN≥0

(w3) +
1

2γ
‖b(k)3 + u(k+1) − w3‖22

}
, (3.54)

b
(k+1)
1 = b

(k)
1 +Ku(k+1) − w

(k+1)
1 ,

b
(k+1)
2 = b

(k)
2 + u(k+1) − w

(k+1)
2 ,

b
(k+1)
3 = b

(k)
3 + u(k+1) − w

(k+1)
3 .

Output: ûapprox := w
(k+1)
3 .

Here, setting ûapprox to w
(k+1)
3 instead of u(k+1) guarantees again that ûapprox ≥ 0.

Besides, the steps (3.52) and (3.54) of this algorithm are the same as for PIDSplit+
and can be solved by the explicit formulas (3.50) and (3.51). For the first step a linear
system of equations has again to be solved:

u(k+1) =
(
2 I +KTK

)−1
(
KT(w

(k)
1 − b

(k)
1 ) + (w

(k)
2 − b

(k)
2 ) + (w

(k)
3 − b

(k)
3 )
)
.

The matrix 2 I +KTK is positive definite and therefore invertible. Supposing again
reflecting boundary conditions for our images and a spatially invariant, separable blur
kernel K this linear system of equations can be solved efficiently by the discrete cosine
transform DCT-II equally as the corresponding step of PIDSplit+. However, for the
computation of w

(k+1)
2 we have to solve a ROF-like denoising problem. Since here no

closed form solution exists, the authors of [82, 83] suggest to use Chambolle’s iterative
algorithm [47] with a fixed number of iterations and the internal variables initialized
with the results of the former iteration cycle. Alternatively, also Nesterov’s algorithm
[151], FISTA [17, 18] of Beck and Teboulle or the alternating split Bregman (ADMM)
algorithm [96] could be used.

Aside from the ADMM algorithms PIDSplit+ and PIDAL the primal-dual hybrid gra-
dient method (PDHG) [51, 77, 231] provides another possibility for the minimization
of the IDIV model (3.49), see also [SST11]. This algorithm can be particularly inter-
esting in cases where u(k+1) has to be computed iteratively and the convergence is too
slow.

Another option is to apply the EM-TV algorithm presented by Sawatzky et al. in
[179, 180]. This algorithm is an extension of the standard EM algorithm [63, 150, 170,
191] and consists of alternating an EM step with a TV step as follows. The starting
value u(0) = f is chosen analogously to the other algorithms, here.
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Algorithm 3.6.6 (EM-TV)
Initialization: u(0) = f .
For k = 1, . . . repeat until a stopping criterion is reached:

u(k+
1
2
) = u(k)

1

KT 1M
KT

(
f

Ku(k)

)
(EM step), (3.55)

u(k+1) = argmin
v∈RN

{1
2

N∑

i=1

(KT1M)i
(
vi − u

(k+ 1
2
)

i

)2

u
(k)
i

+ λφ(Dv)
}

(TV step). (3.56)

As indicated by its name the TV step requires the minimization of the ROF-like
functional

argmin
w∈RN

{
1

2
‖w − h‖22 + λφ(DΛw)

}

with w :=

√
KT 1M
u(k)

v, h :=

√
KT 1M
u(k)

u(k+
1
2
), Λ := diag

(√
u(k)

KT 1M

)
.

This must again be done iteratively, e.g., by one of the above mentioned algorithms.
As for PIDAL the authors of [179, 180] suggest using Chambolle’s algorithm [47].
To study the convergence of EM-TV theoretically, a damped EM-TV variant was intro-
duced in [35, 36]. Here, the TV-step was extended by additional damping parameters
ωk ∈ (0, 1] as follows:

u(k+1) = argmin
v∈RN

{1
2

N∑

i=1

(KT1M)i
(
vi −

(
ωk u

(k+ 1
2
) + (1− ωk) u

(k)
i

))2

u
(k)
i

+ ωk λφ(Dv)
}
.

It could be shown that damped EM-TV is a forward-backward splitting algorithm,
where the convergence is ensured whenever the ωk are small enough. Nevertheless,
EM-TV, which corresponds to the case ωk = 1, was reported to perform well in
practice as long as the regularization parameter λ was not too large, cf. [35, 36].

3.7 Numerical Experiments

In the following, we compare the presented algorithms in terms of computational speed
and show restoration results of the IDIV model (3.38) for images corrupted by different
types of noise. To this end, all algorithms have been implemented in MATLAB and the
computations are performed on a computer with an Intel Core i5-2520M Processor (3M
Cache, 2.50 GHz) and 8 GB physical memory. If not stated otherwise, the values of
the original images lie in the interval [0, 255] and the images are visualized accordingly.
Moreover, to guarantee a consistent coloring for each example the corrupted images
and results are depicted with the same color map.
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Figure 3.4: Left: Part of the ’cameraman’ image of size 84 × 84. Middle: Image corrupted by a
Gaussian blur (standard deviation σ = 1) and Poisson noise (Imax = 3000). Right: Deblurred image
by IDIV-TV with λ = 0.008.

3.7.1 Blurred Images Contaminated by Poisson Noise

To start with, we focus on blurred images corrupted by Poisson noise, which we re-
store using the discretized IDIV-TV model. Therefore, the discrete gradient D is set
to be the first matrix in (2.41), which involves reflecting boundary conditions for the
images. In the presented examples the blur kernels are two-dimensional symmetric
Gaussians and thus, separable. Details on the definition of the corresponding matrices
K can, e.g., be found in [104]. In those cases where Poisson noise is added manually
to a blurred image U , the image is first scaled by Imax/(10

12 Umax), where Umax is the
maximal value of U and Imax ∈ [0, 1012] denotes a specified maximal intensity. Then,
the MATLAB routine imnoise(I,’poisson’) is applied and afterwards we scale back
again.
Due to the structure of K and D both PIDSplit+ and PIDAL can be implemented
efficiently using the discrete cosine transform (DCT-II) as outlined in the former sec-
tion. For solving the ROF-like subproblems (3.53) and (3.56) of PIDAL and EM-TV
we use the gradient descent reprojection algorithm presented by Chambolle in [48]
with a fixed step size of 0.249. In [48] this algorithm was reported to perform better
than the standard Chambolle algorithm from [47]. To initialize the starting values of
the resulting inner iteration loops the final values of the former iteration cycle are used
as in [37, 83]. Moreover, we perform a fixed number of inner iterations per loop.

Our first example in Figure 3.4 shows a part of the ’cameraman’ image, which has been
blurred by a Gaussian kernel of standard deviation 1 and contaminated by Poisson
noise. The restored image by IDIV-TV is displayed in Figure 3.4 (right). Furthermore,
the computation times of the different algorithms for computing this result up to a
specified maximal pixel difference are reported in Table 3.1. Except for the starting
value γ(0) of PIDSplit+ with iteratively adapted γ all parameters have been optimized
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Algorithms
Parameter Number of Number of Computation

γ inner iterations outer iterations times

‖û(k) − ûref‖∞ < 3

EM-TV – 2 567 0.65 sec

PIDAL 745 6 98 0.35 sec

PIDSplit+ 1460 – 176 0.31 sec

PIDSplit+ (γ adapt.) (γ(0) = 1) – (370) (0.86 sec)

‖û(k) − ûref‖∞ < 1

EM-TV – 3 1278 1.92 sec

PIDAL 680 10 161 0.85 sec

PIDSplit+ 1460 – 257 0.45 sec

PIDSplit+ (γ adapt.) (γ(0) = 1) – (490) (1.17 sec)

‖û(k) − ûref‖∞ < 0.2

EM-TV – 9 2892 10.8 sec

PIDAL 670 33 240 3.55 sec

PIDSplit+ 1330 – 407 0.72 sec

PIDSplit+ (γ adapt.) (γ(0) = 1) – (657) (1.55 sec)

Table 3.1: Computation times required by the algorithms to compute the sufficiently converged
reference result ûref in Figure 3.4 up to the specified maximal pixel differences.

to provide the shortest possible times and are listed in the table. Regarding the
stopping criterion we stopped when the maximal pixel difference to the reference result
became smaller than the specified bound. Although PIDSplit+ required more (outer)
iterations than PIDAL, it always performed best for fixed but optimized γ. Moreover,
PIDAL was always faster than EM-TV. Especially for higher accuracies the factors
between the three algorithms increase.
Since it is in general not clear how to choose an optimal value γ for PIDSplit+ and
PIDAL, we also included the times required by PIDSplit+ with iteratively adapted γ
for a non-optimized starting value of 1. Note that this value is on purpose far away
from the fixed, optimized values. As the experiment shows the computation time is
here always larger than the time required by PIDSplit+ with fixed but optimized γ.
Nevertheless, for a maximal pixel error of 1 it is already faster than EM-TV and for
an accuracy of 0.2 it also outperformed PIDAL.
To compare the two variants of PIDSplit+ in more detail we included Figure 3.5. Here,
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Figure 3.5: Influence of γ on the number of iterations required by PIDSplit+ to compute the restored
image of Figure 3.4 up to a maximal difference per pixel of 3 (top) and 0.2 (bottom). Left: Fixed γ
for all iterations. Right: Iteratively adapted γ with γ(0) as initial starting value.

the required number of iterations by PIDSplit+ is reported for different accuracies in
dependence on a fixed value γ and iteratively adapted γ with varying starting values
γ(0), respectively. The results show that with fixed γ a too small value or a much too
large value γ can significantly affect the performance of PIDSplit+, especially if more
accurate results are required. Although the presented adaptation for γ does not help
to decrease the number of iterations in general, it efficiently bounds the maximally
required number of iterations so that the choice of an initial value γ(0) is far less
critical than choosing a fixed value γ. If we chose for example the value γ(0) = 1 used
in Table 3.1 for the non-adapted variant, we would not get a result in a reasonable
amount of time.

A restoration result of IDIV-TV and a comparison of the speed of the algorithms for
the whole ’cameraman’ image is given in Figure 3.6 and Table 3.2. Also here, PID-
Split+ outperformed the other algorithms for fixed but optimized γ. With iteratively
adapted γ and the initial value γ(0) = 1 PIDSplit+ is roughly only half as fast but still
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Figure 3.6: Left: Original ’cameraman’ image of size 256 × 256. Middle: Image corrupted by a
Gaussian blur (standard deviation σ = 1.3) and Poisson noise (Imax = 1000). Right: Deblurred
image by IDIV-TV with λ = 0.01.

Algorithms
Parameter Number of Number of Computation

γ inner iterations outer iterations times

‖û(k) − ûref‖∞ < 1

EM-TV – 5 1640 25.2 sec

PIDAL 705 16 191 11.2 sec

PIDSplit+ 1245 – 297 6.0 sec

PIDSplit+ (γ adapt.) (γ(0) = 1) – (550) (13.3 sec)

Table 3.2: Computation times required by the algorithms to compute the sufficiently converged
reference result in Figure 3.6 up to a maximal pixel difference of 1.

significantly faster than EM-TV with an optimized number of inner iterations.

To apply PIDSplit+ also to real confocal data Figure 3.7 shows at top left an image of a
blurred human cell nucleus of size 401×311 kindly provided by Prof. T. Cremer (LMU
Munich). The corresponding blur kernel has been estimated by S. Remmele (Medical
Centre Mannheim) and fits well a symmetric Gaussian of standard deviation σ = 3.8.
In contrast to the former examples much more iterations are necessary here to obtain
equally small errors as for the ’cameraman’ image. However, we get already after a
few iterations a visually pleasant result as illustrated in Figure 3.7. An interesting
observation is also that if we solved the IDIV-TV model for, e.g., λ = 0.002 without
the additional nonnegativity constraint u ≥ 0, the result would contain negative value
down to −249, although the blurred image was nonnegative and all entries of K are
nonnegative, too.

98



3.7 Numerical Experiments

 

 

0

50

100

150

200

250

 

 

0

50

100

150

200

250

300

350

 

 

0

100

200

300

400

500

600

 

 

0

100

200

300

400

500

600

 

 

0

100

200

300

400

500

600

 

 

−40

−30

−20

−10

0

10

20

30

40

Figure 3.7: Top: Blurry cell image of a human nucleus and result by PIDSplit+ with λ = 0.01 and
γ = 1000 after 10.000 iterations. Middle/bottom: Results by PIDSplit+ with λ = 0.002 and γ = 2000
after 200 (middle left), 3000 (middle right) and 10.000 iterations (bottom left). Already the result
after 200 iterations is visually very close to the other images, although there are still some differences
between the results after 3000 and 10.000 iterations as the difference image at bottom right shows.
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3.7.2 Images Corrupted by Multiplicative Noise

Next, we will focus on denoising results for data corrupted by multiplicative noise,
where the noise is mostly Gamma distributed with density (3.5). For the restoration
we will apply aside from the discrete IDIV-TV model with K = IN also the discrete
IDIV-NL approach introduced in Section 3.5. For this purpose, the involved matrices
D are defined as follows:

i) For the IDIV-TV model and 2D images we set again D to be the first gradient
discretization in (2.41). In case of 1D signals D is just the forward-difference
matrix H1 defined in (2.42).

ii) For the discrete IDIV-NL model the following construction is applied, cf. [91]:
Initially, we start with a zero weight matrix w ∈ RN,N . For every image pixel i
we compute for all j within a search window of size ω×ω around i the distances

da(i, j) :=

⌈ l−1
2

⌉∑

h1=−⌈ l−1
2

⌉

⌈ l−1
2

⌉∑

h2=−⌈ l−1
2

⌉

ga(h1, h2)
(
f̃
(
i+ (h1, h2)

)
− f̃

(
j + (h1, h2)

) )2
,

where f̃ := log(f) and ga represents a discrete normalized Gaussian of mean 0
and standard deviation a. The parameter l controls here the size of the image
parts being compared. For a predefined bound m̃ we select the k ≤ m̃ ’neighbors’
j 6= i of i for which da(i, j) takes the smallest values and the number of nonzero
elements in the row w(j, ·) is smaller than 2m̃. Here, we set w(i, j) = w(j, i) = 1,
which causes several weights w(j, ·) to be already non-zero before we actually
reach pixel j. To avoid that the number of non-zero weights becomes too large,
we set the number of chosen neighbors to k := min{m̃, 2m̃− r} with r being the
number of non-zero weights w(i, ·) before the selection. With regard to (3.15)
and (3.32) we finally construct the matrix D ∈ RmN,N with m = 2m̃ so that D
consists of m blocks of size N ×N , each having maybe some zero rows and rows
with −1 as diagonal element plus one additional nonzero value 1 whose position
is determined by the nonzero weights w(i, j).

Remark: Compared to [91] the weights are computed here with respect to the
logarithmically transformed image f . This is again motivated by the multi-
plicative nature of the noise similarly as the logarithmic transformation for the
deduction of the log-model in Subsection 3.3.2.

Our first example in Figure 3.8 shows a restored 1D signal by IDIV-TV, which was
corrupted by multiplicative Gamma noise with L = 25. Here, the signal and noise
level were chosen in accordance with the experiments in [192]. Although the IDIV-
TV model was originally designed for Poisson noise, it restores the signal quite nicely
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Figure 3.8: Left: Original signal. Middle: Noisy signal corrupted by multiplicative Gamma noise
(L = 25). Right: Denoised signal by IDIV-TV with λ = 0.52.

Figure 3.9: Left: Reproduction of a test image in [10]. Middle: Noisy image corrupted by multiplica-
tive Gamma noise (L = 1). Right: Denoised image by IDIV-TV with λ = 2.5.

except for the usual staircasing artifacts typical for TV regularization.
Similar observations can also be made for the 2D example in Figure 3.9. Here, we
restored a reproduction of a synthetic test image from [10]. Compared to the denoising
results presented in [10] our result looks very promising. All noise has been removed
and the original image has been mostly recovered. Only the edges are not perfect due
to the severe degradation of the noisy image.

Next, we want to compare results of the IDIV-TV model and the IDIV-NL model for
natural images. For this purpose, we applied both methods to a part of the ’Barbara’
image corrupted by multiplicative Gamma noise with L = 25 as shown in Figure 3.10.
The figure and the noise level were chosen so that the experiments are comparable
with the ones in [192]. For this image IDIV-TV removed again all noise. However,
a lot of staircasing artifacts are clearly visible. The denoised image by the IDIV-NL
model is significantly better, here. Due to the semi-local adaptivity of the matrix D
especially the fine structures of the textures are much better restored.
These observations are similarly true for the example provided in Figure 3.11. Here, a
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3. Variational Approaches Facing Poisson and Multiplicative Noise

Figure 3.10: Top: Original image (left) and noisy version corrupted by multiplicative Gamma noise
with L = 25 (right). Bottom: Denoised image by IDIV-TV with λ = 0.2 (left) and the result by the
IDIV-NL model with λ = 0.12, l = 9, ω = 11, a = 3 and m̃ = 5 (right).

part of the ’cameraman’ image has been restored, which was corrupted by multiplica-
tive noise with L = 4, i.e., a significantly higher noise level.

To conclude this chapter we apply our methods also to a real-world SAR image,
which is contaminated by multiplicative Nakagami distributed noise with density (3.7).
Although our methods have not been designed for this type of noise, we get quite
good results by both models as visible in Figure 3.12. As before, the IDIV-NL method
provides the best result, here.
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3.7 Numerical Experiments

Figure 3.11: Top: Original image (left) and noisy version corrupted by multiplicative Gamma noise
with L = 4 (right). Bottom: Restored image by IDIV-TV with λ = 0.9 (left) and the result by the
IDIV-NL model with λ = 0.6, l = 5, ω = 21, a = 1.5 and m̃ = 5 (right).
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3. Variational Approaches Facing Poisson and Multiplicative Noise

Figure 3.12: Top left: Original multi-look SAR image (copyright by [78]). Top right/bottom left:
Restored images by IDIV-TV with λ = 0.4 (top right) and λ = 0.5 (bottom left). Bottom right:
Result by the IDIV-NL approach with λ = 0.2, l = 9, ω = 13, a = 3 and m̃ = 5.
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Nonlocal Filters for Removing
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Up to now, we have examined different variational models for the removal of Poisson
and multiplicative Gamma noise. In this chapter we now turn our attention to nonlocal
filtering approaches and show how it is possible to define efficient nonlocal filters for
images corrupted by multiplicative noise. Here, a sticking point is the definition of
a suitable similarity measure for determining whether the original noisefree values of
two given noisy pixels have been the same or not.

To start with, we shortly introduce the nonlocal means filter [39] of Buades et al.
and report on existing approaches for adapting this filter for images corrupted by
non-Gaussian noise.
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4. Nonlocal Filters for Removing Multiplicative Noise

4.1 Nonlocal Means Filter and Motivation

If small enough regions, so-called patches , of an image are compared with each other,
we will typically find a lot of similar ones in a natural image. The idea of the nonlocal
(NL) means filter [39] proposed by Buades et al. in 2005 is to exploit these self-
similarities for image denoising. For this purpose, each pixel fi of a given noisy image
f is compared together with its neighboring pixels to other image patches and for
each comparison a weight is assigned depending on the similarity of the patches. The
restored pixel ûi is finally the weighted average of the central pixels of these patches
using the obtained weights. For a discrete image f ∈ Rm,n, N = mn, this means in
detail that

ûi =
1

Ci

N∑

j=1

wNL(i, j) fj (4.1)

with Ci :=
∑N

j=1wNL(i, j). If the image patches with centers fi, fj are given by fi+I ,
resp. fj+I for I denoting an appropriate index set, the weights are set to

wNL(i, j) = exp

(
−1

h

∑

k∈I
ga,k|fi+k − fj+k|2

)
.

The parameter h > 0 is used here to control the amount of filtering. The vector
ga = (ga,k)k∈I usually represents a sampled two dimensional Gaussian kernel with
mean zero and standard deviation a, which steers the influence of neighboring pixels
on the weights.

To exploit patch similarities for image denoising is also the central idea of the UINTA
filter [13, 14], which has been proposed by Awate and Whitaker simultaneously with
the NL means filter. However, due to its simplicity, the NL means filter is much better
known and has been extensively studied and further improved in various directions in
the past years. An analysis and comparison with other state-of-the-art image denoising
methods as well as an overview of recent developments in this area can for example
be found in [40].
Among other improvements, several authors proposed different approaches to adapt
the nonlocal means filter to noise statistics. In [140, 141] Mäkitalo et al. studied for
example variance-stabilizing transformations and their inverses which can be applied
to data corrupted by Poisson and multiplicative Rayleigh noise before and after the
standard NL means approach is applied. Kervrann et al. proposed the so-called
Bayesian NL means filter [117], which provided a first possibility to incorporate the
statistics of the noise directly into the design of the filter. In [54] this filter was applied
for the removal of speckle noise in ultrasound images. An approach for Rician noise
has been presented in [223]. Another generalization of the original NL means filter in
a probabilistic framework was given by Deledalle et al. in [60]. Here, a central step
was to incorporate the noise statistics in a suitable way into the weight definition of
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their filters. To illustrate the basic idea, the weights of the NL means filter can be
written in the form

wNL(i, j) =
∏

k∈I
sNL(fi+k, fj+k)

ga,k
h with sNL(x, y) := exp(−|x− y|2). (4.2)

Consequently, they can be constructed by taking the product over sNL(fi+k, fj+k)
ga,k
h

for all pairs of pixels fi+k and fj+k of the two image patches. The function sNL :
R × R → (0, 1] can be viewed as a similarity measure, where sNL(fi+k, fj+k) is sup-
posed to be close to one if the original noise free pixels belonging to fi+k and fj+k
have been the same and it should be close to zero if not. For images corrupted by
additive Gaussian noise, sNL is known to perform well. Unfortunately, it can be far
from optimal for other types of noise. Hence, the challenge is here to find a suit-
able noise adapted similarity measure, which can cope with different types of noise.
The similarity measure proposed for general noise models in [60] was demonstrated
to perform well for images corrupted by additive Gaussian noise, noise following a
Nakagami-Rayleigh distribution and Poisson noise studied in [61]. However, since we
show in the next section that it has unfavorable properties for multiplicative noise,
the first major challenge here will be the definition of an appropriate similarity mea-
sure for this type of noise. If such a measure has been found, we can proceed with
the definition of appropriate nonlocal filters, which can again be based on maximum
likelihood estimation as the filters in [60].

4.2 The Similarity Measure of Deledalle et al.

In this section we revisit the similarity measure applied by Deledalle, Denis and Tupin
in [60]. To fix the notation, all random variables are again named with capital letters
and are supposed to be real-valued, continuous and defined on a fixed probability space
(Ω,F , P ). Hence, pX : R → R≥0 stands for the probability density function of the
random variable X and pY |X(· | x) represents the conditional density of the random
variable Y given X = x, which has been introduced in Section 3.1. To compute the
densities of differently transformed random variables we will frequently apply results
from probability theory reported in Appendix A.
For the subsequent considerations we suppose again that the noisy pixels fi are real-
izations of independent continuous random variables Fi and the corresponding original
noise free pixels ui are realizations of independent identically distributed random vari-
ables Ui, i = 1, . . . , N . Since we need only two pixels for the following considerations,
we set N = 2 for simplicity. Moreover, we assume that all fi are contaminated by the
same noise model with equal parameters.

Now, to measure by two noisy observations f1, f2 whether u1 = u2, Deledalle et al.
suggest in [60] to use a so-called ’similarity probability’ denoted by p(θ1 = θ2|f1, f2).
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4. Nonlocal Filters for Removing Multiplicative Noise

In their paper, θi is a parameter depending deterministically on ui and we set θi = ui,
i = 1, 2. Since it is in general not clear what the probability or even conditional density
function of U1 = U2 given F1 = f1, F2 = f2 is, see, e.g., [101, p. 111], we start here by
interpreting the ’similarity probability’ as a conditional density: In [60] it is set to be

p(u1 = u2|f1, f2) :=

∫

S

pU1|F1(u | f1) pU2|F2(u | f2) du, (4.3)

where we need to have pFi(fi) > 0, i = 1, 2 and define S := supp(pUi), i.e., S is the
support of pUi . By the definition of the conditional density it holds that

∫

S

pU1|F1(u | f1) pU2|F2(u | f2) du =

∫
S
pU1,F1(u, f1) pU2,F2(u, f2) du

pF1(f1) pF2(f2)
. (4.4)

Furthermore, we obtain by Theorem A.1 and the independence of (U1, F1) and (U2, F2)
that

pU1−U2,U2,F1,F2(x, u, f1, f2) = pU1,F1(x+ u, f1) pU2,F2(u, f2)

and thus,

pU1−U2,F1,F2(0, f1, f2) =

∞∫

−∞

pU1−U2,U2,F1,F2(0, u, f1, f2) du

=

∫

S

pU1,F1(u, f1) pU2,F2(u, f2) du.

Inserting this in (4.4) shows with (4.3) and the independence of F1, F2 that

p(u1 = u2|f1, f2) = pU1−U2|(F1,F2)(0 | f1, f2). (4.5)

For this reason, we will in the following refer to the ’similarity probability’ by the
conditional density on the right hand side. By (4.4) it can also be expressed in the
form

pU1−U2|(F1,F2)(0 | f1, f2) =

∫
S
pU1(u) pU2(u) pF1|U1(f1 | u) pF2|U2(f2 | u) du

pF1(f1) pF2(f2)
. (4.6)

Since in general no knowledge about the distribution of the random variables Ui is
given, Deledalle et al. propose to neglect the densities pUi and pFi , i = 1, 2 and to
consider only

sDDT (f1, f2) :=

∫

S

pF1|U1(f1 | u) pF2|U2(f2 | u) du. (4.7)

This measure is very close to the one investigated for block matching in [143]. Here,
one may ask whether sDDT can also be interpreted in terms of a conditional density
function similarly to (4.5). For the case of additive noise with S = R the answer is
yes as we will see in the next subsection.
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4.2.1 Properties in the Presence of Additive Noise

In this subsection suppose additionally that Vi, i = 1, 2, are independent identically
distributed random variables, which follow some noise distribution. Moreover, let ui
be corrupted by additive noise, i.e., fi := ui + vi and

Fi := Ui + Vi, i = 1, 2,

where each vi is a realization of the random variable Vi. Consider further all Ui, Vi,
i = 1, 2, to be pairwise independent. Under these conditions, we can show that sDDT
has the following properties:

Proposition 4.2.1 For the described additive noise model with S = supp(pUi) = R
we have

sDDT (f1, f2) = pV1−V2(f1 − f2) = pF1−F2|U1−U2(f1 − f2| 0 ) ∀ f1, f2 ∈ R. (4.8)

Moreover, sDDT is symmetric and has the following properties:

i) sDDT (f, f) = const. for all f ∈ R,

ii) 0 ≤ sDDT (f1, f2) ≤ sDDT (f, f) = pV1−V2(0) for all f1, f2, f ∈ R.

Proof: By Proposition A.7 i) and Corollary A.4 i) it holds that

sDDT (f1, f2) =

∞∫

−∞

pV1(f1 − u) pV2(f2 − u) du = pV1−V2(f1 − f2).

Now, applying again Proposition A.7 i) yields

pV1−V2(f1 − f2) = pF1−F2|U1−U2(f1 − f2| 0 ).

Therefore, the listed properties follow directly from Lemma A.5. �

The last property guarantees that sDDT (f1, f2) is maximal whenever f1 = f2 and sDDT
is bounded so that it can be scaled to the interval [0, 1], i.e., the range of sNL. For the
special case that Vi, i = 1, 2, are Gaussian distributed with standard deviation σ, it
follows that

sDDT (f1, f2) =
1

2
√
πσ

exp

(
−|f1 − f2|2

4σ2

)
=

1

2
√
πσ

( sNL(f1, f2) )
1

4σ2 .
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Hence, normalizing sDDT (f1, f2) by its maximal value c := max
x,y∈R

sDDT (x, y) = 1
2
√
πσ

leads to the weight definition

w(i, j) =
∏

k∈I

(
sDDT (fi+k, fj+k)

c

) ga,k
h

=
∏

k∈I
sNL(fi+k, fj+k)

ga,k

h′ (4.9)

with h′ = 4σ2h. This is just the definition of the original NL means weights with a
scaled filtering parameter h as similarly deduced in [60].
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re

l.
n
u
m

b
er

o
f
p
ix

el
s

p
er

b
in

Figure 4.1: Left : Histogram of a constant image with gray value 50, which is corrupted by additive
Gaussian noise of standard deviation 20. Middle: Histogram of (sDDT (fi, f̃i)/c)

N
i=1, where f , f̃

are images with gray value distributions as on the left. Right : Same as in the middle, but now f̃
represents a constant image of gray value 110 corrupted by equally distributed noise.

The behavior of the similarity measure sDDT for additive Gaussian noise is illustrated
in Figure 4.1. The histogram on the left shows the distribution of the gray values of
a constant image of gray value 50 corrupted by additive Gaussian noise of standard
deviation 20. Next, the distribution of the values sDDT (fi, f̃i)/c, i = 1, . . . , N , is
depicted for the case that both images are corrupted versions of the same constant
gray value image. As expected, most values are close to one, i.e., sDDT/c detected that
the corresponding noisy pixels belong to the same noise free pixel. Only a few values
are close to zero, which means that the measure did not recognize that also these noisy
pixels had the same initial gray value. For the histogram on the right, different gray
values have been used to generate the noisy images. Here, most values sDDT (fi, f̃i)/c
are close to zero and only few pixels are falsely detected to correspond to the same
noise free pixel.

4.2.2 Properties in the Presence of Multiplicative Noise

Next, we want to investigate the case of multiplicative noise. For this reason, suppose
again that Vi, i = 1, 2, are independent identically distributed random variables, which
follow some noise distribution. Moreover, let fi be corrupted by multiplicative noise,
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4.2 The Similarity Measure of Deledalle et al.

i.e., fi := ui · vi and

Fi := Ui Vi, i = 1, 2, (4.10)

where each vi is again a realization of the random variable Vi. All Ui, Vi, i = 1, 2,
are further considered to be pairwise independent and we suppose that pUi(x) = 0,
pVi(x) = 0 for x < 0, i.e., Fi > 0 almost surely, as it is usually the case in imaging
applications facing multiplicative noise.
Under these preliminaries, we obtain by Proposition A.7 ii) that for f1, f2 with pFi(fi) >
0, i = 1, 2, and S = supp(pUi) ⊆ R≥0 the ’similarity probability’ of Deledalle et al. is
given by

pU1−U2|(F1,F2)(0 | f1, f2) =

∫

S

pU1(u) pU2(u)

pF1(f1) pF2(f2)
pF1|U1(f1 | u) pF2|U2(f2 | u) du

=

∫

S

pU1(u) pU2(u)

pF1(f1) pF2(f2)

1

u2
pV1

(
f1
u

)
pV2

(
f2
u

)
du, (4.11)

which will be investigated further in the examples later on. First, we deduce the
following properties of sDDT :

Proposition 4.2.2 For the described multiplicative noise model with S = R≥0 it
holds that

sDDT (f1, f2) =

∞∫

0

1

u2
pV1

(
f1
u

)
pV2

(
f2
u

)
du = pf2V1−f1V2(0) ∀ f1, f2 > 0. (4.12)

In this case, sDDT is symmetric and has the following properties:

i) sDDT (f, f) =
1
f
pV1−V2(0) for all f > 0,

ii) sDDT is not bounded from above.

Proof: Equation (4.12) follows directly by the definition of sDDT , Proposition A.7 ii),
and Corollary A.4 i). By Corollary A.4 iv) we have for f = f1 = f2 > 0 that

sDDT (f, f) = pf(V1−V2)(0) =
1

f
pV1−V2(0)

and thus, sDDT (f, f) tends to infinity for f → 0. �

These properties stand in sharp contrast to the additive case. The first property im-
plies that by sDDT , small values f = f1 = f2 are always considered more likely to be
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generated by the same noise free pixel than bigger ones. Moreover, the unboundedness
is not desirable with regard to the weight definition of a nonlocal filter, since a single
pixel could get an arbitrarily large weight and dominate all others.
To see what we get for sDDT for concrete noise distributions and to compare its be-
havior to pU1−U2|(F1,F2)(0 | f1, f2), we will consider different examples. In analogy to
additive Gaussian noise, it may seem nearby to start with multiplicative Gaussian
noise with mean one. However, in this case the assumption pVi(x) = 0 for x < 0 is
violated. Only for a very small standard deviation it can be consider at least very
unlikely that a realization vi < 0 occurs as it has also been pointed out in [10]. For
this reason, we will not consider this example further. Instead, we start by studying
multiplicative uniform noise as the simplest possible example.

Example 4.2.3 (Multiplicative uniform noise)
For i = 1, 2 assume that Ui is uniformly distributed on the interval [0, n] and Vi is
uniformly distributed on [1−m, 1 +m], m ∈ (0, 1), i.e.,

pUi(u) =

{
1
n

u ∈ [0, n],

0 otherwise
and pVi(v) =

{
1
2m

v ∈ [1−m, 1 +m],

0 otherwise.

By applying (4.11) as well as Corollary A.4 ii) for computing pFi(fi) we obtain by
some technical computations

pU1−U2|(F1,F2)(0 | f1, f2)

=





(1+m)min{ 1
f1
, 1
f2

}− (1−m)max{ 1
f1
, 1
f2
, 1
(1−m)n

}
log(min{ (1+m)n

f1
, 1+m
1−m}) log(min{ (1+m)n

f2
, 1+m
1−m})

if f1, f2 ∈ [0, (1 +m)n]

and f1
f2

∈
[
1−m
1+m

, 1+m
1−m

]
,

0 otherwise.

If we assume in contrast that the distribution of Ui, i = 1, 2, is not known and we set
S = R≥0, it follows that

sDDT (f1, f2)

=

{
1

4m2

(
(1 +m)min

{
1
f1
, 1
f2

}
− (1−m)max

{
1
f1
, 1
f2

})
if f1

f2
∈
[
1−m
1+m

, 1+m
1−m

]
,

0 otherwise.

These functions have both the property that for fixed f1 they are maximal if f2 = f1.
Moreover, they tend to infinity for f1 = f2 → 0, i.e., they are both unbounded.

To analyze the performance of these measures with regard to our specific application we
included Figure 4.2. The diagrams on the left show the histogram for each measure
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Figure 4.2: Left : Histograms of (pU1−U2|(F1,F2)(0|fi, f̃i))Ni=1 (top) and (sDDT (fi, f̃i))
N
i=1 (bottom),

where f , f̃ are both constant images of gray value 50 corrupted by multiplicative uniform noise with
m = 0.4. Right : Same as on the left hand side, but now f̃ represents a constant image of gray value
110 corrupted by equally distributed noise.

applied to two constant images of the same gray value corrupted by multiplicative
uniform noise with m = 0.4. On the right, the same has been repeated with two
constant images of significantly different gray value. As we can see here, except for
a scaling factor the results of the two measures are quite similar. Moreover, the
histograms for the images with different initial gray values have again a significant peak
at zero meaning that most pixels have been correctly detected to belong to different
noise free pixels. In contrast to Figure 4.1 (middle), the peaks of the histograms on the
left are not at the largest obtained values of the measures, but at some intermediate
values. This is not desirable with respect to a weight definition of a nonlocal filter,
since it indicates that the measures cannot definitely determine for a large number of
pixels whether the true pixels have been the same or not. However, these observations
can also be confirmed for data corrupted by differently distributed noise:

Example 4.2.4 (Multiplicative Gamma noise)
For this example let us assume that the distribution of Ui is unknown and the noise
components Vi are Gamma distributed with density

pVi(v) =
LL

Γ(L)
vL−1 exp(−Lv) 1R≥0

(v), L ≥ 1, i = 1, 2. (4.13)
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4. Nonlocal Filters for Removing Multiplicative Noise

For this noise distribution we obtain for f1, f2 > 0 and S = R≥0 that

sDDT (f1, f2) =
L2L

Γ(L)2
(f1f2)

L−1

∞∫

0

1

u2L
exp

(
−Lf1 + f2

u

)
du.

By the definition of the Gamma function, see also [60], it holds that

∞∫

0

c1
tb

exp
(
−c2
t

)
dt =

c1

cb−1
2

Γ(b− 1) ∀ c1 ∈ R, c2 > 0, b > 1. (4.14)

Hence, we finally have

sDDT (f1, f2) = L
Γ(2L− 1)

Γ(L)2
(f1f2)

L−1

(f1 + f2)2L−1
= L

Γ(2L− 1)

Γ(L)2
1

f1 + f2

1
(
2 + f1

f2
+ f2

f1

)L−1
.

One may again expect that for fixed f1 this similarity measure is maximal if f2 = f1.
However, for L > 1 and a given value f1 it is maximal for f2 =

L−1
L
f1. This is again in

sharp contrast to the properties of sDDT in the additive case. For the special case L = 1
we have sDDT (f1, f2) =

1
f1+f2

. This implies that for fixed f1 the measure sDDT (f1, f2)
is large whenever f2 is small.

Figure 4.3 investigates the suitability of this measure for the weight definition of a non-
local filter. As already indicated the performance is here very similar to the histograms
in Figure 4.2.
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Figure 4.3: Left : Histogram of a constant image with gray value 50 corrupted by multiplicative
Gamma noise with L = 16. Middle: Histogram of (sDDT (fi, f̃i))

N
i=1, where f , f̃ have gray value

distributions as on the left. Right : Same as in the middle, but now f̃ represents a constant image of
gray value 110 corrupted by equally distributed noise.
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4.3 A New Similarity Measure for Multiplicative Noise

Example 4.2.5 (Multiplicative Rayleigh noise)
Finally, let the distribution of Ui, i = 1, 2, be again unknown and suppose now that
the noise components vi are realizations of Rayleigh distributed random variables Vi
with

pVi(v) =
v

θ2
exp

(
− v2

2θ2

)
1R≥0

(v), θ > 0. (4.15)

Here, using again (4.14) yields for S = R≥0 and f1, f2 > 0 that

sDDT (f1, f2) =

√
2

θ
Γ

(
3

2

)
f1f2

(f 2
1 + f 2

2 )
3
2

=

√
π

2

1

θ

f1f2

(f 2
1 + f 2

2 )
3
2

.

For fixed f1 we have in this case that sDDT (f1, f2) is maximal for f2 =
1√
2
f1, which is

again in contrast to the additive case.

Altogether, sDDT (f1, f2) = pf2V1−f1V2(0) does not seem to be an optimal similarity
measure for the comparison of data corrupted by multiplicative noise.

4.3 A New Similarity Measure for Multiplicative

Noise

To deduce a different measure for the multiplicative noise model introduced in Sub-
section 4.2.2, let us consider the logarithmically transformed random variables F̃i =
log(Fi), where

log(Fi)︸ ︷︷ ︸
F̃i

= log(UiVi) = log(Ui)︸ ︷︷ ︸
Ũi

+ log(Vi)︸ ︷︷ ︸
Ṽi

, i = 1, 2.

The new random variables F̃i follow an additive noise model now and the supports of
pŨi , pṼi may be the whole of R. Interestingly, computing (4.5) for these random vari-
ables leads to pU1

U2
|(F1,F2)

(1 | f1, f2) rather than pU1−U2|(F1,F2)(0 | f1, f2) as the following

lemma shows:

Lemma 4.3.1 For f1, f2 > 0 with pFi(fi) > 0 and S̃ = supp(pŨi) it holds that

pŨ1−Ũ2|(F̃1,F̃2)
(0 | log(f1), log(f2))

=

∫

S̃

pŨ1
(t) pŨ2

(t) pF̃1|Ũ1
(log(f1) | t) pF̃2|Ũ2

(log(f2) | t)
pF̃1

(log(f1)) pF̃2
(log(f2))

dt (4.16)

= pU1
U2

|(F1,F2)
(1 | f1, f2). (4.17)
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4. Nonlocal Filters for Removing Multiplicative Noise

Proof: The first equality follows directly by (4.6). Besides, we have by Proposition
A.7 i) and Corollary A.3 that

∫

S̃

pŨ1
(t) pŨ2

(t) pF̃1|Ũ1
(log(f1) | t) pF̃2|Ũ2

(log(f2) | t)
pF̃1

(log(f1)) pF̃2
(log(f2))

dt

=

∫

S̃

pŨ1
(t) pŨ2

(t) pṼ1(log(f1)− t) pṼ2(log(f2)− t)

pF̃1
(log(f1)) pF̃2

(log(f2))
dt

=

∫

S̃

et pU1(e
t) et pU2(e

t) f1 e
−t pV1(f1 e

−t) f2 e
−t pV2(f2 e

−t)

f1 pF1(f1) f2 pF2(f2)
dt

=

∫
S

1
u
pU1(u) pU2(u) pV1

(
f1
u

)
pV2
(
f2
u

)
du

pF1(f1) pF2(f2)
(4.18)

with S = supp(pUi). Next, we set X = (U1, U2, V1, V2), Y = (U1

U2
, U2, F1, F2), T1 =

T2 = R4
>0 and define g : T1 → T2 by g(u1, u2, v1, v2) = (u1

u2
, u2, u1v1, u2v2). Then,

Theorem A.1 yields

pU1
U2
, U2, F1, F2

(x, u, f1, f2) =

{
1
xu
pU1, U2, V1, V2(xu, u,

f1
xu
, f2
u
) if (x, u, f1, f2)

T ∈ T2,

0 otherwise.

Hence, by the pairwise independence of U1, U2, V1, V2 it follows that

pU1
U2
, F1, F2

(1, f1, f2) =

∞∫

−∞

pU1
U2
, U2, F1, F2

(1, u, f1, f2) du

=

∫

S

1

u
pU1(u) pU2(u) pV1

(
f1
u

)
pV2

(
f2
u

)
du.

Inserting this in (4.18) leads by the definition of the conditional density and the inde-
pendence of F1, F2 to the assumption. �

Now, similarly to Section 4.2 we omit the terms pŨi , pF̃i , i = 1, 2, in (4.16) and suppose

that S̃ = R, which is equivalent to S = R≥0. With (4.8) this leads to
∫

S̃

pF̃1|Ũ1
(log(f1) | t) pF̃2|Ũ2

(log(f2) | t) dt = pṼ1−Ṽ2(log(f1)− log(f2))

= pF̃1−F̃2|Ũ1−Ũ2
(log(f1)− log(f2) | 0).

Setting
s(f1, f2) := pṼ1−Ṽ2(log(f1)− log(f2)), (4.19)

we obtain a new similarity measure.
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4.3 A New Similarity Measure for Multiplicative Noise

Remark 4.3.2 For pŨi ≡ 1 it follows by Corollary A.4 i) that pF̃i ≡ 1. Hence,
omitting pŨi and pF̃i is equivalent to setting pŨi ≡ 1, disregarding that this is not

a proper density. By the relation Ũi = log(Ui) and Corollary A.3 the prior pŨi ≡ 1
implies that

pUi(u) =

{
1
u
pŨi(log(u)) if u > 0,

0 otherwise,
=

{
1
u

if u > 0,

0 otherwise.
(4.20)

At the first glance, this choice of pUi may seem a bit odd. However, it can be justified
by Jeffreys’ prior , which is a so-called non-informative prior trying to minimize the
influence of the prior on the reasoning if no prior information is available, see, e.g.,
[172]. For multiplicative noise with an arbitrary density pVi and u > 0 this prior is
given by

p̃Ui(u) :=

√√√√√
∞∫

−∞

( ∂
∂u

log pFi|Ui(x|u)
)2
pFi|Ui(x|u) dx

=

√√√√√
∞∫

0

(
∂

∂u
log

(
1

u
pVi

(
x

u

)))2
1

u
pVi

(
x

u

)
dx

=

√√√√√
∞∫

0

(
∂

∂u
(− log u) +

∂

∂u
log pVi

(
x

u

))2
1

u
pVi

(
x

u

)
dx

=

√√√√√
∞∫

0

(
− 1

u
− v

u

∂

∂v
log pVi(v)

)2
1

u
pVi(v) u dv

=
1

u

√√√√√
∞∫

0

(
1 + v

∂

∂v
log pVi(v)

)2
pVi(v) dv

︸ ︷︷ ︸
=const.

. (4.21)

Setting p̃Ui(u) = 0 for u ≤ 0 it turns out to be proportional to (4.20).

Now, we want to examine the properties of our new similarity measure (4.19):
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4. Nonlocal Filters for Removing Multiplicative Noise

Proposition 4.3.3 For the considered multiplicative noise model it holds that

s(f1, f2) = p f2
f1

V1
V2

(1) =
f1
f2
pF1
F2

|U1
U2

(
f1
f2

| 1
)

=

∞∫

0

f1f2
u3

pV1

(
f1
u

)
pV2

(
f2
u

)
du (4.22)

=

∞∫

0

f1
f2
t pV1

(
f1
f2
t

)
pV2 (t) dt ∀ f1, f2 > 0.

Moreover, s(·, ·) is symmetric and has the following properties:

i) s(f, f) = const. for all f > 0,

ii) 0 ≤ s(f1, f2) ≤ s(f, f) = pV1
V2

(1) for all f1, f2, f > 0.

Proof: Corollaries A.4 i), A.3 and different variable transformations yield for f1, f2 >
0 that

s(f1, f2) =

∞∫

−∞

pṼ1(log(f1)− t) pṼ2(log(f2)− t) dt =

∞∫

0

f1f2
u3

pV1

(
f1
u

)
pV2

(
f2
u

)
du

=

∞∫

0

f1
f2
t pV1

(
f1
f2
t

)
pV2 (t) dt.

Moreover, it follows by Corollary A.4 iii), iv) and Proposition A.7 ii) that

s(f1, f2) = p f2
f1

V1
V2

(1) =
f1
f2
pV1
V2

(
f1
f2

)
=

f1
f2
pF1
F2

|U1
U2

(
f1
f2

| 1
)
.

The properties of s(·, ·) follow by (4.19), Lemma A.5 and s(f1, f2) = p f2
f1

V1
V2

(1). �

Obviously, our new measure s(·, ·) has similarly good properties as sDDT in the additive
case with S = R, although (4.22) differs from (4.12) only by the factor f1f2

u
within the

integral. Regarding (4.17) and sDDT for additive noise given in (4.8), our new measure

is not exactly pF1
F2

|U1
U2

(
f1
f2
| 1
)
but a scaled version of it. The following examples show

further advantageous properties of s(·, ·):
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4.3 A New Similarity Measure for Multiplicative Noise

Example 4.3.4 (Example 4.2.3 continued)
For f1, f2 > 0 and uniformly distributed random variables Ui, Vi, i = 1, 2, as in
Example 4.2.3, we obtain by technical computations using (4.18) and Corollary A.4
ii) that

pU1
U2

|(F1,F2)
(1 | f1, f2) =

∫
S

1
u
pU1(u) pU2(u) pV1

(
f1
u

)
pV2
(
f2
u

)
du

pF1(f1) pF2(f2)

=





log( 1+m
1−m)− log

(
max{ f1

f2
,
f2
f1
,

f1
(1−m)n

,
f2

(1−m)n
}
)

log(min{ (1+m)n
f1

, 1+m
1−m}) log(min{ (1+m)n

f2
, 1+m
1−m})

if f1, f2 ∈ [0, (1 +m)n]

and f1
f2

∈
[
1−m
1+m

, 1+m
1−m

]
,

0 otherwise.

This measure is still not bounded as it tends to infinity for f1 = f2 → (1 + m)n.
Nevertheless,

s(f1, f2) =

{
1

8m2

(
(1 +m)2min{f1

f2
, f2
f1
} − (1−m)2 max{f1

f2
, f2
f1
}
)

if f1
f2

∈
[
1−m
1+m

, 1+m
1−m

]
,

0 otherwise,

is bounded and has a maximum of c = 1
2m

.
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Figure 4.4: Left : Histograms of (pU1/U2|(F1,F2)(1|fi, f̃i))Ni=1 (top) and (s(fi, f̃i)/c))
N
i=1 (bottom), where

f , f̃ are both constant images of gray value 50 corrupted by multiplicative uniform noise withm = 0.4.
Right : Same as on the left hand side, but now f̃ represents a constant image of gray value 110
corrupted by equally distributed noise.
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4. Nonlocal Filters for Removing Multiplicative Noise

Figure 4.4 shows that except for a scaling factor the histograms for pU1/U2|(F1,F2)(1 | ·, ·)
and s(·, ·)/c are quite similar for the considered images. In particular, for the two
images with the same initial gray value the histograms have now their maximum at
the largest obtained values. As our next example shows, this still remains true if we
consider s(·, ·)/c for multiplicative Gamma noise:

Example 4.3.5 (Example 4.2.4 continued)
Let Vi, i = 1, 2, be Gamma distributed random variables. For f1, f2 > 0 Equation
(4.14) yields

s(f1, f2) =
L2L

Γ(L)2
(f1f2)

L

∞∫

0

1

u2L+1
exp

(
−Lf1 + f2

u

)
du

=
Γ(2L)

Γ(L)2
(f1f2)

L

(f1 + f2)2L
=

Γ(2L)

Γ(L)2
1

(
2 + f1

f2
+ f2

f1

)L ,

which has a maximum value of c = Γ(2L)
Γ(L)2

1
4L
.

As illustrated by Figure 4.5, for L = 16 this new measure gives similar histograms
as initially obtained for additive Gaussian noise in Figure 4.1. Hence, a similar good
performance can be expected if applied for nonlocal filtering.
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re
l.

n
u
m

b
er

o
f
p
ix

el
s

p
er

b
in

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

s(50 vi, 110 ṽi)/c
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Figure 4.5: Left : Histogram of (s(fi, f̃i)/c)
N
i=1, where f , f̃ are both constant images of gray value

50 corrupted by multiplicative Gamma noise with L = 16. Right : Same as on the left, but now f̃
represents a constant image of gray value 110 corrupted by equally distributed noise.

Example 4.3.6 (Example 4.2.5 continued)
Finally, let us assume that Vi, i = 1, 2, follow a Rayleigh distribution. In this case, we
obtain by (4.14) that

s(f1, f2) =
f 2
1 f

2
2

θ4

∞∫

0

1

u5
exp

(
− 1

2θ2
f 2
1 + f 2

2

u2

)
du
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=
f 2
1 f

2
2

θ4

∞∫

0

1

2t3
exp

(
− 1

2θ2
f 2
1 + f 2

2

t

)
dt

= 2

(
f1f2

f 2
1 + f 2

2

)2

=
2

(
f1
f2

+ f2
f1

)2

with a maximum of c = 1
2
. We will use this measure for our numerical experiments

later on.

By all these findings we showed that our new similarity measure has many favorable
properties, which are similar to the properties of sDDT facing additive noise with
S = R.

4.4 Relations to Other Similarity Measures

Interestingly, there exist different relations of our new measure to other similarity
measures known in the literature. To start with, we state the following observation:

A relation to sNL If we had initially no idea how to define similarity measures for
data corrupted by multiplicative noise, a first nearby approach would have been to
transform f1, f2 > 0 logarithmically to obtain data corrupted by additive noise and to
use

sNL(log(f1), log(f2)) = exp
(
−(log(f1)− log(f2))

2
)
= exp

(
−
(
log

(
f1
f2

))2)
(4.23)

as a similarity measure for any f1, f2 corrupted by multiplicative noise. Here, the
logarithmic transformation can also be considered as a variance-stabilizing transfor-
mation, which makes the variance of the transformed noisy data signal independent.
Interestingly, the similarity measure (4.23) can be related to the our new measure for
data corrupted of multiplicative Gamma noise with L ≈ 4. In detail, using the Taylor
approximation

log(x) = 2
∞∑

k=0

1

2k + 1

(
x− 1

x+ 1

)2k+1

≈ 2
x− 1

x+ 1
for x > 0,
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4. Nonlocal Filters for Removing Multiplicative Noise
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Figure 4.6: Graphs of the functions s1, s2 : R>0 → R defined by s1(x) = exp
(
− (log(x))2

)
(left) and

s2(x) =
(

4
2+x+ 1

x

)4
(middle) as well as the graph of the difference s2 − s1 (right).

see, e.g., [112, p. 137], we can show that

sNL(log(f1), log(f2)) = exp

(
−
(
log

(
f1
f2

))2)
= exp

( f1/f2∫

1

−2 log(t)

t
dt

)

≈ exp

( f1/f2∫

1

−4(t− 1)

t(t+ 1)
dt

)
= exp

([
4 log

(
4 t

(t+ 1)2

)]f1/f2

1

)

=

(
4 f1
f2

(f1
f2

+ 1)2

)4

=

(
4

2 + f1
f2

+ f2
f1

)4

.

This last term equals exactly s(f1,f2)
c

as given for L = 4 in Example 4.3.5. Thus,

sNL(log(f1), log(f2)) approximates s(f1,f2)
c

for data corrupted by multiplicative Gamma
noise with L ≈ 4. The quality of the approximation is shown in Figure 4.6. As we can
see here, the graphs are very close, although there are small differences visible.

In the very recent works [59, 62], which were published after the completion of [TL12a,
TL12b], Deledalle et al. studied a couple of other similarity measures taken from
the fields of image processing, detection theory and machine learning. For the here
considered case of multiplicative noise we want to show in the following that some of
these measures are closely related to each other or even coincide under appropriate
assumptions. In addition, close relations to our proposed measure will be proven.

Since we assumed throughout this chapter that all Ui as well as all Vi are independent
and identically distributed, we will drop in the following the indices i of the random
variables characterizing the densities and write, e.g., only pU instead of pUi .
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4.4 Relations to Other Similarity Measures

Bayesian likelihood ratio and mutual information kernel With

QB(f1, f2) :=

∫

S

pF |U(f1|u) pF |U(f2|u) pU(u) du, S := supp(pU)

two of the measures examined in [59, 62] are the Bayesian likelihood ratio (BLR)

LB(f1, f2) =
QB(f1, f2)

DB(f1) DB(f2)
with DB(f) =

∫

S

pF |U(f |u) pU(u) du = pF (f),

cf. [146, 147, 172], and the mutual information kernel

KB(f1, f2) =
QB(f1, f2)√

QB(f1, f1) QB(f2, f2)

proposed in [185]. These measures have in common that they both require the defini-
tion of a prior pU . In cases where the density pU is unknown, Jeffreys’ prior can again
be used. As already determined in Remark 4.3.2 this prior is given by

pU(u) =

{
d 1
u

for u > 0,

0 otherwise
with d :=

√√√√√
∞∫

0

(
1 + v

∂

∂v
log pV (v)

)2
pV (v) dv (4.24)

for any type of multiplicative noise which fits into the multiplicative noise model
introduced in Subsection 4.2.2. Interestingly, using (4.24) we can prove the following
relations between LB(f1, f2), KB(f1, f2) and s(f1, f2):

Proposition 4.4.1 For the multiplicative noise model introduced in Subsection 4.2.2
and pU defined by Jeffreys’ prior (4.24) it holds that

LB(f1, f2) =
s(f1, f2)

d
and KB(f1, f2) =

s(f1, f2)

c

with c = max
f1,f2

s(f1, f2).

Proof: Using Jeffreys’ prior (4.24) and Proposition A.7 ii) we obtain that

DB(f) =

∫

S

pF |U(f |u) pU(u) du = d

∞∫

0

1

u2
pV

(
f

u

)
du = d

∞∫

0

v2

f 2
pV (v)

f

v2
dv

= d
1

f

∞∫

0

pV (v) dv = d
1

f
.
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4. Nonlocal Filters for Removing Multiplicative Noise

Since

c = max
f1,f2

s(f1, f2) = s(f, f) =

∞∫

0

f

f
t pV

(
f

f
t

)
pV (t) dt =

∞∫

0

t
(
pV (t)

)2
dt,

this implies that

QB(f, f) = d

∞∫

0

1

u
pF |U(f |u) pF |U(f |u) du = d

∞∫

0

1

u3
pV

(
f

u

)
pV

(
f

u

)
du

= d

∞∫

0

v3

f 3
pV (v) pV (v)

f

v2
dv = d

1

f 2

∞∫

0

v
(
pV (v)

)2
dv

︸ ︷︷ ︸
= c

= c d
1

f 2
.

Hence, with (4.22) it follows that

LB(f1, f2) =
QB(f1, f2)

DB(f1) DB(f2)
=

f1 f2
d2

d

∞∫

0

1

u
pF |U(f1|u) pF |U(f2|u) du

=
1

d

∞∫

0

f1 f2
u3

pV

(
f1
u

)
pV

(
f2
u

)
du =

s(f1, f2)

d

and

KB(f1, f2) =
QB(f1, f2)√

QB(f1, f1) QB(f2, f2)
=

f1 f2
c d

d

∞∫

0

1

u
pF |U(f1|u) pF |U(f2|u) du

=
1

c

∞∫

0

f1 f2
u3

pV

(
f1
u

)
pV

(
f2
u

)
du =

s(f1, f2)

c
.

�

By this proposition we showed that our normalized measure s(f1, f2)/c coincides with
the mutual information kernel KB and it is proportional to the Bayesian likelihood
ratio LB if Jeffreys’ prior is applied in both cases.

Generalized likelihood ratio A related similarity measure studied in [59, 62] is
the generalized likelihood ratio (GLR)

LG(f1, f2) =
supu∈S pF |U(f1|u) pF |U(f2|u)

supu∈S pF |U(f1|u) supu∈S pF |U(f2|u)
,
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4.4 Relations to Other Similarity Measures

cf., e.g., [116, 133, 172]. In contrast to LB and KB, no prior distribution pU is incor-
porated here. For the considered multiplicative noise model and S := R>0 Proposi-
tion A.7 ii) yields

sup
u∈S

pF |U(f |u) = sup
u>0

1

u
pV

(
f

u

)
= sup

v>0

v

f
pV (v) =

1

f
sup
v>0

v pV (v)

︸ ︷︷ ︸
=: b

= b
1

f

so that

LG(f1, f2) =
supu>0 pF |U(f1|u) pF |U(f2|u)

supu>0 pF |U(f1|u) supu>0 pF |U(f2|u)

=
f1 f2
b2

sup
u>0

1

u2
pV

(
f1
u

)
pV

(
f2
u

)

=
1

b2
f1
f2

sup
t>0

t2 pV

(
f1
f2
t

)
pV (t).

By the last term we can see that for the examined multiplicative noise model the value
of this measure depends like s(f1, f2) only on the quotient f1/f2 rather than the values
f1 and f2 as such. Although LG differs in general from s(f1, f2)/c, we can show that
for our standard examples of multiplicative Gamma and Rayleigh noise the measures
do again coincide:

Proposition 4.4.2 Let S := R>0. For multiplicative Gamma and Rayleigh noise
with densities pV given by (4.13) and (4.15), respectively it holds that

LG(f1, f2) =
s(f1, f2)

c
with c = max

f1,f2
s(f1, f2).

Proof: For multiplicative Gamma noise with noise density (4.13) it follows that

b = sup
v>0

v pV (v) = sup
v>0

LL

Γ(L)
vL exp(−Lv) =

LL

Γ(L)
exp(−L)

and thus, with Example 4.3.5 we obtain

LG(f1, f2) =
1

b2
f1
f2

sup
t>0

t2 pV

(
f1
f2
t

)
pV (t)

=
1

exp(−2L)

f1
f2

sup
t>0

t2L
(
f1
f2

)L−1

exp

(
−L
(
f1
f2

+ 1

)
t

)

=
1

exp(−2L)

(
f1
f2

)L (
2

1 + f1
f2

)2L

exp(−2L)

=
4L

(
2 + f1

f2
+ f2

f1

)L =
s(f1, f2)

c
.
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4. Nonlocal Filters for Removing Multiplicative Noise

On the other hand, for multiplicative Rayleigh noise the density (4.15) yields

b = sup
v>0

v pV (v) = sup
v>0

v2

θ2
exp

(
− v2

2θ2

)
= 2 exp(−1).

With Example 4.3.6 this finally implies that

LG(f1, f2) =
1

b2
f1
f2

sup
t>0

t2 pV

(
f1
f2
t

)
pV (t)

=
1

4 exp(−2)

f1
f2

sup
t>0

1

θ4
t4
f1
f2

exp

(
− 1

2θ2

((
f1
f2

)2

+ 1

)
t2

)

=
1

4 θ4 exp(−2)

(
f1
f2

)2
(2θ)4

((
f1
f2

)2
+ 1
)2 exp(−2)

=
4

(
f1
f2

+ f2
f1

)2 =
s(f1, f2)

c
.

�

These findings show that although our proposed similarity measures has been deduced
in a totally different way, it is closely connected to other existing approaches. Since
sNL with an appropriate variance stabilization and KB and LG with Jeffreys’ prior
performed best among all similarity measures compared in [59, 62], these observations
highlight once more that our deduced similarity measure is a very good choice for the
task at hand.

4.5 Nonlocal Filtering Facing Multiplicative Noise

In the following, we will now use this similarity measure to define appropriate nonlocal
filters for the removal of multiplicative noise in images.

4.5.1 Nonlocal Filters by Maximum Likelihood Estimation

As in [60] our nonlocal filters are based on weighted maximum likelihood estimation.
For further literature on this topic we refer to [81, 163, 172, 190]. Ideally, we would
like to determine an estimate ũi of the true noise free pixels ui such that

ũi = argmax
t∈R

∑

j∈Si

log pFj |Uj(fj | t) subject to pUj(t) > 0

with Si being the index set of those pixels, which were generated from the same noise
free pixel as fi, i.e., fj = uivj for all j ∈ Si. Since the set Si is not known, we assume
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4.5 Nonlocal Filtering Facing Multiplicative Noise

that estimates w(i, j) ∈ [0, 1] of the values of the characteristic functions 1Si(j) are
given for all j = 1, . . . , N and we compute

ûi := argmax
t∈R

N∑

j=1

w(i, j) log pFj |Uj(fj | t) subject to pUj(t) > 0. (4.25)

If we set w = wNL, the estimates ûi for additive Gaussian noise and pUi > 0 are
given by the weighted means (4.1). For multiplicative Gamma and Rayleigh noise the
resulting filters are deduced in the subsequent examples:

Example 4.5.1 (Multiplicative Gamma noise)
For our multiplicative noise model described in Subsection 4.2.2 and noise following a
Gamma distribution we have according to (4.13) and Proposition A.7 ii) that

pFj |Uj(fj|ui) =
LL

Γ(L)

fL−1
j

uLi
exp

(
−L fj

ui

)
for fj, ui > 0 with pUj(ui) > 0, (4.26)

compare also (3.6). Hence, it follows for fj > 0, j = 1, . . . , N , that

ûi = argmax
t>0, pUi (t)>0

N∑

j=1

w(i, j) log pFj |Uj(fj | t) = argmin
t>0, pUi (t)>0

N∑

j=1

w(i, j)
(
log(t) +

fj
t

)
.

In [10] Aubert and Aujol deduced similarly H(f, u) :=
∑N

i=1 log(ui) +
fi
ui

as a data
fidelity term for a variational approach to remove multiplicative Gamma noise.
If pUi(t) > 0 for all t > 0 or the distributions of the Ui are not known, we omit the
restriction pUi(t) > 0 and obtain for fj > 0, j = 1, . . . , N , by the first order optimality
condition that

ûi =
1

Ci

N∑

j=1

w(i, j)fj with Ci :=
N∑

j=1

w(i, j). (4.27)

Note that this is again an ordinary weighted average of the fj, j = 1, . . . , N , like the
original NL means filter (4.1).

Example 4.5.2 (Multiplicative Rayleigh noise)
For our multiplicative noise model and Rayleigh distributed noise, Equation (4.15)
and Proposition A.7 ii) yield

pFj |Uj(fj|ui) =
1

θ2
fj
u2i

exp

(
− 1

2θ2

(
fj
ui

)2)
for fj, ui > 0 with pUj(ui) > 0.
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4. Nonlocal Filters for Removing Multiplicative Noise

Hence, we obtain for fj > 0, j = 1, . . . , N , that

ûi = argmin
t>0, pUi (t)>0

N∑

j=1

w(i, j)

(
2 log(t) +

1

2θ2
f 2
j

t2

)
.

For a variational approach, H(f, u) :=
∑N

i=1 2 log(t) +
1

2θ2
f2j
t2

could also be used as a
data fidelity term, where an appropriate regularization term has to be added.
If pUi(t) > 0 for all t > 0 or the distributions of the Ui are not known, we omit again
the restriction pUi(t) > 0. For fj > 0, j = 1, . . . , N , we finally obtain by the first order
optimality condition

ûi =

√√√√ 1

2θ2Ci

N∑

j=1

w(i, j) f 2
j with Ci :=

N∑

j=1

w(i, j). (4.28)

4.5.2 Definition of the Weights

For multiplicative noise and random variables Ui with unknown distribution, the
weights can now be defined similarly to (4.9) as

w(i, j) =
∏

k∈I

(
s(fi+k, fj+k)

c

) ga,k
h

, (4.29)

where s(f1, f2) = p f2
f1

V1
V2

(1) and c = pV1
V2

(1) as defined in Section 4.3. As before,

ga = (ga,k)k∈I represents a sampled two dimensional Gaussian kernel with mean zero
and standard deviation a, where we normalize ga such that

∑
k∈I ga,k = 1. The

parameter h > 0 controls again the amount of filtering and the index set I is set to
be a squared grid of size l × l centered around 0 using reflecting boundary conditions
for f . In the same way as the ordinary NL means filter the definition in (4.29) relies
on the fact that a natural image contains usually many very similar image patches,
which have to be detected by the applied similarity measure.

Figure 4.7 (top) shows the histograms of the weights defined in (4.29) for different
constant image patches of size 5 × 5 corrupted by multiplicative Gamma noise with
L = 16. As we can see here, multiplying the values of the similarity measure over
a whole patch significantly changes the histograms compared to Figure 4.5. Now,
the supports of the two histograms do no longer overlap, i.e., the weights for the
noisy images generated from the same constant image are always larger than those
computed for the constant images of significantly different gray values. Unfortunately,
the histogram on the left is no longer maximal at one. Even worse, weights close to
one have never been assigned.
To overcome this drawback we propose an additional adaptation of the weights inspired
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4.5 Nonlocal Filtering Facing Multiplicative Noise
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Figure 4.7: Histograms of the weights (4.29) (top) and (4.30) (bottom) computed for N different

image patches fI , f̃I (l = 5, a = 1.5, h = 1, q = 0). Left : Both fI and f̃I are patches of gray value

50 corrupted by multiplicative Gamma noise with L = 16. Right : Same as on the left, but now f̃I
represents an image patch of gray value 110 corrupted by noise.

by the implementation of the NL means filter described at [38]. Here, we use that
for random variables X, Y and a continuous function b, where E(b(Y )) exists, the
conditional expectation of b(Y ) given X = x is

E(b(Y )|X = x) :=

∞∫

−∞

b(y) pY |X(y|x) dy ∀ x ∈ R with pX(x) > 0,

see, e.g., [174, p. 168]. In detail, for two sets of random variables Fi+k = Ui+kVi+k,
Fj+k = Uj+kVj+k, k ∈ I, fulfilling the assumptions in Subsection 4.2.2, we set

bk

(
fi+k
fj+k

)
:=



p fj+k
fi+k

Vi+k
Vj+k

(1)

c




ga,k
h

=

(
s(fi+k, fj+k)

c

) ga,k
h

.

Assuming that the index sets i+I, j+I have an empty intersection, i.e., the considered
image patches are non-overlapping, we have

µ := E

(
∏

k∈I
bk

(
Fi+k
Fj+k

) ∣∣
(
Ui+k
Uj+k

= 1

)

k∈I

)
=
∏

k∈I
E

(
bk

(
Fi+k
Fj+k

) ∣∣ Ui+k
Uj+k

= 1

)
.
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4. Nonlocal Filters for Removing Multiplicative Noise

The definition of the conditional expectation and Proposition A.7 ii) yield

E

(
bk

(
Fi+k
Fj+k

) ∣∣ Ui+k
Uj+k

= 1

)
= E

(
bk

(
Vi+k
Vj+k

))
=

∞∫

0

bk(t) p Vi+k
Vj+k

(t) dt

and thus, we finally obtain

µ =
∏

k∈I

∞∫

0

bk(t) p Vi+k
Vj+k

(t) dt.

Since w(i, j) is a realization of
∏

k∈I bk

(
Fi+k
Fj+k

)
, the variable µ describes the value that

we can expect for w(i, j) considering (non-overlapping) image patches which have been
generated from the same noise free patch. By some technical computations we obtain
for multiplicative Gamma noise

µ =
∏

k∈I
4Lga,k/h

Γ(2L)

Γ(L)2
Γ(L(1 +

ga,k
h
))2

Γ(2L(1 +
ga,k
h
))

and for multiplicative Rayleigh noise

µ =
∏

k∈I
4ga,k/h

Γ(1 +
ga,k
h
)2

Γ(2(1 +
ga,k
h
))
.

Next, we set

wµ,q(i, j) :=





1 if w(i, j) ≥ µ,
w(i,j)
µ

if qµ ≤ w(i, j) < µ,

0 otherwise

(4.30)

with q ∈ [0, 1) and incorporate these weights in our nonlocal filters deduced from
(4.25). Note that for overlapping image patches, µ is used as an approximation of
the true expectation value here. The effect of this modification in contrast to the
weights (4.29) can be seen in Figure 4.7 (bottom). The histogram for the image
patches generated from the same noise free patch has now a significant peak at one.
By setting, e.g., q = 0.5 we could additionally achieve that all weights of the right
histogram are set to zero and thus, the corresponding patches would have no effect
if used in a nonlocal filter. On the contrary, the weights of the left histogram would
not be effected. For our numerical examples in the subsequent section, q has been set
by hand. Alternatively, a statistical estimate for q could be obtained by considering
1 − F−1(1 − β) for a value β ∈ (0, 1) very close to one. Here, F is the cumulative

distribution function of rµ

(∏
k∈I bk(

Vi+k
Vj+k

)
)
with

rµ(x) =

{
1 if x ≥ µ,
x
µ

otherwise
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4.5 Nonlocal Filtering Facing Multiplicative Noise

and F−1(α) = inf{x ∈ R : F (x) ≥ α} denotes the corresponding α-quantile. Thus,
q would be set to the maximal value such that the weights wµ,q(i, j) do not change
compared to wµ,0(i, j) for 100 ·β percent of the image patches fi+I , fj+I obtained from
the same noise free patch.

As usually done, we finally restrict the number of patches being compared to a so-
called search window . Thus, we set all weights w(i, j), wµ,q(i, j) automatically to zero
if pixel j is outside of a squared image region of size ω × ω centered at pixel i. This
reduces the computational costs as well as the risk of falsely assigning nonzero weights
to a large number of patches.

4.5.3 Updating the Similarity Neighborhoods

In [60] Deledalle et al. suggest to refine the weights of their nonlocal filters iteratively
using the previous result u(r−1). To get the next iterate u(r), the filter is again applied
to the initial noisy image using the new weights. In the following, we apply a variant of
this updating strategy. The first major difference is that we perform only one updating
step. For this second step we use within the search windows for i 6= j the weights

w̃i,j
(
u(1)
)
= exp


−1

d

∑

k∈Ĩ

gã,k Ksym

(
pFi+k|Ui+k( · |u

(1)
i+k), pFj+k|Uj+k( · |u

(1)
j+k)

)



instead of the ones defined in the former subsection and set w̃i,i(u
(1)) = maxj w̃i,j(u

(1)).
Here, d is a positive parameter and gã = (gã,k)k∈Ĩ represents again a sampled two
dimensional Gaussian kernel with mean zero but with standard deviation ã now. As
before, gã is normalized such that

∑
k∈Ĩ gã,k = 1. Moreover, the index set Ĩ of size l̃× l̃

may vary from I. Usually, we choose ã < a and l̃ < l. Furthermore,

Ksym (pX , pY ) :=

∞∫

−∞

(pX(t)− pY (t)) log

(
pX(t)

pY (t)

)
dt

denotes the symmetric Kullback-Leibler divergence of the densities pX and pY . The idea
for this updating scheme was originally taken from [163]. Here, Polzehl and Spokoiny

used the ordinary Kullback-Leibler divergence of pFi|Ui( · |u(r−1)
i ) and pFj |Uj( · |u(r−1)

j )

to test for the hypotheses ui = uj using estimates u
(r−1)
i , u

(r−1)
j of ui, uj , respectively.

Since our numerical experiments in the next section deal with multiplicative Gamma
and Rayleigh noise, we compute the symmetric Kullback-Leibler divergence for these
two examples:

Example 4.5.3 (Multiplicative Gamma noise)
Let us assume that pUi(x) > 0 for all x > 0. Then, we obtain by straightforward calcu-
lation using (4.26) and (4.14) that the sought symmetric Kullback-Leibler divergence
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is given by

Ksym

(
pFi|Ui( · |u(1)i ), pFj |Uj( · |u(1)j )

)
= L

(
u
(1)
i − u

(1)
j

)2

u
(1)
i u

(1)
j

for u
(1)
i , u

(1)
j > 0.

Example 4.5.4 (Multiplicative Rayleigh noise)
Assume again that pUi(x) > 0 for all x > 0. In case of multiplicative Rayleigh noise
similar calculations yield that the symmetric Kullback-Leibler divergence is

Ksym

(
pFi|Ui( · |u(1)i ), pFj |Uj( · |u(1)j )

)
=

( (
u
(1)
i

)2 −
(
u
(1)
j

)2 )2

(
u
(1)
i

)2 (
u
(1)
j

)2 for u
(1)
i , u

(1)
j > 0.

4.6 Numerical Results

In the following, we present different examples demonstrating the very good perfor-
mance of our nonlocal filters. These filters have been implemented in MATLAB and
the parameters are chosen with respect to the best visual results. Good choices for
the patch and search window sizes are usually l ∈ {5, 7, 9}, l̃ ∈ {3, 5} and ω ∈ {21, 29}
with a ∈ [0.5, 4] and ã ∈ [0.5, 1.5]. Furthermore, all images, especially the noisy ones,
are displayed with the colormap of the original image, if available, to have a consistent
coloring for each example.

Results for multiplicative Gamma noise Our first three examples show different
reconstructions of images contaminated by multiplicative Gamma noise. The original
and noisy images presented in Figure 4.8 are the same as those considered in Figures
3.10 and 3.11 so that the results are directly comparable.
To obtain the restored image in Figure 4.9 (right) we used the weighted average filter
derived in (4.27) with weights (4.30). As we see here, already without an additional
updating of the weights we obtain a very good reconstruction, which is superior to the
results by the IDIV-TV (left) and IDIV-NL models (middle) studied in Chapter 3.
Also in our next example the reconstructions in Figure 4.10 (bottom middle and right)
outperform the result by the IDIV-TV method at top left. At top middle we included
a reconstruction by the original NL means filter using sNL(log(·), log(·)) instead of
sNL for the patch comparison. Here, the nonzero weights have again been restricted
to a search window and the patches are chosen in the same way as for our filters. As
predicted in Section 4.4 this result is nearly the same as the one by our nonlocal filter
(4.27) using the weights (4.29), which can be found at top right. Note that we have
chosen slightly different values h to get even more similar results. By the definition
of the weights we can see that for appropriate values h this can also be achieved for
images corrupted by multiplicative Gamma noise with L 6= 4.
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Figure 4.8: Left: Original images with values in [0, 255]. Right: Noisy versions corrupted by multi-
plicative Gamma noise with L = 25 (top) and L = 4 (bottom).

The results at Figure 4.10 (bottom left and middle) show the effect of applying (4.27)
with weights wµ,0(i, j) or wµ,q(i, j) instead of w(i, j). By replacing w(i, j) by wµ,0(i, j)
we achieved an additional suppression of the noise especially in the background. Choos-
ing further wµ,q(i, j) with an appropriate value q helped to improve the contrast, e.g.,
visible at the camera. Besides, it led to sharper edges and contours. By the final
updating step applied at Figure 4.10 (bottom right) we further improved the contrast
and small amounts of possibly remained noise are finally removed.

Next, we restored the noisy image of [70, Fig. 8] shown in Figure 4.11 (top right).
Note that the corrupted image is displayed in a different way here. For an additional
quantitative comparison with the results in [70] we use the peak signal to noise ratio
(PSNR) and mean absolute error (MAE) defined by

PSNR = 10 log10
|max u−min u|2

1
N
‖û− u‖22

and MAE =
1

N
‖û− u‖1.

Here, u denotes the original noise free image, û the reconstruction and N stands for
the number of pixels of the images. To detect fluctuations in the quality of the results
we generated 500 noisy realizations of the original image and averaged the PSNR and
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4. Nonlocal Filters for Removing Multiplicative Noise

Figure 4.9: Results for the noisy image at Figure 4.8 (top right) by the IDIV-TV (left) and IDIV-NL
model (middle) as shown in Figure 3.10 and a result by our nonlocal filter (4.27) using the weights
(4.30) with l = 7, ω = 21, a = 2.5, h = 1, q = 0.6 (right).

Figure 4.10: Results for the noisy image at Figure 4.8 (bottom right). Top: Restored images by
IDIV-TV as presented in Figure 3.11 (left), by the original NL means filter using sNL(log(·), log(·))
instead of sNL with l = 7, ω = 29, a = 1.5, h = 1.3 (middle) and by our new nonlocal filter (4.27)
using the weights (4.29) with l = 7, ω = 29, a = 1.5, h = 1 (right). Bottom: Results by our nonlocal
filter using (4.30) with additional parameter q = 0 (left), q = 0.35 (middle) and finally after an

additional updating step with l̃ = 3, ã = 0.5, d = 0.25 (right).
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4.6 Numerical Results

mean(PSNR) = 25.87 (std. 0.03) mean(PSNR) = 26.04 (std. 0.05)
mean(MAE) = 8.95 (std. 0.03) mean(MAE) = 8.63 (std. 0.03)

Figure 4.11: Top: Original image of the French city of Nı̂mes (512×512) with values in [1, 256] (left),
cf. [70], and noisy image corrupted by multiplicative Gamma noise with L = 4 (right). Bottom:
Result by the hybrid method of Durand et al. shown in [70, Fig. 8] (left) as well as the result by
our nonlocal filter (4.27) using (4.30) and an additional updating step with l = 7, ω = 29, a = 2,

h = 0.5, q = 0.7, l̃ = 5, ã = 1, d = 0.1 (right). The PSNR and MAE values have been averaged over
the results for 500 noisy realizations of the original image.

MAE values of all these results. Additionally, we indicate the estimated standard
deviations (std.) to quantify their variability.
As a direct comparison shows, our obtained reconstruction is superior or at least
competitive to the results obtained by different methods in [70, Fig. 8]. In this
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paper the best result was obtained by the proposed hybrid multiplicative noise removal
method, which combines variational and sparsity-based shrinkage methods involving
curvelets as well as TV regularization. The result of this method is presented at
Figure 4.11 (bottom left). For computing the corresponding average PSNR and MAE
values we used the implementation of [70] available at [80].

Results for multiplicative Rayleigh noise To conclude this section, we present
reconstructions of images corrupted by multiplicative Rayleigh noise. Our first exam-
ple in Figure 4.12 shows an aerial image of size 1500× 1500. The second set of images
in Figure 4.13 are real singlelook SAR images provided by Sandia National Labora-
tories at [177]. To obtain first restoration results we have applied the nonlocal filter
(4.28) with weights (4.30) adapted to multiplicative Rayleigh noise. For the improved
results we performed an additional updating step. Again, our filter produces very good
results, where most of the details are restored. Only extremely small details or details
which lack a sufficient number of similar patches in their direct surrounding are not
correctly restored.
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mean(PSNR) = 30.40 (std. 0.02) mean(PSNR) = 30.83 (std. 0.02)
mean(MAE) = 42.87 (std. 0.06) mean(MAE) = 39.01 (std. 0.06)

Figure 4.12: Top: Original image (1500 × 1500), copyright [165], with values in [1, 2047] (left) and
noisy version corrupted by multiplicative Rayleigh noise with θ = 1 (right). Bottom: Results by our
nonlocal filter (4.28) using (4.30) with l = 7, ω = 21, a = 2, h = 0.4, q = 0.6 (left) and after an

additional updating step with l̃ = 5, ã = 1.5, d = 0.05 (right). Note that the displayed images have
been subsampled to the size 500 × 500 to better meet the standard screen and printer resolutions.
The PSNR and MAE values have again been averaged over the results for 500 noisy realizations of
the original image.
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4. Nonlocal Filters for Removing Multiplicative Noise

Figure 4.13: Top: Two real singlelook SAR images contaminated by multiplicative Rayleigh noise
with Θ = 1√

2
, copyright [177]. Middle: Results by our nonlocal filter (4.28) using (4.30) with l = 9,

ω = 29, a = 4, h = 0.2, q = 0.2 (left) and h = 0.05, q = 0 (right). Bottom: Results after an additional

updating step with l̃ = 5, ã = 1, d = 0.03 (left) and d = 0.2 (right). For contrast enhancement, cf.
[177], the images are displayed after taking their square root and truncating the values outside of
[0, 14 maxF ] with F being the respective noisy image.
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CHAPTER 5
Conclusions and Perspectives

Although a large variety of image restoration methods has been proposed in the last
decades, there are still open problems and potential for improvements. One challenge
faced in this thesis is the correct restoration of advanced image features like sharp
corners and junctions in images. Another one is the development of new methods for
restoring images corrupted by multiplicative noise.

In the first part of this thesis we focused on the restoration of images corrupted by
strong additive Gaussian noise and presented different regularization and diffusion ap-
proaches to correctly restore in particular sharp corners and X junctions. For this
purpose, we studied different orientation estimation tensors for locally determining up
to two significant orientations per image pixel and incorporated the obtained orienta-
tion information into the restoration process.
As considered in [149] natural images may of course also contain image features like
arbitrary junctions, where more than two significant orientations are required for a
correct description. As a topic of future research it would be interesting to study
also such structures and to examine appropriate extensions of the proposed methods
which also take more than two significant orientations into account. To further im-
prove the restoration results it would also be interesting to incorporate higher order
derivatives into the restoration process as, e.g., done in [30, 131, 182, 189, SST11].
Hereby, it would for example be possible to overcome the staircasing effects observed
in Figure 2.19.
In the very recent work [31] Bredies et al. proposed a new class of vertex-penalizing
regularizers. Here, it might be worth exploring whether additional orientation in-
formation can also be incorporated in such approaches. Furthermore, since phase
information obtained by approaches like, e.g., [106, 208] can provide a lot of informa-
tion about an image, it would be interesting to also use such information for image
restoration purposes.
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In Chapter 3 we turned our attention to variational models for the removal of Pois-
son and multiplicative Gamma noise. Here, we compared different approaches from
the literature for multiplicative Gamma noise and were able to prove the equivalence
between one of these models and a standard maximum a posteriori (MAP) estimation
based model for the removal of Poisson noise. This model for Poisson noise has not
been considered for multiplicative Gamma noise before. Therefore, we studied in de-
tail its properties for more general regularizers including also nonlocal ones. Besides,
we proposed an efficient algorithm for determining the minimizer of the involved min-
imization problem. This algorithm was designed in such a way that it can also handle
an additional linear transformation of the data, which can for example represent an
additional blur operator.
The results in the first part of this chapter show that although the data fidelity term
of variational models can often be determined by MAP estimation and a standard
regularizer could be used, this need not lead to a good variational model. Instead, the
regularizer needs to be appropriately chosen to fit to the determined data fidelity term.
Hence, an open problem is still to find general rules for selecting data fidelity terms
and appropriate regularizers for arbitrary types of noise. In addition, an automatic
selection of the regularization parameter as done in [152, 220] would be desirable.
Having the results in Chapter 2 in mind, it would be interesting to construct also
for multiplicative noise regularizers which incorporate orientation information into the
restoration process. However, in the presence of such noise the estimation of orienta-
tions in images is not straightforward due to the heavy distortions corrupting the data.
To improve the results obtained by the nonlocal regularizers we could for example ap-
ply similar updating strategies as proposed for the nonlocal filters in Subsection 4.5.3.

In Chapter 4 we finally presented new nonlocal filters for the removal of multiplicative
noise. A central point here was the definition of a suitable similarity measure for
determining whether two given noisy pixels had the same initial gray value or not. For
the deduction of this measure we studied in detail the similarity measure proposed
for general noise models by Deledalle et al. in [60]. Furthermore, we proved different
advantageous properties of our new measure and showed close relations to several of
the measures studied recently in [59, 62]. Additionally, we could prove that several of
the similarity measures compared in [59, 62] coincide for the considered multiplicative
noise model.
As a topic of future research it would be interesting to see whether such relations can
also be deduced for other types of noise. Besides, the use of our measure is of course not
restricted to nonlocal filtering. It could be incorporated into appropriate variational
methods or used for other applications such as inpainting and segmentation, see, e.g.,
[90, 91, 222]. Beyond that it could also be applied for block matching in registration
problems relevant, e.g., for stereo vision or motion estimation, cf. [59, 143, 221].

140



APPENDIX A
Densities of Transformed Random

Variables

To compute the probability density functions occurring in the former chapters we
have used the following results from probability theory. Here, all random variables are
supposed to be real-valued and continuous.

Theorem A.1 (Jacobi’s Transformation Formula, cf. [58, p.331], [111, p.92f])
Let X := (X1, . . . , Xn) have the joint probability density function pX and let T1 ⊆ Rn

be an open set with P (X ∈ T1) = 1. For T2 ⊆ Rn let g : T1 → T2 be an injective
function which has a continuously differentiable inverse g−1 on T2 with non-vanishing
Jacobian. Then, the density of Y = g(X) is given by

pY (y) =

{
pX(g

−1(y))| det Jg−1(y)| if y ∈ T2,

0 otherwise.

This theorem immediately implies the next three corollaries:

Corollary A.2 Let X be a random variable with probability density function pX ,
where pX vanishes outside the interval [0,+∞). Then, the probability density function
of Y =

√
X is given by

pY (y) = 2 y pX(y
2) 1R≥0

(y).

Corollary A.3 Let X be a random variable with probability density function pX ,
where pX vanishes outside the interval [0,+∞). Then, the probability density function
of Y = log(X) is given by

pY (y) = exp(y) pX(exp(y)).
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A. Densities of Transformed Random Variables

Corollary A.4 (Cf. [58, p. 336] and [101, p. 109])
For constants c, c1, c2 6= 0 and random variables X, X1, X2, where X1 and X2 are
independent, we obtain the following probability density functions:

i)

pc1X1+c2X2(y) =
1

|c1c2|

∞∫

−∞

pX1

(
t

c1

)
pX2

(
y − t

c2

)
dt,

ii)

pcX1X2(y) =

∞∫

−∞

1

|ct| pX1

(
t

c

)
pX2

(y
t

)
dt,

iii)

p
c
X1
X2

(y) =

∞∫

−∞

∣∣∣∣
t

c

∣∣∣∣ pX1

(
yt

c

)
pX2 (t) dt

iv)

pcX(y) =
1

|c| pX
(y
c

)
,

v)

p 1
X
(y) =

1

y2
pX

(
1

y

)
for y 6= 0.

Setting c1 = −c2 = 1 in Corollary A.4 i) we obtain the following lemma:

Lemma A.5 For independent random variables X1, X2, the probability density func-
tion pX1−X2 has the following properties:

i) pX1−X2(y) = pX2−X1(−y),

ii) for identically distributed random variables X1, X2 we have

pX1−X2(y) ≤ pX1−X2(0) ∀ y ∈ R.
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Proof: Assertion i) follows directly from Corollary A.4 i). To prove ii) we use in
addition the Cauchy-Schwarz inequality:

pX1−X2(y) =

∞∫

−∞

pX1(t) pX2(t− y) dt ≤

√√√√√
∞∫

−∞

(pX1(t))
2 dt

∞∫

−∞

(pX2(t− y))2 dt

=

∞∫

−∞

(pX1(t))
2 dt = pX1−X2(0).

�

For the special case of exponentially distributed random variables, Corollary A.4 leads
to the following lemma, see, e.g., [58, p. 190]:

Lemma A.6 Let Xi, i = 1, . . . , L, be independent exponentially distributed random
variables with expectation value λ = 1. Then, X := 1

L

∑L
i=1Xi is Gamma distributed

with density

pX(x) =
LL

Γ(L)
xL−1 exp(−Lx) 1R≥0

(x). (A.1)

Proof: To prove the assertion we use mathematical induction. For L = 1 and a
exponentially distributed random variable X1 with λ = 1 it holds that

pX1(x) = exp(−x) 1R≥0
(x) =

11

Γ(1)
x0 exp(−x) 1R≥0

(x),

i.e., X := X1 is Gamma distributed with L = 1.
Now, let us assume that for some fixed L ∈ N\{0} the assertion holds true. Then, for

L+ 1 exponentially distributed random variables Xi with λ = 1 and X̃ := 1
L

∑L
i=1Xi

we have that

X :=
1

L+ 1

L+1∑

i=1

Xi =
1

L+ 1

L∑

i=1

Xi +
1

L+ 1
XL+1 =

L

L+ 1
X̃ +

1

L+ 1
XL+1.

Hence, Corollary A.4 i) and the fact that X̃ is Gamma distributed with density (A.1)
imply that

pX(x) =
(L+ 1)2

L

∞∫

−∞

pX̃

(
L+ 1

L
t

)
pXL+1

(
(L+ 1)(x− t)

)
dt
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=
(L+ 1)2

L
1R≥0

(x)

x∫

0

LL

Γ(L)

(
L+ 1

L
t

)L−1

exp
(
− (L+ 1) t

)
exp

(
− (L+ 1)(x− t)

)
dt

=
(L+ 1)L+1

Γ(L)
exp

(
− (L+ 1) x

)
1R≥0

(x)

x∫

0

tL−1 dt.

Since
x∫

0

tL−1 dt =

[
tL

L

]x

0

=
xL

L

and L · Γ(L) = L (L− 1)! = L! = Γ(L+ 1) we finally see that

pX(x) =
(L+ 1)L+1

Γ(L+ 1)
xL exp

(
− (L+ 1) x

)
1R≥0

(x).

Thus, X is Gamma distributed with parameter L+ 1, which finishes the proof. �

Theorem A.1 and the definition of the conditional density yield the following result
for the sum, respectively the product of two independent random variables:

Proposition A.7 Let X, Y be independent random variables.

i) If Z := X + Y , then for any x ∈ R with pX(x) > 0 the conditional density
function of Z given X = x is

pZ|X(z | x) = pY (z − x) .

ii) If Z := XY , then for any x 6= 0 with pX(x) > 0 the conditional density function
of Z given X = x is

pZ|X(z | x) =
1

|x| pY
(z
x

)
.
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ADMM, see alternating direction method
of multipliers

alternating direction method of multipli-
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Bayesian likelihood ratio, 123
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conditional density function, 62, 144
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data fidelity term, 2
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