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Chapter 1
Introduction

Consider an investor who is managing a pension fund or some other portfolio
with a long time horizon. In a pension fund for example, there are many
individuals with different utility preferences and retirement dates investing
money. This makes it impossible for a manager to agree on a common time
horizon or utility function. In this case it is reasonable to use the asymptotic

growth rate

1
lim inf —E[log(V;)|Vo = 7]
t—oo

as a measure of performance of the manager, see e.g. [Konno et al. (1993)].
Here V; denotes the portfolio value at time ¢. This optimization problem was
considered by various researchers in different settings. In the following we
outline some of the main results in the literature on maximizing the asymp-
totic growth rate and the infinite-horizon discounted consumption problem
under logarithmic or power utility.

In the Black-Scholes setting the problem of maximizing the growth rate
was solved by [Merton (1969)|. He found that it is optimal to keep the
fraction of wealth invested in the stock (risky fraction) at a constant level,
the so-called Merton fraction. The drawback of this solution is that it is
impossible for an investor to follow this strategy in markets with transaction
costs, hence the strategy is not applicable in practice. Nevertheless it was
the starting signal for the development of theory of optimal investment for

various cost structures.
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We consider first transaction costs which are paid proportionally to the
transaction size. This kind of costs was first treated heuristically in contin-
uous time by [Magill, Constantinides (1976)|. For the optimal strategy the
authors define a region in which it is not optimal to trade. The investor
needs to transact only if the vector of his portfolio proportions lies outside
the region and the transaction will result in a new vector belonging to the
same region. In case with one bond and one stock this strategy is illus-
trated in Figure 1.1. Here (a,b) denotes the region where no trading occurs.
A rigorous proof for the optimality of such a strategy can be given using
methods of singular stochastic control theory. These techniques were first
introduced by |Taksar et al (1988)] in context of transaction cost problems.
Under some assumptions on model parameters [Davis, Norman (1990)] give
a rigorous proof using singular stochastic control methods. The problem was
reconsidered and solved under weaker assumptions in [Shreve, Soner (1994)],
[Akian et al. (1996)] and [Kabanov, Kliippelberg (2004)|, where the authors
showed the existence and uniqueness of a viscosity solution for the corre-

sponding Hamilton-Jacobi-Bellman equation.

Because of very small transactions when the boundaries are reached the
strategy described above is still not applicable in practice if the investor faces
constant costs additionally to the proportional costs. In case of constant and
proportional costs the optimal strategy belongs to the class of impulse control
strategies and is characterized by a solution to a system of quasi variational
inequalities. First the methods of the stochastic impulse control were applied
by |Eastham, Hastings (1988)] for a finite horizon version of the problem. In
the infinite horizon setting [Korn (1998)] presented the solution of the result-
ing impulse control problem via a formal optimal stopping approach and an
approach using quasi variational inequalities. In [@ksendal, Sulem (2001)]
the authors derive quasi-variational inequalities for the problem of maximiz-
ing discounted consumption under power utility for the infinite horizon and
prove that the value function is the unique viscosity solution. The numerical
results show that the optimal strategy consists of a no-trading region and two
curves inside this region, such that by reaching the boundaries the wealth

process restarts at the lower curve after buying and at the upper curve after



Figure 1.1: Risky fraction process controlled by the optimal strategy in case

of proportional costs.

selling. Because of the constant part in the transaction costs it is not possible

to express the optimal strategy in terms of the risky fraction.

Another type of transaction costs are fixed costs. These are propor-
tional to the current wealth at the transaction time and can be interpreted
as management costs. This kind of cost structure was considered e.g. in
[Morton, Pliska (1995)]. Due to the multiplicative structure of fixed costs,
the authors were able to factorize the wealth process and reduce the prob-
lem to solving an optimal stopping problem. The resulting optimal strategy
is an impulse control strategy (7;,7;)ien, Where (7;);en are the intervention
times and (7;);en the optimal impulses. In case of one bond and one stock
it is optimal to intervene if the risky fraction process reaches the bound-
aries of the no-trading interval. But in contrast to proportional costs, the

investor trades to some optimal fraction near the Merton fraction, see Fig-
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ure 1.2. This strategy seems reasonable for purely fixed costs since the size
of transactions is not punished with costs. This approach was generalized
in [Bielecki, Pliska (2000)] with a quite general cost structure. The authors
characterize the optimal strategy in terms of a solution of the corresponding

quasi variational inequalities.

W W ]

04— -

Figure 1.2: Risky fraction process controlled by the optimal strategy in case

of fixed costs.

The combination of proportional and fixed costs seems to be a reason-
able modeling of the real cost structure in financial markets in the following
sense: the proportional part punishes the size of transactions and the fixed
part the frequency at which transactions occur. Thus, we would also expect
that the optimal strategy is an impulse control strategy, which is some com-
bination of the optimal strategies described above. To be more precise, the
strategy we expect to be optimal consists of a no-trading interval (a, b) and

constants «, 3, such that a < a < f < b. The investor sells stocks such
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that the new risky fraction is 8 whenever the boundary b is crossed and buys
stocks to reach the new risky fraction a when crossing the boundary a. We
refer to such a strategy as a constant boundary strategy (a, «, 5,b) or CB-
strategy. The risky fraction process controlled by a CB-strategy is illustrated
in Figure 1.3. Proportional and fixed costs in the Black-Scholes setting were
considered in [Irle, Sass (2006)a|, where the authors look at strategies with
constant boundaries as candidates for optimal strategies. They use a renewal
theory approach and reduce the problem of maximizing the growth rate to
one period. [Irle, Prelle (2009)] use the same approach for solving the prob-
lem in multidimensional case. In [Irle, Sass (2006)b| the authors construct a
solution to the quasi variational inequalities, such that the optimal strategy

given by the solution of the quasi variational inequalities is a CB-strategy.

Figure 1.3: Risky fraction process controlled by a CB-strategy.

[Tamura (2006)| showed in a Black-Scholes setting with one bond and one

stock, that the optimal impulse control strategy exists and is given by a solu-
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tion of quasi variational inequalities. These are solved using a perturbation
method. In [Tamura (2008)] the problem is solved in the multidimensional
case. The difference in the cost structure in comparison to [Irle, Sass (2006)b]
is that the fixed costs are paid from the stocks and the bond and not only
from the bond. [Ludwig (2012)] points out the differences in these approaches
and gives a connecting link between the different transaction cost models by
letting the fixed costs go to zero.

The existence of the solution to the quasi variational inequalities in a
framework with jumps is obtained in [Duncan et al. (2009)| under the as-
sumption of obligatory diversification. The asset prices are modeled as ex-
ponents of a diffusion with jumps whose parameters depend on a finite state
Markov process of economic factors. The obligatory diversification means
that the investor is required to invest at least a fixed small fraction of his
wealth in each asset. This forces the investor to rebalance the portfolio if
the risky fractions become too large or too small. Obligatory diversification
yields ergodic properties for the risky fraction process, which allow to solve
the corresponding quasi variational inequalities.

In this thesis we consider the problem of maximizing the growth rate with
proportional and fixed costs in a framework with one bond and one stock,
which is modeled as a jump diffusion with compound Poisson jumps. Follow-
ing the approach from [Irle, Sass (2006)b|, we prove that in this framework
it is optimal for an investor to follow a CB-strategy. The boundaries depend
only on the parameters of the underlying stock and bond. Now it is natu-
ral to ask for the investor who follows a CB-strategy which is given by the
stopping times (7;);en and impulses (7;);eny how often he has to rebalance. In

other words we want to obtain the limit of the inter trading times

n

.1
lim — ) (741 — 7).
n—oo M i—1

For this purpose it is very useful to transform the risky fraction process into
a Lévy process and since our transformation is bijective we obtain the same
results on stopping times for the transformed and the original risky fraction

process. We are able to obtain this limit which is given by the expected first
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exit time of the risky fraction process from some interval under the invariant
measure of the Markov chain (7;);en using the Ergodic Theorem from von
Neumann and Birkhoff. In general, it is difficult to obtain the expectation
of the first exit time for the process with jumps. Because of the jump part,
when the process crosses the boundaries of the interval an overshoot may
occur which makes it difficult to obtain the distribution. Nevertheless we

can obtain the first exit time if the process has only negative jumps.

For spectrally negative Lévy processes there is a number of fluctuation
identities, which yield explicit expressions for the expected first exit time
in terms of scale functions, see e.g. [Kyprianou (2006)|, [Bertoin (1996)].
The main difficulty of this approach is that the scale functions are known
only up to their Laplace transforms. In [Egami, Yamazaki (2011)a] and
|[Egami, Yamazaki (2011)b] the closed-form expression for the scale function
of the Lévy process with phase-type distributed jumps is obtained by using
the structure of its Wiener-Hopf factors as obtained in [Asmussen (2004)].
Phase-type distributions build a rich class of positive-valued distributions,
which are characterized by a continuous-time Markov chain with a given ini-
tial distribution and a state space consisting of a single absorbing state and
a finite number of transient states. Then the phase-type distribution is the
distribution of the time to absorption. Examples of phase-type distributions
are the exponential, hyperexponential, Erlang, hyper-Erlang and Coxian dis-
tributions. Since the scale function is given as a function in a closed form we
can differentiate to obtain the expected first exit time using the fluctuation
identities explicitly.

This work is organized as follows. First we introduce some preliminary
results on Lévy processes in Chapter 2. In Chapter 3 we follow the approach
of |Irle, Sass (2006)b]. However, we need some additional assumption on the
costs and the parameters of the stock to close a gap in the argument in
[Irle, Sass (2006)b| Lemma 7.4(¢). This assumption is not a big constraint
since even for extreme costs it is fulfilled. Using some new arguments we
carry over the results to a model, in which the stock is a jump diffusion with
a compound Poisson process. We first solve the problem in framework with-

out transaction costs. Then the trading in markets with proportional and



14 CHAPTER 1. INTRODUCTION

fixed costs is introduced. Further we impose the QVIs corresponding to our
optimization problem. We are able to solve the quasi variational inequality
inside of the no-trading region explicitly. This allows us to construct a candi-
date for the solution of the QVIs via smooth pasting, such that the resulting
impulse control strategy is a CB-strategy. The constructed function is flexi-
ble enough to yield the CB-strategy and fulfill necessary conditions for being
a solution to the QVIs which is shown in Proposition 3.13 . In Theorem
3.14 we show that the constructed function is indeed a solution to the QVIs,
hence the CB-strategy is optimal for the problem of maximizing the growth
rate in presence of compound Poisson jumps. In the last section of this chap-
ter numerical results are presented. In particular we investigate the impact
of the jump intensity and jump distribution on the optimal boundaries and
optimal growth rate. Furthermore we show that the technical assumptions
we made in Proposition 3.13 and Theorem 3.14 are verified even for extreme
transaction costs.

In Chapter 4 the problem of the frequency of trading is considered. Here

we obtain the limit of the inter trading times

L Lg
Y 2 2 (e = )
The random variables (7,41 — 7;)ien have the same distribution due to the
Markov property of the risky fraction process. However, the (7,41 — 7;)ien
are not independent in case a < (3 since after trading in 7; we start the risky
fraction in 7;, which implies some dependency. We use the Ergodic Theorem
from von Neumann and Birkhoff and show in Theorem 4.5 and in Proposition
4.8 the convergence of the average inter trading time to the expected first
exit time of the uncontrolled risky fraction under the invariant measure v,

which is given by

Eo[Tan] =P E*7wn] + (1 = p) - B[],

where (p,1 — p) is the invariant measure of the Markov chain (7,)pen. In
order to compute E,[7(, 5] we need the expected first exit time from (a,b)

and the transition probabilities of (7;);en. We can obtain these identities in
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the continuous setting using the Dynkin formula and the Optional Sampling
Theorem. In the presence of jumps these methods are no longer sufficient
because of the overshoot. Instead we apply the theory of scale functions.
Thus we consider Lévy processes with only negative phase-type distributed
jumps. The explicit representation of the scale function allows us to derive
the desired identities. We calculate the scale function explicitly for the case
of negative exponentially distributed jump and derive the limit of inter trad-
ing times E,[7(,5)]. We show, that these calculations coincide with Monte
Carlo simulations. For increasing intensity of jumps the frequency of trading

increases, although the trading is still not very frequent.






Chapter 2
Preliminaries

This chapter contains a brief introduction to Lévy processes which is mainly
based on [Cont, Tankov (2004)]. Besides this reference we recommend
[Bertoin (1996)], [Applebaum (2004)], [Sato (1999)], [Protter (2005)] for a
detailed study of Lévy processes. We pay special attention to Lévy processes
with jumps of bounded variation, since these will be used later in our model.
We also introduce some basic tools in stochastic calculus such as It6’s formula
and discuss some key properties of Lévy processes.

We consider a complete probability space (2, F,F, P), where F = (F):>0
is a filtration which satisfies the usual conditions, i.e. IF is right-continuous
and Fy contains all P-null sets of F.

Definition 2.1 (F-Lévy Process)
A cadlag F-adapted stochastic process (Xi)i>o defined on a probability space
(Q, F, P) is called an F-Lévy process, if it fulfills the following conditions:

- Xo=0 a.s.;

- X has independent increments: X, — X, is independent of Fj,
0<s<t<oo

- X has stationary increments:  given any two distinct times
0 < s <t < oo, the probability distribution of X; — X, coincides
with that of X;_g;

17
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- X s stochastically continuous, i.e. for all a > 0 and for all s > 0 we

have
lim P(|X; — X,| > a) =0.
t—s

We say that the process (X;)i>o is a Lévy process if (X;)io is a FX-Lévy
process, where F¥X is the natural filtration generated by (X;);>o.
A simple, but nevertheless very important example of a Lévy process is

the Poisson process.

Definition 2.2 (Poisson Process)
Let (1;)i>1be a sequence of independent exponentially distributed random vari-

ables with parameter X and let T,, = >, 7;. The Poisson process (Ny)io
with intensity A is then defined by

Nt - Z l{tZTn}'

n>1

From this definition it is not obvious that the Poisson process is in fact a

Lévy process. (Ni)i>o has independent and stationary increments due to the

fact, that the jump-times are independent and have the exponential distri-

bution, which is memoryless. Furthermore N, is almost surely finite for any
t > 0 and has the Poisson distribution with parameter A, i.e.

P(N;=n)= e’At—(/\t)
n!

for all n € N. In Proposition 2.12. from [Cont, Tankov (2004)] one can find
the detailed proof of the above statements. However, the Poisson processes
is a Lévy process with piecewise constant increasing paths, which moves only
by jumps of size one. If we allow the jump sizes to be i.i.d. random variables,

we obtain the compound Poisson process.

Definition 2.3 (Compound Poisson Process)
A compound Poisson process with intensity A > 0 and jump size distribution

f is a stochastic process (X¢)i>o defined as

Ny
X;=) Y, t=0,
i=1
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where jumps sizes (Y;)i>1 are i.i.d. random variables with distribution f and

(N¢)e>0 is a Poisson process with intensity A, independent of (Y;)i>1.

Proposition 3.3 from [Cont, Tankov (2004)] shows that the compound
Poisson process is again an example of a Lévy process. Even more, there is
no other Lévy processes with piecewise constant paths.

A Poisson process is not a martingale. However, defining the compensated

Poisson process by

Nt - Nt —)\t,

it is easy to check that (]\th)tzo is a martingale. The only continuous Lévy
process with infinite variation is the Brownian motion with drift. Thus it is
reasonable to expect that every Lévy process can be decomposed into the sum
of a Brownian motion with drift and a (possibly infinite) sum of independent
compound Poisson processes. This statement is made precise in Proposition

2.4, the so-called Lévy-1td6 decomposition.

Proposition 2.4 (Proposition 3.7, [Cont, Tankov (2004)])

Let (Xy)i>0 be a Lévy process on R. Define a measure v on R by
v(A) =E[#{te€[0,1] : AX; #0,AX, € A}], A€ B(R),
where AX; = Xy — Xy_. This is the so-called Lévy measure, it counts the
Jumps of (Xi)e>o over the interval [0, 1] with jump sizes in A. Furthermore,
define the jump measure of (X;)i>0 on [0,00) x R by
JX([tl,tg] X B) = #{8 < [tl,tg] : AXS 7& 0, AX, € B}, B e B(R)

Then the following statements hold:

- v is a Radon measure on R and satisfies

/ z|* v(dz) < oo / v(dr) < oo;
lz|<1 |z|>1
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- There exist constants u,o?, such that

X, = ut + oW, + X! + hglxg, where (2.1)
X! :/ xJx(ds,dx),

j2|>1,5€[0,¢]
X = / z(Jx(ds,dz) — v(dz)ds).

e<|z|<1,s€[0,t]

All terms in (2.1) are independent of each other and the convergence in the
last term is almost sure and uniform in t on [0,00). (u,02,v) is called the

characteristic triplet of (X):>o-

Due to the cadlag property of the trajectories of a Lévy process, the Lévy
measure v(A) is finite for any compact set A such that 0 ¢ A. However,
v may not necessarily be finite since, since (X;):>o can have infinitely many
small jumps. Thus, in oder to obtain convergence, we have to compensate the
jump measure by its expectation v(dx)ds. We denote this centered version
of the jump measure by Jx (dz,ds) = Jx(dz,ds) — v(dz)ds. Note that we do
not have to compensate if the Lévy process has only finitely many jumps on
each finite time interval. We call this kind of process a finite activity Lévy

process. Then, using the Lévy-1td decomposition, we can write

t
Xy =pt+ oW, + / / xJx(ds,dx)
R J0O
= ut +ocW;, + Z AX,.
5<t,AX#0
The immediate conclusion from the Lévy-Ité6 decomposition, since all com-
ponents are independent, is the Lévy-It6 representation for the characteristic

function.

Theorem 2.5 (Lévy-1to Representation, Theorem 3.1 [Cont, Tankov (2004)])
Let (X;)i>0 be a Lévy process on R with characteristic triplet (u, 0, v). Then

E [eith] — et\IJ(z)’ = R,
where V is the so-called characteristic exponent given by

1 ,
U(z) = piz — 50222 + /(6””” — 1 —izalyy<1y)v(de).
R
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If (Xt)e>0 is a finite activity Lévy process, the characteristic exponent becomes

1 )
U(z) = piz — 5022’2 + /(em” — Dv(dzx).
R

Assume from now on that (X;);>¢ is a finite activity Lévy process. Now
we want to take a closer look at the jump measure Jx of (X;);>0. One can

show that Jy is a Poisson random measure on [0, 00) x R.

Definition 2.6 (Poisson Random Measure)
Let E C R? and p be a Radon measure on the measurable space (E,E). A
Poisson random measure on E with intensity measure i is a random counting

measure

M:Ox€E —N
(w, A) = M(w, A),

such that
1. For almost all w € Q, M (w,-) is a Radon measure.

2. For any measurable set A C E, M (A) is a Poisson random variable

with parameter p (A).

3. For disjoint measurable sets Ay,---, A, € &, the random variables
M (Ay),--- , M (A,) are independent.

This means that for a fixed A = [s,t|x B, A € B([|0, 00) xR), the mapping
Jx(A) is a Poisson random variable with parameter v(B)(t—s). Jx is a finite
measure, since (X;);>o has only a finite number of jumps on each finite time

interval.

For a simple function

(s, x) =1a(s,xz), Ae€B([0,00) xR),
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the integral of ¢ with respect to Jx is given by

/ P(s,x)Jx(ds, dz) :/ La(s,z)Jx(ds,dr)
[0,t] xR

[0,t] xR
= #{s €[0,1] | AX, #0,(s, AX,) € A}
= Z ]lA(S,AXS): Z ¢(37AXS)‘

0<s<t 0<s<t
AXs#0 AXs#0

With the usual extension arguments, we can define the integral with respect
to the jump measure Jy for any measurable function ¢ which is bounded

from below, by

Z ¢(S,AX5)=/ o(s,x)Jx(ds,dr).

0<s<t [0,t] xR
AX20

Proposition 2.7 (Martingale Property, Proposition 8.8 [Cont, Tankov (2004)])
For any predictable function ¢ : Q x [0,00) x R — R satisfying

B [ [ttt van] <.

the process (Y, )i=o defined as

- | t [ ot utas )

1S a square-integrable martingale.

If (Xi)e>0 is a Lévy process, then Y; = f(X;) may not necessarily be a
Lévy process anymore. However, using [t6’s formula we can express (Y3)i>o
in terms of stochastic integrals. Hence (Y});>0 is a discontinuous semimartin-
gale, the largest class of processes for which the stochastic integral can be

defined. We use the following version of It6’s formula for our calculations.

Proposition 2.8 (It6’s Formula, Theorem 71 [Protter (2005)])
Let (X)i>0 be a semimartingale with finitely many jumps in any finite inter-
val and let f € CY(R) and its derivative f' € C*(R\ {1, ..., xm}) with finite
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one-sided derivatives f" at xq,..., 2, for some {x1,...,x,} CR. Then

FX) = F(Xo) / FI(X)dXE + / (X, )d[XC, X,
(X)) - f(X

0<s<t
AX#0

where X¢ denotes the continuous part of the process (X¢)i>o-

An immediate consequence of the multidimensional version of Ité’s for-

mula is the following proposition.

Proposition 2.9 (Product Rule)
Let (X1)e0, (Yi)i>0 be semimartingales with finite activity, then

t t
XY, = XoYo + / Xs_dYS + / Yoo dXS+ [ XY,
0 0

+ ) (XY - XY

0<s<t
AX#0,AY,#0

Proof. We can prove this proposition simply by applying the multidimen-
sional It6 formula (Proposition 8.18, [Cont, Tankov (2004)]) to the function
fla,y) = xy. O

Now we want to introduce the concept of a jump diffusion, since we
use jump diffusions later for modeling the stock price. First we present an

important result on Lévy processes.

Proposition 2.10 (Theorem 32 [Protter (2005)])

Let (Xi)i>0 be a Lévy process and T a stopping time. On the set {T < oo}
the process (Y:)i>o defined by Yy = X,1v — X, is a Lévy process adapted to
(Frit)iso- (Yi)i>o is independent of F, and has the same distribution as

(Xt)eo0-

This means that the process (X;);>o shifted by stopping time 7 is again
a Lévy process with the same distribution. This property implies that Lévy

processes are Markov processes.
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Theorem 2.11 (Existence and uniqueness of solutions of Lévy SDE’s)
Consider the following SDE in R:

X0:x7

dX; = (X )dt + o(Xy—)dW; + / (X, x)Jx (dt, dz), (2.2)

where 1,0 : R — R and v : R? — R satisfy the following conditions:

Lipschitz condition: There exists a constant Cy > 0, such that for
all y1,y2 € R

(yr) — ulye)? + o (yr) — o(y2)|?
/ (w1, 2) — Y(y2, @) v(dz) < Colyn — 1ol

Growth condition: There exists a constant Cy > 0, such that for all
yelR

W)+ o) + / (s )| vlde) < Ca(1+ lyl?).

Then there ezists a strong solution (X;)i>o which solves (2.2) uniquely.

The proof of this theorem can be found in [Applebaum (2004)], Theorems
6.2.3, 6.4.5 and 6.4.6. Furthermore, it can be shown that (X;):>¢ is a homo-
geneous Markov process. Every such solution to a SDE of the form (1.2) will

be called a jump diffusion.

Definition 2.12
Let (Xt)i>0 be a jump diffusion on R. Then the generator Lx of (Xi)i>o is
defined on functions f : R — R by

Ly f(z) = lim ~ (E*[f(X)] - f(z)).

t10+ t
if the limit exists.

The solutions of (2.2) form an important class of Markov processes where

the infinitesimal generator can be constructed explicitly. Using the version
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of Ito’s formula as in Proposition 2.8, we can derive the following result
for continuously differentiable functions with piecewise continuous second

derivatives with compact support.

Theorem 2.13 (Theorem 1.22 [@Oksendal, Sulem (2005)])
Let (Xi)i>o0 be a jump diffusion, let f be as in Proposition 2.8 and have a

compact support, then Ly exists and is given by

L () = pla) - f(2) + 50°(@) 5 (@)

+ / (& +(x.2)) — f(z)) w(dz).






Chapter 3

Maximizing the Growth Rate
with Transaction Costs 1n a

Framework with Jumps

3.1 Introduction

Our objective in this chapter is maximizing the asymptotic growth rate of
the terminal wealth under proportional and fixed transaction costs. In this
work we consider a financial market model consisting of one bond and one
stock. Without costs, in the Black-Scholes setting, the optimal portfolio
strategy consists of holding a constant fraction of wealth invested in the
stock. This so-called Merton fraction lies between 0 and 1 if borrowing and
short selling are not allowed. In the presence of costs it is impossible to
follow this strategy, since the investor has to trade in each point of time
to rebalance the portfolio. The transaction costs would lead to immediate
bankruptcy. The natural class of trading strategies in a framework with
proportional and fixed costs are impulse control strategies. In the Black-
Scholes model (i.e. without jumps) it is known, see Introduction, that the
optimal impulse control strategy exists and is given by a solution of quasi
variational inequalities. Furthermore, |Irle, Sass (2006)b| showed that the so-

called constant boundary impulse control strategy is optimal. The constant

27
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boundary strategy can be described by only four parameters (a,«, 53,b). a
and b are the stopping boundaries for rebalancing the portfolio and «, § the
new fractions of wealth invested in stock after trading upon reaching a and
b, respectively.

In this chapter, we carry over the results of [Irle, Sass (2006)b] to a model
where the stock price is driven by a jump diffusion with compound Poisson
jumps. We first describe the market model and trading in Section 3.2. Then
we solve the optimization problem without costs via point-wise maximiza-
tion in Section 3.3. The transaction costs and impulse control strategies are
introduced in Section 3.4. Due to the logarithmic utility and the structure
of the transaction costs we are able to write the wealth as a sum of gain and
costs. We show in Section 3.5 that the strategy given by the solution of the
QVlIs, the so-called QVI-control, is optimal. Furthermore we assume that
the QVI-control is a constant boundary strategy. This yields some necessary
conditions on the solution of the QVIs, which we derive in Section 3.6. In
Section 3.7 we construct a function, which fulfills the necessary conditions
and show in Section 3.8 that this function is indeed a solution to the QVIs.
Thus we show the existence and optimality of the constant boundary strategy
for our optimization problem. In Section 3.9 we discuss some examples, in
particular the influence of the intensity of jumps and of the jump distribution

as well as the impact of costs on the optimal strategy.

3.2 Model Setting

We consider a probability space (€2, F, P) with a standard Brownian motion
(Wi)t>0 and an independent compound Poisson process (X;);>o defined by
X, = Zf\il Z;, where A\ > 0 is the jump intensity and f is the density of
7, which has the same distribution as Z;. We assume that f : £ — R,
where £ C (—1,00) is some non-empty Borel set. We denote by (F;)i>0
the filtration generated by (W;):>o and (X};):>0 and augmented by null sets,
which satisfies the usual conditions. The jump measure J on R x [0, 00)

associated with (X;);>¢ is a Poisson random measure with intensity measure
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Af(x)dzdt. We denote by

J(dt,dz) = J(dt,dx) — N f(x)dzdt

the compensated Poisson random measure and by

the expected jump size.

We consider a financial market which consists of two assets: one bond and
one stock. Let us assume that the price process of the bond (B;):>o follows
the deterministic dynamics dB; = rB;dt with interest rate r > 0 and initial
value By. Let the price process of the stock (S;);>0 be the strong solution of
the following SDE:

So =y a.s.

dSy; = pS;_dt + oS;_dW, +/ Si_aJ(dt,dz)
E

= uSy_dt + oS dW; + / Sy_x(J(dt,dx) — \f(x)dzdt)
E

= (u— AE[Z])S;_dt + 0S;_dW; + / Sy_xJ(dt,dz), t >0,
B

where © € R, o > 0. The solution of this SDE is given by a jump diffusion

Sy = Sy exp { (,u — A\E[Z] — %ﬁ) t+ oW+ /t/ log(1 + m)J(ds,dx)} :
v (3.1)
for t > 0, which can be easily proven by applying [t6’s formula as given in
Propostition 2.8.
We can describe the trading strategy by a two-dimensional predictable
process (NP2, N);>0, where NP and N are the number of bonds and stocks,
respectively, held by the investor at time t. The wealth of an investor with

initial capital z > 0 is then given by
Vi=NPB,+ N’S,, Vo=ux t>0.
The strategy (N2, N7);>0 is self-financing if

dV, = NPdB, + NfdS,, Vo=uz, t>0, (3.2)
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holds. This equation means, that the changes in wealth are caused only
by changes in stock and bond. Assuming, that the wealth process is posi-
tive, we can simplify the representation of a trading strategy significantly by

introducing the risky fraction process (m)i>o:

S NP
=2t

Tt y t20

The process (7)o is predictable, it describes the fraction of the total wealth
that the investor holds in the stock at time t. It is more convenient for us to
use the risky fraction process (m;);>0 instead of the two-dimensional trading
strategy (N2, N)i>o. We have

Wt‘/tf
S

(1 —m) Ve

NP = B ,

NP =

Using this representation in (3.2) yields

(1 - Wt)‘/;t— ™ Vi
——————rBdt
B Mt

AV, = Sy_ (,udt+ath + / xf(dt,dx))
E
=r(l—m)Vi_dt +mV;_ (,udt + odW,; + / xj(dt, d:z:)) ) (3.3)
E

Applying It6’s formula to log(V;) yields the log-wealth process
! 1
log(V4) = log(Vo) + / r+m (u —r— 50T = AE[Z]) ds  (3.4)
0

t t
+/ msodWy +/ / log(1 + msx)J(dx,ds), t>0.
0 0o JE

In the following, given initial capital x > 0, we describe a trading strategy
by the predictable risky fraction process (m;);>o with values in (0, 1), such
that the corresponding wealth process is given by (3.3). The assumption

m € (0,1) for all £ > 0 means that we exclude borrowing and short selling.

3.3 Optimal Growth Rate without Costs

We call the trading strategy (m:):>o with initial capital x admissible if the

wealth process is a.s. positive, i.e. P(V; > 0|V, = ) = 1. Our objective is to
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maximize the asymptotic growth rate
1
liminf ~EllogV; | Vo = &, m9 = 7]
t—oo Tt
over all admissible trading strategies. In the following we use the notation
E[- Vo =z,m=n] =E""-].
Using representation (3.4) we have

E™*log V;| = log(z)
t 1 t
ST R P Y
0 0
¢
—|-/ /log(1+7rsz)J(dz,ds)]
0o JE

t 1 t
= log(z) + E” {/ T+ T (u —r— 5027rs — /\E[Z]) ds + / msodWy
0 0
t t
+/ / log(1 + ms2)J(dz,ds) + )\/ /log(l + ms2) f(2)dz ds]
0o JE 0o JE
! 1
= log(z) + E” {/ T+ T (u —r— 5027rs — AE[Z]) ds
0

A /0 t [E log(1 + 72) f(z)dzds] |

Thus, in order to maximize the asymptotic growth rate

1
lim inf ;E“’x[log Vi)

t—o00

1 ! 1
= lim inf ;E [/ T+ T, (u —r— 50275 - )\E[Z]) + AE[log(1 + 7,7)]ds
0

t—o00

we can pointwisely maximize the integrand
1
g(z) =r— 5023:2 + (u—r—=AE[Z])z + )\/ log(1+ zz)f(z)dz.
E

We assume that E[Z] < oo, then using Jensen’s inequality and dominated
convergence it follows, that the function g is continuous and differentiable on

[0,1]. Thus, there exists a maximum. Assume further that

Z2
—r>0 —r—0? < )\E . 3.5
p-r>0, p-r-o [HZ} (35)
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The optimal risky fraction 7* is a root of

g/(x) = —or + (M -7 — /\E[Z]) + AE |:1 n Z:L‘:| .

There exists a unique maximizer 7* € (0,1) because ¢’(1) < 0 and ¢'(0) =
uw—1r > 0 by (3.5) and g is strictly concave since the second derivative is

negative

§'(x) = —0® — AE {ﬁ} <0,

In the following we simplify the notation by assuming r = 0 since the
results for general r can be obtained by adjusting the drift u by —r and
adding r to the optimal growth rate R* := g(7*). We denote by R; := g(1)
the growth rate, which corresponds to the pure-stock buy-and-hold portfolio

and assume that it is positive: Ry > 0. We have

Ry = —%(72 + (11— AE[Z]) + AE[log(1 + Z)] < R".

3.4 Fixed and Proportional Transaction Costs

In our framework we consider the following transaction costs. The investor

with current wealth V; > 0 has to pay costs in amount of
Vi + | Al

for a transaction of size A; € R, where § € (0,1) and v € [0,1 — §). We call
0V, the fixed cost and ~y|A;| the proportional cost.

In Section 3.3 we have seen that without costs it is optimal to have a
constant fraction of money 7* invested in the stock to achieve the optimal
growth rate, i.e. we have to trade in each point of time to keep the risky
fraction constant. The investor who faces fixed and proportional transaction
costs following this strategy would go bankrupt immediately. Thus, it is
reasonable to consider trading strategies with a finite number of trades in
finite time. Hence we allow the risky fraction process to deviate from 7*.
Since we have to pay a fraction of wealth each time we trade we do not

want the deviation to become too large. Thus, we have to stop at some point
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and make a transaction which brings the process near the optimal fraction 7*
and the transaction is not allowed to be too large because of the proportional
transaction costs, which punish big transactions. Therefore, it is natural to

consider impulse control strategies.

Definition 3.1 (Impulse Control Strategy)

A sequence K = (7, Ap)nen is called an impulse control strategy, if
(1) (Tn)nen is a sequence of (Fi)i>o-stopping times, such that

O=1<7mn<...<00, T =00 as. and T, < Tpi1 on {1, < o0}.

(11) (An)nen is a sequence of (Fr,)-measurable random variables in R.

We want to introduce the wealth process and the risky fraction process
controlled by an impulse control strategy K = (7, A, )nen. After the first

transaction of A in 7y = 0, the new wealth V is given by
Vo =Vo— Vo —7|A|

and the new risky fraction 7, is given by

_ Vomo+ Ay
g — —————
Vo
For n € N on {7, < oo} we have
‘/t - (1 - fnfl +fnflst/s7—n,1) anh t e (Tnfla Tn]7
— S,
Ty = fn—lvn—lm> te (Tn—la Tn]v
Vn = VTn - 5‘/771 -7 |An| )
. ‘/7—7177-7" + An

3

n

Vi

Note that the controlled process (m;);>o is cadlag, thus we use the pre-
dictable processes (m;—):>o for describing the trading strategy.
We consider only impulse control strategies (7,,, Ay, )nen, such that V; > 0

and m; € (0,1) a.s. for all ¢ > 0. There is a one-to-one correspondence
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between controlling by transaction sizes A,, and controlling by the new risky
fraction process after trading at 7,,, defined by
Vo +A,

T A=V, — 1A

see [Irle, Sass (2006)a|, Lemma 3.5. We call (7, 7 )nen, the new risky frac-

(3.6)

tion strategies. The wealth and risky fraction processes controlled by
(Tns Mn)nen, €volve in the same manner as above with n, = 7, and
_ (1 - 5)7771 — Tr,
1+ Wnsgﬂ((l - 5>77n - 7T7-n>
We call the new risky fraction strategy admissible if V; > 0 and m, € (0,1) a.s
for all t > 0 and denote the family of these strategies by A(x, ), where Vj = x

and my = 7 are the initial capital and initial risky fraction, respectively. In the

V... (3.7)

following if we want to emphasize the control we use the notations (V,*);>
and (71);>¢ for controlled processes.
The next proposition points out the advantage of reformulating trading

strategies in terms of new risky fractions.

Proposition 3.2

For any admissible strateqy (T,,, Nn)nen, we have

! 1
log(V;) = log (Vi) + / - <u ~ 5% )\IE[Z]) ds (3.9)
M
/775 odW, +/ /log + 7o) (da,ds) + Y T(r,, 1),
n=0
t
7Tt—770+/ 7o (1 — s )(pu — AE[Z] — 0?7, )ds—i—/ Ts— (1 — s )odWy
0 0
t x My
(=7 )——J(ds,d — .
# ) Lt s S ) 69)
where My = sup{n € N: 7, <t} fort >0 and
1—6—yz T
ICOEE A
log 1+7; Y2 ﬁ

denotes the costs, which the investor has to pay for the transaction of chang-

ing the risky fraction from x to y.
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Proof. The wealth in the bank account V,® and in the stock V,* at t > 0 are
given by
V7 = (1—mo)Vo + Z Lir <ty (—Ar — v [Ar] = 6V5)

k>0

t
m5=w0%+/m/f_ds+/avsdw +/ /VS:det dx)
0

+ Z Lir <ty Ag.

k>0

The last term in V,? arise due to the transaction costs the investor has to
pay for transactions in 7g,...,7y,. The wealth is given by the sum of V,”

and V%

¢ t t N
V,=Vo+ / uV>s ds + / oVE dW, + / / VS 2 J(dt, dx)
0 0 0 E

+ Z Lir <y (=7 [Ag| = 0V7,).

k>0

We can rewrite this dynamics in terms of the risky fraction

t t t _
Vi=Wy +/ pums_ Vs _ds +/ oms_ Ve_dW +/ / s Vs_xJ(dt, dx)
0 0 0 JE

+ Z Lir <ty (=7 [Ag| = 0V7).
k>0

Since the wealth is almost surely positive for all ¢ > 0 we can apply [to’s
formula to f(V;) = log(V;):

t1 o1t
log(Vi) = 1og(Vi) + [ g=dvi =3 [ gra Ve vil+ 3 (v - 10
2@?6
t
= log(Vo) + / Voo AR[Z])ds + / WS‘;VS_adWS
0 5— 0 5—

t
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The last term in the equation is the sum of jumps caused by the compound

Poisson process and jumps according to trading.

(V) = fVi) = D (f(Va) = +Z F(Va)).

0<s<t 0<s<t
AVL£0 AX£0

Vit Vi AX,
> (0910 = 3 s (7 ) zl( )
0<s<t 0<s<t 0<s<t S
AX#0 AX#0 AX#0

_ / t / log(1 + 7,_a).J (dt, dx),

i(ﬂvm) Zlog( -) - ZIO( ),

In case of buying stocks A,, > 0, the representation (3.7) yields

1  — 0
Vo A, -8V V. (L) ‘
L4y
In case of selling stock we have
1—~m, —0
Vo A, — OV =V, _ (L) .
L=9ny,
Thus, summing up all terms we have
M,
> (00 =1V = [ [ togl1-+ moa) it )+ 3" Tl )
0<s<t n=0

Altogether the controlled wealth process is given by (3.8).

To obtain the dynamics of the risky fraction we apply It6’s formula to
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the function 7, = f(V;5,V°) = Then we get

VB+VS

U A e (VR
1 rave B B I S B
- s c c - Ve (VB¢
by [ 2y v+ g [ v vy

3 | A0 v Y GOV — VD)

0<s<t
AVE£0
¢ ¢
=m + / 7o (1 — s )(pu — NE[Z] — o*7,_)ds + / Ts— (1 — s )odWs
0 0
My
+ D VIV = JVEVE) + D (n = 7n),
0<s<t n=0

AX 0

where the first sum is the sum of jumps caused by the compound Poisson

process,

> FVEVEH - fVEVE) = >, <Vv ‘Ej

0<s<t 0<s<t
AX#0 AXs#0

3 ( Ve +VEAX, )
= — Ms_
0<s<t Voo +Veums- AKX,

AX 0

Z (1 — 7T5_>AXS
= 7T$_—
o 1+ 7 AX,

AX#0

://WS o) — J(dt, dz).
1+7,_x

Thus the dynamics of the risky fraction is given by
t

T = To + / (1 =7 ) (1t — ME[Z] — 0*7s_)ds + / T (1 — w5 )odW

0

/ /’/TS Ts—) J(dt,dx) +Z — T
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We denote by R the growth rate corresponding to an admissible new
risky fraction strategy K, i.e.

.1
RK — h{g(l)gf;E [lothK\VO =x,mTy = 7T] )

Our purpose is to find an optimal strategy K* = (7,5, )nen, within the class
of admissible new risky fraction impulse control strategies A(x,7), which

maximizes the growth rate of the controlled system:

« 1
R* = sup liminf-E [log V" |V = 2,m = 7] . (3.10)
KeA(z,m) t—oo

Plugging the representation (3.8) into (3.10) yields

1 1 t 1
lim inf ~E™*[log V] = liminf ~E {/ Ts (u — 0%, — )\IE[Z]) ds
t t—oo t 0

t—o00 2

t t My
+/ ms_odWy + / / log(1 + ms_z)J(dz,ds) + ZF(WTM M)
0 0 JE —

t—o00

1 ! 1
= lim inf ;]E [/ s <,u — 5027@_ — )\E[Z}) + AE[log(1 + m,_Z)]ds
0

M, t My
_ 1 _
S jrmnn)] ~timinf ;B | | g(ws_>ds+§jr<mnn>] .
n=0 0 n=0

Thus, using representation (3.8), we can express our objective in terms of
the risky fraction (7):>o and the new risky fractions (7, ), only. Also, we see
that the asymptotic growth rate does not depend on the initial capital V}

and the initial risky fraction m. Hence, (3.10) can be equivalently written as

/0 g(ﬂ—s—)ds + th(ﬂ}n, nn)] .

n=0

* 1
RY = sup liminf-FE
KeA(z,m) t—oo

3.5 Quasi Variational Inequalities

As we will prove later the optimal strategy for maximizing the asymptotic
growth rate in a framework with proportional and fixed costs is an impulse
control strategy which is given by a solution of the quasi variational inequal-
ities (QVIs).
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Definition 3.3 (Solution of the QVIs)
A solution of the QVlis is a function v : (0,1) — R, which is continuously
differentiable and piecewise twice continuously differentiable on (0,1), and a

constant | € R such that
1. Lyv+g—1<0 on (0,1) with

Lyv(z) =2(1 — ) (u — A /E 2f(2)dz — ;w2) V(2)

1

+§02x2(1 — )" (z) + A /E (v (%) - v(m)) f(z)dz.

2.L,v+g—1 = 0on D = {zxe(0,1):v(x) > Muv(zx)}, where
Mu(z) = sup {U(y) +T(z,y),y € (0, 1)}

3. v(x) > Muo(z) for all z € (0,1).

Proposition 3.4

Assume, that v and [ are a solution of the QVIs and v,v" are bounded. Then
I > RX for any admissible strateqy K. Assume, that an impulse control

strateqy K* = (15,05 )nen, exists, such that the stopping times are given by
77 =inf {t > 77, v(m) = Mu(m)}
or equivalently
f=if{t>7",:m¢D},
and impulses n} have values in (0,1), such that
Mu(mre) = v(nf) + T (mr:,05).

Then, we have | = RE". We call the strategy K* = (7,0} )nen, the QVI-

control and D the no-trading region.

Proof: Consider the controlled risky fraction process

t t
Ty = 1+ / o (1 — 7 ) — NE[Z] — o, )ds + / o (1= 7, )odWW,
0 0

+/0t/Ews_(l—ws_)%J(ds,dx)ﬂLf:(nn—M)

T X
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and apply Ito’s formula (2.8) to v(m):

v(m) = v(mo) —I—/O Lv(m_)ds

t My
n / o (1 7 )0 (oW 3 (wm) — o).
0 n=0
Adding —v(m) + [ g(ms_)ds + M T(n,,, ma) to both sides yields
t My
/ g(ms_)ds + Z U(7r,,mn) = Ut + v(m) — v(m)
0 n=0

t
+/ s (1 — ms )V (75 )odWj
0

¢
—1—/ Lyv(mg_) + g(ms—) — lds
o S y

g

<0

+ Z 77” 7T7'n + F(ﬂ—’rru T’n))

J/

g

<0
<t 4+ v(my) — v(m) + /t Ts— (1 — ms_ )V (75— ) o dWs.
0
Because v and v' are bounded on (0, 1) we have
E {/t e (1 — WS_)U/(WS_)O'dWS:| =0
0

and it holds

lim inf E

t—o00

/Ot g(ms—)ds + if(ﬂm, nn)]

1 t
< lim inf ;E [lt + v(my) — v(m) + / To_ (1 — e )0 (ms_ ) dW,
0

t—o00

1
= lim inf ;E[lt + v(my) —v(m)] = L.

t—o0
Thus R¥ < [ for any admissible impulse control strategy. Applying the
QVI-control K* = (7,1} )nen, yields

My

> (W) = v(mr) + (e, ;) = 0

n=0
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and
Lyv(z) +g(x)—1=0

for all x+ € D. Therefore the optimal growth rate is given by [, i.e.
| = RE",

Now we want to interpret the function v, which together with [ is a
solution of the quasi variational inequalities. Assume that we have an optimal
impulse control strategy (7., 7, )nen, Which is given by a solution v and [ of

the QVIs. Applying It6’s formula to v(m;) for 7; < ¢t < 7,41 yields
t t
v(me) =v(mo) —I—/ L.v(ms_)ds +/ o (1 — 7 )0 (75 )odW,
0 0

My
+ ) (v(m,) = v(n.)).
n=0
Using this identity we derive

¢
E[v(m;) — v(mo)] =E {/ Lrv(ms-) + g(ms-) — lds
‘ =0 by the first QVI
My

+ [ 1= gtmoyds = 3Tl

n=0

+ Zv(nn) — U(?TTn) + f<7Trn7 nn):| .

J/

=0 by the second QVI

Thus we have

E[v(m) — v(m)] = E

We can interpret E[v(m;) — v(m)] as the deviation of the gain

/0 g(ﬂs—)d8+zf(7fm,nn)]

n=0

E

from the accumulated optimal growth [t up to time ¢. Because of the trans-

action costs it is impossible to hold the risky fraction constant as is optimal
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in the case without costs. Letting (m)¢>o deviate from 7*, we sacrifice some
of the return, thus we can also interpret E[v(m;) — v(mg)] as the displace-
ment cost. One can find this kind of interpretation of v for example in

[Taksar et al (1988)].

3.6 Necessary Conditions for the Optimality of
Constant Boundary Strategy

In our framework the cost of a transaction which brings the risky fraction

from x to y is given by the function

_ log llfﬂx, y < 155
Tla,y) =4 0 T i
log 14~y 7 > 1-5
The derivative with respect to vy,
o — L) < -z
Y S E
v e

1+~y?

has a discontinuity at which leads to problems in the later argumenta-

o5
tion. Therefore in the following we use a modification of the cost function,

namely
log 116 = oy<ux
_ 7y =
R .11
0g Tr.= Y>>

The use of the modified cost function is justified in [Irle, Sass (2006)b],

Section 5. The main idea is that
[(z,y) <T(z,y)

for all x,y € (0,1). The growth rate corresponding to I', which we denote
by R is for each admissible strategy smaller than or equal to R¥. If for the
optimal constant boundary strategy K* it holds that a > a(1 — ¢), then we

have R = RK" Thus, K* is also optimal for the original cost function.
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The numerical examples will show later, that this assumption is fulfilled even
for extreme costs.

The crucial point of the further argumentation is that we can obtain a
solution to the first QVI explicitly.

Proposition 3.5
The function vy : (0,1) — R which is given by

v(x)—1 C—L Lo\ (= p+L10 ) 1o L
0 T p R, c 1—x Ry & 1—x & 1—=x

solves Lyvg + g —1 = 0 on (0,1). Here ¢ € (0,1) is some constant and
p € (—1,0) is a root of

h(z) = %023: — %0’2 + (u— AE[Z]) + iAE (1+2)" —1].

Proof. The derivatives of vy are given by

ol A () v s

ol () = ﬁ KC— Ril) (1;C>p <1fx)p(p—|—2x— ) (3.13)

Plugging this derivatives and vy into L,vg + g — 1 = 0 on (0,1) yields the

result. Further we show that there exists a root p € (—1,0) of

1 1 1
h(x) = 50233 - 502 + (u — NE[Z]) + —AE [(1+2)* —1].
Since .
lim=((1+ Z)? —1) =log(1 + Z
;%lp(( + Z) ) =log(1+ 2),
we have

1
li%l h(p) = —502 + o — AE[Z] + AE[log(1 + Z)] = Ry > 0.
P

Further h(—1) < 0 because of (3.5), hence there exists p € (—1,0), such that
h(p) = 0. O
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Thus we have already a solution of the first QVI. Now we consider vy
on (a,b) C (0,1) and construct a function v : (0,1) — R, which extends vy
outside of (a, b) such that v is bounded on (0, 1). Let us define v by

vo(a) + I'(z,0), = <a
v(x) = { vo(w), a<xr<b
vo(B) +T(z,B8), =>b

for some constants 0 < a < o < f < b < 1. To find necessary conditions
for a,a, B,b,1 we suppose that this function is a solution of the QVIs and
assume that the QVI-control given by v and [ as in Proposition 3.4 is a
constant boundary strategy (a, a, 8,b). We will show in Theorem 3.14 that
this assumption is fulfilled for the parameters defined in the following section
(Proposition 3.13). A QVI-control given by (a, o, 3,b) means, that the no-
trading region is given by the interval D = (a,b) and the optimal impulses
are given by the new risky fraction « if we stop in a and g if we stop in b.

The strategy (a, «, 3,b) has to fulfill the following conditions in order to
be a QVI-control strategy given by v and [ as in Proposition 3.4. We want v
to be in C'(0,1), thus we have to choose a and b such that

(n Liota)| = 20|
(1) L) = 26|

The optimal actions «, 8 are the solutions of

i.e. the function v(y) +I'(z,y) attains its maximum at « for z < a and 3 for

x > b. This means

(111) o) =5,
(1v) )], =~ T
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Furthermore we have v(z) < Mu(z) for all z ¢ D and for all z € (0,1) we
have v(z) > Mu(x), thus

Mou(z) = v(zx), for x < a,x >b.

This implies

(V1) vo(B) — vo(b) + I'(b, B) = 0.

(IT) v (b) = —ﬁ (3.14)

(1v) R — (3.15)

(V1) vo(b) — vo(B) = log (11_15—;6%> . (3.16)
Necessary conditions for a, o are

(1) W =5 (3.17)

(I11) vhla) = 1 :w (3.18)

(V) vo(a) — vo(a) = log (%) . (3.19)

Note, that by derivation of (3.18) the cost functions I' and T' coincide if

a < a(l —9), in particular

0
a_yr(a’> y)

B
— —F
3y (a,y)

e} «

3.7 Existence of a Constant Boundary Strategy
as QVI-Control

In the previous section we assumed, that the function v and a constant [

solve the QVIs and derived conditions under which the resulting QVI-control
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is a CB-strategy. The subject of this section is to show, that under some
assumptions on the parameters of the stock, there exists a unique constant
boundary strategy, such that the conditions (I) — (V1) are fulfilled. We will
mostly follow the approach from [Irle, Sass (2006)b]. But there are some

differences we want to point out here. We need the Assumption (3.20)

1 1
p p(1+7p)

on costs and parameters of the stock in order to prove the existence of a
CB-strategy. In fact, a corresponding assumption would be also needed
in the continuous-time setting to close a gap in the argument of Lemma
7.4(i) in [Irle, Sass (2006)b|. Therefore in Lemma 3.9, Lemma 3.10 and in
Theorem 3.14 we choose another approach as in [Irle, Sass (2006)b].

In the following lemma we discuss how the behavior of the function

vo(z; ¢, 1) depends on parameters ¢ and [.

Lemma 3.6
Let c € (0,1) and | > R;.

(1) lim, o vy(z) = —00, limyy v)(z) = oo.

(1) Ifl < %c(c— 1+ p), then v} has exactly three roots x1, 2, ¢ in (0,1),
satisfying 1 < ¢ < x3 and vy (xy) >0, vy(c) <0, vj(zy) > 0.

(11i) Let | = %c(c — 14 p), then there exist at most two roots:
- Ife> (1 —p), then 31 < ¢ = x5 and vfj(z1) >
- Ife < 5(1—p), then x1 = ¢ < x5 and vy(z2) >
- Ife=3(1—p), then x; = ¢ = 3 and vjj(c) =0

Proof. Since ¢ < 1 and RLI > 1 it follows that (c— R%) (i)p < 0. The

claim (i) follows using representation (3.12) and

p p
lim x =00 lim * =0
z0 \1—2x 2 \1—2x

1
lim——— =00 lim—— = .
zl0 (1 — ) 211 (1 — )
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For proving (ii) we show first, that there are at most three roots. We can

decompose v in the following way

0= i (- () -0 ()

/ N J/

g

fi(z) fa(z)

f1 has no roots in (0,1). f; has at most three roots, because

fo == () s 1= Bate -1

J

~
Polynomial of degree 2

has at most two roots. Hence v}, has at most three roots in (0,1). It is easy

to see that ¢ is a root of vj. There are at least three roots iff v{(c) < 0.

v 1 l c(l—c¢) c(l—c¢)
vo(c)—m(c—R—l) (p— c—RL1><O & (p— c—Ril>>0

R
& Rl<l<?lc(c—1+p)

To show (iii) we again look at the representation vjy(x) = fi(x)- fo(x). It
is sufficient to consider f, because the signs of f; and v} are the same. cis a
local minimum of v if ¢ > (1 — p) and ¢ is a local maximum if ¢ < (1 —p),

because fi(c) =0 and

1—c¢ P P 2R1 Rl > >
" — o -
5 (c) ( . ) c(l—c)( pc+p R ) <0&c<

N

'

>0

¢ = 3(1 — p) is a saddle point, because f3’(3(1 — p)) # 0, where

V(z) = —R L-o)’ ! (p? —22% + 2z — 1)
2 "z 22(1 — x)? '
[

Figure 3.3 shows v} for ¢ € (0,1), | < %c(c — 1 + p) and the cost

functions we used in conditions (1) — (IV'). Since we want to find some a, «
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0,010

0,005 / \ /

0,000 T T T

- 0,005—- I \ /

-0,010-

Figure 3.3: vj and cost functions for ¢ € (0,1), [ < %c(c —1+p).

and (3,0, such that equations (I) — (IV) hold, it is reasonable to assume
ce (0,1), I < %c(c — 1+ p) for the right behavior of v. Furthermore
we expect, that the optimal growth rate [ is greater than the growth rate

corresponding to the pure-stock buy-and-hold portfolio R;. This means that

R
le (Rl,?lc(c—l—i-p)) ,

which holds iff ¢ € (—p, 1). In the following we fix the parameter ¢ € (—p, 1)
and consider v on (¢,1). In the next lemma we show, that vf is strictly
increasing in [ on (¢, 1) and there is an upper barrier for [, Iy > Ry, such that
v;, has only a contact point with the cost function —ﬁ.
Lemma 3.7

There exists 1] > Ry, such that

E:sup{l > Ryl vy(z;l) < —

[ g for some x € |[c, 1)} :
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Proof. vj(x;1) is strictly increasing in [, since

o 5 (52) ()

for all z € (¢, 1). Furthermore v'(z;1) is continuous in [ and we have

1 l1—c r \'[1-c\?
- —tim [ 2 - _
111?11”0(%}%1) _1;?11 (x (1l —x) (1—x> ( c ) ) >

thus

lim inf vj(7;l) = —co and I} > R;.
lLR1 z€(c,1)

[]

We can compute [; explicitly, since we know that there must be a contact

point b between vj(z;l;) and the cost function ———, i.e. the functions
Yy

1_
have the same derivatives and the same values in b:

- Y V)2
(b)) = ———— = —(v,(b))*.
v () (1—6 — D) (vo(0))
Thus we can calculate [;:
PR T Ry
p(1—6—7b)2 p
Lemma 3.8

For each parameter | € (Ry,1,) there are unique 3,b € (c, 1), such that

v ’ 7
2 2
vo(ﬁ;l)+—(1_7ﬁ)2<0 UD(b;l)+(1—6—fyb)2>O

Proof. After the observations above, for each I € (Ry,l;) there are at least
three roots By, 1, B2 of

vy(a; 1) + 1 j’VSU =0
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with 0 < 1 < ¢ < s < B3 < 1. We want to show, that there are at most

three roots. Consider the function

o) = x2(+—x)2 [m(l—az) (-1_77x(p+2x_1)_1) —p(é—m)}
y

(1 —~yx)?’

which coincides with the derivative of v(x; ¢, 1) + 1—:7% at By, b1, F2 and any

+

other solution f;, i.e.
2

vo(8:) + 1%76@ =0, v () + (1_771)2 = f(B)-

Simplifying f shows, that there are at most two roots:

Polynomial of degree 2
o\

la ~N

0 — e ety — DY — e —pt 1)

Ry
22(1 — x)%(1 — yx)?

fx) =

Hence vj(z) + %I)Q has at most two roots and thus vg(z;c, 1) + ;=5 has

1 1
at most three roots. Furthermore
2 2

8 8
vy +—e <0 v (By) + ——— >0,
e T A L EpTNE

thus § := [ fulfills the claimed properties. We apply the same argumenta-
tion to

vy(x; 1) + S

0 1—0—nx ’
but take the biggest of three roots by < by < by, i.e. b := bs. O

For a fixed ¢ € (—p,1) and for each | € (Ry,l;) there exist unique
B(1),b(l) € (¢,1), such that the conditions (3.14) and (3.15) are fulfilled.
In the following we will show, that a unique l; € (Rl,E) exists, such that the

condition (3.16) also holds. For this purpose we need the following lemma.
Lemma 3.9
b(l) is strictly decreasing, 5(1) is strictly increasing in | with

}ile b(l) =1 and zlilg} B(l) = p*,  for some * € [c,1).
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Proof. We define a function

v
1—~z(l)

For each [ € (Ry,1;) there is a unique 3(I), such that F(B8(1),vy(B(1),1)) = 0.

Since

F(a(l), v(x(l), 1) := vo (D), 1) +

? , _ _r
SeF . W.0)] | = 0.0+ s <o

B(1) is in C* by the Implicit Function Theorem with derivative
oy
%(Z) _ — 52 (B(); 1)
- 2
ol v (B 1) + a=5my

B(1) is strictly increasing and continuous, thus there is 5* € [c, 1), such that

limy g, B(I) = B*.

Analogously, b(1) is also in C*! and is strictly decreasing

> 0.

ob — 5 (b(1);1)
E(l) = p ol 2 < 0.
Yo (b(l), l) + (1—=6—~b(1))2

Thus, there exists b* € (¢, 1) such that lim g, b(I) = b*. Assume b* < 1 and

define
Y

flx,l) = vy(z, 1) + m

We have already seen that
li%f(x,Rl) = —00, li%f(x, ) = 400 for 1€ (Ry, 1)

f(z, Ry) is strictly decreasing in x, thus the following holds for each
! € (Rlvg)

f(z7,0) :== min f(z,l) > f(z7, Ry) > f(b", Ry),

z€(c,1)

which is a contradiction to

lim min (o (z,0) + —— ) = —0.
LR we(en] (UO(m’ )+ 1 ) >

Thus, we have limy g, b(]) = 1. O
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Now we are able to prove that there is a unique l; € (Ry,[;), such that
the conditions (3.14), (3.15),(3.16) hold. In the further argumentation we
will need the following assumption

1+9p ( 1+p )
0<1—~v+ exp . 3.20
p p(1+p) (3.20

Lemma 3.10
Under the assumption (3.20) for each ¢ € (—p,1) there exists a unique
I, € (Ry,1y), such that

wo(b(l), 11) — vo(B(1), 1y) = log (M) |

1 —~8(l)

[ is C' as a function of c.

Proof. Define ¢(1) := vo(b(1),1)—vo(5(1),1). The function ¢ (I)—log (1115;3881))

is strictly increasing in (:

oY 0 1—0—~b(l) , Y
W(l) ~ 57108 (W) = \(vo(b(l),l) - m) bi(l)

S

=0

~ (0.0 - =L ) a0+ e - SR

N J/
~

=0

b(l) /
= / 9v (x,l)dz > 0,
sw Ol

since vy, is strictly increasing in [ on (¢, 1). Thus, we can prove the statement

if we show that

W(T) — log (M) >0 P(Ri) —log (1 0 7b(Rl)) <0.

1 — (1) 1 —B(R)
Following holds for all = € (3(1}),b(l1)):
v = v
_ < — )
1—5—7x_U0(I’l1) 1 —n~x

Thus, we have
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Because

b(T) A iR
v 1—5—vb(l1)) (1—5—75(11))
/ﬁ(ll) —o—qz" 0g<1—5—76( 1) e 1 —~6(l1)

the first inequality holds:

- 1— 6 —b(ly)
o0 () 2!

For the second inequality we rewrite the function vy as follows

1 171 [ x 1
)= -z(l—x)vy(z,l)— - | =— — —1 — | -1 :
o) = a1 = augfo ) =3 (=) o (15 ) 1o (12 )

Using the assumption

1+9p < 1+p )
0<1—v+ exp
p p(1+p)

(B0 =~ 5y and w0 = 75"

together with Lemma 3.9, we derive

o0 (250)

I T M)
—p(1 5)1_75* 10g< e <0.

The last statement follows by the Implicit Function Theorem. O]

and the fact that

Summarizing the results of the previous lemmas, for each ¢ € (—p, 1) we
can find a [, (c) € (Ry,1;), such that unique 3,b € (c, 1) exist which fulfill the
conditions (3.14), (3.15),(3.16). In the following lemma we will discuss the

monotonicity of [; as function of ¢. Define ¢(z) := %x(a: —1+p).

Lemma 3.11
There is a unique ¢; € (—p, 3(1—p)), such that I (c) < @(c) for all ¢ € (c1,1)
and ly(c) = (c) for ¢ = ¢1. The function ly(c) is continuous and strictly

decreasing on (c1,1).
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Proof. The derivative of v}, with respect to c is given by

%%“”:ﬂlféyxuix>Cffjic‘fk‘éﬂcu€@)>o

>0

Thus, v} is strictly increasing in c iff I < ¢(c).
By the Implicit Function Theorem the functions 5(c,1) and b(c,() are

continuously differentiable with derivatives

0 — %8 (B(c,1);1)
—pB(c,l 0
a0 = <<>>+——¢>
bc,1) = ~ e bl 1) )2 <0.
vo (b(e, ;1) + a5

The function ¥(c, ) — log (M) is strictly increasing in ¢ because

1—vB(1)
B 9 1 =6 —9b(ce, 1)
a@”—&m(l—wmw)
. / . v
= \(’U (b(cv l)a ¢, l) 1—9— fyb<c’ l)> bC(C, l)
=0
, g
_ \(U (ﬁ(c, l), C, l) — 1 ’_)/6(6’ l)) /BC(Ca l)
=0
B 0
+ 8_<b(cv l)v 7l) - a_z(ﬂ(c’ l)’ ¢ l)
b(c,l) o'
— e %(:U, ¢,)dx >0

Furthermore, (c,l1(c))
1—0—9b(c,li(c))
(e, (e)) — log —— vB(c, li(c))

for all ¢ € (—p,1). Thus, we have

2 1N — o 1—06—~b(c,l1(c))

ac (¢( 7l1( )) 1 g ( )) )
Iy
(

1 —~6(c, li(c
0

1 =0 —b(c,li(c) ) O _
+ 5 (¢(c, li(c)) — log T30, (o) > %ll(c) =0,
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and finally
b(e,h(c)) — log Eapebla)) 0

1—0—~b(c,li(c ’
U(e.11(¢)) — log T THebioD)

L
—
—
o
~
Il
|
—~—

if li(c) < ¢(c).

li(c) < li(c) < ¢(c) for ¢ > L(1 — p) by Lemma 3.6 (iii). Thus, {;(c) is
strictly decreasing on [%(1 —p), 1), hence there is a unique ¢; € (—p, %(1 — p))
such that ¢(c1) = l1(c), because ¢ is strictly increasing on (—p, 2(1 — p)].

For all ¢ > ¢; we have [;(c) < ¢(c). O

We will show the existence of a, a, which satisfy conditions (3.17),(3.18),
(3.19) analogously.

Lemma 3.12

We consider the interval (0, c) and define

ly == inf{ sup vy(z,1) > A} :

>0 | 2e(0,] T 1-0+x
Then, the following statements hold:

(i) For each c € (—p,1) andl € (0,1y(c)) there exist unique a = a(l,c), o =
a(l,c) with —p < a < o < ¢, such that

/ 8 / 2
vpla) = m (a)

(it) There exists a unique c; € (3(1 —p),1) such that for each ¢ € (—p, co

there is a unique ly(c) € (0,lz(c)) which satisfies

1 -6+ va(lx(c), c))
1+ ya(ly(c), c) ’

wo(alla(c), €)) — vo(a(lz(e), ) = log (

(111) ly is continuous and strictly increasing on (—p, c2) with l2(c) < ¢(c) for

c < ¢y and ly(ce) = p(c2) > Ry.

Proof. To prove this Lemma we can proceed as in Lemmas 3.7-3.11. O]
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Combining the previous results we are now able to show the existence of

a CB-strategy, which is a QVI-control as defined in Proposition 3.4.

Proposition 3.13
There exist unique a, ., 3,b, such that 0 < a < a < 8 < b < 1 which satisfy

the necessary conditions

v(D) 1= ;_ b vy(a) = 1_57—4_7@
B =-1—3 o) =
vo(b) = vo(f) = log <11_i5—;;b> vo(a) — vo(a) = log (%) .

Proof. 1t remains to show that there exists a unique ¢*, such that l;(c¢*) =
lo(c*). li(c) is strictly decreasing on (¢, 1), l3(c) is strictly increasing on on
(=p;c2). li(cr) = @(c1) > lo(cr) and la(cz) = ¢

an intersection point ¢* € (¢, ¢3). O

(ca) > l1(c2). Hence, there is

3.8 Verification Theorem

In Section 3.6 we assumed, that the function

vo(a) + T'(z, ), z<a
v(z) =  vo(x), a<zr<b

vo(B) + Iz, B), = >0

is a solution to the quasi variational inequalities corresponding to

My

t
/ g )ds + S ) |
0 n=0

. 1
R¥ = sup liminf-E
KeA(z,m) t—oo 1

where the constants a, o, 5, b are given, such that the resulting QVI-control
is a CB-strategy (a,«, 3,b). The existence of such constants was shown in

Section 3.7. Thus, it remains to show that v is indeed a solution to the QVIs.
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0,000 T { ¢ T T
-0,005 % e 1JYB B
’ b
%V”(b) o 175y7yb

-0,010—-

Figure 3.4: v with cost functions and roots a, «, [, b which fulfill the

necessary conditions. We will use a; in the proof of Verification Theorem.

Theorem 3.14

For the constants a,a, B,b as constructed in Proposition 3.13 under the as-
sumption (3.20) and if additionally holds that

< (1—-0)m

yr* 4+ (1 =0 —7)

the function

satisfies the QVlIs:
1. Lyv+g—1<0on(0,1)

2. Lyv+9g—1=0onD = (a,b)

<b,

a<z<b

z>b
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3. Mo(z) —v(z) <0 for all x € (0,1).
Furthermore, the functions v and v’ are bounded.

Proof: vg solves Lyvg(x)+g(x)—1 = 0 on (a, b) by Proposition 3.5. According

to our construction of b and vy we have
L.v(b) + g(b) — 1 = Lvo(b) + g(b) — 1 = 0.
For all x € (b, 1) we have

Lov(z) 4+ g(z) = —2(1 — z) (1 — AE[Z] — z0?)

1—0—n~z
1 o 2
_t 220 e
2036(1 ) (1_5_71:)
+ AE |log <1+Z ) + g(x)

1—6—~x
(A =b0—9)x
— 9 1—-0—~z )’

g(x) = —%asz + (1 — AE[Z])x + AE[log(1 + Zx)].

g is decreasing on (7%,1) since ¢’(1) < 0 and there are no roots on (7*,1)

where

because

J(2) = —0* — AE {ﬁ} <0

Thus, under the assumption
(1—48)r*

<b
Y+ (1=0—7)

the inequality
Lv(z)+g(x) —1<0

holds for all x > b. Using the same reasoning for a we show that
Lyv(x)+g(x)—1<0

holds for all z < a if
(1—-0)r*

< .
R (R )
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So far, we showed that

It remains to show that

zﬁﬁww+F®wH—v@)S0

for all z € (0,1). We assume first that y > z and show
v(y) —v(x) + T(z,y) <0

for all z € (0,1). We have

o(y) — v(2) + Tz, y) = v(y) — v(z) + log (1 -

Flog (5 ) g (LY
1—0+yy 1—0+y

Yy
/ vy I+~y
= - dz—1 — ).
/xv(z) 1—6—|—sz Og(l—é—l—vy)

log (155?%) > 0 for all y € (0,1). Consider

%F(ZL‘,O&) - 1751’)/3:’ ~a
o) — o _ vy(x) — 1T<;+Lw’ a<y<a
Lm0ty o) — s @ <y<b

5D (@,B) = 55 ¥ 20,

where a; € (a,c) is a root of vj(z) = Due to the construction of v

1—(;:—7(1'
we have (see Figure 3.4)

(

s T ieE =0 z<a
U,(x)_l_;ﬂxz vé(x)—mzo, a<y<a

vo(@) — =55 <0, ap <y<b

T e <00 ¥y 20
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Thus, it remains to show that

Y 1
fy) = / (Ué(z) — 1_;—_’_72) dz — log (%) <0

for all a < y < b. We know, that f(a) =0 and f'(y) > 0 for y < «, where

N S v
Fw) =wly) 1—6+x 1+'yy+1—(5+’y:c
/ i
=uy(y) — :
o(y) 1+

Thus, f(y) <0 foralla <y <b.
The case y < x can be proven analogously.

v and v" are continuous on [0, 1], hence the functions are bounded. ]

3.9 Numerical Results

In order to derive the existence and optimality of a CB-strategy for our op-
timization problem we made three assumptions on the costs and the optimal

CB-strategy. The first assumption
a>a(l—9)

was made by transition from the original cost function I' to the modified cost

function T, see (3.11). We used the second assumption

1 1
0<1—~v+ +7pexp(i)
p

p(1+p)

in Lemma 3.10. The third assumption

(1 —=9)r*
< <b
B (e ).

was used in the proof of the Verification Theorem 3.14. In the follow-
ing we see from numerical examples that, even if the costs are extremely
high or extremely low, these assumptions are fulfilled. With parameters
p = 0220 = 0.4, = 1 and lognormally distributed jumps (1 + Z) ~
LN (—0.15,0.5) we calculate the growth rate of the pure-stock buy-and-hold
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Table 3.1: Optimal CB-strategies for extreme costs.

Sc. v 0 a a Ié) b

1 10.0001 | 0.0001 | 0.4398792 | 0.5317788 | 0.5359239 | 0.6263818
2 0.003 | 0.001 | 0.3613570 | 0.5170684 | 0.5513334 | 0.7021386
3 0.25 0.25 | 0.0217726 | 0.4151983 | 0.6391181 | 0.9943895
4 0.2 0.7 | 0.0007713 | 0.4588643 | 0.5814076 | 0.9999985
5 0.99 | 0.001 | 0.0501556 | 0.0805773 | 0.9978468 | 0.9999138
6 0.001 | 0.93 | 0.0000309 | 0.5898451 | 0.5904173 | 0.9999999

portfolio Ry = 0.0147, the optimal risky fraction without costs 7* = 0.5572
Note that, Ry > 0, 7* € (0,1) and
p € (—1,0) as required for the existence of the optimal CB-strategy. Now,

and the parameter p = —0.0675.

we consider different scenarios for the costs 9,y and compute optimal CB-

strategies. The results are gathered in Table 3.1.

In all scenarios, even in 5 and in 6, where v = 0.99 and 0 = 0.93, the
assumptions above are fulfilled. Because of high proportional costs in scenario
5 the boundaries 3,b and «, a are very close. The strategy is similar to the
strategy with only fixed costs, see Figure 1.2. High fixed costs in scenario 6
push apart the outer boundaries a,b. Thus, the risky fraction evolves freely
on almost the whole interval (0,1). This is similar to pure proportional costs,
see Figure 1.3. The functions v corresponding to Scenarios 1-6 are shown in
Figure 3.5 on page 63 and the corresponding growth rates [ are shown in Table
3.2. Note that v is not a value function. We interpret v as displacement cost,
therefore v does not have to be concave. We see that in all cases [ > R; and,

as one might have expected, higher costs cause a smaller growth rate.

Figure 3.6 clarifies the dependence between the optimal strategies and
costs. Here, we use the same parameters as in the beginning of the section.
The left picture in Figure 3.6 shows the boundaries for increasing fixed costs
0 and fixed v = 0.001. The no-trading region D = (a,b) becomes larger and
the new risky fractions a and S move closer together, since the frequency

of trading is punished more than the transaction size. This effect is more
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Figure 3.5: v for Scenarios 1-6.
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Table 3.2: Growth rate for extreme costs.

Sc. y o c [

1 ]0.0001 | 0.0001 | 0.438853864 | 0.061341581
2 0.003 | 0.001 | 0.709147677 | 0.059615174
3 0.25 0.25 | 0.515225067 | 0.031528284
4 0.2 0.7 | 0.000767177 | 0.019557254
5 0.99 | 0.001 | 0.999929623 | 0.024714287
6 0.001 | 0.93 | 0.999999999 | 0.016801069

visible in the left picture in Figure 3.7, where we consider very small fixed
costs. Due to increasing proportional costs, the new risky fractions o and /3
move closer to the outer boundaries, see the right picture in Figure 3.6. This
becomes more evident for large v in the right picture in Figure 3.7. This is
explained through the fact that the transaction size is punished by higher
proportional costs. The no-trading region (a, b) becomes larger since we do
not want to trade very often due to the increasing costs. Figure 3.8 shows
that the growth rate [ decrease faster for increasing ¢ then for increasing v,
because the percentage of the wealth has higher impact on the growth rate,

than the percentage of transaction size.

0o ! ! ! ! ! ! ! ! e 075 ! ! ! ! ! ! ! ! |
o8l i 07 / g
0.65|- E

07 E
06f i

0.6 E
0.55| E

05 E
05 E

0.4t E
0.45( i
0.2r 1 0.35 \ 1

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

Figure 3.6: The constant boundary strategies against fixed costs (left) and

proportional costs.
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Figure 3.7: Boundaries for small § (left) and large ~.

0.06 0.06
0.088¢ 0.0595 -
0.0581
0.059
0.057
0.0585 -
0.056 -
0.058
0.055
0.054 1 0.0575
0.053 . . . . . . . . . . . . .
0 0.005 0.01 0.015 0.02 0,002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
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Figure 3.9: Boundaries (left) and optimal growth rate [ against E[1 + Z].
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In the following we want to illustrate the influence of the jump parameters
E[Z] and X on the strategies and optimal growth rate. We recapitulate, that

the stock evolves according to

Ny
Sy = Sy exp { (u — AE[Z] — %(72) t+ UWt} H(l + Z;), (3.21)
i=0
where (NV;):i>ois a Poisson process with intensity A > 0 and (Z;); are i.i.d
random variables. Note that the stock jumps downwards if the jump 1+ Z
is between zero and one and upwards if 1 + Z is bigger then one. Consider
the following parameters o = 0.4, 4= 0.9, A=5, v =0.003, 6 = 0.001 and
(1+2Z) ~ LN (m,0.5), where m € R, such that E[1+Z] € (0.044,2.7871). In
the left picture of Figure 3.9 one can see the optimal boundaries for different
values of E[1 + Z]. The boundaries increase on (0.044,1) and decrease on
(1,2.7871), i.e. the investor puts less money in the stock. This effect is
explained by higher riskiness of the stock with increasing jumps in both
directions, which is also the reason for decreasing growth rate. The optimal
growth rate [ lies as expected between the optimal growth rate without costs
R* and pure-stock buy-and-hold growth rate R;, see Figure 3.10 and Figure
3.13. Note that the transaction costs do not have much impact on the optimal
growth rate.

Figure 3.12 shows the influence of increasing intensity of jumps A on
the optimal boundaries. For the calculation of the boundaries we used the
following parameters: ¢ = 0.4, u = 0.0999, v = 0.006, 6 = 0.0001 and
1+ Z ~ LN(0.5,0.5). With increasing intensity of jumps the stock becomes

more risky and the boundaries decrease rapidly.
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Figure 3.12: Boundaries against jump intensity A.
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Chapter 4

Expected Trading Frequency

4.1 Introduction

In the previous chapter we showed, that the optimal impulse control strategy
for maximizing the expected growth rate can be found within the class of CB-
strategies. These strategies are described by four parameters a, «, 8, b, such
that « < o < 8 < b. In this chapter we consider the case a < f (v > 0).
The case a = 8 would simplify the arguments. The controls take place each
time the boundaries of the no-trading region (a, b) are crossed and bring the
risky fraction down to § or up to a. Each time a control occurs, the investor
has to pay transaction costs, therefore it is important for her to know how
often she has to rebalance her portfolio. In other words we are interested in
the average inter trading time

n

o1
lim — ) (741 — 7).
n—oo N i1

We will apply a bijective transformation ¢ to the risky fraction process (m;)>0

and obtain the transformed risky fraction
1 ol
6(m) = O(m) + (11— XE[Z] — 50%)t + oW+ 3 loa(1 + Z).
i=1

The advantage of this transformation is that the resulting process is a Lévy

process with compound Poisson jumps. Because of the nice properties of

69



70 CHAPTER 4. EXPECTED TRADING FREQUENCY

this process we use the transformed risky fraction in the following. Since the
transformation is bijective we obtain the same expected inter trading times
for (m)i>0 and (¢(m))e>0. Using the Ergodic Theorem from von Neumann
and Birkhoff we show in Section 4.2 the convergence of the average inter
trading time to the expected first exit time of the uncontrolled risky fraction

under the invariant measure v, which is given by

Ey[Tpn] =0 ET@n] + (1 —p) - E# [T(a))

where (p,1 — p) is the invariant measure of the Markov chain (7,)nen. In
order to calculate E, [7(,)] we have to determine the expected first exit time

starting in o and in 8, i.e. E*[r(a)], E°[7(4)] and the transition probabilities

Pas = PY(m = B), ppa= Pﬁ(Th = a)
for the Markov chain (7,),en to calculate the probability p.

In the continuous setting with Black-Scholes-driven stock prices these
quantities are obtained in [Irle, Sass (2006)a| using the Optional Sampling
Theorem and Dynkin’s formula. We illustrate this method in Section 4.3.
Unfortunately this approach fails if the stock is driven by a Lévy process.
Nevertheless we can apply the theory of scale functions for spectrally negative
Lévy processes and obtain the above quantities.

In Section 4.4 we introduce spectrally negative Lévy processes and show
how E°[10p)], E°[mwy)s Pas = P*(m = B), pga = P?(m = @) can
be computed via scale functions. Since the scale functions are defined by
their Laplace transforms, there are only few examples of processes where
the scale function can be obtained explicitly. One of these examples are
Lévy processes with phase-type distributed jumps. We introduce this kind
of processes in Section 4.5 and present the results on scale functions from
[Egami, Yamazaki (2011)al, [Egami, Yamazaki (2011)b|. Here, the authors
obtain the scale functions explicitly using the roots of the Laplace transform
of the process. We apply these results to the Lévy process with negative
exponentially and hyperexponentially distributed jumps. With help of the
scale functions, we are then able to compute E, [7(q)].

In Section 4.6 we compare the results for [, [7(4)] obtained by using the

scale functions with a Monte Carlo simulation.
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4.2 Convergence of the Average Inter Trading
Time

On a probability space (€2, F, P) we consider a standard Brownian mo-
tion (W;)i>o and a compound Poisson process (X;);>o defined by X; =
SV Z; with E[Z] < oo, where Z ~ Z;. Furthermore we consider a ran-
dom wvariable . (W;)i>0, (Xt)i>0 and m are supposed to be indepen-
dent. Let (Gi)i>0 be the filtration generated by (W), (Xi)i>0 and mg
augmented with null-sets to satisfy the usual conditions. As usual we write
Pr(:) = P(:|mo = m).

We consider a risky fraction process (m;);>¢ which evolves freely without
interventions by the investor. The dynamics of the uncontrolled risky fraction
process can be obtained similarly to the proof of Proposition 3.2, if we set
A,, = 0 for all n:

dry = m_(1 — m_)(p — AE[Z] — o*m,_)dt + m—_ (1 — m_ ) odW,

+[Eﬁt_(1—m_)LJ(dx,dt). (4.1)

In the previous chapter we solved the problem of maximizing the asymp-
totic growth rate. We found an optimal impulse control strategy (7, 7n)nen
within the class of constant boundary strategies. Let (a, «, 3,b) be an optimal
CB-strategy. By Proposition 3.4, the intervention times 0 = 79 < 77... < 00

are given by the exit times from the no-trading region (a, b):
=inf{t>7,.1:m ¢ (a,b)},n €N,
and the new risky fractions are F, -measurable variables (7, )nen satisfying

Mo(r,)) =v(n,) + (7, mn), n €N, where
Mu(z) = sup{v(y) + T'(z,y),y € (0,1)} and

logl o— ’yx’
Deyy) =4 ™ T
log I+yy 2

y<ux

y >z
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In particular,
o, T <a

B, m, >0b.

M =

We denote by (7¢5);>0 the risky fraction process, controlled by a constant
boundary strategy. (7¢%);>0 can be understood as a composition of indepen-
dent copies of the uncontrolled risky fraction (7)¢>0 as given in (4.1), which
starts after the n-th trading in 7,, with initial value 7,. Note that using the
initial values 7, may induce some dependency.

For further investigation the risky fraction process (4.1) can be simplified

significantly via the transformation

¢:(0,1) >R

x
xl—>log(1_$)

into a Lévy process with constant volatility, drift and compound Poisson

process. Since m; € (0,1) for all ¢ > 0, we can apply Ito’s formula to obtain:

2m,_

! 1 C 1 ! C C
¢(m) =p(mo) +/0 mdﬂs + 5/0 md[ﬂ-s?ﬂ-s]

Ty e
+ Z log (1 —Ws) — log (1 —7Ts—>

0<s<t
AXs#0

=¢(mo) + /Ot (u — AE[Z] - %02) ds + /Ot odW;

oo+ AX, T s
1 sTs— _1 S—
- Z Og<1_7TS_AXM Og(l—ﬂs)

S 14+AXgms—

N
=¢(mo) + (u — A\E[Z] — %02) t+ oW, + Z log(1+ Z;).
i=1

Since ¢ is a bijective and increasing transformation, the following holds

for the first exit time

Tap) = 1i0f{t > 0:7m ¢ (a,0)} =inf {t > 0: ¢(m) & (¢(a),d(D))}.
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Thus we will obtain the same results for quantities such as E[r(p|mo =
7| if we work with the transformed process (¢(m;))i>0 and the transformed
boundaries (¢(a),¢(b)). In the following we denote the transformed risky
fraction process by ; = ¢(m;). For simplicity we continue using the notation

a,a, 3,b and (19, )nen for the transformed boundaries instead of @, @, 3, b and

(ﬁn)neN

Proposition 4.1
P™(T(ap) < 00) =1 for 7 € (a,b), where

Tapy = Inf {t > 0:7 ¢ (a,0)} .
Proof. We have
_ 1
E™[m] =7+ p— AE[Z] — 502 + ME[log(1 + Z)].

Since E[Z] < oo we have E[m| € (—o00,00). By Theorem 7.2 from
|[Kyprianou (2006)] it holds

(1) E™[71] > 0 = limy,0, T = 00,
(2) E™[71] < 0 = limy_y0, T = —00,
(3) E™[m1] = 0 = limsup,_, ., 7, = — liminf, ,,, 7T, = co.
These three cases imply the assertion. ]

Consider the uncontrolled risky fraction process

Ny
T =70+ Wt + oW+ Y log(l+Z) — AE[log(1+ 2)Jt,  (4.2)

=1

J/

g

=Y}

where i/ = p— AE[Z —log(1 + Z)] — 302 and (Y})¢>0 is a compensated com-
pound Poisson process. Further consider a CB-strategy (7,7, )nen, Which

controls the process (%tc B )i>0. Between 7, and 7,41 the process evolves like

Tl =, + Wt — 7)) oW, — W) + (Y, — Ya,),
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for 7,, <t < 7,41. We denote by

WtTi = WT'+t - WT“ }/;Ti = T+t YTN t Z 07

7

the Brownian motion and compensated compound Poisson process shifted
by 7;. By Proposition 2.10, W™ is again a Brownian motion and Y7 a com-
pensated compound Poisson process with the same distribution as (W;):>o
and (Y})¢>0, respectively. Now starting in 7; with 7, the next stopping time
is given by
n=mf{t>m:m+pt—m)+oW,—=W,)+ Y —Y,) ¢ (a,b)}
=inf{t>0:m+pt+oW+Y" ¢ (a,b)} + 7.

Thus we can write
—n=if{t>0:m+put+cW*+Y"™" ¢ (a,b)}.
This means that we can use a measurable function
f:S—=>R,

on S := {a, 8} x D(]0,00),R), where D([0,00),R) is the set of all cadlag-
functions from [0, 00) to R, to write
fyy cWT +Y™) =inf{t >0:n + @'t + oW + Y, & (a,b)}
= Ti+1 — T; (43)
for all © € N and the initial risky fraction Ty = 7 a.s. We equip S with the

o-field
S =P({a, 8}) ® B(D([0,0),R)).

The new risky fraction 7, is determined by

Mo =a - Loga(m + i/ (o — 1) + oW +Y

T2—T1 ’7'2—7'1)

+ 6 Loy (m + /' (12 — 11) + oW + YL ).

Since 75 — 11 = f(n1,cW™ + Y ™), 1y depends only on 7, and cW™ + Y.

Thus, 7,41 is given by a measurable function F' on S such that

F:S—{a, B},
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F(n;,oWT 4Y™)

= al(_ooq (m F f i oW+ YT) + oWy T Yf7ni7gWTi+YTi)>
+ B1p,00) (m + i f(ny, oW +Y7) + Wit owmirymy T Yl owm Hm.))

= Nit+1 (4.4)

for all 7 € N.

Lemma 4.2
Consider the risky fraction process (7¢8) o controlled by a constant bound-

ary strategy (a,a, B,b) and the first exit time of the uncontrolled process
Tiap) = inf {t > 0|7, & (a,b)}, then the following holds:

(i) Pﬁ(TiH —Ti € '\gn) = Pm(T(a,b) S ')§

(1) The process (n;)ien s a homogeneous Markov chain with state space

{a, B}, initial distribution P™(my € -), and transition probabilities

The invariant distribution (p, 1 —p)" of (:)ien is given by
Ps.a
p=—"".
Pa,s + Ps.a
Proof. (i) As we have seen above, there is a measurable function f, such that

Ti+1 — T = f(?]i,O'WTi + YTZ)

Note that 7; is independent of W7 4 Y™ and 7, is G,,-measurable. Thus
the claim (i) follows by

Pﬁ(f(ni’o-wﬁ + YTZ) S |gTz)
P?(f(y,ch + Y) S ')|y:m
Pm(T(a,b) S )

PF(T¢+1 —T; € '|g7'2-)
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(#7) The new risky fraction n;,; after trading in 7;,; is given by a measurable
function F' such that

Nig1 = F(0;, oW™ +Y7),

see (4.4). (1;)ien is @ homogeneous Markov chain, since it holds

Pf(ni-f—l € |gTz) PF(F(HZ'»UW‘H + YTi) € |gTz)
(F(yv oW + Y) € ')|y=77i

PF
Ph(n € ).

The invariant distribution of (1;);cy is obtained from the equation

Pa,ee Pa,s p
(pv 1 - p) ' = >
Psa Psp L=p
where we find a solution since p, g > 0 or pg, > 0 by Proposition 4.1. [

Definition 4.3

For a < B we define a measure v on {«, 5} by the invariant distribution
() =1—-v(B) =p.
The probability measure with v as initial distribution is defined by
P, =pP*+ (1 —p)P".

Recall that we consider o < 5. We assume that (7;);en is stationary, i.e.
1; ~ v. This is the case if we start with my ~ v.

The average inter trading time of the constant boundary strategy

(7i, Mi)ien is given by

o1
lim — ) (141 — 7).
n—oo 1
i=1
Since the variables (7,11 — 7;)sen are stationary by Lemma 4.2, but not nec-
essarily independent we cannot obtain the limit by applying the law of large
numbers. One could try the renewal theoretic arguments here. Instead we
use an extension of the law of large numbers to stationary random sequences.
This extension is the mean and a.s. ergodic theorem, the proof of which can

be found in [Kallenberg (1997)] (Theorem 9.6):
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Theorem 4.4 (Ergodic Theorem, von Neumann, Birkhoff)

Fiz a measurable space (S,S), a measurable transformation T on S with
associated invariant o-field Z, i.e. T ={A € S: T *(A) = A} and a random
element € in S with T, = T o ¢ 4 ¢. Consider a measurable function
f:S—=R.. Then

lim Y AT = BIfQ)@) as

Due to this theorem it is sufficient to find a measure preserving mapping
T, a random variable ¢ and a function f, such that (1,11 —7;) = f(T"7'€) to

obtain the limit of the inter trading time.

Theorem 4.5
Consider a constant boundary impulse control strateqy (7, 1i)ien, with un-
derlying risky fraction process (Ti)i>0. Then for & := (n1,cW™ +Y™) there

exists a measurable function
T:(S,8)—(S,S)

such that
T(nla oW + YTZ) = (ni-l-la oW + YTH_I) )

i particular
(N5, oW +YT) =T Yy, oW™ +Y™),

for1 € N, i > 1. Furthermore T is measure preserving, i.e. TE £ & and the

limit of the average inter trading time is given by

n

Z(TiJrl —7) = E[n —nl¢ D) as.,

i=1

o1
lim —
n—oo N,

where T ={A €S : T ' (A) = A} is the T-invariant o-field.

Proof. Clearly, we can compose the function F' from (4.4) and f from (4.3)

to obtain the function 7" on the measurable space (9, S) such that

T(ni, oW +Y7) = (F(ni, oWT + Y7T), (0W™ 4 YT)4177)
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where
fni, o WT +YT) =144 — 15
Plugging in the function F' defined in (4.4), we have
Ty oWT +YT) = (01, cWTHL 4 YTiH1)
It is clear that
(0, oW +YT) =T Yy, o W™ +Y™).

The function T is measure preserving since 7, is independent of W™ + Y™
and the shifted processes cW7 + Y7 have the same distribution for all « € N
due to the Theorem 2.10 as well as n; ~ n; for all 7 € N. This means

PoWIHY™) _ pm g poW+Y™ _ pni o poWTidYTi

Thus the requirements of Theorem 4.4 are fulfilled and we obtain the limit

R I .
IM—ZWH”WﬁgE;ﬂTT)

i=1
=E[f(n, oW™ +Y™)[¢7'T] = E[r; — nu[¢'Z].
[l

Remark 4.6. For the o-field S = P({e, 8}) ® B(D([0,00),R)) the sets can

be written as
A=({a} x E)U({B} x F),
where E, F € B(D([0,00),R)). Thus we can also write

S={({a} x B)U({8} x F)|E, F € B(D([0,0),R))} .
Proposition 4.7
Consider a set A € T, where
I={AeS:T'A=A},
and A has the form
A= ({a} x E)U({B} x F).

with some E, F € B(D([0,00),R)). Then it holds that u(E) = u(F'), where
= PO’W-’-Y‘
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Proof. Since A is T-invariant, it holds for 1 4(n, cW™ +Y™)
La(m, o W™ +Y™) = Lp-1x(n, W™ 4+ Y™)
= 14(T(m,cW™ +Y™))
= ]lA(T’Q, UWTZ _|_ YTQ).
We apply E(:|n;) on both sides of the above equation. The following holds for
the right-hand side using Lemma 4.2 and the fact that G,, and cW™ + Y™
are independent
E[La(n2, cW™ +Y7)[1]
= E[E[IA(U% oW™ + YT2)|Q7'2] |771]
= EE[1{ayxp(n2, o W™ + Y7)[Gr]|m] + E[E[L{gyxr(n2, oW™ + Y ™) |G ] |m]
= (Lp=a)Paa + Lim=s1Pp0) 11(E) + (Li=ayPas + Lini=pyPs.5) 1(F).

On the left-hand side we use that n; and cW™ + Y™ are independent, thus
it holds

E[La(m, oW™ +Y™)[m) = E[La(n, aW™ + Y™
= l{n1=a}N<E) + 1{n1=B}M(F)'

Combining the left and the right side using the assumption p, 3, pgo > 0
yields

Ly =0} (Pa,abt(E) + pasi(F) — p(E)) + L=y (Pp.alt(E) + ppspu(F) — p(F))
= Lip=ayPas(W(E) — w(E)) + Ly =pyps.0 (W(E) — p(F)) = 0.

This equation holds iff u(F) = pu(F). O

We use this result to show in the next proposition, that the limit of the
average inter trading time is in fact the expected first exit time of the risky

fraction from (a, b) under the invariant measure v of the Markov chain (7;);en.

Proposition 4.8

Elr, — i€ ()]

E,[7(a.p)]
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Proof. Recall that Z = {A € S|T"'A = A} is the T-invariant o-field and
T ={{¢ € A}|A € I}, where & = (5, 0W™ +Y™). We show first that

E[TQ — 7'1|§_II] = E[TQ — Tl].

Using the definition of the conditional expectation we have to show that for
all A € 7 it holds

E[ligcay(r2 — 11)] = E[lgeqyE[r2 — 71]]
=P € AE[r, — 7.

We begin with the left side of the equation:

E[lgecay(r2 — )] = E[1{(y ownym)er—1a3 (12 — 71)]
= E[E[L{( 0w +ym)eay (T2 — 71)|G]]
= E[(72 = 7)E[L{( 0wz 1v72)e3|Gr ]
Remark 4.6 says that the sets A € Z have the form A = {a} x EU{f} x I
with some E, F' € B(D(]0,00),R)). We insert this representation into the

conditional expectation above, furthermore we use that 7, is G,,-measurable
and cWW™ + Y™ is independent of G,:

E[]l{(m,awm +Y72)eA} |QTQ]

= L=} E[L g owm1ym2)eay|Gn] + Li=p E[L{(5.0wm24v72)e 4} |Gr]
= L=} E[L{aowm+vm)ieay] + L= E[L g 0w +ym)en)]

= 1{n2=a}N(E) + ]l{n2=ﬁ},u(F)-

Using Proposition 4.7 we have u(E) = pu(F'). Altogether the assertion follows
by

E[]l{geA}(Tg — Tl)] = E
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Finally we use Lemma 4.2 to obtain

E[(re = 7)] = E[E (72 — 71)Im]] = E[E™[n]]
=v(a)-E*n] + v(8) - E’[r1]

= ]EV [T(a,b)]-
O
Corollary 4.9
For a CB-strategy (7;,m;)ien which is given by (a,«, B,b) it holds
R
o ;(TM = 71) = Eu[rap)-
Proof. The assertion follows from Theorem 4.5 and Proposition 4.8. ]

4.3 Expected Frequency of Trading in the Con-

tinuous Setting

Let us consider the risky fraction process (m;):>0 in the continuous setting,

i.e. we assume that the process (7;)¢>0 has the following dynamics:
dm = (1 — ) (u — o*m)dt + m (1 — 7)) odW,. (4.5)

Assume the initial value is inside of the no-trading region, i.e. 7 € (a,b). The
diffusion (7;)¢>0 is a strong Markov process taking values in (0, 1). Further-
more (¢ )¢ is a regular diffusion, because the probability that (7;);>¢ hits an
arbitrary y € (0,1) in finite time, starting at some 7 € (0, 1) is positive. The
generator of (m;);>o is a differential operator L,, defined for all f € CZ(0,1)
by ,
L.f=x(1—2)(up— O'QLE)%JC + %xQ(l - x)202% :

Dynkin’s formula states, that for stopping times 7 with E[r] < oo and
f € C2%0,1) the following holds:

E°(f(n)] = £r) + B | [ Loptr].



82 CHAPTER 4. EXPECTED TRADING FREQUENCY

Using this result one can prove that the process

(7m0~ [ Lesimrir) .

is a martingale with initial value f(7), see e.g. Proposition VIL.1.6 in
[Revuz, Yor (1991)]. This is a key result for computing the expected first
exit time of the interval (a,b). Let us define the first exit time by

Tap) = inf {t > 0:m & (a,b)}.

Applying Ito’s formula to (h;(m¢))i>0 for i = 0,1, one can verify that the

functions

1—z\273—1 ) 1
) lfg_ 7é 5
ho(ﬂf)— (x)x ) i i
—log (12%), if =3
227 1) if 5#3

hi(z) = Ea=r
wlog (152)7, if & =4,

solves L ho(m:) = 0 and L.hy(m) = 1 (see Proposition 5.3.6 [Sass (2001)]).
Thus the processes

(hi(ﬂ-t)l[a,b] (7me) — /Ot Lhi(ms) Lja ) (7Ts>d5)

>0

are martingales for ¢ = 0, 1. This implies for 7,

T(a,b)
ho(m) = E™ |:h0<7TT(a’b)) - /0 Lﬂho(ﬁs)ds}
= E"ho(mr, 1))l
= ho(a)P" (77, = a) + ho(b)P" (s, ,, = D).

Using the fact that P (7, = a) + P"(7,,, =b) =1 we derive

ho(ﬂ') — ho(@)

P 7z, =) = ho(b) — hola)”
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This probability and the function h; yield the expected first exit time:

E 7] = —ha(r) + E [hl(wmb))}

= —hy(7) + hi(a) P"(7r,,, = @) + ha(b)P™(7r,,
ho(ﬂ') — ho((l)
ho(b) — ho(a)

The crucial point of derivation above is to find a function Ay, which

b)

b

= —hy(7) 4+ hi(a) + (h1(b) — ha(a)).

transforms the diffusion process into a martingale. This can be done by
using a suitable change of scale, i.e a function which removes the drift in
(4.5). The existence of the so-called scale function is given in Theorem 20.7
of [Kallenberg (1997)]:

Theorem 4.10 (Scale Function)

Given any reqular diffusion X on the interval I C R, there exists a continuous
and strictly increasing function h: I — R such that (h(X5, , at))iz0 is @ P*-
martingale for any a < x < b in I. Furthermore, an increasing function h

has the stated property iff

P =) = J = (46)

Once we have the functions hy and h; we can derive all components of

the expected inter trading time:

EY [Tap) = p - E*Tap)] + (1 = p) - B [1(0)],

— Pg,a ;
where p = T with

Dap = Pa(ﬁﬁa,b) =b)

ho(b) — ho(a)
Pra = PH(mrys, = 0) = ot =)
B[] = () + ha(a) + 5= 000 - )
B o] = ~(5) + u(a) + 12— ha(8) = )
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Unfortunately the techniques we used in this section fail if we face a
process with jumps. Nevertheless, in the next section we can apply the
theory of scale functions for spectrally negative Lévy processes and obtain

similar results for the expected inter trading time.

4.4 Spectrally Negative Lévy Processes

Consider a Lévy process (m)i>o with characteristic triplet (u,o,v). The
characteristic function of (m;);>o can be written as E[e?*™] = /) for z € R
due to the infinite divisibility of increments. The characteristic exponent ¥

is given by the Lévy-Khinchin formula

1 .
\I/(Z) =iuz — 50'222 + /(elzx —1- Z'Zl‘]l{‘x‘gl})l/(dl‘).
R

We assume here and in the following that ¢ > 0, which means that
(7¢)1>0 has a Gaussian component. Furthermore we assume that (m;);>0 has
only negative jumps, i.e. the Lévy measure of (7;);>0 is zero on (0, 00). Lévy
processes with only negative jumps are called spectrally negative. We consider
this class of processes, because due to the absence of positive jumps many
important identities in fluctuation theory can be derived explicitly.

Because of absence of positive jumps the characteristic exponent ¥ is well
defined on the complex lower-half plane. Thus the following definition makes
sense for s > 0

1 0
P(s) = W(—is) = us + 50232 + / (€™ =1 = sxl{_1cpeoy)V(dz).

This implies
E[es™] = ().

The function 1 : [0,00) — R is called the Laplace exponent of (m)i>o. ¥ is

strictly convex and infinitely often differentiable with

¥(0) =0, lim ¢(s) = oc.

§—00
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We define the right inverse of ¥ by

®(q) :=sup{0 > 0:9(0) = ¢} .

In case ¥(0+) = E[m] > 0 there exists only one solution 6 such that ¢ (6) = 0,

otherwise we have two solutions ¢; = 0 and 6y > 0 with ¥(6,) > 0.
Equipped with a spectrally negative Lévy process and its Laplace trans-

form, we want to investigate the two sided exit time of the process (7):>o.

Consider stopping times
To=inf{t>0:m <0} 7.=inf{t>0:m >c}.

Two sided exit time from the interval (0, c) is given by 79 A7, = 7 ¢). One of
the most important results of the fluctuation theory for spectrally negative

Lévy processes is the following result from |[Kyprianou (2006)|, Chapter 8:

Theorem 4.11 (Two sided exit time)
There exists a family of functions W@ : R — [0, 00) and

ZW(z) =1+q / W@ (y)dy, z€R,
0
defined for each q > 0 such that the following holds.

(i) For any q > 0, we have W9 (z) = 0 forx < 0 and W@ is characterized
on [0,00) as a strictly increasing and continuous function whose Laplace

transform satisfies

e WD (2)de = ——— for s > ®(q).
/ (@e =~ Jors > 2la)
(i) For any x < a and q¢ > 0,
A W ()
E [6 ! c]l{To>Tc}] = W@ (c) (4.7)
(9)
E* [e—qm ]l{ch}} — 7@ (z) — Z(q)(C)W_(x), (4.8)

W(q)(c)
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The function W@ defined in this theorem is called the g-scale function.
This name is explained by the analogous role W@ plays in (4.7) compared
with the scale function h in (4.6) in the continuous setting. We can see this
more clearly if we put ¢ = 0, the function W satifies the same identity as
in Theorem 4.10:

P*(19 > 7.) =

As in the continuous setting we are interested in finding an analytic for-
mula for the expected exit time of the interval (a,b). The constants a, b need
not to be in (0, 1) or positive. First we adopt Theorem 4.11 to work with the

stopping times
T,=inf{t>0:m <a} 7=inf{t>0:m >0b}.

This can be done using existing results relating to spectrally negative

Lévy processes. For any a < m < b and ¢ > 0 we have

m [ ,—qT m—a [,—qT W(Q) <7T _ (l)
E™ e L iryony] =E7 % e Linysr, 3] = Wb —a) (4.9)

This equation holds due to the stationary and independent increments of the
underlying process (m;);>0, see also Theorem VIL.8 of [Bertoin (1996)]. With

the same arguments we obtain

E™ [e™ Lirycny] =BT [ Linycr, )]
W(q)(ﬂ —a)

= Z(q)(ﬂ' — a) — Z(q)(b — &)m

(4.10)

Once we have these identities, we can compute the expected first exit

time K™ [T(a,b)]

Proposition 4.12
The expected first exit time from (a,b) of a Lévy process with initial value

7 € (a,b) is given by

a(w@w—@

ET [T(a,b)} = _a_q W@ (b — a)

D(r—a
+Z9(r —a) = Z9D(0b - a)%)

q:0'
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Proof. From Theorem 4.11 and the observations above we obtain

ET [e_qu]l{Ta>Tb} + e_qTa][{Ta<Tb}]
W@ (r — a)

B W@ (7 —a)
- W@ —a)

D(r _ ) - 7@ — S S
+ Z'(m —a) — Z'9(b a)W(‘I)(b—a)‘

Furthermore, differentiation with respect to ¢ yields:

0 T [_—qm —qTq
g [ L ryomy + € T N ruemy] |

=FE" [_Tbe_qu]l-{Ta>’Tb} - Tae_qTa]l{Ta<Tb}} |

q=0

q=0
= —FE" [Tb]l{Ta>Tb} + Ta]l{Ta<Tb}}

= —FE™ [Tb A Ta] =—E" [T(avb)] ’

Thus we have

E™[T(ap)]

:_Q(W@m—@

RS S eva @D(-_ ) _ 7@(p _
9 W(q)(b—a)+Z (m—a)—Z'9Y(b—a)

q:0'

W@ (x —a)
W@ (b — a) )

Proposition 4.13
Consider a Lévy process ()i as given in (4.2) with only negative jumps and
a CB-strategy (n;, 7;)ien, then the transition probabilities of the homogeneous

Markov chain (1;)ien are given by

o o W(O)(oz —a)
pOL:B = P (ﬂ-T(a,b) 2 b) - E []l{Tb<Ta}] - W(O) (b . a) (411)
_ WO (g —a
Pga = PB(WT(a,b) < a) = EB[][{TQM}} =1 ( ) (4'12)

- WO - a)

Proof. 1t holds

Pa,p = Pa(nl = ﬂ) = Pa(ﬁT(a,b) > b) = Ea[]l{Tb<Ta}]
Pga = Pﬁ(nl = a) = Pﬂ(ﬁ’r(a,b) < a) = Eﬁ[l{n>7’a}]'
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Using (4.9) and (4.10) we have

o a [ —qm W(O) (Oé — CL)
E []1{777<Ta}] =E [6 ! b]l{Ta>Tb}] ‘q:O - W(O) (b — a)
WOE -

B _ B —qTa — P
EP[Lrsry] = BP [e77 Lir cny ‘qzo =1 WO —a)

[]

Thus, if we know the ¢-scale function, we have all ingredients for the

computation of the inter trading time
E' [Tap) =P E* ] + (1 = p) - Ef[ram),

where
DB«

p=—""—
Do, T Ps,a

if we consider only Lévy process with negative jumps.

4.5 Scale Functions for Spectrally Negative Lévy
Processes with Phase-Type Distribution of

Jumps.

In general it is difficult to obtain scale functions explicitly. Several examples
for scale functions are given in [Hubalek, Kyprianou (2010)]. We will mention
here just two examples: Brownian motion with drift and compound Poisson
process with drift.

Consider a compound Poisson process with negative exponentially dis-
tributed jumps with mean p, intensity A\ and positive drift ¢, such that

c— ﬁ > (. Then the g¢-scale function for ¢ = 0 is given by

WO (z) = ! (1 + A 5y (1 — e(ﬂ—/\c—l)z>> .

c cL —

The exponential distribution can be replaced by any other distribution which

has a rational Laplace transform, see [Mordecki, Lewis (2005)].
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The g¢-scale function of the Brownian motion with drift 4 is given by

W@ (z) = #e—uw/ﬁ sinh (ﬁ 2q02 + M) _

In this section we focus on spectrally negative Lévy processes with phase-
type distributed jumps. The scale function for this class of processes is
obtained in [Egami, Yamazaki (2011)a]. Phase-type distributions are dense
in the class of all positive valued distributions in the sense of weak conver-
gence (Chapter III, Theorem 4.2, [Asmussen (2004)]). In the following we
give a brief introduction to the class of phase-type distributions, which in-
cludes for example exponential, hyperexponential, Erlang, hyper-Erlang and

Coxian distributions.

4.5.1 Phase-Type Distributions

Consider a continuous-time Markov chain (X;);>o with finite state space
{1,2...m, A}, where 1, ...,m are transient and A is absorbing. Then (X}):>o

has an intensity matrix of the form

T t

where T is an m X m matrix, t is m x 1 vector and 0 a 1 X m row vector
of zeros. The sum of the rows in Q must be zero, thus t = —T - 1, where
1=(1,---,1). The initial distribution of (X;);>¢ is 0 = (d1, ..., o), Which
is given for transient states by 6; = P(Xo = i) for i = 1,...,m and for the
absorbing state by P(Xy = A) =0.

Definition 4.14 (Phase-type Distribution)

The time until absorption
T=inf{t >0: X, = A}

is said to have a phase-type distribution with parameter (m,d, T).

We present two examples of phase-type distributions from [Bladt (2005)].



90 CHAPTER 4. EXPECTED TRADING FREQUENCY

Example 4.15. Let (X;)o<i<m be a sequence of independent exponentially
distributed random variables with parameters Aq,...,\,,. The sum S,, =
X; + ... + X,, has a phase-type distribution with initial distribution § =

(1,0,...,0) and intensity matrix

-2 A 0 - 0 0
0 =X A -+ 0 0
T — 2 2

0 0 0O 0 0 =X,

The sum S,, can be interpreted as the waiting time till absorption of a
Markov chain with m transient states. The chain starts in state 1 and waits
for X units of time until the first jump into state 2 occurs and so on. This
representation is not unique, because we can interchange the summands in
Sy,. If the waiting times are all distributed with the same parameter A, the
resulting distribution of S, is Erlang with parameter A and m. The Erlang

distribution consists of m identical phases in a sequence.

Erample 4.16. We assume the same setting as in the previous example:
(Xi)o<i<m independent exponentially distributed with parameter Ay, ..., Ap,.
We define a probability density f by a linear combination of exponential

densities (fi)o<i<m Of (X;)o<i<m With positive constants (;)o<i<m, such that

Ym0 =1.

f=>_6ifi
=1

Then the distribution defined by f is phase-type with intensity
T — o (4.13)

and initial distribution 6 = (1, ...,d,,). This distribution is called hyperez-
ponential, it consists of m non-identical parallel phases with probability of

occurrence equal to 9.
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The distribution function and density of the phase-type distributed ran-
dom variable is given in Theorem 4.1, 4.2 of [Bladt (2005)] for z > 0:

f(2) =deT*t, F(2)=1—d6e™t. (4.14)

Although the above formulas seem simple, the explicit calculation of matrix

exponentials can be complex in higher dimensions.

4.5.2 Scale Function

Consider a Lévy process (m;)i>0 given by

Nt
7Tt—7T:,ut+0'Wt—ZZi,
i=1
where ¢ > 0 and where the jump part is a compound Poisson process with
intensity A and phase-type distributed jumps (Z;);>o with parameters (6, T).
Due to the phase-type distribution the Laplace exponent takes the form

0
W(s) = pus + %0232 + / (e** — 1)v(dx)

1 0
= s + 50232 + / (e® — DAf(x)dx

1 0
= us + 50232 + / (e — 1)\de T tdw

—0o0

1
=pus—+ 50232 + A(S(sI-T) 1t — 1). (4.15)

v is analytic for s € C except for poles, which are the eigenvalues of T.

Further we define the running mazimum and the running minimum by

T i=supms " = inf 7.
s<t s<t

Let e, be an independent random variable with exponential distribution with

parameter ¢. For all s € C define functions

maz)]

¢, (s) == Elexp(smg,™)] ¢ (s) = Elexp(sm,,
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@, is analytic for Re(s) > 0 and ¢ for Re(s) < 0. The Wiener-Hopf
Factorization states that the following holds:

q — (Yot

— = s s

L = (9e()

for all s € C, with Re(s) = 0. There is an explicit formula for ¢, » which is
derived in [Asmussen (2004)] Lemma 1:

HjeJq(S + ;) Hielq i
Hjejq 1j Hz’efq (s +&ig)’

p, (s) =

where
Iy =A{i:p(=Eiq) = @, Re(&iq) > 0}
is the set of solutions of the Cramer-Lundberg equation v (s) = ¢ with nega-

tive real part and

. q

J, = {j . ————— =0, Re(n;) > O}
! q— (=) !

is the set of poles of the Laplace transform. Using the Laplace inversion on ¢

we can obtain the density of the running minimum (See |[Asmussen (2004)]
Lemma 1. (3)):

P( min c dgj ZZAqu’Lq §Z qf ) =&, qzd,’]j

=1 k=1
where - .
A0 _ 1 O™ o ()(s 4 &)™
g . mi—k k ’
(m; — k)! Os iq s=—Ei g

n denotes the number of different solutions in I,, m; denotes the multiplicity
of each solution —¢;,. The random variable e, is independent, thus the

following holds:
E™ e 1, <o) = E“[P(eq > 7,|70)] = E”[]leq>Ta] = P"(e, > Ta)

- €zqy) ”
_ZZA &q/ W e~ Sratdy.

i=1 k=1 T—=a
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On the other hand, Theorem 4.11 states that

E™[e T 1y, o] = 29 (1 — a) — —q)?q> WO (r — a).

Using these identities one can derive the formula for W@, see
|[Egami, Yamazaki (2011)a] Proposition 2.1:

Theorem 4.17

For a fized ¢ > 0 and x > 0 the scale function of the process (m;)i>o is given

by

YA (5 <&iaq)k

=1 k=1
k—1 .
X eq’(Q)w — e Cia® Z (((I><Q) ﬁfi,q)x)] .
=0 J:

Remark 4.18. According to Corollary 2.1 (1) in [Egami, Yamazaki (2011)a],

if all solutions in I, are distinct, the scale function can be simplified to

W(q) = % ZAElq) (q)(f%é) [€¢(q)z — 6_5’3‘1””} s Where (416)
q - ’ q i,q
1€l

Hjejq(_fi,q +1;) erlq,k;ﬁi €k

AW = . (4.17)
. HjeJq 15 erlq,k;éz’<_£i,q + &kq)
4.5.3 Example with Exponential Distribution
As in the previous section we consider a Lévy process
Ny
7rt—7T:ut+aWt—ZZi. (4.18)

i=1
We assume, that ¢ > 0 and the distribution of the jumps (Z;);en is expo-
nential with parameter d > 0. The exponential distribution is a phase-type
distribution with 6 = 1 and intensity matrix T = —d. We can see this by
calculating the distribution and density functions of a random variable with
phase-type distribution (1,6, T) using (4.14). We have

F(z)=1—e % and f(z) = de™ %,
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which characterize the exponential distribution.
Within this setting we can use Theorem 4.17 to derive the scale function.

The Laplace exponent of (7)¢>0 is given by

W(s) =us + 10232 +AO(sI —T) H(=T)-1-1)

2
1 55 d
us+203+ (d+s )

Lemma 4.19

Assume, that the right derivative of 1 at zero is negative, i.e.
/ 0 A

which implies ®(q) > ®(0) > 0. Then the Cramer-Lundberg equation
() =q, q >0, where

1 d
¥(s) Zu8+§0282+/\ <d+s —1> :
has exactly three different roots ®(q), —&1,4, —&a,4 satisfying
&2 < —d < —&1,4 <0 < D(g).
In particular in case ¢ = 0 we have &9 = 0.

Proof. The equation ¢(s) = ¢ has one pole —d and at most three roots.

Consider ¢ on (—d, o), we know that

¥(0) =0, ¢'(0+) <0, lim P(s) = co.

hence, there is a root ®(g) > 0. There exist a root —¢; 4 in (—d, 0), because

lim,, 4 (s) = oo. Consider ¢ on (—oo, —d),

lim ¢(s) = — lim ¢(s) = —o0,

st—d §——00

thus there is a root —&, 4 in (—oo, —d). Alltogether, there are exactly three

roots of . See for example Figure 4.1 on page 95. n
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10

&, “E\g ®(q)

- 10 -
Figure 4.1: Laplace exponent with negative exponentially distributed jumps.

The previous lemma shows that the set I, consists of two elements and the
set J, of one. The following Lemma establishes a relation between the roots
of Cramer-Lundberg equation, which will be useful later in the derivation of

the scale function.

Lemma 4.20 (i) For ¢ > 0 we have ®(q) = —224

0281,982,¢

(ii) For =0, /'(04) < 0 we have ®(0) = 242 00l

02&2 0

Proof. Using the equation (4.10) from [Egami, Yamazaki (2011)b] with h =1

we obtain
][l
Ox 0

= W(q)’(0+) /oo e~ @y gy
=0+ 0
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for 0 < a < z and 7, = inf{t >0:7m <a}. By relation (4.7) in
[Egami, Yamazaki (2011)b| we have

, 2
W9 (0+) = =.

o2
0 T
iy —qt
g { /0 e dt}

On the other hand using Lemma 3.2 from [Egami, Yamazaki (2011)b] we

0 T
i —qt
o { /0 e dt}

Matching these equations yields the claim (7). The assertion (ii) follows by

This yields
2

w=0+  02P(q)

obtain

_ fl,q£2,q
o=0+ qd

letting ¢ go to zero. O]

Plugging the formulas of Lemma 4.20 into (4.16) yields the following

representation for the scale function

(9) _ 3 D(q)x _ —E1qT d— 5141
v (33) o? (6 ‘ ) (52,11 - gl,q)(fl,q + CI)((]))
2 (e _ o §o0—d
1 S i oo Ty 1) M

x,q > 0. In particular, for ¢ = 0 we have

Wiz) = - (eé(O)z -1 fz,o‘cll)(o)

o2

®0)x _ &0 §2,0 —d
e ‘ ) (€20 + ©(0))Ea0 |

4.5.4 Example with Hyperexponential Distribution

Now we consider the case that the jumps (Z;);en in

Ny
7Tt—7T:,ut+O'Wt—ZZi (421)

i=1

have a hyperexponential distribution with density

flx) = Z didie= "%, 220,
i=1
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for some 0 < dy < dy < ... < d,, < o0 and 0; > 0, such that > " d; = 1.
Using (4.15) we can compute the Laplace exponent, where we use T as given
in (4.13), then

1, i S
w(s)—us—l—§a —A;(Sidi—i—s'

Lemma 4.21

There are m distinct poles of 1, which are given by
0>—dy>—-dy>..>—d,, > —o0.
There are exactly m + 1 distinct roots of ¥(s) = q, for ¢ > 0 satisfying
0<&g<di <&q<dy...<dpm <Enirg < 00.

Proof. We can prove this lemma analogously to Lemma 4.19, where we

showed the case m = 1, see Figure 4.2. [

Since the roots are all distinct we can use (4.16) to compute the scale

function.

4.6 Numerical Results

In this section we compare the results for the expected inter trading time
computed using scale functions with results for a Monte Carlo simulation.

We consider the risky fraction process (m;)>o with dynamics
dry = m_ (1 — m_)(p — ME[Z] — o*m,_)dt + m (1 — 7 )odW;
x
(1 —m)———J(dz,dt).
+/E7Tt( 7Tt>1+ﬂ_t7x($v )

As we have seen in the previous sections, the transformation ¢ does not have
an impact on the transition probabilities or the first exit time, thus we can

work with the transformed process

Ny
1
T =T+ (10— AE[Z] = 50”)t + oW, + > log(1+ 7).
=1
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10

-10 -

Figure 4.2: Laplace exponent with hyperexponential distribution of jumps,

m = 2.

Since the scale functions are defined only for spectrally negative Lévy pro-
cesses, we assume that the stock jumps only downwards, i.e. the jumps (Z;);en
are defined on £ = (—1,0). Now we just have to rewrite the process
1 al
T =7+ (u— \E[Z] — 502)75 +oW, = —log(1+ Z),

—7,

and assume that the jumps (Z‘)z‘eN are exponentially distributed with rate
d, to obtain the same situation as in previous section: (7;);>¢ is a spectrally
negative Lévy process with phase-type distributed jumps.

Here we want to analyze the impact of the intensity of jumps on the
first exit time and the inter trading time. We fix the volatility o = 0.4, the
drift ;= 0.2 and the costs v = 0.006, 6 = 0.0001 and compute the optimal
boundaries (a, «, 3,b) for different A and fixed d = 0.2. These strategies are
gathered in Table 4.1 on page 99.



4.6. NUMERICAL RESULTS

Table 4.1: Optimal CB-strategies for different \.

a

«

B

b

0.749444039
0.626378753
0.540047073
0.474966353
0.423730785
0.382165053
0.34768081
0.318566888
0.29363736
0.272039653

0.816005082
0.700147026
0.615835506
0.550856245
0.498866676
0.456138658
0.420298554
0.389747049
0.363358939
0.340315689

0.877047017
0.783474648
0.710034385
0.650500009
0.601015586
0.559082381
0.522999107
0.491560108
0.463881632
0.43929866

0.921057548
0.840899816
0.774677324
0.719507488
0.672800629
0.632669782
0.597751443
0.56704158
0.539785476
0.515403703

Note that even though the drift (u—\E[Z]—10?) increases with increasing
A, the boundaries decrease due to the increasing variance, see Figure 4.3 on
page 100. Thus it is optimal for the investor to allocate less money in the
stock.

The next step is to transform the boundaries (a, a, 3, b) with ¢ and com-
pute the expected exit time from the interval (a,b), where @ = ¢(a) and

b= ¢(b). We compute

E™ [7(ap)]
o (W@ (1 —a) W@ (1 —a)
- _ 7D (r — ) — 7@ —

7 <W<q>(b —) P2 ) = 20— Ay )
where we use the formula (4.20) for the scale function W@ (z). Now we
define a function

—~ W@ (x —a) W@ (x —a)
— D(r—a)= 72D —qg)— "~
W(a,m,00) = e + 20 = a) = 296 = a) i

and we denote by EF[T(E’E)] the first exit time computed with scale functions.
With this definition we have
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»

0.2
1

Figure 4.3: Optimal strategies (a,a,3,b) and transformed strategies
(@, @, B,b) for different .

We compare EF[T@E)]SF with the result of the Monte Carlo simulation, which
we denote by EF[T@E)]MC. We generate 100000 paths of the process (7):>0
with time horizon T' = 25 years and 10000 discretization points per year. We
choose first the initial value of (7;);>¢ in the middle of the no-trading region,
le. ™= ETJFB

The expectation of the first exit time computed by scale functions
EF[T@E)]SF is slightly less than simulated results E7[r7]" ¢, see Table 4.2
on page 101. These differences arise because —W (q) is concave at the origin.
Figure 4.4 on page 102 shows W(q) for A =1,1.5,...,5.5 as listed in Table
4.2. W(q) is decreasing in A on [0, 00) and increasing on (—oc, 0).

We computed the scale function of risky fraction process for A = 1 and
q¢=0,0.1,...,1. As we see in Figure 4.5 W(9(z) is increasing as expected
and and W@(0) = 0. Furthermore W@ (z) is increasing in q. We also
obtained WM (z) for different values of . Figure 4.6 shows that W1 (z) is
decreasing in \.

Using the representations of the transition probabilities

-, WO9B-qa
G-a T wog-a

and EE[T(EE)], E [T(ayg)], we can now compute the expected inter trading time,



4.6. NUMERICAL RESULTS

Table 4.2: Expected first exit time.

b—a

E7 [T(E,E)] S

E7 [T(E,E)] Me

0.39386309
0.331285435
0.31137689
0.304349265
0.302943334
0.304472038
0.307701393
0.311990011
0.316968345
0.322411016

2.030486398
1.335973419
1.076607193
0.93487856
0.842998774
0.777333608
0.727465449
0.687909797
0.655537654
0.628417006

2.039054231
1.341960591
1.082514625
0.945259594
0.851727674
0.782179953
0.732162309
0.692020832
0.660630843
0.633832544

which we denote by E”[r]°F.

101

The results for E“[7]%F and expected inter

trading time computed via Monte Carlo E*[7]M¢ are gathered in Table 4.3.

For A = 1 we have a small deviation because the number of crossings is

not big enough to make the value of the inter trading time more precise. For

other values of X the expected inter trading time computed by scale functions

correspond remarkably well to the Monte Carlo simulation.
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-1.51

-2.5r

Figure 4.4: -W (q) for different intensities of jumps.

25

W(q)(X)
20} q= 1

151

101

q=0

Figure 4.5: Scale Function of (7;):>o for different g.
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Figure 4.6: W (x) for different .

Table 4.3: Expected inter trading time.

b—a

EV[T]SF

EV[T]MC

0.39386309
0.331285435
0.31137689
0.304349265
0.302943334
0.304472038
0.307701393
0.311990011
0.316968345
0.322411016

1.810850627
1.159257341
0.925226782
0.800788908
0.721724343
0.666045277
0.624220091
0.591320137
0.56454934
0.542214039

1.743441095
1.144003546
0.920757064
0.803035315
0.724163212
0.670851931
0.629527937
0.599930725
0.573208515
0.548988395
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