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Weiterhin möchte ich meinen Freunden und Kollegen in der Abteilung
der Finanzmathematik für die besondere Atmosphäre danken in den letzten
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Introduction

The classical Fundamental Theorem of Asset Pricing (FTAP), which goes
back to Harrison, Kreps [6] and Harrison, Pliska [7], roughly states that in
a financial market model there exist no arbitage opportunities if and only if
there exists a fair price system for financial derivatives. Without transaction
costs such a price system is given by taking expectation with respect to an
equivalent martingale measure.

There are several proofs of the FTAP in finite discrete time for financial
markets without transaction costs. Besides the original proof for a general
probability space of Dalang, Morton and Willinger [2] based on a measurable
selection theorem, there are many other proofs, e.g. Schachermayer’s Hilbert
Space proof [24] or Rogers’ [20] utility-based proof.

Now, for markets with proportional transaction costs the reasoning in
Kabanov, Ràsonyi and Stricker [10], [11] and in Schachermayer [25] can be
compared to [24]. Once it is shown with help of a no-arbitrage condition that
the set of all final portfolios achieved by self-financed trading is closed in L0

and intersects trivially with all ’positive’ portfolios, one can apply the Hahn-
Banach separation theorem and an exhaustion argument, as in the proof
of the Kreps-Yan theorem, to seperate all final portfolios from all ’positive’
portfolios. The terminal value of the consistent price process is then given
by the vector which generates the separating hyperplane. Aside from these
’functional analytic’ proofs there are results which are based on methods
from the theory of random sets such as Ràsonyi [17] and Rokhlin [23]. The
reader should consult the book ’Markets with Transaction Costs - Mathe-
matical Theory’ by Kabanov and Safarian [12] for a thorough exposition of
the arbitrage theory under transaction costs.

Our goal is to give an elementary utility-based proof in the context of
proportional transaction costs as was done by Rogers [20] for frictionless
markets. The problems are twofold: Firstly for frictionless markets, in con-
trast to markets with transaction costs, there is equivalence between the
no-arbitrage condition for the multi-period market and the no-arbitrage con-
dition for each single-period market. Hence, it is basically enough to con-
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sider a single-period market, find a utility-maximizing portfolio and deduce
from the maximizer using the first-order condition an equivalent martingale
measure for the single-period market. In a multi-period market a martingale
measure can then be constructed as a product of the single-period martingale
measures when these are normalized appropriately. Under transaction costs
several questions arise: Will it be enough to perform utility-maximization
in a single-period market in the presence of transaction costs? What do the
consistent price-processes from the single-period markets have to do with the
consistent price-processes for the multi-period market? Can we construct a
consistent price process for the multi-period market using consistent price
processes from single-period markets?

Secondly, in frictionless markets we are naturally interested in the utility
from the gain of our portfolio. Is it enough to naively liquidate our portfolio
and consider the utility from this scalar value? If so, we will have to deal
with a functional that is not differentiable.

We want to state the FTAP under proportional transaction costs. On
a filtered probability space (Ω,F, (Ft)

T
t=0,P) we consider for simplicity one

risk-free and one risky asset. The risk-free asset serves as a numeraire. St
and St denote the bid and ask prices respectively of the risky asset in terms
of the numeraire at time t. The processes (St)

T
t=0 and (St)

T
t=0 are adapted,

strictly positive and satisfy St ≤ St for every t = 0, . . . , T .
(
St, St

)T
t=0

is
called bid-ask process.

The following theorem is the one-dimensional version of Theorem 1.7 in
Schachermayer [25].

Theorem. The market satisfies the robust no-arbitrage condition if and only
if there exists an equivalent probability measure Q and a process (St)

T
t=0,

St ∈ ri
[
St, St

]
, such that (St)

T
t=0 is a Q-martingale.

So, our goal as formulated above is to provide a new utility-based proof
of the difficult sufficiency part of this theorem, i.e. of the existence of such
pairs (Q, (St)) in markets which satisfy the robust no-arbitrage condition.
These pairs allow to define arbitrage-free prices for contingent claims in the
market with transaction costs and thus extend the concept of an equivalent
martingale measure from frictionless markets to markets with transaction
costs.

The thesis is organized as follows: In Chapter 1 we first consider a model
without transaction costs and describe the idea of Rogers’ utility-based proof
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of the FTAP. Then we introduce a fairly general model which describes a
market with proportional transaction costs. After we have clarified the ap-
propriate concept of no-arbitrage and introduced consistent price processes,
we sketch a first approach to a utility-based proof. The first chapter is more
of introductory nature. The aim is to describe ideas and concepts, some
calculations in between are just formal.

In Chapter 2 we consider a market with one risky asset. We first show
in a generic single-period market that under a ’vector space assumption’,
which is in fact equivalent to the robust no-arbitrage condition, we can find
a utility maximizing portfolio. With help of the first order condition we
can construct a consistent price-process for the single-period market. Then,
we apply the result from the single-period market to a general multi-period
market. The basic idea, based on an inductive argument similar to [17] and
[23], is to replace every single-period market by an auxiliary market with a
smaller bid-ask spread hence more investment opportunities. This is outlined
in detail at the beginning of Section 2.3, before we prove our main result in
Theorem 2.16. These auxiliary bid-ask prices are not only sufficient but
also necessary for the existsence of a strictly consistent price process for the
multi-period market, see Corollary 2.20.

In Chapter 3 we apply the idea to a general multidimensional model.
Again we first consider a generic single-period market. But, it turns out that
we have to choose a different approach compared to the one-dimensional case.
The main reason is that an analog result to Corollary 2.11 a) is missing in the
multidimensional case. We will not maximize expected utility in the given
market. Starting again from a ’vector space assumption’ we show directly
that the market satisfies the robust no-arbitrage condition. Therefore, we
can reduce the transaction costs a little and maximize expected utility in
this extended market. This will help us to circumvent Corollary 2.11 a) and
get the result from Corollary 2.11 b) in the multidimensional case directly.
It also takes much more work to show from the first-order condition that
there actually is a consistent price process in the multidimensional case. The
reason for this is that the first-order condition is only an inequality and the
’sandwich argument’ from the one-dimensional case is no longer applicable
here. Since we have more than one asset, we have to find a consistent price
process for all assets simultaneously. After we have understood the single-
period case we apply the idea to a multiperiod market. This is again similar
to the one-dimensional case but more demanding technically.

In the Appendix we collect some advanced results from measure theory
and probability theory which are used especially in Chapter 3.
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Notation

A few words are in order concerning notation. Whenever a relation between
random objects is stated, it is always supposed to hold almost surely. For
example, when X, Y are random variables on a probability space (Ω,F,P)
and we write X = Y on a set B ∈ F, we mean that X(ω) = Y (ω) for
P-almost every ω ∈ B. Or when C is a random set, X ∈ C means that
X(ω) ∈ C(ω) for P-almost every ω ∈ Ω.

As usual we write L0(C,F; P) for the set of F-measurable random vari-
ables which take their values P-almost surely in C. Most of the time the
probability measure P will be clear from the context, then we simply write
L0(C,F).

In a model with bank account we denote by d the number of risky assets,
this corresponds to a model with D×D bid-ask matrices, where D = d+ 1.
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Chapter 1

Overview and first approach

1.1 Markets without transaction costs

Among the many proofs of the Fundamental Theorem of Asset Pricing (FTAP)
there is Rogers’ [20] utility-based proof. In this section we want to sketch his
idea and point out some important properties of markets without transaction
costs.

In our model we have one risk-free asset which serves as a numeraire and
d risky assets whose prices are quoted in units of the numeraire. We fix a
filtered probability space (Ω,F, (Ft)

T
t=0,P) and consider an (Ft)

T
t=0-adapted,

Rd-valued stochastic process (St)
T
t=0 = (S1

t , . . . , S
d
t )Tt=0, where each compo-

nent Si denotes the price of asset i in units of the numeraire.
When the investor decides to hold at time t an amount of hit units of

asset i, she has to pay hitS
i
t units from the numeraire for it. Her holdings are

described by the vector ht = (h1
t , . . . , h

d
t ). In the next step, at time t+ 1, the

asset prices have changed so that her total wealth, measured in units of the
numeraire, has changed by:

− (h1
tS

1
t + · · ·+ hdtS

d
t ) + (h1

tS
1
t+1 + · · ·+ hdtS

d
t+1)

=


−(h1

tS
1
t + · · ·+ hdtS

d
t )

h1
t

. . .
hdt

 ·


1
S1
t+1

. . .
Sdt+1


= ht · (St+1 − St)

With help of the second line we see that the investors gain corresponds to the
liquidation value of her portfolio which she has acquired in a self-financing
way. The investor starts with some wealth x0 at the beginning. Then she
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trades according to h0 at time 0. Her new wealth at time 1 is then x0 +
h0 · (S1 − S0). This procedure continues until her wealth at terminal time T
becomes

x0 + h0 · (S1 − S0) + · · ·+ hT−1 · (ST − ST−1).

We call a d-dimensional process (ht)
T−1
t=0 a trading strategy if, for every t =

0, . . . , T − 1, ht is Ft-measurable.

Definition 1.1. A trading strategy (ht)
T−1
t=0 is called an arbitrage opportunity

if
T−1∑
t=0

ht · (St+1 − St) ≥ 0

and

P

(
T−1∑
t=0

ht · (St+1 − St) > 0

)
> 0.

Of course, it is the investor’s hope to find a trading strategy such that
her gain is non-negative for sure at the end and strictly positive with some
positive probability.

We say that (St)
T
t=0 satisfies the no-arbitrage condition if there is no ar-

bitrage opportunity.

The FTAP relates the no-arbitrage condition to the existence of equiva-
lent martingale measures.

Theorem 1.2. For an Rd-valued process (St)
T
t=0 the following are equivalent:

(i) (St)
T
t=0 satisfies the no-arbitrage condition,

(ii) there exists a probabilty measure Q ∼ P such that (St)
T
t=0 is a Q-

martingale.

The probability measure Q in (ii) is called equivalent martingale measure for
(St)

T
t=0.

Clearly, the difficult part in the proof is how to find an equivalent mar-
tingale measure assuming the no-arbitrage condition. In the case of finite Ω
the theorem goes back to Harrison and Pliska [7]. For an arbitrary Ω it is
due to Dalang, Morton and Willinger [2]. Many other proofs were given e.g.
by Schachermayer [24], Kabanov and Kramkov [9] or Rogers [20].

The concept of equivalent martingale measures has many fruitful applica-
tions in the modern literature of mathematical finance such as the arbitrage-
free pricing and hedging of contingent claims. Another very important ap-
plication of equivalent martingale measures is to be found in the duality
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methods of portfolio optimization. The interested reader shall consult the
book ’The Mathematics of Arbitrage’ by Delbaen and Schachermayer [3] for
a thorough exposition of arbitrage theory and its applications.

In contrast to models with transaction costs it is a distinctive feature
for frictionless models that the no-arbitrage condition for every single-period
model (St−1, St) is equivalent to the no-arbitrage condition for the multi-
period model (St)

T
t=0. This is the main reason, why it is enough to consider

the single-period models separately in search of an equivalent martingale
measure.

Proposition 1.3. For an Rd-valued process (St)
T
t=0 the following are equiv-

alent:

(i) (St)
T
t=0 satisfies the no-arbitrage condition,

(ii) (St−1, St) satisfies the no-arbitrage condition for every t = 1, . . . , T .

For a proof see e.g. Proposition 5.11 in [4].

It is in fact enough to find an equivalent martingale measure for every
single-period model. This is based on the following observation:

Assume that for some t ∈ {1, . . . , T} we already have an equivalent mar-
tingale measure for St, . . . , ST which we call Qt. We can w.l.o.g. assume that
Qt|Ft = P|Ft, as we can switch to an equivalent probabilty measure whose
density is given by

dQt

dP

EP

[
dQt

dP
|Ft
]

and for which the martingale property of St, . . . , ST is preserved. Now, if
Pt−1 is equivalent to P such that

EPt−1 [St|Ft−1] = St−1,

then the probabilty measure Qt−1 defined by

dQt−1

dP
=

dPt−1

dP

dQt

dP

is an equivalent martingale measure for St−1, . . . , ST . This follows from a
straightforward application of Bayes’ formula.

Thus, going backwards in time one has to use the no-arbitrage condi-
tion for every single-period market (St−1, St) separately and find an equiv-
alent martingale measure Pt−1 for this single-period market. Multiplying
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the denisities successively results in an equivalent martingale measure for
S0, . . . , ST .

This concatenation property and the equivalence in the previous propo-
sition break down under transaction costs as we shall see in the next chapter.

For the remainder of this section we want to describe Rogers’ idea of his
uility-based proof.

From an economic point of view it is very plausible that in an arbitrage-
free market the investor can maximize her expected utility from terminal
wealth. Thus, we fix a utility function u on R and aim to find a portfolio
ĥt−1 which maximizes the expected utility from terminal wealth in the single-
period market (St−1, St), i.e.

E
[
u
(
ĥt−1 · (St − St−1)

)]
= max

ht−1

E [u (ht−1 · (St − St−1))] ,

where ht−1 ranges over L0(Rd,Ft−1). Besides Rogers’ original work [20] the
interested reader shall consult Section 6.6 in [3] for a different approach to
find a utility-maximizing portfolio.

Once a maximizer ĥt−1 is found, the function

R 3 α 7→ E
[
u
(

(ĥt−1 + α1Ae
i) · (St − St−1)

)]
has a maximum at α = 0 for every A ∈ Ft−1 and i = 1 . . . , d. Thus, taking
the derivative at α = 0 yields

0 = E
[
u′(ĥt−1 · (St − St−1))(Sit − Sit−1)1A

]
for every A ∈ Ft−1 and i = 1, . . . , d.

When we define (up to a normalizing constant) u′(ĥt−1 ·(St−St−1)) as the
density of a measure Pt−1, then the last equation is precisely the martingale
property for (St−1, St) under Pt−1. For the multiperiod model (S0, . . . , ST )
an equivalent martingale measure Q is then built by

dQ

dP
= cu′(ĥ0 · (S1 − S0)) . . . u′(ĥT−1 · (ST − ST−1))

where c is a normalizing constant.

Note that, when (St−1, St) allows for an arbitrage opportunity, say hat−1,
there cannot be a utility maximizing portfolio: For any potfolio ht−1 we have

(ht−1 + hat−1) · (St − St−1) ≥ ht−1 · (St − St−1)
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and this inequality is strict with positive probabililty. Since u is strictly
increasing, it follows that

E
[
u
(
ht−1 + hat−1 · (St − St−1)

)]
> E [u (ht−1 · (St − St−1))] .

1.2 Markets with transaction costs

In this section we want to describe a fairly general model for a market
with transaction costs in finite discrete time. We will follow thereby mainly
Schachermayer’s work [25]; compare also Section 3.1.1/3.1.2 of Kabanov and
Safarian [12]. We will introduce various notions of the no-arbitrage condition
and the concept of consistent price processes which extends the concept of
equivalent martingale measures to models with transaction costs. Our goal
is to formulate the FTAP under transaction costs and point out the main
differences to models without transaction costs.

The market consists of D assets and we can exchange every asset i for
any asset j. πij denotes the number of units of asset i needed to buy one
unit of asset j. We need the following properties for the matrix (πij).

Definition 1.4. A matrix (πij) ∈ RD×D is called bid-ask matrix if

(i) πij > 0, for i, j = 1, . . . , D,

(ii) πii = 1, for i = 1, . . . , D,

(iii) πij ≤ πikπkj, for i, j, k = 1, . . . , D.

The first two properties are obvious. The last property is due to transac-
tion costs, i.e. a direct exchange between any two assets should be cheaper
than an indirect exchange via a third asset.

Remark 1.5. a) Assume that we have d risky assets and one risk-free
asset which serves as a numeraire. The bid and ask prices of the risky

assets are given by S1, S
1
, . . . , Sd, S

d
, quoted in units of the numeraire.

For every asset i we require (0 <)Si ≤ S
i

due to transaction costs and

we set S0 = S
0

= 1. Then (πij), defined by

πij =
S
j

Si
i 6= j, and πii = 1,

is a bid-ask matrix with D = d+1. Since πij = πi0π0j, the entries (πi0)
and (π0j) are enough to describe all possible transactions. Exchanging
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asset i for asset j directly costs as much as first selling asset i and then
taking an appropriate amount of money from the bank account and
buying asset j.

Note that, when D = 2, every bid-ask matrix is given by bid and ask
prices, with 1

π21 = S and π12 = S.

b) A model based on bid-ask matrices generalizes a market where trans-
actions occur only via the bank account. We can think of an exchange
market for different currencies where direct transactions are in general
cheaper than indirect ones.

We fix a filtered probabilty space (Ω,F, (Ft)
T
t=0,P) and consider an (Ft)

T
t=0-

adapted, (D × D)-dimensional process (πt)
T
t=0. For every t and ω, πt(ω) is

supposed to be a bid-ask matrix. We call (πt)
T
t=0 a bid-ask process.

We need to model self-financing trading.

Definition 1.6. a) A portfolio process is an adapted RD-valued process

v = (vt)
T
t=0 =

(
v1
t , . . . , v

D
t

)T
t=0

.

a) The set of all solvent portfolios in state ω and at time t, the solvency
cone Kt(ω), is defined as

Kt(ω) = cone
{
πijt (ω)ei − ej, ek : i, j, k = 1, . . . , D

}
.

b) −Kt(ω) is called the cone of portfolios available at price 0 in state ω at
time t, i.e.

−Kt(ω) = cone
{
ej − πijt (ω)ei,−ek : i, j, k = 1, . . . , D

}
.

c) A portfolio process v = (vt)
T
t=0 is called self-financing if

v0 ∈ −K0 and vt − vt−1 ∈ −Kt

for every t = 1, . . . , T .

d) The set AT of all hedgable claims is defined as

AT = L0 (−K0,F0) + · · ·+ L0 (−KT ,FT ) ,

i.e. AT =
{
vT : (vt)

T
t=0 self-financing portfolio process

}
.

Similarly At, the set of hedgable claims up to time t, is defined as
At = L0 (−K0,F0) + · · ·+ L0 (−Kt,Ft).
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Every portfolio of the form πijt e
i− ej is solvent, because there are enough

units of asset i to clear the short position in asset j. Therefore, each conic
combination, i.e. linear combination with non-negativ coefficients, is solvent.
Additionally, every portfolio with non-negative entries is solvent. We point
out that, if πi0j0t πj0i0t > 1 for some i0, j0, then the vectors ek can already be
obtained from conic combinations of the vectors πijt e

i − ej. Since

πj0i0t (πi0j0t ei0 − ej0) + πj0i0t ej0 − ei0 = (πi0j0t πj0i0t − 1)ei0 ,

we can obtain ei0 and then every ek from conic combinations of πki0t ek − ei0
and ei0 .

We need πijt units of asset i if we want to buy one unit of asset j. Hence,
ej−πijt ei is available at price 0, i.e. this portfolio can be achieved by trading
according to the bid-ask matrix and starting from the zero portfolio 0 ∈ RD.
Eventually we consume assets, hence we include portfolios with non-positive
entries.

Kt

( −St
1

)

(
St
−1

)
−Kt

Fig. 1: solvency cone (D = 2)
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Definition 1.7. The dual cone K∗t is defined by

K∗t (ω) =
{
z ∈ RD : z · v ≥ 0, for v ∈ Kt(ω)

}
=
{
z ∈ RD

+ : πijt (ω)zi ≥ zj, for i, j = 1, . . . , D
}
.

An Ft-measurable random variable Z ∈ K∗t \ {0} is called consistent price
system (at time t). If Z ∈ riK∗t , then Z is called strictly consistent price
system (at time t).

For a consistent price system Z we have

1

πjit
≤ Zj

Zi
≤ πijt .

In this sense the (frictionless) exchange rates Zj

Zi
are consistent with the rates

given by the bid-ask matrix πijt . Z being strictly consistent means that

Zj

Zi
∈ ri

[
1

πjit
, πijt

]
.

In a model with bank account, where we have one risk-free asset which serves

as a numeraire, and d risky assets with bid-ask prices S1, S
1
, . . . , Sd, S

d
, Z =

(Z0, Z1, . . . , Zd) is a (strictly) consistent price system if and only if

Zi

Z0
∈
[
Sit, S

i

t

] (
resp.

Zi

Z0
∈ ri

[
Sit, S

i

t

])
.
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K∗t

−Kt

Fig. 2: the dual of the solvency cone (D = 2)

We now extend the key concept of equivalent martingale measures to
models with transaction costs.

Definition 1.8. A D-dimensional martingale (Zt)
T
t=0 is called

a) consistent price process if Zt ∈ K∗t \ {0}, for t = 0, . . . , T ,

b) strictly consistent price process if Zt ∈ riK∗t , for t = 0, . . . , T .

Remark 1.9. In a model with bank account, where the bid and ask prices of

the d risky assets are given by S1, S
1
, . . . , Sd, S

d
, it follows by a straightfor-

ward application of Bayes’ formula, that there exists a (strictly) consistent
price process (Zt)

T
t=0, if and only if there exists an equivalent probability

measure Q ∼ P and a Q-martingale (St)
T
t=0 = (S1

t , . . . , S
d
t )Tt=0 such that

Sit ∈ [Sit, S
i

t], (Sit ∈ ri[Sit, S
i

t]). In this case, we have dQ
dP

=
Z0
T

Z0
0

and Si = Zi

Z0 .

The no-arbitrage condition prevents that we can create money out of
nothing.

Definition 1.10. The bid-ask process (πt)
T
t=0 satisfies the no-arbitrage con-

dition if for every self-financing portfolio process v = (vt)
T
t=0 with vT ∈ RD

+

it follows that vT = 0.
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Let us assume for a moment that there is a consistent price process
(Zt)

T
t=0. Ignoring integrability questions we conclude for every vT = ξ0 +

· · ·+ ξT ∈ AT , where ξt ∈ L0 (−Kt,Ft), that

E[vT · ZT ] = E[(ξ0 + · · ·+ ξT−1) · ZT−1 + E[ξT · ZT︸ ︷︷ ︸
≤0

|FT−1]]

≤ E[(ξ0 + · · ·+ ξT−1) · ZT−1]

≤ E[(ξ0 + · · ·+ ξT−2) · ZT−2 + E[ξT−1 · ZT−1|FT−2]]

≤ · · · ≤ E[ξ0 · Z0] ≤ 0.

Consequently, when vT ∈ RD
+ , then vT = 0 and the no-arbitrage condition is

satisfied.

For a finite state space Ω or if D = 2 the following version of the Fun-
damental Theorem of Asset Pricing holds true. For finite Ω it is proved in
Kabanov and Stricker [13], when D = 2 it is due to Grigoriev [5].

Theorem 1.11. Let (πt)
T
t=0 be a bid-ask process. Then, if Ω is finite or

D = 2, the following are equivalent:

(i) (πt)
T
t=0 satisfies the no-arbitrage condition,

(ii) there exists a consistent price process.

The proof of how the no-arbitrage condition implies existence of a con-
sistent price process relies on a separation argument in finite-dimenstional
spaces. It is the same idea as for models without transaction costs. The set of
hedgable claims AT = L0(−K0,F0) + · · ·+ L0(−KT ,FT ) is a sum of finitely
many polyhedral cones and is thus closed as a set in RN , (N = D · |Ω|).
The no-arbitrage condition ensures that AT ∩ RN

+ = {0} and we can sep-
arate with a hyperplane the cone AT from the convex set conv

{
ei1{ω} :

ω ∈ Ω, i = 1, . . . , D
}

. The vector, which generates the separating hyper-
plane, can be taken as the terminal value of the consistent price process.

For infinite Ω, even when D = 2, the no-arbitrage condition is not enough
to conclude that AT is ’closed’, see e.g. Example 1.3 in [5]. Thus the standard
separation arguments are not applicable here. The theorem is even wrong
when Ω is infinite and D ≥ 3, see e.g. Example 3.1 in [25] or Example 2 in
Section 3.2.4 of [12]. However, for D = 2, Grigoriev [5] managed to prove
the theorem with new methods.

The concept of consistent price processes allows to describe the set of
hedgable claims in a dual way. This is intimately connected with arbitrage-
free pricing of contingent claims and essential for duality methods in portfolio
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optimization. Without being rigorous with integrability issues, by dual de-
scription we mean the equivalence

c ∈ AT
⇔

E [c · ZT ] ≤ 0 for every consistent price process (Zt)
T
t=0.

Of course, such a relation can only hold when AT is ’closed’, which is not
always the case under the mere no-arbitrage condition.

Let us look at some example which illustrates that the no-arbitrage condi-
tion is insufficient in the presence of transaction costs. Even though a market
with transaction costs satisfies the no-arbitrage condition, further market in-
sufficiencies, so-called weak arbitrage opportunities, can appear.

K1

−K0

(
−S0

1

)

Fig. 3: weak arbitrage opportunity

Clearly, the market in Fig. 3 is free of arbitrage opportunities. But
without incurring any loss we can buy one stock at time 0,

(
−S0

1

)
, and

liquidate the portfolio into the bond at time 1,
(
−S0

1

)
·
(

1
S1

)
= 0 . We have
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to pay transaction costs for trading but the stock performance helps to cover
it.

We can exclude weak arbitrage opportunitites if we assume that the bro-
ker can offer some discount on the transaction costs without creating arbi-
trage opportunities at the market.

Definition 1.12. The bid-ask process (πt)
T
t=0 satisfies the robust no-arbitrage

condition if there is a bid-ask process (σt)
T
t=0 such that[

1

σji
, σij

]
⊂ ri

[
1

πji
, πij

]
and (σt)

T
t=0 satisfies the no-arbitrage condition.

Remark 1.13. In a model with one risk-free cash account and d risky assets

with bid and ask prices S1, S
1
, . . . , Sd, S

d
the robust no-arbitrage condition

is satisfied if and only if there exist bid-ask prices U1, U
1
, . . . , Ud, U

d
such

that
[
U i, U

i
]
⊂ ri

[
Si, S

i
]

and U1, U
1
, . . . , Ud, U

d
statsify the no-arbitrage

condition.

Having established the definition of the robust no-arbitrage condition we
formulate the FTAP under proportional transaction costs in finite discrete
time.

Theorem 1.14. Let (πt)
T
t=0 be a bid-ask process. Then (πt)

T
t=0 satisfies the

robust no-arbitrage condition if and only if there exists a strictly consistent
price process (Zt)

T
t=0.

The proof relies on the fact that under the robust no-arbitrage condition
AT is closed with respect to convergence in probability. Then separation
arguments for infinite-dimensional spaces as in the Kreps-Yan theorem are
applied to yield a consistent price process.

1.3 First approach and generalization

Our goal is to give a utility-based proof for consistent price processes in the
spirit of Rogers [20] for frictionless models. We will describe a first approach
now.

Let U : RD → R be a multivariate utiltiy function, i.e. U is strictly
concave, strictly increasing in every variable and differentiable. We assume
that there is an optimal portfolio v̂T ∈ AT , i.e.

E [U(v̂T )] = max
vT∈AT

E [U(vT )] .
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Then, for every ξt ∈ L0 (−Kt,Ft) and every α > 0, we have

E [U(v̂T )] ≥ E [U(v̂T + αξt)] .

We take the one-sided derivative and get

0 ≥ lim
α↓0

E [U(v̂T + αξt)]− E [U(v̂T )]

α
= E [∇U(v̂T ) · ξt] .

(Zt)
T
t=0 defined by ZT := ∇U(v̂T ) and Zt := E [ZT |Ft] is a consistent price

process.

Now, several questions arise in this approach:

• How can we find an optimal portfolio v̂T under the robust no-arbitrage
condition? In the multi-period model we have v̂T = ξ̂0 + . . . ξ̂T , so T +1
decisions have to be made.

• Can we simplify the problem by looking on single-period models?

• Having solved the problem for single-period models, how can we con-
struct a consistent price process for the multi-period model knowing
that there are consistent price processes for each single-period model?

• What kind of utility functions can we use?

We want to address the first question in the case of finite Ω. We fix a util-
ity function u on R, which is bounded from above, and define a multivariate
utility function

U(v1, . . . , vD) := u(v1) + · · ·+ u(vD).

We consider the concave function

ϕ : AT 3 vT 7→ E [U(vT )] .

It is well known that for a concave function ϕ, defined on a closed convex
cone in a finite dimensional space, the condition

lim
s→∞

ϕ(sx) = −∞, for every x 6= 0,

is sufficent to show existence of a maximum for ϕ (see e.g. Lemma 3.5 in
[4]). Well, whenever vT ∈ AT , vT 6= 0, by the no-arbitrage condition we must
have P(viT < 0) > 0 for some i = 1, . . . , D. Since

lim
s→∞

u(sviT ) = −∞ on
{
viT < 0

}
.
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and u is bounded from above, we conclude

lim
s→∞

E [U(svT )] = −∞, for every vT ∈ AT , vT 6= 0.

Thus, an optimal portfolio v̂T exists when Ω is finite. For infinite Ω this
argument fails since for example the condition

lim
s→∞

ϕ(sx) = −∞, for every x 6= 0,

is no longer sufficient for a maximum.

Generalization and vector space property

We want to generalize the framework a little bit. This will be similar to the
model in Ràsonyi [17]. By the Bipolar Theorem we have for the solvency
cone Kt = K∗∗t , i.e.

Kt(ω) =
{
ξ ∈ RD : ξ · z ≥ 0, for z ∈ K∗t (ω)

}
.

Since

K∗t (ω) \ {0} =
{
z ∈ (0,∞)D :

zj

zi
∈
[

1

πjit (ω)
, πijt (ω)

]
, for i, j = 1, . . . , D

}
we can take a convex and compact set St(ω) ⊂ (0,∞)D−1 such that

K∗t (ω) =
{
λ
(

1
y

)
: λ ≥ 0, y ∈ St(ω)

}
and thus

Kt(ω) =
{
ξ ∈ RD : ξ ·

(
1
y

)
≥ 0, for y ∈ St(ω)

}
.

Writing K∗t (ω) in this way means that we have chosen the first asset as a
numeraire. When we have a model with bank account and d bid and ask
prices S1, S

1
, . . . , Sd, S

d
, then

St(ω) = [S1
t (ω), S

1

t (ω)]× · · · × [Sdt (ω), S
d

t (ω)].

Thus, we will consider a model with one risk-free asset which is taken as
a numeraire and for the remaining d risky assets we assume that prices are
given by convex and compact subsets of (0,∞)d.
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Given a filtered probabilty space (Ω,F, (Ft)
T
t=0,P) we start with a process

(St)
T
t=0, where each St ⊂ (0,∞)d is a non-empty, convex, compact and Ft-

measurable random set. St is called the set of consistent prices at time t.
The solvency cone at time t is defined by

Kt(ω) :=
{
ξ ∈ Rd+1 : ξ ·

(
1
y

)
≥ 0, for y ∈ St(ω)

}
.

Of course, a portfolio process (vt)
T
t=0 is called self-financing (for (St)

T
t=0) if

v0 ∈ −K0 and vt − vt−1 ∈ −Kt for every t = 1, . . . , T . For the the dual cone
of Kt we have

K∗t (ω) =
{
λ
(

1
y

)
: λ ≥ 0, y ∈ St(ω)

}
and

riK∗t (ω) =
{
λ
(

1
y

)
: λ > 0, y ∈ ri St(ω)

}
.

(St)
T
t=0 satisfies the robust no-arbitrage condition if there is a process (Wt)

T
t=0

of consistent prices such that Wt ⊂ ri St and (Wt)
T
t=0 satisfies the no-arbitrage

condition, i.e. if (vt)
T
t=0 is self-financing for (Wt)

T
t=0 and vT ∈ Rd+1

+ then
vT = 0.

We cite the following important lemma from Schachermayer [25]. Its
proof is a nice illustration for the robust no-arbitrage condition.

Lemma 1.15. Assume that (St)
T
t=0 satisfies the robust no-arbitrage condi-

tion. If ξ0 ∈ L0 (−K0,F0) , . . . , ξT ∈ L0 (−KT ,FT ) are such that

ξ0 + · · ·+ ξT = 0,

then ξ0 ∈ L0 (−K0 ∩K0,F0) , . . . , ξT ∈ L0 (−KT ∩KT ,FT ).

Proof. Denote by (Wt)
T
t=0 a process of consistent prices such that Wt ⊂ ri St

and (Wt)
T
t=0 satisfies the no-arbitrage condition. Assume that for some t0

the event
A := {ξt0 ∈ −Kt0 \ (−Kt0 ∩Kt0)}

has positive probability. On A we have ξt0 ·
(

1
y

)
< 0 for every y ∈ ri St0 ,

especially ξt0 ·
(

1
y

)
< 0 for every y ∈Wt0 . Since Wt0 is compact, this implies

max
{
ξt0 ·

(
1
y

)
: y ∈Wt0

}
< 0 on A.

Hence, for every ω ∈ A, there exists n ∈ N such that(
ξt0(ω) +

1

n
e0

)
·
(

1
y

)
≤ 0
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for all y ∈Wt0(ω). Denote by n∗ = n∗ (ω) the minimal natural number with
this property and define

ζt0(ω) =

{
ξt0 (ω) + 1

n∗(ω)
e0 , ω ∈ A

ξt0 (ω) , otherwise

and, for t 6= t0, ζt = ξt.
Then (ζt)

T
t=0 are the increments of a self-financing portfolio process for

(Wt)
T
t=0 with terminal payoff

ζ0 + · · ·+ ζT =
1

n∗
1Ae

0.

Since P (A) > 0, we have an arbitrage opportunity for (Wt)
T
t=0. We conclude

that the robust no-arbitrage condition implies

ξ0 ∈ L0 (−K0 ∩K0,F0) , . . . , ξT ∈ L0 (−KT ∩KT ,FT ) .

From this lemma it follows that the increments of self-financing portfolio
processes, which sum up to 0, constitute a vector space under the robust
no-arbitrage condition. This vector space property is indispensable for us,
since it will help us reduce from the multi-period model to a single-period
model. In the multidimensional case, Chapter 3, we will show the converse
statement directly, i.e. that the vector space property implies the robust
no-arbitrage condition.

Utility from liquidation value

We fix a utility function u : R→ R and we aim to find a v̂T = (v̂0
T , . . . , v̂

d
T ) ∈

AT subjet to v̂1T = · · · = v̂dT = 0 such that

E
[
u(v̂0

T )
]

= max
{
E
[
u(v0

T )
]

: (v0
T , . . . , v

d
T ) ∈ AT , v1T = · · · = vdT = 0

}
.

For a portfolio vT−1 we define the liquidation value by

l(vT−1) = min
{
vT−1 ·

(
1
y

)
: y ∈ ST

}
.

Given a portfolio in the form (v0
T , 0) = vT−1 + ξT and ξT ∈ −KT , we have

v0
T = min

{
(vT−1 + ξT ) ·

(
1
y

)
: y ∈ ST

}
≤ l(vT−1).
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Conversely, for any vT−1 the increment ξT := (l(vT−1), 0)− vT−1 is in −KT ,
since for any y ∈ ST

ξT ·
(

1
y

)
= l(vT−1)− vT−1 ·

(
1
y

)
≤ 0.

As u is increasing, we conclude

sup
{
E
[
u(v0

T )
]

: (v0
T , . . . , v

d
T ) ∈ AT , v1T = · · · = vdT = 0

}
= sup

{
E [u(l(vT−1))] : vT−1 ∈ AT−1

}
.

It simplifies a lot that we are interested only in the utilty from liquidation
value. The number of decisions to be made by the investor is reduced by one.
In a single-period model this means that we have to make only one decision at
the beginning. The downside is that v 7→ u(l(v)) is no longer differentiable.
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Chapter 2

One-dimensional case (d = 1)

In this chapter we give a utility-based proof for the existence of a consistent
price process in a model with one risky asset. In Section 2.1 we introduce
some technical results which we will need in the main parts, Section 2.2 and
2.3. In Section 2.2 we maximize expected utility from liquidation value in
a single-period market. Using a variational argument, the existence of the
maximizer will imply existence of a consistent price process for the single-
period market. In Section 2.3 we show how the results from the single-period
case can be applied in a multi-period market. With the results from this
section we will fully describe the set of all strictly consistent price processes.

2.1 Extension property

It would be nice to show that there is a utility-maximizing portfolio in a
multi-period model assuming just the mere robust no-arbitrage condition.
The problem becomes more feasible in a single-period model where we are
interested in utility from liquidation value. Then, only one decision is to be
made at the beginning.

Assume that we can solve the portfolio problem for one period models
and we can deduce from the existence of an optimal portfolio that there is
a consistent price process for every one period model, how can we construct
a consistent price process for the multi-period model? In markets without
transaction costs it is enough to find an equivalent martingale measure for
each single period. When the corresponding Radon-Nikodym deriviatives are
normalized appropriately, we can multiply them to find an equivalent mar-
tingale measure for the whole time line. For models with transaction costs
we replace this concatenation property by an extension property.
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We consider a model with one risk-free asset, which serves as a numeraire,
and one risky asset whose bid and ask prices are quoted in units of the
numeraire.

On a filtered probability space (Ω,F, (Ft)
T
t=0,P) we have a two-dimensional,

(Ft)
T
t=0-adapted process (St, St)

T
t=0, where 0 < St ≤ St for every t = 0, . . . , T .

St denotes the bid price and St the ask price of the risky asset in units of
the numeraire.

The solvency cone is given explicitly by

Kt(ω) =
{
a

(
St(ω)
−1

)
+ b

(
−St(ω)

1

)
+ c

(
1
0

)
+ d

(
0
1

)
: a, b, c, d ≥ 0

}
and its dual is

K∗t (ω) =
{
z ∈ R2 : z · v ≥ 0, for v ∈ Kt(ω)

}
=
{
a

(
1

St(ω)

)
+ b

(
1

St(ω)

)
: a, b ≥ 0

}
.

The main difficulty in a multi-period model is as follows. If we have, say
in a two period model (S0, S0, S1, S1, S2, S2), a consistent price process for
the first period (Z0, Z1), then we may ask ourselves under what condition
on Z1 can we extend it to a consistent price process for the whole time line
(Z0, Z1, Z2)? Z1 has to be in the range

{
E [Z2|F1] : Z2 ∈ L0(G∗2,F2)

}
.

We need the following generalization of the L∞-norm.

Definition 2.1. Given a sub-σ-field H ⊂ F and a random variable X in R
we define

supHX := ess inf
{
Z : Ω→ [−∞,∞] : Z H-measurable, Z ≥ X

}
infHX := ess sup

{
Z : Ω→ [−∞,∞] : Z H-measurable, Z ≤ X

}
.

If H = Ft, we also write supt instead of supFt
and inft instead of infFt .

We now formulate what we call extension property. This is part b) of the
following lemma.

Lemma 2.2. Assume X, Y are strictly positive random variables with X ≤ Y
and H ⊂ F is a sub-σ-field.
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a) For any Z0 > 0, Z1 > 0 with Z1

Z0 ∈ ri [X, Y ], E [Z0|H] < ∞ and
E [Z1|H] <∞ we have

E [Z1|H]

E [Z0|H]
∈ ri [infHX, supH Y ] .

b) Conversely, for any H-measurable C0 > 0, C1 > 0, with
C1

C0 ∈ ri [infHX, supH Y ], there are Z0 > 0, Z1 > 0 such that

Z1

Z0
∈ ri [X, Y ] and

(
C0

C1

)
= E

[(
Z0

Z1

)∣∣∣∣H] .
Proof. Let X, Y be strictly positive random variables with X ≤ Y .

a) Under the equivalent probability measure Q, whose density is dQ
dP

=
Z0

E[Z0|H]
, we have

EQ

[
Z1

Z0

∣∣∣∣H] =
E [Z1|H]

E [Z0|H]

and

EQ

[
Z1

Z0

∣∣∣∣H] ∈ [infHX, supH Y ] ,

since X ≤ Z1

Z0 ≤ Y , infHX ≤ X as well as Y ≤ supH Y .

We have to show that on the event

A =

{
EQ

[
Z1

Z0

∣∣∣∣H] = infHX

}
infHX and supH Y are equal.

Indeed, on A we get infHX = EQ [X|H], so that infHX = X and

X = Z1

Z0 . It follows that X = Y on A, since Z1

Z0 ∈ ri [X, Y ]. But then
infHX = Y and thus infHX = supH Y on A.

Similarly, it follows that infHX and supH Y coincide on{
EQ[Z

1

Z0 |H] = supH Y
}

.

b) Put c := C2

C1
. Then c is H-measurable and c ∈ ri [infH(X), supH(Y )].

We will find strictly positive a, b such that E [a+ b|H] = 1 and
E [aX + bY |H] = c.

Z1 := (a+ b)C1 and Z2 := (aX + bY )C1 will then satisfy

Z1

Z0
∈ ri [X, Y ] and

(
C0

C1

)
= E

[(
Z0

Z1

)∣∣∣∣H] .
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For n ∈ N put

ãn :=
1{X<infH(X)+ 1

n}
P
(
X < infH (X) + 1

n
|H
) +

1

n

1{X≥infH(X)+ 1
n}

1 +X

and

b̃n :=
1{Y >fn}

P (Y > fn|H)
+

1

n

1{Y≤fn}
1 + Y

, where

fn := 1{supH Y <∞}

(
supH(Y )− 1

n

)
+ 1{supH(Y )=∞}n.

Note that P
(
X < infH (X) + 1

n
|H
)
> 0 and P (Y > fn|H) > 0.

Then ãn, b̃n > 0 and

E[ãnX|H]
a.s.−→
n→∞

infH (X) ,E[b̃nY |H]
a.s.−→
n→∞

supH (Y ) .

As

1 ≤ E[ãn|H] ≤ 1 +
1

n
, 1 ≤ E[b̃n|H] ≤ 1 +

1

n
,

we can normalize ãn, b̃n, i.e. replace ãn by ãn
E(ãn|H)

and b̃n by b̃n
E(b̃n|H)

and still have

E[ãnX|H]
a.s.−→
n→∞

infH (X) ,E[b̃nY |H]
a.s.−→
n→∞

supH (Y ) .

Now write Ω = Ω1 ∪ Ω2 with Ω1 := {infH (X) < supH Y } and Ω2 :=
{infH (X) = supH Y }.
For ω ∈ Ω1 (up to a null set) choose n = n (ω) ∈ N minimal such that

infH (X) (ω) ≤ E[ãnX|H] (ω) < c (ω) .

Then ω 7→ n (ω) is H-measurable on Ω1, since

{ω ∈ Ω1|n (ω) = l} = {ω ∈ Ω1|E[ãlX|H] (ω) < c (ω)}∩⋂
k<l

{ω ∈ Ω1|E[ãkX|H] (ω) ≥ c (ω)} .

ã, defined as ã (ω) := ãn(ω) (ω) on Ω1 and ã (ω) = 1 on Ω2, is strictly

positive and since ã =

(∑
m≥1

ãm1{n=m}1Ω1

)
+ 1Ω2 it satisfies

E[ã|H] =

(∑
m≥1

1{n=m}1Ω1E[ãm|H]

)
+ 1Ω2 = 1,

E[ãX|H] =
∑
m≥1

1{n=m}E[ãmX|H] < c on Ω1.
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Similarly b̃, defined by b̃ (ω) := b̃m(ω) (ω) on Ω1, where m (ω) ∈ N is

minimal such that E
(
b̃mY |H

)
(ω) > c (ω), and b̃ (ω) = 1 on Ω2, is

strictly positive and satisfies

E[b̃|H] = 1, E[b̃Y |H] > c on Ω1.

Hence, E[ãX|H] < c < E[b̃Y |H] on Ω1, E[ãX|H] = c = E[b̃Y |H] on
Ω2.
Define

a :=
c− E[ãX|H]

E[b̃Y |H]− E[ãX|H]
ã1Ω1 +

1

2
1Ω2

b :=
E[b̃Y |H]− c

E[b̃Y |H]− E[ãX|H]
b̃1Ω1 +

1

2
1Ω2 .

then c = E[aX + bY |H] and E[a+ b|H] = 1.

The lemma will play a key role when we construct consistent price pro-
cesses. In a model with strict transaction costs, i.e. X < Y , a similiar
statement can be found in [18]. Here the costs are not necessarily strict
and we gave a new and very elementary proof of it. Compare also the more
abstract results for the multidimensional case in Chapter 3.

Remark 2.3. It follows from part b) of Lemma 2.2 that{
EQ[Z|H] : Z ∈ [X, Y ], Q ∼ P

}
is dense in [infHX, supH Y ]. In general it is only a strict subset. Take for
example X(ω1) < X(ω2), X = Y and P(ω1) > 0,P(ω2) > 0 on Ω = {ω1, ω2}.
Then, for H = {∅,Ω},{

EQ[Z|H] : Z ∈ [X, Y ], Q ∼ P
}

= (X(ω1), X(ω2))

and [infHX, supH Y ] = [X(ω1), X(ω2)].

2.2 Utility maximization in a single-period

model

We will show in this section that the investor can maximize her utility from
liquidation value in a single-period market with proportional transaction
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costs. Once the existence of a maximum is established a variational ar-
gument will show how a consistent price process can be constructed. To be
able to construct a strictly consistent price-processe and to use this results
in the next section for the multi-period case we have to look in detail at
the various scenarios which can occur for the optimal portfolio. A further
analysis of it will help us to construct a (strictly) consistent price process in
the multi-period case.

We fix a general probability space (Ω,F,P). The bid and ask prices of the
risky asset are described by

(
S0, S0, S1, S1

)
which is adapted to a filtration

(F0,F1). We point out that F0 does not need to be trivial. We assume that
St, St are strictly positive and satisfy St ≤ St (t = 0, 1).

2.2.1 Preliminaries

For our single-period market we make the following assumption about the
set of all null portfolios. Later on it will turn out to be equivalent to the
robust no-arbitrage condition.

Assumption 2.4. The set of all self-financing portfolios with non-negative
liquidation value constitutes a vector space, i.e.

N := L0 (−K0,F0) ∩ L0 (K1,F1)

is a vector space in L0 (R2,F0).

It is easy to see how the robust no-arbitrage condition implies this as-
sumption.

Remark 2.5. a) Assume that
(
S0, S0, S1, S1

)
satisfies the robust no-arbitrage

condition and
v ∈ L0 (−K0,F0) ∩ L0 (K1,F1) .

We put v0 = v and v1 = −v and have v0 + v1 = 0. By Lemma 1.15 we
get

v0 ∈ L0 (−K0 ∩K0,F0) and v1 ∈ L0 (−K1 ∩K1,F1) .

−K0 ∩K0 (resp. −K1 ∩K1) being a vector space implies

−v ∈ L0 (−K0,F0) ∩ L0 (K1,F1) .

Since L0 (−K0,F0; )∩L0 (K1,F1) is à priori a convex cone we conclude
that

(
S0, S0, S1, S1

)
satisfies Assumption 2.4.
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b) The assumption that the set

N = L0 (−K0,F0) ∩ L0 (K1,F1)

=
{
v ∈ L0 (−K0,F0) : v ·

(
1
S1

)
≥ 0, v ·

(
1
S1

)
≥ 0
}

is a vector space implies

N =
{
v ∈ L0 (−K0 ∩K0,F0) : v ·

(
1
S1

)
= 0, v ·

(
1
S1

)
= 0
}
.

Furthermore for any real-valued F0-measurable h and v ∈ N we have
hv ∈ N and since K0 (resp. K1) is closed, N is closed with respect to
convergence in probability.

In the proof of the main theorem in this section, Theorem 2.9, we will
not need the portfolios from N, since they have the same liquidation value
as the zero-portfolio ( 0

0 ). To get rid of the potfolios in N, we will need to
parameterize N in an F0-measurable way. We deal with this parameterization
in the following lemma.

Lemma 2.6. Under Assumption 2.4 we have

a) {
E
[∣∣S1 − S0

∣∣ |F0

]
= 0
}

=
{
E
[∣∣S0 − S1

∣∣ |F0

]
= 0
}

and A :=
{
E
[∣∣S1 − S0

∣∣ |F0

]
= 0
}

is the biggest F0-measurable set such
that

S0 = S0 = S1 = S1 on A.

b)
v ∈ N ⇔ v = 1Ah

(
−S0

1

)
for some F0-measurable, real-valued h.

c) For ω ∈ A define P0 (ω) to be the orthogonal projection on the linear

space generated by
(
−S0(ω)

1

)
and, for ω /∈ A, P0 (ω) := 0. Then, P0 is

F0-measurable and for v ∈ L0 (R2,F0) we have

v ∈ N ⇔ P0v = v.

Proof. Let
(
S0, S0, S1, S1

)
satisfy Assumption 2.4.
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a) Put A :=
{
E
[∣∣S1 − S0

∣∣ |F0

]
= 0
}

and we have E
[∣∣S1 − S0

∣∣1A] = 0,

so that S1 = S0 on A. If B is F0-measuable and S1 = S0 on B we get

0 = E
[∣∣S1 − S0

∣∣1B] = E
[
E
[∣∣S1 − S0

∣∣ |F0

]
1B
]
,

so that E
[∣∣S1 − S0

∣∣ |F0

]
= 0 on B, i.e. B ⊂ A. It follows that A is

the greatest F0-measurable set where S1 = S0.

For the portfolio v := 1A
(
−S0

1

)
we calculate

v ·
(

1
S1

)
= 0 and v ·

(
1
S1

)
≥ 0,

so that v ∈ N.

N is a vector space, so −v = 1A

(
S0
−1

)
∈ N implies

−K0 ∩K0 6= {0} on A,

which is equivalent to S0 = S0 on A.

Since
v ·
(

1
S1

)
= 0, v ·

(
1
S1

)
= 0

we need
(

1
S1

)
and

(
1
S1

)
to be linear dependent on A, i.e. S1 = S1 on

A, altogether S0 = S0 = S1 = S1 on A.

As above, C :=
{
E
[∣∣S0 − S1

∣∣ |F0

]
= 0
}

is the greatest F0-measurable

set where we have S1 = S0. It follows that A ⊂ C.

We repeat the reasoning from above applied to the portfolio

1C
(
S0
−1

)
and we see that S0 = S0 = S1 = S1 on C. It follows that C ⊂ A.

b) As the portfolio 1A
(
−S0

1

)
is in N, which is a vector space, we also have

1Ah
(
−S0

1

)
for every F0-measurable real-valued h.

Now, we take an arbitrary v ∈ N. We have

v ·
(

1
S0

)
= 0, v ·

(
1
S0

)
= 0, v ·

(
1
S1

)
= 0, v ·

(
1
S1

)
= 0.

Thus on {v 6= 0} all prices coincide S0 = S0 = S1 = S1, i.e. {v 6= 0} ⊂
A. It follows that

v = 1Ah
(
−S0

1

)
for some F0-measurable, real-valued h.
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c) Any v ∈ N is of the form v = 1Ah
(
−S0

1

)
where h is F0-measurable.

Hence, v(ω) is contained in the subspace generated by
(
−S0(ω)

1

)
, i.e.

P0v = v.

Conversely, any F0-measurable v with P0v = v can be written as v =
1Ah

(
−S0

1

)
where h = −v0S0+v1√

S
2
0+1

, so v ∈ N.

For the rest of this section we fix a utility function u : R→ R. We suppose
that u is continuously differentiable, strictly concave, strictly increasing and
bounded from above.

Further, given a portfolio v = (v0, v1) ∈ R2, we define by l (v) the liqui-
dation value in terms of the numeraire, i.e.

l (v) :=

{
v0 + v1S1, v1 ≤ 0

v0 + v1S1, v1 ≥ 0

= min
{
v ·
(

1
S1

)
, v ·

(
1
S1

)}
.

Our goal is to find a portfolio v̂ ∈ L0 (−K0,F0) such that

E [u (l (v̂)) |F0] = ess sup
v∈L0(−K0,F0)

E [u (l (v)) |F0] .

First, we have to make sure why we can w.l.o.g. assume that

both E [|u (l (v))| |F0] <∞ and E [u′ (l (v)) |F0] <∞

for all v ∈ L0 (−K0,F0). Further the mapping

R2 3 a 7→ E [u (l (a)) |F0]

shall satisfy some regularity conditions.

The following proposition is due to [20].

Proposition 2.7. There exists a decreasing and continuous function g :
R+ → (0,∞) such that

|u(a · x)|g(|x|) ≤ 1

g(|a|)
+ const

for every a, x ∈ RD.
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Proof. We first assume that u is bounded from above by 0. By the Cauchy-
Schwarz inequality it follows − |a| |x| ≤ a · x. Since u is increasing and takes
values in (−∞, 0) we have

|u (a · x)| = −u (a · x) ≤ −u (− |a| |x|) = |u (− |a| |x|)| ≤ 1 ∨ |u (− |a| |x|)| .

Note that 1 ∨ |u (−t)| is an increasing function for t, so that

1 ∨ |u (− |a| |x|)| ≤
(
1 ∨

∣∣u (− |a|2)∣∣) (1 ∨ ∣∣u (− |x|2)∣∣)
since |a| |x| ≤ |a|2 or |a| |x| ≤ |x|2.

We put g (t) := (1 ∨ |u (−t2)|)−1
and get

|u (a · x)| g (|x|) ≤ 1

g (|a|)
.

g is continuous, positive and decreasing.
If u is bounded from above by a constant c we apply the reasoning from

above to the utility function u (·)− c and get

|u (a · x)− c| g (|x|) ≤ 1

g (|a|)

which implies

|u (a · x)| g (|x|) ≤ 1

g (|a|)
+ |c| g (|x|) ≤ 1

g (|a|)
+ |c| g (0) .

Now, we want to clarify the integrability and regularity issues mentioned
before this proposition.

Remark 2.8. a) We choose a decreasing and continuous function g :
R+ → (0,∞) such that

|u(a · x)|g(|x|) ≤ 1

g(|a|)
+ c, for every a, x ∈ R2,

where c is a fixed constant.

Obviously, we then have

|u (min {a · x, a · y})| g (max {|x| , |y|}) ≤ 1

g (|a|)
+ c, for a, x, y ∈ R2.
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Denote by R the equivalent probability measure with density

dR

dP
=

g
(
max

{∣∣( 1
S1

)∣∣ , ∣∣( 1
S1

)∣∣})
EP

[
g
(
max

{∣∣( 1
S1

)∣∣ , ∣∣( 1
S1

)∣∣})] ,
and denote by k the regular conditional P-distribution for

(
S1, S1

)
given F0. Then, for any v ∈ L0 (Ω,F0;R2) we have by disintegration

ER [u (l (v)) |F0] (·) =
EP

[
u (l (v)) dR

dP
|F0

]
EP

[
dR
dP
|F0

] (·)

= h (·)
∫
u
(
min

{
v (·) · ( 1

x ) , v (·) ·
(

1
y

)})
×

g
(
max

{
|( 1
x )| ,

∣∣( 1
y

)∣∣})k (·, dx, dy) ,

with h = EP

[
g
(
max

{∣∣( 1
S1

)∣∣ , ∣∣( 1
S1

)∣∣}) |F0

]−1
and

ER [|u (l (v))| |F0] (·) ≤ h (·)
(

1

g(|v (·) |)
+ c

)
.

By dominated convergence, using the estimate from above, it follows
that we can find a version of ER [u (l (a)) |F0] such that for every ω ∈ Ω

R2 3 a 7→ ER [u (l (a)) |F0] (ω)

is finite and continuous. From

ER [|u (l (v))| |F0] <∞, for all v ∈ L0 (−K0,F0) ,

we obtain

ER [u′ (l (v)) |F0] ≤ ER

[
u (l (v)− 1)− u (l (v))

−1

∣∣∣∣F0

]

= ER [u (l (v)) |F0]− ER

[
u (l (v + ( −1

0 )))

∣∣∣∣F0

]
<∞

for all v ∈ L0 (−K0,F0).

Now, if we switch to an equivalent probability measure Assumption 2.4
is still statisfied. So we can without loss of generality assume that

R2 3 a 7→ EP [u (l (a)) |F0]

is pointwise finite and continuous as well as

EP [|u (l (v))| |F0] <∞, EP [u′ (l (v)) |F0] <∞

for all v ∈ L0 (−K0,F0).
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b) If the ask price at time 0 is integrable and (S0, S1) is a process lying
in the bid ask spread, i.e. S0 ∈

[
S0, S0

]
, S1 ∈

[
S1, S1

]
, such that

EQ [S1|F0] = S0 where the density dQ
dP

satisfies EP

[
dQ
dP
|F0

]
∈ L∞ (P),

then clearly S0, S1 ∈ L1 (Q).

Again the assumption S0 ∈ L1 (P) is without loss of generality as we
can switch to an equivalent probabilty measure with density(

1 + S0

)−1

EP

[(
1 + S0

)−1
] .

We come to the main results for a single-period market.

2.2.2 Main results

Theorem 2.9. Suppose that the single-period bid-ask process
(
S0, S0, S1, S1

)
satisfies Assumption 2.4. Then:

a) There exists a portfolio v̂ = (v̂0, v̂1) ∈ L0 (−K0,F0) such that

E [u (l (v̂)) |F0] = ess sup
v∈L0(−K0,F0)

E [u (l (v)) |F0] .

Further, v̂ can be chosen such that it satisfies P0v̂ = 0 where P0 de-
notes the F0-measurable, projection-valued mapping from Lemma 2.6
corresponding to N.

b) Under the equivalent probabilty measure Q̂, where

dQ̂

dP
:=

u′ (l (v̂))

E [u′ (l (v̂)) |F0]
,

the bid-ask process
(
S0, S0, S1, S1

)
satisfies

EQ̂ [S1|F0] = S0 on
{
v̂1 > 0

}
,

EQ̂

[
S1|F0

]
= S0 on

{
v̂1 < 0

}
,

EQ̂ [S1|F0] ≤ S0, EQ̂

[
S1|F0

]
≥ S0 on

{
v̂1 = 0

}
.

Hence, there exists a consistent price-process
(

1
Ẑ1
0

)
,
(
Ẑ0
1

Ẑ1
1

)
such that
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Ẑ0
1 = dQ̂

dP
and

Ẑ1
0 = S0,

Ẑ1
1

Ẑ0
1

= S1 on
{
v̂1 > 0

}
,

Ẑ1
0 = S0,

Ẑ1
1

Ẑ0
1

= S1 on
{
v̂1 < 0

}
.

Proof. a) Denote by P0 the F0-measurable, projection-valued mapping
corresponding to N from Lemma 2.6. Then, for all v ∈ L0 (R2,F0),
we have P0v ∈ N, i.e.

P0v ∈ −K0 ∩K0 and P0v ·
(

1
S1

)
= 0, P0v ·

(
1
S1

)
= 0.

So, if v ∈ L0 (−K0,F0), then

v − P0v ∈ −K0 and l (v − P0v) = l (v) .

For every v ∈ L0 (−K0,F0) we have

E [u (l (v − P0v)) |F0] = E [u (l (v)) |F0] .

Therefore, it is enough to consider only portfolios v ∈ L0 (−K0,F0)
which satisfy P0v = 0.
Put R := id − P0 and C := R (−K0). Since R is linear and −K0 is a
polyhedral cone which is generated by(

−S0
1

)
,
(
S0
−1

)
, ( −1

0 ) , ( 0
−1 )

C is generated by

R
(
−S0

1

)
, R
(
S0
−1

)
, R ( −1

0 ) , R ( 0
−1 ) .

Hence
L0 (C,F0) =

{
Rv : v ∈ L0 (−K0,F0)

}
.

By Remark 2.8 we can assume that we can find a version of E [u (l (a)) |F0] , a ∈
R2, such that for all ω ∈ Ω

a 7→ E [u (l (a)) |F0] (ω)

is finite and continuous. Define for ω ∈ Ω, a ∈ R2

ϕ(ω, a) :=

{
E [u (l (a)) |F0] (ω) a ∈ C(ω)

−∞ a /∈ C(ω)
.
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Note that, if v ∈ L0 (C,F0), by disintegration

ϕ(·, v) = E [u (l (v)) |F0] .

For almost every ω an F0-measurable maximizer v∗(ω) can be found:

ϕ satisfies the properties of Lemma ??, i.e. ϕ(ω, ·) is concave, contin-
uous on C(ω) and ϕ(·, a) is F0-measurable.

We claim that F (ω) = ∅ for almost every ω ∈ Ω where

F (ω) =
{
a ∈ Rd : |a| = 1, lim

s→∞
ϕ (ω, sa) > −∞

}
.

Indeed, if {F 6= ∅} has postive measure, then the F0-measurable selec-
tor of F , α, satisfies P (α 6= 0) > 0 and α ∈ C.

From
lim
s→∞

E [u (l (sα)) |F0] (ω) > −∞, for every ω ∈ Ω,

it follows with Fatou’s Lemma

−∞ < lim
s→∞

E [u (l (sα)) |F0] ≤ E
[

lim
s→∞

u (sl (α)) |F0

]
.

Since lim
s→−∞

u(s) = −∞ we must have

P (l (α) < 0) = 0,

i.e. α ∈ N. It follows that P0α = α, but also we have Rα = α. Both
relations hold simultaneously only if α = 0. Hence F (ω) = ∅ for almost
every ω ∈ Ω and for those ω a maximiser v̂(ω) ∈ C (ω) can be found
by Lemma ??.

We get v̂ = (v̂0, v̂1) ∈ L0 (−K0,F0) , P0v̂ = 0 and

E [u (l (v̂)) |F0] = ess sup
v∈L0(−K0,F0)

E [u (l (v)) |F0] .

b) Now, fix any y ∈ L0 (−K0,F0) and note that the function

R 3 h 7→ u (l (v̂ + hy))

is concave which implies that both

(0,∞) 3 h 7→ u (l (v̂ + hy))− u (l (v̂))

h
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and

(−∞, 0) 3 h 7→ u (l (v̂ + hy))− u (l (v̂))

h

are decreasing functions.

By the monotone convergence theorem and optimality of v̂ we get the
following first order condition:

0 ≥ lim
h↓0

E [u (l (v̂ + hy))− u (l (v̂)) |F0]

h

= E

[
lim
h↓0

u (l (v̂ + hy))− u (l (v̂))

h

∣∣∣∣F0

]
.

On {v̂1 > 0} we have, when h > 0 is small enough,

l (v̂ + hy) = (v̂ + hy) ·
(

1
S1

)
,

consequently

0 ≥ E

[
lim
h↓0

u (l (v̂ + hw))− u (l (v̂))

h

∣∣∣∣F0

]
= E

[
lim
h↓0

u
(
(v̂ + hw) ·

(
1
S1

))
− u

(
v̂ ·
(

1
S1

))
h

∣∣∣∣F0

]
= E

[
u′ (l (v̂))w ·

(
1
S1

) ∣∣F0

]
.

For w =
(
−S0

1

)
this yields the following inequality

0 ≥ E
[
u′ (l (v̂))

(
S1 − S0

)
|F0

]
which is in fact an equality: On {v̂1 > 0} we have by optimality v̂ =
v̂1
(
−S0

1

)
such that for −v̂1 < h < 0

v̂ + h
(
−S0

1

)
∈ −K0

and
l
(
v̂ + h

(
−S0

1

))
=
(
v̂ + h

(
−S0

1

))
·
(

1
S1

)
.

Again by the monotone convergence theorem and optimality of v̂ we
get on {v̂1 > 0}

0 ≤ lim
h↑0

E
[
u
(
l
(
v̂ + h

(
−S0

1

)))
− u (l (v̂)) |F0

]
h

= E
[
u′ (l (v̂))

(
S1 − S0

)
|F0

]
.
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Altogether on {v̂1 > 0} we have

0 = E
[
u′ (l (v̂))

(
S1 − S0

)
|F0

]
which is, by Bayes’ formula, the same as

EQ̂ [S1|F0] = S0, where
dQ̂

dP
=

u′ (l (v̂))

E [u′ (l (v̂)) |F0]
.

On {v̂1 < 0} we proceed similarly. By optimaliy v̂ = |v̂1|
(
S0
−1

)
such

that for h small enough

v̂ + h
(
S0
−1

)
∈ −K0

and
l
(
v̂ + h

(
S0
−1

))
=
(
v̂ + h

(
S0
−1

))
·
(

1
S1

)
.

Now, taking the limit for h ↓ 0 and h ↑ 0, using the monotone conver-
gence theorem and optimality of v̂ we get on {v̂1 < 0}

0 = lim
h→0

E
[
u
(
l
(
v̂ + h

(
S0
−1

)))
− u (l (v̂)) |F0

]
h

= E
[
u′ (l (v̂))

(
S0 − S1

)
|F0

]
or equivalently

EQ̂

[
S1|F0

]
= S0.

On {v̂1 = 0} it follows that l (v̂ + hy) = l (v̂) + hl (y), hence

0 ≥ lim
h↓0

E [u (l (v̂ + hy))− u (l (v̂)) |F0]

h

= E

[
lim
h↓0

u (l (v̂) + hl (y))− u (l (v̂))

h

∣∣∣∣F0

]
= E [u′ (v̂) l (y) |F0]

for every y ∈ L0 (−K0,F0). This is equivalent to

S0 ≥ EQ̂ [S1|F0] and EQ̂

[
S1|F0

]
≥ S0.

On {v̂1 = 0}
(
S0, S1

)
is a super- and

(
S0, S1

)
a submartingale. The

submartingale starts below the supermartingale and ends above the
supermartingale, therefore there must be a martingale in between. For
this we define

S0 := max
{
S0,EQ̂ [S1|F0]

}
38



(
or any convex combination between max

{
S0,EQ̂ [S1|F0]

}
and

min
{
S0,EQ̂

[
S1|F0

]})
. Then

S0 ≤ S0 ≤ S0 and EQ̂ [S1|F0] ≤ S0 ≤ EQ̂

[
S1|F0

]
.

We put

λ :=
1

2
1{EQ̂[S1|F0]=EQ̂[S1|F0]}

+
S0 − EQ̂

[
S1|F0

]
EQ̂ [S1|F0]− EQ̂

[
S1|F0

]1{EQ̂[S1|F0]<EQ̂[S1|F0]},

S1 := λS1 + (1− λ)S1

and conclude that
EQ̂ [S1|F0] = S0.

Altogether there exists a consistent price-process
(

1
Ẑ1
0

)
,
(
Ẑ0
1

Ẑ1
1

)
such

that Ẑ0
1 = dQ̂

dP
and

Ẑ1
0 = S0,

Ẑ1
1

Ẑ0
1

= S1 on
{
v̂1 > 0

}
,

Ẑ1
0 = S0,

Ẑ1
1

Ẑ0
1

= S1 on
{
v̂1 < 0

}
.

We want to show that the optimal portfolio v̂ is unique when P0v̂ = 0.

Remark 2.10. The optimal portfolio v̂ is unique when P0v̂ = 0. Indeed, let
be ŵ ∈ L0 (−K0,F0) such that P0ŵ = 0 and

E [u (l (v̂)) |F0] = E [u (l (ŵ)) |F0] .

We consider the portfolio 1
2

(v̂ + ŵ) and deduce

E

[
u

(
l

(
1

2
(v̂ + ŵ)

)) ∣∣∣∣F0

]
≥ E

[
u

(
1

2
(l (v̂) + l (ŵ))

) ∣∣∣∣F0

]
≥ 1

2
(E [u (l (v̂)) |F0] + E [u (l (ŵ)) |F0])

= E [u (l (v̂)) |F0] .
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If P (l (v̂) 6= l (ŵ)) > 0, the last inequality cannot be a an equality because u
is strictly concave. For the two maxima it follows l (v̂) = l (ŵ).

We partition Ω into several events and show that v̂ = ŵ on all those
events. First, we look at the event B := {v̂1 ≥ ŵ1 ≥ 0} and get

l (1B (v̂ − ŵ)) = 1B (v̂ − ŵ) ·
(

1
S1

)
= 1B (l (v̂)− l (ŵ)) = 0.

Since 1B (v̂ − ŵ) ∈ −K0, it follows that 1B (v̂ − ŵ) ∈ N, i.e.

P0 (1B (v̂ − ŵ)) = 1B (v̂ − ŵ) .

This is the same as 1B (v̂ − P0v̂) = 1B (ŵ − P0ŵ), hence

1B v̂ = 1Bŵ.

Of course, the events {ŵ1 ≥ v̂1 ≥ 0}, {ŵ1 ≤ v̂1 ≤ 0} or {v̂1 ≤ ŵ1 ≤ 0} can
be treated in the same way.
Next, we look at B := {v̂1 > 0, ŵ1 < 0} (resp. {v̂1 < 0, ŵ1 > 0}) and show
that this is a null set. We have 1BS1 = 1BS1, otherwise

P

(
l

(
1

2
(1B v̂ + 1Bŵ)

)
>

1

2
(l (1B v̂) + l (1Bŵ))

)
> 0

and, since u is strictly increasing,

P

(
1BE

[
u

(
l

(
1

2
(v̂ + ŵ)

)) ∣∣∣∣F0

]
> 1BE [u (l (v̂)) |F0]

)
> 0

contradicting the opimality of v̂. Similarly to the first event {v̂1 ≥ ŵ1 ≥ 0}
we proceed on B ∩

{
S0 = S0

}
where we also have v̂ − ŵ ∈ −K0. From

l (v̂ − ŵ) = l (v̂) − l (w) = 0 it develops, using the property P0v̂ = 0 and
P0ŵ = 0, that

v̂ = ŵ on B ∩
{
S0 = S0

}
.

B ∩
{
S0 = S0

}
must be a null set. It remains to consider the event B ∩{

S0 < S0

}
. Since the costs are strict here at time 0 we can write

1

2
(v̂ + ŵ) = y + a ( −1

0 )

for some y ∈ L0 (−K0,F0) and some F0-measurable a > 0. Clearly l (y + a ( −1
0 )) =

l (y)− a so that

E [u (y) |F0] ≥ E

[
u

(
l

(
1

2
(v̂ + ŵ)

)) ∣∣∣∣F0

]
≥ E [u (l (v̂)) |F0]

and the first inequality is strict on B ∩
{
S0 < S0

}
. It follows that B ∩{

S0 < S0

}
is a null set. We conclude that v̂ = ŵ.
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The results in Theorem 2.9 are not enough for our later purpose when we
want construct a consistent price process in a multi-period model. We have
to refine them in the next corollary.

Corollary 2.11. Let v̂ = (v̂0, v̂1) ∈ L0 (−K0,F0) be an optimal portfolio,
i.e.

E [u (l (v̂)) |F0] = ess sup
v∈L0(−K0,F0)

E [u (l (v)) |F0] ,

such that P0v̂ = 0, where P0 denotes the F0-measurable, projection-valued
mapping from Lemma 2.6 corresponding to N. Then

a)

S0 ∈ (inf0 S1, sup0 S1) on
{
v̂1 > 0

}
,

S0 ∈
(
inf0 S1, sup0 S1

)
on
{
v̂1 < 0

}
,

S0 > inf0 S1, S0 < sup0 S1 on Ac ∩
{
v̂1 = 0

}
,

where A is the biggest F0-measurable set such that

S0 = S0 = S1 = S1 on A,

i.e. A =
{
E
[∣∣S1 − S0

∣∣ |F0

]
= 0
}

=
{
E
[∣∣S0 − S1

∣∣ |F0

]
= 0
}

.

b) Further, we have

ri
[
S0, S0

]
∩ ri

[
inf0 S1, sup0 S1

]
6= ∅,

and there exists a strictly consistent price process.

Proof. Let v̂ be an optimal portfolio with P0v̂ = 0. As in the proof of
Theorem 2.9 we set R := id− P0.

a) On {v̂1 > 0} we have by Theorem 2.9 b)

EQ̂ [S1|F0] = S0,
dQ̂

dP
=

u′ (l (v̂))

E (u′ (l (v̂)) |F0)
.

Now

inf0 S1 = EQ̂ [inf0 S1|F0] ≤ EQ̂ [S1|F0] ≤ EQ̂ [sup0 S1|F0] = sup0 S1

implies
S0 ∈ [inf0 S1, sup0 S1] .
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We look at D := {v̂1 > 0} ∩
{
S0 = inf0 S1

}
and consider the portfolio

w := 1Dv̂. Since w = 1Dv̂
1
(
−S0

1

)
and S0 ≤ S1 ≤ S1 on D, we get

w ·
(

1
S1

)
≥ 0, w ·

(
1
S1

)
≥ 0.

This implies w ∈ N, i.e. P0w = w. Then

0 = Rw = R (1Dv̂) = 1D (Rv̂) = 1Dv̂.

Hence P (D) = 0 and on {v̂1 > 0} it is necessary that

S0 > inf0 S1.

Next we look at D := {v̂1 > 0} ∩
{
S0 = sup0 S1

}
and consider w :=

1Dv̂. On D we have S1 ≤ S0 which implies l (w) ≤ 0. But v̂ is a
maximum for

L0 (−K0,F0) 3 v 7→ E [u (l (v)) |F0] ,

thus optimality of v̂ enforces

l (w) = 0, i.e. w ∈ N.

Again 0 = Rw = R (1Dv̂) = 1D (Rv̂) = 1Dv̂. Thus on {v̂1 > 0} it is
necessary that

S0 < sup0 S1.

Altogether on {v̂1 > 0} we have

S0 ∈ (inf0 S1, sup0 S1) .

On {v̂1 < 0} we proceed in the same manner. The martingale property

EQ̂

[
S1|F0

]
= S0

implies
S0 ∈

[
inf0 S1, sup0 S1

]
.

We conside the portfolio w := 1Dv̂, whereD := {v̂1 < 0}∩
{
S0 = sup0 S1

}
and calculate

w ·
(

1
S1

)
= 1D

∣∣v̂1
∣∣ ( S0
−1

)
·
(

1
S1

)
≥ 0, w ·

(
1
S1

)
≥ 0.

This implies w ∈ N, which leads to 0 = Rw = 1Dv̂, i.e. on {v̂1 < 0}
we have S0 < sup0 S1.
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Next, we consider D := {v̂1 < 0} ∩
{
S0 = inf0 S1

}
and calculate for

w := 1Dv̂ that l (w) ≤ 0. Optimality of v̂ enforces l (w) = 0, so that
w ∈ N and 0 = Rw = 1Dv̂.

Altogether on {v̂1 < 0} we have

S0 ∈
(
inf0 S1, sup0 S1

)
.

In the last case we consider Ac ∩ {v̂1 = 0}, where
A =

{
E
[∣∣S1 − S0

∣∣ |F0

]
= 0
}

=
{
E
[∣∣S0 − S1

∣∣ |F0

]
= 0
}

. Clearly, for

any C ∈ F0, C ⊂ Ac ∩ {v̂1 = 0}, with S0 = S1 on C or S0 = S1 on C,
it follows that P (C) = 0.

From
EQ̂ [S1|F0] ≥ inf0 S1

and
S0 ≥ EQ̂ [S1|F0] on

{
v̂1 = 0

}
we get

S0 = S1

on C := Ac ∩ {v̂1 = 0} ∩
{
S0 = inf0 S1

}
.

Thus, P (C) = 0, i.e. on Ac ∩ {v̂1 = 0} we get

S0 > inf0 S1.

Next, we look at C := Ac∩{v̂1 = 0}∩
{
S0 = sup0 S1

}
and deduce from

S0 ≤ EQ̂

[
S1|F0

]
≤ sup0 S1 on

{
v̂1 = 0

}
that

S0 = S1 on C.

Thus, P (C) = 0, i.e.
S0 < sup0 S1

on Ac ∩ {v̂1 = 0}.
Altogether, when it is optimal not to trade, we get necessarily that

S0 > inf0 S1 and S0 < sup0 S1 on Ac.

b) We have the following conditions

S0 ∈ (inf0 S1, sup0 S1) on
{
v̂1 > 0

}
,

S0 ∈
(
inf0 S1, sup0 S1

)
on
{
v̂1 < 0

}
,

S0 > inf0 S1, S0 < sup0 S1 on Ac ∩
{
v̂1 = 0

}
,
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where A =
{
E
[∣∣S1 − S0

∣∣ |F0

]
= 0
}

=
{
E
[∣∣S0 − S1

∣∣ |F0

]
= 0
}

.
By Lemma 2.6 we have

S0 = S0 = S1 = S1 on A,

hence
S0 = S0 = inf0 S1 = sup0 S1 on A.

All that yields

ri
[
S0, S0

]
∩ ri

[
inf0 S1, sup0 S1

]
6= ∅.

By Lemma 2.2 for any F0-measurable Z0 = (Z0
0 , Z

1
0) with

Z0
0 > 0, Z1

0 > 0 and
Z1

0

Z0
0

∈ ri
[
S0, S0

]
∩ ri

[
inf0 S1, sup0 S1

]
we can find an F1-measurble Z1 = (Z0

1 , Z
1
1) such that

Z0
1 > 0, Z1

1 > 0,
Z1

1

Z0
1

∈ ri
[
S1, S1

]
and

Z0 = E [Z1|F0] .

Integrabililty of Z0 and Z1 is assured when we replace Z0 by 1
Z0
0+Z1

0

(
Z0
0

Z1
0

)
and Z1 by 1

Z0
0+Z1

0

(
Z0
1

Z1
1

)
.

We want to comment the results of Corollary 2.11.

Remark 2.12. a) The conditions

S0 ∈ (inf0 S1, sup0 S1) on
{
v̂1 > 0

}
,

S0 ∈
(
inf0 S1, sup0 S1

)
on
{
v̂1 < 0

}
,

S0 > inf0 S1, S0 < sup0 S1 on Ac ∩
{
v̂1 = 0

}
,

are very plausible and easily seen to be true with heuristic arguments.
For example when it is optimal to buy the second asset {v̂1 > 0}, the
probability that S1 > S0 given F0 should be positive otherwise the
investor would be better off when she decides not to trade. And since
there are no arbitrage oportunities there should always be a chance
that the investor incurs a loss, i.e. the probability that S0 > S1 given
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F0 should also be positive. Similarly one argues when it is optimal to
sell the second asset {v̂1 < 0}. Now, in the last case Ac ∩{v̂1 = 0} it is
optimal not to trade and the bid-ask process always shows a random
behavior in the sense that there are no non-trivial events B ∈ F0 on
which S0 = S1 or S0 = S0. Here both buying and selling the second
asset should incur a loss simultaneously in every state of the world.
Hence the probabilty that S0 > S1 and S0 < S1 given F0 should be
positive.

b) For a single-period model we have seen that Assumption 2.4 implies
existence of a strictly consistent price process. By the ’easy’ direction
in the FTAP the bid-ask process

(
S0, S0, S1, S1

)
satisfies the robust no-

arbitrage condition, hence Assumption 2.4 and the no-arbitrage condi-
tion are equivalent.

In the multidimensional case the analog result of Corollary 2.11 is not
available, so we will have to proceed differently there. We will show
directly that Assumption 2.4 implies the robust no-arbitrage condition.
This will allow us to maximize expected utility in a market with a
reduced bid-ask spread.

2.3 Multi-period model

In markets without transaction costs the problem to find an equivalent mar-
tingale measure for the multi-period model is simplified by looking at each
single-period model separately. This is due to the fact that each single-period
model is free of arbitrage opportunities if and only if the multi-period model
is free of arbitrage opportunities.

This equivalence breaks down in the presence of proportional transaction
costs.

Example 2.13. The following two-period model
(
S0, S0, S1, S1, S2, S2

)
S0 = 1, S0 = 3, S1 = 2, S1 = 5, S2 = 4, S2 = 6

contains an arbitrage opportunity
(
S2 − S0 > 0

)
but the single-period mod-

els
(
S0, S0, S1, S1

)
and

(
S1, S1, S2, S2

)
satisfy the robust no-arbitrage con-

dition. Since the costs are strict one can easily extend this deterministic
example to a random setting.

In an example as above we can find an optimal portfolio for the market(
S0, S0, S1, S1

)
and an optimal portfolio for the market

(
S1, S1, S2, S2

)
. In
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both cases we can deduce from the first order condition a consistent price
process for both single-period models. But in contrast to frictionless mar-
kets the two consistent price processes cannot be concatenated to yield a
consistent price process for the two-period model.

A first attempt to construct a consistent price process in a two-period
model (S0, S0, S1, S1, S2, S2) given that we have already found a consistent
price process for the last period (Z1, Z2), could be to maximize

E
[
u
(
v0 ·

(
1
S1

))]
→ MAX, v0 ∈ L0(−K0,F0),

where S1 = Z1
1/Z

0
1 . If we could succeed in finding a maximizer, the consistent

price process coming from the first order condition, (Ẑ0, Ẑ1), would already
be concatenated with (Z1, Z2), i.e. Ẑ1

1/Ẑ
0
1 = Z1

1/Z
0
1 and Ẑ1 = cZ1 where

c > 0 is a normalizing constant. Of course, we would have to pick S1 in
such a way that (S0, S0, S1) is free of arbitrage opportunities otherwise a
maximizer cannot exist. Finding such an S1 seems a little too much to ask.
But, if S1 is chosen in a ’least favorable’ way for the investor, then arbitrage
opportunities are ruled out and a maximum must exist. Thus, we try to
maximize

inf
S1∈M1

E
[
u
(
v0 ·

(
1
S1

))]
→ MAX, v0 ∈ L0(−K0,F0),

where M1 =
{
Z1

1/Z
0
1 : (Z1, Z2) consistent price process

}
. We show that

sup
v0∈L0(−K0,F0)

inf
S1∈M1

E
[
u
(
v0 ·

(
1
S1

))]
= sup

v0∈L0(−K0,F0)

E [u (l1(v0))] ,

where

l1(v0
0, v

1
0) =

{
v0

0 + v1
0 max {S1, inf1 S2} , v1

0 ≥ 0

v0
0 + v1

0 min
{
S1, sup1 S2

}
, v1

0 ≤ 0.

Hence, we replace S1 by max {S1, inf1 S2} and S1 by min
{
S1, sup1 S2

}
. Con-

ditional on the information at time 1 the investor expects the worst case to
happen for the prices S2, S2. E.g. when the investor buys the second asset
at time 0 she wants to sell it at the best bid price at time 1 expecting the
worst case to happen at time 2. In this way we will reduce to a single-period
market with more investment opportunities than the original single-period
market. This will ’replace’ the missing investment opportunities from the
future. As in Rogers’ original work [20] our proof is based on a backwards
induction. Motivated by this discussion and Lemma 2.2 we are led to the
following recursion.
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On a filtered probability space (Ω,F, (Ft)
T
t=0,P) we have a two-dimensional,

(Ft)
T
t=0-adapted process (St, St)

T
t=0, where 0 < St ≤ St for every t = 0, . . . , T .

We define XT := ST , YT := ST and, for every t = T − 1, . . . , 0,

Xt := max {St, inftXt+1} ,
Yt := min

{
St, supt Yt+1

}
,

lt(v) := min {v · ( 1
Xt ) , v · ( 1

Yt )} , v ∈ R2.

As before we fix a utility function u : R→ R such that u is continuously
differentiable, strictly concave, strictly increasing and bounded from above.

Proposition 2.14. Fix t ∈ {1, . . . , T}, suppose that there exists a strictly
consistent price process for (Sr, Sr)

T
r=t and put

Mt =
{
Z1
t /Z

0
t : (Zr)

T
r=t a consistent price process for (Sr, Sr)

T
r=t

}
.

Then

E [u (lt (v)) |Ft−1] = ess inf
St∈Mt

E [u (v · ( 1
St )) |Ft−1] .

Proof. Let (Zr)
T
r=t = (Z0

r , Z
1
r )
T
r=t be a strictly consistent price process for the

bid-ask process
(
Sr, Sr

)T
r=t

, i.e. (Zr)
T
r=t is a martingale and Z1

r

Z0
r
∈ ri

[
Sr, Sr

]
for every r = t, . . . , T . By Lemma 2.2 a) we have

Z1
T

Z0
T

∈ ri [XT , YT ]⇒
Z1
T−1

Z0
T−1

∈ ri
[
infT−1XT , supT−1 YT

]
,

hence

Z1
T−1

Z0
T−1

∈ ri
[
ST−1, ST−1

]
∩ ri

[
infT−1XT , supT−1 YT

]
= ri [XT−1, YT−1] .

When we repeat this procedure until t, we end up with

Z1
r

Z0
r

∈ ri [Xr, Yr] for every r = t, . . . , T.

When (Zr)
T
r=t is only a consistent price process the same statement holds

without taking the relative interior. Thus, St ∈ [Xt, Yt] when St ∈ Mt. It
follows lt (v) ≤ v · ( 1

St ) and hence

E [u (lt (v)) |Ft−1] ≤ ess inf
St∈Mt

E [u (v · ( 1
St )) |Ft−1] .
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For the reverse inequality assume that v1 ≥ 0, so that lt(v) = v0 + v1Xt. By
Lemma 2.2 b) we can find a sequence of strictly consistent price processes

(Zn
r )Tr=t such that Snt =

Zn,1t

Zn,0t

decreases towards Xt. By monotone convergence

it follows

E [u (lt (v)) |Ft−1] = lim
n→∞

E
[
u
(
v ·
(

1
Snt

))
|Ft−1

]
≥ ess inf

St∈Mt

E [u (v · ( 1
St )) |Ft−1] .

When v1 ≤ 0, we take Snt to be increasing towards Yt.

The following lemma is crucial for the main theorem. It assures that the
single-period market consisting of

(
St−1, St−1

)
and (Xt, Yt) satisfies Assump-

tion 2.4.

Lemma 2.15. Assume (S0, S0, . . . , ST , ST ) satisfies the robust no-arbitrage
condition. Fix t ∈ {1, . . . , T} and suppose that there is a strictly consistent
price process for (Sr, Sr)

T
r=t.

Then

N :=
{
v ∈ L0 (−Kt−1,Ft−1) : v · ( 1

Xt ) ≥ 0, v · ( 1
Yt ) ≥ 0

}
is a subspace closed with respect to convergence in probability. Especially

N =
{
v ∈ L0 (−Kt−1 ∩Kt−1,Ft−1) : v · ( 1

Xt ) = 0, v · ( 1
Yt ) = 0

}
and for real-valued Ft−1-measurable h and v ∈ N we have hv ∈ N.

The lemma will be proved in the last section of this chapter. We will take
it for granted and use it now.

2.3.1 Main theorem

Theorem 2.16. Assume that (S0, S0, . . . , ST , ST ) satisfies the robust no-
arbitrage condition. Fix t ∈ {1, . . . , T} and suppose that there is a strictly
consistent price process for (Sr, Sr)

T
r=t.

Then, there exists a portfolio v̂t−1 ∈ L0 (−Kt−1,Ft−1) such that

E [u (lt (v̂t−1)) |Ft−1] = ess sup
v∈L0(−Kt−1,Ft−1)

E [u (lt (v)) |Ft−1]

and there exists a strictly consistent price process for
(
Sr, Sr

)T
r=t−1

.

Especially, there exists a strictly consistent price process for (Sr, Sr)
T
r=0.
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Proof. By Lemma 2.15 we can apply Theorem 2.9 to the single-period model
(St−1, St−1, Xt, Yt) to find an optimal portfolio v̂t−1. Then, Corollary 2.11
implies that Xt−1 ≤ Yt−1 and

ri
[
St−1, St−1

]
∩ ri

[
inft−1Xt, supt−1 Yt

]
= ri [Xt−1, Yt−1] .

Since there exists a strictly consistent price process for (Sr, Sr)
T
r=t by as-

sumption, we have Xr ≤ Yr and

ri
[
Sr, Sr

]
∩ ri [infrXr+1, supr Yr+1] = ri [Xr, Yr]

for all r = t− 1, . . . , T .
We can take any Ft−1-measurable Z0

t−1 > 0, Z1
t−1 > 0 such that

Z1
t−1

Z0
t−1

∈ ri [Xt−1, Yt−1]

and we find by Lemma 2.2 Fr-measurable Z0
r > 0, Z1

r > 0, r = t, . . . , T , such
that

Z1
r

Z0
r

∈ ri [Xr, Yr]

and
E [Zr|Ft−1] = Zr−1.

To ensure integrability, we replace every Zr by 1
Z0
t−1+Z1

t−1

(
Z0
r

Z1
r

)
.

Remark 2.17. In [17] Ràsonyi implements a similar inductive argument in
the presence of strict transaction costs under the strict no-arbitrage condi-
tion. There, he replaces, going backwards in time, G∗t by

G∗t ∩ E
[
G∗t+1 ∩

[
. . .E

[
KT−1 ∩ E

[
G∗T ∩B1(0)|FT−1

]
|FT−2

]
. . .
]
|Ft
]

and shows indirectly, that the interior of this intersection is non-empty. He
applies methods from the theory of random sets such as conditional expecta-
tion of random sets and measurable selection in combination with separation
arguments in finite dimensional spaces. In our approach it follows directly
from the existence of the optimal portfolio that this intersection is non-empty.

In the same spirit as Ràsonyi’s is Rokhlin’s work [23], compare also [21]
and [22]. Instead of conditional expectation for random sets he introduces
the notion of the regular conditional upper distribution of a random set and
its support. We will come back to that in Chapter 3 when we deal with the
multidimensional case.
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We want to comment on the relationship between the single-period con-
sistent price process coming from the first-order condtion and the consistent
price processes for the multi-period market. In the next remark and the fol-
lowing example we will make clear why the first-order condition in Theorem
2.9 b) is not enough and why we need the finer results from Corollary 2.11.

Remark 2.18. For every single-period market
(
St−1, St−1, Xt, Yt

)
we have

solved

E [u (lt (v̂t−1)) |Ft−1] = ess sup
v∈L0(−Kt−1,Ft−1)

E [u (lt (v)) |Ft−1] .

and found a consistent price process Ẑt−1 = (1, Ẑ1
t−1), Ẑt = (Ẑ0

t , Ẑ
1
t ) for the

single-period market (St−1, St−1, Xt, Yt) where

Ẑ0
t :=

u′ (lt (v̂t−1))

E [u′ (lt (v̂t−1)) |Ft−1]
,

Ẑ1
t−1 :=


St−1, v̂2

t−1 > 0

St−1, v̂2
t−1 < 0

St−1, v̂2
t−1 = 0

,
Ẑ1
t

Ẑ0
t

:=


Xt, v̂2

t−1 > 0

Yt, v̂2
t−1 < 0

St, v̂2
t−1 = 0

for some appropriate St−1 ∈ [St−1, St−1], St ∈ [Xt, Yt].

Since
ri
[
St−1, St−1

]
∩ ri

[
inft−1Xt, supt−1 Yt

]
6= ∅

and
[St−1, St−1] ∩ [E[Ẑ0

tXt|Ft−1],E[Ẑ0
t Yt|Ft−1]] 6= ∅

we can find St−1 such that

St−1 ∈ [St−1, St−1] ∩ [E[Ẑ0
tXt|Ft−1],E[Ẑ0

t Yt|Ft−1]] ∩ ri[inft−1Xt, supt−1 Yt].

Furthermore, we have

St−1 ∈
(
inft−1Xt, supt−1Xt

)
on
{
v̂2
t−1 > 0

}
,

St−1 ∈
(
inft−1 Yt, supt−1 Yt

)
on
{
v̂2
t−1 < 0

}
,

i.e. Z2
t−1 ∈ ri

[
inft−1Xt, supt−1 Yt

]
.

By Lemma 2.2 there exists a Zt = (Z1
t , Z

2
t ) such that

Z2
t

Zt
1

∈ ri [Xt, Yt] and E [Zt|Ft−1] = Zt−1.
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As
ri [Xs, Ys] = ri

[
Ss, Ss

]
∩ ri [infsXs+1, sups Ys+1]

for every s = t, . . . , T − 1, the pair (Ẑt−1, Zt) can be extended to a consistent
price process (Ẑt−1, (Zs)

T
s=t) for the market (St−1, St−1, . . . , ST , ST ).

Of course Ẑt 6= Zt in general, and we will see in the next example that
the pair (Ẑt−1, Ẑt) cannot be extended and the ’ess inf’ in Proposition 2.14
cannot be attained.

Example 2.19. We consider the following two period market.
On a probability space (Ω,F,P) let be R1 and R2 two strictly positive,

independent random variables and λ, µ ∈ (0, 1). We set F0 = {∅,Ω}, F1 =
σ (R1), F2 = σ (R1, R2) and

S0 = 1− λ S0 = 1 + λ

S1 = (1− λ)R1 S1 = (1 + λ)R1

S2 = (1− µ)R1R2 S2 = (1 + µ)R1R2.

For R2 we assume that

1− λ
1− µ

< inf0R2 <
1 + λ

1− µ
and P (R2 > M) > 0

for all M > 0, i.e. sup0R2 =∞. Then, since R1 and R2 are independent,

inf1 S2 = (1− µ) (inf0R2)R1, sup1 S2 =∞,

i.e.
X1 = (1− µ) (inf0R2)R1, Y1 = S1.

If R1 is chosen such that

1− λ
1 + λ

< inf0R1 <
1 + λ

(1− µ) inf0R2

and P (R1 > M) > 0

for all M > 0, then

S0 ∈ (inf0X1,∞) , S0 /∈ (inf0 Y1,∞) .

Hence, if it is optimal to trade at time 0 then it is optimal to buy the second
asset. We can assure trading if we assume that

E [X1] > S0, i.e. E [R1] >
1 + λ

(1− µ) inf0R2

.
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With the notation from the previous remark we have

Ẑ1
1

Ẑ0
1

= X1.

But for every equivalent probability measure Q2 and every S2 ∈
[
S2, S2

]
we

have
EQ2 [S2|F1] ≥ EQ2 [S2|F1] = (1− µ)R1EQ2 [R2] > X1,

hence there is no Z2 ∈ L0 (G∗2 \ {0} ,F2) such that

E [Z2|F1] = Ẑ1.

In the one-dimensional setting we can describe nicely the set of all strictly
consistent price processes.

Corollary 2.20. a) If (Zt)
T
t=0 = (Z0

t , Z
1
t )
T
t=0 is a strictly consisent price

process for
(
St, St

)T
t=0

, then

Z1
t

Z0
t

∈ ri [Xt, Yt] = ri
[
St, St

]
∩ ri [inftXt+1, supt Yt+1]

for every t = 0, . . . , T .

b) If
(
St, St

)T
t=0

satisfies the robust no-arbitrage condition, then any F0-

measurable Z0
0 , Z

1
0 > 0 with

Z1
0

Z0
0
∈ ri [X0, Y0] can be extended to a strictly

consistent price process (Zt)
T
t=0 for

(
St, St

)T
t=0

.

Proof. a) See the proof of Proposition 2.14.

b) See the proof of Theorem 2.16.

Given a bid-ask price process
(
St, St

)T
t=0

, which statisfies the robust no-
arbitrage condition, it is both necessary and sufficient to reduce the bid-ask
spread to an eventually smaller bid-ask spread related to (Xt, Yt)

T
t=0 to find

all strictly consistent price processes. (Xt, Yt)
T
t=0 has the crucial property

ri [Xt, Yt] ⊂ ri [inftXt+1, supt Yt+1]

for every t = 0, . . . , T − 1.
What does it mean if the given bid-ask price process fails this property,

i.e. for some t0 we have

P
(
ri
[
St0 , St0

]
6⊂ ri

[
inft0 St0+1, supt0 St0+1

])
> 0?
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Put
B :=

{
ri
[
St0 , St0

]
6⊂ ri

[
inft0 St0+1, supt0 St0+1

]}
and

B1 := B ∩
{
St0 = St0

}
, B2 := B ∩

{
St0 < St0

}
.

When we replace Ω by B1 and Ft0 by Ft0 ∩B1 as well as Ft0+1 by Ft0+1 ∩B1

then Corollary 2.11 b) implies that

St0 = St0 ∈ ri
[
inft0 St0+1, supt0 St0+1

]
on B1.

So, B1 is a null set.
On B2 we have

St0 < inft0 St0+1 or St0 > supt0 St0+1.

One of the following portfolios,

v := 1B2∩{St0<inft0 St0+1}

(
−
(

1
2
St0 + 1

2
inft0 St0+1

)
1

)
,

w := 1B2∩{St0>supt0 St0+1}

(
1
2
St0 + 1

2
supt0 St0+1

−1

)
is not identically zero, say v 6= 0.
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Kt0

Kt0+1

v

−Kt0

Fig. 4: v an arbitrage opportunity of the 2nd kind

The liquidation values today, lt0 (v) (here in terms of St0 , St0), satisfies

lt0 (v) ≤ 0, P (lt0 (v) < 0) > 0

and tomorrow, lt0+1 (v) (here in terms of St0+1, St0+1),

lt0+1 (v) ≥ 0, P (lt0+1 (v) > 0) > 0.

v is a so-called arbitrage opportunity of the 2nd kind. The notion of an ar-
bitrage opportunity of the 2nd kind was introduced in [18] for a model with
strict costs in every state and at every time. Clearly, in an arbitrage-free
model without costs arbitrage opportunities of the 2nd kind cannot exist.
We see, that in a model with not necessarily strict costs arbitrage opportu-
nities of the 2nd kind can still occur. But, when we replace the bid-ask price
process by (Xt, Yt)

T
t=0 the arbitrage opportunities of the 2nd kind vanish.

2.4 Conclusion

We have given a utility-based proof for the existence of consistence price
processes in a discrete-time market with transaction costs, Theorem 2.16. In
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contrast to markets without transaction costs, it is not enough to determine
a consistent price process for each given single-period market. Even if we
reduce to a single-period market with more investment opportunities, i.e.(
St−1, St−1, Xt, Yt

)
, the single-period consistent price process related to the

first order condition cannot be extended in general. This is contrary to mar-
kets without transaction costs since there the consistent price systems are
valued in one-dimensional rays, i.e. there we always have Xt = Yt = St = St.
With costs going backwards in time we had to replace the original bid-ask
prices St, St by Xt, Yt with a possibly smaller bid-ask spread. Yet, the strictly
consistent price process for the market

(
S0, S0, . . . , ST , ST

)
are exactly those

from the market (X0, Y0, . . . , XT , YT ). The latter market satisfies an exten-
sion property which has been mentioned by Ràsonyi [18] in the presence of
strict costs. The market (X0, Y0, . . . , XT , YT ) excludes arbitrage opportuni-
ties of the 2nd kind.

2.5 Proof of Lemma 2.15

We need to prove Lemma 2.15. Given an (Ft)
T
t=0-adapted process (St, St)

T
t=0

with 0 < St ≤ St for every t = 0, . . . , T , we define

XT := ST , YT := ST ,

Xt := max {St, inftXt+1} , Yt := min
{
St, supt Yt+1

}
.

Lemma 2.15 Assume that (S0, S0, . . . , ST , ST ) satisfies the robust no-arbitrage
condition. Fix t ∈ {1, . . . , T} and suppose that there is a strictly consistent
price process for (Sr, Sr)

T
r=t. Then,

N :=
{
v ∈ L0 (−Kt−1,Ft−1) : v · ( 1

Xt ) ≥ 0, v · ( 1
Yt ) ≥ 0

}
is a subspace closed with respect to convergence in probability. Especially

N =
{
v ∈ L0 (−Kt−1 ∩Kt−1,Ft−1) : v · ( 1

Xt ) = 0, v · ( 1
Yt ) = 0

}
and for real-valued Ft−1-measurable h and v ∈ N we have hv ∈ N.

We begin with one auxiliary result needed for the proof.

Proposition. Fix t ∈ {1, . . . , T} and assume Xt ≤ Yt for all s = t, . . . , T .
Further let be vt ∈ L0 (Kt,Ft) , . . . , vT ∈ L0 (KT ,FT ) such that

ws−1 :=
T∑
r=s

vr is Fs−1-measurable, s = t, . . . , T.
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Then,

ws−1 ·
(

1
Xs

)
≥ 0 and ws−1 ·

(
1
Ys

)
≥ 0

for all s = t, . . . , T .

Proof. For s = T it is clear that wT−1 ·
(

1
XT

)
≥ 0 and wT−1 ·

(
1
YT

)
≥ 0,

because wT−1 = vT ∈ KT and XT = ST , YT = ST .
Now, assume t ≤ s < T and write ws−1 = vs +ws. By induction hypoth-

esis we have

ws ·
(

1
Xs+1

)
≥ 0, ws ·

(
1

Ys+1

)
≥ 0.

Equivalently,

ws ·
{
a

(
1

Xs+1

)
+ b

(
1

Ys+1

)}
≥ 0

for all Fs+1-measurable, strictly positive a, b.
From Xs ≤ Ys, Xs = max {Ss, infsXs+1} and Ys = min

{
Ss, sups Ys+1

}
we get

infsXs+1 ≤ Xs ≤ Ys ≤ sups Ys+1,

so we can write

Xs = 1{sups Ys+1<∞} {λ infsXs+1 + (1− λ) sups Ys+1}
+ 1{infsXs+1>0,sups Ys+1=∞} {λ infsXs+1}
+ 1{infsXs+1=0,sups Ys+1=∞}Xs

with Fs-measurable λ valued in [0, 1] on the event {sups Ys+1 <∞} and λ ≥ 1
on the event {infsXs+1 > 0, sups Ys+1 =∞}.

Now, define for n ≥ 2

λn := 1{sups Ys+1<∞}

{
1{λ=0}

1

n
+ 1{λ=1}

(
1− 1

n

)
+ 1{0<λ<1}λ

}
+ 1{infsXs+1>0,sups Ys+1=∞}

(
λ+

1

n

)
and put

Xn
s = 1{sups Ys+1<∞} {λn infsXs+1 + (1− λn) sups Ys+1}

+ 1{infsXs+1>0,sups Ys+1=∞} {λn infsXs+1}
+ 1{infsXs+1=0,sups Ys+1=∞}Xs.
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Clearly, Xn
s ∈ ri [infsXs+1 sups Ys+1] and Xn

s → Xs. By Lemma 2.2 b) we
can find strictly positive Fs+1-measurable an, bn such that(

1
Xn
s

)
= E

[
an
(

1
Xs+1

)
+ bn

(
1

Ys+1

)∣∣∣∣Fs] .
Since ws is Fs-measurable, we get

0 ≤ E

[
ws ·

{
an
(

1
Xs+1

)
+ bn

(
1

Ys+1

)}∣∣∣∣Fs] = ws ·
(

1
Xn
s

)
and when n → ∞ then 0 ≤ ws ·

(
1
Xs

)
. In the same manner we get

0 ≤ ws ·
(

1
Ys

)
.

Finally, vs ∈ L0 (Ks,Fs) so that

vs ·
(

1
Ss

)
≥ 0, vs ·

(
1
Ss

)
≥ 0.

Especially

vs ·
(

1
Xs

)
≥ 0, vs ·

(
1
Ys

)
≥ 0,

since
Ss ≤ Xs ≤ Ys ≤ Ss.

Altogether

(vs + ws) ·
(

1
Xs

)
≥ 0, (vs + ws) ·

(
1
Ys

)
≥ 0,

Proof of Lemma 2.15: Since there exists a consistent price process for (Sr, Sr)
T
r=t

by assumption, we have Xr ≤ Yr for all r = t, . . . , T .
Let v be Ft-measurable such that

v ·
(

1
Xt

)
≥ 0, v ·

(
1
Yt

)
≥ 0.

With approriate Ft-measurable at, bt, ct, dt ≥ 0 we can write

v = at

(
Yt
−1

)
+ bt

(
−Xt

1

)
+ ct

(
1
0

)
+ dt

(
0
1

)
= at1{St≤supt Yt+1}

(
St
−1

)
+ bt1{St≥inftXt+1}

(
−St

1

)
+ ct

(
1
0

)
+ dt

(
0
1

)
+ at1{St>supt Yt+1}

(
supt Yt+1

−1

)
+ bt1{St<inftXt+1}

(
− inftXt+1

1

)
.
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We put

vt := at1{St≤supt Yt+1}

(
−St

1

)
+ bt1{St≥inftXt+1}

(
St
−1

)
+ ct

(
−1
0

)
+ dt

(
0
−1

)
then vt ∈ L0 (−Kt,Ft) and we have

v + vt = at1{St>supt Yt+1}

(
supt Yt+1

−1

)
+ bt1{St<inftXt+1}

(
− inftXt+1

1

)
.

Using Yt+1 ≤ supt Yt+1 and Xt+1 ≥ inftXt+1 allows us to write

v + vt = at1{St>supt Yt+1}

(
Yt+1

−1

)
+ at1{St>supt Yt+1}

(
supt Yt+1 − Yt+1

0

)
+ bt1{St<inftXt+1}

(
−Xt+1

1

)
+ bt1{St<inftXt+1}

(
Xt+1 − inftXt+1

0

)
.

and recognize that

(v + vt) ·
(

1
Xt+1

)
≥ 0, (v + vt) ·

(
1

Yt+1

)
≥ 0.

Thus, we construct inductively

vt ∈ L0 (−Kt,Ft) , . . . , vT−1 ∈ L0 (−KT−1,FT−1)

such that

(v + vt + · · ·+ vT−1) ·
(

1
ST

)
≥ 0, (v + vt + · · ·+ vT−1) ·

(
1
ST

)
≥ 0,

i.e. −vT := v + vt + · · ·+ vT−1 ∈ L0 (KT ,FT ).
If we start with v ∈ L0 (−Kt−1,Ft−1), we get from Lemma 1.15 that

v ∈ L0 (−Kt−1 ∩Kt−1,Ft−1) , vt ∈ L0 (−Kt ∩Kt,Ft) , . . . ,

vT ∈ L0 (−KT ∩KT ,FT ) .

By construction we have

T∑
r=s

vr is Fs−1-measurable for every s = t, . . . , T.

By the proposition it develops

−v ·
(

1
Xt

)
≥ 0, −v ·

(
1
Yt

)
≥ 0,

hence −v ∈ N.
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Chapter 3

Multidimensional case

In this chapter we consider a market with d risky assets and one risk-free
asset which serves as a numeraire. We show that the idea from Chapter 2
carries over to multidimensional models. First, we consider a generic single-
period model in Section 3.1. Afterwards, we show in Section 3.2 how the
idea applies to a multi-period model. The single-period case requires a new
approach in the multidimensional setting whereas the multi-period case is
more or less a straightforward generalization of the one-dimensional setting,
only more demanding with regard to technical questions.

3.1 Utility maximization in a single-period

model

Let (Ω,F, (F0,F1) ,P) be a filtered probability space. The consistent prices
in units of the numeraire for the d risky assets are given by non-empty convex
and compact random sets S0, S1 ⊂ (0,∞)d where S0 is F0-measurable and
S1 is F1-measurable. If bid and ask prices in units of the numeraire were

given, e.g. Sit and S
i

t, then we would have St = [S1
t , S

1

t ] × · · · × [Sdt , S
d

t ] .
But to adapt for later purposes in the multi-period case we need S1 to be an
arbitrary convex set. And since our arguments do not rely on concrete bid
and ask prices at time 0, we can assume that S0 is an arbitrary convex set.

3.1.1 Preliminaries

Definition 3.1. a) The solvency cone at time t, denoted by K (St), is
defined as

K (St) :=
{
v ∈ Rd+1 : v ·

(
1
y

)
≥ 0, for y ∈ St

}
.
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−K (St) is called the cone of portfolios available at price zero.

b) The liquidation value (corresponding to S1) in units of the numeraire
at time 1 of a portfolio v is defined as

lS1(v) := min
{
v ·
(

1
y

)
: y ∈ S1

}
Similarly to the one-dimensional case we make the following assumption

about the portfolios which are available at price zero today and solvent to-
morrow.

Assumption 3.2. The set

N := L0 (−K (S0) ,F0) ∩ L0 (K (S1) ,F1)

is a subspace of L0
(
Rd+1,F0

)
.

Obviously, we can write

N =
{
v ∈ L0 (−K (S0) ∩K (S0) ,F0) : v ·

(
1
y

)
= 0, for y ∈ S1

}
and we have fv ∈ N whenever v ∈ N and f ∈ L0 (R,F0). Since K (S0) and
K (S1) are closed, N is closed with respect to convergence in probability.

We will apply the following measure theoretic result from the book of
Delbaen, Schachermayer [3] to parameterize the portfolios in N.

Lemma 3.3. Let E ⊂ L0
(
Ω,F;Rd+1

)
be a subspace which is closed with

respect to convergence in probability. We suppose that E satisfies the follow-
ing stability property: If f ∈ E and h is real-valued and F-measurable, then
hf ∈ E.

Under these assumptions there exists an F-measurable mapping P0 taking
values in the orthogonal projections in Rd+1, such that f ∈ E if and only if
P0f = f .

For the rest of this section P0 shall always denote the F0-measurable
projection-valued mapping corresponding to N.

Compared to the one-dimensional case we will proceed differently. We
first show directly that the market corresponding to S0 and S1 satisfies the
robust no-arbitrage condition when Assumption 3.2 is valid. So we will have
to show that the transaction costs can be slightly reduced, i.e. we can find
convex and compact Wt ⊂ ri St such that the market corresponding to W0

and W1 is arbitrage free. This reduction is based on the next lemma which
is adapted from the frictionless setting in [16] to our model with transaction
costs. It entails a robustness property for the liquidation value of all normed
portfolios which are ’orthogonal’ to N.
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Lemma 3.4. Under Assumption 3.2 there exists a strictly positive F0-measurable
γ0 such that

P
(
lS1(v) < −γ0|F0

)
> 0

for every v ∈ L0 (−K (S0) ,F0) which satisfies P0v = 0 and |v| = 1.

Proof. We define I :=
{
v ∈ L0 (−K (S0) ,F0) : |v| = 1, P0v = 0

}
and ob-

serve that for any v1, v2 ∈ I there is w ∈ I such that

P
(
lS1(w) < −1/n|F0

)
≤ min

{
P
(
lS1(v1) < −1/n|F0

)
,P
(
lS1(v2) < −1/n|F0

)}
.

So we can find a sequence (vnk )∞k=1 in I such that

lim
k→∞

P
(
lS1 (vnk ) < −1/n|F0

)
= ess inf

{
P
(
lS1(v) < −1/n|F0

)
: v ∈ I

}
.

As |vnk | = 1, by Proposition A.1 in the Appendix we can find an F0-measurable,
strictly increasing sequence in N, (τk)

∞
k=1, such that the random subsequence

(ṽnk )∞k=1 :=
(
vnτk
)∞
k=1

converges towards a vn. Obviously vn ∈ L0 (−K (S0) ,F0),
|vn| = 1 and P0v

n = 0. By Fatou’s Lemma it follows that vn attains the
’ess inf’

P
(
lS1(vn) < −1/n|F0

)
= E

[
1(−∞,−1/n)(l

S1(vn))|F0

]
≤ E

[
lim
k→∞

1(−∞,−1/n)(l
S1(ṽnk ))

]
≤ lim

k→∞
P
(
lS1(ṽnk ) < −1/n|F0

)
= lim

k→∞
P
(
lS1(vnk ) < −1/n|F0

)
= ess inf

{
P
(
lS1(v) < −1/n|F0

)
: v ∈ I

}
.

Again we extract a random subsequence (ṽn)∞n=1 from (vn)∞n=1 which con-
verges towards a v∗ ∈ I. We set

An :=
{

ess inf
{
P
(
lS1(v) < −1/n|F0

)
: v ∈ I

}
= 0
}

=
{
P
(
lS1(vn) < −1/n|F0

)
= 0
}

and A :=
∞⋂
n=1

An, so that P
(
lS1(ṽn) < −1/n|F0

)
= 0 on A. By Fatou’s

Lemma we deduce

P
(
lS1(v∗) < 0|F0

)
≤ lim

n→∞
P
(
lS1(ṽn) < −1/n|F0

)
,
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hence P
(
lS1(1Av

∗) ≥ 0|F0

)
= 1, i.e. 1Av

∗ ∈ N and 1Av
∗ = P0 (1Av

∗) = 0. It
follows that A is a null set. Note that An+1 ⊂ An, so that

γ0 := 1Ac1 +
∞∑
n=2

1

n
1Acn\Acn−1

is strictly positive and satisfies by construction

P
(
lS1(v) < −γ0|F0

)
> 0

for every v ∈ I.

Now, we slightly reduce the transaction costs.

Lemma 3.5. There exists an F0-measurable, non-empty, convex and com-
pact random set W0 ⊂ ri S0 and an F1-measurable, non-empty, convex and
compact random set W1 ⊂ ri S1 such that

P
(
lW1(v) < 0|F0

)
> 0 on {v 6= 0}

for every v ∈ L0 (−K(W0),F0), P0v = 0.
In particular, W0,W1 satisfy the no-arbitrage condition.

Proof. For t = 0, 1 we pick an Ft-measurable yt ∈ ri St; see Example A.7 c)
in the Appendix for the existence of such selectors. Then, for αt ∈ (0, 1)
Wαt := (1− αt)yt + αtSt ⊂ ri St. The idea is to find αt near 1 such that the
liquidatation value lW

α1 is near lS1 in combination with the previous lemma.
Clearly, lWα1 (v) = (1− α1)v ·

(
1
y1

)
+ αlS1(v) i.e.

lWα1 (v)− lS1(v) = (1− α1)
(
v ·
(

1
y1

)
− lS1(v)

)
.

For |v| = 1 we estimate with Cauchy-Schwartz inequality∣∣v · ( 1
y1

)
− lS1(v)

∣∣ ≤ 2 max
{∣∣( 1

y

)∣∣ : y ∈ S1

}
.

Now, we fix α1 ∈ (0, 1) such that 2(1− α1) max
{∣∣( 1

y

)∣∣ : y ∈ S1

}
< γ0/2.

It follows with Lemma 3.4 that

P
(
lWα1 (v) < −γ0/2|F0

)
≥ P

(
lS1(v) < −γ0|F0

)
> 0

for every v ∈ L0 (−K (S0) ,F0) which satisfies P0v = 0 and |v| = 1.

Now, we adapt α0. Let us take an F0-measurable v ∈ −K (Wα0). We
decompose v into v = (id− P0) v + P0v. Since P0 maps into

−K(S0) ∩K(S0) ⊂ −K(Wα0) ∩K(Wα0),
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(P0v) · ( 1
z ) = 0 for all z ∈Wα1(⊂ S1) and lWα1 (v) = lWα1 ((id− P0)v) we can

assume that v = (id− P0)v. We normalize, i.e. |v| = 1 on {v 6= 0}.
v · ( 1

z ) ≤ 0 for every z ∈Wα0 implies

v ·
(

1
y

)
≤ −(1/α0 − 1)v ·

(
1
y0

)
≤ (1/α0 − 1)

∣∣( 1
y0

)∣∣
for every y ∈ S0. We put c(α0) :=

∣∣( 1
y0

)∣∣ (1/α0 − 1) then v − c(α0)e0 ∈
−K(S0). Note that c(α0) ↓ 0 as α0 ↑ 1.

We have (id− P0) (v − c(α0)e0) 6= 0, otherwise v − c(α0)e0 = P0(v −
c(α0)e0), which would imply (v − c(α0)e0) · ( 1

z ) = 0 for all z ∈ S0, especially
v · ( 1

z ) = c(α0) > 0 for all z ∈Wα0 .
Now

lWα1

(
v − c(α0)e0

|(id− P0)(v − c(α0)e0)|

)
= lWα1

(
(id− P0)(v − c(α0)e0)

|(id− P0)(v − c(α0)e0)|

)
< −γ0/2

implies on {v 6= 0}

lWα1 (v) < −γ0/2
∣∣(id− P0)(v − c(α0)e0)

∣∣+ c(α0)

≤ −γ0/2
(
|(id− P0)v| −

∣∣(id− P0)c(α0)e0
∣∣)+ c(α0)

= −γ0/2
(
|v| −

∣∣(id− P0)c(α0)e0
∣∣)+ c(α0)

= −γ0/2
(
1−

∣∣(id− P0)c(α0)e0
∣∣)+ c(α0).

We fix α0 (F0-measurable) near 1 such that the last expression is strictly
negative. It follows

P
(
lWα1 (v) < 0|F0

)
> 0 on {v 6= 0}

for every F0-measurable v ∈ −K(Wα0) with P0v = 0. Thus, we have shown
that Wα0 ,Wα1 satisfy the no-arbitrage condition. We put

W0 := Wα0 and W1 := Wα1

and the proof is complete.

For the rest of this section we focus on W0 and W1.

As in the one-dimensional case we fix a utility function u : R → R, i.e.
u is strictly concave, strictly increasing, bounded from above and continu-
ously differentiable. We wish to find a portfolio v̂ ∈ L0 (−K (W0) ,F0) which
maximizes all expected utilities from terminal wealth

E
[
u
(
lW1(v)

)
|F0

]
, v ∈ L0 (−K (W0) ,F0) .

Again, we first have to clarify some integrability and regularity questions.
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Remark 3.6. As in the one-dimensional case we use, by Proposition 2.7, a
strictly positive, continuous and decreasing function g which satisfies

|u (a · x)| g (|x|) ≤ 1

g (|a|)
+ c

for every a, x ∈ Rd+1 where c is a fixed constant. Then, since g is decreasing,∣∣u (inf
{
a · xn : n ≥ 1

})∣∣ g (sup
{
|xn| : n ≥ 1

})
≤ 1

g (|a|)
+ c

for every bounded sequence (xn)∞n=1 in Rd+1. This inequality still holds for
every unbounded sequence (xn)∞n=1 with the understanding that g(∞) := 0
and ∞ · 0 := 0.

We fix a Castaing representation for W1, i.e. a sequence (wn)∞n=1 of F1-

measurable random variables such that W1 (ω) =
{
wn(ω) : n ≥ 1

}
for every

ω ∈ Ω. We define an equivalent probability measure R by

dR

dP
:=

g
(
sup
{
|( 1
wn )| : n ≥ 1

})
EP

[
g
(
sup
{
|( 1
wn )| : n ≥ 1

})
|F0

]
and use k, a regular conditional P-distribution for (wn)∞n=1 given F0, to see
that for every v ∈ L0

(
Rd+1,F0

)
ER

[∣∣u (lW1 (v)
)∣∣ |F0

]
(·) =EP

[∣∣u (lW1 (v)
)∣∣ dR
dP

∣∣∣∣F0

]
(·)

=h (·)
∫ ∣∣u (inf

{
v (·) · ( 1

xn ) : n ≥ 1
})∣∣

× g
(
sup
{
|( 1
xn )| : n ≥ 1

})
k (·, d (xn))

≤h(·)
(

1

g (|v(·)|)
+ c

)
with h = EP

[
g
(
sup
{
|( 1
wn )| : n ≥ 1

})
|F0

]−1
. Again we can conclude that

E
[∣∣u (lW1 (v)

)∣∣ |F0

]
<∞, E

[
u′
(
lW1 (v)

)
|F0

]
<∞

and there are versions of ER

[
u
(
lW1 (a)

)
|F0

]
, a ∈ Rd+1, such that for every

ω ∈ Ω
Rd+1 3 a 7→ ER

[
u
(
lW1 (a)

)
|F0

]
(ω)

is finite and continuous. Switching to the equivalent probability measure R
preserves Assumption 3.2, so we can assume that all these properties already
hold under P.
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For the same reason we can assume that every F0-measurable selector of
W0 is integrable with resprect to P. If not we can switch to an equivalent
measure with density (

1 + sup
{
fn : n ≥ 1

})−1

EP

[(
1 + sup

{
fn : n ≥ 1

})−1
]

where (fn)∞n=1 is a Castaing representation of W0.

3.1.2 Main results

Theorem 3.7. There exists a portfolio v̂ ∈ L0 (−K (W0) ,F0) such that

a)
E
[
u
(
lW1 (v̂)

)
|F0

]
= ess sup

v∈L0(−K(W0),F0)

E
[
u
(
lW1 (v)

)
|F0

]
b)

EQ

[
lW1 (v) |F0

]
≤ 0

for every v ∈ L0 (−K (W0) ,F0), where Q is defined by

dQ

dP
:=

u′
(
lW1 (v̂)

)
E [u′ (lW1 (v̂)) |F0]

.

Proof. a) For every v ∈ L0
(
Rd+1,F0

)
we have P0v ∈ N, which means that

P0v ∈ −K (S0)∩K (S0) ⊂ K (W0) and P0v ·
(

1
y

)
= 0 for all y ∈ S1. As

W1 ⊂ ri S1 this implies especially P0v · ( 1
w ) = 0 for all w ∈W1. Now we

can copy almost everything from the proof in the one-dimensional case.
If v ∈ L0 (−K (W0) ,F0) then v − P0v ∈ L0 (−K (W0) ,F0) and
lW1 (v − P0v) = lW1 (v). So it is enough to consider portfolios v which
satisfy P0v = 0. This is why we define C := (id− P0) (−K (W0)) and

ϕ (ω, a) :=

{
E
[
u
(
lW1 (a)

)
|F0

]
(ω) , a ∈ C(ω)

−∞ , a /∈ C(ω)
.

For almost every ω ∈ Ω the set

F (ω) :=
{
a ∈ Rd+1 : |a| = 1, lim

s→∞
ϕ(ω, sa) > −∞

}
must be empty, otherwise there is a selector α, P (α 6= 0) > 0 and α = 0
on {F = ∅}. Clearly we have α ∈ C, i.e. P0α = 0 and thus by Lemma
3.5

P
(
lW1 (α) < 0

)
> 0 on {α 6= 0} .

65



On the event
{
lW1 (α) < 0

}
we have lim

s→∞
u
(
lW1 (sα)

)
= −∞. Fatou’s

lemma implies

lim
s→∞

E
[
u
(
lW1(α)

)
|F0

]
≤ E

[
lim
s→∞

u
(
lW1(sα)

)
|F0

]
so that with positive probabilty we get

lim
s→∞

ϕ(ω, sα(ω)) = −∞.

This is a contradiction to α(ω) ∈ F (ω), when α(ω) 6= 0. Thus F = ∅
and by Lemma ?? there is an F0-measurable maximizer v̂, i.e. v̂ ∈
L0 (−K (W0) ,F0), P0v̂ = 0 and

E
[
u
(
lW1(v̂)

)
|F0

]
= ess sup

v∈L0(−K(W0),F0)

E
[
u
(
lW1(v)

)
|F0

]
.

b) We compare the maximiser v̂ with any other portfolio of the form v̂+hv,
v ∈ L0 (−K (W0) ,F0), h > 0, and apply the monotone convergence
theorem:

0 ≥ lim
h↓0

E
[
u
(
lW1(v̂ + hv)

)
|F0

]
− E

[
u
(
lW1(v̂)

)
|F0

]
h

= E

[
lim
h↓0

u
(
lW1(v̂ + hv)

)
− u

(
lW1(v̂)

)
h

∣∣∣∣F0

]

≥ E

[
lim
h↓0

u
(
lW1(v̂) + hlW1(v)

)
− u

(
lW1(v̂)

)
h

∣∣∣∣F0

]
= E

[
u′
(
lW1(v̂)

)
lW1(v)|F0

]
.

Bayes’ formula yields 0 ≥ EQ

[
lW1(v)|F0

]
, where dQ

dP
:=

u′(lW1 (v̂))
E[u′(lW1 (v̂))|F0]

.

It should be mentioned that in the proof of part b) the expectation af-
ter the second inequality never assumes the value −∞. This is due to the
following observation:

We already know that, for every v ∈ L0 (−K (W0) ,F0),

E
[∣∣u (lW1(v)

)∣∣ |F0

]
<∞.

From

u
(
lW1(v) + lW1(w)

)
≥

{
u
(
2 min

{
lW1(v), lW1(w)

})
, lW1(v) < 0, lW1(w) < 0

u
(
min

{
lW1(v), lW1(w)

})
, lW1(v) ≥ 0 or lW1(w) ≥ 0
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and

E
[∣∣u (min

{
lW1(v), lW1(w)

})∣∣ |F0

]
≤ E

[∣∣u (lW1(v)
)∣∣+

∣∣u (lW1(w)
)∣∣ |F0

]
<∞

and the fact, that u is bounded from above, we conclude

E
[∣∣u (lW1(v) + lW1(w)

)∣∣ |F0

]
<∞

for every v, w ∈ L0 (−K (W0) ,F0). Especially,

0 ≥ E

[
u
(
lW1(v̂) + hlW1(v)

)
− u

(
lW1(v̂)

)
h

∣∣∣∣F0

]
> −∞

and 0 ≥ EQ

[
lW1(v)|F0

]
> −∞ for every v ∈ L0 (−K (W0) ,F0) by monotone

convergence. For v = −ei this yields

0 ≥ EQ

[
min

{
−ei · w : w ∈W1

}
|F0

]
> −∞

and hence
EQ

[
max

{
ei · w : w ∈W1

}
|F0

]
<∞.

Especially, for every z ∈ L0 (W1,F1) we have EQ [|z| |F0] <∞.

It is not clear how Theorem 3.7 part b) should imply existence of a con-

sistent price process, not even in the polyhedral case W0 = [S1
0, S

1

0] × · · · ×
[Sd0, S

d

0]. If we plug in for v the portfolios ei − Si0e0 and −ei + Si0e
0 we get

the following inequalities

EQ

[
min

{
ei · w : w ∈ W1

}]
≤ S

i

0,

EQ

[
max

{
ei · w : w ∈ W1

}]
≥ Si0.

Without looking too much on technical details now, we write min
{
ei · w :

w ∈W1

}
= ei ·mi and max

{
ei · w : w ∈W1

}
= ei ·Mi for some appropriate

mi,Mi ∈ L0 (W1,F1). It follows from a ’sandwich’ argument (see the proof
of Theorem 2.9 part b)) that we can find a wi =

(
w1
i , . . . , w

d
i

)
on the line

segment between mi and Mi such that Si0 ≤ EQ [wii|F0] ≤ S
i

0. So we have
shown that, when we restrict to the i-th asset, we get a consistent price
process. But it is by no means clear, why there is a consistent price process
for all assets simultaneously.

So, here in the multidimensional case, we have to proceed differently and
work harder to deduce from the first-order condition

EQ

[
lW1 (v) |F0

]
≤ 0, for v ∈ L0 (−K (W0) ,F0) ,

that there is a consistent price process. The basic idea is in the next lemma
which we will adapt to a random setting.
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Lemma 3.8. Let C0 and C1 be non-empty convex subsets of Rd such that C0

is compact and C1 is closed. Suppose that

inf
{
v ·
(

1
y

)
: y ∈ C1

}
≤ 0

for every v ∈ Rd+1 which satisfies v · ( 1
x ) ≤ 0 for every x ∈ C0. Then

C0 ∩ C1 6= ∅.

Proof. If C0 ∩ C1 = ∅, we can separate them with a hyperplane, i.e. there
are h ∈ Rd, c ∈ R such that

sup
{
h · x : x ∈ C0

}
< c < inf

{
h · y : y ∈ C1

}
.

Especially ( −ch ) · ( 1
x ) ≤ 0, for x ∈ C0, so that by assumption

inf
{

( −ch ) ·
(

1
y

)
: y ∈ C1

}
≤ 0

or equivalently
inf
{
h · y : y ∈ C1

}
≤ c

which is a contradiction.

To adapt this lemma to a random setting we show that the ’inf’ coming
from the liquidation function lW1 commutates with the expectation operator
EQ.

Lemma 3.9. For every v ∈ L0 (−K (W0) ,F0) we have

EQ

[
lW1(v)|F0

]
= ess inf

{
v ·
(

1
EQ[w|F0]

)
: w ∈ L0 (W1,F1)

}
.

Proof. Clearly for every w ∈ L0 (W1,F1) v · ( 1
w ) ≥ lW1(v) so that

v ·
(

1
EQ[w|F0]

)
= EQ [v · ( 1

w ) |F0] ≥ EQ

[
lW1(v)|F0

]
.

Hence,

EQ

[
lW1(v)|F0

]
≤ ess inf

{
v ·
(

1
EQ[w|F0]

)
: w ∈ L0 (W1,F1)

}
.

To show the other inequality we observe that

lW1(v) = min
{
v · ( 1

w ) : w ∈W1

}
= inf

{
v · ( 1

wn ) : n ≥ 1
}

= ess inf
{
v · ( 1

w ) : w ∈ L0 (W1,F1)
}
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where (wn)∞n=1 is a Castaing representation of W1. For any z, y ∈ L0 (W1,F1)
there is a u ∈ L0 (W1,F1) such that

v · ( 1
u ) ≤ min

{
v · ( 1

z ) , v ·
(

1
y

)}
.

So, we can take a sequence (un)∞n=1 in L0 (W1,F1) such that

v · ( 1
un ) −→

n→∞
lW1(v)

in a monotone decreasing way. The monotone convergence theorem implies

EQ

[
lW1(v)|F0

]
= EQ

[
lim
n→∞

v · ( 1
un ) |F0

]
= lim

n→∞
v ·
(

1
EQ[un|F0]

)
.

But, for every n we have

v ·
(

1
EQ[un|F0]

)
≥ ess inf

{
v ·
(

1
EQ[w|F0]

)
: w ∈ L0 (W1,F1)

}
.

It follows

EQ

[
lW1(v)|F0

]
≥ ess inf

{
v ·
(

1
EQ[w|F0]

)
: w ∈ L0 (W1,F1)

}
.

Before we continue with the main text, we should talk about an important
tool namely conditional expectation of a random set. We follow the book
of Molchanov [15] and the Appendix from the book of Kabanov, Safarian
[12]. There the conditional expectation has been introduced with the help of
selectors which are integrable in the ordinary sense. We will work here with
selectors whose conditional expectation exists in the generalized sense, i.e.
we will consider selectors f of a random set F with EP [|f | |G] <∞. But of
course everything works mutatis mutandis as in [15].

Theorem 3.10. Let (Ω,F,P) be a probability space, G ⊂ F a sub-σ-field
and F an F-measurable closed random set. Then there exists a unique G-
measurable closed random set, denoted by EP [F |G], such that

L0 (EP [F |G] ,G) =
{
EP [f |G] : f ∈ L0 (F,F) ,EP [|f | |G] <∞

}
where the closure is taken with respect to convergence in probability.

Proof. A set S ⊂ L0
(
Rd,G

)
is called decomposable, if for any f1, f2 ∈ S and

A ∈ G we have 1Af1 + 1Acf2 ∈ S.
Clearly

{
EP [f |G] : f ∈ L0 (F,F) ,EP [|f | |G] <∞

}
is decomposable and so

is its closure. By Proposition A.9 from the Appendix there exists a unique
G-measurable random closed set with the desired property.
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Before we can apply Lemma 3.8 we show that the set{
EQ [w|F0] : w ∈ L0 (W1,F1)

}
is closed.

Lemma 3.11. The set{
EQ [w|F0] : w ∈ L0 (W1,F1)

}
is closed with respect to convergence in probability. EQ [W1|F0] is compact
and convex valued.

Proof. Let (zn)∞n=1 be a sequence in L0 (W1,F1) such that EQ [zn|F0] con-
verges in probability to a random variable g. By passing to a subsequence
we can assume that EQ [zn|F0] converges almost surely pointwise to g. Each
component zin is non-negative and we can apply Proposition A.2 from the
Appendix to yield for every n a un ∈ conv

{
zm : m ≥ n

}
so that the sequence

(un)∞n=1 converges almost surely to an η ∈ L0
(
[0,∞]d,F1

)
. But zm ∈W1 and

W1 is convex. Hence, un ∈W1 and, as W1 is closed, we have η ∈W1. Note
that with EQ [zn|F0]→ g we also have EQ [un|F0]→ g.

Now, the random variable

M := max
{
z · e1 : z ∈W1

}
e1 + · · ·+ max

{
z · ed : z ∈W1

}
ed

serves as a majorant and we can apply the dominated convergence theorem

EQ [η|F0] = EQ

[
lim
n→∞

un|F0

]
= lim

n→∞
EQ [un|F0] = g.

Thus, the set {
EQ [w|F0] : w ∈ L0 (W1,F1)

}
is closed with respect to convergence in probability. EQ [W1|F0] is also
bounded because we have

|EQ [w|F0]| ≤ EQ [|M | |F0]

for every w ∈ L0 (W1,F1). So it is compact and by Proposition A.10 from
the Appendix also convex-valued.

In Theorem 3.7 we have found an optimal portfolio v̂ and the first-order
condition implied that

EQ

[
lW1 (v) |F0

]
≤ 0

for every v ∈ L0 (−K (W0) ,F0), where Q is defined by dQ
dP

:=
u′(lW1 (v̂))

E[u′(lW1 (v̂))|F0]
.

We are now in a position to show how this condition implies existence of a
consistent price process.
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Corollary 3.12. Under Assumption 3.2 there exists a y1 ∈ L0 (ri S1,F1)
such that

EQ [y1|F0] ∈ ri S0.

Hence, there exists a strictly consistent price process for S0, S1.

Proof. For every v ∈ L0 (−K (W0) ,F0) we have

0 ≥ EQ

[
lW1(v)|F0

]
= ess inf

{
v ·
(

1
EQ[w|F0]

)
: w ∈ L0 (W1,F1)

}
= inf

{
v · ( 1

u ) : u ∈ EQ [W1|F0]
}
.

Note that for a fixed ω ∈ Ω, since EQ [W1|F0] (ω) is compact, the mapping

Rd+1 3 a 7→ inf
{
a · ( 1

u ) : u ∈ EQ [W1|F0] (ω)
}

is continuous. Using a Castaing representation (vn)∞n=1 of −K (W0) it follows
that

0 ≥ inf
{
v · ( 1

u ) : u ∈ EQ [W1|F0]
}

for every v ∈ −K (W0). So we can apply Lemma 3.8 and we obtain

W0 ∩ EQ [W1|F0] 6= ∅.

We pick an F0-measurable selection of this intersection which can be written
as EQ [y1|F0] for some y1 ∈ L0 (W1,F1). Clearly Z1 := dQ

dP

(
1
y1

)
and Z0 :=

E [Z1|F0] define a strictly consistent price process for S0, S1.

A few words are in order to compare the multidimensional to the one-
dimensional case.

Remark 3.13. a) We have started with S0 and S1 for which Assump-
tion 3.2 holds. Then we have constructed a smaller ’bid-ask spread’
W0 ⊂ ri S0 and W1 ⊂ ri S1 such that W0 and W1 are still free of arbi-
trage opportunities by Lemma 3.5. This allowed us to find an optimal
portfolio v̂. From the first-order condition corresponding to the optimal
portfolio v̂

E
[
u′
(
lW1(v̂)

)
lW1(v)|F0

]
≤ 0, for v ∈ L0 (−K (W0) ,F0) ,

we could show that there is a consistent price process for W0,W1 which
is strictly consistent for S0, S1.
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b) In the one-dimensional case part a) of Corollary 2.11 was essential to
get in part b)

ri
[
S0, S0

]
∩ ri

[
inf0 S1, sup0 S1

]
6= ∅.

This condition appeared in the multi-period market S0, S0, . . . , ST , ST
as

ri
[
St, St

]
∩ ri [ess inftXt+1, ess supt Yt+1] = ri [Xt, Yt]

for every t = 0, . . . , T − 1, XT = ST , YT = ST , which is crucial for con-
tructing a strictly consistent price process. Corollary 2.11 depends very
much on the form of the projection-valued mapping P0 (Lemma 2.6).
Since an analogue of Corollary 2.11 in the multidimensional case is
out of reach, we have to proceed differently here. This is why we first
make the ’bid-ask spread’ a little bit smaller. Then the consistent price
process coming from the first-order condition already implies

riG (S0)∗ ∩ ri E [G (S1)∗ |F0] 6= ∅.

In fact, we will prove this in the next section.

3.2 Multi-period model

We now apply the single-period results from the previous section to a multi-
period financial market. As in the one-dimensional case we will apply an
inductive argument similar to [17] and [23].

Given a filtered probability space (Ω,F,
(
Ft)

T
t=0,P

)
we start with (St)

T
t=0

where each St ⊂ (0,∞)d is a compact, convex and Ft-measurable random
set. We assume that (St)

T
t=0 satisfies the robust no-arbitrage condition.

Analogously to the one-dimensional case we go backwards in time and
adapt for every period (t − 1 → t) the consistent prices at time t. For this
pupose we denote by (Kt)

T
t=0 = (K(St))

T
t=0 the solvency cones corresponding

to (St)
T
t=0 and define

HT := K∗T
Ht := K∗t ∩ E [Ht+1|Ft] , for t = 1, . . . , T − 1.

By Proposition A.10 from the Appendix every Ht is convex and cone-valued.

As in the one-dimensional case the crucial point for the induction step is
to verify Assumption 3.2.
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Lemma 3.14. Assume that the robust no-arbitrage condition is satisfied by
(St)

T
t=0. Then, for every t = 1, . . . , T ,

N :=
{
v ∈ L0 (−Kt−1,Ft−1) : v · z ≥ 0, for z ∈ Ht

}
is a subspace of L0

(
Rd+1,Ft−1

)
which is closed with respect to convergence

in probability and stable under multiplication with every f ∈ L0 (R,Ft−1).
Further

Kt−1 + E [Ht|Ft−1]∗

is closed.

Proof by induction on t. Let be t = T and v ∈ L0 (−KT−1,FT−1) such that
v · z ≥ 0 for every z ∈ K∗T , i.e. v ∈ K∗∗T = KT . We set vT := −v and
have v + vT = 0 as well as v ∈ −KT−1 and vT ∈ −KT . By Lemma 1.15
v ∈ −KT−1∩KT−1 and vT ∈ −KT∩KT , especially −v ∈ −KT−1∩KT . Hence,
N is a vector space. Clearly, it is closed and stable under multiplication with
every f ∈ L0 (R,FT−1).

Further, if z ∈ L0 (K∗T ,FT ) such that E [|z| |FT−1] < ∞ we get
v · E [z|FT−1] = E [v · z|FT−1] ≥ 0 and deduce that v ∈ E [K∗T ,FT−1]∗.
Conversely for any FT−1-measurable v ∈ E [K∗T ,FT−1]∗ we have 0 ≤ v ·
E [z|FT−1] = E [v · z|FT−1] for every such z. This implies v · z ≥ 0 hence
v ∈ KT . This allows us to write for t = T

N = L0 (−KT−1 ∩ E [HT |FT−1]∗ ,FT−1) .

From Lemma 3.3 it follows that −KT−1∩E [HT |FT−1]∗ is an FT−1-measurable
subspace and hence Proposition A.11 from the Appendix implies that KT−1+
E [HT |FT−1]∗ is closed.

Now, let be t < T . We take a v ∈ N and have to show that −v ∈ N. From
v · z ≥ 0 for every z ∈ Ht, it follows that v ∈ (K∗t ∩ E [Ht+1|Ft])∗. By in-
duction hypothesis Kt + E [Ht+1|Ft]∗ is closed, so that (K∗t ∩ E [Ht+1|Ft])∗ =

Kt + E [Ht+1|Ft]∗ = Kt + E [Ht+1|Ft]∗. By Proposition A.12 from the Ap-
pendix we can write v = wt+rt where wt ∈ L0 (Kt,Ft) , rt ∈ L0 (E [Ht+1|Ft]∗ ,Ft).
Again we deduce that rt · y ≥ 0 for every y ∈ Ht+1 and hence rt ∈
H∗t+1 =

(
K∗t+1 ∩ E [Ht+2|Ft+1]

)∗
= Kt+1 + E [Ht+2|Ft+1]∗. Continuing in

this manner we get v = wt + · · · + wT where wt ∈ L0 (Kt,Ft) , . . . , wT ∈
L0 (KT ,FT ). From v − wt − · · · − wT = 0 and Lemma 1.15 it follows that
v ∈ −Kt−1 ∩Kt−1, wt ∈ −Kt ∩Kt, . . . , wT ∈ −KT ∩KT . Note that for any
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r ≥ t −wr −wr+1 − · · · −wT is Fr−1-measurable. This allows us to conclude

−wT · z ≥ 0, for z ∈ K∗T (= HT )

⇒ −wT · z ≥ 0, for z ∈ E [HT |FT−1] ,

⇒ (−wT−1 − wT ) · z ≥ 0, for z ∈ K∗T−1 ∩ E [HT |FT−1] (= HT−1),

⇒ (−wT−1 − wT ) · z ≥ 0, for z ∈ E [HT−1|FT−2] ,

. . .

⇒ (−wt − · · · − wT ) · z ≥ 0, for z ∈ K∗t ∩ E [Ht+1|Ft] ,

i.e. −v · z ≥ 0, for z ∈ Ht, so that −v ∈ N.
As above we can write

N = L0 (−Kt−1 ∩ E [Ht|Ft−1]∗ ,Ft−1)

and conclude from Lemma 3.3 that−Kt−1∩E [Ht|Ft−1]∗ is an Ft−1-measurable
subspace. Proposition A.11 from the Appendix implies thatKt−1+E [Ht|Ft−1]∗

is closed.

We need to adapt Lemma 2.2 to the multidimensional case.

Lemma 3.15. Let (Ω,F,P) be a probabilty space, H ⊂ F a sub-σ-field and
F ⊂ Rd+1 a non-empty, closed, convex and conic random set. Then:

a) For every Z ∈ L0 (riF,F) such that E [|Z| |H] <∞ we have E [Z|H] ∈
ri E [F |H].

b) Conversely, for every C ∈ L0 (ri E [F |H] ,H) there is a Z ∈ L0 (riF,F)
such that E [Z|H] = C.

Note that, when Ω is finite, this Lemma follows from the fact that

A (riF ) = riA (F )

whenever A : Rn → Rm is a linear mapping and F ⊂ Rn is convex (see The-
orem 6.6 in [19]). For a general Ω a version of this Lemma has been proven
by Ràsonyi in [17] under the assumption that F is closed, convex, bounded
and intF 6= ∅. We will use deep results from Rokhlin [22] to prove part b).

We postpone the proof of Lemma 3.15 to the end of this section.
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3.2.1 Main theorem

Theorem 3.16. Assume that (S0, . . . , ST ) satisfies the robust no-arbitrage
condition. Fix t ∈ {1, . . . , T} and suppose that there exists a strictly consis-
tent price process for (Sr)

T
r=t.

Then:

a) There exists an Ft-measurable, non-empty, compact and convex random
set Wt ⊂ (0,∞)d and an Ft−1-measurable, non-empty, compact and
convex random set Wt−1 ⊂ (0,∞)d such that{

λ
(

1
y

)
: λ > 0, y ∈Wt

}
⊂ riHt,{

λ
(

1
y

)
: λ > 0, y ∈Wt−1

}
⊂ riK∗t−1

and Wt−1,Wt satisfy the no-arbitrage condition.

b) There exists a portfolio v̂t−1 ∈ L0(−K(Wt−1),Ft−1) such that

E
[
u
(
lWt (v̂t−1)

)
|Ft−1

]
= ess sup

vt−1∈L0(−K(Wt−1),Ft−1)

E
[
u
(
lWt (vt−1)

)
|Ft−1

]
.

c) There exists a strictly consistent price process for (Sr)
T
r=t−1. Espe-

cially, there exists a strictly consistent price process for (St)
T
t=0.

Proof. a) Let (Zr)
T
r=t be a strictly consistent price process for (Sr)

T
r=t. The

martingale property of (Zr)
T
r=t and Lemma 3.15 a) imply that

ZT−1 ∈ riK∗T−1 ∩ ri E [HT |FT−1] .

Theorem 6.5 in [19] implies that

riHT−1 = riK∗T−1 ∩ ri E [HT |FT−1] .

We continue in this manner and get Hr 6= {0} as well as

riHr = riK∗r ∩ ri E [Hr+1|Fr]

for every r = t, . . . , T − 1.

Since Ht 6= {0} we can write Ht =
{
λ
(

1
y

)
: λ ≥ 0, y ∈ Yt

}
for some

Ft-measurable, non-empty, compact and convex Yt ⊂ (0,∞)d. By
Lemma 3.14 (St−1,Yt) satisfy Assumption 3.2. By Lemma 3.5 there
exist Wt−1 ⊂ ri St−1 and Wt ⊂ riYt with the desired properties.
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b), c) By Theorem 3.7 there exists an optimal portfolio for the market Wt−1,Wt

and by Corollary 3.12 this implies that there is a strictly consistent price
process for St−1,Yt, i.e. Ht−1 6= {0} and

riHt−1 = riK∗t−1 ∩ ri E [Ht|Ft−1] .

Let be Zt−1 ∈ L0 (riHt−1,Ft−1). Since Zt−1 ∈ ri E [Ht|Ft−1] we find
by Lemma 3.15 b) an Ft-measurable Zt ∈ riHt such that E [Zt|Ft−1] =
Zt−1. After finitely many steps we have found a strictly consistent price
process (Zr)

T
r=t−1 for (Sr)

T
r=t−1.

Extension property

We want to prepare the proof of Lemma 3.15. For this we have to go into
greater detail of random sets and study the relationship between conditional
expectatation and the so-called regular conditional upper distribution of a set-
valued map. We follow here [21] and [22] and use the notation from therein.
We assume first that all appearing σ-fields are complete.

Let (Ω,F,P) be a probability space and H ⊂ F a sub-σ-field. Let F be
a random set, assigning some non-empty closed set F (ω) ⊂ RD for every
ω ∈ Ω. Measurability of F means that

{
ω ∈ Ω : F (ω) ∩ V 6= ∅

}
∈ F for

every open V ⊂ RD. We equip CL, the family of closed subset of RD, with
the so-called Effros σ-algebra E, generated by

AV :=
{
D ∈ CL : D ∩ V 6= ∅

}
where V ⊂ RD is open. Then F is measurable with respect to E.

(CL,E) is a Borel -space, so there exists a regular conditional P-distribution
for F given H which we denote by P∗. The function

µF (ω, V ) := P∗ (ω,AV ) ,

V ⊂ RD open, is called the regular conditional upper distribution of F with
respect to H and the set

K (F,H, ω) :=
{
x ∈ RD : µF (ω,Bε(x)) > 0, for ε > 0

}
is called the support of µF (ω, ·). The mapping ω 7→ K (F,H, ω) has non-
empty closed values and is (H,E)-measurable.
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If f is a random variable in RD, then we also denote by K (f,H) the
support of the regular condition P-distribution of f with respect to H. Let
(ξi)

∞
i=1 be a Castaing representation of F , then

K (F,H) =
∞⋃
i=1

K (ξi,H).

Especiall for every f ∈ L0 (F,F) we have K (f,H) ⊂ K (F,H).

Proposition 3.17. If F is a random set such that F (ω) is closed convex
cone for every ω ∈ Ω and H ⊂ F a sub-σ-field then

E [F |H] = conv K (F,H).

Proof. Let f ∈ L0 (F,F) such that E [|f | |H] <∞ and denote by µf a regular
condition P-distribution for f given H. Then it follows by Theorem 3 in [8]
(or Theorem 1.48 in [4] when H = {∅,Ω}) that

E [f |H] =

∫
xµf (·, dx) ∈ ri conv K (f,H) .

Especially, E [f |H] ∈ conv K (F,H). Since every element in L0 (E [F |H] ,H)
is a limit of such conditional expectations we get

E [F |H] ⊂ conv K (F,H).

To show the reverse inclusion let (ξi)
∞
i=1 be a Castaing representation of F

such that

K (F,H) =
∞⋃
i=1

K (ξi,H).

We fix i as well as a conditional P-distribution µi for ξi given H. For every
h ∈ L0 (K (ξi,H) ,H) we find a nullset N ∈ H such that

µi (ω,Bε (h(ω))) > 0

for every ω ∈ N c and every ε > 0. Since F is a convex cone it follows by
A.10 from the Appendix that

1

µi (Bε (h))
E
[
1Bε(h)(ξi)ξi|H

]
∈ E [F |H] .
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We get by disintegration∣∣∣∣ 1

µi (Bε (h))
E
[
1Bε(h)(ξi)ξi|H

]
− h
∣∣∣∣

=

∣∣∣∣ 1

µi (Bε (h))
E
[
1Bε(h)(ξi)(ξi − h)|H

]∣∣∣∣
=

∣∣∣∣ 1

µi (Bε (h))

∫
Bε(h)

x− h µi (dx)

∣∣∣∣ ≤ ε,

hence h ∈ E [F |H] and K (ξi,H) ⊂ E [F |H]. Since E [F |H] is closed and
convex we conclude

conv K (F,H) ⊂ E [F |H] .

We quote an important Lemma from [22] from which part b) of Lemma
3.15 will follow.

Lemma. Suppose that F is an F-measurable map with non-empty closed and
convex values. For any H-measurable selector ξ of the map ri (conv K (F,H))
there exist F-measurable η ∈ riF and γ > 0 such that

ξ = E [γη|H] , E [γ|H] = 1.

Proof of Lemma 3.15. Let us assume that all σ-fields are complete.
Let F ⊂ Rd+1 be a non-empty convex and conic random set. We first proof
part b) which we will use then for the proof of part a).

b) Let be u ∈ L0 (ri E [F |H] ,H). Then, by Proposition 3.17,

u ∈ ri
(

conv K (F,H)
)

. From ri
(

conv K (F,H)
)

= ri (conv K (F,H))

it follows with the above Lemma that there exist F-measurable η ∈ riF
and γ > 0 such that u = E [γη|H]. z := γη ∈ riF because F is a cone
and the claim follows.

a) Let be z ∈ L0 (riF,F) such that E [|z| |H] < ∞ and suppose that
A := {E [z|H] /∈ ri E [F |H]} has positive measure. In the Appendix
(Lemma A.13) it is worked out that, on A, E [z|H] can be separated
from the convex set ri E [F |H] in an H-measurable way, i.e. there exist
h ∈ L0

(
Rd+1,H

)
, ȳ ∈ L0 (ri E [F |H] ,H) such that

h · w ≥ h · E [z|H] , for w ∈ ri E [F |H] ,

h · ȳ > h · E [z|H]
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on A. Since ri E [F |H] = E [F |H] we get on A: E [h · v|H] ≥ E [h · z|H]
for every v ∈ L0 (F,F) with E [|v| |H] < ∞. It follows h · v ≥ h · z for
all v ∈ F on A.

Choose by part b) a z̄ ∈ L0 (riF,F) with E [z̄|H] = ȳ. Then A′ :=
{h · z̄ > h · z} ∩ A has positive measure. It follows that on A′ z is
separated from riF with a hyperplane, from which we conclude that
on A′ z /∈ riF . Thus, {z /∈ riF} has positive measure which is a
contradiction.

Altogether it follows that E [z|H] ∈ ri E [F |H].

We can drop the assumption about completeness of the involved probability
spaces if we argue as follows:

When (Ω,F,P) is a probabilty space and H ⊂ F a sub-σ-field field, we
switch to the completions

(
Ω,F,P

)
and H for which the satement of the

lemma holds. Then for every F-measurable z there exists an F-measurable z
such that z = z a.s.. Also the conditional expectations E

[
z|H

]
and E [z|H]

coincide up to a null-set, from which E
[
F |H

]
= E [F |H] a.s. follows.

3.3 Conclusion

The ideas from the one-dimensional case can be preserved in a multidimen-
sional market with transaction costs. However, we had to find a different
approach for the single-period case. The main reason is that an analog to
part a) from Corollary 2.11 is out of reach here. So, in the first step we con-
sidered a generic single-period market with consistent prices given by S0 and
S1 and showed directly in Lemma 3.5 that Assumption 3.2 implies the ro-
bust no-arbitrage condition. Thus, there are consistent prices W0 ⊂ ri S0 and
W1 ⊂ ri S1 such that W0,W1 is free of arbitrage opportunities. This allowed
us to find an optimal portfolio for W0,W1 in Theorem 3.7. It turned out that
the first order condition for the optimal portfolio requires some extra work
to show existence of a consistent price process. But still, the marginal utility
evaluated at the liquidation value of the optimal portfolio gives an equivalent
martingale measure for specific selectors of W0 and W1, see Corollary 3.12.
Thus, we derived a strictly consistent price process for the original market
S0 and S1.

The multi-period case can be seen as a straightforward generalization of
the one-dimensional setting. It is only more demanding with regard to tech-
nical questions. Going backwards in time we replace in every given single-
period market St−1, St the consistent prices at time t by some smaller set
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Yt, see the proof of Theorem 3.16. Then the strictly consistent price pro-
cesses for St−1,Yt can be extended to a strictly consistent price processes for
St−1, St, . . . , ST .

The benefit of considering the one-dimensional case separately in Chap-
ter 2 is that we can explicitly describe all strictly consistent price processes,
see Corollary 2.20. Whereas in the multidimensional case we need to work
with the rather abstract definition for conditional expectation of random sets.
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Appendix A

In the Appendix we want to collect some advanced results from Measure
Theory and Probability Theory which are used throughout the text.

We fix a probabilty space (Ω,A,P).

The classical Bolzano-Weierstrass Theorem states that every bounded
sequences (xn)∞n=1 in RD has a convergent subsequence (xnk)

∞
k=1. This result

is generalized to random sequences in the next proposition whose proof can
be found in [3] (Proposition 6.3.3).

Proposition A.1. Let (Xn)∞n=1 be a sequence in L0 (K,A) where K ⊂ RD

is a compact set. Then there exists a sequence (τk)
∞
k=1, τk : Ω→ N, such that

every τk is A-measurable, strictly increasing and (Xτk(ω))∞k=1 converges for
all ω ∈ Ω.

When (Xn)∞n=1 is only bounded from below in every component, then
we can still extract a convergent sequence from (Xn)∞n=1 by taking convex
combinations. For a subset A of a vector space W we denote by

conv (A) :=
{ m∑
i=1

λixi : xi ∈ A, λi ∈ [0, 1] ,
m∑
i=1

λi = 1
}

the convex hull of A.

Proposition A.2. Let (Xn)∞n=1 be a sequence in L0
(
[0,∞)D,A

)
. Then there

exists a sequence (Yn)∞n=1, Yn ∈ conv {Xn, Xn+1, . . . }, and a random variable
Z ∈ L0

(
[0,∞]D,A

)
such that Yn converges towards Z almost surely.

Proof. This result is proved in Lemma 9.8.1 of [3] for D = 1. So we have to
repeat the one-dimensional result D-times:

Take Yn,1 =
(
Y 1
n,1, . . . , Y

D
n,1

)
∈ conv {Xn, Xn+1, . . . } such that

(
Y 1
n,1

)∞
n=1

converges almost surely towards a random variable Z1 ∈ [0,∞].
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Take Yn,2 =
(
Y 1
n,2, . . . , Y

D
n,2

)
∈ conv {Yn,1, Yn+1,1, . . . } such that

(
Y 2
n,2

)∞
n=1

converges almost surely towards a random variable Z2 ∈ [0,∞]. Note that
with Y 1

n,1 → Z1 we also have Y 1
n,2 → Z1. Since conv {Yn,1, Yn+1,1, . . . } ⊂

conv {Xn, Xn+1, . . . }, also Yn,2 ∈ conv {Xn, Xn+1, . . . }.
We continue like this finitely many times until we have found

Yn,D ∈ conv {Yn,D−1, Yn+1,D−1, . . . } ⊂ conv {Xn, Xn+1, . . . } and random vari-
ables Z1, . . . , ZD ∈ [0,∞] such that Yn,D →

(
Z1, . . . , ZD

)
almost surely.

We continue with an overview about some basic results from the Theory
of Random Sets. We follow the book by Castaing, Valadier [1] and the book
by Molchanov [15].

Denote by CL the family of closed subsets of RD. We equip CL with the
Effros-σ-field E which is generated by the sets{

F ∈ CL : F ∩ V 6= ∅
}

where V ranges over the open subsets of RD.

Definition A.3. A random variable F : Ω→ CL, which is (A,E)-measurable,
is called (A-measurable) closed random set.

Obviously we have the following equivalence for a mapping F : Ω→ CL:

{F ∩ V 6= ∅} ∈ A for every open V ⊂ RD

⇔

{F ∩K 6= ∅} ∈ A for every compact K ⊂ RD

⇔

{F ∩G 6= ∅} ∈ A for every closed G ⊂ RD

Every random set with non-empty values admits a measurable selection
by Theorem III.6 in [1].

Theorem A.4. Let F be a closed random set such that F (ω) 6= ∅ for every
ω ∈ Ω. Then there exists an A-measurable f : Ω → RD with values in F ,
i.e. f(ω) ∈ F (ω) for every ω ∈ Ω.

Random sets can be described by a sequence of random variables. This
is Theorem III.7 in [1].
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Theorem A.5. a) Let F be a non-empty closed random set. Then there
exists a sequence of random variables (fn)∞n=1 such that

F (ω) =
{
fn(ω) : n ≥ 1

}
for every ω ∈ Ω.
(fn)∞n=1 is called a Castaing-representation of F .

b) Conversely, for any sequence (fn)∞n=1 of random variables

ω 7→
{
fn(ω) : n ≥ 1

}
defines closed random set.

The methods to prove Theorem A.4 and Theorem A.5 are rather staight-
forward in contrast to the following deep selection theorem. This is Theorem
III.22 in [1].

Theorem A.6. Assume that, for every ω ∈ Ω, F (ω) is a non-empty subset
of RD such that

Graph(F ) :=
{

(ω, x) ∈ Ω× RD : x ∈ F (ω)
}
∈ A⊗B

(
RD
)
.

Then, there exists a sequence (fn)∞n=1 of A-measurable selections of F such
that, for every ω ∈ Ω, (fn(ω))∞n=1 is dense in F (ω). Here, A denotes the
P-completion of A.

We want to illustrate the foregoing theorems.

Example A.7. Let F be an A-measurable closed random set such that F (ω)
is non-empty for every ω ∈ Ω. Denote by (fn)∞n=1 a Castaing representation
of F .

a) Then

Graph(F ) =
{

(ω, x) : x ∈ F (ω)
}

=
∞⋂
m=1

∞⋃
n=1

{
(ω, x) : |x− fn(ω)| < 1/m

}
∈ A⊗B

(
RD
)

b) The affine hull, aff F , defines an A-measurable closed random set, since

aff F (ω) =
{ m∑
i=1

λixi : xi ∈ F (ω), λi ∈ R,
m∑
i=1

λi = 1
}

=
{ m∑
i=1

λifi(ω) : λi ∈ Q,
m∑
i=1

λi = 1
}
.
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c) Assume that additionally F is convex valued and let (Km)∞m=1 be a
Castaing-representation of aff F . Then riF (ω) 6= ∅ for every ω ∈ Ω
and

Graph (riF )

=
{

(ω, x) : x ∈ affF (ω),∃ε > 0 : (x+ εB) ∩ affF (ω) ⊂ F (ω)
}

=Graph (aff F )∩
∞⋃
j=1

∞⋂
m=1

(
{|Km(ω)− x| ≥ 1/j} ∪

∞⋂
i=1

∞⋃
n=1

{|Km(ω)− fn(ω)| < 1/i}

)
.

It follows that Graph (riF ) ∈ A⊗B
(
RD
)

and there exists a sequence

(hn)∞n=1 of A-measurable selections such that (hn(ω))∞n=1 is dense in
riF (ω) for every ω ∈ Ω.

We can modify this sequence on a null-set to become A-measurable.
Then the modified sequence is dense in riF (ω) up to a null-set.

It is well known that for a concave function ϕ : RD → R the condition

lim
t→∞

ϕ(tx) = −∞, for x 6= 0,

is sufficent to show existence of a maximum for ϕ (e.g. Lemma 3.5 in [4]).
To find a utility maximizing portfolio we will need to maximize a random
version of such a ϕ and select the maximizers in a measurable way. For this
purpose we need the following lemma which generalizes a smiliar result in
[20].

Lemma A.8. Let C be an A-measurable, closed convex cone in Rd. Suppose
that ϕ : Ω×Rd → R∪{−∞} is A⊗B(Rd)-measurable and has the following
properties:

(i) ϕ (ω, ·) is concave for every ω ∈ Ω,

(ii) ϕ (ω, ·) is R-valued and continuous on C (ω) for every ω ∈ Ω,

(iii) ϕ (ω, a) = −∞ for every a ∈ Rd \ C (ω).

Then for every ω ∈ Ω

F (ω) :=
{
a ∈ RD : |a| = 1, lim

t→∞
ϕ (ω, ta) > −∞

}
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is closed and we can define an A-measurable mapping

α : ω 7→

{
α (ω) ∈ F (ω) , if F (ω) 6= ∅
0 otherwise.

For every ω ∈ Ω the set of maximizers

A (ω) :=
{
a ∈ RD : ϕ (ω, a) ≥ ϕ (ω, b) , for b ∈ RD

}
is closed and we can define an A-measurable mapping

β : ω 7→

{
β (ω) ∈ A (ω) , if F (ω) = ∅
0 otherwise.

Proof. If a ∈ F and t > 0, then ϕ(0) ≤ ϕ(ta). Otherwise lim
t→∞

ϕ(ta) = −∞
would follow by concavity of ϕ. Then, since F ⊂ C, C is closed and ϕ is
continuous on C, it follows that F is closed. We show that

{ω ∈ Ω|F (ω) ∩K 6= ∅} ∈ A, K ⊂ Rd closed,

and by Theorem A.4 we can then define an A-measurable mapping α, where
α(ω) ∈ F (ω), if F (ω) 6= ∅ and α(ω) = 0 otherwise. Fix a closed K ⊂ Rd,
for which we can assume that K ⊂ {|x| = 1}, and choose a sequence (xl)

∞
l=1

of A-measurable random variables with values in K such that (xl(ω))∞l=1 is
dense in K ∩ C(ω) on the event {K ∩ C 6= ∅}. Then

{
ω ∈ Ω : F (ω) ∩K 6= ∅

}
=

∞⋃
M=1

∞⋂
k=1

∞⋃
l=1

{
ω ∈ Ω : ϕ(ω, kxl(ω)) ≥ −M

}
∈ A.

Indeed, if ϕ(ω, kxlk(ω)) ≥ −M , let x0 ∈ K ∩C(ω) be an accumulation point
of (xlk(ω))∞k=1. Then for t > 0 and k > t

ϕ(ω, txlk(ω)) ≥ t

k
ϕ(ω, kxlk(ω)) +

k − t
k

ϕ(ω, 0) ≥ ϕ(ω, 0) ∧ −M.

Thus, by continuity ϕ(ω, tx0) ≥ ϕ(ω, 0) ∧ −M for every t > 0 and we get
x0 ∈ F (ω) ∩K.
Conversely, choose x0 ∈ F (ω)∩K andM ∈ N such that ϕ(ω, tx0) ≥ ϕ(ω, 0) >
−M for every t > 0. Then x0 ∈ K ∩C(ω) and by continuity we can find for
each k ∈ N an l ∈ N such that ϕ(ω, kxl(ω)) ≥ −M .

A is closed because ϕ is continuous on C and A ⊂ C. Now, for a fixed
K ⊂ Rd which is supposed to be compact, we choose a sequence of A-
measurable random variables (yl)

∞
l=1 with values in K such that (yl(ω))∞l=1
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is dense in K ∩ C(ω) on the event {K ∩ C 6= ∅}. Further, let (cn)∞n=1 be a
sequence of A-measurable random variables such that (cn(ω))∞n=1 is dense in
C(ω). Then{

ω ∈ Ω : A(ω) ∩K 6= ∅
}

=
∞⋂
m=1

∞⋃
l=1

∞⋂
n=1

{
ω ∈ Ω : ϕ(ω, yl(ω)) ≥ ϕ(ω, cn(ω))− 1

m

}
∈ H.

Now, if F (ω) = ∅, then lim
t→∞

ϕ(ω, ta) = −∞ for every a 6= 0. This condition

implies that A(ω) 6= ∅. Thus, by Theorem A.4 β can be defined in an A-
measurable way.

We want to describe when exactly a subset of L0
(
RD,A

)
can be written

in the form L0 (F,A) for some closed random set F and how the elements
of L0 (F,A) can be approximated using a Castaing-representation of F . In
the next theorem we cite Lemma 1.6 and Theorem 1.6 from [15]. There, the
statement is formulated for Lp, p ≥ 1. But, as pointed out in the Appendix
of Kabanov and Safarian [12], the proofs also work for p = 0.

d(X, Y ) := E [|X − Y | ∧ 1] for X, Y ∈ L0
(
RD,A

)
denotes a metric which

induces convergence in probability. A subset V ⊂ L0
(
RD,A

)
is called de-

composable, if for any f1, f2 ∈ V and A ∈ A, we have 1Af1 + 1Acf2 ∈ V.

Theorem A.9. Let V be a non-empty subset of L0
(
RD,A

)
.

Then:

a) If V = L0 (F,A) for a closed random set F with Castaing-representation
(fn)∞n=1, then for every ε > 0 and every f ∈ V there is a measurable
finite partition A1, . . . , Am such that

d

(
f,

m∑
i=1

1Aifi

)
< ε.

b) V = L0 (F,A) for a closed random set F if and only if V is closed and
decomposable.

The following proposition follows directly from Proposition 1.5 in [15].
There it is formulated only for the convex case. With the obvious changes in
the proof it is also true for the convex and conic case.

Proposition A.10. Let V ⊂ L0
(
RD,A

)
be non-empty, closed and decom-

posable. Then:
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a) If V is convex then there is a closed and convex random F such that
V = L0 (F,A).

b) If V is a convex cone then there is a closed, convex and cone-valued F
such that V = L0 (F,A).

When C1 and C2 are closed and convex cones in RD then C1 + C2 is not
necessarily closed. The following proposition gives a sufficient criterion for
the closedness of C1 + C2. Its proof is basically between page 32 and 33 of
[25]

Proposition A.11. Let C1 and C2 be two closed convex cones in RD. If
C1 ∩ (−C2) is a subspace of RD, then the sum C1 + C2 is closed.

Proof. Denote by p the orthogonal projection onto the subspace C1∩ (−C2).
Let be xn ∈ C1 and yn ∈ C2 such that (xn + yn)∞n=1 converges. We write

xn + yn = [xn − p (xn)] + [yn + p (xn)]

and note, since C1 ∩ (−C2) is a linear space, that xn − p(xn) ∈ C1 and
yn + p(yn) ∈ C2.

We claim that (xn − p(xn))∞n=1 is bounded. Otherwise, by passing to a
subsequence, we can assume that |xn − p(xn)| → ∞.

Since
(
xn−p(xn)
|xn−p(xn)|

)∞
n=1

is situated on the unit sphere, we can again assume

by passing to a subsequence, that
(
xn−p(xn)
|xn−p(xn)|

)∞
n=1

converges towards some η

on the unit sphere. From

xn + yn
|xn − p(xn)|

=
xn − p (xn)

|xn − p(xn)|
+

yn + p (xn)

|xn − p(xn)|

and the fact that (xn + yn)∞n=1 converges, it follows that
(
yn+p(xn)
|xn−p(xn)|

)∞
n=1

con-

verges towards −η.
From the closedness of C1 and C2 we have η ∈ C1 and −η ∈ C2, i.e.

η ∈ C1 ∩ (−C2). But by construction xn−p(xn)
|xn−p(xn)| ∈ [C1 ∩ (−C2)]⊥, which

enforces η ∈ [C1 ∩ (−C2)]⊥. Thus η = 0, which is a contradiction.
From the boundedness of (xn − p(xn))∞n=1 and by passing to a subsequence

we can assume that (xn − p(xn))∞n=1 converges. Since C1 is closed, the limit
must be in C1. Now, (yn + p (xn))∞n=1 must converge and its limit is in C2.
It follows that lim(xn + yn) ∈ C1 + C2.
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Proposition A.12. Let F,G,H be closed random sets such that F +G = H.
Then

L0 (F,A) + L0 (G,A) = L0 (H,A) .

Proof. The statement is proved in Lemma 2 of [23] under the assumption
that the probability space is complete.

Let
(
Ω,A,P

)
denote the completion of (Ω,A,P). Then for every random

variable z measurable with respect to A there exists an A-measurable random
variable z such that z = z a.s.. From this observation the statement follows
immediately for an arbitrary probability space.

If C ⊂ RD is a non-empty convex set and x /∈ C then we can separate x
from C by a hyperplane, i.e. there exist h ∈ RD, a ∈ C such that

h · w ≥ h · x, for w ∈ C, and h · a > h · x.

Lemma A.13. Assume that (Ω,A,P) is a complete probability space. Let
F be a non-empty closed and convex random set and f a random variable.
Then there exist h ∈ L0

(
RD,A

)
and a ∈ L0 (riF,A) such that on {f /∈ riF}

h · w ≥ h · f, for w ∈ riF,

h · a > h · f.

Proof. Put B := {f /∈ riF} and let (fn)∞n=1 be a sequence of A-measurable
random variables such that (fn(ω))∞n=1 is dense in riF (ω) for every ω ∈ Ω
(see Example A.7). Then

W :=
{

(ω, x) : ∀w ∈ riF (ω) x · k ≥ x · f(ω),∃k ∈ riF (ω) x · k > x · f(ω)
}

=

(
∞⋂
n=1

{
(ω, x) : x · fn(ω) ≥ x · f(ω)

})

∩

(
∞⋃
n=1

{
(ω, x) : x · fn(ω) > x · f(ω)

})
∈ A⊗B(RD)

and by Theorem A.6 it follows that we can find a random variable h such that
(ω, h(ω)) ∈ W for every ω ∈ B. Further, we define, for ω ∈ B, a(ω) := fm(ω)
where m is minimal such that h(ω) · fm(ω) > h(ω) · f(ω). We extend a on
Bc by some selector in riF .
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