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List of notations

ε - small parameter

ξ = x
ε
- fast variable
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Sε - oscillating contact interface
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N - subset of the outer boundary where Neumann boundary conditions are applied
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uε(x) - displacement vector

aεijkl(x) - components of the elasticity tensor

σε
ij(x) - components of the Cauchy stress tensor

gε(x) - gap function

t(x) - boundary tractions vector

f ε(x) - body force vector

F ε(x) - function of the friction law

Gε(x) - Tresca friction function

µε(x) - Coulomb friction coefficient

δε - penalty parameter

γε - regularization parameter

Nq - auxiliary functions

w(x) - vector representing the column of some auxiliary function Nq

Ahom = {āijkl} - homogenized elasticity tensor
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B - finite element strain-displacement matrix



List of notations

K - global stiffness matrix
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Chapter 1

Introduction

1.1 Motivation

Woven, non-woven and knitted textiles are common materials for many technical and

medical applications. In particular, technical textiles and fiber composites are subjected

to contact with sliding and friction on the micro scale, which results in elasto-plastic

constitutive behavior on the macro scale, see [Wriggers, Hain, Wellmann, Temizer, 2007].

Special constraints on stiffness or strength of technical textiles or composites are required,

depending on the type of application, e.g. knitted medical stents should provide certain

resistance against the blood pressure; geo-textiles, ropes and belts, protection wear should

also provide certain stiffness and strength against external mechanical loading.

The aim of this thesis is to develop a simulation-based algorithm, allowing the predic-

tion of the effective mechanical properties of textiles on the basis of their microstructure

and corresponding properties of fibers. This method can be used for optimization of the

microstructure, in order to obtain a better stiffness or strength of the corresponding fiber

material later on.

Often, technical textiles or composites, such as in Fig. 1.1, have nearly periodic structure,

(examples of a periodicity cell see in Fig. 1.2 (a)–(c)), and the period of their structure is

much smaller than the characteristic size of a textile or composite. If the period is of the

order of 0.01 or even less, direct numerical computations of the solution of the elasticity

boundary value problem by means of commonly used methods like finite differences or finite

elements become very expensive. This is caused by the need to use a very fine mesh in

order to capture the periodic microstructure. On the other hand, by using homogenization
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Figure 1.1: Technical textiles.

technique, one can obtain a solution with an error of the same order as the small parameter,

namely, less than one percent. Such an idea was introduced in eighties, for instance, in the

[Panasenko, 1982]. The approach was applied for so-called lattice structures, namely the

fiber structures where only fixed junctions are considered between fibers. In the case of a

textile-like material, the fibers may slide in the contact, and such a case was not considered

in these works.

Homogenization technique allows to consider the whole problem asymptotically with

respect to a small parameter, the relation between the micro and macro sizes of the textile

or composite. This should lead in the limit to an equivalent homogenized problem with

some averaged properties. The obtained solution of the homogenized problem then, is an

approximation of the exact solution with a certain accuracy in some sense of convergence

(see e.g., [Allaire, 1992], [Bakhvalov, Panasenko, 1984], [Hornung, 1997]).

This thesis is devoted to the homogenization of the contact conditions on a highly os-

cillating inner interface, which is the contact surface of fibers in the considered textile

or components of the considered composite. That is, the homogenization technique from

[Allaire, 1992] should be extended to the microscale contact.

The next aspect of the thesis is the accounting for the thickness of thin fibers in the

textile. An introduction of an additional asymptotics with respect to the small parameter,

a relation between the thickness and the representative length of the fibers, will allow a

reduction of local contact problems between fibers to 1-dimensional problems, which will

reduce numerical computations significantly.

12



1.2. STATE OF THE ART

1.2 State of the art

The theory and analysis of Signorini contact problem in elasticity with friction and sliding

can be found in [Kikuchi, Oden, 1988], [Eck, PhD thesis, 1996], [Han, Sofonea]. The main

reason that makes the contact problem challenging lies in the nonlinear nature of contact

conditions and the non-smoothness of the functional. The key point in different meth-

ods for solving frictional contact problems is how to handle the contact conditions. The

non-penetration condition can be represented as a constraint on the set of the admissible

functions, while the contribution of friction is given by an additional functional. In this

case, the weak formulation of the contact problem is in the form of a variational inequality,

where the contact conditions take form of a friction functional over the contact interface

and non-penetration constraint on the set of admissible functions. The proof of existence of

a solution can be found in [Eck, PhD thesis, 1996], [Lions, Stampacchia, 1967]. Then the

contact minimization problem can be solved using the Lagrange multiplier method, where

the constraint is resolved by introducing additional unknowns, and the problem can be

reduced to a saddle-point problem. Another approach is based on the reformulation of the

problem by adding a penalty functional, which penalizes the violation of the geometrical

non-penetration constraint. A disadvantage of the Lagrange multiplier method is an intro-

duction of additional unknowns, while the penalty method often leads to bad-conditioned

systems of discretized equations. The penalty method gives an approximation of the prob-

lem by penalization, and this requires a sensitivity analysis with respect to the penalty

parameter. The combination of the both approaches is the augmented Lagrange method,

well-known in optimization theory, see [Nocedal, Wright]. In this case, the penalty term

is added to the Lagrangian, rather than to the minimization functional. The augmented

Lagrangian at the minimizer coincides with the Lagrangian, and the penalty parameter

no longer needs to be small. This allows to avoid ill-conditioning of the penalty method.

For details, see [Kikuchi, Oden, 1988], [Christensen, 1998], [Laursen, 2002]. However, the

system of equations is still non-differentiable. Therefore, the classical Newton method is

not applicable. Then the so-called non-smooth Newton method or an active set strategy

can be used, see [Kunish, Stadler, 2005], [Pang, 1990]. This method observes that, in fact,

the system is B-differentiable, see [Pang, 1990]. Then the system can be solved by the

13
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(a) (b) (c)

Figure 1.2: Examples of periodicity cells: (a) a fixed structure, (b) a woven structure, (c) a

non-woven structure.

extended Newton method using an iterative procedure.

The finite element (FE) approximation for the solution of contact problems using different

methods is considered in [Kikuchi, Oden, 1988] and [Wriggers, 2002]. The last reference

gives more detailed results on the numerical treatment of the Signorini contact problem,

including some special cases, e.g. the beam contact, see Chapter 11 in [Wriggers, 2002].

Some special cases of finite element analysis of beam-to-beam contact are considered

in the work of [Litewka, 2010]: the case of frictionless contact of beams with rectangu-

lar cross-section, the frictional contact model for beams, the smoothed beam contact, the

electric contact and thermo-mechanical coupling. The interesting part is the smoothing of

beam contact: the C1 smoothness of the contact interface, achieved by applying Hermite’s

polynomials or the Bezier’s curves, is the smoothness of the geometry, not the solution.

This allows to formulate a smooth inscribed Hermite beam finite element by using Her-

mite’s inscribed curve approximation. The numerical examples of frictionless and frictional

contact, which are presented in this work, are implemented using penalty and Lagrange

multiplier methods.

The domain decomposition methods or extensions of mortar methods exploit non-matching

properties of the spacial discretization on the contact interface, what yields an alternative

spacial formulation of the contact conditions, see the works of [Hueber, Wohlmuth, 2006],

[McDevitt, Laursen], and [Belgacem, Hild, Laborde, 1999]. Together with the active set

strategies or the non-smooth Newton method, these methods produce results of a better

accuracy than the standard approaches.

Contact problems for the inner oscillating interface were considered in papers, including

14
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[Yosifian, 1997], [Yosifian, 1999], [Mikelic, Shillor, 1998], and, for instance, in the book

[Sanchez-Palencia, 1980]. Also papers [Yosifian, 1997], [Yosifian, 1999] provide tools for

homogenization of some non-linear Robin-type conditions on the inner oscillating interface

under some assumptions on the nonlinearity. Although these assumptions are satisfied for

the penalized non-penetration functional (we should make a remark that not all of them

are satisfied for the Tresca friction and, hence, can be applied for it), the interesting for our

consideration penalty functional, limε→0
1
ε

∫

Sε g(u
ε)vds, for the inner oscillating interface

is not considered there. Furthermore, these results refer to the weak convergence of the

solution, and the limit above will provide a contact condition for an auxiliary problem

for some corrector of the solution. Hence, we need some generalization of the two-scale

convergence for the nonlinear Robin-type conditions.

[Mikelic, Shillor, 1998] and Section 5 in Chapter 6 of [Sanchez-Palencia, 1980] deal with

frictionless Signorini problems on the oscillating interface. In [Sanchez-Palencia, 1980]

small cracks are imposed, and the homogenization is performed in a more formal way,

without penalization. The results of this chapter coincide with those formulated in the

paper [Sanchez-Palencia, Suquet, 1983] up to the frictional term, and we can use the proofs

given in [Sanchez-Palencia, 1980] for solvability and uniqueness of the macroscopic problem

and the auxiliary periodic contact problems. In [Mikelic, Shillor, 1998], particles, diluted in

a matrix material, are considered, and their possible rotation is assumed. It is also assumed

that the stiffnesses of these particles and of the matrix differ by several orders of magnitude.

The problem is handled by the two-scale homogenization method in [Allaire, 1992]. Using

the assumptions on the geometry, the coefficients are separated into the macroscopic one

and one for the inclusion.

In this thesis we are thinking on application of the homogenization to some periodic

fiber structures or textiles. Since our assumptions on the geometry are different from

those given in [Mikelic, Shillor, 1998], and stiffnesses of the structural components are

assumed to be of the same oder, the results of [Mikelic, Shillor, 1998] can not be used here.

In [Hummel, 1999] the Robin-type interface conditions for linear heat equations on the

oscillating interface are considered. Nevertheless, in this thesis we will use some results

from these works as auxiliary tools.

The main expected contribution of this thesis is the homogenization algorithm. Another
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aspect of the work is the homogenization of the boundary conditions on the out-of-plane

vanishing interface and the reduction of the dimension of contact problems between thin

fibers using asymptotics with respect to their cross-sectional characteristic size.

In this connection we refer to the papers and books [Panasenko, 2005], [Pastukhova, 2005],

[Pastukhova, 2006], [Pantz, 2003]. Homogenization based on the two-scale analysis and

convergence for periodic box and rod frames structures were considered in the works

[Pastukhova, 2005], [Pastukhova, 2006]. In these works, the thickness of walls or rods was

introduced as an additional small parameter, and the homogenization results via two-scale

convergence were obtained for certain relationships between the thickness and the period

of the microstructure. The proof of the two-scale convergence is based on a special type

of the Korn inequality derived in [Zhikov, Pastukhova, 2003] for thin periodic structures.

Moreover, the two-scale limit can be represented as a sum of the homogenized solution

for longitudinal beam or plate displacement and the transversal (bending) displacement,

which is a solution of a separate boundary value problem of the fourth order.

Another approach for the homogenization of periodic finite rod structures with fixed

junctions was proposed by Panasenko in [Panasenko, 2005]. The approach is based on the

formal asymptotic expansion with respect to the period of the structure, and the inner

expansion with respect to the thickness of the rods. The last expansion is considered

on each segment of the finite rod structure, and additional boundary layer correctors are

introduced in the neighborhood of the nodes. As a result, the elasticity problem can be

asymptotically reduced to the one-dimensional problems in the form of ordinary differential

equations for longitudinal, transversal (bending) and torsion components with matching

conditions at the nodes. The fourth order equations for the bending components are

obtained using the assumption that the transversal components of the body force should

be of the second order of the period.

The same assumption is used in the work [Pantz, 2003], where an asymptotic analysis of

the total strain energy with respect to the thickness is considered for a plate or a three-

dimensional cylindrical body made of a hyperelastic Saint Venant-Kirchhoff material. The

minimizer of the total energy converges to the minimizer of the inextensional nonlinear

bending energy. The result is obtained by the Γ-convergence.

The two-scale analysis with respect to the thickness for thin curved rods was implemented

16
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in [Sanchez-Hubert, Sanchez-Palencia, 1999]. The three-dimensional elasticity problem for

curved rods, which takes into account torsion and flexion, was considered, and the reduction

of a dimension by a two-scale procedure was made. The results show that the two leading

order terms have the Bernoulli’s structure, and the flexion and torsion effects are of the

same order. The asymptotic analysis also shows, as in [Panasenko, 2005], [Pantz, 2003],

that one of the Bernoulli’s hypothesis, the inextensibility of the middle line of the rod,

cannot be obtained at the loading order of the expansion unless the body force is of the

second order of the thickness of the rod.

1.3 Outline of the work

A fiber composite material with periodic microstructure and multiple micro contacts be-

tween fibers or inclusions and matrix are considered. In Chapter 2, the Signorini and

friction contact conditions are prescribed on the microcontact surface. Two types of fric-

tion conditions are imposed in the form of the Tresca and Coulomb frictions. A two-scale

asymptotic approach with respect to a small parameter, which describes the period of the

microstructure, was suggested for the solution of the weak penalized contact problem.

The dependence of all contact parameters in the penalty and frictional functionals on

the small geometric parameter, denoting the period of the structure, was investigated from

the physical point of view in Chapter 2. Then the penalized Signorini conditions were

interpreted in the form of Caratheodory monotone functionals of the traces of the solution

on an oscillating interface, i.e. as the nonlinear Robin-type boundary conditions, while the

Tresca frictional term was interpreted as the Neumann boundary condition on the oscil-

lating interface. The known mathematical results on the convergence for Neumann and

third-kind conditions on the oscillating interface were recalled in the thesis as an auxiliary

machinery. The results of [Allaire, 1992], [Braides, Defranceschi, 1998] on the two-scale

convergence of convex differentiable Caratheodory functions of a two-scale convergent ar-

gument were applied to penalty functionals, while for the friction it was shown that vτ is

an admissible test function for the two-scale convergence.

Passing to the limit in the penalized variational inequality yields the homogenized prob-

lem and the auxiliary cell contact problems in the periodicity cell. The obtained coupled

17
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micro-macro contact problems can be used for future numerical computations by the finite

element method (FEM).

The domain of a technical textile is usually represented as a thin layer. In Chapter

3 we consider a domain in the form of a layer with the thickness of the order of the

in-plane periodicity. Thus, one needs to take into account the fact that the layer is van-

ishing. Therefore, in-plane homogenization decreases the dimension of the homogenized

problem. The homogenization of the elasticity problem for such a domain was consid-

ered in [Panasenko, 2005]. In this homogenization procedure the zero Neumann boundary

conditions on the out-of-plane boundaries were considered.

In Chapter 3 we deduce how to incorporate the non-homogeneous Neumann boundary

conditions on the vanishing out-of-plane boundaries into the homogenized problem. We

introduce additional terms in the formal asymptotic expansion and deduce the auxiliary

problems and the homogenized problem. It turns out that the non-homogeneous Neumann

boundary condition is incorporated into the homogenized problem as an additional term

to the right hand side of the homogenized equation by the out-of-plane moduli.

Another aspect of the homogenization of a technical textile is that the thickness of the

fibers is a small value compared to the size of the periodicity cell. This allows to con-

sider the asymptotics with respect to the thickness of the fibers. In Chapter 3 we present

known results of [Panasenko, 2005] and [Sanchez-Hubert, Sanchez-Palencia, 1999] and, us-

ing them, formulate reduced one-dimensional problems for thin fibers. We also present

assumed one-dimensional contact conditions. This allows to reduce the dimension of the

auxiliary problems.

In order to solve reduced contact auxiliary problems we use beam finite elements with

hermitian shape functions. The construction of the finite element space is made naturally

by taking into account the fiber structure of the geometry. In Chapter 4 we give the

finite element formulation of the contact elasticity problem, where the one-dimensional

contact conditions from Chapter 3 are introduced using the penalty method. We describe

the contact algorithm given in [Wriggers, 2002] and deduce the matrix contribution of the

normal and tangential contact to the global stiffness matrix.

In Chapter 5 we formulate an algorithm for computation of effective material properties

of technical textiles using results of Chapters 2-4. We present numerical results obtained

18
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by our software FiberFEM.

Chapter 6 summarizes the results and gives conclusions.

1.4 Statement of the problem

Our goal is to homogenize the media and to obtain the effective material law of the textile

or composite with periodic microstructure, using assumptions on its geometry and material

properties.

We start this section with the assumptions on the geometry similar to those given in

[Orlik, 2000].

Assumption 1.1. (Assumptions on the geometry). We consider a heterogeneous

solid which consists of linear elastic materials and has a microstructure with a period εY,

where Y is the unit cell and ε is a scaling parameter. Consider l mutually disjoint generally

non-connected Y -periodic Lipschitz domains Ωper
i ⊂ IRn, i = 1, ..., l, Yi := Ωper

i ∩ Y, i =

1, ..., l. We assume that Ωper
i are in multiple contact and define by Sper = ∪l

i=1∂Ω
per
i the

periodic contact interface. We define further S = Y ∩ Sper.

Let Ω ⊂ IRn be an open and bounded Lipschitz domain, we define Ωε
i = εΩper

i ∩ Ω and

Ωε =
(
∪l
i=1εΩ

per
i

)
∩ Ω. Denote by Sε = Ω ∩

(
∪l
i=1∂Ω

ε
i

)
the oscillating contact interface,

Sε
i = Ω∩∂Ωε

i , and by ∂Ωε
outer = ∂Ωε\Sε the Lipschitz external boundary. Let ∂Ωε

D ⊂ ∂Ωε
outer

and ∂Ωε
N = ∂Ωε

outer \∂Ωε
D be the subsets of outer boundary, where Dirichlet and Neumann

boundary conditions are applied.

The following remark can be found in [Orlik, 2000].

Remark 1.2. Let us denote by meas(Ωε) the Lebesgue measure of the domain Ωε. It is ob-

vious that meas(∪l
i=1Ω̄

ε
i ) = meas(Ω̄ε) ∀ε. The number of cells in ∪l

i=1Ω̄
ε
i is approximately

equal to N ε = meas(Ωε)/meas(εY ) = meas(Ωε)/(meas(Y )εn). Define by meas(Sε) the

Lebesgue measure of surface Sε. Obviously, meas(Sε) = N εmeas(εS) = N εmeas(S)εn−1 =
meas(Ω)meas(S)

meas(Y )
1
ε
. Consequently, the measure of Sε grows as 1

ε
.

19
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Figure 1.3: Domain Ωε.

1.4.1 Strong formulation of the multiscale contact problem

For fixed ε, we consider the Signorini contact problem with friction for a periodic mi-

crostructured solid in Ωε, satisfying Assumption 1.1, subjected to the body force f(x)

and the surface tractions t(x) applied to the Neumann part of the boundary, ∂Ωε
N , with

prescribed displacements g0(x) applied on the Dirichlet boundary ∂Ωε
D .

For the displacement vector uε(x) and the symmetric 4th order elasticity tensor Aε(x) =

(aijkl(
x
ε
)), we consider the contact problem

∂σε
ij(x)

∂xj
= f ε

i (x), σε
ij(x) = aεijkl

∂uε
k(x)

∂xl
, x ∈ Ωε,

[uε(x)]n ≤ gε(x), σε
n(x) ≤ 0, σε

n(x) ([u
ε(x)]n − gε(x)) = 0, x ∈ Sε,

|σε
t (x)| < F ε(uε, x) ⇒ [uε(x)]t = 0, x ∈ Sε,

|σε
t (x)| = F ε(uε, x) ⇒ ∃ λε ≥ 0 s.t. [uε(x)]t = −λεσε

t (x), x ∈ Sε,

σε
ijnj(x) = ti(x), x ∈ ∂Ωε

N ,

uε(x) = g0(x), x ∈ ∂Ωε
D,

(1.1)

where Einstein notation for repeating indices is used. σε
ij are the components of the Cauchy

stress tensor, gε(x) is the initial gap function, which measures the distance between con-

tacting bodies along the contact normal, and the friction law is given by the function

F ε(uε, x) :=







Gε(x), Tresca’s friction,

µε(x)|σε
n(x)|, Coulomb’s friction,

(1.2)

where µε(x) is the friction coefficient and Gε(x) is the friction traction, ε is a small param-

eter denoting the period of the microstructure. n(x) is the normal unit outward vector.
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1.4. STATEMENT OF THE PROBLEM

[uε(x)]n can be represented as

[uε(x)]n = [uε](x) · n

and at the same time

[uε(x)]t = [uε(x)]− [uε(x)]nn.

σε
n = (σ · n) · n, σε

t = σε · n− σε
nn.

Let ξ = x
ε
∈ Y denote a fast variable.

Assumption 1.3. The elasticity tensor (aεijkl(x)) is assumed to be symmetric at each point

x ∈ Ωε,

aεijkl(x) = aεjikl(x) = aεijlk(x) = aεklij(x), (1.3)

and positive-definite, with elements aεijkl(x) = aijkl(
x
ε
) ∈ L∞

per(Y ) bounded at each point

x ∈ Ωε,

c0η
k
l η

k
l ≤ aεijkl(x)η

i
jη

k
l ≤ C0η

k
l η

k
l , (1.4)

for all ηjk = ηkj ∈ IR, where the constants 0 < c0 ≤ C0 <∞ are independent of ξ.

For isotropic materials the elasticity tensor can be expressed using two material constants,

for instance, two Lame parameters λ, µ:

aεijkl = λδijδkl + µ(δikδjl + δilδjk). (1.5)

The elements of the elasticity tensor can be piecewise constant functions, for instance as

given in the following example.

Example 1.4.

aεijkm(x) =







a1ijkm, x ∈ Ωε
1,

. . . . . .

alijkm, x ∈ Ωε
l .
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Chapter 2

Homogenization of microcontact

elasticity problems

The microstructure of a textile consists of fibers in frictional contact on the oscillating

contact interface. Two-scale homogenization of periodic elasticity problems with frictional

contact on the microstructure is considered here.

In this chapter we give the weak problem formulation and present two-scale convergence

results for normal and tangential contact conditions. The rigorous derivation and proofs

are given in [Orlik, in preparation]. The formal asymptotics for normal contact can be

found in [Sanchez-Palencia, 1980]. The two-scale convergence approach for frictional term

is used in the work of Julia Orlik [Orlik, in preparation]. The diagram in Fig. 2.1 shows

the block scheme of this chapter.

2.1 Weak formulation of the problem

In order to introduce the weak formulation of the problem (1.1), we make the following

assumption and definitions:

Assumption 2.1. (On the regularity). Assume that the following properties hold: the

elasticity coefficients aεijkl ∈ L∞(Ωε), the boundary tractions ti ∈ H−1/2(∂Ωε
N ), the system

of boundary values g0i ∈ H1/2(∂Ωε
D), and the body force components f ε

i ∈ L2(Ωε). The non-

penetration function gε ∈ H1/2(Sε) and gε ≥ 0 a.e. in Sε, the Coulomb friction coefficient

µε ∈ L∞(Sε) is globally bounded, and µε > 0 a.e. on Sε. The Tresca friction function is

Gε ∈ L∞(Sε).



CHAPTER 2. HOMOGENIZATION OF MICROCONTACT ELASTICITY PROBLEMS

Figure 2.1: A block diagram overview of Chapter 2.

We introduce the functional space of displacements

Vε = {vε, vεi ∈ H1(Ωε) : vε = g0 on ∂Ωε
D}

and the closed, convex cone Kε ⊂ Vε,

Kε = {vε ∈ Vε : [vε]n ≤ gε(ξ) on Sε},

which describes the non-penetration constraint on the set of admissible functions. We

define the bilinear form

aε(uε, vε) =

∫

Ωε

aεijkl
∂uεi
dxj

∂vεk
dxl

dx, uε, vε ∈ Vε,

the functional

F ε(vε) =

∫

Ωε

f ε · vεdx+
∫

∂Ωε
N

t · vεds, vε ∈ Vε

24
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and the non-smooth frictional functional

Jε
2(u

ε, vε) =

∫

Sε

F ε(uε, x) |[vε]t| ds, uε, vε ∈ Vε. (2.1)

Then, integrating by parts (1.1) and introducing the Neumann boundary conditions (see

[Duvaut, Lions, 1976], [Kikuchi, Oden, 1988]), we get the weak formulation of the problem

(1.1) in the form of a variational inequality.

Definition 2.2. The weak formulation of the problem is: find uε ∈ Kε, s.t.

aε(uε, vε − uε) + Jε
2(u

ε, vε)− Jε
2(u

ε, uε) ≥ F ε(vε − uε) ∀vε ∈ Kε. (2.2)

The contact conditions in (1.1) take the form of a non-penetration constraint on the

set of admissible functions and a non-smooth frictional functional. There are different

approaches to solve the contact minimization problem, see Section 1.2. In particular, the

constraint on the set of admissible functions can be substituted by adding an additional

functional, which penalizes violation of the constraint. We would like to use the penalty

formulation, i.e. include the non-penetration condition in the form of a functional in the

weak formulation in order to apply the two-scale convergence.

Remark 2.3. The main difficulty in the study of solvability of the problem (2.2) for the

general frictional law F ε is that the frictional functional Jε
2 is non-smooth and non-convex,

and the question of existence of solution, therefore, cannot be analyzed by the classical

methods of the constrained optimization theory. In this work we give the theorems of exis-

tence of solutions for the Tresca and Coulomb frictional laws given by (2.1) with assumed

regularity conditions 2.1.

2.2 Approximation of the variational inequality by

variational equation

Throughout this section we fix ε and consider the contact problem only. The penalty

formulation for the contact problem comes from the penalty methods in minimization

problems. They introduce an approach to a constrained optimization problem which avoids
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the necessity of introducing additional unknowns in the form of Langrange multipliers. In

the content of the constrained minimization problem (2.2) we want to substitute the non-

penetration constraint by adding a penalty functional.

2.2.1 Penalty formulation

Remark 2.4. In Section 5.5 in [Kikuchi, Oden, 1988], the Coulomb law is associated with

the nonlinear boundary conditions of the third or Robin type. The Tresca friction can be

associated with the Neumann-type boundary condition.

Consider the weak formulation of problem (2.2), which is equivalent to the variational

inequality

∫

Ωε

aεijkl(x)
∂uεk(x)

∂xl

∂(vεi (x)− uεi (x))

∂xj
dx+ Jε

2(u
ε, vε)− Jε

2(u
ε, uε)

≥
∫

Ωε

fi(x)(v
ε
i (x)− uεi (x))dx+

∫

∂Ωε
N

ti(x)(v
ε
i (x)− uεi (x))ds, ∀vε ∈ Kε. (2.3)

We replace the constraint [vε]n ≤ gε by adding the penalty functional

Jε,δε

1 (uε,δ
ε

, vε) =
1

δε

∫

Sε

[[uε,δ
ε

] · nε − gε]+n
ε · ([vε]− [uε,δ

ε

])ds (2.4)

with a small penalty parameter δε > 0 and [·]+ := max{0, ·}. Let us make a remark,

that the expression 1
δε
(uε,δ

ε
(x) · nε(x) − gε(x)) represents the jump in the normal stress

σε
n|Sε+ − σε

n|Sε− at the contact interface.

The following remark is taken from [Orlik, in preparation].

Remark 2.5. Mechanical engineers interpret the functional Jε,δε

1 as a contact layer of

small penetration δε. This contact layer can be mechanically represented by a spring of

the stiffness kε,δn := 1/δε, where kε,δn is called normal microcontact stiffness. Usually in the

mechanical literature, for instance in [Goryacheva, 1988], it is taken as kn = E/δε, where

E is the Young’s modulus of the material and δε is the thickness of the artificial contact

layer (it is also mentioned in [Kikuchi, Oden, 1988]).
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Definition 2.6. The penalty formulation for δε is: find uε,δ
ε ∈ Vε, s.t.

∫

Ωε

aεijkl(x)
∂uε,δ

ε

k (x)

∂xl

∂(vεi (x)− uε,δ
ε

i (x))

∂xj
dx

+
1

δε

∫

Sε

[[uε,δ
ε

(x)] · nε(x)− gε(x)]+n
ε(x) · ([vε(x)]− [uε,δ

ε

(x)])ds

+

∫

Sε

F ε(uε, x)(|[vε(x)]t| − |[uε,δε(x)]t|)ds

≥
∫

Ωε

fi(x)(v
ε
i (x)− uε,δ

ε

i (x))dx+

∫

∂Ωε
N

ti(x)(v
ε
i (x)− uε,δ

ε

i (x))ds ∀vε ∈ Vε. (2.5)

The existence of a solution of the contact problem (2.5) for Coulomb and Tresca fric-

tion laws is a well-studied subject (see Theorem 2.2 in [Han, 1996] or Theorem 5.1 in

[Duvaut, Lions, 1976]). We recall it as an auxiliary result for further analysis of our mul-

tiscale problem.

Theorem 2.7. If measures of ∂Ωε
D, ∂Ω

ε
N are strictly positive and regularity conditions 2.1

hold, then, for every δε > 0 and fixed ε > 0, the problem (2.5) has a solution uε,δ
ε ∈ Vε(Ωε).

Furthermore, for every fixed ε, there exists a subsequence of solutions uε,δ
ε ∈ Vε(Ωε) ⊂

H1(Ωε) w.r.t. δε, which converges weakly in H1(Ωε), as δε → 0, to at least one solution uε

of the constrained problem (2.5) with the Coulomb’s friction law, and if one replaces the

Coulomb’s friction by a given friction Gε(x) (Tresca condition), the limit solution will be

unique.

The proof is based on the convexity and Gateaux-differentiability of the functional

Iε,δ
ε
(vε) := 1

2
aε(vε, vε) + 1

2
Jε,δε

1 (vε, vε) + Jε
2(v

ε, vε) − F ε(vε), which implies its weak lower

semicontinuity and the coercivity. The last one is based on the coercivity of the bilin-

ear form aε(vε, vε) and Korn’s inequality (see Chapter 3 in [Kikuchi, Oden, 1988] and

Theorem 3.1 in [Duvaut, Lions, 1976]). For the Coulomb’s friction see Theorem 2.7 in

[Eck, PhD thesis, 1996].

Furthermore, Theorem 2.3 in [Han, 1996] proves the estimate

||uε,δε||H1(Ωε) ≤ c
(

||f ε||L2(Ωε) + ||t||L2(∂Ωε
N ) + ||g0||H1/2(∂Ωε

D)

)

(2.6)

for the solution of problem (2.5), where the constant c depends only on the measure of

domain Ωε and the constants from the conditions of the positive definiteness and bounded-

ness of the elasticity tensor (aεijkl). To prove, it is enough to observe that the under-integral
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expressions in the penalty and friction functions are non-negative (since gε ≥ 0) and, hence,

can be skipped in the inequality (2.5) considered for vε = 0.

2.2.2 Regularized variational equation

Although we have studied the solvability of problem (2.5), solving it numerically would be

difficult not only because of its different scales, but also due to the presence of the non-

differentiable Euclidean norms |[v]εt | and |[uε,δε]t|. For regularization purposes, we follow

[Kikuchi, Oden, 1988] and replace them by the smooth and convex approximation φγε
(v),

where γε denotes the regularization parameter:

φγε

(vε) =







|vε| − 1
2
γε if |vε| ≥ γε,

1
2γε |vε|2 if |vε| < γε,

(2.7)

σt([u
ε,δε,γε

]t) = −F ε ∂φ

∂[uε,δε,γε]t
([uε,δ

ε,γε

]t) =







−F ε[uε,δ
ε,γε

]t/|[uε,δε,γε
]t|, if |[uε,δε,γε

]t| ≥ γε,

−F ε[uε,δ
ε,γε

]t/γ
ε, if |[uε,δε,γε

]t| < γε.

(2.8)

Then, after regularization we obtain the variational equation.

Definition 2.8. Find uε,δ
ε,γε

i ∈ Vε, such that

∫

Ωε

aijkl
∂uε,δ

ε,γε

k (x)

xl

∂vεi (x)

xj
dx+

1

δε

∫

Sε

[[uε,δ
ε,γε

(x)]n − gε(x)]+[v
ε(x)]n ds

+

∫

Sε

F ε(uε,δ
ε,γε

, x)
∂φ

∂[uε,δε,γε ]t
([uε,δ

ε,γε

]t)(x)[v
ε(x)]t ds (2.9)

=

∫

Ωε

fi(x)v
ε
i (x)dx+

∫

∂Ωε
N

ti(x)v
ε
i (x)ds ∀vε ∈ Vε.

The question of existence of solution of problem (2.9) for Tresca friction and convergence

with respect to the regularization parameter δε are formulated in Theorems 10.3 and 10.4

in [Kikuchi, Oden, 1988]. For the Coulomb friction, the solvability and convergence results

can be found in Proposition 2 in [Eck, Jarusek, 1998]. We summarize these results in the

next theorem.

Theorem 2.9. Let the measure of ∂Ωε
D be strictly positive and regularity conditions 2.1

hold. Then, for each δε > 0 and each γε > 0, there exists a solution uε,δ
ε,γε ∈ Vε(Ωε)
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of problem (2.9). An appropriate sequence uε,δ
ε,γk ∈ Vε(Ωε) ⊂ H1(Ωε) of these solutions

converges weakly in H1(Ωε) and strongly in L2(Ωε) to a solution uε,δ
ε ∈ Vε(Ωε) of varia-

tional inequality (2.5) as γεk → 0. Moreover, in the case of Tresca friction, the solution

uε,δ
ε,γε ∈ Vε(Ωε) is unique and an appropriate sequence uε,δ

ε,γε
k ∈ Vε(Ωε) ⊂ H1(Ωε) of these

solutions converges strongly in H1(Ωε).

2.3 Two-scale convergence

The previous subsection was devoted to the questions of existence of solution for fixed ε

and to equivalence of solutions of different variational formulations of the contact elasticity

problem. This section will provide the results on two-scale convergence of solution of the

resulted regularized variational equation. To apply them, we have to recall some known

preliminary results.

For further analysis we use Tresca friction, i.e. F ε(uε,δ
ε,γε

, x) = Gε(x), and introduce the

following integrals

jε,δ
ε,γε

2 (uε,δ
ε,γε

, vε) = − 1

γε

∫

Sε

Gε(x)[uε,δ
ε,γε

]t[v
ε]tds,

jε,δ
ε,γ

3 (uε,δ
ε,γε

, vε) = −
∫

Sε

Gε(x)
[uε,δ

ε,γ]t
|[uε,δε,γ]t|

[vε]tds.

Then the frictional functional Jε,δε,γε

2 is expressed as

Jε,δε,γε

2 =







jε,δ
ε,γε

2 , if |[u]ε,δε,γε

t | < γε,

jε,δ
ε,γε

3 , if |[u]ε,δ,γt | ≥ γε.

The following assumption in [Orlik, in preparation] is based on Remark 2.5.

Assumption 2.10. (Physical assumption). Assume that the initial gap function is of

the order of the size of the periodicity cell ε, i.e. gε(x) = εḡ(x/ε). The thicknesses of the

penetration layers δε, γε on the interface Sε are small parameters, which can be assumed

to be at least of the order of the periodicity cell, i.e, we can assume that δε = δε, γε = γε

on Sε. The friction coefficient is µε(x) = µ(ε−1x) and Gε(x) = G(x, ε−1x) on Sε.
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Remark 2.11. Since we are in the framework of the theory of the infinitesimal deforma-

tions, [u]t should not exceed ε, i.e. the tangential sliding represented by the jε,δ
ε,γε

3 can be

neglected. Therefore, to estimate the frictional functional, we have to consider only jε,δ
ε,γε

2 .

Remark 2.12. To obtain the bounded invertible operator on the left-hand side of (2.9), we

need to estimate the penalty functionals J1, j2 from below. Furthermore, these functionals

are analogous to the Robin-type interface conditions considered in Subsection 2.3.1.

2.3.1 Auxiliary results

The following Definitions and Theorems 2.13-2.15 can be found in [Allaire, 1992] and will

be used for the proof of our main results.

Definition 2.13. A sequence of functions uε in L2(Ω) is said to two-scale converge to a

limit u0(x, ξ) ∈ L2(Ω× Y ), iff for any function ψ(x, ξ) ∈ D(Ω, C∞
per(Y )) we have

lim
ε→0

∫

Ω

uε(x)ψ(x, x
ε
)dx =

1

|Y |

∫

Ω

∫

Y

u0(x, ξ)ψ(x, ξ)dxdξ. (2.10)

This makes sense because of the following compactness theorem.

Theorem 2.14. From each bounded sequence uε ∈ L2(Ω) we can extract a subsequence

that two-scale converges to u0(x, ξ) ∈ L2(Ω× Y ).

The following Theorem is presented in [Allaire, 1992], see Lemma 1.3. We only replace

the space L2(Ω, Cper(Y )) by L
2
per(Y, C(Ω̄)), owing Remark 1.5 and Corollary 5.4 from the

same source.

Theorem 2.15. Let uε be a bounded sequence in H1(Ω) that converges weakly to a limit

u ∈ H1(Ω). Then uε two-scale converges to u0(x, ξ) := u(x), and there exists a function

u1(x, ξ) in L2(Ω, H1
per(Y )), such that, up to a subsequence, ∇uε two-scale converges to

∇xu(x) +∇ξu1(x, ξ).

Remark 2.16. ”Converges up to a subsequence” means that the sequence uε has a con-

vergent subsequence, uε
′

, which we again redenote by uε.
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The following theorem gives an estimate for the solution with a corrector and can be

found in Theorem 3.6. in [Allaire, 1992] or Theorem 9.7. in [Oleinik, Schamaev, Yosifian].

Theorem 2.17. Let the elasticity coefficients in the elasticity operator be smooth periodic

functions and the right-hand side function f ∈ H1(Ω). Then the following estimate is valid

||uε(x)− u0(x)− εu1(x,
x

ε
)||H1(Ω) ≤ c

√
ε||f ||H1(Ω). (2.11)

The two-scale convergence was also considered for (n − 1)-dimensional structures, see

[Neuss-Radu, 1996] and [Allaire, Damlamian, Hornung, 1995].

Definition 2.18. A sequence of functions uε ∈ L2(Sε) equipped with the scaled norm

||uε||2L2(Sε) := ε
∫

S
uε(x)2dx is said to two-scale converge to a limit u0 ∈ L2(Ω × S) iff for

any ψ ∈ C(Ω̄, Cper(Y ))

lim
ε→0

ε

∫

Sε

uε(x)ψ(x, x
ε
)ds =

1

|Y |

∫

Ω

∫

S

u0(x, ξ)ψ(x, ξ)dxdsξ (2.12)

holds, where ds, dsξ have to be understood as the Hausdorff measures on Sε and S respec-

tively.

The following compactness theorem is also given by the same authors.

Theorem 2.19. From each sequence uε ∈ L2(Sε), bounded w.r.t. the scaled norm, we can

extract a subsequence that two-scale converges to u0 ∈ L2(Ω× S).

For estimation of functionals Jε,δε,γ
1 and jε,δ,γ

ε

2 , as well as for the two-scale convergence,

we recall the results from [Hummel, 1999], providing convergence for a problem with linear

Robin-type interface conditions:

Boundedness, compactness and convergence for a problem with linear Robin-

type interface conditions

Consider a two-scale elasticity problem with Robin-type conditions on the interface
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∂

∂xh

[

aihjk(
x
ε
)
∂uεj(x)

∂xk

]

= fi(x), in Ωε, (2.13)

aihjk(
x
ε
)
∂uεj(x)

∂xk
nh(x) |Sε

+
= aihjk(

x
ε
)
∂uεj(x)

∂xk
nh(x) |Sε

−

,

aihjk(
x
ε
)
∂uεj(x)

∂xk
nh(x) |Sε

+
= ε−1hε(x)[uεi (x)], x ∈ Sε,

uεi (x) = 0, x ∈ ∂Ωε
D,

with hε(x) := h(x
ε
) ≥ ca, ∀x ∈ Ωε, and

∫

S
hε(ξ)dsξ = 0.

All following results are recalled from [Hummel, 1999]. The following Korn’s inequality

for discontinuous on Sε periodic functions is analogous to the Poincaré inequality from

[Hummel, 1999].

Lemma 2.20. (Korn’s inequality in Ωε \ Sε). Let Ωε be a bounded domain with a

periodic structure, Sε be an oscillating interface and uεi ∈ H1
0 (Ω

ε \ Sε). Then there exists

a constant C0 > 0 independent of ε, such that

||uε||2L2(Ωε) ≤ C0

(
1

4

∫

Ωε\Sε

(∂uεi
∂xh

+
∂uεh
∂xi

)(∂uεi
∂xh

+
∂uεh
∂xi

)

dx+ ε−1

∫

Sε∩Ωε

[uε]2dHn−1

)

,

(2.14)

where Hn−1 is the (n− 1)-dimensional Hausdorff measure.

The proof coincides with the proof of the Poincaré inequality in Ωε\Sε given in [Hummel, 1999].

Let us study the ε-problem. We define the bilinear form

aε(ϕ, ψ) :=

∫

Ωε\Sε

∇ψ · Aε∇ϕdx+ ε−1

∫

Sε∩Ωε

hε[ϕ][ψ]ds, ϕi, ψi ∈ H1(Ωε \ Sε). (2.15)

Then the weak problem formulation can be written as

aε(uε, ϕ) =

∫

Ωε

fϕdx ∀ϕ ∈ (H1
0 (Ω

ε \ Sε))n. (2.16)

Theorem 2.21. (Compactness of the solution to the two-scale elasticity problem

with the Robin-type interface conditions). Let Ωε be a bounded domain with a

periodic structure, Sε be an oscillating interface, and uε ∈ H1
0 (Ω

ε \ Sε) be the solution to
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the two-scale elasticity problem with the Robin-type interface conditions (2.13).

(1) Then there exists a constant C > 0 independent of ε, such that the solution uε satisfies

the energy estimate:

1

4

∫

Ωε\Sε

( ∂ui
∂xh

+
∂uh
∂xi

)( ∂ui
∂xh

+
∂uh
∂xi

)

dx+ ε−1

∫

Sε∩Ωε

[uε]2dHn−1 < C||f ||2L2(Ωε). (2.17)

(2) There exists a function u ∈ L2(Ωε), such that, up to a subsequence, uε → u strongly in

L2 as ε → 0.

Proof. Since Aε and hε are bounded, the bilinear form aε is also bounded. Also, from

hε ≥ ca for all x ∈ Sε, and Korn’s inequality (2.14), it follows that aε is elliptic on

H1
0 (Ω

ε\Sε). Hence, existence and uniqueness of the solutions follow from the Lax-Milgram

lemma.

ca

(
1

4

∫

Ωε\Sε

( ∂ui
∂xh

+
∂uh
∂xi

)( ∂ui
∂xh

+
∂uh
∂xi

)

dx+ ε−1

∫

Sε∩Ωε

[uε]2ds

)

≤ aε(uε, uε) =

∫

Ωε

fuεdx ≤ ||f ||2L2(Ωε)||uε||2L2(Ωε). (2.18)

The Korn inequality (2.14) completes the proof of the part (1). The statement of the part

(2) follows directly from the estimate (2.17) and Theorem 2.14.

Theorem 2.22. (Convergence theorem for the two-scale elasticity problem with

the Robin-type interface conditions). Let Ωε be a bounded domain with a periodic

structure, Sε be an oscillating interface, and uε ∈ H1
0 (Ω

ε \ Sε) be the solution to the two-

scale elasticity problem with the Robin-type interface conditions (2.13).

Then there exist functions u ∈ H1
0 (Ω

ε) and u1 ∈ L2(Ωε;H1
per(Ω

ε \ S)), such that (up to a

subsequence) uε → u, 1Ωε\Sε∇uε → ∇u +∇u1 and 1Sε∩Ωεε−1[uε]nε → 1Ωε×(S∩Y )[u1]n for

ε → 0 in the two-scale sense. That is, for all suitable test functions ψ ∈ C∞
0 (Ωε, C∞

Y (S))

the following holds

∫

Ωε\Sε

∇uε(x)ψ(x, ε−1x)dx →
∫ ε

Ω

∫

Y \S

(∇xu(x) +∇ξu1(x, ξ))ψ(x, ξ)dξdx, (2.19)

∫

Sε∩Ωε

[uε](x)nε(x)ψ(x, ε−1x)ds→
∫ ε

Ω

∫

S∩Y

[u1](x, ξ)n(x, ξ)ψ(x, ξ)dsξ. (2.20)

For a proof see Proposition 5.5 in [Hummel, 1999].
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Homogenization of the two-scale Robin-type elasticity problem

The auxiliary problem for an auxiliary function Nq, which consists of the columns nqp, on

the periodicity cell will be

∂

∂ξh

[

aihjk(ξ)
∂(nqp

j (ξ) + δpjξq)

∂ξk

]

= 0, in Y , (2.21)

aihjk(ξ)
∂(nqp

j (ξ) + δpjξq)

∂ξk
nh(ξ) |S+ = aihjk(ξ)

∂(nqp
j (ξ) + δpjξq)

∂ξk
nh(ξ) |S−, ξ ∈ S,

aihjk(ξ)
∂(nqp

j (ξ) + δpjξq)

∂ξk
nh(ξ) |S+ = h[nqp

i (ξ)], ξ ∈ S,

nqp
j is Y − periodic. (2.22)

The homogenized elasticity tensor will be given by

Ahom
i,k :=

∫

Y \S

(∇nqi + ei) · Aε(∇nqk + ek)dξ +

∫

S∩Y

h[nqi][nqk]dsξ.

It is positive definite, since Aε and hε are positive definite. Hence, there exists a unique

solution u ∈ H1
0 (Ω) of the homogenized problem

∫

Ω

∇ϕ · Ahom∇u =

∫

Ω

fϕdx, ∀ϕ ∈ (H1
0 (Ω))

n. (2.23)

Theorem 2.23. Let Ωε be a bounded domain with a periodic structure, Sε be an oscillating

interface, and uε ∈ H1
0 (Ω

ε \ Sε). Then the problem (2.15)-(2.16) converges to
∫ ε

Ω

∫

Y \S

(∇u+∇ξu1) · Aε(∇ϕ+∇ξϕ1)dξdx+

∫ ε

Ω

∫

S∩Y

h[u1][ϕ1]dsξdx =

∫ ε

Ω

fϕdx, (2.24)

or, in the strong formulation,

−divx (

∫

Y

Aε(ξ)(∇xu(x) +∇ξu1(·, ξ))dξ) = f, x ∈ Ωε, (2.25)

−divξ (A
ε(ξ)(∇xu(x) +∇ξu1(x, ·))) = 0, x ∈ Ω, ξ ∈ Y \ S,

[Aε(ξ)(∇xu(x) +∇ξu1(x, ·))] = 0, x ∈ Ωε, ξ ∈ S ∩ Y,

Aε(ξ)(∇xu(x) +∇ξu1(x, ·)) = h[u1(x, ξ)], x ∈ Ωε, ξ ∈ S ∩ Y,

(u, u1) ∈ H1
0(Ω

ε)× L2(Ωε, H1
per(Y \ S)),

as ε tends to 0.
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The proof is similar to the proof of Theorem 2.15. One should take the test function

in (2.16) ϕ(x) + εϕ1(x, ε
−1ϕ) with ϕ ∈ C∞

0 (Ωε), ϕ1 ∈ C∞
0 (Ωε, H1

per(Y )), and then in each

term go to the limit known from the previous lemmas.

2.4 The main results of the chapter

At this point, the results presented in this section are outlined without the proofs. However,

the proofs of the theorems will be given in [Orlik, in preparation]. Note that these results

are formulated for any microcontact problem with highly oscillating inner contact interface,

not restricted to textiles with fiber microstructure.

In order to construct the algorithm given in Chapter 5, the auxiliary problem and the

limit problem are presented here.

Proposition 2.24. (Convergence for penalty terms). Let Ωε be a bounded domain

with a periodic structure, Sε be an oscillating interface and uε ∈ H1
0 (Ω

ε \ Sε) be the so-

lution to the two-scale elasticity problem with the contact interface condition. Let further

u ∈ H1
0 (Ω

ε) and u1 ∈ L2(Ωε;H1
per(Ω

ε \ S)) be such that (up to a subsequence) uε → u,

1Ωε\Sε∇uε → ∇u +∇u1 and 1Sε∩Ωεε−1[uε]nε → 1Ωε×(S∩Y )[u1]n for ε → 0 in the two-scale

sence. Let vε(x) := v(x) + εv1(x,
x
ε
) be a suitable test function with v ∈ D(Ωε ∪ ∂Ωε

N ) and

v1 ∈ D(Ωε, C∞
per(S ∩ Y )). Then the macroscopic non-penetration condition is

lim
ε→0

Jε,δ
i (uε, v + εv1, x)|Ωε = J1,δ

1 (u1, v1, x)|Ωε, i = 1, 2,

i.e. the non-penetration condition for the auxiliary periodicity cell problem on S, where

[v] = [u0] = 0 is given by

1

δε

∫

Sε

[[uε](x) · nε(x)− gε(x)]+n
ε(x) · ([u0 + εv1]− [uε,δ]) ds

→ 1

δ|T |

∫

Ω

∫

S

[[u1](x, ξ)n(x, ξ)− ḡ(ξ)]+n(x, ξ)([v1](x, ξ)− [u1](x, ξ)) dsξ dx,

and the friction condition is

lim
ε→0

1

γε

∫

Sε

Gε(x)[uε]t[vε]tds =
1

γ|T |

∫

S

G(x, ξ)[u1]t[v1]tdsξdx, [u0]t = 0.

The proofs of both statements will be given in [Orlik, in preparation], looking through

the results of [Hummel, 1999] given in Subsection 2.3.1.
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2.4.1 Homogenized contact problem

Theorem 2.25. (Homogenized system).

The sequence uε of solutions of (1.1) has a subsequence strongly convergent to u0(x) and

the sequence ∇uε has a subsequence, two-scale convergent to ∇u0(x) + ∇ξu1(x, ξ), where

(u0, u1) ∈ H1(Ωε, ∂Ωε
D) × H1(Ωε, H1

per[0](Y \ S)) is the unique solution of the two-scale

homogenized system.

Limit problem

∫

Ωε

[
1

|Y |

∫

Y

aijkl

(
∂(u0)k(x)

∂xl
+
∂(u1)k(x, ξ)

∂ξl

)(
∂((v0)i(x, ξ)− (u0)i(x, ξ))

∂xj

+
∂((v1)i(x, ξ)− (u1)i(x, ξ))

∂ξj

)

dξ +
1

|Y |

∫

S

F(u1, x̂, ξ̂)(|[v1]τ (x, ξ)| − |[u1δ]τ (x, ξ)|)dsξ
]

dx

≥ −
∫

Ωε

fi(x)((v0)i(x)− (u0)i(x))dx+

∫

∂Ωε
N

ti(x)((v0)i(x)− (u0)i(x))dsx

for any v0 ∈ H1(Ωε, ∂Ωε
D), where H

1(Ωε, ∂Ωε
D) = {v ∈ H1(Ωε)n | vn = g0(x) on ∂Ω

ε
D}, and

any v1 ∈ K1, where the cone K1 := {v1 ∈ H1(Ωε, H1
per(Ŷ ))

n | [v1]n(x, ξ) ≤ ḡ(ξ) for ξ ∈
S, a.e. x ∈ Ωε}, which yields the following

(i) Homogenized elasto-plastic problem

∫

Ωε

[∫

Y

aijkl

(
∂(u0)k(x)

∂xl
+
∂(u1)k(x, ξ)

∂ξl

)
∂((v0)i(x, ξ)− (u0)i(x, ξ))

∂xj
dξ

+

∫

S

F(u1, x̂, ξ̂)(|[v1]τ (x, ξ)| − |[uδ1]τ (x, ξ)|)dsξ
]

dx

≥ −
∫

Ωε

fi(x)((v0)i(x)− (u0)i(x))dx+

∫

∂Ωε
N

ti(x)((v0)i(x)− (u0)i(x))dsx,

for any v0 ∈ H1(Ωε, ∂Ωε
D), where H

1(Ωε, ∂Ωε
D) := {v ∈ H1(Ωε)n | vn = g0(x) on ∂Ωε

D},
and any v1 ∈ K1, where the cone K1 := {v1 ∈ L2(Ω, H1

per(Ŷ ))
n | [v]n(x, ξ) ≤ ḡ(ξ) for ξ ∈

S, a.e. x ∈ Ωε}.
(ii) Auxiliary problem in the periodicity cell

∫

Y

aijkl

(
∂(u0)k(x)

∂xl
+
∂(u1)k(x, ξ)

∂ξl

)
∂((v1)i(x, ξ)− (u1)i(x, ξ))

∂ξj
dξdx (2.26)

+

∫

S

F(u1, x̂, ξ̂)(|[v1]τ (x, ξ)| − |[uδ1]τ (x, ξ)|)dsξdx ≥ 0, (2.27)
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for any v1 ∈ K1 and

F(u1, x̂, ξ̂) :=







G(x̂, ξ̂), Tresca friction,
µ(x,ξ)

δ
(uδ1(x)n(x, ξ)− ḡ(ξ)), Coulomb’s friction.

(2.28)

2.4.2 Strong homogenized and auxiliary contact problems

Let us make an ansatz like in the linear elliptic problems and look for u1(x, ξ) in the form

u1(x, ξ) ≡ N(ξ)∇u0(x). (2.29)

Assume that boundaries, elastic coefficients and right-hand side functions are smooth.

The auxiliary problem on the periodicity cell will be

∂

∂ξh

[

aihjk(ξ)
∂(nqp

j (ξ) + δpjξq)

∂ξk

]

= 0, σ1
ih ≡ aihjk(ξ)

∂(nqp
j (ξ) + δpjξq)

∂ξk
in Y , (2.30)

σ1
n(ξ) ≤ 0, [nqp(ξ)] ≤ ḡ(ξ), σ1

n(x, ξ)[n
1p(ξ)− ḡ(ξ)] = 0 on S,

|σ1
τ (ξ)| ≤

F(N(ξ)∇u0, x, ξ)
|∇u0|

⇒ [nqp
τ ] = 0, ξ ∈ S,

|σ1
τ (ξ)| =

F(N(ξ)∇u0, x, ξ)
|∇u0(x)|

⇒ ∃λ ≥ 0 : [nqp
τ ] = −λσ1

τ , ξ ∈ S,

nqp
j is Y − periodic.

The homogenized elasto-plasticity tensor will be computed from

Ahom
i,k (∇u0) ≡

∫

Y \S

(∇nqi + ei) · A(∇nqk + ek) dξ +

∫

S∩Y

F(N(ξ)∇u0(x), x, ξ)
|∇u0(x)|

[wτ ]dsξ.

It is positive definite, since A and F are positive definite.

The proof is similar to those for analogous theorems from [Allaire, 1992] and [Hummel, 1999].
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Chapter 3

Homogenization of textiles

The motivation for this chapter is the following: the homogenization of the microcontact

elasticity problem described in Chapter 2 can be applied for homogenization of textiles

with microcontact between fibers. However, a textile the on macro scale is geometrically

represented as a thin plate with in-plane periodic micro structure. On the other hand,

on the microscale the microstructure of a textile is characterized by thin fibers with the

characteristic diameter much smaller than the size of the periodicity cell. This gives a

motivation to come to the asymptotics with respect to the thickness of the textile plate

(see Fig.3.1) and the diameter of the fibers.

The chapter is organized in the following way. Section 3.1 presents the results on homog-

enization of the heterogeneous plate given in [Panasenko, 2005]. In Section 3.2 we con-

sider the problem with non-homogeneous Neumann boundary conditions on the vanishing

out-of-plane interface. By introducing an additional expansion in the formal asymptotic

expansion, we deduce the auxiliary problems and homogenized problem. In Section 3.3

we treat the microstructure of the fibers on the unit cell as a finite rod structure and use

results of [Panasenko, 2005] in order to obtain the reduced problem.

3.1 Homogenization of a heterogeneous plate

In this section we recall some results of [Panasenko, 2005] on homogenization of linear

elasticity equations considered in the thin plate domain. The homogenization is made for

zero Neumann out-of-plane boundary conditions on the vanishing interface. The formal

asymptotic solution is sought in the form of series. This allows to construct a recurrent



CHAPTER 3. HOMOGENIZATION OF TEXTILES

Figure 3.1: Asymptotics with respect to thickness of the plate.

chain of problems and to obtain the complete formal asymptotic solution. The in-plane

boundary conditions can be introduced by assuming a boundary layer corrector. The zero

order homogenized problem has the form of an in-plane elasticity problem with effective

in-plane elasticity coefficients and a 4th order problem with effective bending coefficients.

3.1.1 Statement of ε problem

We consider that our domain Ωε described in Chapter 1 is given by the layer {x ∈ IRn :

xn/ε ∈ (−1/2, 1/2)} periodic in in-plane variables x1, x2, . . . , xn−1 with the period and

thickness equal to ε.

Let uε be a n dimensional displacement vector, and Aij = {aijkl} be n × n matrices of

the linear elasticity tensor. In Ωε we consider the linear elasticity problem:

Aεuε = f(x1, . . . , xn−1), x ∈ Ωε, (3.1)

with the boundary conditions:

∂uε

∂n̄
= 0, xn/ε = 1/2, (3.2)

∂uε

∂n̄
= 0, xn/ε = −1/2, (3.3)

where n̄ is the outer normal to the boundaries xn/ε = ±1/2,

Aε =
n∑

i,j=1

∂

∂xi

(

Aij(
x
ε
)
∂u

∂xj

)

,

Aij = {aijkl} and

∂uε

∂n̄
|xn/ε=±1/2 ≡ ±

n∑

j=1

A3j

(
x1
ε
,
x2
ε
, . . . ,±1

2

)
∂uε

∂xj
. (3.4)
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Assumption 3.1. The elements of matrices Aij(ξ) = {aijkl(ξ)} are assumed to be periodic

in ξ1, . . . , ξn−1 and satisfy conditions given in Chapter 1, Assumption 1.3. The right hand

side f is a C∞ vector valued function.

Remark 3.2. In [Panasenko, 2005] the statement of the problem is made for the cases

n = 2, 3. However, the results can be extended to the general, n-dimensional case. Besides,

one can consider the in-plane boundary conditions, for instance, the homogeneous Dirichlet

boundary condition at x1 = 0, b; b ∈ IR. In this case, a boundary layer corrector is

used to impose the boundary condition, for details see Subsection 3.2 in Chapter 3 in

[Panasenko, 2005].

According to Section 2 of Chapter 3 in [Panasenko, 2005], the formal asymptotic solution

can be sought in the form of series

uε
(

x,
x

ε

)

=
∞∑

l=0

εl
∑

|q|=l

Nq

(x

ε

)

Dqu0(x1, . . . , xn−1), (3.5)

where q = (q1, . . . , ql) is a multi index, qj ∈ {1, . . . , n− 1}, the auxiliary functions Nq are

n× n matrix valued functions periodic in x1, . . . , xn−1, D
q is a multiderivative.

3.1.2 Auxiliary in-plane problems

Plugging expansion (3.5) into (3.1), and grouping the terms of the same order one can

obtain (see [Panasenko, 2005]) a recurrent chain of auxiliary problems
n∑

i,j=1

∂

∂ξi

(

Aij(ξ)
∂Nq

∂ξj

)

= −Tq(ξ) + Ahom
q , ξ ∈ Y, (3.6)

∂Nq

∂n
= −A3q1Nq2...ql, ξn = ±1/2,

Nq is ξ1, . . . , ξn−1 periodic,

where

Tq(ξ) =

n∑

j=1

∂

∂ξj
(Ajq1Nq2...ql) +

n∑

j=1

Aq1j
∂Nq2...ql

∂ξj
+ Aq1q2Nq3...ql, (3.7)

N∅ = I, and from the solvability conditions

Ahom
q =

1

|Y |

∫

Y

(

Aq1q2Nq3...ql +
n∑

j=1

Ai1j
∂Nq2...ql

∂ξj

)

dξ, |q| ≥ 2, (3.8)

Ahom
∅ = 0, Ahom

q1
= 0.
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3.1.3 Homogenized problem

The homogenized equation of the infinite order (see [Panasenko, 2005]) is

Aεuε − f =
n−1∑

q1,q2=1

Ahom
q1,q2

∂2u0
∂xq1∂xq2

+ ε
n−1∑

q1,q2,q3=1

Ahom
q1,q2,q3

∂3u0
∂xq1∂xq2∂xq3

+ ε2
n−1∑

q1,q2,q3,q4=1

Ahom
q1,q2,q3,q4

∂4u0
∂xq1∂xq2∂xq3∂xq4

+O(ε3)− f = 0, (3.9)

and the zero order homogenized problem is

n−1∑

q1,q2=1

Ahom
q1q2

∂2u0
∂xq1∂xq2

= f. (3.10)

For bending properties, one has to consider the formal asymptotic expansion of u0 with

respect to the thickness of the heterogeneous plate equal to ε

u0(x1, . . . , xn−1) =

∞∑

j=−2

εjuj0(x1, . . . , xn−1), (3.11)

where uj0 for j = −2,−1 has the form uj0 = (0, . . . , 0, (uj0)n)
T .

Let us redenote u00 by u0. One can write (see [Panasenko, 2005]) the zero order homoge-

nized equation as

n−1∑

q1,q2=1

Ahom
q1q2

∂2u0
∂xq1∂xq2

+

n−1∑

q1,q2,q3,q4=1

Ahom
q1q2q3q4

∂4u0
∂xq1∂xq2∂xq3∂xq4

= f. (3.12)

Remark 3.3. It is proven (see Theorem 3.2.1 in [Panasenko, 2005]) that matrices Ahom
q

have a block form, which allows to write homogenized equations componentwise.

3.1.4 Algorithm for computation of the effective stiffness of a

plate

This subsection represents the implementation-ready form of the algorithm described in

Subsection 3.2.5 of the book [Panasenko, 2005]. The algorithm is based on the solution

derived in the previous subsection and allows to compute elements of Ahom
q1q2 and Ahom

q1q2q3q4,

where q1, q2, q3, q4 ∈ {1, . . . , n− 1}, in (3.12).
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The case n = 3 is considered. Let us solve the elasticity theory system of equations for

q1, s = 1, 2:

3∑

m,j=1

∂

∂ξm
(Amj(ξ)

∂

∂ξj
(N (s)

q1 + esξq1)) = 0, ξ3 ∈
(

−1

2
,
1

2

)

, (3.13)

3∑

j=1

A3j(ξ)
∂

∂ξj
(N (s)

q1
+ esξq1) = 0 ξ3 = ±1

2
,

N (s)
q1 is ξ1, ξ2 periodic,

where N
(s)
q1 is a 3-dimensional vector, the s-th column in the auxiliary matrix-valued func-

tions Nq with the length of multi-index q equal to 1, i.e. q = {q1}. The es is the unit

vector defined as (δs1, δs2, δs3). Then the elements of the effective tensor Ahom
q1q2

= {āksq1q2}
can be computed from the following formula:

āksq1q2 = 〈akrq1j
∂

∂ξj
(nrs

q2
+ δrsξq1)〉, (3.14)

where nrs
q2

is the s-th element of the vector N
(s)
q2 , and 〈·〉 = 1

|Y |

∫

Y
·dξ.

Now consider the elasticity theory system of equations for q1, q2 = 1, 2:

3∑

m,j=1

∂

∂ξm
(Amj(ξ)

∂

∂ξj
(N (3)

q1q2
− Amq1eq2ξ3)) = 0, ξ3 ∈

(

−1

2
,
1

2

)

, (3.15)

3∑

j=1

A3j
∂

∂ξj
N (3)

q1q2 − A3q1eq2ξ3 = 0, ξ3 = ±1

2
,

N (3)
q1q2

is ξ1, ξ2 periodic.

Then the elements of the effective tensor Ahom
q1q2q3q4

= {āq1q2q3q4} are given by

āq1q2q3q4 = −
〈

ξ3

(
3∑

j,r=1

aq1rq2j

∂nr3
q3q4

∂ξj
− aq2q3q1q4ξ3

)〉

, (3.16)

where 〈·〉 = 1
|Y |

∫

Y
·dξ.

3.2 Non-homogeneous Neumann BCs

The aim of this section is to homogenize the non-zero Neumann conditions. The right hand

side of the ε problem is considered to have the form which is connected to the out-of-plane

pressure.
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The introduction of an additional asymptotic expansion in the ansatz allows to deduce

the recurrent chain of cell problems and to obtain the homogenized problem where the the

out-of-plane pressure is incorporated into the right hand side.

3.2.1 Statement of ε problem

We consider the linear elasticity problem in Ωε,

Aεuε = f(x1, . . . , xn−1), x ∈ Ωε, (3.17)

with the Neumann out-of-plane boundary conditions

∂uε

∂n
= εp(x1, . . . , xn−1), xn/ε = 1/2, (3.18)

∂uε

∂n
= 0, xn/ε = −1/2, (3.19)

where n is the outer normal to the boundaries, ∂uε

∂n
is given by (3.4), and the elements of

matrices Aij satisfy the conditions given in Assumption 3.1.

Assumption 3.4. We assume that
∫

Ωε

fdx = ε

∫

{ξn=1/2}∩∂Ωε

pds.

Also, f and p are assumed to be orthogonal to all rigid rotations.

We look for a solution in the form

uε = uεf + uεp, (3.20)

where

uεf =

∞∑

l=0

εl
∑

|q|=l

Nq(
x
ε
)Dqu0(x1, . . . , xn−1)

is the solution of the problem (3.17)-(3.19) with p = 0, f 6= 0, and is constructed in the

way described in Section 3.1.

uεp = ε2
∞∑

l=0

εl
∑

|q|=l

Θq(
x
ε
)Dqp(x1, . . . , xn−1) (3.21)

is the solution of problem (3.17)-(3.19) with p 6= 0, f = 0, and is constructed below. The

auxiliary functions Θq are n× n matrix-valued functions periodic in ξ1, . . . , ξn.
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3.2.2 Auxiliary problems

Substituting series (3.21) in (3.17) with f = 0 and grouping the terms of the same order

we get

Aεuεp =

∞∑

l=0

εl
∑

|q|=l

HΘ
q (ξ)D

qp = 0, (3.22)

where

HΘ
q =

n∑

i,j=1

∂

∂ξi

(

Aij
∂Θq

∂ξj

)

+ TΘ
q , (3.23)

TΘ
q =

n∑

j=1

Aq1j
∂Θq2...ql

∂ξj
+

n∑

j=1

∂

∂ξj
(Ajq1Θq2...ql) + Aq1q2Θq3...ql. (3.24)

Suppose that

HΘ
q (ξ) = Bhom

q ,

where Bhom
q are constant n×nmatrices, and Bhom

∅ = I. Then we get the following recurrent

chain of equations:
n∑

i,j=1

∂

∂ξi

(

Aij
∂Θq

∂ξj

)

= −TΘ
q +Bhom

q . (3.25)

Substituting series (3.21) in (3.18), (3.19) and grouping terms of the same order we get

∂uεp
∂n

=

∞∑

l=0

εl+1
∑

|q|=l

(
n∑

j=1

Anj
∂Θq

∂ξj
+ Anq1Θq2...ql

)

Dqp = εp, xn/ε = 1/2, (3.26)

∂uεp
∂n

= −
∞∑

l=0

εl+1
∑

|q|=l

(
n∑

j=1

Anj
∂Θq

∂ξj
+ Anq1Θq2...ql

)

Dqp = 0, xn/ε = −1/2. (3.27)

Thus, we obtain the following recurrent chain of auxiliary problems for Θq:

n∑

i,j=1

∂

∂ξi
(Aij(ξ)

∂Θq

∂ξj
) = −Tq(ξ) +Bhom

q , ξ ∈ Y, (3.28)

∂Θq

∂n
= Iδl0 −Anq1Θq2...ql, ξn = 1/2,

∂Θq

∂n
= −Anq1Θq2...ql, ξn = −1/2,

Θq is periodic in ξ1, . . . , ξn−1,
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where Bhom
q are chosen from the solvability conditions for problem (3.28).

Bhom
q =

1

|Y |

∫

Y

(
n∑

j=1

Aq1j
∂Θq2...ql

∂ξj
+ Aq1q2Θq3...ql

)

dξ + Iδl0, l > 1, (3.29)

and Bhom
∅ = I.

One has to point out that the problem for l = 0, i.e. for the auxiliary function Θ∅, has a

non-trivial solution.

3.2.3 Homogenized problem

Substituting (3.20) in (3.17), we obtain

Aε(uεf + uεp) =
∞∑

l=0

εl−2
∑

|q|=l

Ahom
q Dqu0 +

∞∑

l=0

εl
∑

|q|=l

Bhom
q Dqp = f, (3.30)

the homogenized equation of the infinite order with respect to u0, where the out-of-plane

pressure in problem (3.17)-(3.19) is incorporated into the right hand side of the homoge-

nized equation via Bhom
q .

The homogenized equation of the zeroth order is

n−1∑

i,j=1

Ahom
ij

∂2u0
∂xi∂xj

= f − p, (3.31)

where

Ahom
ij :=

1

|Y |

∫

Y

(

Aij(ξ) +
n∑

q=1

Aiq
∂Nj(ξ)

∂ξq

)

dξ. (3.32)

3.3 Auxiliary problems: asymptotics with respect to

the thickness of the fibers

The nature of a textile composite or fiber structure Y is such that the geometry of fibers,

rods or beams on the unit cell can be represented as connections of straight or curved slender

bodies with fixed junctions or contacting points. This gives us a natural mathematical

description of the fiber microstructure on the unit cell as the union Y h = ∪l
e=1Y

h
e of curved

or straight rods of the thickness h with cross-sections βe
h = {(x̂2/h, . . . , x̂n/h) ∈ βe}, e =
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1, . . . , l, where βe ⊂ IRn−1 are bounded domains and x̂ is the local coordinate system of

the rod Y h. The incorporation of the orientation is given below, in Definition 3.10.

For simplicity we assume a 3-dimensional case, n = 3, and that all fibers have the same

cross-section βh. The question of the approximation of the geometry Y by Y h is not

considered here, and we assume that the geometry on the unit cell is already given by Y h.

Assumption 3.5. Assume that domain Y h = ∪l
e=1Y

h
e is the union of fiber domains Y h

e =

βh × Ye, where Ye is a straight segment in IRn, representing the neutral line of the fiber

domain Y h
e .

Y h is a finite rod structure, described in [Panasenko, 2005]. Therefore, all results on L

convergence for an elasticity problem on finite rod structures are applied here. Recall the

definitions and notations for a finite rod structure.

Definition 3.6. Let ∂Y h = ∂Y ∪ Y h be the outer boundary of the microstructure Y h on

the unit cell Y . Then we denote by ∂Y h
D 6= ∅ and ∂Y h

N = ∂Y h \ ∂Y h
D the parts of the outer

boundary where Dirichlet and Neumann boundary conditions apply.

Definition 3.7. Let YE = ∪l
e=1Ye be the union of all neutral lines of all fiber domains.

Let YE be such that intersection of any two neutral lines can only be the end point for both

lines. The end points s of neutral lines are called nodes, and the set YE is called skeleton.

The nodes s /∈ ∂Y h are called internal nodes.

Definition 3.8. Let Se be the maximal subset of Y h
e , such that any cross-section by a plane

perpendicular to the neutral line Ye is free of points of any other fiber domain. Then Se is

called a section of the fiber domain Y h
e . The union of all sections is denoted by S0.

Definition 3.9. For each element Ye, let E be the Young modulus, A = |βh| be the area

of cross section. Let I2 =
∫

βh
x22dx2dx3, I3 =

∫

βh
x23dx2dx3 be the second area moments,

G — the torsion stiffness. Let us fix the coordinate system in IRn, then let γe be the

n-dimensional orientation vector of the element Ye.

Definition 3.10. Let ê1 = (c11, c21, c31)
T , ê2 = (c12, c22, c32)

T , and ê3 = (c13, c23, c33)
T be

the unit coordinate vectors of an element’s local coordinate system. Then Ce defined as

(ê1, ê2, ê3) is the 3 × 3 orthogonal matrix of transformation of the local coordinate system

of the element Ye to the global coordinate system.
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Figure 3.2: A finite rod structure.

Definition 3.11. For each element Ye define the matrix

Γ̄e =







C32
e C

23
e − C22

e C
33
e C31

e C
22
e − C21

e C
32
e C31

e C
23
e − C21

e C
33
e

C22
e C

13
e − C12

e C
23
e C21

e C
12
e − C11

e C
22
e C21

e C
13
e − C11

e C
23
e

C32
e C

13
e − C12

e C
33
e C31

e C
12
e − C11

e C
32
e C31

e C
13
e − C11

e C
33
e







T

,

where C ij
e are elements of the matrix Ce.

We consider auxiliary problems for Nq,Θq on the set Y h.

3.3.1 Microstructure of fibers as a finite rod structure

We formulate the statement of the linear elasticity problem for a displacement vector wh,

a column of the matrix-valued auxiliary functions Nq,Θ∅. We treat the domain Y h as a

finite rod structure. Then, according to [Panasenko, 2005], the linear elasticity problem in

Y h is

n∑

i,j=1

∂

∂ξi
(Aij(ξ)

∂wh

∂ξj
) = ψ, ξ ∈ Y h, (3.33)

∂wh

∂n
= 0, ξ ∈ ∂Y h

N ,

wh = 0, ξ ∈ ∂Y h
D ,

where Y h
N and Y h

D are parts of the boundary that coincides with the base of the fiber domain

Y h
e and contains the nodal end point.
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Assumption 3.12. The bending components of the body force ψ acting on each section Se

are of the order O(h2). Namely, in the local coordinate system (s1, s2, s3) of the element

Ye, ψ(s1) can be written as (ψe
1(s1), h

2ψe
2(s1), h

2ψe
3(s1)).

Theorem 3.13. The solution of the problem (3.33) exists and is unique.

Proof. Problem (3.33) is the well-known mixed boundary value problem of elasticity. This

problem has a unique solution (see, for example, [Fishera, 1972]).

Using results of [Panasenko, 2005] on finite rod structures, one can construct the asymp-

totic expansion for wh with respect to h

wh = w0(s1) +
∞∑

i=1

hiMi(
s2
h
, s3

h
)
diw0(s1)

dsi1
, s ∈ Y h

e , (3.34)

where s1 ∈ Ye and s2, s3 are cross-sectional variables, Mi(
s2
h
, s3

h
) are 3 × 4 matrix-valued

functions, and w0(s1) is a 4-dimensional vector-valued function.

Passing to the asymptotic limit with respect to h gives the limit problem for w0 of the

asymptotic expansion (3.34), where E,A, I1, I2, G are given by Definition 3.9.

Theorem 3.14. The limit problem for w0 = (w01, w02 , w03, w04)
T is: for each element Ye

• for we
01
,

EA
d2we

01(s1)

ds21
= ψe

1(s1), s1 ∈ Ye, (3.35)

with the matching condition

EA
∑

e(s0)

γe
dw1

0(s0)

ds
= 0 (3.36)

at all nodes common for at least two segments, except s0 ∈ ∂Y h
D , the condition

we
01 = 0 (3.37)

at all nodes s0 ∈ ∂Y h
D , and the condition

EAγe
dwe

01(s0)

ds
= 0 (3.38)

at all nodes initial for one element only;
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• for (we
02
, we

03
, we

04
),

G
d2we

04
(s1)

ds21
= 0, s1 ∈ Ye, (3.39)

EI2
d4we

02
(s1)

ds41
= ψe

2(s1), s1 ∈ Ye, (3.40)

EI3
d4we

03
(s1)

ds41
= ψe

3(s1), s1 ∈ Ye, (3.41)

with the matching conditions

∑

e(s0)

Γ̄e

(

G
dwe

04(s0)

ds
, EI

d2we
02(s0)

ds2
, EI

d2we
03(s0)

ds2

)T

= 0, (3.42)

we
02

= 0, we
03

= 0 (3.43)

at all internal nodes and

Γ̄e1

(

we
04 ,

dwe
02(s0)

ds
,
dwe

03(s0)

ds

)T

= Γ̄e2

(

we
04 ,

dwe
02(s0)

ds
,
dwe

03(s0)

ds

)T

(3.44)

at nodes s0 common for at least two segments. The boundary conditions are

we
04 = 0, we

02 = 0,
dwe

02
(s0)

ds
= 0, we

03 = 0,
dwe

03
(s0)

ds
= 0 (3.45)

at all nodes s0 ∈ ∂Y h
D and

we
02

= 0, we
03

= 0, Ce(w
e
04
, we

02
, we

03
)T = 0 (3.46)

at all nodes initial only for one element.

Proof. For details, see Chapter 4 in [Panasenko, 2005].

For solvability of the reduced one-dimensional problem (3.35)-(3.46) we need the assump-

tions PF1, PF2 given in [Panasenko, 2005]:

Assumption 3.15. (PF1). Let φ(s) be a 3-dimensional vector-valued function defined on

YE, vanishing at the nodes in ∂Y h
D , such that

• φ(s) has a generalized derivative along each element Ye,

• all components of φ(s), except the first one, are linear on each element Ye,
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• φ(s) satisfies the matching condition Ce1φ = Ce2φ for each two elements having the

common node.

Then it is assumed that

∑

e

∫

Ye

(φ1(s))
2ds ≤ c

∑

e

∫

Ye

(
dφ1(s)

ds
)2ds, (3.47)

where the constant c depends only on YE.

Assumption 3.16. (PF2). Let φ(s) be 3-dimensional vector-valued function defined on

YE, such that

• φ1(s) has generalized derivative along each element Ye,

• φ2(s), φ3(s) have two generalized derivatives along each element Ye,

• φ2(s0) = φ3(s0) = 0 at all nodes,

• the matching condition

Γ̄e1

(

φ1,
dφ2(s0)

ds
,
dφ3(s0)

ds

)T

= Γ̄e2

(

φ1,
dφ2(s0)

ds
,
dφ3(s0)

ds

)T

(3.48)

holds for each two elements having the common node,

• φ(s) satisfies the boundary conditions

φ = 0,
dφ2

ds
= 0,

dφ3

ds
= 0. (3.49)

Then it is assumed that
∫

YE

(

φ2
1(s) + (

dφ2(s)

ds
)2 + (

dφ3(s)

ds
)2
)

ds ≤ c

∫

YE

(

φ2
1(s) + (

d2φ2(s)

ds2
)2 + (

d2φ3(s)

ds2
)2
)

ds,

(3.50)

where the constant c depends only on YE.

The solution w0 of the problem (3.35)-(3.46) can be extended from each element Ye to

Se by

wh
0 (x) :=







Ce

[
(we

01
(s(x)), we

02
(s(x)), we

03
(s(x))) + 1

h
(0,−s3(x), s2(x))we

04
(s(x))

]
, x ∈ S0,

Cew
e
01(s0) = const, x ∈ Y h \ S0.

(3.51)
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Theorem 3.17. Let the assumptions PF1, PF2 hold. Then there exists a solution of the

problem (3.35)-(3.46), and for wh
0 defined by (3.51) the following is true:

1

|Y h|‖w
h − wh

0‖L2(Y h) = O(
√
h). (3.52)

Proof. Existence of the solution of the problem (3.35)-(3.46) follows from Lemma 4.4.2

in [Panasenko, 2005], while the estimate (3.52) is the corollary from Theorem 4.4.5 in

[Panasenko, 2005]

Assumption 3.18. Assume that PF1, PF2 for solution of the limiting problem are true.
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Chapter 4

FEM for cell problems

The reduced problem (3.35)-(3.46) with contact conditions in the fiber skeleton YE can

be solved numerically using the finite element method. The representation of the skeleton

YE = ∪l
e=1Ye as the union of the fiber elements Ye gives a natural partition into finite

elements. Using the frame finite element formulation we construct the finite element space

and give the finite element formulation of the problem (3.35)-(3.46) with contact conditions.

The structure of Chapter 4 is the following: Section 4.1 gives the weak statement of the

reduced contact problem. In Section 4.2 the finite element formulation is given, and the

finite element space is constructed. The contribution of the normal and tangential contact

in the matrix formulation of the problem is derived in Section 4.3. This contribution

depends on the type of the friction law.

The construction of the finite element approximation of the reduced problem (3.35)-(3.46)

with contact conditions consists of the weak statement of the problem, construction of the

finite element space, and the finite element formulation of the problem.

Remark 4.1. The sliding in the contact conditions is allowed to happen only on one of

the directions: along one fiber or along another fiber in the contact pair.

Remark 4.2. It is important to remember that the contact interface is not known a priori.

The evolution of the system under contact constraints makes the task of the contact search

and identification of the contact points difficult. In the case of a one-dimensional beam

contact, the normal contact vector can be defined by solving the minimum distance problem

between neutral lines of the contacting beams (see Section 11.1.1 in [Wriggers, 2002]). The

tangential contact contribution can be computed by expressing the overall tangential contact
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force in terms of the projections on the tangential gap vectors along the neutral lines of the

contacting beams, see equation (11.26) in [Wriggers, 2002].

Remark 4.3. The work of [Litewka, 2010] considers the finite element formulations of

the beam-to-beam frictionless contact for beams with a rectangular cross-section and of the

frictional contact of beams with a circular cross-section.

4.1 Weak formulation of the contact auxiliary prob-

lem

Problem (3.35)-(3.46) consists of the sets of problems for axial tension, bending and torsion

on each element Ye with matching and boundary conditions.

In order to formulate the weak statement of the problem, we need the following definition.

Definition 4.4. The fiber element Ye is called internal, if ∂Ye ∩ ∂Y h
D = ∅, otherwise the

element is called a boundary element.

Let Ye be a boundary element. We denote ∂Y D
e = ∂Ye∩∂Y h

D and define the vector spaces

of axial and torsion displacements w0q , q = 1, 4,

Ve = {we
0q ∈ H1(Ye) : w

e
0q(s) = 0, s ∈ ∂Ye},

and the vector space of bending displacements w0q , q = 2, 3,

We = {we
0q ∈ H2(Ye) : w

e
0q(s) = 0,

dwe
0q

ds
(s) = 0, s ∈ ∂Ye}.

We recall the weak statements of the problems for axial tension, bending, and torsion for

the element Ye.

Definition 4.5. The weak formulation of the problem for the axial displacement is: find

u ∈ Ve, s.t.

a1(u, v) = f1(v), ∀v ∈ Ve, (4.1)

where

a1(u, v) =

∫

Ye

dv

ds
EA

du

ds
ds, f1(v) = −

∫

Ye

vψe
1ds. (4.2)
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Indeed, recall the equation (3.35) for the axial displacement we
01
(s) on a fiber element Ye:

EA
d2we

01(s)

ds2
= ψe

1(s), s ∈ Ye, ψe
1 ∈ C0(Ye). (4.3)

Multiplying the both sides by a test function, v ∈ Ve, and integrating by parts we get

∫

Ye

dv

ds
EA

dwe
01

ds
ds = −

∫

Ye

vψe
1ds+ (v

dwe
01

ds
)|∂Ye − (v

dwe
01

ds
)|∂Ye = −

∫

Ye

vψe
1ds. (4.4)

Definition 4.6. The weak formulation of the problem for the bending displacements w0q , q =

2, 3, is: find u ∈ We s.t.

aq(u, v) = fq(v), ∀v ∈ We, (4.5)

where

aq(u, v) =

∫

Ye

d2v

ds2
EIq

d2u

ds2
ds, fq(v) =

∫

Ye

vψe
qds. (4.6)

Similarly, the equation for bending components w0q , q = 2, 3, is

EIq
d4w0q(s)

ds4
= ψe

q(s), s ∈ Ye, ψe
q ∈ C0(Ye). (4.7)

Multiplying the equation by a test function, v ∈ We, and integrating by parts we get

∫

Ye

d2v

ds2
EIq

d2w0q

ds2
ds =

∫

Ye

vψe
qds+

(
dv

ds
EIq

d2w0q

ds2

)

|∂Ye +

(

vEIq
d3w0q

ds3

)

|∂Ye =

∫

Ye

vψe
qds.

(4.8)

Definition 4.7. The weak formulation of the problem for the torsion displacement is: find

u ∈ Ve, s.t.

a4(u, v) = 0, ∀v ∈ Ve, (4.9)

where

a4(u, v) =

∫

Ye

dv

ds
EA

du

ds
ds. (4.10)

We denote

D =










EA 0 0 0

0 EI2 0 0

0 0 EI3 0

0 0 0 G










, B(w) =










dw1

ds

d2w2

ds2

d2w3

ds2

dw4

ds










. (4.11)
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Furthermore, we define the bilinear form

ae(u, v) :=

∫

Ye

B(u)TDB(v)ds = a1(u1, v1) + a2(u2, v2) + a3(u3, v3) + a4(u4, v4), (4.12)

and a functional of the right hand side

fe(v) :=

∫

Ye

vTψeds = f1(v1) + f2(v2) + f3(v3), (4.13)

where ψe = (ψe
1, ψ

e
2, ψ

e
3, 0)

T . The frictional functional is given by

Je
2(u, v) :=

∫

Jc

F(u, s)|[v]τ(s)|ds. (4.14)

We also define the penalty functional

Je
1(u, v) :=

1

δ

∫

Jc

[[u]n − gN ]+[v]n(s)ds (4.15)

and the functional

P∂Ye(u, v) :=

∫

∂Ye

vTB(u)ds =

∫

∂Ye

v1
du1
ds

ds+

∫

∂Ye

v2
d2u2
ds2

ds+

∫

∂Ye

v3
d2u3
ds2

ds+

∫

∂Ye

v4
du4
ds

ds.

(4.16)

We introduce the vector spaces

He := H1(Ye)×H2(Ye)×H2(Ye)×H1(Ye),

V e := Ve ×We ×We × Ve.

Definition 4.8. Let δ > 0, then the weak penalty formulation of the reduced contact

auxiliary problem is

• for internal Ye: find we
0 ∈ He s.t.

ae(w
e
0, v) + Je

1(w
e
0, v) + Je

2(w
e
0, v) ≥ fe(v) + P∂Ye(w

e
0|∂Ye , v), ∀v ∈ He, (4.17)

where B(we
0|∂Ye) in P∂Ye(w

e
0, v) satisfy the matching conditions (3.36), (3.37), (3.42)-

(3.44);

• for boundary Ye: find w
e
0 ∈ V e s.t.

ae(w
e
0, v)+J

e
1(w

e
0, v)+J

e
2(w

e
0, v) ≥ fe(v)+P∂Ye\∂Y D

e
(we

0|∂Ye\∂Y D
e
, v), ∀v ∈ V e, (4.18)

where B(we
0|∂Ye\∂Y D

e
) in P∂Ye\∂Y D

e
(we

0, v) satisfy the matching conditions (3.36), (3.37).
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Theorem 4.9. Let δ > 0, then the solution of the problem (4.17)-(4.18) exists.

Proof. Define F e
1 (v) = fe(v) + P∂Ye(w

e
0|∂Ye , v) and F

e
2 (v) = fe(v) + P∂Ye\∂Y D

e
(we

0|∂Ye\∂Y D
e
, v)

for problems (4.17) and (4.18) respectively. Then the existence follows from Theorem 2.7

applied for each of the problems (4.17), (4.18) with the right hand side functionals F e
1 and

F e
2 respectively.

Let

J̃e
2(u, v) :=

∫

Jc

F(u, s)∇φ([u]τ)[v]τ (s)ds (4.19)

be a regularized frictional functional.

Definition 4.10. Let δ > 0, γ > 0, then the regularized weak formulation of the reduced

contact auxiliary problem is

• for internal Ye: find we
0 ∈ He s.t.

ae(w
e
0, v) + Je

1 (w
e
0, v) + J̃e

2(w
e
0, v) = fe(v) + P∂Ye(w

e
0|∂Ye, v), ∀v ∈ He, (4.20)

where we
0|∂Ye in P∂Ye(w

e
0, v) satisfy the matching conditions (3.36), (3.37), (3.42)-

(3.44);

• for boundary Ye: find w
e
0 ∈ V e s.t.

ae(w
e
0, v)+J

e
1(w

e
0, v)+ J̃

e
2(w

e
0, v) = fe(v)+P∂Ye\∂Y D

e
(we

0|∂Ye\∂Y D
e
, v), ∀v ∈ V e, (4.21)

where we
0|∂Ye\∂Y D

e
in P∂Ye\∂Y D

e
(we

0, v) satisfy the matching conditions (3.36), (3.37).

Theorem 4.11. Let δ > 0, γ > 0, then the solution of the problem (4.20)-(4.21) exists.

Proof. Define F e
1 (v) = fe(v) + P∂Ye(w

e
0|∂Ye , v) and F

e
2 (v) = fe(v) + P∂Ye\∂Y D

e
(we

0|∂Ye\∂Y D
e
, v)

for the problems (4.20) and (4.21) respectively. Then the existence follows from Theo-

rem 2.9 applied for each of the problems (4.20), (4.21) with the right hand side functionals

F e
1 and F e

2 respectively.
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4.2 Finite element formulation of a contact auxiliary

problem

Let He
d, V

e
d be finite dimensional subspaces of He and V e respectively, where d is the

parameter of discretization of Ye.

Definition 4.12. Let δ > 0, γ > 0, the finite element formulation of the contact auxiliary

problem (4.20), (4.21) in YE is

• for internal Ye: find we
0d

∈ He
d s.t.

ae(w
e
0d
, vd)+J

e
1 (w

e
0d
, vd)+ J̃

e
2 (w

e
0d
, vd) = fe(vd)+P∂Ye(w

e
0d
|∂Ye , vd), ∀vd ∈ He

d , (4.22)

where B(we
0d
|∂Ye) in P∂Ye(w

e
0d
, vd) satisfy the matching conditions (3.36), (3.37), (3.42)-

(3.44);

• for boundary Ye: find w
e
0d

∈ V e
d s.t.

ae(w
e
0d
, vd)+J

e
1(w

e
0d
, vd)+J̃

e
2(w

e
0d
, vd) = fe(vd)+P∂Ye\∂Y D

e
(we

0d
|∂Ye\∂Y D

e
, vd), ∀vd ∈ V e

d ,

(4.23)

where B(we
0d
|∂Ye\∂Y D

e
) in P∂Ye\∂Y D

e
(we

0d
, vd) satisfy the matching conditions (3.36),

(3.37).

Theorem 4.13. Let δ > 0, γ > 0, then the solution of the problem (4.22)-(4.23) exists.

Proof. Follows from Theorem 4.11.

Theorem 4.14. Let δ > 0, γ > 0, then the following estimate holds:

‖we
0 − we

0d
‖H1(Ye) = O(

√
γ + d). (4.24)

Proof. The estimate follows from Theorem 10.5 in [Kikuchi, Oden, 1988].

Remark 4.15. The partition YE = ∪l
e=1Ye is a natural mesh for construction of the finite

element space of the problem (4.22)-(4.23). On the other hand, one can consider mesh

partition for each fiber element Ye, for instance in the case of curved fiber elements. Without

loss of generality we define a finite element in Ye.
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The construction of the finite element spaces He
d and V e

d consists of describing the local

basis and a finite element. We construct them componentwise, by describing the finite

elements for the axial tension, bending and torsion.

Consider an element Ye with the length le, the start node 1 and the end node 2, and

H1(Ye), the space of the axial displacement. Let H1
d(Ye) be a finite dimensional subspace

of H1(Ye) with the basis
[

N1(s), N2(s)
]

, where Ni are linear shape functions,

N1(s) = 1− s

le
, N2(s) =

s

le
. (4.25)

Let q1 =
[

w1
1, w

2
1

]T

be basis of nodal variables for the dual space (H1
d(Ye))

′, where w1
1 is

the axial displacement at the node 1, and w2
1 is the axial displacement at the node 2.

Definition 4.16. (Ye, H
1
d(Ye), q1) is called a bar finite element with the element domain

Ye, the space of shape functions H1
d(Ye), and the set of nodal variables q1.

With the basis
[

N1(s), N2(s)
]

, the axial displacement is interpolated as

we
01
(x) =

[

N1(x), N2(x)
]




w1

1

w2
1



 = N̄q1.

Consider H2(Ye), the space of bending displacements. Let H2
d(Ye) be a finite dimensional

subspace of H2(Ye) with the basis

H1(s) = 1− 3s2

l2e
+ 2s3

l3e
,

H2(s) = x− 2s2

le
+ s3

l2e
,

H3(s) = 3s2

l2e
− 2s3

l3e
,

H4(s) = −s2

le
+ s3

l2e
,

(4.26)

where Hi are Hermitian shape functions. Let q2 =
[

w1, θ1, w2, θ2
]

be the basis of nodal

variables for (H2
d(Ye))

′, where w1 and θ1 are the bending displacement and the slope at the

node 1, while w2 and θ2 are the bending displacement and the slope at the node 2.

Definition 4.17. (Ye, H
2
d(Ye), q2) is called a beam finite element with the element domain

Ye, the space of shape functions H2
d(Ye), and the set of nodal variables q2.
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With the basis
[

H1(s), H2(s), H3(s), H4(s)
]

, the bending displacement is interpolated as

w02 =
[

H1(s), H2(s), H3(s), H4(s)
]










w1

θ1

w2

θ2










= H̄q2.

The definition of the torsion element repeats definition of the bar element. Let q4 = (w1
4, w

2
4)

be the nodal basis of H1
d(Ye).

Definition 4.18. (Ye, H
1
d(Ye), q4) is called a torsion finite element with the element domain

Ye, the space of shape functions H1
d(Ye), and the set of nodal variables q2.

Lemma 4.19. Let H1
d(Ye) and H2

d(Ye) be finite dimensional spaces with the bases (4.25)

and (4.26) respectively. Then

He
d = H1

d(Ye)×H2
d(Ye)×H2

d(Ye)×H1
d(Ye)

is a finite dimensional subspace of He.

Proof. Indeed, by the properties of the direct product of finite dimensional vector spaces,

He
d is a finite dimensional space and, obviously, a subspace of He.

Remark 4.20. The construction of the finite dimensional space V e
d is analogous. One

needs to specify finite dimensional subspaces of Ve and We for the axial tension, bending,

and torsion, then take their direct product.

Consider an element Ye with the start node 1 and the end node 2. Let

q = (w1
1, w

1
2, w

1
3, w

1
4, θ

1
2, θ

1
3, w

2
1, w

2
2, w

2
3, w

2
4, θ

2
2, θ

2
3)

T

be a basis of (He
d)

′, where wi
j and θij are the j-th displacement and the slope at the node
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i. Let us further define the matrix

R =

































N1(s) 0 0 0

0 H1(s) 0 0

0 0 H1(s) 0

0 0 0 N1(s)

0 H2(s) 0 0

0 0 H2(s) 0

N2(s) 0 0

0 H3(s) 0 0

0 0 H3(s) 0

0 0 0 N2(s)

0 H4(s) 0 0

0 0 H4(s) 0

































T

.

Then an interpolation over a finite element is given by

we
0d

= R · qe. (4.27)

Definition 4.21. (Ye, H
e
d,q

e) is called a frame element with the element domain Ye, the

space of shape functions He
d, and the set of nodal variables q.

Thus, the finite element space of the problem (4.22), (4.23) has been constructed.

4.3 Equivalent matrix form of the problem

The Ritz-Galerkin method allows to obtain the equivalent matrix formulation of the prob-

lem (4.22), (4.23). Substituting (4.27) into equations (4.22), (4.23) and using the bilinear

properties of ae(·, ·), Je
1(·, ·), J̃e

2(·, ·), as well as the linear properties of fe(·), P·(·), one can

obtain (see [Axelsson, 2001])

(K+KN +KT ) ·Q = F+ FN + FT , (4.28)

where K is the global stiffness matrix, Q is the global vector of degrees of freedom, F is

the global load vector, KN and KT are the contributions of the normal and tangential
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contact to the global stiffness matrix, FN and FT are the contributions of the normal and

tangential contact to the global load vector.

The global system (4.28) can be constructed using the assembling procedure from the

local quantities ke, qe, f e of the finite elements. However, the contact contribution of KN

and KT is not local, since it involves at least two elements.

Assumption 4.22. During assembling procedure, the matching conditions (3.36) and

(3.42) imply, that sums over internal nodes of pe equal to zero. Therefore global P can be

droped.

Consider the variational equation on the element Ye,

ae(u, v) + Je
1(u, v) + J̃e

2(u, v) = fe(v) + P∂Ye(u|∂Ye, v). (4.29)

Recall that

ae(u, v) =

∫

Ye

B(v)T ·D ·B(u)ds. (4.30)

Consider the interpolations

u = R · qe
u, (4.31)

v = R · qe
v. (4.32)

Substitution of (4.31), (4.32) in (4.30) gives

ae(u, v) =

∫

Ye

B(R · qe
v)

TDB(R · qe
u)ds =

∫

Ye

(Bqe
v)

T ·D · (Bqe
u)ds

= (qe
v)

T

(∫

Ye

BT ·D ·B ds

)

qe
u = (qe

v)
TKeqe

u, (4.33)
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where D and B(·) are defined in (4.11), and B is the strain-displacement matrix,

B =

































dN1(s)
ds

0 0

0 d2H1(s)
ds2

0 0

0 0 d2H1(s)
ds2

0

0 0 0 dN1(s)
ds

0 d2H2(s)
ds2

0 0

0 0 d2H2(s)
ds2

0
dN2(s)

ds
0 0 0

0 d2H3(s)
ds2

0 0

0 0 d2H3(s)
ds2

0

0 0 0 dN2(s)
ds

0 d2H4(s)
ds2

0 0

0 0 d2H4(s)
ds2

0

































T

.

Definition 4.23. ke given by

ke :=

∫

Ye

BT ·D ·B ds (4.34)

is called a local stiffness matrix.

The local stiffness matrix can be computed explicitly, see A.1.

Recall that

fe(v) :=

∫

Ye

vTψeds. (4.35)

Substitution of (4.32) in (4.35) gives

fe(v) :=

∫

Ye

(R ·qe
v)

Tψeds =

∫

Ye

(qe
v)

TRTψeds = (qe
v)

T

(∫

Ye

RTψeds

)

= (qe
v)

TFe. (4.36)

Definition 4.24. f e defined by

f e :=

∫ 1

0

RT · ψeds (4.37)

is called a local load vector.
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Recall that

P∂Ye(u|∂Ye, v) :=

∫

∂Ye

vTB(u|∂Ye)ds. (4.38)

Substitution of (4.32) in (4.38) gives

P∂Ye(u|∂Ye, v) :=

∫

∂Ye

(R · qe
v)

TB(u|∂Ye)ds =

∫

∂Ye

(qe
v)

TRTB(u|∂Ye)ds

= (qe
v)

T

∫

∂Ye

RTB(u|∂Ye)ds = (qe
v)

TPe. (4.39)

Definition 4.25. pe given by

pe :=

∫

∂Ye

RTB(u|∂Ye)ds (4.40)

is called a nodal load vector, where B(·) is defined in (4.11).

Passing from local to global quantities

Recall Ce, the matrix of transformation of the local element coordinate system to the

global coordinate system. We define

Ce :=










Ce O O O

O Ce O O

O O Ce O

O O O Ce










12×12

, C̄e :=




Ce 0

0 1





4×4

, (4.41)

where I is the 3×3 identity matrix and O is the 3×3 zero matrix. Then the transformation

of the matrices is given by

Ke = Cek
eCT

e . (4.42)

The vector of the axial tension, bending, and torsion displacements in the global coordinate

system is given by

Ue = C̄eu
e. (4.43)

Matrix contribution of normal and tangential contact

It remains to obtain the contributions of Je
1 and J̃e

2 into the matrix formulation of the

problem. However, derivation of the matrix form of the contribution of the normal and
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Figure 4.1: Contacting fiber elements.

tangential contact cannot be obtained locally, since the non-penetration and friction func-

tionals Je
1 and J̃e

2 involve at least two contacting elements with different orientations.

Consider two contacting fiber elements YI , YII (see Fig. 4.1). Let iI and jI be the start

and the end node of the element YI , iII and jII be the start and the end node of the

element YII , sI , sII be the contact points. Then we define

nc := sII − sI , the contact normal, (4.44)

te := je − ie, the contact tangential vector. (4.45)

Denote

nc =




nc

0





4×1

, te =




te

0





4×1

, (4.46)

and Re = R(se), e = I, II.

Lemma 4.26. Let sI , sII ∈ Jc be a contact pair, then

[u]n|sI ,sII = (QI
v)

Ta1 · nc − (QII
v )Ta2 · nc = nc

T · aT
1Q

I
u − nc

T · aT
2Q

II
u , (4.47)

[u]te|sI ,sII = (QI
v)

Ta1 · te − (QII
v )Ta2 · te = tTe · aT

1Q
I
u − tTe · aT

2Q
II
u , (4.48)

where

a1 = CIR
T
I C̄I , (4.49)

a2 = CIIR
T
IIC̄II . (4.50)
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Proof. By definition

[u]n = (uI ,nc)− (uII ,nc) = (uI − uII)T · nc = nc
T · (uI − uII),

we consider uI − uII in the global coordinate system and substitute local interpolation

(4.31).

(uI − uII)|sI ,sII = C̄T
I RIq

I
u − C̄T

IIRIIq
II
u

= C̄T
I RIC

T
I CIq

I
u − C̄T

IIRIIC
T
IICIIq

II
u

= C̄T
I RIC

T
I Q

I
u − C̄T

IIRIIC
T
IIQ

II
u ,

and hence

nc
T · (uI − uII)|sI ,sII = (nc

T C̄T
I RIC

T
I )Q

I
u − (nc

T C̄T
IIRIIC

T
II)Q

II
u = nc

TaT
1Q

I
u − nc

TaT
2Q

II
u .

On the other hand,

((vI − vII)|sI ,sII )T · nc =
(
C̄T

I RIC
T
I Q

I
v − C̄T

IIRIIC
T
IIQ

II
v

)T · nc

=
(
(QI

v)
T (CIR

T
I C̄I)− (QII

v )T (CIIR
T
IIC̄II)

)
· nc

= (QI
v)

T (CIR
T
I C̄Inc)− (QII

v )T (CIIR
T
IIC̄IInc) = (QI

v)
Ta1nc − (QII

v )Ta2nc.

Substituting nc by te, we get (4.48).

Proposition 4.27. Let sI , sII ∈ Jc be a contact pair, then non-penetration functional Je
1

can be represented as

Je
1 =

1

δ




(QI

v)
T

(QII
v )T





T 


a1ncnc

TaT
1 −a1ncnc

TaT
2

−a2ncnc
TaT

1 a2ncnc
TaT

2








QI

u

QII
u



− ḡ

δ




(QI

v)
T

(QII
v )T





T 


a1nc

−a2nc



 .

(4.51)

Proof. Recall the non-penetration functional

Je
1(u, v) :=

1

δ

∫

Jc

([u]n − ḡ)+[v]n(s)ds. (4.52)

Jc is a discrete set of contact points. Then, considering those points where the integral

does not vanish, we obtain

Je
1(u, v) =

1

δ

∫

Jc

([u]n − ḡ)+[v]n(s)ds =
1

δ

∫

Jc

([u]n − ḡ)[v]n(s)ds

=
1

δ
[([u]n − ḡ)[v]n]|sI ,sII =

1

δ
([u]n[v]n)|sI ,sII −

1

δ
(ḡ[v]n)|sI ,sII .
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By Lemma 4.26, the first term becomes

1

δ
([u]n[v]n)|sI ,sII =

1

δ
([v]n[u]n)|sI ,sII

=
1

δ

[
((vI − vII)|sI ,sII )T · nc · nc

T · (uI − uII)|sI ,sII
]

= ((QI
v)

Ta1nc − (QII
v )Ta2nc)(nc

Tb1Q
I
u − nc

Tb1Q
II
u ).

Then the opening of the brackets and rearrangement of the terms give

1

δ
([u]n[v]n)|sI ,sII =

1

δ




(QI

v)
T

(QII
v )T





T 


a1ncnc

TaT
1 −a1ncnc

TaT
2

−a2ncnc
TaT

1 a2ncnc
TaT

2








QI

u

QII
u



 .

Lemma 4.26 implies that the second term is

1

δ
(ḡ[v]n)|sI ,sII =

1

δ
ḡ((QI

v)
Ta1nc − (QII

v )Ta2nc),

which can be rewritten as

1

δ
(ḡ[v]n)|sI ,sII =

ḡ

δ




(QI

v)
T

(QII
v )T





T 


a1nc

−a2nc



 ,

what finishes the proof.

Definition 4.28. KN(sI , sII) defined by

KN(sI , sII) :=
1

δ




a1ncnc

TaT
1 −a1ncnc

TaT
2

−a2ncnc
TaT

1 a2ncnc
TaT

2



 (4.53)

is called the normal contact matrix.

Definition 4.29. FN (sI , sII) defined by

FN (sI , sII) :=
ḡ

δ




a1nc

−a2nc



 (4.54)

is called the normal contact load vector.

In the case of friction, two states must be taken into account. The stick case — when the

tangential contact force is the reaction from the contact constraint at the contact interface.

The second, sliding case — when the tangential contact force is the friction force obtained

from the law F(u, s).
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Assumption 4.30. The contact contribution in the stick case is given by the functional

1

δ

∫

Jc

[u]te[v]teds. (4.55)

The assumption is motivated by equation (5.32) in [Wriggers, 2002].

Proposition 4.31. Let sI , sII ∈ Jc be a contact pair, then

1

δ

∫

Jc

[u]τ [v]τds =
1

δ




(QI

v)
T

(QII
v )T





T 


a1tet

T
e a

T
1 −a1tet

T
e a

T
2

−a2tet
T
e a

T
1 a2tet

T
e a

T
2








QI

u

QII
u



 . (4.56)

Proof. Lemma 4.26 implies that

1

δ

∫

Jc

[u]te[v]teds =
1

δ
([u]te[v]te)|sI ,sII =

1

δ
([v]te[u]te)|sI ,sII

=
1

δ

[
((vI − vII)|sI ,sII )T · te · tTe · (uI − uII)|sI ,sII

]

= ((QI
v)

Ta1te − (QII
v )Ta2te)(t

T
e b1Q

I
u − tTe b1Q

II
u ).

Rearranging the terms we obtain

1

δ
([u]te[v]te)|sI ,sII =

1

δ




(QI

v)
T

(QII
v )T





T 


a1tet

T
e a

T
1 −a1tet

T
e a

T
2

−a2tet
T
e a

T
1 a2tet

T
e a

T
2








QI

u

QII
u



 . (4.57)

Definition 4.32. Kst
T (sI , sII) defined by

Kst
T (sI , sII) :=

1

δ




a1tet

T
e a

T
1 −a1tet

T
e a

T
2

−a2tet
T
e a

T
1 a2tet

T
e a

T
2



 (4.58)

is called the stick tangential contact matrix.

Remark 4.33. The definition 4.32 is related to the matrix form of the contact contribution

in the stick phase.

Consider the regularized friction functional

J̃e
2(u, v) :=

∫

Jc

F(u, s)∇φ([u]te)[v]te(s)ds,
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where

∇φ([u]te) =







[u]te
|[u]te |

, if |[u]te| ≥ γ,

1
γ
[u]te, if |[u]te| < γ.

(4.59)

Following equation (11.26) in [Wriggers, 2002], if two contacting elements are orthogonal

the tangential force Ft can be decomposed as follows

Ft = FtItI + FtIItII ,

where Fte is a projection of Ft onto the e-element axis. Therefore, the sliding caused by

the force Ft can be replaced by two sliding displacements of one contacting beam along

another contacting beam. Each such sliding displacement along element e is caused by the

force Fte

[u]t = [utI ]tI + [utII ]tII .

Let us decompose the term
[u]t
|[u]t|

= zIutI + zIIu tII ,

where

zeu =
[u]t
|[u]t|

· te,

with discretization given by

zeQ =
Qu

|Qu|
· te

Proposition 4.34. Let sI , sII ∈ Jc be a contact pair and F(s, u) = 1
δ
µ(s)([u]n − ḡ)+ be

Coulomb friction, then, if |[u]te| > γ,

J̃e
2(u, v) =

1

δ
zeQµ(se)




(QI

v)
T

(QII
v )T





T 


a1tenc

TaT
1 −a1tenc

TaT
2

−a2tenc
TaT

1 a2tenc
TaT

2








QI

u

QII
u





− 1

δ
zeQµ(se)ḡ




(QI

v)
T

(QII
v )T





T 


a1te

−a2te



 . (4.60)

Proof. Substituting (4.59) for γ ≤ |[u]te| we get

J̃e
2(u, v) =

∫

Jc

zeQ
1

δ
µ(s)([u]n − ḡ)+[v]te(s)ds.
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Consider only those contact points where integral does not vanish, then

∫

Jc

zeQ
1

δ
µ(s)([u]n − ḡ)+[v]te(s)ds =

1

δ

∫

Jc

zeQµ(s)([u]n − ḡ)[v]te(s)ds

=
1

δ
zeQµ(sI)([u]n[v]te)|sI ,sII −

1

δ
zeQµ(sI)(ḡ[v]te)|sI ,sII .

Lemma 4.26 implies that

µ(se)([u]n[v]te)|sI ,sII = µ(se)([v]te[u]n)|sI ,sII = µ(se)
[
(vI − vII)T · te · nc

T · (uI − uII)
]
|sI ,sII

= ((QI
v)

Ta1te − (QII
v )Ta2te)(nc

TaT
1Q

I
u − nc

TaT
2Q

II
u ).

Rearranging the terms we get

zeQµ(sI)([u]n[v]te)|sI ,sII = zeQµ(se)




(QI

v)
T

(QII
v )T





T 


a1tenc

TaT
1 −a1tenc

TaT
2

−a2tenc
TaT

1 a2tenc
TaT

2








QI

u

QII
u



 .

The second term is

zeQµ(se)(ḡ[v]te)|sI ,sII = zeQµ(se)ḡ((Q
I
v)

Ta1te−(QII
v )Ta2te) = zeQµ(se)ḡ




(QI

v)
T

(QII
v )T





T 


a1te

−a2te



 .

(4.61)

In the case of Tresca friction, the sliding can be described by

Proposition 4.35. Let sI , sII ∈ Jc be a contact pair and F(s, u) = G(s) be Tresca friction,

then

J̃e
2(u, v) = zeQG(se)




(QI

v)
T

(QII
v )T





T 


a1te

−a2te



 . (4.62)

Proof. In the case of Tresca friction, choosing positive contact orientation,

J̃e
2(u, v) =

∫

Jc

zeQG(s)[v]te(s)ds.

Lemma 4.26 implies that

∫

Jc

zeQG(s)[v]te(s)ds = zeQG(se)((Q
I
v)

Ta1te−(QII
v )Ta2te) = zeQG(se)




(QI

v)
T

(QII
v )T





T 


a1te

−a2te



 .
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Definition 4.36. Ksl
T (sI , sII) defined by

Ksl
T (sI , sII) := zeQµ(se)




a1tenc

TaT
1 −a1tenc

TaT
2

−a2tenc
TaT

1 a2tenc
TaT

2



 (4.63)

is called sliding tangential contact matrix for Coulomb friction.

Definition 4.37. Fsl
T (sI , sII) defined by

Fsl
T (sI , sII) := zeQµ(se)ḡ




a1te

−a2te



 (4.64)

in the case of Coulomb friction, and by

Fsl
T (sI , sII) := zeQG(se)




a1te

−a2te



 (4.65)

in the case of Tresca friction, is called the sliding load vector.

Remark 4.38. In order to linearize the problem, we take the direction vector Qu

|Qu|
from a

preliminary simulation with no friction (F = 0 or G = 0).

Assembling procedure

Detailed algorithms and the description for the assembling procedure of the global stiffness

matrix can be found in FEM literature, for instance, in the works of [Axelsson, 2001] and

[Gockenbach, 2006]. Here we describe only the general procedure. The idea which stands

behind is that the assembling procedure is implemented for the whole block of degrees

of freedom for each node in the finite element mesh. Namely, let the vector and matrix

quantities be subdivided to the blocks for the corresponding start and end nodes i, j

Ke =




Ke

ii Ke
ij

(Ke
ij)

T Ke
jj



 , Fe =




Fe

i

Fe
j



 , (4.66)
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then the contribution of the element e in the global system takes the form

i block

j block














0

i block
︷︸︸︷· ·

j block
︷︸︸︷· 0

· Ke
ii · Ke

ij ·
· · · · ·
· (Ke

ij)
T · Ke

jj ·
0 · · · 0














,













·
Fe

i

·
Fe

j

·













, (4.67)

and the global vectors and matrices are obtained via

K =
∑

e

Ke, F =
∑

e

Fe. (4.68)

Remark 4.39. The functional Pe drops due to the matching conditions listed in Theorem

3.14.

In the case of the contact contribution, one needs to notice that for each contact pair the

contact affects two elements and, hence, four nodes.

KN(sI , sII) =










(KN)iI iI (KN)iIjI (KN)iI iII (KN)iIjII

(KN)jI iI (KN)jIjI (KN)jI iII (KN)jIjII

(KN)iII iI (KN)iIjI (KN)iII iII (KN)iII jII

(KN)jII iI (KN)jIIjI (KN)jIIiII (KN)jIIjII










, FN(sI , sII) =










(FN)iI

(FN)jI

(FN )iII

(FN )jII










,

(4.69)

what results in the contribution

iI block

jI block

iII block

jII block

























0

iIblock
︷︸︸︷· ·

jIblock
︷︸︸︷· ·

iIIblock
︷︸︸︷· ·

jIIblock
︷︸︸︷· 0

· (KN)iI iI · (KN)iIjI · (KN)iI iII · (KN)iI jII ·
· · · · · · · · ·
· (KN)jI iI · (KN)jIjI · (KN)jI iII · (KN)jIjII ·
· · · · · · · · ·
· (KN)iII iI · (KN)iIjI · (KN)iII iII · (KN)iIIjII ·
· · · · · · · · ·
· (KN)jII iI · (KN)jIIjI · (KN)jII iII · (KN)jIIjII ·
0 · · · · · · · 0

























,
























·
(FN )iI

·
(FN )jI

·
(FN)iII

·
(FN)jII

·
























.

(4.70)
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The total contribution can be obtained by summing over all contact pairs,

KN =
∑

sI ,sII∈Jc

KN(sI , sII), FN =
∑

sI ,sII∈Jc

FN (sI , sII). (4.71)

The contribution of the tangential contact is assembled similarly,

Kst
T =

∑

sI ,sII∈Jc

Kst
T (sI , sII), Ksl

T =
∑

sI ,sII∈Jc

Ksl
T (sI , sII), Fsl

T =
∑

sI ,sII∈Jc

Fsl
T (sI , sII). (4.72)

Matrix formulation of the problem

Substitution of the matrix formulations for the bilinear forms ae(·, ·), Je
1(·, ·), J̃e

2(·, ·) and
for the functional fe(·) yields

QT (K+KN +KT )Q = QT (F+ FN + FT ) . (4.73)

Define

G(Q) :=
1

2
QT (K+KN +KT )Q−QT (F+ FN + FT ) , (4.74)

then the minimizer of G over all Q ∈ IRM , where M is the number of degrees of freedom,

determines the solution of our finite element problem (4.22), (4.23).

Theorem 4.40. Solution of the minimization problem

G(Q) → min, Q ∈ IRM , (4.75)

exists and satisfies

(K+KN +KT )Q = (F+ FN + FT ) . (4.76)

Proof. Existence of solution follows from Theorem 4.13. G is the quadratic functional,

and its minimizer must satisfy the necessary condition of extrema

∇G = (K+KN +KT )Q− (F+ FN + FT ) = 0.

The equation (4.76) is the equivalent matrix formulation of the problem (4.22), (4.23).
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Contact solution algorithm

All aspects of many approaches to treat contact problems can be found in [Wriggers, 2002].

Globally the contact solution algorithm consists of two parts: the contact search and an

update of the contact contribution to the matrix formulation of the problem.

For a fiber structure the contact search can be implemented in the following way:

1. run over all elements,

2. for each master element jk find a slave element ik with the minimum distance between

neutral lines defined by the master element jk and the slave element ik:

d = min
i,j

‖ri − rj‖,

satisfying additional constraints:

ri ∈ element ik, rj ∈ element jk,

3. if the penetration is negative,

g = d− 2R < 0,

then elements ik, jk are contacting elements, and the contact points can be obtained

from the minimum distance problem.

The update of the contact contribution is important especially for the tangential contact,

where it is required to check whenever the tangential contact is in the stick or sliding phase.

The situation becomes even more complicated since under the external loading, Neumann

or Dirichlet boundary conditions, the state may change from stick to sliding. Then the

tangential gap at the contact point splits into the stick and sliding parts [u]t = ([u]t)st +

([u]t)sl. Therefore, an iterative procedure is required. In the case of finite deformations,

the contact point may slide to a neighboring element, what also requires a modification of

the algorithm. The iteration can be made by

(K+KN +KT )Q = αF+ (FN + FT ) ,
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where α can be taken as αn = ∆t · n (∆t = 1/N, n = 1 . . .N). Let ffr be a friction force

and Ft be the tangential force acting along the element.

Assume that the beam come to contact orthoganally at the contact points.

The switching between different states of the tangential contact is made according to the

following criteria:

• Stick phase: beam I - stick (fn
Is < 0), beam II - stick (fn

Is < 0)

(full stick)

• Slip phase:

– beam I - stick (fn
I < 0), beam II - slip (fn

II > 0),

– beam I - slip (fn
I > 0), beam II - stick (fn

II < 0),

– beam I - slip (fn
I > 0), beam II - slip (fn

II > 0)

(full slip),

where

fn := |(Ft)
n| − |(ffr)n|.

Then a possible algorithm for determining the stick or sliding state is

1. initialize the algorithm: set all contact points into the stick phase,

2. iterating over n = 1 . . .N ,

• update the tangential force Ft,

• update the friction force fn
fr,

• check for a contact: gN ≤ 0 ⇒ active element,

• check whether fn
e < 0 for each element,

• update K, KN and KT , FN and FT ,

• solve (Kn +KN
n +Kn

T )Q = αnF+ (Fn
N + Fn

T ) .
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Chapter 5

The algorithm and numerical

examples

Chapter 5 presents the homogenization algorithm for computation of the effective elasto-

plastic material law of a technical textile. The textile is characterized by the microstructure

of fibers on the periodicity cell. The algorithm is based on the results of homogenization of

the contact conditions given in Chapter 2, what allows to interpret the averaged frictional

microsliding as effective plasticity. The proposed algorithm for construction of the piece-

wise linear elasto-plastic curve is implemented numerically, using the finite element with

the finite-element contact formulation derived in Chapter 4. The implementation is made

in the form of an own code, named FiberFEM. Numerical examples can be found in Section

5.3. The author would like to thank students Albina Davletkulova and Iliya Prozorov for

preparing some numerical examples using FiberFEM.

5.1 The algorithm for computation of effective me-

chanical properties of textiles

The algorithm is based on homogenization results of Chapters 2 and 3, the numerical

solution of the auxiliary problem is based on the results of Chapter 4. The proposed

algorithm consists of the next steps:

• solve the reduced contact auxiliary problem for Nq,

• solve the reduced contact auxiliary problem for Θ∅,
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• obtain elasto-plastic moduli.

5.1.1 Auxiliary problems

Construction of the algorithm

The construction of the algorithm consists of two main steps. First of all, the textile is

represented by the layer of thickness ε with the microstructure periodic in the in-plane

variables x1, . . . , xn−1. As it was shown in Chapter 3, the auxiliary problems in this case

have out-of-plane boundary conditions, for instance, for the columns nqp of the auxiliary

functions Nq in (5.1) the conditions

∂(nqp
i + δpjξq)

∂n
= 0, ξn =

1

2
,

∂(nqp
i + δpjξq)

∂n
= 0, ξn = −1

2
,

which come from the macro boundary conditions, and the condition of periodicity in the

in-plane directions.

Second, the consideration of the microcontact with friction adds to the formulation of

the cell problem the contact conditions given in (2.30) of Chapter 2. For instance, for the

columns nqp of the auxiliary functions Nq in (5.1) they take the form:

σ1
n(ξ) ≤ 0, [nqp(ξ)]n ≤ ḡ(ξ), σ1

n(x, ξ)[n
qp(ξ)− ḡ(ξ)]n = 0 on S,

|σ1
τ (ξ)| ≤

F(nqp(ξ)∇u0, x, ξ)
|∇u0|

⇒ [nqp
τ ] = 0, ξ ∈ S,

|σ1
τ (ξ)| =

F(nqp(ξ)∇u0, x, ξ)
|∇u0|

⇒ ∃λ ≥ 0 : [nqp
τ ] = −λσ1

τ , ξ ∈ S.

In-plane auxiliary problems

Taking into account Theorem 2.25 and equation (3.28), we state the following auxiliary

problems for Θ, Nq (q = 1, . . . , n− 1).
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The auxiliary functions Nq consist of the columns nqp, the solutions of the problems

∂

∂ξh

[

aihjk(ξ)
∂(nqp

j (ξ) + δpjξq)

∂ξk

]

= 0, σ1
ih ≡ aihjk(ξ)

∂(nqp
j (ξ) + δpjξq))

∂ξk
in Y h, (5.1)

σ1
n(ξ) ≤ 0, [nqp(ξ)]n ≤ ḡ(ξ), σ1

n(x, ξ)[n
qp(ξ)− ḡ(ξ)]n = 0 on S,

|σ1
τ (ξ)| ≤

F(nqp(ξ)∇u0, x, ξ)
|∇u0|

⇒ [nqp
τ ] = 0, ξ ∈ S,

|σ1
τ (ξ)| =

F(nqp(ξ)∇u0, x, ξ)
|∇u0|

⇒ ∃λ ≥ 0 : [nqp
τ ] = −λσ1

τ , ξ ∈ S,

∂(nqp
i + δpjξq)

∂n
= 0, ξn =

1

2
,

∂(nqp
i + δpjξq)

∂n
= 0, ξn = −1

2
,

nq is ξ1, . . . , ξn−1 − periodic.

Auxiliary function Θ∅ consists of the columns θq, the solution of the problem

∂

∂ξh

[

aihjk(ξ)
∂θqj (ξ)

∂ξk

]

= δjq, σ1
ih ≡ aihjk(ξ)

∂θqj (ξ)

∂ξk
in Y h, (5.2)

σ1
n(ξ) ≤ 0, [θq(ξ)]n ≤ ḡ(ξ), σ1

n(x, ξ)[θ
q(ξ)− ḡ(ξ)]n = 0 on S,

|σ1
τ (ξ)| ≤

F(θq(ξ)p1, x, ξ)

|p1|
⇒ [θqτ ] = 0, ξ ∈ S,

|σ1
τ (ξ)| =

F(θq(ξ)p1, x, ξ)

|p1|
⇒ ∃λ ≥ 0 : [θqτ ] = −λσ1

τ , ξ ∈ S,

∂θqi
∂n

= δiq, ξn =
1

2
,

∂θqi
∂n

= 0, ξn = −1

2
,

θq is ξ1, . . . , ξn−1 − periodic.

In the case of symmetry of the fiber structure, the periodicity condition for Θ and Nq can

be substituted by the third type boundary conditions, see [Bakhvalov, Panasenko, 1984].

Furthermore, the asymptotics with respect to h can be considered, and the corresponding

reduced contact auxiliary problem can be obtained and solved numerically using the finite

element method described in Chapter 4.
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Figure 5.1: Contact points in the sliding

state.

Figure 5.2: A piecewise linear elasto-

plastic curve.

5.1.2 Effective properties, frictional microsliding as effective plas-

ticity

The effective properties can be computed using

Ahom
ij :=

1

|Y |

∫

Y

(

Aij(ξ) +
n∑

q=1

Aiq
∂Nj(ξ)

∂ξq

)

dξ +

∫

S

F(Nj(ξ)∇u0(x), x, ξ)
|∇u0(x)| [Nj ]tdsξ (5.3)

and

Bhom
i :=

1

|Y |

∫

Y

(
n∑

j=1

Aij(ξ)
∂Θ∅

∂ξj

)

dξ +

∫

S

F(Θ∅(ξ)p(x), x, ξ)

|p(x)| [Θ∅]tdsξ. (5.4)

The contribution of the contact can be divided into two parts: the contribution of the stick

phase into the elastic part and the contribution of the sliding phase into the plastic part,

Ahom
ij := Āelas

ij + Āplas
ij , (5.5)

Bhom
i := B̄elas

i + B̄plas
i . (5.6)

Consider
∫

S

F(Nj(ξ)∇u0(x), x, ξ)
|∇u0(x)| [Nj ]tdsξ.

Recall that under the sliding

[Nj]t = −λσ1
t .

The evolution of [Nj ]t depending on the strain on the fiber structure is characterized by

the set of contacting points in the sliding state, see Fig. 5.1. The sequence in which these
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Figure 5.3: The gap between stick and sliding states.

contacting points turn to the sliding state defines the linear pieces in the stress-strain curve,

see Fig. 5.2. The number of linear parts is equal to the number of switches to sliding. λ

is the slope on each plastic part, which can be represented as the difference gap between

sliding and stick states, see Fig. 5.3. An illustrative numerical example obtained using the

FiberFEM code described in the next section, is given in Subsection 5.3.2.

Recall that in the case of stick state [Nj ]t = 0, the contact point does not slide, and in

this case the contribution of the frictional contact goes into the elastic part

Āelas
ij = {āklij},

which in general will be fully anisotropic. However, in the case of plane symmetry of

the fiber configuration Y h, the set Y h is invariant regarding to all mappings Sh (h =

1, . . . , n− 1), where

Sh(ξ) = ((−1)δh1ξ1, . . . , (−1)δhnξn)

and

δhi =







1, h = i,

0, h 6= i

is the Kronecker delta, therefore in-plane orthotropy can be obtained. Indeed, according

to Chapter 6 of [Bakhvalov, Panasenko, 1984], the only nonzero effective elasticity moduli

are ā1111, ā
22
22, ā

12
12, ā

21
12. Recall that for an orthotropic material







ε11

ε22

2ε12







=







1
E1

−ν12
E1

0

−ν21
E2

1
E2

0

0 0 1
G12













σ11

σ22

σ12






.
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Figure 5.4: FiberFEM.

Inverting the compliance matrix given above we get







ā1111 ā1212 0

ā1212 ā2222 0

0 0 ā1122







=







E1

1−ν12ν21

E1ν12
1−ν12ν21

0

E2ν21
1−ν12ν21

E2

1−ν12ν21
0

0 0 G12






.

Then the orthotropic material constants can be obtained in the form:

ν12 =
ā1212
ā1111

, ν21 =
ā1212
ā2222

,

E1 = ā1111 −
(ā1212)

2

ā2222
, E2 = ā2222 −

(ā1212)
2

ā1111
, G12 = ā1122.

Remark 5.1. The question of existence of an equivalent homogeneous elastic plate with

elastic material properties given by Āelas
ij was studied in [Panasenko, 2005]. The necessary

and sufficient conditions were derived.

5.2 FiberFEM

FiberFEM is a finite element code for simulation of 3D woven, non-woven, and knitted fiber-

yarn structures with frictional contacts. It was developed using the beam finite element

formulation given in Chapter 4. FiberFEM is based on the standalone linear algebra

library GMM++, a generic C++ template library for sparse, dense, and skyline matrices.

The GUI interface (see Fig.5.4) is based on Qt4, a cross-platform application development
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framework. The visualization is implemented using OpenGL, a cross-platform API for

writing applications that produce 2D and 3D computer graphics.

The motivation for developing the code FiberFEM is the following. First, even though

some commercial or open source finite element (FE) software are claimed to be able to

solve beam contact problems, due to the highly nonlinear nature of contact problems these

software packages are not very effective. For instance, trying to solve a simple example

with sliding involving 4 knitted fibers, ANSYS did not show good results. Second and

the most important reason for developing an own code is that the stick/slip switching at

the contact points in the algorithm of the construction of the effective stress-strain curve,

described in Subsection 5.1.2, is not available in these FE packages. This requires an own

implementation of the FE solution of the auxiliary contact problems.

Thus, the similarity of FiberFEM with other FE codes is that they share the well-known

approaches (see [Wriggers, 2002]) in the contact mechanics. The main distinction of Fiber-

FEM is that it allows to construct the effective stress-strain curve by taking into account

the microsliding as a plasticity effect.

The contact in FiberFEM is resolved by the penalty method, and the algorithm for

stick/sliding state detection and the sliding gap λ, described in Section 4.3, is implemented.

The fiber geometries are created in fViz, a visualization code for FiberFEM.

Input:

• the geometry of the cross-section,

• the stiffness of each yarn or fiber,

• the microstructure or the pattern.

Output:

• effective properties of textile.

5.2.1 Validation with ANSYS

A 29-node mesh of a fiber structure with fixed junctions is taken to validate the FiberFEM

finite element code. The same mesh is used with the commercial code ANSYS. The material
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of fibers is isotropic with the Young’s modulus E = 1000000Pa, the shear modulus G = 0.3,

and the radius of fibers r = 0.0005m. The size of the periodicity cell is equal to 0.01. The

deformed and undeformed shape obtained by FiberFEM and ANSYS, the table of the

components UX2, UY2, UZ2 of the displacement vector at the node 2 and the components

UX18, UY18, UZ18 of the displacement vector at the node 18 are given in Fig. 5.5-5.7 and

Tab. 5.1.

5.2.2 Validation of contact

First testing example

The first testing example is taken from [Wriggers, 2002], p.102. The system consists of two

beams of the equal length l, with the equal tension stiffness. The right end is fixed, and

at the left end the displacement ū is applied in the axial direction. The initial gap go is

assumed to be closed. The contact constraint is given by the non-penetration condition

|u12 − u21| ≤ 0. The penalized normal contact force is given explicitly. After imposing

boundary conditions and introduction of the penalty form into the global stiffness matrix

we get




EA
l
+ 1/δ −1/δ

−1/δ EA
l
+ 1/δ











u12

u21






=







EA
l
ū

0






.

The solution is 





u12

u21






=

ū

2 + EA
l(1/δ)







1 + EA
l(1/δ)

1






.

The contact force at the right end of the left beam is given by

FN =
EA

l
(u12 − ū) =

EA

l

(
1 + EA

l(1/δ)

2 + EA
l(1/δ)

− 1

)

ū.

The exact contact force is F̄N = limδ→0 FN .

Tab. 5.2 gives the relative error of the contact force computed by FiberFEM, compared

with the exact contact force N = −5N, for a truss construction with the axial stiffness

1000N/m and the length of each beam l = 1m, for different values of the penalty parameter

ε.
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Figure 5.5: The undeformed shape, Fiber-

FEM.

Figure 5.6: The deformed shape, FiberFEM.

Figure 5.7: The deformed and undeformed shape, ANSYS.

UX2 UY2 UZ2

ANSYS 3.5378e-17 -0.0024968 0.18021e-17

fiberFEM -5.4651e-18 -0.0024971 -7.78662e-19

relative error 0.544745 0.0000801 0.5679141

UX18 UY18 UZ18

ANSYS 0.0029442 -0.00102701 -0.52330e-07

fiberFEM 0.0029156 -0.00102129 -1.31143e-07

relative error 0.0097208 0.00555988 1.506076

Table 5.1: Displacements at the node 2 and at the node 18.

85



CHAPTER 5. THE ALGORITHM AND NUMERICAL EXAMPLES

Figure 5.8: The first testing example. Figure 5.9: The second testing example.

Second testing example

The second testing example is taken from [Wriggers, 2002], p.113. It consists of a truss

with 2 beams. The left beam is discretized by 3 elements, the left end of the beam is fixed,

and a point load F is applied. The right beam is discretized by 1 element with the fixed

right end. The initial gap between beams is g, and it closes at a certain point under the

load F . The axial stiffness of the both, right and left beams, is the same.

The matrix form of the finite element formulation after imposing the boundary conditions

1/δ FiberFEM relative error

1000 -3.3333299999999992 0.33333400000000013

10000 -4.7618999999999989 0.04762000000000021

100000 -4.9751243781094514 0.00497600000000009

1000000 -4.9974999999999987 0.00050000000000025

Table 5.2: The relative error
‖F̄N−F f

N‖

‖F̄N‖
for the exact contact force F̄N = −5N. F f

N is the

contact force computed by FiberFEM.
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1/δ FiberFEM relative error

100 7.1429499999999999 1.85718000000000071

1000 2.0000200000000001 0.19999199999999981

10000 2.4390499999999999 0.02437999999999985

100000 2.4937900000000002 0.00248399999999975

1000000 2.4994000000000001 0.00023999999999979

Table 5.3: The relative error for different δ. The exact contact force F̄N =

2.4999999999999996N.

and introducing the penalization parameter becomes










2EA
l

−EA
l

0 0

−EA
l

2EA
l

0 0

0 −EA
l

EA
l
+ 1/δ −1/δ

0 0 −1/δ EA
l
+ 1/δ
















u12

u13

u14

u21







=







0

F

g/δ

−g/δ







.

The displacement u21 is

u21 =
1

4

(
2F l

EA
− g − δ

EA

l

)

.

The normal contact force at this node is then

FN =
EA

l
u21.

Let δ go to zero, and the exact contact force N = 2.4999999999999996N. The calculated

normal force for different values of the penalty parameter with the corresponding relative

error is given in Tab. 5.3.

5.3 Numerical examples

The numerical example of Subsection 5.3.1 is computed using ANSYS. The numerical

examples in Subsections 5.3.3, 5.3.4 and 5.3.2 are computed using the FiberFEM code.

The cross-section is taken to be circular, with the radius equal to R. The material of the

fibers is linear elastic with the Young’s modulus E and the shear modulus G. The effective

elasticity moduli ā1111, ā
22
22, ā

12
12, ā

22
11 are obtained from the auxiliary problems.
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XY shear ā1221 = 0.955574062947 Pa ā2222 = 0.634416066157 Pa ā1222 = 13.36879032292 Pa

YX shear ā1121 = 3.687156617357 Pa ā2122 = 1.352853122289 Pa ā1122 = 10.83857299372 Pa

X extention ā1111 = 1.290460597368 Pa ā2112 = 0.892342418811 Pa ā1112 = 0.004520425091 Pa

Y extention ā1211 = 14.34474768496 Pa ā2212 = 671.1632115605 Pa ā1212 = 0.692406897923 Pa

bending c̄1111 = 211.398488432 Pa c̄1122 = 83.960735206 Pa c̄2222 = 215.642053965 Pa

Table 5.4: Effective elasticity and bending coefficients, transversal compliance moduli,

where h = 0.1, E = 0.01GPa, ν = 0.27, the dimensions of the unit cell: 1× 0.85× 0.97.

Figure 5.10: A rod structure in the unit cell.

5.3.1 Geotextile example using ANSYS

This numerical example can be found in [Orlik, Nam, ICIAM2007]. A geotextile with fixed

junctions is considered as depicted in Fig. 5.10. The material constants are

E = 0.01 GPa, ν = 0.27,

where ν is the Poisson ratio.

The computed effective elasticity and bending coefficients are listed in Tab. 5.4.

5.3.2 Stick/slip switching example using FiberFEM

To illustrate the effect of homogenization of the microcontact sliding we consider two

fibers in frictional contact as depicted in Fig. 5.12. The material of fibers is linear with the
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constants:

E = 107 Pa, G = 0.117.

The lower fiber is fixed at the ends, the upper fiber is subjected to the prescribed dis-

placement along the lower fiber. The coefficient of friction is artificially chosen in order to

get stick and slip phases. The prescribed displacement is applied incrementally with the

number of iterations equal to 100.

When the coefficient of friction µ = 300000, the fibers stay in the stick phase. When the

coefficient of friction is 76214, the stick/slip switching happens at the iteration 46. The

evolution of the averaged stress is given in Fig. 5.11, where the blue line represents a full

stick phase and the red line shows the switching.

Let us have a look at the red line in Fig. 5.11. From iteration 1 to iteration 46 fibers are

in the stick phase, and the upper fiber bends as it is shown in Fig. 5.13. At the iteration

46 the switching from the stick to the slip phase happens, and the upper fiber bends only

under the friction force (see Fig. 5.14), which is constant and depends only on the material

of the fibers. That is why we can observe a constant value of the averaged stress.

Remark 5.2. The nonlinear part of the stress-strain curve in Fig. 5.11 might be explained

by the influence of the penalty parameter on the solution.

The author would like to thank students Albina Davletkulova and Iliya Prozorov for

helping to run FiberFEM in order to compute this numerical example.

5.3.3 Geotextile example using FiberFEM

A geotextile depicted in Fig. 5.15 is considered. The unit cell representing the geometry of

the fibers with fixed junctions is shown in Fig. 5.16. The material constants are

E = 108Pa, G = 0.3.

The finite element mesh of the fiber geometry consists of 72 elements, 71 nodes with the

total number of degrees of freedom equal to 426.

The deformed shapes of the microstructure, representing the solutions of the auxiliary

problems, are shown in Fig. 5.18-5.19. The obtained effective elasticity moduli are

ā1111 = 0.247221 ∗ 104 Pa, ā2222 = 1.110013 ∗ 108 Pa,
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Figure 5.11: Stick/slip switching.

Figure 5.12: Two fibers, the undeformed shape.
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Figure 5.13: Two fibers, the stick phase.

Figure 5.14: Two fibers, the slip phase.
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Figure 5.15: The first geotextile example. Figure 5.16: The geometry of the unit cell.

Figure 5.17: The ξ1 extension experiment.
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Figure 5.18: The ξ2 extension experiment.

Figure 5.19: The shear experiment.
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ā1212 = 0.018418 ∗ 104 Pa, ā1122 = 0.498762 ∗ 105 Pa,

and the effective elastic properties are

ν̄12 = 0.0745, ν̄21 = 1.6592 ∗ 10−6,

Ē1 = 2472 Pa, Ē2 = 1.1100 ∗ 108 Pa, Ḡ = 0.498762 ∗ 105.

5.3.4 Geotextile versus woven

Two numerical examples are presented. The first geometry represents a geotextile with

rigid fixed junctions, the second geometry is an example of a woven. Both geometries are

chosen to have similar structure, but in the case of the woven geometry a contact between

fibers is considered at the location of the fixed junctions of the geotextile.

Second geotextile

A geotextile depicted in Fig. 5.20 is considered. The unit cell representing the geometry of

the fibers with fixed junctions is shown in Fig. 5.21.

The material of fibers is isotropic with the material constants

E = 106 Pa, G = 0.3.

The finite element mesh of the fiber geometry consists of 56 elements, 55 nodes with the

total number of degrees of freedom equal to 330.

The deformed shapes of the microstructure, representing the solutions of the auxiliary

problems are shown in Fig. 5.24, 5.26, 5.28. The obtained effective elasticity moduli are

ā1111 = 0.415201 ∗ 106 Pa, ā2222 = 1.420008 ∗ 106 Pa,

ā1212 = 0.844399 ∗ 104 Pa, ā1122 = 1.359719 ∗ 104 Pa,

and the effective elastic properties are

ν̄12 = 0.0203, ν̄21 = 0.0059,

Ē1 = 0.4151 ∗ 106 Pa, Ē2 = 1.4198 ∗ 106 Pa, Ḡ = 1.359719 ∗ 104.
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1/δ ā1111 [Pa] ā2222 [Pa] ā1212 [Pa] ā1122 [Pa]

100 0.956456 ∗ 105 0.3883210 ∗ 106 0.012082 ∗ 105 0.9952 ∗ 103

1000 0.142843 ∗ 106 1.2157951 ∗ 106 0.003058 ∗ 106 1.5860 ∗ 103

10000 0.294002 ∗ 106 1.3040001 ∗ 106 0.003529 ∗ 106 1.9538 ∗ 103

100000 0.311029 ∗ 106 1.3211258 ∗ 106 0.004211 ∗ 106 2.1035 ∗ 103

1000000 0.311992 ∗ 106 1.3256281 ∗ 106 0.004251 ∗ 106 2.1042 ∗ 103

Table 5.5: Effective elasticity coefficients.

Woven

A woven textile is considered as depicted in Fig.5.22. The unit cell geometry is shown in

Fig. 5.23. There are 4 contact points between yarns.

The material of fibers is isotropic with the material constants

E = 106 Pa, G = 0.3, µ = 0.3.

For a contact, the initial penetration is zero at all contact points. The friction law is

modeled as a Coulomb one. All contact points are initially set to be in the stick state. The

contact contribution and the sliding gap are implemented in the form derived in Chapter 4.

The finite element mesh of the fiber geometry consists of 56 elements and 59 nodes, with the

total number of degrees of freedom equal to 354. The deformed shapes of microstructure,

representing the solutions of the auxiliary problems, are shown in Fig. 5.25, 5.27, 5.29. The

obtained effective material constants are presented in Tab. 5.5.
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Figure 5.20: The second geotextile example. Figure 5.21: The geometry of the unit cell.

Figure 5.22: The woven. Figure 5.23: The geometry of the unit cell.
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Figure 5.24: A ξ1 extension, the second geotextile.

Figure 5.25: A ξ1 extension, the woven.
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Figure 5.26: A ξ2 extension, the second geotextile.

Figure 5.27: A ξ2 extension, the woven.
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Figure 5.28: A shear, the second geotextile.

Figure 5.29: A shear, the woven.
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Chapter 6

Conclusions

• A fiber composite material with periodic microstructure and multiple frictional micro-

contacts between fibers is studied. The textile is modeled by introducing small ge-

ometrical parameters: the periodicity of the microstructure and the characteristic

diameter of fibers. The contact linear elasticity problem is considered. A two-scale

approach is used for obtaining the effective mechanical properties.

• The results of [Orlik, in preparation] on two-scale convergence of the microcontact

elasticity problem are used in order to obtain auxiliary contact problems and the

homogenized problem with the effective nonlinear elasto-plastic material law.

• The algorithm using asymptotic two-scale homogenization for computation of the

effective mechanical properties of textiles with periodic rod or fiber microstructure

is proposed. The algorithm is based on the consequent passing to the asymptotics

with respect to the in-plane period and the characteristic diameter of fibers. This

allows to come to the equivalent homogeneous problem and to reduce the dimension

of the auxiliary problems. Further numerical simulations of the cell problems give

the effective material properties of the textile.

• The homogenization of the boundary conditions on the vanishing out-of-plane inter-

face of the textile or fiber structured layer has been studied. Introducing the addi-

tional auxiliary functions into the formal asymptotic expansion for a heterogeneous

plate, the corresponding auxiliary and homogenized problems for a nonhomogeneous

Neumann boundary condition were deduced. It is incorporated into the right hand

side of the homogenized problem via effective out-of-plane moduli.



CHAPTER 6. CONCLUSIONS

• By using the finite element formulation for the contact problem between fibers given

in Chapter 4, the contact contribution of the non-penetration functional and fric-

tional functional into the Ritz-Galerikin system has been explicitly obtained. The

corresponding normal and tangential contact matrices and vectors are derived for

Tresca and Coulomb friction laws.

• FiberFEM, a C++ finite element code for solving contact elasticity problems, is

developed. The code is based on the implementation of the algorithm for the contact

between fibers, for which the contact contribution into the Ritz-Galerkin system

is deduced in Chapter 4. A code for visualization of fiber meshes, fViz, has been

developed and used for generation of geotextile and woven unit cell meshes, listed in

Appendix A.2.

• Numerical examples of homogenization of geotexiles and wovens are obtained in the

work by implementation of the developed algorithm. The effective material moduli

are computed numerically using the finite element solutions of the auxiliary contact

problems obtained by FiberFEM.
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Appendix A

A.1 Beam stiffness matrices

Definition A.1. ke1 given by

ke1 =

∫ le

0

BT
1 EAB1ds =

EA

le




1 −1

−1 1





is called the bar element stiffness matrix. Here B1 is a strain-displacement matrix,

B1 =
[
dN1(x)

dx
, dN2(x)

dx

]T

.

Definition A.2. f e
1 defined by

f e
1 =

∫ le

0

N̄ψe
1ds

is the bar nodal force vector.

Definition A.3. ke2 given by

ke2 =

∫ 1

0

BT
2 EI2B2dx =

EI2
l3e










12 6le −12 6le

6le 4l2e −6le 2l2e

−12 −6le 12 −6le

6le 2l2e −6le 4l2e










is called the beam element stiffness matrix. Here B2 is the strain-displacement matrix,

B2 =
[
d2H1(s)

ds2
, d

2H2(s)
ds2

, d
2H3(s)
ds2

, d
2H4(s)
ds2

]

.

Definition A.4. f e
2 defined by

f e
2 =

∫ le

0

H̄ψe
2ds

is the beam nodal force vector.



Appendix A

Definition A.5. ke4 given by

ke4 =

∫ le

0

BT
1 GB1ds =

G

le




1 −1

−1 1





is called the torsion element stiffness matrix.

The local stiffness matrix of the frame element is

ke =




ke
11 ke

12

(ke
12)

T ke
22



 ,

where

ke
11 =
















EA/le 0 0 0 0 0

0 12EI3/l
3
e 0 0 0 6EI3/l

2
e

0 0 12EI2/l
3
e 0 −6EI2/l

2
e

0 0 0 G/le 0 0

0 0 −6EI2/l
2
e 0 4EI2/le 0

0 6EI3/l
2
e 0 0 0 4EI3/le
















,

ke
22 =
















EA/le 0 0 0 0 0

0 12EI3/l
3
e 0 0 0 −6EI3/l

2
e

0 0 12EI2/l
3
e 0 6EI2/l

2
e

0 0 0 G/le 0 0

0 0 6EI2/l
2
e 0 4EI2/le 0

0 −6EI3/l
2
e 0 0 0 4EI3/le
















,

ke
12 =
















−EA/le 0 0 0 0 0

0 −12EI2/l
3
e 0 0 0 6EI2/l

2
e

0 0 −12EI3/l
3
e 0 −6EI3/l

2
e

0 0 0 −G/le 0 0

0 0 6EI2/l
2
e 0 2EI2/le 0

0 −6EI3/l
2
e 0 0 0 2EI3/le
















.
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A.2 fViz

fViz is a C++ code for visualization of fiber geometries. The visualization is implemented

by using OpenGL, and the GUI interface is based on Qt4, see Fig.A.1. Examples of fiber

structures are shown in Fig.A.2, A.3.

Figure A.1: A screen shot of fViz.

Figure A.2: A fiber mesh. Figure A.3: A stochastic fiber mesh.
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