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Abstract

It is often helpful to compute the intrinsic volumes of a set of which only a pixel image is observed.
A computational efficient approach, which is suggested by several authors and used in practice, is to
approximate the intrinsic volumes by a linear functional of the pixel configuration histogram. Here
we want to examine, whether there is an optimal way of choosing this linear functional, where we will
use a quite natural optimality criterion that has already been applied successfully for the estimation
of the surface area. We will see that for intrinsic volumes other than volume or surface area this
optimality criterion cannot be used, since estimators which ignore the data and return constant
values are optimal w.r.t. this criterion. This shows that one has to be very careful, when intrinsic
volumes are approximated by a linear functional of the pixel configuration histogram.
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1 Introduction

Intrinsic volumes are a fundamental concept of convex and integral geometry with many applications, e.g.
in the analysis of microstructures. We denote the intrinsic volumes of a set X C R? from the convex ring
by Vi(K),k =0,...,d; see [9, sections 4.1, 4.2 and 4.4] for a detailed introduction or [10, section 14.2]
for a shorter introduction. In particular, V4(K') equals the volume of K, V;_;(K) is half the surface area
of K, and Vp(K) is the Euler-characteristic of K. The Euler-characteristic is an integer-valued signed
topological quantity that plays an important role in several branches in geometry and topology. If d = 2,
then Vy(K) equals the difference between the number of connected components of K and the number of
bounded connected components of R\ K. If K is a 1-dimensional set in R3, e.g. the edge system of a
mosaic, then V(K is the length of K.

In applications often the problem arises to compute intrinsic volumes of a set (at least approximately),
even though only a pixel image of this set is observed. In this paper we always assume that the pixels
are the points of the lattice tZ¢%, t > 0, and that a pixel is colored black if it lies in the set and it is
colored white if it does not lie inside the set, i.e. the information contained in the image is equivalent to
the information contained in the Gauss digitization of the observed set. Several algorithms have been
proposed for the computation of arbitrary intrinsic volumes (see [6] and the literature cited in there) and
even more algorithms exist for the surface area (see [5] and the literature cited in there) and the Euler
characteristic (see [2] and the literature cited in there). A computationally efficient approach, that was
proposed by several authors — e.g. by Gray [1] for the Euler characteristic in the plane and by Ohser,
Nagel and Schladitz [7] for arbitrary intrinsic volumes — and that is used in practice, is to approximate
the intrinsic volume by a linear functional of the pixel configuration histogram. A 2%-pixel configuration
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is a pair (B, W) of two disjoint sets whose union is {0,1}?. The interpretation is that B is the set of
black (foreground) pixels and W is the set of white (background) pixels. We enumerate the 29-pixel
configuration as (B;, W), i = 1,. 2@ For a set K C R?, a number i € {1,.. .,2(2d)} and lattice
distance t > 0 we let Ny ;(K) denote the number of occurrences of configuration 7 in an image of K in
the observation window [—1; 1]d. More precisely, we put

Nia(K) = #{zctZn[-1;1 -] | 2 +tB; C K,z +tW; C K“},

where K¢ denotes the complement of the set K and #S denotes the number of elements of a set S
(observe that a 2%-pixel configuration is contained in [—1; 1]¢ iff its “lower left” corner is in [—1;1 — #]%).
Now we consider two pixel configurations to be equivalent if there is an isometry mapping one of them
to the other. We let 14 be the number of equivalence classes of 2%-pixel configurations and enumerate
the equivalence classes by 0,...,vq — 1. We let N; ;(K) denote the sum over all Ny ;(K) such that the
configuration ¢ belongs to equivalence class j.

Let RT denote the set of positive real numbers. As mentioned above, linear functionals of the pixel
configuration histogram, i.e. functionals that map K C R? to

l/dl

Z A (N (K), (1)

where the functions Xg,...,\,,—1 : RT — R are chosen properly and called weights, can be used as
computational efficient estimators for Vi (K). A geometrically motivated proposal for the weights was
made in [7]. This leads to the question, whether there is an optimal way of choosing these weights. An
optimality criterion was proposed and successfully applied in the special case k = d — 1 by Kiderlen
and Ziegel [4]. They assumed that the set K is shifted at random and then considered the worst case
asymptotic relative bias of the estimator Vd_l, that is

sup lim sup [E Vd*l(K +tU) — Var (K)|
K t=0 Va—1(K) ’

where U is a random vector distributed uniformly on [0;1]¢ and the supremum is taken over all sets K
for which the estimator is supposed to work.

Since the k-th support measure Zj (for an introduction see e.g. [10, section 14.2]), whose total mass the
k-th intrinsic volume is, is a signed measure for k& < d — 1, extinction effects may occur and hence it
does not seem to be a good idea to measure the bias of an estimator for Vj relative to the correct value
(unless we choose a very small class of sets on which our estimator should work). A second idea may be
to measure the bias of the estimator for Vi always relative to V;_;. However, if one considers uK for a
fixed set K, then the quotient of the bias of Vi and Vg is proportional to pFT1=4 (if Vi is homogenous
of degree k) and hence gets arbitrarily large for p — 0 if £ < d — 1. The solution we will use is based
on the following idea: Heuristically spoken, the bias of Vi is the sum of all errors made in the estimation
of positive part and all errors made in the estimation of the negative part of Z;. Hence it seems to be a
good idea to measure the bias of Ve relative to the total variation of 2, which is not zero by Lemma 8
below. We denote the total variation of Zi, k =0,...,d — 1, by |Vx| and put for completeness |Vy| := Vj.
While Kiderlen and Ziegel managed to find weights for which the worst case asymptotic relative bias of
the estimator for V5 in R? is 4%, we will show that there are no weights for which the relative worst case
asymptotic bias of the estimator for Vj, ..., Vy_o is below 100%. Since an estimator that ignores the data
and returns 0 never has a relative bias of more than 100%, such a useless estimator has the smallest worst
case asymptotic relative bias among all estimators of type (1). This is already true on a quite small class
of sets, namely on

PR = {Uj\ilPi | P; is (convex) polytope in R? with interior points, i =1,..., N, N € N}.
resp. on the class
PD = [P x [a1,b1] X -+ X [ag—2,ba—2] |
PeP® ay,...;a4-0€R, by,....bg_o €R, ay <by,...,a4-2 <bg_s}, d>3.



Now we are in the position to give the precise formulations of the main results of the present paper.

Theorem 1. For all weights Ao, ..., \v,—1 and alln € N, n > 2, the estimator Vo for Vi defined by (1)
has a worst case asymptotic bias of at least n — 1 on the set

(K € PD | [Vo|(K) <n, K C (~1;1)4).

The estimator ignoring the data and returning 1 has a worst case (asymptotic) bias of n — 1. Hence this
estimator has the minimal worst case asymptotic bias among all estimators of type (1).

The proof of Theorem 1 will be given in Section 4. First it will be established in the 2-dimensional case,
then it will be extended to the higher-dimensional case using cylinder sets.
The following corollary is a direct consequence of Theorem 1.

Corollary 2. For all weights Ao, ..., A\,,—1 the estimator Vo for Vi defined by (1) has a worst case
asymptotic relative bias of at least 100% on the set

(K e PD | K C(-1;1)%).

The estimators ignoring the data and returning 0 or 1 have a worst case (asymptotic) relative bias of
100%. Hence these estimators have the minimal worst case asymptotic relative bias among all estimators

of type (1).

The following theorem is an extension of Theorem 1 to other intrinsic volumes. The extension from
Theorem 1 to Theorem 3 uses cylinder sets with a (d — k)-dimensional base and will be given in Section
4.

Theorem 3. For all weights Xo,...,Ap,—1, all k = 1,...,d — 2 and all real numbers r > Q(Z), the
estimator Vj, for Vi, defined by (1) has a worst case asymptotic bias of at least v on the set

{K e PD||Vi|(K) <r K C(—1;1)%}.

The estimator ignoring the data and returning 0 has a worst case (asymptotic) bias of r. Hence this
estimator has the minimal worst case asymptotic bias among all estimators of type (1).

As an immediate consequence of Theorem 3 we obtain the following corollary.

Corollary 4. For all weights \o,...,A\p,—1 and all k =1,...,d — 2 the estimator Vie for Vi, defined by
(1) has a worst case asymptotic relative bias of at least 100% on the set

(K e P9 | K C(-1;1)%},

The estimator ignoring the data and returning 0 has a worst case (asymptotic) relative bias of 100%.
Hence this estimator has the minimal worst case asymptotic relative bias among all estimators of type

(1).

These results have two consequences. First they show that the optimality criterion of having the least
worst case asymptotic (relative) bias yields nonsense in the situation of these theorems. Second they
tell us to be quite careful, when intrinsic volumes other than volume or surface area are estimated by a
linear functional of the pixel configuration histogram, since such a estimators cannot be better than an
estimator ignoring the data w.r.t. a quite reasonable optimality criterion.

However, there is still some hope for the estimation of intrinsic volumes from the pixel configuration
histogram. In fact, Ohser, Nagel and Schladitz [7] have shown that even a diverging estimator may have
a reasonable small error for the lattice distances used in practice.

Another possible solution to this limitation is to restrict to certain models. Anne-Marie Svane is preparing
an article, where she determines the weights for which the estimator of the density of the Euler charac-
teristic in R? is asymptotically unbiased, when applied to a Boolean model. Moreover, she determines
weights for which the estimator of the Euler characteristic in R? is asymptotically unbiased, when applied



to an isotropic random compact set fulfilling certain smoothness assumptions. Ohser et al. [8] examine
weights such that the estimator for V; in R? is unbiased for all sufficiently small lattice distances, when
applied to an isotropic system of non-overlapping fibers.

This paper is organized as follows: In Section 2 we collect lemmata concerning intrinsic volumes and
support measures and in Section 3 we deal with pixel configuration counts. Lemmata combining both
topics will be given together with the proofs of the main results in Section 4.

2 Intrinsic volumes and support measures

A compact, non-empty subset of R? will be called body. We let N'(K) denote the normal bundle of a
convex body K C R?%, bd A the boundary of a set A C R? and int A its interior.

Lemma 5. Let K C R? be from the convex ring. Then
Zo(K,N(conv K)) =1

Proof. Using the index function approach for the extension of the support measures to the convex ring
(see e.g. [9, p. 219-222]), it is easy to see that for all Borel sets n C A(conv K) N ((bd K) x S4=1) we
have

Ex(K,n) =Ek(conv K,n), k=0,...,d—1.

As a consequence of [9, (4.6.1)], Zg(conv K|, -) is concentrated on (bd K) x S9~1. Thus
Zo(K, N (conv K)) = ZEg(conv K, N (conv K) N ((bd K) x S471)) = Vy(conv K) = 1. O

The fact that support measures are defined locally, which is well-known for convex bodies, is also true
for sets from the convex ring:

Lemma 6. Let K,L C R? be two sets from the convex ring and let n C R? x S%=1 be a Borel set. If
there is an open set O C R with KNO=LNO and nC O x S9=1 then

Ep(K,n) =Zx(L,n), k=0,...,d—1.

Proof. Under the additional assumption that there are some € > 0 and some open set O’ C R? with
O +eBYC O andnC O x 8% 1, the statement is easily established using index functions. By standard
theorems from measure theory, the result extends to the general case. O

The following lemma is easily established using the formula for support measures of polytopes and Lemma
6.

Lemma 7. Let L C R? be a set from the convex ring, such that there is a convez body K C R¢ and
pairwise disjoint convex bodies K1, ..., K, C int K with interior points such that L = K\ U?:l int K.
Then K1, ..., K, are polytopes and

Ek(Lﬂ]) - Ek(Ka 77) + (71)dik+1 ZEk(Klan*)7
i=1
fork=0,...,d—1, where n* = {(z, —u) | (x,u) € n}.

The following lemma is a bit unsatisfactory, since it is probably true for all sets K C R? that can be
represented as finite unions of convex bodies with interior points. However, it is not obvious how to prove
this more general statement.

Lemma 8. Let K € P d>2 and k € {0,...,d —1}. Then Zx(K,-) is not the zero measure.



Proof. In the case d = 2,k = 1, this statement is obvious and, in the case d = 2,k = 0, it follows from
Lemma 5. In the case d > 3, it follows by an induction w.r.t. d from Lemma 9 below. O

We denote by e, ..., eq the standard basis in R?, by [z, y] the line segment with endpoints = and y and
by kg, k € N, the volume of the k-dimensional unit ball. By V; we denote the Lebesgue measure. Since
the Lebesgue measure coincides with the d-th intrinsic volume, whenever both notions are defined, the
use of the same symbol is no problem.

Now we will show how the support measures of a cylinder set can be computed from the support measures
of its base.

Lemma 9. Let K C R*! be from the convex ring and h > 0. For any Borel set n C R% x S=1 we have
1
Za-1(K < [0:h],m) = SVa-1({z € K| ((2,0), —ea) € n})

h
+/O /]Rd_lxsrl_2 1,((z,y), (u,0)) Eq—2(K, d(x,u)) dy
+ %Vd—l({l‘ € K| ((w,h),eq) €n})
and

Ex(K x [05h],n)
qd—k—1 /2
_ hd—k-1 gt /R L / 0sK2 § 1, ((,0), (cos ¢ - u, — sin @) dg Zp (K, d(z, u))

Kd—k

/ /Rd i (z,9), (v, 0)) Zx—1 (K, d(z,u)) dy

-1 /2
k-1 d—k / / 05K § 1, (2, h), (cos 6 - u, sin ¢)) do g (K, d(z, u)),
Rd—Ek d—k Rd—1x8§d—2 Jq

k=1,...,d—2,

and

Eo(Kx[0; A, m)
_naid-1
kg d  Jra-iygd—2
Kg—1d—1
ko  d Jpa-iyga—

/2
/ cos?2 ¢ 1,,((x,0), (cos ¢ - u, —sin ¢)) dop Zo (K, d(z, u))
0

m/2
/ cos? 2 ¢ 1,((x, h), (cos ¢ - u,sin @)) do Zo (K, d(x,u)).
0

Proof. Assume additionally that K is convex. For a convex body L and v € R%\ L let p(L,v) denote the
metric projection of v to L and set u(L,v) := (v — p(L,v))/||v — p(L,v)]|.
Then for r >0

Zﬁd k’l’ K X [0 h] )
= Va({v € (K x [0;h] +rB*) \ (K x [0;h]) | (p(K x [0; h],v),u(K x [0;h],v)) € n})
r+h
- / ’ Vao1({z e RV |(z,y) € (K x [0;h] + rBY) \ (K x [0; h)]),

(p(K X [O§ h]’ (may))’u(K X [O§ h]’ (.’L‘,y))) € 77}) dy



0
— [ Va—1({z € K | ((2,0), —eq) € n})

Vi ({o € (0 VT PB VK| (000 =R ) € nf)

h
+ / Vi ({z € (K + B\ K | ((p(K,2), 1), (u(K,2),0)) € 1}) dy

N / Vior(fz € K | (2, h), eq) € n})
0

+Var ({z € (K + V=B )\ K | ((0(K ), h), (i _p(K: i):‘z;”) en})dy.

[(z — p(K, z)
We get
’ 2 _ ,2pd-1 (z —p(K,z),y)
[TVd—l({$E (K—I—\/r y2B )\K\ ((p(K,a:),O)7 ||(x—p(K,x),y)||> 677}) dy
= /j:ijfidk1(d—k— 1) /]Rd—lxsd—z /()Xﬁmsd_k_2

177((‘7770)7 (5u7y)/||(suay)”) ds Ek(Ka d(fE, u)) dy

d—2 ro /2
= Z /{dfkfl(d —k— 1)/ / / (z - COS ¢)d*k72
o Ri-1x51-2 Jo Jo

1,((x,0), (cos ¢ - u, —sin@)) - zdo dz Zi(K, d(x, u))
d—2

_ d—k—1 ak /“/2 -
_kzzo’id"“‘l d—k /Rdflxsdf , s e

1,((z,0), (cos ¢ - u, —sin ¢)) do = (K, d(z, u))

and the same way

/OT Vi ({:c € (K+ 2~ 2B )\ K | ((p(K, o), h), =P x)’y)) e n}) dy

[(z — p(K,z),y)
d—2

/2
Ny Aokt Ak / cos?—+2 4
b—0 d - k' Rd—lxsd—2 0

1,((x, h), (cos ¢ - u,sin@)) dp Zp (K, d(x, u)).

Moreover,

/0 Vi ({z € (K +rBY)\ K | (p(K,2),y), (u(K,2),0)) € 1}) dy

:/ an_k_l(d—k—l)/ /Tsd’k’Ql,,((x,y),(u,O))dsEk(K,d(x,u))dy

0 1—o Rd-1x8d=2 /0

d—2 h
Y we [ P11, (@), (0, 0)) 4 (K d(, w) dy
0 JRd-1xgd—2

k=0

d—1 h
=Yt [ 1, ((@,9), (u,0)) By (K. (v, w)) dy.
1 0 JRi-1xgd-2



Altogether this is

:r.vd 1({x€K\(( 0),—ea) € n})

d—Fk—1 d—k/W/Q d—k—2
+Zf€d N Rd_IXSd_Qr | cos @

1,((x,0), (cos ¢ - u, —sin ¢)) dp Zy, (K, d(z, u))

d—1 h
+Xwrt [ f 1, ((@,9), (u,0)) By (K. (. w) dy
=1 0 JRI-1xSd=2

+r~Vd 1({z € K| ((z,h),eq) € n})

d—k—1 d—k /ﬂ/2 d—k—2
+ Zﬁd R /Rdflxsd%r | cos 1)
1,((z, k), (cos ¢ - u,sin @)) dp Ex (K, d(z, u)).

Since r was arbitrary, the claim holds if K is convex. Using the additivity of the support measures, one
sees by induction that the claim holds for sets K that can be obtained as the union of n convex bodies,
n € N. O

Corollary 10. Let K C R be from the convex ring and h > 0. Then

Ve(K x [0;h]) = Vi(K) + hVi_1(K),  k=1,....d—1, (2)
Vo(K x [0; h]) = Vo(K), (3)
Vi (B x [03 h]) < [Vil(K) + RV |[(K),  k=1,....d—1, (4)
Vol (K x [0; h]) < [Vo| (K (5)

Proof. The equalities (2) and (3) are immediate consequences of Lemma 9, since

Ry

=1 [
@7/ cos2pdp =1, leN.
0

For a signed measure u we let u™ denote the positive part w.r.t. the Jordan decomposition. We let
P C R? x S971 denote the positive set of the Hahn decomposition of Er(K x [O h] ) Using the facts
that 2 (K x [0;h],n) = Zx(K x [0;h],n N P) and that [ f(z)du(z) < [ f(z) (z) for any signed
measure 4 defined on some measure space (2, 4) and any measurable function f Q — R{ and finally
employing the monotonicity of measures, one concludes from Lemma 9 that

2y (K x [0;h],m)
Rd—k—1 d—k—-1
Rd—Fk d—k

y
/ / " costE2 41, (2,0, (cos & -, — sin 8)) dd = (K, d(z, )
Rd—1x Gd—2

/ /R g (@), (, 0) B, (K, d(x,u)) dy

-1 /2
k-1 d—k / / 05K § 1, (2, h), (cos & - u, sin ¢)) d 1 (K, d(x, u)),
Rd—Fk d—k Rd—1x5d—2 Jo

k=1,...,d—2,




and

EJ (K x [0;h],m)

_ w/2
<fd-t Q /0 cos?2 ¢ 1,((x,0), (cos ¢ - u, —sin ¢)) do ES‘(K, d(x,u))

" Kq d Rd—1x gd—2

_ /2
rar g1 | eos 201, ((, ) 05 6 - w,sin ) do = (K, (o, )
0

Kq d Rd—1xgd—2

for any measurable set n C R? x S9~1. Hence we get (4) for k =1,...,d—2 and (5). In the case k = d—1
we have Vi (K x [0;h]) = |[Vi|(K x [0;h]), Vi(K) = |Vi|(K) and Vi—1(K) = |Vi—1|(K) and hence (4)
follows from (2). O

Applying Corollary 10 inductively, we get:

Corollary 11. Let K C R™ be from the convez ring, h > 0 and N € N. Then for k=0,...,N +n we
have

min{k,n}

v x oy = >0 (1 ), ©

{0,k—N}

min{k,n}
Vil (K x [0; B]NV) < N RV |(K 7
Vi |( X[,])_Z b Vil (K). (7)

1=max

{0,k—N}

3 Pixel configuration counts
Formula (28) of [3] says:

Lemma 12. Let 8 C R? be a Borel set and let U be a random vector distributed uniformly in [0;1]<.
Then

E#{z € tZ% | 2 + tU € B} = Vy4(B) /1.
Now we examine the pixel configuration counts of cylinder sets.

Lemma 13. Let K C (—1;1)4"1 be an arbitrary set, —1 <a <b <1 and 0 <t < min{l +a,1 — b} and

Ire{y,..., 2(2d)} the number of a pizel configuration (Br,Wr). If there is at least one integer multiple
of t in [a;b], then Ny 1(K X [a;b]) equals

o Nyi(K) if there is a d — 1-dimensional pizel configuration (B;, W;) fulfilling (B = B; x {0} # 0
and Wi = W; x {0yU{0, 1}t x {1}) or (B; = B; x {1} # 0 and W; = W; x {1} U{0,1}*7* x {0}),

e (p—1)- N i(K) if By = B; x{0,1} #0 and W; = W; x {0,1}, where p:= #{z € Z | tz € [a; ]},

* (qg—p—2)-(¢— V)" +(p+1) Npy(K) if Br =0, Wy = {0,1}, B; = 0 and W; = {0,1}*",
where q := #{z € Z | tz € [-1;1]} is the number of pizels in [—1;1],

o 0 otherwise.

If there is no integer multiple of t in [a;b], then we have Ny (K x [a;b]) = (¢ — 1)® if B; = 0 and
Wi ={0,1}¢ and we have Ny 1(K x [a;b]) = 0 otherwise.

Proof. Assume that there is an integer multiple of ¢ in [a;b] and that By = B; x {0,1} # @ and
Wi =W, x {0,1}. Then for all z € tZ%! and y € tZ the conditions

(r,y)+tB; C K x [a;b] A (x,y) +tW; C (K x [a;b])c



and
r+tB; CK Ax+tW; CKC A {y,y+t} C[a;0)]

are equivalent. Hence

N 1(K % [a;b])
=#{z etz N [-11 -t |2 +tB, CKAx+tW; C K} x {y € tZ | {y,y +t} C [a;0]})
= Nei(K) - (p—1).

The other assertions of the lemma follow similarly. O

We now fix the enumeration of the equivalence classes of 2 x 2-pixel configurations. Since v, = 6, the
numbers 0, ..., 5 will be used to enumerate these equivalence classes. For j € {0,1,3,4} there is exactly
one equivalence class whose configurations have j black (foreground) pixels and 4 — j white pixels. We
denote this class by j. There are exactly two equivalence classes whose pixel configurations have two
foreground and two background pixels. We call the class with two neighboring foreground pixels number
2 and the class with two opposite foreground pixels number 5.

Next we assign names to some equivalence classes of 2¢-pixel configurations, d > 2. If £ € {0,...,d — 2}
is a number and (B, W) is a 2 x 2-pixel-configuration of equivalence class ¢ € {0,...,5}, we denote the
equivalence class to which the 2¢-pixel-configuration

(B x {0,1}¢ x {0} 52 W x {0,1}* x {0} 72U {0,1}*7% x ({0,1}*7¢72\ {(0,...,0)}))

belongs by (¢ : £ : d). We notice that an equivalence class may have one name, no name or several names.
In images of cylinder sets with a 2-dimensional base only pixel configurations belonging to equivalence
classes which have a name can occur. More precisely, we have the following corollary, which follows from
Lemma 13 by induction.

Corollary 14. If Z\?t,j(K X [a1;b1] X [ag;be] X +++ X [ag—2;ba—2]) # O for a set K C [—1;1]2, numbers
a1 <by,...,aq-2 < bg_2, somet >0 and some equivalence class j, then j is one of the following:

(1:&:d), (3:&:d), (5:&:d), ¢e{0,...,d -2},
(0:0:d),(2:d—2:d), (4:d—2:d).

Theorem 15. Fort € (0;1/3), £ € {—2,...,d — 2} there are functions c, ¢ : (t;1 —2t)7"2 — R} such
that
EN; 160y (X % [03ha] X -+ % [03 hao] +tU) =cpe(ha, ... ha—s) - ENg1(X)
+cre—1(hiy- . ha—2) - EN;o(X)
+crea(hr,. . ha2) - EN;4(X), € €{0,...,d -2},
E N 2:d-2:ay(X X [0;h1] X -+ X [0; hg—o] + tU) =cpa—2(h1, ..., ha—2) - E Ny o(X)
+ cras(h, ..., hi_2) - E Ny 4(X)
E Ny (r:a—2:ay (X X [05h1] X -+ % [0 hg—2] +tU) = cta—a(ha, ..., ha—2) - E Ny 4(X)
E Ny (3.6:ay (X % [03h1] X -+ x [0y haga] +tU) = cre(ha, ... ha—s) - EN;5(X), £€1{0,...,d -2},
E Ny (5:6:ay (X % [03ha] X -+ x [0y haa] +tU) = cre(h, ... ha—2) EN;5(X), £€1{0,...,d—2},

for any random compact set X C (—=1;1)? and hy,...,hq o € (t;1 — 2t), where U is a random vector

distributed uniformly on {(0,0)}x [0; 1]9=2. These functions are monotonically increasing in all arguments
and fulfill c,e =0 if £ <0 and

Ct’g(h7. . ,h) = (dg2)2d—2—§(}; _ 1)5

for h € (t,1 —2t) if £ > 0.



Proof. We define the functions c; ¢ recursively. If d = 2, we put ¢;¢ = 1 for { =0 and ¢; ¢ = 0 for £ < 0.
If d > 2 we put ¢;,—2(h1,...,ha—2) =0,

ha—

Ct,g(hla .. .,hd,Q) = ( 2 _ 1)Ct7§,1(h1,. . .,hdfg) + 2Ct’§(h1, .. .,hdfg), f S {—1, .. .,d— 3},

and
ha—

cta—2(h1, ... ha—2) = ( 2 - Dera—s(ha, ... ha—s).

Assume d > 3 now. For fixed + € {1,...,5} and & € {0,...,d— 2} all pixel configurations, that belong to
class (¢ : € : d) and may occur in images of cylinder sets K x [a;b], K C (=1;1)%"!, 1 <a<b< 1, are
of one of the following types:
o (Bx{0},W x{0}U{0,1}% 1 x {1}) and (B x {1}, W x {1} U {0,1}%"* x {0}), where (B, W) is a
pixel configuration of class (¢:&:d—1) iff £ <d— 2,

o (Bx{0},W x{0}U{0,1}% 1 x {1}) and (B x {1}, W x {1} U{0,1}%! x {0}), where (B, W) is a
pixel configuration of class (2¢: £—1:d—1) iff . € {1,2} and £ > 0 (notice that these configurations
were already mentioned in the first point iff £ < d — 2),

o (B x{0,1},W x {0,1}), where (B, W) is a pixel configuration of class (t: & —1:d — 1) iff € > 0,
and

e (Bx{0,1},W x {0,1}), where (B, W) is a pixel configuration of class (/2 : & :d —1) iff 1 € {2,4}
and £ < d—2 (notice that these configurations were already mentioned in the third point iff £ > 0).

It is easy to see that all these configurations belong to class (¢ : € : d). In order to prove the reverse
statement, let (B, W) be a pixel configuration of class (s : ¢ : d). Then there is an isometry g : R? — R?
with
9(B) = B, x {0,1}* x {0}*¢72
and
g(W) =W, x {0,1}* x {03752 U {0, 13572 x ({0, 1372\ {0}97572),

where (B,,W,) is a 2 x 2-pixel configuration of class ¢. Since g leaves {0,1}% invariant, there must be
some £ € {1,...,d} with g(eq) — g(0) = +ey. Distinguishing cases w.r.t. £, one sees that (B, W) really
is of one of the four types mentioned above. We demonstrate this for the case ¢ = 1. By Lemma 13
there are sets B C {0,1}4~', B’ C {0,1} with B = B x B’ and hence there are sets A1) C {0,1} and
AP C {0,1}4 ! with
AWM x A® = ¢(B) = B, x {0,1}¢ x {0}47¢2,

Thus ¢ # 3 and ¢ # 5. We have to consider several subcases and show here only the subcase ¢ = 1,£ > 0.
Then B’ = {0} or B’ = {1}. Moreover, let h : R? — R? be the map that moves the first component to the
d-th, the d-th component to the £+2-nd, the £+2-nd to the first and leaves all other components invariant.
We have (hog)(eq) — (hog)(0) = +eq, w.lo.g. (hog)(eq) — (hog)(0) = +eq. Then (hog)(RI~1) C RI-!
and so we can consider the map

fiRTL SR 2 (hog)(x).

Now f(B) = {0,1} x {0} x {0,1}¥71 x {0}97¢~2, the 2 x 2-pixel-configuration ({0, 1} x {0}, {0,1} x {1})
is of equivalence class 2 and f is an isometry. So (B,W) is of class (2 : { —1 : d — 1). Treating all
remaining cases in a similar way, one sees that (B, W) is of one of the four types mentioned above
Lemma 12 yields E#{z € Z | tz € [tUa; hg—2 + tUs]} =
uniformly on [0; 1]. We let U; denote a random vector dlstrlbuted uniformly on {(0,0)} x[0; 1]4~3 C R4,
Now Lemma 13 gives
E Ny va—2:ay (X % [05ha] x -+ x [0 hg—a] + tU)
= 2-EN, 2d—3a—1) (X X [0 hq] X -+ x (05 hg_3] + tU7)
ha—2

+ ( — 1) EN¢ (na—sia—1)(X % [0;h1] X -+ x [0 ha—sg] +tU1), ¢ € {1,2},
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E N (yd—2:ay (X % [0;h1] X -+ x [0 ha—s] + tU)
- (hH ~ 1) EN; pg—3.d-1)(X % [03h1] x -+ x [0 hg_3] +tU1), ¢ € {3,4,5},
ENt,(L:O:d) (X x [0;hq] X -+ x [0; hg—o] + tU)
= 2-EN; (.0:a-1)(X X [0 1] x -+ x [0 hg_3s] + tU1), ¢ € {1,3,5},
E Ny, (use:ay (X % [03 ] X -+ x [0; hg—s] + tU)
= 2-EN; (ea—1) (X % [03ha] X -+ x [03 hg—3] + tU7)

ha_ ~
+ (=52 = 1) E Ny e tia-1) (X % (03] - X [05 ha-s] + tUY),
te{1,3,5}, £e{l,...,d—3}.
Now the assertions follow by an elementary induction. O

4 Proof of the Main Results

Recall the enumeration of equivalence classes of 2 x 2-pixel configurations from page 9.

Lemma 16. If the worst case asymptotic bias of an estimator of type

is finite on {K € P | K C (=1;1), [Vo|(K) < 2}, then

Po(®)]; [Aa(B)] € OF?), (8)
[A2(t)] € O(), (9)
M@ s, [As(t)] € o(t?). (10)

It seems to be impossible to write Lemma 16 and its proof in such a way that the essential ideas become
clearly visible and are not covered by technical details. Hence we comment on the essential ideas before
we come to the proof.

The equation (10) is the central point in Lemma 16, while (8) and (9) are technical details: First (8)
and (9) are the conditions that experts would have expected anyway, while they probably would have
conjectured that we get only O(tY) in (10). Moreover, most of the estimators for the Euler characteristic
we found in the literature fulfill (8) and (9) and violate (10).

In the proof below we will show

EN;i1(A+tU) = EN; 3(A+tU) + 4+ 2EN, 5(A + tU)
for certain parallelograms A and random vectors U. Using different methods one could show
Nt,l(A’) = Nt’g,(A/) +4+ 2]\~ft75(A’) (11)

for compact, simply connected sets A’ that fulfill some weak regularity condition. Pixel configurations of
class 1, 2, 3 and 5 can only occur on the boundary of the observed set K C R%. Given K fulfills certain
regularity conditions (which we do not know exactly) and the lattice distance ¢ is sufficiently small, each
pixel configuration of class 1, 2, 3 and 5 belongs to a uniquely determined connected component of bd K.
Obviously, (11) also holds for the number of occurrences of pixel configurations on the outer boundary
of each connected component of the more complex set K. If we consider a hole of shape A’ within K,
(11) gives } } }

Ni3=Ng1+4+2N,5 (12)

11



for the number of pixel configurations on the (outer) boundary of that hole, since black and white pixels
are interchanged, hence pixel configurations of class 1 become pixel configurations of class 3 and the
other way round, while pixel configurations of class 5 stay in that class. So Ny 1(K)— N; 3(K) equals four
times the Euler characteristic of a set K C R?, provided that ]\7,5 5(K) = 0 and that certain regularity
conditions are fulfilled. If, however, the number of occurrences of pixel configurations of type 5 is large,
the difference N;; — Ny 3 may be far from 0, even if [Vo|(K) is small. One could correct for this effect
by adding to Nt,l — Nt73 twice the number of pixel configurations of type 5 lying on “inner” boundary
parts and subtracting twice the number of pixel configurations of type 5 lying on “outer” boundary parts.
However, these numbers are not observed (only their sum is observed) and hence the only way to prevent
the estimator from returning values whose absolute values are huge compared to |Vy|(K) is to choose the
weights A1 (), As(t) and A5(¢) unnaturally close to 0.

Proof of Lemma 16. We find it convenient to start with the proof of central point (10), even though
this means that we cannot present the proof in logical order. So assume we have already shown (8), (9),

IA1(t)] € O(t°) and |A1(t) + As(t)| € O(1). (13)
For m; € (0;1) and mg € (1;00) consider the set
A={(z,y) eR? [my(z+3) Sy+3z<ma(e+3), male—3) <y—3 <mz-3)}  (14)

As obviously

EN A+tU
sup limsup o 2+ ) < 00, (15)
mi,ma  t—0 t—
EN;a(A+1t
sup limsup val 5 v) < 00 (16)
mi,ma t—0 t_
A+t
and  sup limsup t’2t(_1 ) < o0, (17)

my,m2z t—0

where U is a random vector distributed uniformly on [0, 1]¢, we get

sup limsup |E4(A+tU) — Z Nj(HEN; ; (A +tU)|

mi,mo t—0 j=1,3,5

= sup limsup| Z Aj(HEN; ; (A +tU)|

mi,ma t—0 §=0,2,4

< 0o0. (18)

In order to compute E N; 5(A + tU), we put B := {(0,0),(1,1)} and W := {(0,1),(1,0)} and observe
(see Figure 1)
Ct::{UERQ|v+tB§A,v+thAC}
={(z,y) ER* [ma(z+3) Sy+3 <ma(r+3),m(e+3) <y+3z+ty+z<mlz+z+1)}
U{(a:,y)ER2 | mg(x—%+t)§y7%+t§m1(xf%+t) ml(xff) yfert
y— 3 <map(z—3+1t)}

2— 2m1 2’!71272
mi+17’ mo+1
is 2.2 s, where s :=my/(ma —my). Hence Lemma 12 gives E N; 5(A + tU) = 2s for sufficiently small

t > 0. Similar arguments yield

for t € (0; 4 min{2 — 2my, 222=2}). Since this union is disjoint for ¢ € (0; 3 min{

— ), its area

m1(2m32t—2 —ma) + (2—??% — 1) +mgy

EN,1(A+tU) =2+2

mo — My

12
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Figure 1: The set A (white) and the set C; (grey)

and
- 2mg—2 _ 2=2my _ 1) _
Eng(A + tU) _ 2m1( 3t mg) + ( 3t ) my ) (19)
mg —my
Hence
EN;1(A+tU) =EN; 3(A+tU) +4 + 2E Ny 5(A + tU) (20)

and using (18) one obtains

sup limsup [E4(A +tU) — (A (t) - (4 + 4s) + (A1 (t) + A3(t))E Nis(A4tU) + As(t) - 2s)| < oo,

my,m2 t—0
which gives

sup limsup |[E4(A +tU) — (A1(t) - (4s) + As(t) - (25))] < o0,

mi,my t—0

since -
. E Nt,3(A + tU)
sup limsup ————~=

mi,mz  t—0 t—1

Because s may be arbitrarily large, the assumption that the worst case asymptotic bias of 4 is finite
yields |21 (2) + A5(¢)] € o(t0).

Put A; :=[—1/2;1/2]%\/int A (see Figure 2). Observing that the cells of ¢Z? having (exactly) one vertex
in Ay +tU are precisely the cells having three vertices in A + tU and four cells containing the corners of
[~1/2;1/2]2 +tU, that the cells having three vertices in A; +tU are precisely the cells having one vertex
in A+ tU and that the cells having two opposite vertices in A; + tU are precisely the cells having two
opposite vertices in A 4+ tU, we conclude from (20)

EN;3(A; +tU) =E Ny 1 (A +tU) 4 2E Ny 5(A; + tU).
Similar as above we conclude

sup limsup |E5(A; +tU) — (A3(t) - (4s) + As(t) - (25))] < o0

mi,mz t—0

and hence we obtain arbitrary large asymptotic biases unless |2A3(t) + A5(¢)| € o(t°).

From (13), [2A1(t) + A5(t)] € o(t°) and [2A3(t) + A5(¢)| € o(t?), one concludes by Lemma 17 below that
A1 (8)] € o(t?), [As(t)] € o(t?) and |A5(t)| € o(t?).

It remains to show (8), (9) and (13).
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Figure 2: The sets A and A4,

We let r(t) := #(tZ?> N [~1,1 — t]?) denote the number of 2 x 2-pixel-configurations in our observation
window at lattice distance ¢t. Obviously lim; o7 (t)/t =2 = 4.

Consider an axes-parallel square Q, C (—1;1)? of side-length a € (0;1/2). If then t < a is smaller than
half the (minimal) distance between (a point from) @, and (a point from) bd([—1; 1]?), one has by Lemma
12

EA(Qa + tU) = (r(t) — (% +1)*)Xo(t) + A1 (t) + (4% — 4o (t) + (¢ — 1)%Aa(t)
@’ [T Ao (t) + mA1()] + a[FE Ao (t) + FA2(t) + 24 (2)]
+(’I”(t) — I)Ao(t) + 4/\1(t) — 4/\2(t) + )\4(t).

Let Q, C (—1;1)? denote a set consisting of two disjoint copies of Q. If then ¢t < a is smaller than
half the distance between Q, and bd([—1;1]?) and smaller than the distance between the two connected
components of ), devided by /2, we get

EA(Qa +tU) = a’[FXo(t) + FXa ()] + a[ 72 Ao () + $Aa(t) + (D))
+ (T(t) — 2))\0(75) + 8)\1(t> - 8)\2@) + 2)\4(75).

Since )

2B A(Qu + U) — EA(Qu + tU) = r(t)Ao(t)
does not diverge, we get [\o(t)| € O(t?). Because E4(Q, + tU) does not diverge for any a, we conclude
[Aa(t)] € O(F%), [X2(t)] € O(t) and [\ (1)] € O().
Now consider a rectangular triangle D, C (—1;1)? with axes-parallel cathetus both of length a € (0;1).
If t < a is smaller than half the distance between D, and bd([—1;1]?), one has

EA(Da +tU) =(5 + () + (24 = 3)ha(t) + (§ — 3)s(1)
(= 2 L 2N () + (r(F) — & — 29)No(1)

We conclude |(3 + 2)A1(£) + (2 — 2)As(t)] € O(t%) and thus [As(t) + A1 ()] € O(1). O

Lemma 17. Let m € Z and fi, fa, f3 : RT — R be three functions with |fi(t) + f2(t)] € o(t™), | f1(t) +
fs(B)] € o(t™) and [ f5(t) + fs(t)] € o(t™) ast = 0. Then [f1()], [f2()], [f5(t)] € o(t™).

Lemma 18. If the worst case asymptotic bias of an estimator of type

l/d—l B

F=>" NN

§=0

is finite on
d
{5 e K Wil <2(}) iet...o )

then X(o.0:a) (t) € O(t), Niz:a—2.ay(t) € O(t*™ 1), Naa—2:0)(t) € O(t?) and

Aeay(@)] € o(t°), v € {1,3,5}, £ €{0,...,d—2}.
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Proof. Considering axes-parallel cubes and sets that are the union of two disjoint axes-parallel cubes one
gets

A oeay (O] € O, Nreay (B)] € O), Mgy ()] € O, [Aaeeay ()] € O(°F2), € € {0,...,d — 2},
just like in the proof of Lemma 16. Considering the prism
{(z1,22,.. ., 2q) [ 21,...,0a > 0, 21 + 22 < a,m0 < a Ve, a}

one gets
|>‘<1:§:d> (t) + A<3:§:d> (t)| € O(tEJrl)v f € {Oa SRR d— 2}
Since |V2|(A) < 1, |[V4|(A) < 2 and |Vp|(A) < 1, where A is the set from the proof of Lemma 16, Corollary

11 yields
d—2 d—2 d—2 d
d—2 k k—1 k=2
[Vi|(A x [=h/2;h/2]7%) < < 1 >h +2<k’—1>h + <k:—2>h < <k:)

for h € (0;1) (notice that (d72) ht < (d?2) holds for all [ € Z; if [ > 0 it holds since h < 1 and otherwise
it holds since (*,?) = 0). The same way we get

e v R N eI

for h € (0;1), where A; is the set from the proof of Lemma 16.
Hence the asymptotic bias of 4 on A" := A x [~h/2;h/2]9"% and A} := A; x [~h/2;h/2]%2 may not be
arbitrarily large. However, from Theorem 14 we get

d—2

£§=0.€{1,3,5}

+ > ANud—2:a)(OE Ny (ea—2:0) (A} +U)
vef{2,4}

+ XNo:o:ay OE Ny g0.0:0y (A + £U),
where U is a random vector distributed uniformly on [0; 1]¢. From (15)—(17) and Corollary 15 we get
d—2
sup limsup |E4 (A" +tU) — Z( )Qd =8 (h Z Aueay(E Ny (A1 +tU)| < o0,
mi,mz  t—0 £=0 f 1€{1,3,5}

where U is a random vector distributed uniformly on [0;1]2. With s as in the proof of Lemma 16, we
conclude just like in that proof

— (d—2
sup limsup |E4 (A" +tU) — Z ( ¢ >2d A D 2Ny () + Ay () - 28’ < 0.

mi,mz t—0

Hence

£=0

e
£=0 k=0

. ‘dQ(}tz)k d—2 (d . 2) 9d—2—¢ (i)( ) (2)\(35 ay () + Aziecay ( ))’
k=0 E=k
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Figure 3: Representatives of the equivalence classes 1, 3, 5, 2, 11 and 19

[
- -

Figure 4: Idea of the construction of C; and Cs for n = 3: Both sets have the same area and the same
perimeter.

Since h was arbitrary, we get

‘tlk dZ_Q (d g 2) 24727¢ (i) (=D (2 30y () + Asieea) (t))‘ cot®), kefo,...,d—2},

E=k
which yields [2X(3.¢.0) (t) + A(5:¢:0) ()| € 0(t°). The same way one gets

d—2
~ d—2
sup limsup [E4(A" +tU) — E < ¢ )2d25(? — )20 10y () + Aseeay (1)) - 25‘ < o0
3

my,m2z t—0 -0

and thus |2)\<1:E;d> (t) + )\<51'51d> (t)| S O(tE) Now Lemma 17 implies |)\<1:§:d) (t)‘7 |)‘(3:§:d) (t)|, |)‘<5:§:d) (t)‘ S
o(t%). O

Example 19. In the special case d = 3 Lemma 18 yields

IAL(B)], [As(B)], [As(8)] € o(t?)
[A2(B)], A1 (B)], [A19(2)] € o(2)

where we use the enumeration of the equivalence classes from [7]. Representatives of the equivalence
classes 1, 3, 5, 2, 11 and 19 are shown in Figure 3.

Proof of Theorem 1. We start by proving the theorem in the special case d = 2.
Consider an arbitrary estimator Vj of type (1). Let By C (—1;1)2 be an axes-parallel rectangle with side-
lengths 0.9 and 1.1 and put C; := Ry UU?:_11 (A[0;1]% +v;), where \ := m and v1,...,v,_1 € R?
are vectors such that the union of all n sets is disjoint and contained in (—1;1)2. Let Ry be an axes-parallel
square of side-length 1 and set Cy := Ry \ U~} int(A[0; 1]% + w;), where wy, ..., w,_; are vectors such
that A[0;1])% + wy, ..., A[0;1]2 + w,_; are pairwise disjoint subsets of int Ry (see Figure 4). By Lemma 7
we have |Vp|(C1) < n and |Vp|(C2) < n.

Let U be a random vector distributed uniformly on [0; 1] and let ¢ € (0; A) be smaller than the smallest
distance between two connected components of C; or (—1;1)2\ Cy divided by /2 and also smaller than
half the distance between bd[—1;1]? and C; or Cs. Noticing

Va(C1) =0.9- 1.1 4 505 = 0.995 = 1 — s = Va(Ca),
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we get

E Ny 1(Cy +tU) = 4n, E Ny 1(Cy +tU) =
]ENt2(01+tU)74(7—1)+4(n—1)( - 1), ]ENt,z(Cz+tU)74(—71)+4(n71)( - 1),

E Ny 3(Cy 4+ tU) = E N, 3(Cy + tU) = 4n —

E Ny 4(Cy +tU) = & 995 2+2(r;—1)>\ tn, ENy.4(Cy + tU) = & 995 2+2(r;—1)>\ +2-n,

E N, 5(Cy 4+ tU) = 0, E N, 5(Cy +tU) =

IENt o(Cy +tU) = r(t) — 0.3295 _ 2+2(VtL—1)/\ —n, ENt,O(C2 +tU) = ( ) — 0. 995 2+2(VtL—1)/\ +n—2

where r(t) was defined in the proof of Lemma 16.
Now Lemma 16 yields

lim sup|E[Vo(Cy 4 tU) — Vo(Ca + tU)]|

t—0
= limsup|(4n = 4) - Aa(6) + (4 = 4n) - Xs(t) + (2= 2) - Ma(t) + (2= 20) Do (1)

=0

if the worst case asymptotic bias of Vj is finite. Since V5(C1) = n and Vy(Cs) = 2 — n, this yields either
limsup,_,q [EVo(Cy +tU) — Vo(C1)| = n—1 or limsup,_,, |EVy(Cy +tU) — Vo(Cy)| > n — 1. Thus, in any
case, the worst case asymptotic bias of Vo is at least n — 1.

On the other hand, consider the estimator that always returns 1. The positive part of Zo(K,-) is at least
1 for any set K C R? from the convex ring by Lemma 5. Hence for all sets K with |Vp|(K) < n we have
2 —n < Vp(K) < n. So the estimator that always returns 1 has a worst case (asymptotic) bias of n — 1.

Now we turn to the case d > 2.

Let C; C R? and Cy C R? be the sets defined above and put D, := C, x [-2;1]972, 1 = 1,2, Then
D1, Dy C (—1;1)4 have both a total variation of the 0-th support measure of at most n and Vo(D1) = n
and Vp(D2) = 2 — n by Corollary 10.

For sufficiently small ¢ > 0 Theorem 15 yields

- - d—2 o
E N (3:¢.0y (D1 +tU) = 0, E Ny, (3:¢:0) (D2 +tU) = ( ¢ )Qd 2-6(1 1)5 - (4n — 4)

and
ENt7<1 £d>(D1 —|—tU) —EN,; a Ed}(DQ +tU)
d—2 . . . .
—< ¢ >2d2€(1 — 1)5 [EN;1(CL+tU) —E Ny 1(Co + tU)]
d—2 d—-1-¢(1 13 Y
+ £-1 2 ( 1) [ENtQ(Cl +tU) ENtQ(CQ"’tU)]
d—2 d—¢(1 £-2 ~ -~ - ~
e o 2975(5 —1)7 T [EN4(Cr +tU) — E Ny 4(Ca + tU)]
d—2 o ¢ d—2 £-2
:( ¢ >2d L 1) (dn—4) + (€ 2)2d f1-1)""(2n-2)
for ¢ € {0,...,d — 2}, where U is a random vector distributed uniformly on [0;1]¢ and U is a random

vector distributed uniformly on [0; 1]2. Moreover,

~ - d—3
ENt,(z:d—z:d) (D1 +tU) — ]ENt,(2:d—2:d) (D +tU) = (d— 2)2(% - 1) -(2n —2)
and

- - d—2
E Ny (a:d—2:0y (D1 + tU) = E Ny (g:q-2:0y(D2 +tU) = (3 —1)7 - (2n — 2).
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The equality R ~
ENt7j(D1 =+ tU) = ENtJ'(DQ =+ tU) =0

follows from Theorem 15 for all equivalence classes j of type (5 : & : d), £ € {0,...,d — 2}, and from
Corollary 14 for all remaining equivalence classes except (0 : 0 : d). Thus Lemma 18 implies

limsup |E[Vo(Dy + tU) — Vo (D2 + tU)]‘ <

t—0
1ir:ljélp<§ ((d g 2) 21-2-6(L _ )% (4n — 4) + (? - ;) 26(L _1)*7% . (2n — 2)) A reea (B)]

=2 0 1
=3 (1) - ) -0 D 0

d—2)2(2 = 1) 20— 2) A@a—aay (0]

=0 (21)

if the worst case asymptotic bias of V; is finite. Hence the worst case asymptotic bias of V; is at least
n — 1 in any case.

The assertion concerning the constant estimator follows the same way as in the special case d =2. [

Proof of Theorem 3. Let ¢ € (0;1). Set D, := C,, x [~1/2;1/2]97%=2 v = 1,2, where C and Cy are the
sets from the proof of Theorem 1 for some n > 6r/e. Put

p::kl'r'_ﬁ/?),
n
€

e (R (B =i VA(D,) | v = 1,2} U{e))

7

and E, := uC, x [—p/2;1/2]%7 %72 x [-p/2;p/2]F, v = 1,2. Since we have shown V;(D;) = n and
Vo(D2) = 2 — n in the proof of Theorem 1, Corollary 11 gives

min{k,d—k}

E\ ki i
i =y (§)e o
i=0
min{k,d—k} k
> ) -ne > (3o mion
i=1
r—e/3 €
>4 =
- on " 3
>r—e€
and
min{k,
H r—e/3 e 2r 2¢ € €
Vie(Es) < p*Vo(D . =1V, |(Dy) < (2 — A T
W(E2) < p"Vo(D2) + p ; (.)p Vil(D2) < @-n)+g=" e L
Similar as above, we get for v =1, 2
min{k,d—k} L min{k,d—k} k
wiE s Y (i) <tmioace S (5o <
i=0 i=1
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Moreover, we get

the same way as (21), where U is a random vector distributed uniformly on [0;1]%.

limsup |E[Vi(Ey + tU) — Vi(Es +tU)]| =0

t—0

Hence we obtain

d
lim sup, g |EVi(E1 4 tU) — Vi (E1)| > 7 — e or limsup,_, |EVi(Ey + tU) — Vi(E3)| > r — €. Since € > 0

was arbitrary, the worst case bias of Vj is at least r. 0
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