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An erster Stelle möchte ich mich bei meinem Betreuer Andreas Gathmann
bedanken. Er stand mir bei meinen Problemen und Fragen stets bei und half
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Introduction

Tropical geometry is a very new mathematical domain. The appearance of
tropical geometry was motivated by its deep relations to other mathematical
branches. These include algebraic geometry, symplectic geometry, complex
analysis, combinatorics and mathematical biology.

In this work we see some more relations between algebraic geometry and
tropical geometry. Our aim is to prove a one-to-one correspondence between
the divisor classes on the moduli space of n-pointed rational stable curves
and the divisors of the moduli space of n-pointed abstract tropical curves.
Thus we state some results of the algebraic case first. In algebraic geometry
these moduli spaces are well understood. In particular, the group of divisor
classes is calculated by S. Keel. We recall the needed results in chapter one.

For the proof of the correspondence we use some results of toric geometry.
Further we want to show an equality of the Chow groups of a special toric
variety and the algebraic moduli space. Thus we state some results of the
toric geometry as well.

This thesis tries to discover some connection between algebraic and trop-
ical geometry. Thus we also need the corresponding tropical objects to the
algebraic objects. Therefore we give some necessary definitions such as fan,
tropical fan, morphisms between tropical fans, divisors or the topical moduli
space of all n-marked tropical curves. Since we need it, we show that the
tropical moduli space can be embedded as a tropical fan.

After this preparatory work we prove that the group of divisor classes in
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classical algebraic geometry has it equivalence in tropical geometry. For this
it is useful to give a map from the group of divisor classes of the algebraic
moduli space to the group of divisors of the tropical moduli space. Our aim is
to prove the bijectivity of this map in chapter three. On the way we discover
a deep connection between the algebraic moduli space and the toric variety
given by the tropical fan of the tropical moduli space.
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Chapter 1

Classical M0,n and Toric
Geometry

In this chapter we will recall some facts about the classical moduli space
of n-pointed rational stable curves (M0,n) as well as about toric geometry.
The results about the classical moduli space have motivated this work, and
some of the algebro-geometric results will be proved to hold for its tropical
counterpart as well.
In the first section we will recapitulate some facts of S. Keel’s paper ”In-
tersection Theory of moduli space of stable n-pointed curves of genus zero”
[Kee92]. His results about the Chow ring of M0,n motivate the relations in
the tropical case.
In the second section we will give some basic definitions and results of Toric
Varieties which can be found in ”Introduction to Toric Varieties” by W. Ful-
ton [Ful93].

1.1 The Classical Moduli Space M0,n

The classical M0,n is the moduli space of n-pointed stable curves of genus 0.
Moduli spaces are parameter spaces for families of algebraic objects (in this
case curves).
Let M0,n be the contravariant functor which sends a scheme S to the collec-
tion of n-pointed stable curves of genus 0 over S modulo isomorphisms. Let
us first of all give a definition of an n-pointed stable curve of genus 0.
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Definition 1.1. Let k be an algebraically closed field. Let S be a scheme
and assume that all schemes are defined over k, in particular S. We say

that a flat proper morphism C
Π
→ S with n distinct sections s1, s2, ..., sn is an

n − pointed stable curve of genus 0 if the following conditions hold:

1. The geometric fibres Cs of Π are reduced connected curves, with at
worst ordinary double points, each irreducible component isomorphic
to P1.

2. With Pi = si(s), Pi 6= Pj for i 6= j.

3. Pi is a smooth point of Cs.

4. For each irreducible component of Cs, the number of singular points of
Cs which lie on it plus the number of Pi on it is at least three.

5. dim H1(Cs,OCs) = 0.

Example 1.2.
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5

Figure 1.1: A 6-pointed stable curve of genus zero (over Spec k).

The three long lines illustrate the irreducible components of the curve and
the six labeled dashes denote the marked points.

Before describing the main idea of S. Keel we have to define two maps:
contraction and stabilization.

Definition 1.3. Let C
π
→ S be an (n + 1)-pointed curve with sections

s1, s2, ..., sn+1. A contraction of C
π
→ S is an (n)-pointed curve C′ π

→ S
with sections s′1, s

′
2, ..., s

′
n provided there is a commutative diagram

C
c

//

π

��

C′

π′

��

S S

satisfying
(1) c ◦ si = s′i for i ≤ n.
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(2) Let cs be the induced morphism on a geometric fiber Cs and P = sn+1(s).
Denote the irreducible component containing P by E. If the number of
sections si(s) other than P, plus the number of other components which E
meets, is at least three, then cs is an isomorphism. Otherwise, cs restricted
to Cs\E is an isomorphism and cs(E) is a point.

Example 1.4.
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Figure 1.2: Contraction of two different 4-pointed curve (over Spec k).

Definition 1.5. Let C
π
→ S with s1, s2, ..., sn be an n-pointed curve with

an additional section s. There exists a unique (up to isomorphism) (n + 1)-

pointed curve Cs π′

→ S with sections s′1, s
′
2, ..., s

′
n+1 such that C is the con-

traction of Cs along s′n+1 and s′n+1 is sent to s (demonstrated by F. Knudsen

[Knu83]). This (n+1)-pointed curve will be called the stabilization of C
π
→ S

with section s1, s2, ..., sn and additional section s.

F. Knudsen demonstrates [Knu83], that M0,n is represented by a smooth

complete variety Xn together with a universal curve Un
π
→ Xn, and universal

sections σ1, σ2, ..., σn.
The idea is recursive construction. We take Un

π
→ Xn with sections σ1,σ2,...,σn,

representing M0,n. Now we want to construct the universal (n + 1)-pointed
curve over the n-pointed universal curve with additional section. We get,
that Un ×Xn Un → Un with the pulled back sections σ1, ..., σn and the ad-
ditional section ∆ (the diagonal map) is the universal n-pointed curve with
an additional section. Its stabilization (Un ×Xn Un)s → Un is the universal
(n + 1)-pointed curve. In particular, Xn+1 = Un, and Un+1 is a blowup of
Xn+1 ×Xn Xn+1.
In order to present this blow-up description S. Keel introduces various ”vital”
divisors on Xn. Let S be a subset of {1, 2, ..., n} and denote by Sc :=
{1, 2, ..., n}\S its complement. For each subset T ⊂ {1, 2, ..., n} with |T | ≥ 2
and |T c| ≥ 2 he lets DT →֒ Xn be the divisor whose generic element is a curve
with two components. The points of T lie on one branch and the points of
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T c on the other.

2

i i+1

n−1
1 n

Figure 1.3: A generic curve with T = {1, ..., i} on one branch.

In addition he defines a map Π1,2,3,n+1 : Xn+1 → X4 which is obtained by
composing contractions, in such a way that every section but the first, second,
third, and (n+1)st is contracted. Let B1 = Xn×X4 and π1 : Xn+1 → Xn×X4

induced by π and Π1,2,3,n+1. The universal sections σ1, σ2, ..., σn of π induce
sections

σ1
1 = Π1 ◦ σ1, ..., σn

1 = Π1 ◦ σn

of B1 (Π1 denotes the first projection). Now he embeds DT →֒ B1 as σi
1

(
DT
)

for all i ∈ T and let B2 be the blowup of B1 along the union of DT with
|T c| = 2. Inductively he defines

Bk → Bk−1 → ... → B1

by letting Bk+1 be the blowup of Bk along the union of the strict transforms
of the DT →֒ B1, under Bk → B1, for which |T c| = k + 1. His key result is

that Xn+1
p
→ B1 is isomorphic to Bn−2 → B1. With this Xn+1 is a blow-up

of Xn × X4 = Xn × P1. Thus the Chow ring can be calculated from Xn.

With this S. Keel could prove some statements. Among these are the
following, which are the motivation for this work. By A∗(Xn) we denote the
Chow ring, which gives some structure to the set of divisors. DSDT denote
the intersection product of DS and DT which we obtain by taking the class
of DS ∩ DT if we associate certain multiplicities.

Theorem 1.6. ( about the Chow ring )

• The Chow groups Ak (Xn) are free abelian groups and the divisor group
has the rank

rk (n) = 2n−1 −

(
n

2

)

− 1

•

A∗ (Xn) =
Z
[
DS|S ⊂ {1, 2, ..., n} and |S| , |Sc| ≥ 2

]

the following relations
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1. DS = DSc
.

2. For any four distinct elements i, j, k, l ∈ {1, 2, ... , n} :

∑

i,j∈S
k,l/∈S

DS =
∑

i,k∈S
j,l/∈S

DS =
∑

i,l∈S
j,k/∈S

DS.

3. DSDT = 0 unless one of the following holds:

S ⊂ T, T ⊂ S, S ⊂ T c, T c ⊂ S.

Proof. Can be found in [Kee92], Theorem 1.

1.2 Toric Geometry

Next let us have a look at some results of toric geometry. It will be seen
later that there is a deep connection between the divisors of the toric variety
given by the fan M0,n,trop (see chapter 2 for the definition) and the divisors of
M0,n. Because of this we can use a result about the divisors of a toric variety
which helps us to prove a connection between Div(M0,n) and Div(M0,n,trop).
Throughout this paper, for a given space X, we denote by Div(X) the group
of divisor classes.

The idea of toric geometry is to associate a variety to a given fan. So let
us define a fan and show, how to associate a variety.

Definition 1.7. Let N be a lattice isomorphic to Zn. A fan ∆ in N is a
set of rational strongly convex polyhedral cones σ in NR such that

(1) Each face of a cone in ∆ is also a cone in ∆;

(2) The intersection of two cones in ∆ is a face of each.

For a more precise definition see Chapter 2.

We define the affine toric variety Uσ for a cone σ in the following way. Let
Sσ = σ∨ ∩ Hom(N, Z), Uσ = Spec (C [Sσ]). From a fan ∆ the toric variety
X(∆) is constructed by taking the affine toric varieties Uσ, one for each σ in
∆, and gluing as follows: for cones σ and τ , the intersection σ ∩ τ is a face
of each. Now glue Uσ and Uτ along this face.
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Let τ1, ..., τd be the edges of the fan, and let vi be the first lattice point met
along τi. It is known that these edges correspond to divisors

Di ↔ τi.

For more details see [Ful93], section 1.4 and 3.3.
Further the Weil divisors of this toric variety are the sums

∑
aiDi for integers

ai.

Next we recall the relations between divisors of a nonsingular projective
toric variety. But before this we will give a characterization of a nonsingular
variety.

Proposition 1.8. An affine toric variety Uσ is nonsingular if and only if σ
is generated by part of a basis for the lattice N , in which case

Uσ
∼= Ck × (C∗)n−k, k = dim(σ).

Proof. A proof can be found in [Ful93], chapter 2.

Therefore we will call a cone nonsingular if it’s generated by part of a
lattice basis, and a fan nonsingular if all its cones are nonsingular.
Let M = Hom(N, Z) denote the dual lattice. The main result of toric
varieties for us will be the following proposition:

Proposition 1.9. For a nonsingular simplicial toric variety X, A∗X =
H∗X = Z [D1, ..., Dd] /I, where I is the ideal generated by all

(i) Di1 · ... · Dik for vi1 , ..., vik not in a cone of ∆;

(ii)
d∑

i=1

< u, vi > Di for u in M.

Proof. A proof is given in [Ful93], chapter 5.

Now we have the necessary results about the divisors in the M0,n as well as
for toric varieties. They are useful for the tropical case and will be mentioned
if necessary.



Chapter 2

Tropical M0,n

In this chapter we will give some facts of tropical geometry and the tropical
M0,n which can be found in [GKM] and [AGR07].
In the first part we will define M0,n,trop (the tropical counterpart to M0,n)
and prove some properties of it. In the second part we will have a closer
look at divisors in tropical geometry, which we consider in chapter 3 for the
M0,n,trop.
So let us start with the moduli space, which also can be found in [GKM].

2.1 Fans and M0,n,trop

In the previous chapter we have given a definition of fans which we now will
make more precise in connection with the tropical fan.
In this chapter we will denote a finitely generated free abelian group by Λ
and the corresponding real vector space by V := Λ⊗Z R. So we can consider
Λ to be a lattice in V . The dual lattice with corresponding vector space will
be denoted by Λ∨ ⊂ V ∨.

Definition 2.1. (cone) A cone is a subset σ of V given by a finite number
of linear integral equalities and finitely many non-strict inequalities. I.e. a
set of the form

σ = {x ∈ V ; fi (x) = 0 ∀i = 1, ..., n and gj (x) ≥ 0 ∀j = 1, ...,m}

for some f1, ...fn, g1, ...gm ∈ Λ∨ ⊂ V ∨. By Vσ ⊂ V we denote the sub-vector

7
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space of V corresponding to σ and by Λσ := Vσ∩Λ its lattice. The dimension
of σ is defined by dim σ := dim Vσ.

Definition 2.2. A face of σ is defined to be a cone τ ⊂ σ which can be
received from σ by changing some of the inequalities to equalities.
A cone generated by only one vector is called an edge and it is called
simplicial if it can be generated by dim σ vectors.

Definition 2.3. (fan) A fan X in V is a set of cones σ in V such that

(1) Each face of a cone in X is also a cone in X;

(2) The intersection of two cones in X is a face of each.

Example 2.4.

������
������
������
������
������

������
������
������
������
������

ν

σ
τ2

τ1

τ3

Figure 2.1: A fan with 5 cones of dimension 0, 1 and 2.

We will denote the cones of dimension k by X(k) and the maximal di-
mension is defined to be the dimension of the fan. If each inclusion-maximal
cone is of the same dimension, we call the fan pure-dimensional. A fan is
called simplicial if this holds for each cone. The set-theoretical union of all
cones is denoted by |X|.
If X is a pure-dimensional fan of dimension k we will call the cones σ ∈ X(k)

facets of X.

Definition 2.5. (subfan) Let X be a fan in V . A subfan Y of X is a fan
of V with the property that each cone of Y is contained in a cone of X. In
this case we define a map CY,X : Y → X that sends each cone τ ∈ Y to the
inclusion-minimal cone σ of X with τ ⊂ σ.

After having given the definitions of a fan we will define a tropical fan,
which should (as for tropical varieties) fulfill some balancing condition. To
define a balancing condition we will use so called ”normal” vectors.
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Definition 2.6. (normal vector) If τ < σ (:=τ subcone of σ) are cones in V
with dim τ = dim σ − 1, then there is a non-negative, non-zero linear form
g ∈ Λ∨ on σ, which is zero on τ . Then g induces a non-negative and not
identically zero isomorphism Vσ/Vτ

∼= R. There exists a unique generator
uσ/τ ∈ Λσ/Λτ , lying in the same half-space as σ and we call it the primitive
normal vector of σ relative to τ .

Definition 2.7. (weighted and tropical fans) A weighted fan (X,ωX) in V
is a pure-dimensional fan X of dimension n with a map ωX : X(n) → Z. The
numbers ωX (σ) are called the weights of the cones σ ∈ X(n). By abuse of
notation we also write ω for the map and X for the weighted fan.
A tropical fan in V is a weighted fan (X,ωX) fulfilling the balancing condi-
tion ∑

σ>τ

ωX (σ) · uσ/τ = 0 ∈ V/Vτ

∀τ ∈ X(dim X−1) (uσ/τ denotes the primitive normal vector defined in 2.6).

Definition 2.8. (Irreducible fans) Let X be a tropical fan in V . We say
that X is irreducible if there is no tropical fan Y of the same dimension in
V with |V | ( |X|.

Definition 2.9. (Morphism of fans). Let X be a fan in V = Λ⊗ R, and let
Y be a fan in V ′ = Λ ⊗ R. A morphism f : X → Y is simply a Z-linear
map, i.e. a map from |X| ⊂ V to |Y | ⊂ V ′ induced by a linear map from Λ
to Λ′. A morphism of weighted fans is a morphism of fans.

Now we can come to the definition of the M0,n,trop, which is our object
of interest in the following chapter. For this we have to define an abstract
tropical curve.

Definition 2.10. (abstract tropical curve). An abstract tropical curve is a
connected rational graph Γ. The vertices of this graph have valence at least
3 and the bounded edges are equipped with a positive length. If x1, ..., xn

are distinct unbounded edges of an abstract tropical curve Γ we define an n-
marked abstract tropical curve to be the tuple (Γ, x1, ..., xn). A more detailed
definition is given in [GM].

With this we can define the moduli space of abstract tropical curves.

Definition 2.11. (M0,n,trop). We define M0,n,trop to be the space of all n-
marked abstract tropical curves (modulo isomorphism) with exactly n leaves.
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To embed this space (as a tropical fan) in an Rm we need a linear map
Φn which can be found in [SS04] for better understanding.

Definition 2.12. Let Φn : Rn → R(n
2) be the linear map which sends a

vector (a1, ..., an) to the vector (bij) with bij = ai + aj, 1 ≤ i < j ≤ n and

denote by sn the map sn : R(n
2) → R(n

2)/Im (Φn).

With this maps it is possible by [SS04] to embed the M0,n,trop as a sim-

plicial tropical fan into the vector space R(n
2)/Im (Φn) in the following way:

Definition 2.13. (Tropical M0,n,trop embedded). Let

φn : M0,n,trop −→ R(n
2)

(Γ, x1, ..., xn) 7−→ (distΓ (xi, xj))(i,j)

where distΓ (xi, xj) denotes the distance between the unbounded edges (or
leaves) xi and xj. It is the length of the unique path from xi to xj (The map
sn(φn) is denoted by ϕn in [GKM]).

Example 2.14. The maximal cones correspond to the marked tropical curves
with only 3-valent vertices. For n=5 we have for example the following curve
Γ:

b

1

2

3

5

4

a

which will be mapped on the vector


















0
a

a + b
a + b

a
a + b
a + b

b
b
0



















= distΓ(1, 2)
= distΓ(1, 3)
= distΓ(1, 4)
= distΓ(1, 5)
= distΓ(2, 3)
= distΓ(2, 4)
= distΓ(2, 5)
= distΓ(3, 4)
= distΓ(3, 5)
= distΓ(4, 5)
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for arbitrary n:
Codim-0 faces correspond to marked tropical curves with only 3-valent ver-
tices. Codim-1 faces correspond to curves with one 4-valent vertex and 3-
valent vertices else. Codim-2 faces correspond to curves with one 5-valent
vertex or two 4-valent vertices and 3-valent vertices else.

From this definitions A. Gathmann, M. Kerber and H. Markwig demon-
strate the following theorem. The proof can be found in [GKM].

Theorem 2.15. The space sn (φn (M0,n,trop)) is a tropical fan of dimension
n − 3.

We will sketch the main idea of the proof, because the idea is helpful for
a following proof.

We have to prove the balancing condition for each codimension one cell
τ . Let C be a curve in the interior of τ . Because of the fact that C has
dimension n-4 it follows, that C has exactly n − 4 bounded edges. This
means that there exists exactly one 4-valent vertex v and all other vertices
have valence 3. If C1, C2, C2 are the 3 curves obtained from C via resolving
the 4-valent vertex (v) by inserting an edge E of length 1 we can associate
the corresponding cones σ1, σ2, σ3 ∈ sn (φn (M0,n,trop))

n−3.
Example for this resolution:

C3

1

2 4

3

1

2

3

4

1

3

2

4

1

4

2

3

C

C1 C2

Figure 2.2: Resolution of C to C1, C2, or C3.

If we define C̃ to be the curve obtained form C by shrinking all bounded
edges not containing v to 0 and C̃k, k = 1, 2, 3 to be the curve obtained from

Ck by shrinking all edges expect E to length 0 then vσk/τ = φn

(

C̃k

)

for

k = 1, 2, 3. One can show that

3∑

k=1

vσk/τ = φn

(

C̃
)

+ Φn (a) ∈ Vτ ⊕ Im (Φn) ,
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where a ∈ Rn has entry one at position i, if leaf i is adjacent to v and value
zero else.

Theorem 2.16. The space X=sn(Φn(M0,n,trop)) is an irreducible fan.

Proof. We have to show that there does not exist a subfan of the same
dimension. So let us suppose Π is a tropical fan of same dimension as X with
|Π| ( |X|.
Let σ be an n−3 dimensional subset of a cone σ̃ of X which itself is a cone. Π
is a tropical fan, thus σ fulfills the balancing condition at each of its borders
τ . Unless τ is a codim 1 face of X, σ̃ is the only facet adjacent to τ . Because
of the balancing condition it follows that σ̃ ⊂ |Π|. So we can assume that
the n − 3 dimensional cones of Π are also cones of X. Further we know that
all the codim-1 faces τ of X have exactly 3 facets containing τ . The unique
4-valent vertex has three possible resolutions (see proof of theorem 2.15). So
we can split our problem in 2 parts:

(1) Π has no codim-1 face with less than 3 associated facets.

(2) if ∃σ ∈ X, σ a codim-1 face of X but not of Π then Π is empty.

(1) Suppose there is a codim-1 face τ with only two associated facets in Π
fulfilling the balancing condition. We are looking at vσ1/τ , vσ2/τ , vσ3/τ which
have to fulfill the balancing condition. This means vσ1/τ + vσ2/τ + vσ3/τ =
0 mod τ . By the proof of the theorem stated before the vσi/τ correspond to
vectors, which we get by resolving the four-valent vertex of τ . So we can
restrict ourselves to regard at the 4-valent vertex, which by the following is
the same as for the case n = 4.

If we denote the four parts of the 4-valent knot by A,B,C and D we have
three possible edges to resolve the knot. To fulfill the balancing condition
we have to look at these edges, which correspond to the normal vectors. For
each of them we have all the marked edges of A (resp. B,C,D) on one side.
Thus, all the marked edges of A (resp. B,C,D) have the same distance to
an arbitrary marked edge for all normal vectors. So we can restrict ourselves
to the case |A| = |B| = |C| = |D| = 1, which means we have to consider
only the case n = 4.

Two edges e1, e2 are able to fulfill the balancing condition only if there
exist integral vectors v1 ∈ e1, v2 ∈ e2 s.t. v1 + v2 ∈ Im(Φn), because τ = 0
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for n = 4( the weighted vectors have to fulfill the balancing condition which
is given by the edge vectors times a weight). The two vectors are given by

v1 =











a
0
a
a
0
a











and v2 =











0
b
b
b
b
0











.

(The entries represent the distance of two marked edges: e1 = d(1, 2), e2 =
d(1, 3), e3 = d(1, 4), e4 = d(2, 3), e5 = d(2, 4), e6 = d(3, 4). Because of
symmetry it suffices to treat only these two vectors.)
Im(Φ4) is equal to < d1, d2, d3, d4 > with

d1 =











1
1
1
0
0
0











, d2 =











1
0
0
1
1
0











, d3 =











0
1
0
1
0
1











, d4 =











0
0
1
0
1
1











.

If v1 and v2 fulfill the balancing condition it follows that:
v1 + v2 = a1d1 + a2d2 + a3d3 + a4d4 with a1, ..., a4 ∈ Q. Thus a1 + a2 =
a; a1 + a3 = b; a1 + a4 = a + b; a2 + a3 = a + b; a2 + a4 = b; a3 + a4 = a.
Hence it follows that a1 = a − a2. So we get a3 = b − a + a2. With this
a2 + b − a + a2 = a + b and thus a2 = a. We can conclude that a1 = 0
and from this that a4 = a + b. Hence a2 + a4 = a + a + b = b which means
that a = 0. Analogously b = 0. In total we get that there do not exist a, b
∈ Q\{0} : v1 + v2 ∈ Im(Φ4).
Thus each codim-1 face must have three adjacent maximal faces to fulfill the
balancing condition.

(2) Let σ be a maximal face which does not lie in the reduced fan Π and
let τ be a codim 1 face lying in σ. To resolve the 4-valent vertex of τ we
have three possibilities: σ and two other, which we denote by σ1, σ2. By part
(1) we know that σ1, σ2 can not fulfill the balancing condition on their own.
Hence, σ1, σ2 do not lie in Π either. By doing this successively we can show
that no maximal face can be in Π. We will see that it is possible to reach
every facet σ̃ from any other facet σ by considering certain codim-1 faces τ
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of σ and resolving the 4-valent vertex in another way.
By contracting successively edges like the edge e of

e1

2

n-1

n

and resolve it to edges like the edge f

f

2

n-1

n

1

it suffices to consider facets of the form

g

2

n-1

n

1 4

3 n-3

n-2

(i.e the bounded edges are in a chain). But by contraction of g and resolving
to h

3

2

n-1

n

1

n-3

n-2
h

4

we can show that each two neighboring marked edges can be changed. Thus,
each facet can be constructed by each other with the help of contractions
and resolutions.
So we conclude that X is irreducible.

Now we will define divisors of tropical geometry and take our definitions
and results from [AGR07].

2.2 Divisors

Let (X,ωX) be a tropical fan of dimension k in V . Then we define X∗ to be
the fan

X∗ := {τ ∈ X|τ ≤ σ for some facet σ ∈ X with ωX (σ) 6= 0}.
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Definition 2.17. (Refinements). Let (X,ωX) and (Y, ωY ) be weighted fans
in V . We call (Y, ωY ) a refinement of (X,ωX) if the following holds:

(a) Y ∗ ⊆ X∗,

(b) |Y ∗| = |X∗| and

(c) ωY (σ) = ωX (CY ∗,X∗ (σ)) for every σ ∈ (Y ∗)(dim(Y )).

With this definition we can define an equivalence relation ”∼” in the
following way. If (X,ωX) and (Y, ωY ) are weighted fans in V we call them
equivalent if they have a common refinement. See [AGR07] for the proof.
We call a fan (X,ωX) reduced if |X| = |X∗|.

Having done this preparation we can define our first objects which are
necessary to define tropical divisors.

Definition 2.18. (Affine cycles and affine tropical varieties) Let (X,ωX) be
a tropical fan of dimension k. We denote by [(X,ωX)] its equivalence class
under ”∼” and define

Zk (V ) := {[(X,ωX)] | (X,ωX) tropical fan of dimension k in V }.

With help of the refinements it is possible to define an addition by taking
the union of the sets and a suitable refinement. This leads to the next
lemma. For more details concerning the addition and the proof of the lemma
see [AGR07].

Lemma 2.19. Zk (V ) together with the operation ”+” mentioned above
forms an abelian group.

Proof. Can be found in [AGR07].

Next we want to define Weil divisors and rational functions which are
necessary for our aim, to prove the relations of the divisors in the M0,n,trop.

Definition 2.20. (Weil divisor) Let X be a fan in V . An affine k-cycle in X
is an element [(Y, ωY )] of Zk (V ) fulfilling |Y ∗| ⊆ |X|. We write Zk (X) for
the set of k-cycles in X and call the elements of Zdim X−1 (X) Weil divisor.
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Definition 2.21. (Rational function) Let C be an affine k-cycle. A (non-
zero) rational function on C is a continuous piecewise linear function φ :
|C| → R with the following property: Let (X,wX) be a representative of C.
For each cone σ of X we have that φ|σ = λ + c, λ ∈ Λ∨

σ , c ∈ R is an integer
affine linear function. We define φσ to be λ.
We denote the set of (non-zero) rational functions by K∗ (C).

To these rational functions we can associate a Weil divisor in the following
way:

Definition 2.22. (Associated Weil divisors) Let C be an affine k-cycle
in V = Λ ⊗ R and φ ∈ K∗ (C) a rational function on C. If (X,ω) is
a representative of C with φ affine linear on the cones of X we define
div(φ) := φ · C :=

[(
∪k−1

i=0 X(i), ωφ

)]
, where

ωφ : X(k−1) → Z,

τ 7→
∑

σ∈X(k)

τ<σ

φσ(w(σ)vσ/τ ) − φτ







∑

σ∈X(k)

τ<σ

w(σ)vσ/τ







.

The vσ/τ are arbitrary representatives of the normal vectors uσ/τ .

Let (X,ω) be a representative of C on whose faces φ is affine linear.
The idea of this definition is to consider the affine k-cycle C̃ in V × R with
cones σ̃ := {(x, φσ(x))|x ∈ σ} for each cone σ ∈ X and ω̃(σ̃) := ω(σ).
To make this into a fan, fulfilling the balancing condition, we have to add
cones ϑ := τ̃ + ({0} × R≤0) with weight ω̃(ϑ) =

∑

σ∈X(k):τ<σ φσ(w(σ)vσ/τ ) −
φτ

(∑

σ∈X(k):τ<σ w(σ)vσ/τ

)
for each face τ̃ of dimension k − 1.

We call C̃ an expansion of C and C a contraction of C̃. The expansion of
X along h is a tropical fan denoted by (ΓX,h, ωGammaX,h

).
ωΓX,h

(σ̃) := ωX(σ) for all σ ∈ X,

ωΓX,h
(σ̃ + {0V } × R≤0) := ωh(σ) for all σ ∈ X(m−1).

(see [All07], definition 1.1).
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contraction

φ = 0 φ = x

expansion

ϑ

σ

σ̃

Figure 2.3: Expansion (resp. contraction) of C (resp. C̃).

Having defined the necessary objects we like to have some properties like
commutativity or that the balancing condition holds. So let us state the
following proposition:

Proposition 2.23. (Balancing Condition and Commutativity)

(a) Let C be an affine k-cycle in V = Λ ⊗ R and φ ∈ K∗(C) a rational
function on C. Then div(φ)=φ ·C is an equivalence class of cycles, i.e.
its representatives are balanced.

(b) Let ϕ ∈ K∗(C) be another rational function on C. Then it holds ϕ · (φ ·
C) = φ · (ϕ · C).

Proof. Can be found in [AGR07].

Now we have mentioned all necessary, known objects and have stated
some helpful tools. Thus, we can come to the main part and prove the
connection between the divisors of M0,n and M0,n,trop.
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Chapter 3

Divisors on the tropical M0,n

In this chapter we will define ”vital” divisors for the sn(Φn(M0,n,trop)). We
will see that they fulfill the same relations as their corresponding vital divisors
of classical algebraic geometry.
For this let us change the definition of divisors given in the previous chapter
slightly and define it in the following way:

3.1 Preliminaries

Definition 3.1. Let Y be a tropical fan. A divisor D of Y is a pure-
dimensional weighted subfan of codim-1 in Y with weights in Z, fulfilling the
balancing condition, such that all the faces of D are also faces of Y .

Remark 3.2. We have changed the definition of divisors, so we have to
change the definition of rational functions ϕ on Y as well. For this we
have to require, that ϕ is linear on the cones of Y . Thus the associated Weil
Divisor consists of faces of Y like the divisors just defined.
If a divisor D̃ differs from D only by faces with weight 0, we identify both
with each other.

Because we have to define rational functions and will do this by defining
the values on the dimension 1 faces we will introduce some notations for
dimension 1 faces. Dimension 1 faces are given by the image of sn(Φn) of
an abstract tropical curve with only one bounded edge e. Thus we have a

19
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correspondence between dimension 1 faces (or cones) and edges of the moduli
space. So we can introduce notations for this edges instead of dimension 1
faces.

Example 3.3.

3

2

3

4

1

1

3

2

4

1

4

2

Figure 3.1: The tropical M0,4 and the edges corresponding to its cones.

Definition 3.4. Let e be a bounded edge of an arbitrary curve C of M0,n,trop

with the marked edges S on one side and T := {1, ..., n}\S on the other
side. We denote the edge e by 〈S; T 〉. If v is a one-dimensional sub-cone
of a cone σ or a non-zero vector of a one-dimensional cone we define ev to
be the bounded edge corresponding to the cone in the curve (sn(Φn))−1(σ).
If |σ| = 1 we identify the whole curve with v as well. Let e be a bounded
edge. To simplify notation we will denote the set of marked edges lying on
the same side as 1 also by e. We denote by v(e) the integral vector of the
cone in the moduli space corresponding to the edge e.

Definition 3.5. Let S ⊂ {1, ..., n}. Then we define ϕS to be the rational
function defined by

ϕS : v(〈I; Ic〉) 7→

{
1 , if I = S or Ic = S
0 , otherwise.

By linearity the function is defined by this. In the following we will denote
the integral vector as well as the edge by 〈I; Ic〉. From the context it will be
clear wether we are talking about edges or the corresponding vector.
To facilitate the notation in the following proof we will set ϕS(〈I; Ic〉) = 0
if |I| = 1 or |Ic| = 1. Normally this case is not necessary, because there do
not exist edges with only one marked edge on one side. But with this we
can avoid tedious distinctions of cases by summing up zeros. We will call
the divisors induced by this function DS and the set of these divisors vital
divisors, motivated by classical geometry.
By Div(M0,n)→ Div(M0,n,trop) we denote the map induced by the vital divi-
sors.
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Remark 3.6. In the same way as in the codim-1 case, we have a corre-
spondence between the r-fold intersection of vital divisors and r-dimensional
cones.
We will see, that the divisors of sn(Φn(M0,n,trop)) are given by vital divisors.
Thus an r-fold cut of divisors is given by the sum of cuts of vital divisors. But
the cut of vital divisors DT , DS is unequal zero, only if one of the following
condition holds: S ⊂ T, T ⊂ S, S ⊂ T c, T c ⊂ S (We will prove this
later on). Or in other words, if there exist a cone with the edges eT and eS.
If r > 2 we can construct a cone of dimension r in the same way (see example
3.2). Thus the r dimensional cone represents a cut of the corresponding r
vital divisors.

Our next aim is to show that the divisors induced by the ϕS fulfill the
same relations as their classical, corresponding divisors.
The relations are:

1. DS = DSc
.

2. For any four distinct elements i, j, k, l ∈ {1, 2, ... , n} :

∑

i,j∈S
k,l/∈S

DS =
∑

i,k∈S
j,l/∈S

DS =
∑

i,l∈S
j,k/∈S

DS.

3. DSDT = 0 unless one of the following holds:

S ⊂ T, T ⊂ S, S ⊂ T c, T c ⊂ S.

Theorem 3.7. Those relations hold also in tropical geometry.

Proof. 1. This is clear by definition. A vital divisor given by a rational
function defined by a set S is the same for Sc.

2. Now we first want to have a closer look at the divisors in the moduli fan
X. For this, we want to know the weights of the codim-1 faces of the
vital divisors. As mentioned, these codim-1 faces have exactly one 4-
valent vertex and the others are 3-valent. Thus, these faces correspond
to

B

A C

D
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where A,B,C,D are parts of the graph, containing only 3-valent knots.
This face we will call DFA,B,C,D. Throughout this proof A,B,C,D will
denote the four parts of a codim-1 face τ (DF=divisor facet). A,B,C,D
will signify the parts of the graph as well as the set of the marked ends
contained in this part of the graph. We will show that

wϕS
: X(n−4) → Z,

τ 7→
∑

σ∈X(n−3)

τ<σ

(ϕS)σ(w(σ)
︸ ︷︷ ︸

=1

vσ/τ ) − (ϕS)τ







∑

σ∈X(n−3)

τ<σ

w(σ)
︸ ︷︷ ︸

=1

vσ/τ







= ϕS(v(〈A ∪ B; C ∪ D〉)) + ϕS(v(〈A ∪ C; B ∪ D〉))

+ϕS(v(〈A ∪ D; B ∪ C〉)) − ϕS(v(〈A; B ∪ C ∪ D〉))

−ϕS(v(〈B; A ∪ C ∪ D〉)) − ϕS(v(〈C; A ∪ B ∪ D〉))

−ϕS(v(〈D; A ∪ B ∪ C〉))

=







1 , if S = A ∪ B , A ∪ C , A ∪ D , B ∪ C,
B ∪ D , or C ∪ D

−1 , if S = A,B,C or D or if Sc = A,B,C or D (⋆)
0 , otherwise.

The first three summands of the first equation are given by the three
possibilities of a facet associated to the face τ . By the proof of theorem
2.15 (there mentioned by C1, C2, C3) the normal vectors vσ/τ are given
by resolving the knot. For example 〈A ∪ B; C ∪ D〉 denotes the edge
with A and B on one side of the edge and C,D on the other. This edges
are exactly the given ones. Further we have the weight one for each of
the facets, thus we get the stated summands.
The other four summands are given analogously to the proof of theorem
2.15 and correspond to the curve C̃.

∑

σ∈X(n−3)

τ<σ

w(σ)vσ/τ ≃

3∑

k=1

vσk/τ = φn

(

C̃
)

+ Φn (a) .

C̃ contains the four edges adjacent to the 4-valent knot. By linearity
we can split it into the stated sum. (Here we need that ϕS(〈I; Ic〉) = 0
if |I| = 1 or |Ic| = 1, because only the bounded edges are considered.
Thus we have to distinguish wether there exist an edge with A, B, C
or D on one side. By setting ϕS(〈I; Ic〉) = 0 for |I| = 1 resp. |Ic| = 1
this doesn’t matter.)
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With this preparatory work we can look at the equality

∑

i,j∈S
k,l/∈S

DS =
∑

i,k∈S
j,l/∈S

DS =
∑

i,l∈S
j,k/∈S

DS

of the vital divisors. To show the equalities, we have to show that the
equalities hold for each (n-4)-dimensional face DFA,B,C,D of a divisor.
Up to symmetry we have 5 different cases:

(a) i ∈ A , j ∈ B , k ∈ C , l ∈ D

(b) i, j ∈ A, k ∈ C , l ∈ D

(c) i, j ∈ A, k, l ∈ C

(d) i, j, k ∈ A, l ∈ C

(e) i, j, k, l ∈ A

So let us prove them by showing that each of the sums have the same
value.

(a) Claim:

∑

i,j∈S
k,l/∈S

wϕS
(DFA,B,C,D) =

∑

i,k∈S
j,l/∈S

wϕS
(DFA,B,C,D) =

∑

i,l∈S
j,k/∈S

wϕS
(DFA,B,C,D) = 1

Proof: The codim-1 face looks like:
C ∋ k

D ∋ l

i ∈ A

j ∈ B
Thus, in the first sum we have only a weight to be summed if
S = A ∪ B, in the second if S = A ∪ C and in the third if
S = A ∪ D. So we get a 1 for each sum. This follows by the
representation of wϕS

for a vital divisor DS which is stated above
(⋆). wϕS

(τ) = 1, if S = A∪B,... or 0 otherwise. Thus a summand
in the first sum will only be unequal to 0 if S = A ∪ B.
Analogously we can prove the following equations:

(b)
∑

i,j∈S
k,l/∈S

wϕS
(DFA,B,C,D) = 1 − 1 = 0
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∑

i,k∈S
j,l/∈S

wϕS
(DFA,B,C,D) =

∑

i,l∈S
j,k/∈S

wϕS
(DFA,B,C,D) = 0

(c)
∑

i,j∈S
k,l/∈S

wϕS
(DFA,B,C,D) = 2 − 2 = 0

∑

i,k∈S
j,l/∈S

wϕS
(DFA,B,C,D) =

∑

i,l∈S
j,k/∈S

wϕS
(DFA,B,C,D) = 0

(d)

∑

i,j∈S
k,l/∈S

wϕS
(DFA,B,C,D) =

∑

i,k∈S
j,l/∈S

wϕS
(DFA,B,C,D) =

∑

i,l∈S
j,k/∈S

wϕS
(DFA,B,C,D) = 0

(e)

∑

i,j∈S
k,l/∈S

wϕS
(DFA,B,C,D) =

∑

i,k∈S
j,l/∈S

wϕS
(DFA,B,C,D) =

∑

i,l∈S
j,k/∈S

wϕS
(DFA,B,C,D) = 0

So we have shown the equality of the sums for each n − 3 dimensional
face. Thus we get that the equality holds for the divisors, which are
defined by the weights on their maximal faces.
So we can come to part three of the proof, which is the last part.

3. Let S, T ⊂ {1, ... , n} with 2 ≤ |S| , |T | ≤ n − 2, DSDT = ϕT · E with
E = DS · X. Given with the weight function this means

wE(DFA,B,C,D) =







1 , if S = A
⋃

B , A
⋃

C , A
⋃

D , B
⋃

C,
B
⋃

D , or C
⋃

D
−1 , if S = A,B,C or D or if Sc = A,B,C or D
0 , otherwise.

Let k=dim(E)=n − 4:

wϕT
: E(k−1) → Z,

τ 7→
∑

σ∈E(k)

τ<σ

ϕTσ(wE(σ)vσ/τ ) − ϕTτ







∑

σ∈E(k)

τ<σ

wE(σ)vσ/τ







.
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We have to prove, that wϕT
(τ) = 0, ∀τ ∈ E(k−1). We will do this by

demonstrating that each of the summands is zero. To get wφT
(τ) 6= 0

at least one of the summands above has to be unequal 0. For the
first summand this could only happen if wE(σ) 6= 0 (this only means
that σ is indeed a face of E). But vσ/τ is the vector of a codim-
1 face of σ, such that S or Sc is contained in one side of the edge
evσ/τ

if wE(σ) 6= 0. By part two of this proof ϕT (〈R; Rc〉) 6= 0 only
if R = T or R = T c. So we get that ϕTσ(w(σ)vσ/τ ) = 0, if neither
S ⊂ T, T ⊂ S, S ⊂ T c nor T c ⊂ S.
∀ codim-1 cones v ∈ E with wE(v) 6= 0 holds: S or Sc contained in one

side of the corresponding edge. Thus, ϕTτ

(
∑

σ∈E(k)

τ<σ

w(σ)vσ/τ

)

= 0,

unless one of the conditions hold, because of the fact, that a rational
function is defined by its values on the codim-1 cones and S or Sc is
contained in one side for each edge corresponding to such a cone.
We conclude, that DSDT = 0 unless one of the following holds: S ⊂
T, T ⊂ S, S ⊂ T c, T c ⊂ S.

3.2 Injectivity of the map Div(M0,n) −→ Div(M0,n,trop)

We want to show the one-to-one correspondence to the classical case, i.e.
there do not exist more relations between the given divisors and that all
divisors are generated by the given ones. Beginning with the first part, let
us state it as a theorem and prove it.

Theorem 3.8. There don’t exist more relations between the vital divisors
in M0,n,trop as for the vital divisors in M0,n (⇔ The map Div(M0,n) −→
Div(M0,n,trop) is injective).

Before we can prove this we will demonstrate some connections between
toric geometry and tropical geometry as well as between toric geometry and
the M0,n.

For this we will treat our tropical fan as a toric variety Ton. Let 4 ≤

n ∈ N. We choose the following base vectors of R(n
2): dr,s = ds,r : s ∈

{4, ... , n}, r ∈ {2, ... , s − 1}, d2, ... , dn with di = Φn(ei), and f , the vector
with all entries equal to one (the dr,s are unit vectors).
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To see that these vectors form a basis is straightforward induction in the
following way: The vectors {dn,r : 2 ≤ r ≤ n − 1} and dn form a basis of
〈dn,r : 1 ≤ r ≤ n − 1〉. Inductively the {dt,r, dt : 2 ≤ r ≤ t − 1, s ≤ t ≤ n}
form a basis of 〈dt,r : 1 ≤ r ≤ t − 1, s ≤ t ≤ n〉, for s ≥ 4. {dt,r : 1 ≤ r ≤

3, 4 ≤ t ≤ n} ∪ {f, d2, d3} are a basis of R(n
2), so we are done.

Because we want to use some propositions from toric geometry we like to
represent the edge vectors with a basis, which contains a basis of Im(Φn).
So we could take the basis given above. To simplify we change the basis by

substituting f by d1. It will not stay a basis of R(n
2) nevertheless the vectors

dr,s +Φ(Rn) will stay a basis of R(n
2)/Φ(Rn) and they are easier to handle. If

we represent the edge vectors e of the toric variety with this vectors we get
the following:

e =







∑

i∈S

(

di − 2 ·
∑

i<j∈S

dj,i

)

,if not cond and 1 /∈ S

d1 +
∑

i∈S\1




−di + 2 ·

∑

j∈{1,... ,n}\S
or i<j∈S

dj,i




 ,if cond and 1 ∈ S

(⋆⋆)

cond means: 2,3 are on one side of the edge and 1 on the other.
Let us consider an example and after this we will prove the representation.

Example 3.9. Let n be 5 and e be the edge with 1 and 2 on one side. In
our construction we are in the first case: 2 and 3 are on different sides of the
edge. So we get e =

∑

i∈{3,4,5}

(

di − 2 ·
∑

i<j∈{3,4,5} dj,i

)

which is

e =



















0
0
1
1
0
1
1
1
1
0



















=



















0
1
0
0
1
0
0
1
1
0



















+



















1
0
0
0
1
1
1
0
0
0



















−2



















0
0
0
0
1
0
0
0
0
0



















+



















1
1
1
1
0
0
0
0
0
0



















−2



















0
1
0
0
0
0
0
0
0
0



















−2



















1
0
0
0
0
0
0
0
0
0



















d(5, 4)
d(5, 3)
d(5, 2)
d(5, 1)
d(4, 3)
d(4, 2)
d(4, 1)
d(3, 2)
d(3, 1)
d(2, 1)

Remark 3.10. The condition 1 /∈ S, resp. 1 ∈ S is only necessary to say to
which side corresponds the S and is not a limitation.
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To see the equality is a straightforward calculation.
In the first equation di gives the marked edge i ∈ S the distance 1 to each
other marked edge. −2di,j subtracts this distance if i, j ∈ S. So we get the
edge vector.
The idea of the second equation is similar. But because of the representing
vectors we have to take -1 times the vectors di, i ∈ S distinct from d1. Thus
we receive a distance di,j of 0 for the marked edges i ∈ S \ {1} and j = 1, as
well as if i, j /∈ S. Further we get the distance di,j = −1 for i ∈ S and j ∈ Sc

and di,j = −2 for i, j ∈ S\{1}. So we have to add 2di,j to change the -1 in 1
if i ∈ S and j /∈ S. Last, we have to add 2di,j for deleting the value −2 for
i, j ∈ S\{1}.

Note 3.11. These ideas will help us to prove proposition 3.13.

Now we have all what we need for a toric variety and want to apply theo-
rem 1.9. For this, let us prove, that Ton is nonsingular by using proposition
1.8.
Let e be an edge of the toric variety. We are looking at the space R(n

2)/Im (Φn),
i.e. we can forget the di in our representation, which are lying in Im(Φn).
Thus all the basis vectors forming e have a common factor 2. Dividing out
this factor 2 gives us a new generator of e, which is also lying in the lattice,
namely:

−
∑

i∈S

(
∑

i<j∈S

dj,i

)

in the first and
∑

i∈S\{1}







∑

j∈{1,... ,n}\S
or i<j∈S

dj,i







in the second case.

We know that Ton is simplicial and pure-dimensional. Thus, each maximal
cone σ is generated by the one-dimensional faces τ ⊂ σ. So we have to show
that the vectors generating the edges given above, which correspond to the
one-dimensional faces of σ, are a part of a lattice basis. For this we have to
show that the vectors are part of a basis of 〈dr,s = ds,r : s ∈ {4, ... , n}, r ∈
{2, ... , s − 1}〉Z. These vectors can be prolonged by a basis of Im(Φ) to a

basis of R(n
2) and thus we are done.

Let us proof this by induction:
IS: n = 4: The three vectors corresponding to the edges (= 1-dimensional
faces) are:
e{2,4} = −d2,4; e{3,4} = −d3,4; e{2,3} = d3,4 + d2,4.
To see that each of them could be enlarged to a basis of U4 := 〈dr,s = ds,r :
s ∈ {4, ... , 4}, r ∈ {2, ... , s− 1}〉Z it suffices to see that {e{2,4}, e{3,4}} as well
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as {e{3,4}, e{2,3}} are a basis of U4. But U4 = 〈d2,4, d3,4〉 thus it follows directly.

IA: Each set of vectors given by the edges of a codim-0 cone in Ton−1 can
be prolonged to a basis of 〈dr,s = ds,r : s ∈ {4, ... , n−1}, r ∈ {2, ... , s−1}〉Z.

IS: To show the statement for Ton, n > 4.
For the marked edge n we have two possibilities for each maximal cone σ.
Either the edge n is adjacent to another marked edge j or not. In the first case
we can delete the marked edge n and get a cone σ̃ of Ton−1 by considering
the edge e = e{n,j} and the marked edge j to be the marked edge j in Ton−1.

j

j

n

j

In the second case we can delete one of the adjacent bounded edges e and
the edge n to get a cone σ̃ of Ton−1.

n

e
f

e

e
f f

e
f

The corresponding vectors (of the bounded edges of σ̃) can by induction be
enlarged to a basis of 〈dr,s = ds,r : s ∈ {4, ... , n − 1}, r ∈ {2, ... , s − 1}〉Z.
The entries of the vectors are the same as the entries of the vectors in Ton,
thus the sub matrix of the vectors of σ given by the vectors of the cone σ̃ by
deleting rows can be enlarged to a basis of 〈dr,s = ds,r : s ∈ {4, ... , n−1}, r ∈
{2, ... , s − 1}〉Z ⊂ 〈dr,s = ds,r : s ∈ {4, ... , n}, r ∈ {2, ... , s − 1}〉Z. Thus
it suffices to show that the vector v corresponding to the deleted edge e,
subtracted with suitable vectors corresponding to the edges of the cone σ̃,
can be enlarged to a basis of 〈dr,n, r ∈ {2, ... , n − 1}〉Z.
In the first case

v =







−dj,n ,if j 6= 1
n−1∑

r=2

dr,n ,if j = 1

is a vector lying in 〈dr,n, r ∈ {2, ... , n − 1}〉Z with entries from 0, 1, or − 1
and at least one entry different 0. Thus, v can be enlarged to a basis of
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〈dr,n, r ∈ {2, ... , n − 1}〉Z.
In the second case the edges e and f correspond to vectors eS and eS∪{n}.
So,

0 6= eS − eS∪{n} =







∑

j∈S

dj,n ,if 1 /∈ S.

n−1∑

r=2

dr,n ,if 1 ∈ S
∈ 〈dr,n, r ∈ {2, ... , n − 1}〉Z

with entries 0, 1, or − 1. Thus eS − eS∪{n} can be enlarged to a basis of
〈dr,n, r ∈ {2, ... , n − 1}〉Z and we are done.
So we can apply theorem 1.9 to receive the equations for the divisors. These
relations will generate the same relations as in the classical M0,n thus they
hold as well in the tropical case. Also they are easier to handle and will be
helpful in showing that there do not exist more relations in the tropical case.
So let us state the result:

Corollary 3.12. The weights of the facets in M0,n,trop are all 1.

Proof. By the proof of Ton being nonsingular we have seen that the edge
vectors of a facet of M0,n,trop divided by 2 can be prolonged to a basis of the

lattice Z(n
2)−n. Thus the edge vectors form a basis of the lattice 2 · Z(n

2)−n.

All vectors of the facets are represented by vectors in 2 · Z(n
2)−n. Therefore

the lattice spanned by them is a sublattice of 2 ·Z(n
2)−n. So we can conclude

that the edge vectors of a facet can be prolonged to a lattice basis spanned
by the edge vectors and thus the facet weights are all 1.

Proposition 3.13. The relations of the divisors in the toric variety Ton are
given by the following equations:

1.

−
∑

3,n∈S
1,2/∈S

DS +
∑

1,n∈S
2,3/∈S

DS = 0, −
∑

2,n∈S
1,3/∈S

DS +
∑

1,n∈S
2,3/∈S

DS = 0

2.

−
∑

r,n∈S
1,2/∈S

DS +
∑

r,1∈S
2,n/∈S

DS −
∑

2,n∈S
1,3/∈S

DS +
∑

2,3∈S
1,n/∈S

DS = 0 ∀r /∈ {1, 2, 3, n}
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3.
∑

±DS +
∑

±DS∪{n} = 0

The sum
∑

±DS in (3) is given inductively from the part n− 1 begin-
ning when n = 5, i.e. for the case n − 1 exist equations

∑
±DS = 0.

For a set S ⊂ {1, ..., n − 1} we can associate also a vital divisor in
sn(Φn(M0,n,trop)). Thus, each sum of divisors in sn−1(Φn−1(M0.n−1.trop))
can be seen as well as sum of divisors in sn(Φn(M0,n,trop)).

Totally these are

(
n
2

)

− n equations.

Proof. We will denote eS to be the edge vector with the marked edges S on
one side and Sc on the other. S will denote the same side as in the representa-
tion above. The idea is that

∑

eS edge vector

〈dt
n,r, v(eS)〉DS = 0, r ∈ {2, 3} are the

type 1,
∑

eS edge vector

〈dt
n,r, v(eS)〉DS = 0, r ∈ {4, ... , n − 1} are the type 2 and

∑

eS edge vector

〈dt
s,r, v(eS)〉DS = 0, s ∈ {4, ... , n−1}, r ∈ {2, ... s−1} are the type

3 equations. We will give an example and afterwards continue with the proof.

Example 3.14. Let d(r, s) be the values of a vector represented with the

basis vectors di,j The representing vectors of R(5
2) are:

d5,4 d5,3 d5,2 d4,3 d4,2 d5 d4 d3 d2 d1


















1 0 0 0 0 1 1 0 0 0


















d(5, 4)
0 1 0 0 0 1 0 1 0 0 d(5, 3)
0 0 1 0 0 1 0 0 1 0 d(5, 2)
0 0 0 0 0 1 0 0 0 1 d(5, 1)
0 0 0 1 0 0 1 1 0 0 d(4, 3)
0 0 0 0 1 0 1 0 1 0 d(4, 2)
0 0 0 0 0 0 1 0 0 1 d(4, 1)
0 0 0 0 0 0 0 1 1 0 d(3, 2)
0 0 0 0 0 0 0 1 0 1 d(3, 1)
0 0 0 0 0 0 0 0 1 1 d(2, 1)

With these we have the following presentation of the edge vectors: (see (⋆⋆))



Chapter 3. Divisors on the tropical M0,n 31

e{5,4,3} e{5,4,2} e{5,4,1} e{4,1} e{4,2} e{4,3} e{5,4} e{5,3} e{5,2} e{5,1}



















−2 −2 2 2 0 0 −2 0 0 2


















−2 0 2 0 0 0 0 −2 0 2
0 −2 2 0 0 0 0 0 −2 2
−2 0 2 2 0 −2 0 0 0 0
0 −2 2 2 −2 0 0 0 0 0
1 1 −1 0 0 0 1 1 1 −1
1 1 −1 −1 1 1 1 0 0 0
1 0 0 0 0 1 0 1 0 0
0 1 0 0 1 0 0 0 1 0
0 0 1 1 0 0 0 0 0 1

In this matrix the first row corresponds to the second type of equation, the
following two to the type one equation and the fourth and fifth row to the
inductive equations. So let us prove this first for the example, before we are
coming to the general part.
If we divide by the common factor two we get the following equations:

∑

eS edge vector

〈dt
5,4, v(eS)〉DS = −D{5,4,3} − D{5,4,2} + D{5,4,1} + D{4,1} − D{5,4} + D{5,1}

= −
∑

4,5∈S
1,2/∈S

DS +
∑

4,1∈S
2,5/∈S

DS −
∑

2,5∈S
1,3/∈S

DS +
∑

2,3∈S
1,5/∈S

DS = 0

∑

eS edge vector

〈dt
5,3, v(eS)〉DS = −D{5,4,3} + D{5,4,1} − D{5,3} + D{5,1}

= −
∑

3,5∈S
1,2/∈S

DS +
∑

1,5∈S
2,3/∈S

DS = 0

∑

eS edge vector

〈dt
5,2, v(eS)〉DS = −D{5,4,2} + D{5,4,1} − D{5,2} + D{5,1}

= −
∑

2,5∈S
1,3/∈S

DS +
∑

1,5∈S
2,3/∈S

DS = 0
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∑

eS edge vector

〈dt
4,3, v(eS)〉DS = −e{5,4,3} + e{5,4,1} + e{4,1} − e{4,3}

=






−

∑

3,4∈S⊂{1,..,4}
1,2/∈S

DS +
∑

1,4∈S⊂{1,..,4}
2,3/∈S⊂{1,..,4}

DS







+






−

∑

3,4∈S⊂{1,..,4}
1,2/∈S

DS∪{5} +
∑

1,4∈S⊂{1,..,4}
2,3/∈S⊂{1,..,4}

DS∪{5}







= 0

Let us now prove the proposition by considering the three types sepa-
rately.

1. We will show the second equation, the other is analogous. To show:

〈dt
n,2, v(eS)〉 =







2 ,if 1, n ∈ S, 2, 3 /∈ S
−2 ,if 2, n ∈ S, 1, 3 /∈ S
0 ,else.

Let 1, n be in S, and 2, 3 /∈ S. So we are in case two of the representa-
tion of eS and thus we get 〈dt

n,2, v(eS)〉 = 2.
If 2, n ∈ S, 1, 3 /∈ S we are in case one and it follows that 〈dt

n,2, v(eS)〉 =
−2.
Similarly we can argue that 〈dt

n,2, v(eS)〉 = 0 else. Only we have to
distinguish the following four remaining parts: 1, 2, n ∈ S ; 2, 3, n ∈
S and 1 /∈ S ; 3, n ∈ S and 2 /∈ S ; 1, 2, 3 ∈ S. If we divide the ob-
tained equation by the common factor 2 we receive the stated equation.

2. This type is similar to the first case. Only we have to take care because
there are terms in the second and third sum which are cancelling out.
Further we have to distinguish enough cases to be sure to be in case one
or in case two of our representation. Then we can conclude whether
dt

n,r · e
S = 0, 2, or −2.

3. In the case n = 4 there do not exist equations of type 3.
Let n ≥ 5 and i ∈ {4, ..., n − 1}, 2 ≤ j < i. By the choice of the
representing vectors di,j can also be seen as a base vector of Ton−1.
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Thus, we get 〈di,j, v(eS
n−1)〉n−1 = 〈di,j, v(eS

n)〉n = 〈di,j, v(e
S∪{n}
n )〉n ∀ S ⊂

{1, ... , n− 1}. So, it remains to show that 〈di,j, e
S〉n = 0 ∀ S = {r, n} :

r ∈ {1, ... , n − 1}.
Only if r = 1 we are in case two of the representation. But neither i,
nor j are in S, so we get 〈di,j, v(e{1,n})〉=0. For all other choices of r
we are in case one. But in this case at most one of the values i or j
can be in S namely if i = r of if j = r. Thus 〈di,j, v(eS)〉 = 0.

Remark 3.15. The group of divisor classes of the toric variety Ton has
a one-to-one correspondence to the group of divisor classes of the classical
moduli space M0,n.

Proof. The edge vectors e{r,s} 2 ≤ r < s, s ≥ 4 written with the base vectors
are −dr,s + dr + ds. Thus D{r,s} only belongs to one of the equations given
by the previous proposition. Therefore all given equations are independent

and we get

(
n
2

)

− n independent equations.

The equations given by proposition 3.13 are given by equations of theorem
1.6:

(eq. 1) e.g. −
∑

3,n∈S
1,2/∈S

DS +
∑

1,n∈S
2,3/∈S

DS = 0 ⇔
∑

3,n∈S
1,2/∈S

DS =
∑

1,n∈S
2,3/∈S

DS

(eq. 2) −
∑

r,n∈S
1,2/∈S

DS +
∑

r,1∈S
2,n/∈S

DS −
∑

2,n∈S
1,3/∈S

DS +
∑

2,3∈S
1,n/∈S

DS = 0

⇐
∑

r,n∈S
1,2/∈S

DS =
∑

1,n∈S
2,r /∈S

DS,
∑

3,n∈S
1,2/∈S

DS =
∑

1,n∈S
2,3/∈S

DS

(eq. 3) Let i, j, k, l 6= n then
∑

i,j∈S
k,l/∈S

DS =
∑

i,j∈S
k,l,n/∈S

DS +
∑

i,j,n∈S
k,l/∈S

DS. Thus by

induction the eq. 3 parts are given by the theorem.
Thus the equations hold also in the M0,n. So we have

(
n
2

)
− n independent

equations in the M0,n. By theorem 1.6 we know that the space of divisors
of M0,n has dimension 2n−1 −

(
n
2

)
− 1. There are exactly 2n−1 − n − 1 vital

divisors. The difference is
(

n
2

)
− n. We can conclude that the divisors of the

toric variety fulfill the same relations as the divisors of Mn and vice versa.
As a result there exists a one to one correspondence.
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Proof. (proof of theorem 3.8)
By remark 3.15 it suffices to show, that there are not more divisor relations
in the tropical case than in the toric one. Let us suppose that there is an
equality between the tropical vital divisors:

∑
aS · DS = 0. By the proof

of remark 3.15 we have that the divisors D{r,s}, 2 ≤ r < s, s ≥ 4, occur in
exactly one equation of proposition 3.13 and by theorem 3.7 they also hold
tropically. These equations are different for each divisor. Thus we can add
up them to get a{r,s} = 0. So, w.l.o.g. aS = 0 , if S = {r, s}, 2 ≤ r < s, s ≥
4, in the sum

∑
aS · DS = 0.

Let us have a closer look at the face DF{4}{3}{5}{rest}, where rest signifies
{1, ..., n} less the edges already mentioned (in this case {3, 4, 5}). We are
looking for equations of divisors such that the result is the zero divisor. In
particular the weight of each codim-1 face has to be zero. By the proof of
Result 3.7, we have only four different divisors which have a non-zero weight
on this face. They are for:
S = {4, 3}, S = {4, 5}, S = {3, 5}, S = {4, 3, 5}. But aS = 0 for the first
three S, because of our assumption it follows that a{4,3,5} = 0 as well.
Similarly we can show that aS = 0 ∀S ⊂ {1, ..., n} , S 6⊃ {2, 3}, 1 /∈ S, |S| =
3. Inductively we can prove that aS = 0 ∀S ⊂ {1, ..., n} , S 6⊃ {2, 3}, 1 /∈ S.
Next we want to treat the face DF{1}{3}{5}{rest}. The possible sets S for a divi-
sor leading to a weight on this face are the following ones: S = {rest, 5}, S =
{3, 5}, S = {rest}, S = {1, 5}. Since aS = 0 for the first three S we get
a{1,5} = 0, too. Similar we can show that a{1,r} = 0 ∀ 2 ≤ r ≤ n. To show
that a{2,3} = 0 we look at DF{1}{2}{3}{rest}. By induction it follows, that
aS = 0 ∀S ⊂ {1, ..., n}.

Remark 3.16. The rational functions whose divisor is zero are exactly the
globally affine functions.

Proof. X = sn(Φn(M0,n,trop)) is embedded in a space of dimension
(

n
2

)
− n.

Thus the space of global, affine functions has this dimension. By proposition
3.13, theorem 3.8 and remark 3.15 we have exactly

(
n
2

)
− n independent

equations of rational functions mapped to zero. So we get that the rational
functions mapped to zero and the globally affine functions are the same.

Theorem 3.17. The higher codimensional cycles of the classical moduli
space M0,n correspond to those of the toric variety induced by the tropical
fan Ton.

Proof. To prove this, we have to compare the equalities of theorem 1.6, 3
with those of proposition 1.9 (i). Thus we have to show the equivalence of
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the following two statements:
1)0 = Di1 · . . . · Dir ,if vi1 , . . . , vir not in a cone of To.
2) DSDT = 0 ,unless S ⊂ T, T ⊂ S, S ⊂ T c or T c ⊂ S.

”⇒” Suppose that none of the inclusions hold for S and T , thus v(〈S; Sc〉)
and v(〈T ; T c〉) are not together in a cone and we get that DSDT = 0.

”⇐” Let k be maximal, such that after reordering vi1 , . . . , vik lie in a cone
but vi1 , . . . , vik+1 not. Thus vi1 , . . . , vik , vij are not in a cone ∀j > k. Let S
be the minimal dimensional cone with the edges vi1 , . . . , vik (the cone spanned
by the vectors vi1 , . . . , vik) and Sc the corresponding curve with the length
of the bounded edges equal to 1.
Suppose that ∀il, l ≤ k ∃ cone Cl : vik+1

and vil lie in Cl. Each edge evij
, j ≤

k divides the n marked edges in two parts A,B. Because of the assumption
evik+1

divides one of these parts (w.l.o.g. A) in two parts (C,D) such that

(w.l.o.g.) B ∪ C are on one side of the edge and D on the other.
Now we can assign an arrow to evij

pointing to the side with the edges of A
in Sc. By doing this successively with all edges evij

we can assign a direction

to each edge. All edges lying behind one edge (behind in the sense of the
direction of the arrow) have to point to the same direction. Thus there exists
a vertex all arrows are pointing to. All marked edges lying behind one of the
bounded adjacent edges of the vertex are contained in evik+1

or ec
vik+1

(Recall

that ev also denotes the unbounded edges lying on the same side as 1 for
the edge corresponding to v). Thus we can insert evik+1

to get a curve Tc

with the edges evi1
, . . . , evik+1

and thus a cone T with edges vi1 , . . . , vik+1
,

contradiction.
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Example:

Tc

1
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4
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9

1
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10

1

2
3

4

5 6 7

8 9

10

Sc

evik+1

Figure 3.2: construction of the curve

We conclude, that ∃vij , j < k : vij and vik not together in a cone, i.e.

evij
6⊂ evik

, evij
6⊂ (evik

)c, evij
6⊃ evik

, (evij
)c 6⊃ evik

. So, DijDik = D
evij D

evik =
0.

3.3 Surjectivity of the map Div(M0,n) → Div(M0,n,trop)

In the following passage we prove the second part of the correspondence of
the divisors in M0,n,trop and in M0,n.
We have to show that there do not exist divisors in M0,n,trop which cannot
be generated by the vital divisors. The main idea of the proof is to show
inductively, that the dimension of the space of divisors is 2n−1 −

(
n
2

)
− 1. By

theorem 3.8 and theorem 1.6 we know already that the space of divisors has
dimension at least 2n−1 −

(
n
2

)
− 1. To prove the equality it will be helpful to

choose suitable subsets of M0,n,trop induced by M0,n−1,trop. So let us state the
theorem and prove it.

Theorem 3.18. The space of divisors of the tropical moduli space M0,n,trop

is generated by the vital divisors (⇔ dim (Div (M0,n,trop)) = 2n−1 −
(

n
2

)
− 1

⇔ The map Div(M0,n) −→ Div(M0,n,trop) is surjective).

Proof. To have a shorter notation we will set Mn to be M0,n,trop. Further we
denote by M r,s

n , r, s marked edges, the subset of Mn of all the faces where r, s
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are lying on the same side for each four or more valent knot. This means for
example, if DFA,B,C,D is one of the codim-1 faces then r, s ∈ A∨ ...∨r, s ∈ D.
First of all we will simplify our problem by proving the following two remarks:

Remark 3.19. In any divisor of M0,n,trop all codim-1 faces DFA,B,C,D, cor-
responding to the same partition A,B,C and D of the set {1, ..., n}, have the
same weight.

Proof. For this we have to show that for a codim-2 face τ with two four-valent
vertices

G

A

B

C

D

E

F

holds: the three resolutions on the left and on the right side each have to
fulfill exactly one balancing condition. That means that the weights of the
divisor facets are equal. Thus, by induction all codim-1 faces of a partition
A,B,C,D have the same weight. Further we have to show that this two
equations are independent.
This means, we have to consider the weighted normal vectors of the adjacent
facets and have to show, that they sum up to zero modulo the vectors of τ .
The normal vectors have the same entries for the distance of edges i or j in A
(resp. B, C, D, E, F, G) to each other edge. Thus it suffices to consider the
cases where |A| = |B| = |C| = |E| = |F | = |G| = 1. By adding the vector
corresponding to 〈A∪B∪C; D∪E∪F ∪G〉 (resp. 〈A∪B∪C∪D; E∪F ∪G〉)
which is lying in τ , we can delete the distance of D to another edge. Thus
we can assume that |D| = 0. So it suffices to show the remark for the case
n = 6:

6

1

2

3

4

5

Now it is a dimensional argument and follows by calculating some minors
of the following matrix:
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d(1, 2) d(1, 3) d(1, 4) d(1, 5) d(1, 6) d(2, 3) d(2, 4) d(2, 5) d(2, 6) d(3, 4)
























0 1 1 1 1 1 1 1 1 0
1 0 1 1 1 1 0 0 0 1
1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 1
0 0 1 0 1 0 1 0 1 1
0 0 0 1 1 0 0 1 1 0
1 1 1 1 1 0 0 0 0 0
1 0 0 0 0 1 1 1 1 0
0 1 0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0 0 1
0 0 0 1 0 0 0 1 0 0
0 0 0 0 1 0 0 0 1 0
0 0 1 1 1 0 1 1 1 1

d(3, 5) d(3, 6) d(4, 5) d(4, 6) d(5, 6)

0 0 0 0 0
























e1,2

1 1 0 0 0 e1,3

1 1 0 0 0 e2,3

1 0 0 1 1 e4,5

0 1 1 0 1 e4,6

1 1 1 1 0 e5,6

0 0 0 0 0






Im(Φn)

0 0 0 0 0
1 1 0 0 0
0 0 1 1 0
1 0 1 0 1
0 1 0 1 1
1 1 0 0 0 e1,2,3

e1,2, ..., e5,6 denote the 6 normal vectors of the resolutions.
Example:

4

5

6

e1,2

1

2

3

Figure 3.3: Resolution of the codim-2 face with the edge e1,2.
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The last 7 rows span a 7 dimensional vector space.
The first 3 with the last 7 rows a 9 dimensional.
The last 10 rows a 9 dimensional as well.
And altogether a 11 dimensional vector space.
Thus there exist exactly one linear independent equation for the first three
rows and the second three rows together with the last seven rows. Because
the total rank of the matrix is 11 it follows that there is not a relation
between all the rows which is not a combination of the given ones. Thus the
first three rows and the following three have to fulfill exactly one balancing
condition.

Because of this remark we will distinguish faces of higher codimension
only by their knots of valence greater than 3. Thus we can define the following
equivalence relation on the faces of Mn: σ1 ∼ σ2 :⇔ dim(σ1)=dim(σ2) and
the set of partitions of {1, ..., n} in r sets, given by each r-valent knot in the
corresponding curve (of σ1, resp. of σ2), r > 3 are the same. With this, the
following remark makes sense.

Remark 3.20. The elements of (faces of M r,s
n )/ ∼, r, s marked edges

correspond to elements of (faces of Mn−1)/ ∼ with the marked edges
1, ..., r̂, ..., ŝ, ..., n, {r, s}. Thus the faces τ of M r,s

n belonging to an equiva-
lence class of M r,s

n with dim(τ)=n − 5 have a corresponding class in (faces
of Mn−1)/ ∼. Let us choose a representative τ̃ ∈ (faces of Mn−1) of this
class. If we resolve τ (resp. τ̃) the classes of this resolutions also correspond
to each other. Thus we will see that the weights of the faces of M r,s

n given
by a divisor of Mn are in one-to-one correspondence to weights given by a
divisor in Mn−1.

The correspondence of the weights of divisors comes from the remark
before (remark 3.19). By this remark all faces which are equivalent under
”∼” have the same weight. Thus we only have to show that the balancing
conditions on codim-2 faces with one 5-valent knot are the same. For the
balancing condition we can, analogous to the proof of remark 3.19, reduce to
the case n = 5. Thus we get the same balancing conditions for both cases.

This remark tells us, that the balancing condition imposes same equations
for the divisors of the Mn−1 as well as for the M r,s

n . So we have the same
degree of freedom to fix the faces corresponding to M r,s

n as for Mn−1.

Note 3.21. This could be continued such that M r1,...,ri
n correspond to Mn−i+1.
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Example:
For a dim n− 5 face are two possibilities: Either the face contains a 5-valent
vertex or two 4-valent vertices. So it looks like:

E

A

B

CD or G

A

B

C

D

E

F

If r and s are in the same end (A, B, C, D or E resp. A, B, C, D, E, F or G)
all the possible resolutions to a codim-1 face also have r and s on the same
end. By remark 3.19 the claim follows.

Let us now prove inductively the following statements:

1. dim (Div (Mn)) = dim (Div (M0,n,trop)) = 2n−1 −
(

n
2

)
− 1.

2. If we fix a divisor in Mn by giving first its weights in M1,2
n , second

M1,3
n ...M1,n

n and then the weight of one other codim-1 face we get a de-
gree of freedom of dfn(n−r) for each M1,r

n , after fixing the M1,s
n , s < r

with:

dfn(s) = 2s ∀s ≤ n − 5, dfn(n − 4) = 2n−4 − 1,

dfn(n − 3) = 2n−3 − (n − 2) and dfn(n − 2) = 2n−2 −
∑n−2

r=1 r − 1.

IS: n=5: The codim-1 faces of the M5 are edges corresponding to the
rows of the following matrix:

d(1, 2) d(1, 3) d(1, 4) d(1, 5) d(2, 3) d(2, 4) d(2, 5) d(3, 4) d(3, 5) d(4, 5)


















0 0 1 1 0 1 1 1 1 0


















e4,5

0 1 0 1 1 0 1 1 0 1 e3,5

0 1 1 0 1 1 0 0 1 1 e3,4

1 0 0 1 1 1 0 0 1 1 e2,5

1 0 1 0 1 0 1 1 0 1 e2,4

1 1 0 0 0 1 1 1 1 0 e2,3

0 1 1 1 1 1 1 0 0 0 e1,2

1 0 1 1 1 0 0 1 1 0 e1,3

1 1 0 1 0 1 0 1 0 1 e1,4

1 1 1 0 0 0 1 0 1 1 e1,5

The subspace Im(Φ5) which we have to divide out, is given by the rows of
the following matrix:
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d(1, 2) d(1, 3) d(1, 4) d(1, 5) d(2, 3) d(2, 4) d(2, 5) d(3, 4) d(3, 5) d(4, 5)








1 1 1 1 0 0 0 0 0 0








1 0 0 0 1 1 1 0 0 0
0 1 0 0 1 0 0 1 1 0
0 0 1 0 0 1 0 1 0 1
0 0 0 1 0 0 1 0 1 1

An easy calculation of the dimension shows that these 15 vectors span the
whole vector space and that the last 5 are linearly independent. Thus, there
exist 5 conditions for the first 10 edges to fulfill the balancing condition. Or in
other words, the space of divisors is generated by 5 vectors where the entries
represent the edges. The five following vectors are linearly independent and
fulfill the balancing condition, so they are a basis of the vector space of the
group of divisors tensored by Q:

d1 =



















1
1
0
1
0
0
0
0
0
1



















, d2 =



















1
0
1
0
1
0
0
0
1
0



















, d3 =



















0
1
1
0
0
1
0
1
0
0



















, d4 =



















0
0
0
1
1
1
1
0
0
0



















, d5 =



















0
0
0
0
0
0
1
1
1
1



















Every divisor D in M5 is given by a linear combination of these five vectors
and thus has the following representation:

D = a1d1 + a2d2 + a3d3 + a4d4 + a5d5

Let the weight of the edges e1,2, ..., e1,5 corresponding to the faces
DF{1,2},{3},{4},{5}, ... , DF{1,5},{2},{3},{4} be given (These faces correspond to
four M4). These four edges match with the last four entries of the vectors
d1, ..., d4.
Now let e be another arbitrary edge of the undetermined edges. Because of
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symmetry we can assume that this is e2,3 matching to the 6th entry of the
vectors. Only the vectors d3, d4, d5 have entries in the 6th, 7th and 8th row.
Furthermore the matrix of this three rows and vectors is a basis of R3. Thus
we get, that a3, a4, a5 are determined by the given weights. d1 has a 0 in
entry 9, but d2 a 1, such that a2 is determined by a3, a4, a5 and the weight
of e1,4, analogously we can do the same for a1.
Thus we get that a divisor of M5 is determined by the weights for M1,2

4 , ...,M1,5
4

and one further edge.
df 5(0) = 1 = 20, df 5(1) = 1 = 21 − 1, df 5(2) = 1 = 22 − (5 − 3), dfn(3) =
1 = 23 −

∑5−2
r=1 r − 1

df 5(0) + df 5(1) + df 5(2) + df 5(3) + 1 = 5 = 24 −
(
5
2

)
− 1

So we have proven the induction basis.

IA: dim (Div (Mp)) = 2p−1 −
(

p
2

)
− 1 for p ≤ n.

If we fix a divisor in Mp by giving first the weights for M1,2
p , second M1,3

p ...M1,p
p

and then one other codim-1 face we get a degree of freedom of dfp(p− s) for
each M1,s

p , with:

dfp(s) = 2s ∀s ≤ p − 5, dfp(p − 4) = 2p−4 − 1,

dfp(p − 3) = 2p−3 − (p − 2) and dfp(p − 2) = 2p−2 −
∑p−2

i=1 i − 1

for all p < n + 1. Now we have to conclude the case n+1.

We do this in such a way, that we start by proving:
A divisor in Mn is defined if the weights for M1,2

n ,M1,3
n , ...,M1,n

n and one fur-
ther weight of a codim-1 face is given.
If the weights for M1,2

n ,M1,3
n , ...,M1,n

n are given, it follows, that all codim-
1 faces with 1 not alone on one side are determined. If we fix one other
weight for a codim-1 face σ we get a codim-2 face τ with this face as-
sociated and four other faces which are lying in M1,2

n ∪ M1,3
n ∪ ... ∪ M1,n

n .
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C2

1
1 C1

C2
C2

C1

1

A B A B

A

B B

C1

1

1

1
C2

A B

τσ

C2

B

A

A

C2

C1

C1

C1

Figure 3.4: σ, τ and the other four faces.

As in the proof of remark 3.19 we can reduce to the case |A| = |B| =
|C1| = |C2| = 1. Now we are in the same position as in the induction
assumption and can determine the missing 5 weights. Recursively all weights
are given.

So we have a divisor of Mn+1 determined by the weights for M1,2
n+1,M

1,3
n+1

, ..., M1,n+1
n+1 and one further weight. Let M1,r,s

n+1 = M1,s,r
n+1 ⊂ M1,r

n+1 ⊂ Mn+1 be

the subset given by the correspondence to M
{1,r},s
n . By induction and remark

3.20 the weights for M1,r
n+1, 2 ≤ r ≤ n + 1 are determined by the weights for

M
{1,r},s
n+1 , 2 ≤ s ≤ n + 1, r 6= s and one further edge ∀ 2 ≤ s ≤ r. M

{1,r},s
n+1 is

determined because the weights for M1,s
n+1 are determined earlier and all faces

of M
{1,r},s
n+1 are in M1,s

n+1. Because we don’t know if there are more relations

between the M1,r
n+1 we get the following inequality:

Degree of freedom of M1,r
n+1 = dfn+1(n+1− r) ≤ 1+dfn(0)+ ...+dfn(n− r).

This follows, because we know by induction that dim(Div(Mn))=1+dfn(0)+
... + dfn(n − 2). For M1,r

n+1, we know the M1,s
n+1, s < r and thus we have to

add the degree of freedom only until dfn(n − r).

⇒
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dfn+1(s) ≤ 1 +
s−1∑

i=0

2i = 2s∀s ≤ n − 4

dfn+1(n − 3) ≤ 1 +
n−5∑

i=0

2i + 2n−4 − 1 = 2n−3 − 1

dfn+1(n − 2) ≤ 1 +
n−5∑

i=0

2i + 2n−4 − 1 + 2n−3 − (n − 2) = 2n−2 − (n − 1)

dfn+1(n − 1) ≤ 1 +
n−5∑

i=0

2i + 2n−4 − 1 + 2n−3 − (n − 2) + 2n−2 −
n−2∑

r=1

r − 1

= 2n−1 −
n−1∑

r=1

r − 1

⇒

dim (Div (Mn+1)) ≤ 1 +
n−1∑

s=0

dfn+1(s)

= 1 +
n−4∑

i=0

2i + 2n−3 − 1 + 2n−2 − (n − 1) + 2n−1 −
n−1∑

r=1

r − 1

= 2n −
n∑

r=1

r − 1 = 2n −
(

n+1
2

)
− 1

We know already that dim (Div (Mn)) ≥ 2n−
(

n+1
2

)
−1. So we get equality

in all the cases and we are done.

Now we want to give a shorter proof of Theorem 3.18, based on new facts
and a better understanding of the relation between Cartier and Weil divisors
proved by L. Allermann [All07].

Definition 3.22. Let Λ be a lattice and V := Λ⊗R be the associated vector
space. Let C ∈ Zm(V ) be a cycle. C is called locally irreducible if for some
reduced representative [(X,ωX)] of X holds: For every cone τ ∈ X(m−1) the
equality

∑

σ>τ

λσ · uσ/τ = 0 ∈ Λ/Λτ , λσ ∈ Z

(where uσ/τ denotes the primitive normal vector of σ relative to τ) implies
that there exists λ ∈ Q such that λσ = λ · ωX(λ) for all σ > τ .

L. Allermann was able to proof the following theorems which are necessary
to give a shorter proof.

Theorem 3.23. Let C ∈ Zm(V ) be a cycle such that div(C)
∼
→ Zm−1(C),

let h ∈ K∗(C) be a rational function and let D ∈ Zm−1(ΓCh
). If m ≤ 2 or
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ΓC,h is locally irreducible then there exists a Cartier divisor ϕD ∈ div(ΓC,h)
with ϕD · ΓC,h =lcm(ΓC,h) · D.

Proof. see [All07] theorem 2.4.

Theorem 3.24. Let C ∈ Zm(V ) be a cycle such that div(C)
∼
→ Zm−1(C),

let h ∈ K∗(C) be a rational function and let Φ ∈ div(ΓC,h) with Φ ·ΓC,h = 0.
Then Φ = 0 ∈ div(ΓC,h).

Proof. see [All07] theorem 2.5.

Remark 3.25. The weights of the tropical moduli space M0,n,trop are all one
(corollary 3.12), thus the work of L. Allermann told us, that Weil and Cartier
divisors of M0,n,trop are the same, if it is a fan constructed by expansions of
R(n−3).

If the Cartier and the Weil divisors are the same it follows, that the Weil
divisors are generated by rational functions and thus theorem 3.18 holds. So
let us show the following proposition:

Proposition 3.26. M0,n,trop can be constructed from R(n−3) by
(

n
2

)
− 2n+ 3

expansions.

Proof. By abuse of notation we will denote M0,n,trop by Mn. Further Ri,i+1 =
R will denote the real numbers. We will show the proposition by induction.
For this we will show that the map

φ = φ′×φ′′×φ4× ...×φn−2 : Mn → Mn−1×M4×R4,5×R5,6×· · ·×Rn−2,n−1,

given by

φ′ : Mn → Mn−1, (C, x1, . . . , xn) → (C, x1, . . . , xn),
φ′′ : Mn → M4, (C, x1, . . . , xn) → (C, x1, x2, x3, xn) and

φi : Mn → Ri,i+1, (C, x1, . . . , xn) → (C, x1, xi, xi+1, xn)
(⋆)
→ contraction of the

face with 1 and i on one side and i + 1 and n on the other side,
∀4 ≤ i ≤ n − 2

is a contraction, as well as the projection (defined inductively from Pn−1

down to P5)

Pi : Pi+1 · ... · Pn−1φ(Mn) → Mn−1 × M4 × R4,5 × R5,6 × · · · × Ri−2,i−1.
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The contraction (⋆) looks like follows:

i

1

n

1 i

i + 1n

1

n

1

n

1

n i + 1

i

i + 1

i

i

i + 1

i + 1

Figure 3.5: Contraction of an M4.

The maps φ′ and φ′′ are forgetful maps, see [GM] definition 4.1 for the
definition.
The forgetful maps are morphisms ([GKM], proposition 3.9), thus φ is a
morphism and therefore Im(φ) is a tropical fan. This fan will be denoted by
T . Further φ is surjective on the first component (Mn−1).

Now we consider the curves of Mn to be curves of Mn−1 with the marked
edge xn inserted at one position. If we insert the edge on the marked edge
i and move it on this edge, the value of Ri,i+1 (resp. φ′′(Mn) is the only
changing value in the image, for 4 ≤ i ≤ n − 2 (resp. i = 2 or i = 3). Thus
the image of φ spans the whole Mn−1×M4×R4,5×...×Rn−2,n−1. The ambient
space has dimension

(
n−1

2

)
− (n− 1)+2+(n− 5) =

(
n−1

2

)
−n− 1+ (n− 1) =

(
n
2

)
− n − 1 and thus has one dimension less than R(n

2)−n. A morphism is a

Z-linear map and thus φ : R(n
2)−n → R(n

2)−n−1 has a one dimensional kernel.

As mentioned, the curves in Mn are given by Mn−1 and the position of
xn on it. If changing the position of xn on one bounded edge i changes also
the image, we will see, that the preimage of the image is only one point.
This depends on the fact, that a curve of Mn is given by a curve of Mn−1 and
the position of xn. Each shifting of xn on a bounded edge e changes Ri,i+1

(resp. M4) if 1 and i, for 4 ≤ i ≤ n − 2 (resp. 1 and 2 or 1 and 3) are on
different sides of the meeting point of xn. e is a bounded edge, thus at least
two marked edges are on each side of the edge and therefore at least one of
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the Ri,i+1 or the M4 will be changed (on the side which does not contain 1
must be an edge unequal n−1). So we can conclude that the image has only
one preimage. In total this means, that each point of the image of Mn has
one preimage or a half-line as preimage.

It remains to prove that Mn is an expansion of Mn−1×M4×R4,5×R5,6×
· · · × Rn−2,n−1. The forgetful maps (resp. forgetful maps with contraction)
are projections, thus the map φ is a projection on a space with one dimension
less. Each inner point of a facet of the image in Mn−1 × M4 × R4,5 × R5,6 ×
· · · × Rn−2,n−1 has exactly one preimage and we can define a rational map
ϕ : φ(Mn) → Mn by taking φ−1 on the inner points and define the rational
function on them. So let us define the rational function to be the projection
of the preimage of one point onto the kernel of φ. We have to show that this
is possible, i.e show that ϕ, which we have given only on the inner points,
can be prolonged continuously.

Let ϕ|σ the rational function on σ by prolonging the function ϕ on the
border of σ. At each cone σ the function id × ϕ|σ is a map from cone to
cone, thus ϕ|σ is continuous. The only thing which possibly happens is that
ϕ is not defined at a codim-1 face τ . (the limit of the interior values of two
adjacent cones σ1, σ2 are different,i.e. ∃ x ∈ τ : ϕ|σ1(x) 6= ϕ|σ2(x)). The
cones σ1, σ2 are mapped by id × ϕ to cones of Mn. Thus there exist cones
σ2(1), σ2(2) such that id×ϕ|σ2(σ2), σ2(1), σ2(2) fulfill the balancing condition
at id× ϕ|σ2(τ)(recall that the codim-1 faces have exactly 3 adjacent facets).
Suppose that σ2(1) and σ2(2) are unequal σ1. Thus φ(σ2(1)) = φ(σ2(2))) = τ
and the representatives for the normal vectors lie in τ × R. But the first
(

n
2

)
−n− 1 values of id×ϕ(σ2) are the same as for σ2 thus no representative

of the normal vector lies in τ × R, contradiction. So the limit and thus
the rational function are well defined. The corresponding expansion of the
tropical fan T lying in Mn−1 × M4 × R4,5 × R5,6 × · · · × Rn−2,n−1 lies in
Mn. Further, the facets of T are mapped to facets of Mn, by irreducibility
(theorem 2.16) it follows, that the expansion has to be the whole Mn.

Now we consider the map Pi.
For the (n− 3)-dimensional parts we can, as before, look at the correspond-
ing curve. This curve is given by a curve in Mn−1 and the place of xn on
this curve. To see that the preimage of one point is either one point or one-
dimensional we argue as before (i.e. we want to adapt the argument that the
preimage of a point corresponding to the case where xn lies on a bounded
curve is one point).
With Pi+1 · ... · Pn−1φ we have contracted some cones. Therefore we have to
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consider only bounded edges whose corresponding cone does not lie in the
same cone as a cone corresponding to an unbounded edge. Thus we change
our definition of bounded. With ”bounded” edges we mean the bounded
edges which are also bounded edges of fti ·...·ftn−1(Mn−1). By Pi+1 ·...·Pn−1φ
the corresponding values of the other bounded edges are in the same (n−3)-
dimensional cone as the values of marked edges. Thus, as for φ, it follows
that the points in Pi · ... · Pn−1φ(Mn) have one preimage under Pi or the
preimage is 1-dimensional.
By induction Pi+1, ..., Pn−1 and φ are contractions. Thus all codim-1 faces of
Pi+1 · ... · Pn−1φ(Mn) have only 3 adjacent facets. Because of the correspon-
dence to curves we can argue as in the proof of theorem 2.16 to show that
Pi+1 · ... · Pn−1φ(Mn) irreducible:
Maximal cones of Pi+1 · ... · Pn−1φ(Mn) correspond to maximal curves in
Mn−1 and xn inserted at one ”proper” edge e (”proper” means moving xn on
e changes the value in Pi+1 · ... · Pn−1φ(Mn)). Thus changing the position of
xn has to change the M4 or at least one of the Rr,r+1, r < i. Therefore we
have that xn lies between the edge x1 and an edge xr, r < i. Furthermore we
have that adjacent cones correspond to curves which we get by contracting
an edge and resolving it in another way such that xn stays on a ”proper”
edge. By contracting and resolving cones in such a way we can move xn to
the edge x1 (xn will stay between x1 and xr the whole time). Further we
can by the proof of theorem 2.16 change cones in Mn−1 by contraction and
resolving to every other cone (xn stays on the edge x1 an thus will be on a
”proper” edge). Thus we can reach every cone by each other. Now we can
conclude in the same way that Pi+1 · ... · Pn−1φ(Mn) irreducible.
Thus we can argue as for ϕ that Mn−1 × ... × Ri−1,i is an expansion of
Mn−1 × ... × Ri−2,i−1.

As conclusion of Theorem 3.8 and 3.18 we receive the main result of this
work:

Theorem 3.27. There exists a one to one correspondence between the di-
visors of M0,n,trop and M0,n via the vital divisors.
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