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Abstract

We consider a continuous time market model in which stock returns
satisfy a stochastic differential equation with stochastic drift, e.g. fol-
lowing an Ornstein-Uhlenbeck process. The driving noise of the stock
returns consists not only of Brownian motion but also of a jump part
(shot noise or compound Poisson process). The investor’s objective is
to maximize expected utility of terminal wealth under partial infor-
mation which means that the investor only observes stock prices but
does not observe the drift process. Since the drift of the stock prices is
unobservable, it has to be estimated using filtering techniques. E.g.,
if the drift follows an Ornstein-Uhlenbeck process and without jump
part, Kalman filtering can be applied and optimal strategies can be
computed explicitly. Also in other cases, like for an underlying Markov
chain, finite-dimensional filters exist.

But for certain jump processes (e.g. shot noise) or certain non-
linear drift dynamics explicit computations, based on discrete obser-
vations, are no longer possible or existence of finite dimensional filters
is no longer valid. The same computational difficulties apply to the
optimal strategy since it depends on the filter. In this case the model
may be approximated by a model where the filter is known and can be
computed. E.g., we use statistical linearization for non-linear drift pro-
cesses, finite-state-Markov chain approximations for the drift process
and/or diffusion approximations for small jumps in the noise term.

In the approximating models, filters and optimal strategies can
often be computed explicitly. We analyze and compare different ap-
proximation methods, in particular in view of performance of the cor-
responding utility maximizing strategies.
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Abstract

Wir betrachten ein zeitstetiges Marktmodell, in dem Renditen
der Aktien einer stochastischen Differentialgleichung mit stochastis-
cher Drift genügen, die einem Ornstein-Uhlenbeck Prozess folgt. Die
Störungen der Renditen der Aktien ergeben sich nicht nur aus einer
Brownschen Bewegung, sondern auch aus Sprüngen (Shot-Noise- oder
zusammengesetzter Poisson-Prozess). Das Ziel eines Investors ist,
die Maximierung des erwarteten Nutzens des Endvermögens unter
partieller Information. Das bedeuted, dass ein Investor nur Aktien-
preise und nicht die Werte der Drift beobachtet. Da die Drift der
Aktienpreise nicht beobachtet wird, muss die Drift gefiltert werden.
Beispielsweise, wenn die Drift einem Ornstein-Uhlenbeck Prozess ohne
Sprünge folgt, kann der Kalman-Filter angewendet werden und die
optimalen Strategien können explizit berechnet werden. Endlichdi-
mensionale Filter existieren auch in anderen Fällen, wie, zum Bespiel
für Markov Ketten.

Aber für manche Sprungprozesse (z.B. Shot-Noise) oder für nicht-
lineare Driftdynamik sind explizite Berechnungen, die auf diskreten
Beobachtungen basieren, nicht mehr möglich oder die Existenz der
endlichdimensionalen Filter ist nicht mehr gegeben. Dieselben Rechen-
schwierigkeiten kommen auch bei den optimalen Strategien vor, weil
diese von den Filtern abhängen. In diesem Fall kann das Modell von
einem anderen Modell mit bekanntem Filter approximiert werden.
Beispielsweise benutzen wir statistische Linearisierung für nichtlineare
Driftprozesse, Approximationen mit der endlichen Markov Kette für
Driftprozesse und/oder Approximationen mit der Diffusion für kleine
Sprünge.

In den Approximationsmodellen können Filter und optimale Strate-
gien oft explizit berechnet werden. Wir analysieren und vergleichen
unterschiedliche Approximationsmethoden, vor allem im Hinblick auf
die Güte der entsprechenden Strategien für die Maximierung des er-
warteten Nutzens.

3



Contents

List Of Figures 10

List Of Tables 11

Introduction 12

I Some results and definitions from filtering, Lévy
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3 Non-linear filtering problems for Lévy processes 40
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Introduction

The filtering theory was initially developed for engineering problems. Imag-
ine that there is a physical system that performs some functions. In order to
know that the system is performing correctly, an engineer has to know the
state of the system at any time instant. Random noises may interfere with
the system. The engineer takes some measurements (which may be disturbed
by noise) of the system, and tries to determine the state of the system from
noisy observations. This problem is called filtering. The filtering problem
for linear physical systems can have nice explicit solutions and is often used
in practice, for example, in orbit mechanics.

The problem of non-linear infinite-dimensional filtering has been studied
for a long time. Stochastic differential equations with non-linear coefficients
and jumps occur in many practical applications and quite often the filter-
ing of an unobservable variable has to be carried out. The term ’filtering’
roughly means finding the ’best estimate’ of the unobservable variable having
got the observations of another variable (observable), which depends on the
unobservable variable. Assume now that both unobservable and observable
variables follow stochastic differential equations. If the coefficients of these
SDEs are linear, then there exists an explicit solution to the filtering problem,
called Kalman filter. There are very few cases, when the filtering problem
can be solved explicity. In all other cases the solution to the filtering problem
has to be approximated.

In this thesis a financial market is considered for possible applications
of non-linear infinite-dimensional filtering. We consider different types of
stochastic processes for the risky asset: jump-diffusion processes, diffusion
processes with non-linear coefficients etc. The drift of the asset price process
follows a diffusion process (with linear or non-linear coefficients). The drift
process cannot be observed directly, only asset prices are observable in the
market. The filtering problem would be to estimate the drift values having
the asset price observations. The estimated values of the drift process can
further be applied for solving a portfolio optimization problem.

Therefore, portfolio optimization is considered to be the application of
the filtering results. The portfolio consists of a risky asset and a bank ac-
count, where money investments are made according to a portfolio strategy.
The main task is to find the optimal portfolio strategy so as to maximize the
expected utility of the portfolio wealth at terminal time. The portfolio opti-
mization framework under partial information is in detail given in [22]. The
term ’partial information’ means that some variables of the market model
are unobservable (i.e. drift of the asset price process). If the drift of the asset
price process follows linear Gaussian dynamics, the solution is given in [23],

12



and if it is a continuous-time Markov chain, then the solution to the portfolio
optimization problem is given in [33].

In Part II of this thesis we consider asset price dynamics, which is influ-
enced by Brownian motion and a shot-noise process. The drift of the asset
prices is not constant, but follows an Ornstein-Uhlenbeck process. The in-
vestor’s objective is to estimate the values of the unobservable drift in order
to optimize the portfolio value. The filtering of the shot-noise driven asset
price process, for the process observed in discrete time, would be infinite di-
mensional. Therefore, one has to try to approximate the shot-noise process
by Brownian motion, according to [7] and apply Kalman filtering. Portfolio
optimization can then be carried out according to the framework of [6]. In
order to assess the quality of this approximate portfolio optimization, the
theoretical solution to portfolio optimization problem for shot-noise driven
processes has to be derived.

It would also be nice to just consider a compound Poisson process instead
of the shot-noise process. Like the shot-noise process, the compound Poisson
process can be approximated by a Brownian motion, according to [7]. So,
the aim is to perform the filtering of the unobservable drift of the asset
price driven by a Brownian motion and a compound Poisson process, and
to perform the portfolio optimization (under full and partial information).
These tasks will also be solved in Part II of the thesis.

In Part III of the thesis the Heston’s stochastic volatility model is con-
sidered. This model consists of the asset price diffusion equation, where the
diffusion coefficient is a non-linear function of a stochastic volatility process.
The drift coefficient also depends on the stochastic volatilty process. In order
to perform filtering and portfolio optimization one has to linearize all non-
linear coefficients of the asset price model and then apply Kalman filtering
to the discretized model. In order to optimize the portfolio and filter the
unobservable stochastic volatility process one can also apply the extended
Kalman filter.

Part I of the thesis is an introductery part, that gives an overview over the
main books ( [2], [4], [5]) and articles on infinite-dimensional filtering, Lévy
processes and portfolio optimization ( [14], [15], [28], [32], [38]). Further,
we present in subsection 1.6 a Markov chain approximation for the filtering
problem based on [8]. For each part, a summary is presented (Sections 5, 9,
13), and a conclusion is given in Section 14.

13



Part I

Some results and definitions
from filtering, Lévy processes
and portfolio optimization
In the introductory part of the thesis the basic framework for filtering, Lévy
processes and portfolio optimization is discussed.

Assume that there is a stochastic (diffusion or jump-diffusion (Lévy)) pro-
cess that cannot be observed directly, i.e. the unobservable signal process,
but can be observed through another stochastic (diffusion or jump-diffusion
(Lévy)) process, i.e. the observation process. The filtering problem is to
evaluate the conditional expectation of the unobservable process having the
observations. The filter satisfies Zakai or Kushner-Stratonovich equations.
Generally, these equations are infinite-dimensional and cannot be solved ex-
plicitly. There are a few cases of the finite-dimensional filters: Kalman-Bucy
filter, Beneš filter, Wonham filter. Infinite-dimensional filters have to be
solved numerically.

Filtering (finite- or infinite-dimensional) can have many practical appli-
cations, but in this thesis we consider applications in the financial market.
Asset prices are regarded as an observation, and the drift of the asset prices is
an unobservable signal. The filter or the conditional expectation of the drift
process can further be applied to solve the portfolio optimization problem.

1 Filtering theory overview

1.1 The filtering problem

Let us consider several definitions and basic results concerning general filter-
ing theory, following the book [4].

Let (Ω, F, P ) be a probability space together with a filtration (Ft)t≥0

which satisfies the usual conditions:

• F is complete i.e. A ⊂ B, B ∈ F and P (B) = 0 implies that A ∈ F
and P (A) = 0.

• The filtration Ft is right continuous i.e. Ft = Ft+.

• F0 (and all Ft for t ≥ 0) contains all P -null sets.

14



On (Ω, F, P ) consider a stochastic processX = {Xt, t ≥ 0} which takes values
in a complete separable metric space S (the corresponding Borel σ-algebra
is denoted by B(S)):

Xt = X0 +

∫ t

0

a(Xs)ds+

∫ t

0

b(Xs)dVs,

where a(x) is vector in the Euclidiean r-space, b(x) is an r×r matrix, Vt is the
standard r-dimensional Brownian motion. The process Xt is unobservable
and is called a signal.

Let Wt be a standard Brownian motion on (Ω, F, P ) independent of Vt
and let the observation process Yt satisfy the following evolution equation

Yt = Y0 +

∫ t

0

h(Xs)ds+Wt,

where h(x) : S →Rr. Let {F Y
t , t ≥ 0} be the usual augmentation of the

filtration associated with the process Yt:

F Y
t = σ(Ys, s ∈ [0, t]),

F Y = ∨t∈R+F
Y
t

Definition 1.1. (Bain, Crisan) The filtering problem consists of determining
the conditional expectation πt of the unobservable signal Xt at time t given
information from observing Yt in the interval [0, t] i.e.

πt(φ) = EP [φ(Xt)|F Y
t ].

One of the approaches to obtain the evolution equation for πt is to change
the measure. According to this approach the new measure is constructed,
which transforms Yt into Brownian motion and then πt can be considered in
terms of its unnormalized version ρt which satisfies the linear equation that
is more easy to solve in some cases.

Further, some basic notions are introduced, that will be used for the
derivation of equations. Let Z = {Zt, t ≥ 0} be the process of the following
form:

Zt = exp

(
−
∫ t

0

h(Xs)dWs −
1

2

∫ t

0

(h(Xs))
2ds

)
.

The process Zt, t ≥ 0 is a martingale if Novikov’s condition is satisfied:

EP

[
exp

(
1

2

∫ t

0

(h(Xs))
2

)]
<∞.
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Since Zt > 0, a new probability measure Q on Ft is introduced by speci-
fying its Radon-Nikodym derivative with respect to P :

dQ

dP
= Zt.

Then, under the new measure Q the observation process Yt is a Brownian
motion independent of signal Xt. The law of signal process Xt under Q is
the same as its law under P .

Let {Z−1
t , t ≥ 0} be the process defined by

Z−1
t = exp

(∫ t

0

h(Xs)dWs +
1

2

∫ t

0

(h(Xs))
2ds

)
.

Then EQ[Z−1
t ] = EP [Z−1

t Zt] = 1, so Z−1
t is an Ft-adapted martingale under

Q and also
dP

dQ
= Z−1

t .

1.2 Unnormalized conditional distribution

The Kallianpur-Striebel formula is one of the central tools of the filtering
theory: for every φ ∈ B(S) it holds

πt(φ) =
EQ[Z−1

t φ(Xt)|F Y ]

EQ[Z−1
t |F Y ]

.

Let ξ = {ξt, t ≥ 0} be the process defined as follows:

ξt = EQ[Z−1
t |F Y

t ].

Definition 1.2. (Bain, Crisan) The unnormalized conditional distribution
of Xt is the measure-valued process ρ = {ρt, t ≥ 0} which is determined
by ρt(φ) = πt(φ)ξt for φ ∈ B(S). Furthermore, ρt(φ) = EQ[Z−1

t φ(Xt)|F Y
t ],

Q(P )-a.s.

In other terms,

πt(φ) =
ρt(φ)

ρt(1)
.

Here one sees that ρt(1) is the normalization factor.
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1.3 The Zakai and Kushner-Stratonovich equations

The Zakai equation is a stochastic differential equation, whose solution is the
unnormalized conditional distribution ρt. Unlike the Kushner-Stratonovich
equation, the Zakai equation is linear and sometimes easier to solve. The
Zakai equation can be presented in two different forms, both of which will be
considered below.

If the following conditions

• EP
[∫ t

0
‖h(Xs)‖2ds

]
<∞, EP

[∫ t
0
Zs‖h(Xs)‖2ds

]
<∞, for all t > 0

• Q
[∫ t

0
[ρs(‖h‖)]2ds <∞

]
= 1, for all t > 0

are satisfied, then the process ρt satisfies the following evolution equation,
called Zakai equation [4]:

ρt(φ) = ρ0(φ) +

∫ t

0

ρs(Aφ)ds+

∫ t

0

ρs(φh)dYs, (1)

Q-a.s., for all t > 0, A is the generator assosiated with unobservable signal
process Xt

Af(x) = a(x)
∂f(x)

∂x
+

1

2
(b(x))2∂

2f(x)

∂x2
.

This is the classical form of the Zakai equation.
For the original form let us refer to the paper [37]. The normalized

conditional density πt = EP (φ(Xt)|F Y
t ) can be rewritten using Kallianpur-

Striebel formula:

EP (φ(Xt)|F Y
t ) =

EQ(φ(Xt)Z
−1
t |F Y

t )

EQ(Z−1
t |F Y

t )
,

or rewritten using the tower law

EP (φ(Xt)|F Y
t ) =

EQ

{
EQ(Z−1

t |F
Y,X
t )φ(Xt)|F Y

t

}
EQ

{
EQ(Z−1

t |F
Y,X
t )|F Y

t

} .

Let Z̃ be the value of some version of EQ

(
Z−1
t |F

Y,X
t

)
at Xt = u. Let

P (u, t) = Prob{Xt ≤ u}. Since, under Q, FX
t and F Y

t are independent, by
Fubini theorem it follows that

EQ

{
EQ(Z−1

t |F
Y,X
t )φ(Xt)|F Y

t

}
=

∫
E

φ(u)Z̃P (du, t) (2)

17



and

EP (φ(Xt)|F Y
t ) =

∫
E
φ(u)Z̃P (du, t)∫
E
Z̃P (du, t)

.

Since φ(Xt) is arbitrary, a version of the conditional probability of Xt con-
ditioned on Yt with respect to P is given by:

Prob{Xt ∈ Γ|F Y
t } =

∫
Γ
Z̃P (du, t)∫

E
Z̃P (du, t)

,

where Γ is any Borel set in E. Furthermore, if P (u, t) is absolutely continuous
and P (du, t) = p(u, t)du, then a version of Prob{Xt ∈ Γ|F Y

t } is also abso-
lutely continuous with respect to the Lebesgue measure and its conditional
density exists and satisfies:

p(u, t|F Y
t ) =

Z̃p(u, t)∫
E
Z̃p(u, t)du

.

Setting Φ(u, t) = Z̃p(u, t), define the density in the following way:

p(u, t|F Y
t ) =

Φ(u, t)∫
E

Φ(u, t)du
.

The connection between the unnormalized conditional distribution ρt and
Φ(u, t), taking into account (2) and P (du, t) = p(u, t)du, is as in [4]:

ρt(φ) =

∫
R

φ(u)Φ(t, u)du.

In this setting Φ(t, u) is the density of ρt.
The idea is to find a stochastic differential equation for Φ(u, t). According

to the corollary in the paper [37] Φ(u, t) satisfies:

Φ(u, t) = p(u, t) +

∫ t

0

∫
E

h(z)Φ(z, s)pz(u, t− s)dzdYs, (3)

where p(u, t) is the density of Prob[Xt ∈ Γ] and pz(u, t− s) is the transition
density of the transition probability Prob[Xt ∈ Γ|Xs = z].

In order to obtain this equation in a more explicit form, we assume that
the unobservable process Xt posesses a transition density pz(u, t) (the corre-
sponding transition probability Prob[Xt ∈ Γ|X0 = z] is absolutely continuous
with respect to the Lebesgue measure) for t > 0. Let A∗ denote the forward
Kolmogorov differential operator

A∗f(x) = − ∂

∂x
(a(x)f(x)) +

1

2

∂2

∂x2
(b2(x)f(x)).

18



Operator A∗ is the Hermitian adjoint of the operator A i.e.

< A∗ψ, φ >=< ψ,Aφ >

for suitably chosen functions φ, ψ.
A real valued function f(x), x ∈ E belongs to C(2,λ) if f(x) and its first

and second partial derivatives are bounded, continuous and satisfy on E
Hölder condition with exponent λ > 0

f(x)− f(y) ≤ C|x− y|λ, for all x, y ∈ E.

A transition density is of class A if it satisfies the following conditions as
in [37]:

• If f(x) is real valued, continuous and bounded on E and 0 ≤ s ≤ t
then

Utf(x) = Usf(x) +

∫ t

s

A∗Uθf(u)dθ,

where Ut denotes the operator

Utf(x) =

∫
E

f(z)pz(u, t)dz

for t > 0 and U0f(u) = f(u).

• If f(u, θ), u ∈ E, θ ∈ [θ1, θ2] and its first and second partial derivatives
with respect to the u are bounded and continuous on E × [θ1, θ2], and
f(u, θ) is C(2,λ) in u, uniformly in [θ1, θ2], then Utf(u, θ) and its first
and second partial derivatives with respect to the u are continuous on
(0, T )×E× [θ1, θ2] and bounded on [0, T ]×G× [θ1, θ2], where G is any
bounded subset of E.

The following theorem is the basic theorem of [37].

Theorem 1.3. (Zakai) Assume that unobservable process Xt posesses a tran-
sition density which is of class A. Assume that Φ(u, t) satisfies equation (3)
and a.s. Φ(u, t) and h(u)Φ(u, t) together with their first and second deriva-
tives with respect to u are bounded and continuous in E× [t1, t2] and Φ(u, t),
h(u)Φ(u, t) are C(2,λ) in u, uniformly in [t1, t2], then Φ(u, t) also satisfies the
evolution-type equation

Φ(u, t) = Φ(u, s) +

∫ t

s

A∗Φ(u, θ)dθ +

∫ t

s

h(u)Φ(u, θ)dYθ, (4)

t1 ≤ s ≤ t ≤ t2.
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Equation (4) is also called Zakai equation.
If the same conditions as for the Zakai equation (1) are satisfied, then the

conditional distribution πt of the signal Xt satisfies the following Kushner-
Stratonovich evolution equation [4]:

πt(φ) = π0(φ) +

∫ t

0

πs(Aφ)ds+

∫ t

0

(πs(φh)− πs(h)πs(φ))(dYs − πs(h)ds),

for any φ ∈ D(A).

1.4 Finite-Dimensional Filters

Generally filters are infinite-dimensional. The heuristical definition of the
infinite-dimensional filter states that the distribution of such a filter cannot
be described by a finite number of parameters. Therefore, the corresponding
Zakai equation would be impossible to solve explicitly. Quite few finite-
dimensional filters are known, basically: Kalman-Bucy filter (coefficients of
the signal and observation equations are linear functions), Beneš filter (co-
efficients of the signal and observation equations satisfy specific conditions)
and Wonham filter (signal process is a Markov chain).

1.4.1 Kalman-Bucy filter

One of the most often used finite-dimensional filters is the Kalman-Bucy
filter [4].

Let Xt be the solution of the linear SDE driven by Brownian motion
process Vt:

Xt = X0 +

∫ t

0

(AsXs + as)ds+

∫ t

0

bsdVs,

where As, bs and as are measurable and locally bounded functions. Assume
that X0 ∼ N(x0, r0) is independent of Vt. Assume that Wt is a standard
Ft-adapted m-dimensional Brownian motion on (Ω, F, P ) independent of Xt

and let Yt be the process satisfying the following evolution equation

Yt = Y0 +

∫ t

0

(HsXs + hs)ds+Wt.

In the case when the coefficients of the signal and observation processes are
linear functions, then the Kushner-Stratonovich equation takes a simpler
form as given in the proposition below.
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Proposition 1.4. (Bain, Crisan) Let X̂ = {X̂, t ≥ 0} be the conditional
mean of the signal, i.e. X̂ = E[Xt|F Y

t ]. Define also R = {Rt, t ≥ 0} to be
the conditional covariance matrix of the signal, i.e.

Rt = E[X2
t |F Y

t ]− E[Xt|F Y
t ]E[Xt|F Y

t ].

Then X̂ satisfies the stochastic differential equation

dX̂t = (AtX̂t + at)dt+RtHt(dYt − (HtX̂t + ht)dt),

and R satisfies the deterministic Riccati equation

dRt

dt
= b2

t + 2FtRt −R2
tH

2
t .

If the filter is linear, then the normalized conditional distribution πt is
normally distributed with mean value X̂t and covariance Rt.

The solution to the Kalman-Bucy filtering problem has an explicit form.

Proposition 1.5. (Bain, Crisan) The conditional expectation of Xt given
the observation σ-algebra is given by the following formula:

πt(φ) =
1

(2π)n/2

∫
R

φ(X̂ +R
1/2
t z) exp(−1

2
‖z‖2)dz,

for any φ ∈ B(R).

The Kalman-Bucy filter can be solved numerically in the discrete form.

Discrete Kalman filter. This framework is in detail described in [5]. The
discrete version of the filtering problem is as follows:

Xk+1 = AkXk +BkW
(1)
k = AkXk + w

(1)
k , (5)

Yk = CkXk +DkW
(2)
k = CkXk + w

(2)
k , (6)

where the parameters Ak, Bk, Ck, Dk of the system are known. The noise
processes W

(1)
k and W

(2)
k are normally distributed with the following proper-

ties:
E[W 1

k ] = 0;E[(W
(1)
k ])2] = Qk,

E[W
(2)
k ] = 0;E[(W

(2)
k ])2] = Rk,

E[W
(1)
k W

(2)
k ] = 0.
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The processes w
(1)
k , w

(2)
k have the following parameters:

E[w
(1)
k ] = 0;E[(w

(1)
k ])2] = B2

kQk,

E[w
(2)
k ] = 0;E[(w

(2)
k ])2] = D2

kRk,

E[w
(1)
k w

(2)
k ] = 0.

It is necessary to construct a linear unbiased estimate X̂k of Xk having the
observations Y1, Y2, ..., Y2. The estimation error is denoted by X̃k = Xk−X̂k.
The variance of the error is denoted by P̃k and defined as follows:

P̃k = E[(X̃k)
2].

The discrete Kalman filter can be evaluated by iterating the following
equations:

• filter equations;
X∗k = Ak−1X̂k−1, (7)

X̂k = X∗k +Kk{Yk − CkX∗k}; (8)

• variance of the estimation error and the coefficient K;

P ∗k = A2
k−1P̃k−1 +B2

k−1Qk−1, (9)

Kk = P ∗kCk{C2
kP
∗
k +D2

kRk}−1, (10)

P̃k = P ∗k −KkCkP
∗
k . (11)

Note that P ∗k+1 = E[(AkX̃k + w
(1)
k )2].

Discrete Kalman filter in the case, when the driving noise of the
processes is given by the sum of Wiener processes. The model to
be considered looks as follows:

Xk+1 = AkXk +
m∑
i=1

B
(i)
k W

(i)
k = AkXk +

m∑
i=1

w
(i)
k , (12)

Yk = CkXk +
m∑
i=1

D
(i)
k V

(i)
k = CkXk +

m∑
i=1

v
(i)
k , (13)

where the parameters Ak, B
(i)
k , Ck, D

(i)
k , i = 1, ...,m of the system are known.

The noise processes W
(i)
k and V

(i)
k are normally distributed with the following

parameters:
E[W

(i)
k ] = 0;E[(W

(i)
k ])2] = Q

(i)
k ,
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E[V
(i)
k ] = 0;E[(V

(i)
k ])2] = R

(i)
k ,

E[W
(i)
k V

(j)
k ] = 0.

The processes w
(i)
k , v

(i)
k have the following parameters:

E[w
(i)
k ] = 0;E[(w

(i)
k ])2] = (B

(i)
k )2Q

(i)
k ,

E[v
(i)
k ] = 0;E[(v

(i)
k ])2] = (D

(i)
k )2R

(i)
k ,

E[w
(i)
k v

(i)
k ] = 0, for i, j = 1, ...,m.

The discrete Kalman filter in this case consists of the following equations:

• filter equations;
X∗k = Ak−1X̂k−1, (14)

X̂k = X∗k +Kk{Yk − CkX∗k}; (15)

• variance of the estimation error and the coefficient K;

P ∗k = A2
k−1P̃k−1 +

m∑
i=1

(B
(2)
k−1)2Q

(i)
k−1, (16)

Kk = P ∗kCk{C2
kP
∗
k +

m∑
i=1

D2
i (k)Ri(k)}−1, (17)

P̃k = P ∗k −KkCkP
∗
k . (18)

Note that P ∗k+1 = E[(AkX̃k +
∑m

i=1 w
(i)
k )2].

1.4.2 Beneš filter

The second well known finite-dimensional filter is Beneš filter [4].
Assume that unobservable signal processXt satisfies the following stochas-

tic differential equation:

Xt = X0 +

∫ t

0

a(Xs)ds+ σVt,

where Vt is Brownian motion and function a:R→ R satisfies

|a(x)− a(y)| ≤ K|x− y|,

for all x, y and some constant K.
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This condition ensures that the SDE for signal process has a unique solu-
tion. It is also assumed that Wt is a standard Brownian motion independent
of Vt and the observation process Yt satisfies the following equation:

Yt =

∫ t

0

h(Xs)ds+Wt.

Also assume that function h: R→ R is linear, i.e. h(x) = h1x+ h2, for x ∈R
and h1, h2 ∈R. Function a(x) is not linear. In order to apply Beneš filter, the
Beneš condition should be satisfied, i.e.

a′(x) + a2(x)σ−2 + h2(x) = P (x),

where x ∈R and a′ is the derivative of a and P (x) is a second order polynomial
with positive leading order coefficient.

Proposition 1.6. (Bain, Crisan) If the Beneš condition is satisfied, then
for arbitrary bounded Borel-measurable φ it follows that the conditional ex-
pectation πt(φ) satisfies the following explicit formula:

πt =
1

ct

∫ ∞
−∞

φ(z) exp(F (z)σ−2 +Qt(z))dz,

where Qt(z) is the second order polynomial

Qt(z) = z
(
h1σ

∫ t

0

sinh(spσ)

sinh(tpσ)
dYs+

q + p2x0

pσ sinh(tpσ)
− q

pσ
coth(tpσ)

)
−p coth(tpσ)

2σ
z2,

and ct is the corresponding normalizing constant

ct =

∫ ∞
∞

exp(A(z)σ2 +Qt(z))dz,

where A is antiderivative of a and p, q are the coefficients of another form
for polynomial P (x) = p2x2 + 2qx+ r, where p, q, r ∈R are arbitrary.

1.4.3 Wonham filter

Another well-known finite-dimensional filter is Wonham filter [36].
Let Xt be discrete, real-valued random variable with range of values

a1, ..., ak and a priori probability distribution {p(j)
0 , j = 1, ..., K} at t = 0.

Suppose that one observes process Yt, which is the solution of the following
stochastic differential equation:

dYt = Xtdt+ btdWt, Y0 = 0,
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where function bt is continuously differentiable and bounded away from 0 for
t ≥ 0; Wt is a Brownian motion which is independent of Xt with P [W0 =
0] = 1.

Posterior distribution is introduced:

p
(j)
t = P{Xt = aj|Ys, 0 ≤ s ≤ t}, j = 1, ..., K.

The explicit form of p
(j)
t is given by the following formula [36]:

p
(j)
t =

p
(j)
0 exp

[
aj
∫ t

0
b−2
s dYs − 1

2
aj
∫ t

0
b−2
s ds

]
∑K

k=1 p
(k)
0 exp

[
ak
∫ t

0
b−2
s dYs − 1

2
ak
∫ t

0
b−2
s ds

]

=
p

(j)
0 exp

[
aj

(∫ τ
0
b−2
s dYs +

∫ t
τ
b−2
s dYs

)
− 1

2
aj

(∫ τ
0
b−2
s ds+

∫ t
τ
b−2
s ds

)]
∑K

k=1 p
(k)
0 exp

[
ak

(∫ τ
0
b−2
s dYs +

∫ t
τ
b−2
s dYs

)
− 1

2
ak

(∫ τ
0
b−2
s ds+

∫ t
τ
b−2
s ds

)]
=

p
(j)
0 exp

[
aj
∫ τ

0
b−2
s dYs − 1

2
aj
∫ τ

0
b−2
s ds

]
exp

[
aj
∫ t
τ
b−2
s dYs − 1

2
aj
∫ t
τ
b−2
s ds

]
∑K

k=1 p
(k)
0 exp

[
ak
∫ τ

0
b−2
s dYs − 1

2
ak
∫ τ

0
b−2
s ds

]
exp

[
ak
∫ t
τ
b−2
s dYs − 1

2
ak
∫ t
τ
b−2
s ds

]
=

p
(j)
τ exp

[
aj
∫ t
τ
b−2
s dYs − 1

2
aj
∫ t
τ
b−2
s ds

]
∑K

k=1 p
(k)
τ exp

[
ak
∫ t
τ
b−2
s dYs − 1

2
ak
∫ t
τ
b−2
s ds

] . (19)

Consider joint process {Xt, pt, t ≥ 0}, where pt = [p
(1)
t , ..., p

(K)
t ] and Xt is re-

garded as fixed random variable with a priori probability distribution {p(j)
0 }.

From (19) one sees that pt depends only on Xτ , pτ and the increments of Ws

for τ < s < t. These increments are independent of pτ , Xτ and the Ws in-
crements for 0 < s < τ , on which pτ depends. It follows that the conditional
distribution pt of Xt, given Xs, ps, 0 < s < τ , is a function of Xτ , pτ alone.
Therefore, the process {Xt, pt, t ≥ 0} is Markov.

In the paper [36] the evolution in time of the p(j)’s is described by means
of a system of SDE’s. Applying the result of Dynkin the author states the
following evolution equation:

dp
(j)
t = mj(t,X, pt) + σj(t,X, pt)dWt, j = 1, ..., K.

The functions mj and σj have probabilistic meaning

mj(t, ξ, p) = lim
h→0

E
[p(j)

t+h − p
(j)
t

h

∣∣∣Xt = ξ, pt = p
]

= b−2
t (Xt − X̄)(aj − X̄)p(j),
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σi(t, ξ, p)σj(t, ξ, p) = lim
h→0

E
[ [p

(i)
t+h − p

(i)
t ][p

(j)
t+h − p

(j)
t ]

h

∣∣∣Xt = ξ, pt = p
]
,

i, j = 1, ..., K,

where X̄ =
∑K

k=1 akp
k and

σj(t, x, p) = b−1
t (aj − X̄)p(j).

Therefore, the evolution equation for p(j)’s takes the following form:

dp
(j)
t = b−2

t (Xt − X̄t)(aj − X̄t)p
(j)
t dt+ b−1

t (aj − X̄t)p
(j)dWt

= −b−2
t (xt − x̄t)(aj − x̄t)p(j)

t dt+ b−2
t (aj − x̄t)p(j)dYt.

This system of stochastic differential equations specifies the dynamic struc-
ture of the filter.

For a derivation based on the Zakai equation see [4].
The Wonham filter or Hidden Markov model filter can be used to compute

the approximating filter in case when, for example, a diffusion process is
approximated by a Markov chain as in [8], which will be discussed later.

1.5 Numerical methods for solving the non-linear fil-
tering problem

Very often a non-linear filtering problem can be quite successfully solved
numerically. In this subsection three numerical methods, see Section 8 in [4],
are considered, the first of them will be applied further in the thesis.

1.5.1 Extended Kalman filter

This method allows to apply Kalman-Bucy filter to a non-linear filtering
problem, see Section 8 in [4]. For this, the non-linear coefficient functions
of the signal and observation equations have to be linearized using Taylor
expansion.

Let (Xt, Yt) be the solution of the following 1-dimensional system of non-
linear stochastic differential equations:

dXt = a(Xt)dt+ b(Xt)dVt,

dYt = h(Xt)dt+ dWt,

and assume that (X0, Y0) = (x0, 0). Define x̄t to be the solution of the
ordinary differential equation

dx̄t
dt

= a(x̄t),
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x̄0 = x0.
It is assumed that the contribution of the stochastic term in the above

system of SDEs remains small, at least within a small window of time [0; ε].
The following Taylor-like expansion is applied in order to linearize the filter-
ing problem:

dXt ≈ (a′(x̄t)(Xt − x̄t) + a(x̄t))dt+ b(x̄t)dVt,

dYt ≈ (h′(x̄t)(Xt − x̄t) + h(x̄t))dt+ dWt,

where a′ and h′ are the derivatives of a and h respectively.
One can assume that for a small time window, the equation satisfied by

the pair (Xt, Yt) is nearly linear. Therefore, it can be assumed that the
conditional expectation πt is normal with mean x̂t and with covariance Rt,
which satisfy the following system of equations:

dx̂t = (a′(x̄t)x̂t+a(x̄t)−a′(x̄t)x̄t)dt+Rth
′(x̄t)(dYt−(h′(x̄t)x̂t+h(x̄t)−h′(x̄t)x̄t)dt),

dRt

dt
= σ2

t (x̄t) + 2a′(x̄t)Rt −R2
th
′(x̄t)

2
.

with x̂0 = x0 and R0 = r0.
The extended Kalman filter is not mathematically proved, but is used in

practice. The extended Kalman filter will give a good estimate if the initial
position of the signal is well approximated (r0 is ’small’), the coefficients
a and b are nearly linear, h is injective and the system is stable. In the
last chapter of the thesis this method will be applied to the case, when the
non-linear coefficient functions are square root functions. The square root
function can be heurictically considered to be a ’slightly’ non-linear function.
The filtering results turn out to be quite good for square root functions.

1.5.2 The spectral approach to solving the filtering problem

The density of the unnormalised conditional distribution of the signal is the
solution of the stochastic partial differential equation (4), called the Zakai
equation:

Φ(u, t) = Φ(u, s) +

∫ t

s

A∗Φ(u, θ)dθ +

∫ t

s

h(u)Φ(u, θ)dYθ.

The spectral approach, see Section 8 in [4] is based on decomposing Φ(u, t)
into a sum of the form:

Φ(u, t) =
∑
α

1√
α!
φα(t, z)ξα(Y ), (20)
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where ξα(Y ) are Wick polynomials

ξα =
∏
k,l

(Hαlk
(ξk,l)√
αlk!

)
,

where Hn(x) are Hermite polynomials

Hn(x) = (−1)nex
2/2 d

n

dxn
e−x

2/2

and ξk,l =
∫ t

0
mk(s)dY

l(s) are random variables, and {mk} = {mk(s)}k≥1

is an orthonormal system in the space L2([0, t]). Further, a collection α =
(αlk)1≤l≤d,k≥1 of nonnegative integers is called a d-dimensional multi-index
if only finitely many of αlk are different from zero. Let J be the set of all
d-dimensional multi-indices. For α ∈ J define

• length of α: α =
∑

l,k α
l
k;

• the order of α: d(α) = max{k ≥ 1, αlk for some 1 ≤ l ≤ d};

• α! =
∏

k,l α
l
k!.

Returning back to (20), consider φα(t, z), which are deterministic Hermite-
Fourier coeffcients in the Cameron-Martin orthogonal decomposition of Φ(t, z)
and which satisfy the following system of equations:

dφα(t, z)

dt
= A∗φα(t, z) +

∑
k,l

αlkmk(t)h
l(z)φα(k,l)(t, z)

φα(0, z) = π0(z)1α=0,

where α(i, j) stands for the multi-index (α̃lk)1≤l≤d,k≥1 is defined as α̃t
l = αlk,

if k 6= i or l 6= j or both, and α̃t
l = max{0, αji − 1} if k = i and l = j.

Theorem 1.7. (Bain, Crisan) Under certain technical assumptions, the se-
ries ∑

α

1√
α!
φα(t, z)ξα(Y )

converges in L2(Ω, P̃ ) and in L1(Ω, P ) and

Φ(t, z) =
∑
α

1√
α!
φα(t, z)ξα(Y ),

P -a.s.
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This expansion separates the parameters from the observations: the Hermite-
Fourier coeffcients are determined only by the coeffcients of the signal process,
its initial distribution and the observation function h, whereas the polyno-
mials ξα(Y ) are completely determined by the observation process.

For computational purposes one has to truncate the sum in the expansion
of Φ(t, z).

1.5.3 The partial differential equation method for solving the Za-
kai equation

The density Φ(t, z) of the of the unnormalized conditional distibution of the
signal is the solution of the stochastic PDE, i.e. Zakai equation

Φ(u, t) = Φ(u, s) +

∫ t

s

A∗Φ(u, θ)dθ +

∫ t

s

h(u)Φ(u, θ)dYθ,

to which the splitting-up algorithm is applied, following Section 8 in [4].
Let 0 = t0 < t1 < ... < tn < ... be a uniform partition of the interval

[0,∞) with the time step ∆ = tn−tn−1. The density Φ(tn, z) is approximated
by φ∆

n (z). The transition from φ∆
n−1(z) to φ∆

n (z) is made in two steps:

• The prediction step consists in solving the following Fokker-Planck
equation for the time interval [tn−1,tn ]:

∂φnt (z)

∂t
= A∗φnt (z)

φntn−1
= φ∆

n−1.

Denote the prior estimate φ̄∆
n = φntn . The Fokker-Planck equation is

solved by using the implicit Euler scheme

φ̄∆
n −∆A∗φ̄∆

n = φ̄∆
n−1.

One can approximate the solution to this equation by using a finite
difference scheme in order to approximate the differential operator A∗.

• The second step is called the correction step and uses the new obser-
vation Ytn to update φ̄∆

n for z ∈ R

φ∆
n (z) = cnψ

∆
n φ̄

∆
n (z),

where ψ∆
n (z) = exp

(
− 1

2
∆||z∆

n −h(z)||2
)

, cn is a normalization constant

chosen such that ∫
R

φ∆
n (z)dz = 1
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and

z∆
n =

1

∆
(Ytn − Ytn−1).

1.6 Markov Chain approximations for solving the non-
linear filtering problem

Here we consider a non-linear filtering problem, which consists of an un-
observable signal, driven by a diffusion process with non-linear drift and
diffusion coefficients, and an observation that also follows a diffusion process
with a non-linear drift coefficient. Such a filtering problem cannot be solved
explicitly, that is why a Markov chain approximation for the diffusion signal
process is sought. The way how to construct such a Markov chain is proposed
in paper [8].

1.6.1 Continuous-time Markov chain approximation for nonlinear
filtering problem without jumps

Here one of the basic papers on approximate filter construction is considered.
In the work [8] an approximate solution for the non-linear filtering problem
is derived.

A diffusion process is approximated by a Markov chain and then it is
shown, that an approximate filter, derived for an approximating Markov
Chain, converges to the unknown filter of the original diffusion process. The
framework of the paper [8] is considered below.

Consider an 1-dimensional unobservable signal process Xt, which is the
solution to the following SDE:

dXt = a(Xt)dt+ b(Xt)dVt, 0 ≤ t ≤ T, (21)

where a and b are R-valued functions respectively on R×[0;T ] and Vt is an
1-dimensional standard Wiener process. The process Xt is partially observed
through the 1-dimensional observation process Yt, that solves another SDE:

dYt = h(Xt)dt+ dWt,

where h is an R-valued function on R×[0, T ] and Wt is a 1-dimensional stan-
dard Wiener process independent of Vt.

Let F Y
t be the σ-algebra generated by Ys, 0 ≤ s ≤ t and let φ be a

real-valued meaurable function on R. The nonlinear filtering problem is to
evaluate for each t the conditional expectation

π(φ(Xt)) = E{φ(Xt)|F Y
t }.
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Assumption 1.8. Functions a, b, h and φ are continuous and bounded.

The authors of paper [8] consider the Kallianpur-Striebel formula as the
way to evaluate the filter. Let B[0, T ] be the Borel σ-algebra induced on
C[0, T ] by the sup norm topology. Let X̄t be a version of Xt independent of
Yt in the sense that X̄t induces on B[0, T ] the same probability measure as
Xt and, X̄s, 0 ≤ s ≤ T and Ys, 0 ≤ s ≤ T are independent. Define

Vφ(t) = E
[
φ(X̄t) exp

(∫ t

0

h(X̄s)dYs −
1

2

∫ t

0

h2(X̄s)ds
)
|F Y
t

]
. (22)

Then,

E{φ(Xt)|F Y
t } =

Vφ(t)

V1(t)
a.s,

where V1(t) is given by (22) in case if φ(x) = 1.
The conditional expectation solves the Kushner-Stratanovich equation,

which is in most cases not easy to solve. That is why an approximate solution
is searched in [8].

In the paper the original diffusion processXt is approximated by a continuous-
time Markov Chain which is obtained by spatial discretization of the unob-
servable process Xt. As the discretization step goes to zero, the chain con-
verges weakly to the diffusion and the corresponding function φ of the chain
converges to the function φ of the original diffusion [8]. That is how the filter
is approximated.

For the actual computation of the approximating functionals the process
Xt is stopped at its first exit from a certain bounded region. In this way an
approximating chain with finite number of states is obtained. The diffusion
process Xt is approximated by a continuous-time Markov chain {Xk, 0 ≤ t ≤
T} with state space Rk = {z ∈R: z = X0 + nk, n integer}.

Proposition 1.9. (Di Masi, Runggaldier) An approximating Markov Chain
in the above sense is given by the following transition rates:

Qk
+(Xt) =

a+(Xt)

k
+
b2(Xt)

2k2
;

Qk
−(Xt) =

a−(Xt)

k
+
b2(Xt)

2k2
;

Qk(Xt) = −|a(Xt)|
k

− b2(Xt)

k2
;

where a+ = max(a, 0) and a− = [−a]+.
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The transition probabilities in [8] are chosen in the following form:

P [Xk
t+∆ = x+ k|Xk

t = x] =

∫ t+∆

t

Qk
+(Xs)ds;

P [Xk
t+∆ = x− k|Xk

t = x] =

∫ t+∆

t

Qk
−(Xs)ds;∑

n∈Z

P [Xk
t+∆ = x+ nk|Xk

t = x] = o(∆), n 6= −1, 0,+1;

P [Xk
t+∆ = x|Xk

t = x] = 1−
∫ t+∆

t

Qk(Xt)− o(∆).

The problem is considered on a bounded region. Let G ⊂R be open and
bounded and let Gk = G∩ Rk and define the stopping times

τ =

{
T if Xt ∈ G for all t ∈ [0, T ]

inf{t : 0 ≤ t ≤ T,Xt /∈ G} otherwise

τ k =

{
T if Xk

t ∈ Gk for all t ∈ [0, T ]
inf{t : 0 ≤ t ≤ T,Xk

t /∈ Gk} otherwise

and the corresponding stopped processes

X̃t = Xt∧τ , X̃
k
t = Xk

t∧τk .

The number of states of X̃k is denoted by Nk and Qk
+ + Qk

− + Qk = 0 for
X ∈ ∂Gk, where ∂Gk = {x ∈Rk − Gk : min |x − y| < k, y ∈ Gk is the
boundary of the state space of X̃k.

Let Ỹt be the observation corresponding to the stopped process X̃t:

Ỹt = Y0 +

∫ t

0

h(X̃s)ds+Wt

and F̃ Y
t be the σ-algebra generated by Ỹs, 0 ≤ s ≤ t. Then the problem of

filtering the stopped process X̃ looks as follows:

E{φ(X̃t)|F̃ Y
t } =

Ṽφ(t)

Ṽ1(t)
a.s,
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where

Ṽφ(t) = E
[
φ(X̂t) exp

(∫ t

0

h(X̂s)dỸs −
1

2

∫ t

0

h2(X̂s)ds
)∣∣∣F̃ Y

t

]
, (23)

where X̂t is a version of X̃t independent of Ỹt. Let X̂k be a version of
Xk independent of Ỹt, then the approximating functional for evaluating the
conditional expectation is as follows

Ṽφ(t) = E
[
φ(X̂k

t ) exp
(∫ t

0

h(X̂k
s )dYs −

1

2

∫ t

0

h2(X̂k
s )ds

)∣∣∣F̃ Y
t

]
, (24)

In the paper [8] it is shown, that Xk converges weakly to Xt as k →∞.
The proof of convergence is done in the following way:

• First, it is shown that a sequence of approximating chains Xk, k →
0 is sequentially compact, namely there exists a weakly converging
subsequence. Denote Dn[0, T ] to be the space of Rn-valued functions
on [0, T ] that are right-continuous, left continuous at T and have left-
hand limits, endowed with metric with respect to which Dn[0, T ] is
separable and complete [8]. On Dn[0, T ] weak sequential compactness
is equivalent to tightness. Define the following:

Akt =

∫ t

0

a(Xk
s )ds, (25)

Bk
t = Xk

t −X0 −
∫ t

0

a(Xk
s )ds, (26)

so that Xk
t = X0 + Akt +Bk

t .

Proposition 1.10. (Di Masi, Runggaldier) Every sequence {(Xk, Ak, Bk),
k → 0} is tight in D3[0, T ] and the limit of every converging subsequence
has trajectories in C3[0, T ] a.s.

For the proof it is sufficient to show, that there exist positive constants
K, α and β such that for each scalar component ηk of the sequence
{(Xk, Ak, Bk)} and for each t, t+ ∆ ∈ [0, T ] holds

limE[|ηkt+∆ − ηkt |α] ≤ K∆1+β, k → 0. (27)

The proof is given in [8] in detail.
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• Second, for the proof of convergence one has to show, that every weakly
converging sequence {Xk, k → 0} converges to the same limit, which
is precisely the original diffusion Xt. It is assumed that for each initial
condition X0 equation (21) has on [0, T ] a unique solution in the weak
sense.

Theorem 1.11. (Di Masi, Runggaldier) For each weakly converging
sequence {Xk, Ak, Bk, k → 0} there exists a standard Wiener process
Ṽt such that the limiting process is given by (ξ, A,B) with

ξt = X0 + At +Bt, (28)

At =

∫ t

0

a(ξs)ds, (29)

Bt =

∫ t

0

b(ξs)dṼs. (30)

The convergence of the stopped processes is considered further. For this
define Ḡ to be the closure of G and define the stopping time

τ ′ =

{
T if Xt ∈ Ḡ for all t ∈ [0, T ]

inf{t : 0 ≤ t ≤ T,Xt /∈ Ḡ} otherwise.

Then the theorem in [8] states, that if P{τ ′ = τ} = 1 then X̃k
t converges

weakly to X̃t as k → 0.
The next theorem shows the convergence of the filters for the original

diffusion process and its Markov chain approximation.

Theorem 1.12. (Di Masi, Runggaldier) If P{τ ′ = τ} = 1, then Ṽ k
φ (t)

converges to Ṽφ(t) a.s. for each t ∈ [0, T ], as k → 0.

Proof. (Di Masi, Runggaldier)
Consider

Ṽφ(t) = E
[
φ(X̂k

t ) exp
(∫ t

0

h(X̂k
s )h(X̃s)ds (31)

+

∫ t

0

h(X̂k
s )dWs −

1

2

∫ t

0

h2(X̂h
s )ds

) ∣∣∣F̃ Y
t

]
.
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Using the Skorohod imbedding, every sequence {X̂k, h→ 0} converges with
probability 1 and uniformly on [0, T ] to X̂. Due to the boundedness of φ and
h

φ(X̂k
t )→ φ(X̂t),∫ t

0

h(X̂k
s )h(X̃s)ds→

∫ t

0

h(X̂s)h(X̃s)ds,∫ t

0

h2(X̂k
s )ds→

∫ t

0

k2(X̂s)ds,∫ t

0

|h(X̂k
s )− h(X̂s)|2ds→ 0

converge with probability 1.

1.6.2 Continuous-time Markov chain approximations for the non-
linear filtering problem with discontinuous observations

This subsuction is based on the paper [9]. Let a partially observable process
Xt, Yt, t ∈ [0, T ] be given on a probability space (Ω, F, P ). The unobservable
component Xt, called the signal process follows the diffusion process and is
given by the following SDE as in [8]:

dXt = a(Xt)dt+ b(Xt)dVt, 0 ≤ t ≤ T,

where a and b are R-valued functions respestively on R×[0;T ], Vt is a 1-
dimensional standard Wiener process. The signal process Xt is partially
observed through the observation process Yt which follows

dYt = h(Xt)dt+ dWt + dNt,

where h is an R-valued function on R×[0, T ], Wt is a 1-dimensional standard
Wiener process and Nt is doubly stochastic Poisson process with rate λ(Xt).
Also Wt is independent of Vt and Nt.

Let F Y
t be the σ-algebra generated by Ys, 0 ≤ s ≤ t and let φ be a real-

valued meaurable Borel function on R. As it was already mentioned earlier,
the nonlinear filtering problem is to evaluate the conditional expectation

π(φ(Xt)) = EP{φ(Xt)|F Y
t },

for each time moment t.
Further, consider in detail how such a filter can be approximated. As-

sume, that λ(x) and φ(x) are bounded and continuous functions; h(x) is
bounded and of class C2; also functions a and b are bounded and continuous.
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The new measure Q on (Ω, P ) is defined in [9]:

dQ

dP
= exp

[
−
∫ T

0

h(Xs)dWs −
1

2

∫ T

0

h2(Xs)ds

−
∫ T

0

log λ(Xs)dNs −
∫ T

0

[1− λ(Xs)]ds
]
,

such that Y c
t = Yt − Nt is an (F,Q)-standard Wiener process, Nt is (F,Q)-

standard Poisson process and under Q the processes Yt and Xt are indepen-
dent. Define

Lt = EQ

{
dP

dQ

∣∣∣FX
t ∨ F Y

t

}
,

where FX
t = σ(Xs, 0 ≤ s ≤ t) and F Y

t = σ(Ys, 0 ≤ s ≤ t).
The process Lt is given by

Lt = exp
[∫ T

0

h(Xs)dY
c
s −

1

2

∫ T

0

h2(Xs)ds

+

∫ T

0

log λ(Xs)dNs +

∫ T

0

[1− λ(Xs)]ds
]
,

where Y c
t is the continuous part of the process Yt, and the following filter

representation holds:

π(φ(Xt)) = EP [φ(Xt)|F Y
t ] =

EQ[φ(Xt)Lt|F Y
t ]

EQ[Lt|F Y
t ]

=
Vt(y, φ)

Vt(y, 1)
= Gt(y), P − a.s.

The idea in the paper [9] is to approximate Vt(y, φ). First the signal
process Xt is approximated by a sequence of weakly-converging, continuous-
time and finite-state Markov chains Xk

t . The exact way how it can be done
was considered in the previous section. Then the sequence of approximating
functionals is defined:

V k
t (y, φ) = EQ[φ(Xk

t )Lkt |F Y
t ],

where Lkt differs from Lt only by changing Xt into Xk
t .

One can prove that under certain assumptions

lim
h→0

V h
t (y, φ) = Vt(y, φ),
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t ∈ [0, T ] P -a.s. and therefore

Gk
t (y) =

V k
t (y, φ)

Vt(y, 1)
≈ Gt(y).

In the paper [9] it is proved that the optimal filter Gt(y) is robust, i.e. for each
t ∈ [0, T ] the filterGt(y) is P -a.s. continuous. The sequence of approximating
filters is also robust.

2 Introduction to Lévy processes

This section gives a short overview over the Lévy or jump-diffusion processes,
which will be widely used further in the thesis. This theoretical backgroung
is from the book [2].

Let X = (Xt, t ≥ 0) be a stochastic process defined on a probability space
(Ω, F, P ), then X is a Lévy process if

• X(0) = 0 a.s.

• X has independent and stationary increments

• X is stochastically continuous, i.e. for all a > 0 and for all s ≥ 0

lim
t→s

P (|Xt −Xs| > a) = 0.

The Lévy-Khintchine formula for a Lévy process X = (Xt, t ≥ 0) is

E
(
ei(u,Xt)

)
= exp

(
t
[
i(b, u)−1

2
(u,Au)+

∫
R−{0}

[ei(u,y)−1−i(u, y)IB̂(y)]v(dy)
])
,

for each t ≥ 0, u ∈ R, where (b, A, v) are the characteristics of X and v is
Lévy measure; I is the characteristic function, B̂ = B1(0) is the unit ball.

Lévy measure v is a Borel measure defined on R− {0} = {x ∈ R, x 6= 0}
such that ∫

R−{0}
(|y|2 ∧ 1)v(dy) <∞ or

∫
R−{0}

|y|2

1 + |y|2
v(dy) <∞.

Any Lévy process is a Markov process i.e.

E(f(Xt)|FX
s ) = E(f(Xt)|Xs)

a.s. for s > t.
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Proposition 2.1. The Lévy-Ito decomposition: If X is a Lévy process,
then there exists b ∈ R, a Brownian motion BA with covariance matrix A
and an independent Poisson random measure N on R+× (R−{0}) such that
for each t ≥ 0

Xt = bt+BA
t +

∫
|x|<1

xÑ(t, dx) +

∫
|x|≥1

xN(t, dx).

Poisson random measure N(t, A)(ω) is for each t > 0, ω ∈ Ω a counting
measure on B(R− {0}):

N(t, A)(ω) = {0 ≤ s ≤ t; ∆Xs(ω) ∈ A}.

For each bounded A, (N(t, A), t ≥ 0) is a Poisson process with intensity
v(A) = E(N(1, A)) and Ñ is a compensated Poisson random measure (mar-
tingale measure) defined by Ñ(t, A) = N(t, A)− tv(A) for bounded A.

Every Lévy process is a semimartingale.
Next, consider the generators of Lévy processes. Let X be a Lévy process

with characteristics (b, a, v) and let A be the infinitesimal generator of X:

(Af)(x) = b
∂f(x)

∂x
+

1

2
a
∂2f(x)

∂x2
+

∫
R−{0}

[f(x+y)−f(x)−y∂f(x)

∂x
IB̂(y)]v(dy).

Ito formula for Lévy process. Let X be a Lévy process with stochastic
differential

dXt = Gtdt+FtdBt +

∫
|x|<1

H(t, x)Ñ(dt, dx) +

∫
|x|>1

K(t, x)N(dt, dx). (32)

Continuous part is Xc
t = Gtdt+ FtdBt and discontinuous part is

Xd
t =

∫
|x|<1

H(t, x)Ñ(dt, dx) +
∫
|x|>1

K(t, x)N(dt, dx), therefore Xt = X0 +

Xc
t +Xd

t .

Theorem 2.2. Ito formula: If X is a Lévy-type stochastic process of the
form (32), then for each f ∈ C2(R), t ≥ 0, with probability 1

f(Xt)− f(X0) =

∫ t

0

∂f(Xs−)

∂x
dXc

s +
1

2

∫ t

0

∂2f(Xs−)

∂x2
d[Xc, Xc](s)

+

∫ t

0

∫
|x|≥1

[f(Xs +K(x, s))− f(Xs−)]dN(ds, dx)

+

∫ t

0

∫
|x|<1

[f(Xs +H(x, s))− f(Xs−)]dÑ(ds, dx)

+

∫ t

0

∫
|x|<1

[f(Xs +H(x, s))− f(Xs−)−H(x, s)
∂f(Xs−)

∂x
]v(dx)ds.
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Ito’s product formula. Consider the Lévy-type stochastic processes X(1)

and X(2) of the form (32), then for all t ≥ 0 with probability 1

d(X
(1)
t , X

(2)
t ) = X

(1)
t− dX

(2)
t +X

(2)
t− dX

(1)
t + d[X(1), X(2)]t,

where Ito correlation is as follows:

d[X(1), X(2)]t = F (1)(s)F (2)(s)ds+

∫
|x|<1

H(1)(s, x)H(2)(s, x)Ñ(ds, dx)

+

∫
|x|≥1

K(1)(s, x)K(2)(s, x)N(ds, dx).

Exponential martingales. Consider the Lévy-type process

dXt = Gtdt+ FtdBt +

∫
|x|<1

H(t, x)Ñ(dt, dx) +

∫
|x|>1

K(t, x)N(dt, dx).

Also consider the process eX = (eXt , t ≥ 0) and a condition, under which
this process is a martingale.

Corollary 2.3. (Appelbaum) eY is a local martingale if and only if

G(s) +
1

2
F 2(s) +

∫
|x|<1

(
eH(s,x) − 1−H(s, x)

)
v(dx)

+

∫
|x|≥1

(
eK(s,x) − 1

)
v(dx) = 0

almost surely and for almost all s ≥ 0.

The heuristic explanation to the above result can be obtained in the
following way. By Ito formula

eXt = 1 +

∫ t

0

eXs−F (s)dBs +

∫ t

0

∫
|x|<1

(
eH(s,x) − 1

)
Ñ(ds, dx)

+

∫ t

0

∫
|x|≥1

(
eK(s,x) − 1

)
Ñ(ds, dx)

+

∫ t

0

eXs− [G(s) +
1

2
F 2(s) +

∫
|x|<1

(
eH(s,x) − 1−H(s, x)

)
v(dx)

+

∫
|x|≥1

(
eK(s,x) − 1

)
v(dx)

]
ds.
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In order eXt to be a martingale, the drift term (the term at ds) should be
zero. This is stated in the corollary above.

Let eX be an exponential martingale, then an equivalent probability mea-
sure Q on (Ω, F ) can be defined as follows:

dQt

dPt
= eXt .

These were the most inportant facts, definitions and theorems concerning
Lévy processes.

3 Non-linear filtering problems for Lévy pro-

cesses

The recent publications consider filtering problems for the jump-diffusion
processes. There are several works, where an attempt is made to solve ex-
plicitly the non-linear filtering problem, in which the signal process or the
observation process or both are jump-diffusions. In two of the following works
a corresponding Zakai equation for jump-diffusion processes is derived and
in one work this Zakai equation is solved theoretically.

3.1 The case when the unobservable process follows
the diffusion process and the observation process
follows the jump-diffusion process

This theoretical approach is based on the paper [28]. Consider the following
non-linear filtering problem where Xt is the signal process driven by standard
Wiener process Vt

dXt = a(Xt)dt+ b(Xt)dVt, (33)

and Yt is observation process

dYt = h(Xt)dt+ dWt +

∫
R0

ζNλ(dt, dζ) (34)

driven by standard Wiener process Wt and an integer-valued random measure
Nλ. This integer-valued random measure has a predictable compensator
µ̂(dt, dζ, ω) = λ(t,Xt, ζ)dtν(dζ), where ν is a Lévy measure. It is assumed
that (Vt,Wt) is a Wiener process independent of Nλ.

The aim is to determine the conditional expectation

E[f(Xt)|F Y
t ],
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where f is a Borel function and F Y
t is the σ-algebra, generated by {Ys, 0 ≤

s ≤ t}. Consider conditional distribution P [Xt|F Y
t ] such that P [Xt ∈

dx|F Y
t ](ω) = p(t, x, ω)dx, and also consider the process Φ which is related to

p(t, x, ω) in the following way:

p(t, x, ω) =
Φ(t, x, ω)∫

R
Φ(t, x, ω)dx

.

This function Φ fullfills Zakai equation (4). The equivalent measure µ on
(Ω, F ) is defined via dπ = Λtdµ with Radon-Nikodym density

Λt = exp
{∫ t

0

h(Xs)dWt −
1

2

∫ t

0

h2(Xs)ds

+

∫ t

0

∫
R0

log λ(s,Xs, ζ)Nλ(ds, dζ) +

∫ t

0

∫
R0

(1− λ(s,Xs, ζ))dsν(dζ)
}
.

Processes (33)-(34) get transformed under measure µ in the following way:

dXt = a(Xt)dt+ b(Xt)dVt,

dYt = Bt + Lt,

where Yt is a Lévy process independent of Xt under µ with

Bt = Wt −
∫ t

0

h(Xs)ds

and

Lt =

∫ t

0

∫
R0

ζN(ds, dζ),

where under transformed measure µ we have λ = 1 and we write N(ds, dζ) =
N1(ds, dζ).

Thererfore, the observation is decomposed into a Brownian motion part
and jump part.

Under this setting the function Φ satisfies the following Zakai equa-
tion [28]:

Φ(t, x) =

∫ t

0

L∗Φ(s, x)ds+

∫ t

0

h(x)Φ(s, x)dBs

+

∫ t

0

∫
R0

(λ(s, x, ζ)− 1)Φ(s, x)Ñ(ds, dζ),

where L∗ is the adjoint operator of the generator L of Xt, Ñ(ds, dζ) =
N(ds, dζ) − dsν(dζ) and also Φ(0, x) = p0(x), where p0(x) is the density
function of the initial condition X0.
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Operator L∗ can be written as L∗ = A−c according to [28], where A is the
generator of a diffusion and the function c is in C1,2

b (R+×R)∩C2+β(R+×R),
where Cn,m

b (R+ × R) is the space of continuously differentiable functions (n
times in t, m times in x) with all partial derivatives bounded and Cn+β(R+×
R) denotes the space of functions whose partial derivatives up to order n are
Hölder-continuous of order 0 < β ≤ 1.

The authors of [28] make several assumptions, the most important of
which are the following:
- The Lévy measure v is finite ;
- The generator A is uniformly elliptic;
- The coefficients a and b are Hölder continuous and belong to C1,3

b (R+×R);
the observation function h is in C1,2

b (R+ × R) ∩ C2+β(R+ × R) and also the
intensity rate λ is in the same space and is strictly positive;
- The initial distribution p0(x) is positive and is an element of C

2β
b (R).

Using results from white-noise analysis and the Feynman-Kač represen-
tation theorem, the authors of [28] get:

Theorem 3.1. (Meyer-Brandis, Proske) The solution Φ(t, x) is a unique
strong solution in Lp(µ), p ≥ 1 and twice continuously differentiable in x. It
takes the following form:

Φ(t, x) = Ex
[
p0(Xt(θ)) exp

(∫ t

0

c(Xt−s(θ))ds
)
×

× exp
(∫ t

0

h(Xs(θ))dWt(ω)− 1

2

∫ t

0

h2(Xs(θ))ds

+

∫ t

0

∫
R0

log λ(s,Xs(θ), ζ)Ñλ(ds, dζ, ω)

+

∫ t

0

∫
R0

(log(λ(s,Xt−s(θ), ζ))− λ(s,Xs(θ), ζ)− 1))dsν(dζ)
))]

,

where Xs(θ) = Xx
s (θ) is a diffusion process associated with A, which starts at

time zero in x and which is defined on the auxiliary probability space (Θ, G, ϑ),
and Ex is the expectation with respect to the measure ϑ of Xs = Xx

s .

3.2 The case when the unobservable process follows
the jump-diffusion process and the observation pro-
cess follows the diffusion process

This subsection os based on the paper [32].
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Consider the nonliner filtering problem of the form

dXt = a(Xt)dt+ b(Xt)dVt + dJt,

where a and b are bounded continuous functions on R, Vt is standard Brow-
nian motion and Jt the jump process Jt =

∫ t
0

∫
Γ
g(Xs−, ρ)N(ds, dρ), where

N(ds, dρ) is Poisson random measure on the Borel sets [0,∞)× Γ, indepen-
dent of the Brownian motion Vt with mean rate equal to EN(t + ∆, A) −
EN(t, A) = λ∆F (A). Here λ is the jump rate and F (.) is the probability
measure on the space of jump hights Γ.

The process {Xt, t ≥ 0} is called the signal or unobservable process and
is defined on the probability space (Ω, F, P ). On the same probability space
there is an obserbable process {Yt, t ≥ 0} defined as follows:

dYt = h(Xt)dt+ dWt,

where function h is continuous and bounded and the standard Brownian
motion W is independent of Xt. Denote by F Y

t = σ{Ys, s ≤ t} the sigma-
algebra generated by the observations. The filtering problem consists of
computing the least squares estimate of f(Xt), where f ∈ C2

0(R), given the
observations F Y

t :
EP [f(Xt)|F Y

t ].

In the paper [32] the optimal filter EP [f(Xt)|F Y
t ] is defined through the

Kallianpur-Striebel formula:

EP [f(Xt)|F Y
t ] =

EQ[f(Xt)Zt|F Y
t ]

EQ[Zt|F Y
t ]

,

where Zt is a Radon-Nikodym derivative of the form

dQ

dP
= Zt = exp

[
−
∫ t

0

h(Xs)dWs −
1

2

∫ t

0

h2(Xs)ds

]
.

this density according to Girsanov theorem allows to define a new measure Q
such that the observations Yt become independent from the unobservable sig-
nal processXt. So, underQ, Yt is a standard Brownian motion and, therefore,
is independent of Xt. In the paper [32] the equation for the unnormalized
conditional density ρt(f) = EQ[f(Xt)Zt|F Y

t ] is derived

ρt(f) = ρ0(f) +

∫ t

0

ρs−(fh)dYs +

∫ t

0

ρs−(Lf)ds

−
∫ t

0

ρs−

(
λ

∫
Γ

(f(·+ g(·, ρ))− f(·))F (dρ)

)
ds,
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where

Lf(x) = f ′(x)a(x) +
1

2
f ′′(x)b2(x) + λ

∫
Γ

(f(x+ g(x, ρ))− f(x))F (dρ)

is the differential operator of the diffusion process Xt.
The normalized filtering equation is the equation that is satisfied by

πt(f) = EP [f(Xt)|F Y
t ] or πt(f) = ρt(f)/ρt(1). The optimal filter πf sat-

isfies

πt(f) = π0(f)+

∫ t

0

[πs−(fh)−πs−(f)πs−(h)]dYs+

∫ t

0

πs−(Lf)ds+

∫ t

0

π2
s−(h)ds

−
∫ t

0

πs−

(
λ

∫
Γ

(f(·+ g(·, ρ))− f(·))F (dρ)

)
ds.

Remark 3.2. In [15] the authors follow the arguments for diffusions in [4]
as close as possible to obtain a Zakai equation for observation and signal
following jump-diffusions. For details we refer to [15].

Remark 3.3. All the approaches discussed above, are purely theoretical
and are difficult in most cases to implement in practice, since they require
the observations of the jumps as it is given in continuous time and not for
discrete observations. That is why in the remaining parts of the thesis an
approximate solution to the non-linear jump-diffusion filtering problem is
considered.

4 Portfolio optimization

In this section a general approach to solving the portfolio optimization prob-
lem is discussed. Portfolio optimization is one of many industrial applica-
tions, where the approximation to the non-linear jump-diffusion filter can be
used.

Let (Ω, F, P ) be a probability space. On this space there are two corre-
lated Brownian motions Vt, Wt with correlation ρ, which is often considered
to be of zero value.

The portfolio optimization problem consists of maximizing the expected
utility of the terminal wealth at time T with respect to utility function.
Consider the definition from the paper [14].

Definition 4.1. A function U : [0,∞) → R ∪ {−∞} is called a utility
function, if U is stricktly increasing, strictly concave, twice continuously
differentiable on (0,∞) and satisfies the Inada conditions

U ′(∞) = lim
x→∞

U ′(x) = 0, U ′(0+) = lim
x→0

U ′(x) =∞.
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Let us consider power utility functions U(x) = 1
γ
xγ, x ≥ 0 and γ < 1,

γ 6= 0. Assume that the investor has the following investment opportunities:

• bank account with the dynamics dPt = Ptrdt, where risk-free rate r is
constant;

• risky asset whose price dynamics follows SDE

dSt = St[µ(zt, t)dt+ σ(zt, t)dWt],

where dzt = a(zt, t)dt+ b(zt, t)dVt, a, b are real valued measurable functions.
Let F be the filtration generated by W and V and F S the filtration generated
by S, both augmented by null sets. Let us construct the portfolio that
consists of the bank account and risky assets.

Definition 4.2. For initial capital x0 > 0 the wealth processXπ = (Xπ
t )t∈[0,T ]

is defined by

dXπ
t = πt[µ(zt, t)dt+ σ(zt, t)dWt] + (Xπ

t − πt)rdt, Xπ
0 = x0. (35)

The investor rebalances his portfolio dynamically by choosing at any time
s ∈ [t, T ] the amount πs to be invested into the stock account.

Definition 4.3. A trading strategy π = (πt)t∈[0,T ] is a 1-dimensional F -

adapted or F S-adapted, measurable process satisfying
∫ T

0
σtπtdt < ∞ and∫ T

0
|µtπt|dt <∞.

In the first case (F -adapted) we have full information, in the second case
(F S-adapted) we have partial information.

It is assumed that all coefficients of the above SDEs are progressively
measurable with respect to the Brownian filtration {Ft}t≥0 i.e.∫ T

0

(|µ(zs, s)|+ (σ(zs, s))
2)ds <∞ a.s.,

∫ T

0

(|µ(zs, s)πs|+ π2
t σ

2(zs, s))ds <∞ a.s.,

and that the above SDEs have unique solutions. The global Lipschitz condi-
tions and linear growth conditions on the coefficients µ(z, t), σ(z, t), a(z, t),
b(z, t):R× [0, T ]→ R should be satisfied.

The portfolio optimization problem is to maximize the expected utility
of the terminal wealth

max
π

E
[
U(Xπ

T )
]

= max
π

E
[1

γ
(Xπ

T )γ
]
.
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The value function is defined in the following way:

J(t, x, z) = max
π

Et,x,z
(1

γ
(Xπ

T )γ
)
.

In order to solve the optimization problem, let us first consider the opti-
mization method from the control theory.

Hamilton-Jacobi-Bellman equation for stochastic control. Consider
the following stochastic system (see [20]):

dXt = a(t,Xt, ut)dt+ b(t,Xt, ut)dWt, (36)

X0 = x,

where Wt is Brownian motion, t ∈ [0, T ], ut is control function. Let the cost
functional be defined as follows:

V (t,X, u(·)) = E

{∫ T

0

f(t,Xt, ut)dt+ h(XT )

}
.

One has to maximize V (t,Xt, u(·)) over all admissible u(·).
The value function is defined in the following way:

J(t,Xt) = sup
u(·)

V (t,Xt, u(·)),

J(T, x) = h(x).

The HJB equation is as follows, assuming that J ∈ C1,2:

Jt + sup
u

{
1

2
b2(t,Xt, u)Jxx + a(t,Xt, u)Jx + f(t,Xt, u)

}
= 0, (37)

J |t=T = h(x).

If one has a stochastic process that itself depends on another stochastic
process, for example:

dXt = a(t,Xt, ct, ut)dt+ b(t,Xt, ut)dWt, (38)

dct = l(t, ct)dt+ g(t, ct)dVt,

where Vt is a Brownian motion and if the value function J itself depends on
t, Xt and ct, i.e. is of the form J(t, x, c), then the HJB equation looks as
follows:

Jt + sup
u

{1

2
b2(t, x, u)Jxx + a(t, x, c, u)Jx

+
1

2
g2(t, c)Jcc + l(t, c)Jc + f(t, x, u)

}
= 0, (39)

if V and W are independent. If they are correlated there will be an additional
term Jxc due to the covariation.
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4.1 Solving the optimal portfolio problem

This framework is based on the papers [21] and [38]. In order to find the
optimal startegy π∗t under full information, so as to maximize the expected
utility of the terminal wealth, given be equation (35), the corresponding
Hamilton-Bellman-Jacobi equation has to be solved, following [38]:

sup
π

(
Jt + x(µ(z, t)− r)πJx + a(z, t)Jz +

1

2
x2(σ(z, t))2π2Jxx

+b(z, t)xσ(z, t)ρJxz +
1

2
(b(z, t))2Jzz

)
= 0, (40)

where J is the candidate for the value function and the terminal condition for
the HJB equation J(T, x, z) = 1

γ
xγ, i.e. we use the utility function U(x) = xγ

γ

with γ < 1, γ 6= 0 as in [38]. The value function is assumed to be of
the form J(t, x, z) = 1

γ
(f(t, z))c. In order to find the coefficient c and the

function f(z, t) the value function is substituted into the HJB equation, the
derivative with respect to πt is calculated and set to zero. This is how the
optimal strategy is computed. Then the optimal strategy π∗t is substituted
in the HJB equation (40) and coefficient c together with the function f(t, z)
is determined.

According to the paper [38] the value function J is as follows:

J(t, x, z) =
xγ

γ
(f(t, z))

1−γ
1−γ+ρ2γ .

Function f : R×[0, T ]→R+ solves the linear parabolic equation

ft +
1

2
b2(z, t)fzz +

[
a(z, t) + ρ

γµ(z, t)b(z, t)

(1− γ)σ(z, t)

]
fz

+
γ(1− γ + ρ2γ)

1− γ

[
r +

(µ(z, t)− r)2

2(σ(z, t))2(1− γ)

]
f = 0,

with the terminal condition f(z, T ) = 1. The optimal portfolio strategy π∗

is as follows:

π∗t =
1

1− γ
µ(zt, t)

σ2(zt, t)
+

1

1− γ
c · ρb(zt, t)fz(zt, t)

σ(zt, t)f(zt, t)
.

Next consider the change of measure from P to Q which is defined by Gir-
sanov density

Zt =
dQ

dP
= exp

(
−1

2

(
γ

1− γ

)2

ρ2

∫ t

0

µ2(zt, t)

σ2(zt, t)
ds+

γ

1− γ
ρ

∫ t

0

µ(zt, t)

σ(zt, t)
dWs

)
.
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The above results are only meaningful if Z is a density and f is well-defined.
The verification theorem for this portfolio optimization result was formu-

lated and proved in the paper [21]. In this paper it was assumed that the
coefficient γ of the power utility function is in (0, 1).

Definition 4.4. (Kraft) A portfolio strategy is said to be admissible if the
following conditions are satisfied:

• π is progressively measurable;

• for all initial conditions (t0, x0, z0) ∈ [0, T ]× (0,∞)2 the wealth process
Xπ with Xπ

t0
= x0 has a pathwise unique solution {Xπ

t }t∈[t0,T ];

• Et0,x0,z0

([
1
γ
(Xπ

T )γ
]−)

< +∞;

• Xπ ≥ 0. The set of admissible strategies is denoted by A. Besides, A2

denotes the subset of all admissible strategies π that belong to L2[0, T ],

i.e. E
(∫ T

0
π2
sds
)
<∞.

Definition 4.5. (Kraft)
Property U: assume that Z is well-defined and that we have f ∈ C1,2[0, T ].
Let π ∈ A. If for all sequences of stopping times {θp}p∈N with 0 ≤ θp ≤ T
the sequence {J(θp, X

π
θp
, zθp)} is uniformly integrable, then π has property

U.

Assumption 4.6. (Kraft) For all bounded sets I ⊂ [0, T ] × [0,∞) there
exists some constant K such that |a(z, t)|+ |b(z, t)| ≤ K for all (z, t) ∈ I.

Theorem 4.7. (Kraft) Verification Result: assume that Z is well-defined,
that γ ∈ (0, 1) and that f ∈ C1,2[0, T ]. Then

Et0,x0,z0

(
1

γ
(Xπ

T )γ
)
< J(t0, x0, z0)

for all π ∈ A. Let π∗ ∈ A2. If Assumption 4.6 holds and π∗ has property U,
then

Et0,x0,z0

(
1

γ
(Xπ

T )γ
)

= J(t0, x0, z0).
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5 Summary of Part I

In this part of the thesis a general portfolio optimization problem for diffusion
processes was discussed. It was assumed that both asset prices and drift
values of the asset price model were observable (the case of full information).
Such situation cannot occur in practice, because in the real market only
asset price can be observed, but not the drift values (the case of partial
information). In order to evaluate the drift of the asset price model one
has to apply filtering techniques. The resulting filter will be applied for
solving the portfolio optimization problem under partial information. Such
a portfolio optimization problem has to be solved in a slightly different way
compared to the portfolio optimization problem under full information.
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Part II

Filtering, approximation,
portfolio optimization for
jump-diffusions
Jump-diffusion processes are used in many applications and quite often they
come up in modelling the financial markets. Abrupt movements of asset
prices, default situations and etc. can be modelled by jump-diffusion pro-
cesses. The filtering problem for jump-diffusion processes cannot be easily
solved explicitly. In the introductery part of the thesis two different papers,
concerning jump-diffusion filtering problem were considered in 3.1 and 3.2.
The explicit solution to the jump-diffusion filtering problem is presented only
in 3.1, although this solution can hardly be implemented.

Therefore, in this part of the thesis an approximate solution to the jump-
diffusion filtering problem is sought.

We consider here the following asset price model: the observable asset
price follows a linear jump-diffusion process and the unobservable drift of
the asset price follows a linear diffusion process (Ornstein-Uhlenbeck pro-
cess). The jump part of the asset price process is either driven by a shot-noise
process or by a compound Poisson prosess. The aim is to filter the unob-
servable drift of the asset price, which will be further used for solving the
portfolio optimization problem. The portfolio consists of the bank account
and the risky asset that follows the jump-diffusion process. The portfolio op-
timization problem is to find the optimal trading strategy so as to maximize
the expected utility of the terminal wealth of the portfolio.

6 Filtering shot noise process

6.1 Motivation

The shot-noise process has already been studied for quite a long time. Very
often the shot-noise process is used to model the stochastic intensity of a
Poisson process. Such a process is called a doubly stochastic Poisson process
or the Cox process. In the paper [7] it is shown that both shot-noise process
and doubly stochastic Poisson process have normal approximations, which is
applied for pricing reinsurance contracts.

In the paper [19] the asymptotic properties of the explosive Poisson shot-
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noise process are described and the shot-noise process is applied to modelling
the delay in claim settlement.

In the work [17] the Cox process with shot-noise intensity is used to model
the default time and to derive the survival probability to price the defaultable
zero-coupon bonds with zero recovery. Also the shot-noise process is used
for pricing extreme insurance claims [16].

Some of the recent publications propose to model extreme movements
of asset prices using shot-noise process, for example paper [34]. Usually
any abrupt movements of the asset price are modelled by the jump-diffusion
process. This model implies that stock prices follow a geometric Brownian
motion, but at random times can jump to a new level (upwards or down-
wards) and then again follow the geometric Brownian motion process. In
the real market the jump effect can fade away as time passes by. The most
appropriate model for this type of jumps is the shot noise process.

Remark 6.1. The general shot-noise process is

λt =
Nt∑
i=1

J it−si ,

where J it , i = 1, 2, ... satisfies the SDE

dJ it = a(t, J it , Yi)dt+ b(t, J it , Yi)dB
i
t, (41)

where a, b: R+×R×R→R are smooth functions, Yi, i = 1, 2, ... are iid random
variables and Bi

t, i = 1, 2, ... are independent Brownian motions. Also, Nt is
a Cox process with intensity ρ and with jump times si.

The general shot-noise process is not a Markov process, only in one spe-
cific case this process will become a Markov process. If in (41) we set b = 0
and a(t, J it , Yi) = Yih

′(t), then J it = Yih(t). The shot-noise process λt is
Markovian only if h(t) = e−ct as it was shown in the paper [13]. Exactly this
type of process will be considered further in this thesis.

6.2 Definition of the shot-noise process and asset price
model with shot noise

Consider the basic Black-Scholes stock price model:

S̃t = S̃0e
∫ t
0 µsds−

ν2

2
t+νWt ,

where S̃t is stock price, µt is the drift process, ν is the volatility and Wt is
Wiener process.
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The shot noise effects can be added to the standard model in the following
way [34]:

St = S̃t exp (λt) = S̃0e
∫ t
0 µsds−

ν2

2
t+νWteλt , (42)

where St is stock price, µt is the drift that follows the Ornstein-Uhlenbeck
process

dµt = κ(µ̄− µt)dt+ ωdVt,

where µ̄ is the mean of the drift, κ is the speed of mean reversion, ω is
volatility of the drift and Vt is Wiener process independent of Wt. The
process λt is the shot noise process, defined as follows:

λt = λ0e
−δt +

Mt∑
i=1

Yie
−δ(t−si),

where

• λ0 is the initial value of λt;

• {Yi}i=1,2,... is the sequence of iid random variables with distribution func-
tion F (y) and E(Yi) = µ1;

• {si}i=1,2,... is the sequence representing the event times of a Poisson
process Mt with constant intensity ρ;

• δ is the rate of exponential decay.

In the stock price model (42) the distribution of the random variables
{Yi}i=1,2,... can be arbitrary, for example normal distribution, i.e. Yi ∼
N(µ1, σ

2), µ1, σ ∈ R. Even if Yi is negative for some i and even if λt is
negative for some t, stock prices will not become negative.

If δ = 0, then one obtains a pure jump-diffusion process. This case will
be considered separately below.

6.3 Differential form of the shot noise process

Let us first derive the differential form of the shot noise process. Shot noise
process can be rewritten in the following form:

λt = λ0e
−δt +

Mt∑
i=1

Yie
−δ(t−si)

= λ0e
−δt + e−δt

Mt∑
i=1

Yie
δsi ,
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setting H(si, yi) := Yie
δsi one obtains the following:

λt = e−δt(λ0 +
∑
i,si≤t

H(si, yi))

= e−δt(λ0 +

∫ t

0

∫
E

H(s, y)N(ds, dy)),

where N(ds, dy) is a Poisson random measure with E[N(ds, dy)] = ρdtF (dy),
where ρ is the intensity of the Poisson process Mt and F is the distribution
function of the jumps Yi. The differential form of λt is obtained by differen-
tiating λt as a product of two functions:

dλt = −e−δtδλ0dt−δe−δt
∫ t

0

∫
E

H(s, y)N(ds, dy)dt+e−δt
∫
E

H(t, y)N(dt, dy)

= −δλtdt+ e−δt
∫
E

yeδtN(dt, dy)

= −δλtdt+

∫
E

yN(dt, dy).

Thus, we obtain the following result:

Lemma 6.2. The differential form of the shot noise process λt is as follows:

dλt = −δλtdt+

∫
E

yN(dt, dy).

Instead of the shot noise process, one can add compound Poisson process
as a noise term, i.e.

Jt =
Mt∑
i=1

Yi =
∑
i,si≤t

Yi =

∫ t

0

∫
E

H(s, y)N(ds, dy),

where H(si, Yi) = Yi. The differential form of the compound Poisson process
is as follows:

dJt =

∫
E

H(s, y)N(ds, dy) =

∫
E

yN(ds, dy).

The case of the Compound Poisson process as a noise term will be considered
separately below.

Next we apply the Ito Theorem 2.2 to the asset price process (function
f(x) = exp (x)). The asset price process is as follows:

St = S0e
Lt = S0e

∫ t
0 µsds−

ν2

2
t+νWt+λt ,
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where

dLt =

(
µt −

ν2

2
− δλt

)
dt+ νdWt +

∫
E

yN(dt, dy).

Thus,

dSt = S0e
Lt−dLct +

1

2
S0e

Lt−ν2dt+

∫
E

(S0e
Lt−+y − S0e

Lt−)N(dt, dy)

= St−

[
(µt − δλt)dt+ νdWt +

∫
E

(ey − 1)N(dt, dy)

]
= St−

[
µtdt+ νdWt + dλt +

∫
E

(ey − 1− y)N(dt, dy)

]
If on average the values of jumps Yi are less than some small ε, then the last
term is quite small and can be neglected. Then the differential form of the
equation (42) is given by the following SDE:

dSt ≈ µtSt−dt+ νSt−dWt + St−dλt. (43)

Another way to add shot noise jumps to the standard stock price equation
is considered in the paper [1]:

St = S0 exp
((
µ− ν2

2

)
t+ νWt

) Mt∏
i=1

(
1 + Yie

−δ(t−Si)
)

= S0 exp
((
µ− ν2

2

)
t+ νWt

)
exp
( Mt∑
i=1

ln(1 + Yie
−δ(t−Si))

)
. (44)

The shot noise process in this case is as follows:

λ1
t =

Mt∑
i=1

ln(1 + Yie
−δ(t−Si)).

In this case one needs Yi > −1; for the purposes of simulations one can take
log-normal distribution for Yi.

To sum up this subsection, we consider the asset price model (42) driven
by shot-noise process. Assuming, that the jumps of the shot-noise process are
small, we will further consider the approximation (43) of the asset price model
(42). The approximated model is given by the following pair of equations:

dSt ≈ µtStdt+ νStdWt + St−dλt, (45)

dµt = κ(µ̄− µt)dt+ ωdVt, (46)

54



where St is stock price, µt is the drift process of the stock price, ν is the
volatility of the stock price, dλt is the shot noise process and Wt is Wiener
process. In the second equation µ̄ is the mean of the drift, ω is volatility of
the drift and Vt is Wiener process independent of Wt.

The filtering problem consists of approximating the value of µt for each t
taking into account the values of Ss, s ≤ t, i.e.

µ̂t = E[µt|F S
t ],

where F S
t is the filtration based on the stock prices up to time t.

The filteing problem with shot-noise process is infinite dimensional and
cannot be solved explicitly. One way to solve this problem is to approximate
shot noise λt with the Brownian motion and then to apply Kalman filtering.

6.4 Approximating shot noise process

According to the paper [7] the shot noise process can be approximated by
Brownian motion.

Let the shot noise look as follows:

λt = λ0e
−δt +

Mt∑
i=1

Yie
−δ(t−si), (47)

where

• λ0 is the initial value of λt;

• {Yi}i=1,2,... is the sequence of iid random variables with distribution func-
tion F (y), E(Yi) = µ1 and E(Y 2

i ) = µ2;

• {si}i=1,2,... is the sequence representing the event times of a Poisson
process Mt with constant intensity ρ;

• δ is the rate of exponential decay.

The expectation of the shot noise process λt, assuming that λ0 is known,
is as follows from [7]:

E(λt) =
µ1ρ

δ
+
(
λ0 −

µ1ρ

δ

)
e−δt → µ1ρ

δ
as t→∞, (48)

and, moreover, if the initial value λ0 equals µ1ρ/δ, then we have a stationary
case and the mean value E(λt) will be equal to µ1ρ/δ and will not depend
on time t.

The variance of the shot noise process λt is as in [7]:

Var(λt) =
µ2ρ

2δ
(1− e−2δt)→ µ2ρ

2δ
as t→∞. (49)
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Consider the following linear transformation:

Z
(ρ)
t =

λt − µ1ρ/δ√
µ2ρ/2δ

. (50)

The central result of the paper [7] is that Z
(ρ)
t converges in law to some Zt

that is normally distributed.
For the proof of this main result, the authors in [7] additionally define

the following:

V
(ρ)
t =

Jt − µ1ρt√
µ2ρ/2δ

,

where Jt =
∑Mt

i=1 Yi, and prove the convergence of V
(ρ)
t to the Brownian

motion. The following lemma states this convergence result:

Lemma 6.3. (Lemma 2, Dassios, Jang) For ρ→∞,

V
(p)
t →

√
2δBt,

where Bt is Brownian motion.

This lemma is an auxilarry result which is used in the proof of the main
theorem that shows the convergence of

Z
(ρ)
t =

λt − µ1ρ/δ√
µ2ρ/2δ

to a Guassian random variable. The proof of the main result we provide in
details.

Theorem 6.4. (Theorem 2, Dassios, Jang) Assume that ρ → ∞ and that
λ0 is a random variable independent of everything else, such that (λ0 −
(µ1ρ/δ))(µ1ρ/2δ)

−1/2 converges in distribution to Z0. Then Z
(ρ)
t converges

in law to Zt, where
dZt = −δZtdt+

√
2δdBt, (51)

where Bt is standard Brownian motion.

Proof. (Dassios, Jang) Rewrite Zρ
t as follows:

Z
(ρ
t =

λt − µ1ρ/δ√
µ2ρ/2δ

=
λ0e

−δt +
∑Mt

i=1 Yie
−δ(t−Si) − µ1ρ/δ√

µ2ρ/2δ
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=
λ0 − µ1ρ/δ√

µ2ρ/2δ
e−δt − µ1ρ/δ√

µ2ρ/2δ
(1− e−δt) + e−δt

∫ t

0

∫
E

yeδsN(ds, dy)√
µ2ρ/2δ

=
λ0 − µ1ρ/δ√

µ2ρ/2δ
e−δt − µ1ρ/δ√

µ2ρ/2δ
(1− e−δt) + e−δt

∫ t

0

eδs
∫
E

yN(ds, dy)√
µ2ρ/2δ

=
λ0 − µ1ρ/δ√

µ2ρ/2δ
e−δt − µ1ρ/δ√

µ2ρ/2δ
(1− e−δt) + e−δt

∫ t

0

eδs
dJs√
µ2ρ/2δ

=
λ0 − µ1ρ/δ√

µ2ρ/2δ
e−δt− µ1ρ/δ√

µ2ρ/2δ
(1−e−δt)+

Jt√
µ2ρ/2δ

− δ
∫ t

0

e−δ(t−u) dJu√
µ2ρ/2δ

.

The last expression was obtained using integration by parts formula. Since
δ
∫ t

0
ue−δ(t−u)du = t− (1−e−δt)/δ, one can substitute in the expression above

the following formula −(1 − e−δt)/δ = t − δ
∫ t

0
ue−δ(t−u)du and obtain the

expression below:

Z
(ρ)
t =

λ0 − µ1ρ/δ√
µ2ρ/2δ

e−δt +
Jt − µ1ρt√
µ2ρ/2δ

− δ
∫ t

0

e−δ(t−u)Ju − µ1ρu√
µ2ρ/2δ

du,

Therefore, Zρ
t converge to

Zt = Z0e
−δt +

√
2δ(Bt − δ

∫ t

0

e−δ(t−s)Bsds)

= Z0e
−δt +

√
2δ

∫ t

0

e−δ(t−s)dBs,

where Bt is standard Brownian motion. This finishes the proof.

This theorem implies that Zt follows an Ornstein-Uhlenbeck process and
is normally distributed with mean E(Zt) = Z0e

−δt → 0 as t → ∞ and
variance V ar(Zt) = 1 − e−2δt → 1 as t → ∞. If λ0 = µ1ρ/δ, then Z0 = 0
and, therefore, E(Zt) = 0

Following the linear transformation (50) the shot-noise process λt has the
following form:

λt =
µ1ρ

δ
+ Zρ

t

√
µ2ρ

2δ
.

Define λ̂t as Gaussian approximation of λt as follows:

λ̂t =
µ1ρ

δ
+ Zt

√
µ2ρ

2δ
.
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Consider the mean of the approximation λ̂t:

E(λ̂t) =
µ1ρ

δ
+ Z0e

−δt
√
µ2ρ

2δ
,

and, taking into account that for the case when λ0 = µ1ρ/δ (therefore Z0 =
0),

E(λ̂t) =
µ1ρ

δ

one sees that the mean value of the approximation λ̂t is consistent with the
mean value (48) of the shot noise λt.

The variance of the approximation λ̂t is

Var(λ̂t) =
µ2ρ

2δ
Var(Zt) =

µ2ρ

2δ
(1− e−2δt),

which corresponds to the variance (49) of the shot noise process λt.

6.5 Numerical experiments

In this subsection we simulate the model (45)-(46). Choose the following
parameters for this model:

St = S̃0e
(
∫ t
0 µsds−

0.32

2
)t+0.3Wteλt , (52)

dµt = 0.5(0.5− µt)dt+ 0.3dVt, (53)

The rate of the Poisson process Mt used to generate the shot noise λt is equal
to ρ = 1.6. In order to apply Kalman filtering one has to approximate the
shot noise process λt by λ̂t. Applying the results from the previous section,

dSt
St
≈ µtdt+ νdWt + dλ̂t = µtdt+ νdWt + dZt

√
µ2ρ

2δ

=
(
µt − δ

√
µ2ρ

2δ
Zt

)
dt+ νdWt +

√
µ2ρdBt,

where Bt is a standard Brownian motion and

dZt = −δZtdt+
√

2δdBt.

Consider the term c := δ
√
µ2ρ/2δ. As we have assumed before, the jumps

y of the shot noise process λt are ’small’, therefore, the value of c will also
be small, because µ2 is ’small’. Also, cZt is ’small’ comparing to µt and,
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therefore, the term cZt can be neglected. The model to be considered for the
numerical experiments is as follows:

dSt
St
≈ µtdt+ νdWt +

√
µ2ρdBt,

dµt = κ(µ̄− µt)dt+ ωdVt.

The discrete-time version of the model (45)-(46) looks as follows:

• signal (unobservable)

µk+1 = (1− κ∆t)µk + κµ̄∆t+ ω
√

∆tVk, (54)

• observation

∆Sk
Sk

= yk = µk∆t+ ν
√

∆tWk +
√

∆tBk

√
µ2ρ

2δ
. (55)

For the numerical experiments we simulate the origianl asset price model
(the one driven by Brownian motion and the shot-noise process), but for es-
timating the drift process of the asset price we use the approximated model
(the one where the shot-noise process is approximated by Brownian motion).
The results of discrete Kalman filtering of the asset price model with approx-
imated shot noise process are shown below:

Figure 1: Stock price behavior with the effects of the shot noise (first exam-
ple)

For the filtering example, shown in Figures 1 and 2, the mean error be-
tween the true and the filtered values of the drift process is equal to 0.0330.

In the second example, shown in Figures 3 and 4, the mean error between
the true and the filtered values of the drift process is equal to 0.0166.
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Figure 2: True and filtered behavior of the drift process µt (first example)

Figure 3: Stock price behavior with the effects of the shot noise (second
example)
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Figure 4: True and filtered behavior of the drift process µt (second example)

6.6 Filtering of multi-dimensional asset price model
with shot noise process as jump part (first version)
and numerical experiments

A model for n assets, each driven by the sum of the same Wiener processes,
is considered. Therefore, the assets are correlated. The shot-noise process is
different for each asset price.

Assume that there are n assets Si, i = 1, ..., n whose prices satisfy the
following model:

Si(t) = Si(0) exp

(∫ t

0

µi(s)ds−
1

2

n∑
j=1

ν2
ijt+

n∑
j=1

νijWj(t)

)
exp (λi(t)),

or the approximated model (under assumption that the jumps of each shot-
noise process λi(t) are ’small’)

dSi(t) ≈ µi(t)Si(t)dt+ Si(t)
n∑
j=1

νijdWj(t) + Si(t)dλi(t),

where Wi(t), i = 1, ..., n are independent Wiener processes, νij are diffusion
coefficients, λi(t) is the shot noise process for the corresponding asset price
Si(t). The drift processes µi(t) follow the SDEs below:

dµi(t) = κi(µ̄i − µi(t))dt+ ωidVi(t),

where ωi is volatility, µ̄i is the mean, κi is the mean-reversion coefficient and
Vi(t) is Wiener process independent of Wi(t), i = 1, ..., n.
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In order to solve this filtering problem, one has to approximate shot noise
processes with Brownian motion:

dSi(t) ≈ µi(t)Si(t)dt+ Si(t)
n∑
j=1

νijdWj(t) + Si(t)dλi(t) =

= Si(t)
((
µi(t)− δi

√
µ

(i)
2 ρi
2δi

Zi(t)
)
dt+

n∑
j=1

νijdWj(t) +

√
µ

(i)
2 ρidBi(t)

)
,

where
dZi(t) = −δiZi(t)dt+

√
2δidBi(t),

where Bi(t) is a standard Brownian motion for i = 1...n and δi is the rate

of exponential decay for the shot-noise process λi(t) and µ
(i)
2 is the second-

order raw moment of the distribution of the jumps of the shot-noise process
λi(t). The jumps of shot noise-processes λi(t) for i = 1...n are assumed to be

’small’, therefore, ci := δi

√
µ

(i)
2 ρi/2δi is ’small’ and ciZi(t) can be neglected

as it was done in Subsection 6.5.
This multi-dimensional asset price model has to be discretized in order

to apply Kalman filtering as described in section 1.4.1.
Let n = 2, this means we have two assets which satisfy the following

SDEs:

S1(t) = S1(0) exp
(∫ t

0

µ1(s)ds− 1

2
(0.3)2t− 1

2
(0.2)2t

+0.3W1(t) + 0.2W2(t) + λ1(t)
)
,

dµ1(t) = 0.5(0.5− µ1(t))dt+ 0.3dV1(t)

and

S2(t) = S2(0) exp
(∫ t

0

µ2(s)ds− 1

2
(0.2)2t− 1

2
(0.4)2t

+0.2W1(t) + 0.4W2(t) + λ2(t)
)
,

dµ2(t) = 0.7(0.3− µ2(t))dt+ 0.3dV2(t),

where shot noise process λi, i = 1, 2 is given by (47). For i = 1: δ1 = 1.5,

intensity of the Poisson process M
(1)
t is ρ1 = 1.6 and Y ∼ N(0, 0.02). For

i = 2: δ2 = 2, intensity of the Poisson process M
(2)
t is ρ2 = 1.6 and Y ∼

N(0, 0.03).
The results of numerical simulations are shown in the figures below. The

simulations of the price of the first asset and its drift process (true and fil-
tered) are shown in Figures 5 and 6. Figures 7 and 8 show the the simulations
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of the price of the second asset and its drift process (true and filtered). Mean
error for the first filter equals 0.0091 and for the second 0.0090.

Figure 5: Price behavior of the first stock with the effects of the shot noise
in the two dimensional model
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Figure 6: True and filtered behavior of the drift process µt of the first stock
in the two dimensional model

Figure 7: Price behavior of the second stock with the effects of the shot noise
in the two dimensional model
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Figure 8: True and filtered behavior of the drift process µt of the second
stock in the two dimensional model

6.7 Filtering of multi-dimensional asset price model
with shot noise process as jump part (second ver-
sion) and numerical experiments

Unlike the asset price model of the previous subsection, here we assume that
there are n shot-noise process λj(t), j = 1, ..., n, all of which are present in
each asset price equation. In other words, each asset price is influenced by
the sum of the same shot-noise processes.

Assume that there are n assets Si, i = 1, ..., n, whose prices satisfy the
following model:

Si(t) = Si(0) exp

(∫ t

0

µi(s)ds−
1

2
ν2
i t+ νiWi(t)

) n∏
i=1

exp (λi(t)),

or the approximated model (under assumption that the jumps of each shot-
noise process λi(t) are ’small’)

dSi(t) ≈ µi(t)Si(t)dt+ Si(t)νidWi(t) + Si(t)
n∑
j=1

dλj(t),

where Wi(t), i = 1, ..., n are independent Wiener processes each for the cor-
responding stock price Si(t), νij are diffusion coefficients, λi(t), i = 1, ..., are
the shot noise processes. The drift processes µi(t) follow the SDEs below:

dµi(t) = κi(µ̄i − µi(t))dt+ ωidVi(t),
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where ωi is volatility, κi is mean reversion coefficient and Vi(t) is Wiener
process independent of Wi(t), i = 1, ..., n.

As before, it is proposed to approximate the shot-noise process with Brow-
nian motion:

dSi(t) ≈ µi(t)Si(t)dt+ Si(t)νidWi(t) + Si(t)
n∑
j=1

dλj(t)) =

= Si(t)
((
µi(t)−

n∑
j=1

δi

√
µ

(i)
2 ρi
2δi

Zi(t)
)
dt+ νidWi(t) +

n∑
j=1

√
µ

(i)
2 ρidBi(t)

)
,

where
dZi(t) = −δiZi(t)dt+

√
2δidBi(t),

where Bi(t) is a standard Brownian motion for i = 1...n and δi is the rate

of exponential decay for the shot-noise process λi(t) and µ
(i)
2 is the second-

order raw moment of the distribution of the jumps of the shot-noise process
λi(t). The jumps of shot noise-processes λi(t) for i = 1...n are assumed to be

’small’, therefore, ci := δi

√
µ

(i)
2 ρi/2δi is ’small’ and ciZi(t) can be neglected

as it was done in 6.5.
One discretizes this multi-dimensional asset price model and solves sepa-

rately n filtering problems (for each of the n assets) using Kalman filtering.
Let n = 2, and let the SDEs look as follows:

S1(t) = S1(0) exp

(∫ t

0

µ1(s)ds− 1

2
(0.3)2t+ 0.3W1(t) + λ1(t) + λ2(t)

)
,

dµ1(t) = 0.5(0.5− µ1(t))dt+ 0.3dV1(t)

and

S2(t) = S2(0) exp

(∫ t

0

µ2(s)ds− 1

2
(0.2)2t+ 0.2W2(t) + λ1(t) + λ2(t)

)
,

dµ2(t) = 0.7(0.5− µ2(t))dt+ 0.3dV2(t),

where shot noise process λi, 1 = 1, 2 is given by (47). For i = 1: δ1 = 1.5,

intensity of the Poisson process M
(1)
t is ρ1 = 1.2 and Y ∼ N(0, 0.008).

For i = 2: δ2 = 2, intensity of the Poisson process M
(2)
t is ρ2 = 1.6 and

Y ∼ N(0, 0.007).
The first simulation example consists of the following figures: Figure 9

shows the behaviour of both asset prices S1(t) and S2(t); Figure 10 shows the
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Figure 9: Two dynamics of asset prices influenced by the mixture of shot
noise processes (first example)

true and filtered drift processes of the first asset S1(t) and Figure 11 shows
the true and filtered drift processes of the second asset S2(t).

Observing two such asset price dynamics one can visually determine the
times of jumps of shot-noise by comparing the similar jump parts of the asset
price processes; jumps can be eliminated if needed. In Figure 9 we see that
one of the shot-noise processes jumped at time T = 60 and the second jump
is at time T = 130 and a small peak is present at time T = 100. All other
jumps in both processes, probably, come from Brownian motions and not
from shot-noise processes.
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Figure 10: True and filtered behavior of the drift process µt of the first asset
(first example)

Figure 11: True and filtered behavior of the drift process µt of the second
asset (first example)
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The second numerical example for the asset price model with the same
parameters is shown below. Figures 12, 13 and 14 show the behaviour of
both asset prices, and the corresponding drift processes (true and filtered
ones).

Figure 12: Two dynamics of asset prices influenced by the mixture of shot
noise processes (second example)
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Figure 13: True and filtered behavior of the drift process µt of the first asset
(second example)

Figure 14: True and filtered behavior of the drift process µt of the second
asset (second example)
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7 Portfolio optimization for shot-noise driven

processes

This section starts with the basic framework described in the paper [6]. In
this work a portfolio optimization problem is considered for the case when
both unobservable signal (drift process) and observation (asset price) pro-
cesses follow the SDEs with linear and constant coefficients and are driven
by the sum of Brownian motions.

7.1 Portfolio optimization for an asset price model with
approximation of shot noise process

Consider a financial market with one riskfree asset (bank account) and one
risky asset. The riskfree asset pays a constant interest rate. The risky asset
is modelled as follows:

St = S̃0e
∫ t
0 µsds−

ν2

2
t+νWteλt , (56)

where St is stock price, λt is a shot-noise process, ν is the volatility of the
stock price, Wt is Wiener process, µt is the drift that follows the Ornstein-
Uhlenbeck process

dµt = κ(µ̄− µt)dt+ ωdVt,

where µ̄ is the mean of the drift, κ is the speed of mean reversion, ω is
volatility of the drift and Vt is Wiener process independent of Wt.

We assume that the jumps of the shot-noise process are ’small’, therefore,
the approximation idea from subsection 6.3 can applied, and, thus, the risky
asset (56) can be approximated in the following way:

dSt ≈ µtStdt+ νStdWt + Stdλt, (57)

dµt = κ(µ̄− µt)dt+ ωdVt. (58)

According to [6], we assume that the riskfree rate is equal to zero.
Recall the definition of the shot-noise λt process:

λt = λ0e
−δt +

Mt∑
i=1

Yie
−δ(t−si),

where

• λ0 is the initial value of λt;
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• {Yi}i=1,2,... is the sequence of iid random variables with distribution func-
tion F (y) and E(Yi) = µ1, E(Y 2

i ) = µ2;

• {si}i=1,2,... is the sequence representing the event times of a Poisson
process Mt with constant intensity ρ;

• δ is the rate of exponential decay.

As shown above, shot-noise processes can be approximated by Brownian
motion as follows:

dSt
St
≈ µtdt+ νdWt + dλ̂t = µtdt+ νdWt + dZt

√
µ2ρ

2δ

=
(
µt − δ

√
µ2ρ

2δ
Zt

)
dt+ νdWt +

√
µ2ρdBt,

where dZt = −δZtdt+
√

2δdBt, Bt is a standard Brownian motion.
Therefore, the asset price model for the case, when the shot-noise process

is approximated by Brownian motion (taking into account, that the jumps
of the shot-noise process λt are ’small’), looks as follows:

dSt
St

=
(
µt − δ

√
µ2ρ

2δ
Zt

)
dt+ νdWt +

√
µ2ρdBt, (59)

dµt = κ(µ̄− µt)dt+ ωdVt, (60)

dZt = −δZtdt+
√

2δdBt. (61)

This asset price model is used to construct a portfolio that consists of a
bank account and the asset. The interest rate of the bank account is constant
and can be set to 0 without loss of generality. Then the portfolio wealth Xt

follows the process:

dXt = Xtπt
dSt
St
,

where πt denotes the fraction of wealth invested in the risky asset. Initial
capital is x. The aim is to select the trading strategy πt in order to maximize
the expected utility E[U(XT )] of the portfolio wealth at terminal time T ,
where U(x) is the utility function. At each time moment t the investor
chooses how much of the wealth will be invested in the risky asset.

Define the value function

J(t, µ, z, x) = sup
π
E[U(Xπ

T )|Xt = x, Zt = z, µt = µ].

In order to solve this portfolio optimization problem one uses the HJB
equation, considered in section 4. The HJB equation for the stated portfolio
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optimization problem is as follows (µ stands for µt, z stands for Zt and x
stands for Xt):

max
π

{ ∂
∂t
J(t, µ, z, x) +

∂

∂x
J(t, µ, z, x)π(µ− cz)x+

1

2

∂2

∂x2
J(t, µ, z, x)π2ΣSx

2

+
1

2

∂2

∂µ2
J(t, µ, z, x)Σµ +

∂

∂x∂z
J(t, µ, z, x)πRx+

∂

∂µ
J(t, µ, z, x)κµ̄

− ∂

∂µ
J(t, µ, z, x)κµ− ∂

∂z
J(t, µ, z, x)δz +

1

2

∂2

∂z2
J(t, µ, z, x)Σz

}
= 0,

where c = δ
√
µ2ρ/2δ, ΣS = ν2 + µ2ρ, Σµ = ω2, Σz = 2δ, R =

√
2δµ2ρ.

Differentiating with respect to π one obtains the following formula for the
optimal portfolio strategy π∗ = π∗(µ, z):

π∗(t, µ, z, x) =
(µ− cz) ∂

∂x
J(t, µ, z, x)−R ∂

∂x∂z
J(t, µ, z, x)

xΣS
∂2

∂x2
J(t, µ, z, x)

.

If one sets the specific form of the value function J(t, µ, z, x), then the
optimal trading strategy can be evaluated assuming that the investor pos-
sesses the full information i.e. observes the drift µt and knows the values of
Zt. If one does not observe these values, then portfolio optimization problem
for such an asset price model is difficult to solve, since no explicit solutions
are known for the filtering problem given discrete observations.

One can rewrite the model (59)-(60)-(61) in a simpler form. The coef-
ficients κ and δ of this model represent the speed with which the loss of
information occures in both drift and shot-noise processes. That is why it
would be reasonable to set κ = δ. Therefore, the idea is to transform the
drift process µt by substracting cZt, the differential form of µt − cZt is as
follows:

d(µt − cZt) = κ(µ̄− (µt − cZt))dt+ ωdVt − c
√

2kdBt.

Denoting ηt = µt− cZt, the model (59)-(60)-(61) can be rewritten as follows:

dSt
St

= ηtdt+ νdWt +
√
µ2ρdBt, (62)

dηt = κ(µ̄− ηt)dt+ ωdVt − c
√

2κdBt. (63)

The portfolio optimization problem for the portfolio, that consists of a bank
account and an asset, whoose price follows the model (62)-(63), can be solved
using the framework in [6].

73



Following [6], let us for convenience rewrite the model (62)-(63) in the
following form:

dSt = St

(
ηtdt+

3∑
i=1

σS,idW
(i)
t

)
, (64)

dηt = κ(µ̄− ηt)dt+
3∑
i=1

ση,idW
(i)
t , (65)

where W
(1)
t , W

(2)
t , W

(3)
t are independent Wiener processes, W

(1)
t stands for

Wt, W
(2)
t stands for Bt, W

(3)
t stands for Vt and σS = (σS,1, σS,2, σS,3) =

(ν,
√
µ2ρ, 0) and ση = (ση,1, ση,2, ση,3) = (0, c

√
2κ, ω).

The portfolio consists of an asset and of a bank account. Then the port-
folio value Xt follows the following process:

dXt = Xtπt
dSt
St
,

where πt denotes the fraction of wealth invested in the risky asset. Initial
capital is x. Investor has to select the trading strategy πt in order to maximize
E[U(XT )], where U(x) = xγ

γ
, γ < 1, γ 6= 0 is the form of the utility function.

At each time moment t the investor chooses how much of the wealth will be
invested in the risky asset.

The quadratic variation per unit time of the risky asset returns dSt/St is
given by:

ΣS = σS · σTS = σ2
S,1 + σ2

S,2 = ν2 + µ2ρ,

the quadratic variation of the drift of the risky asset is

Ση = ση · σTη = ω2 + 2c2κ,

The covariation between the price of the risky asset and the value of the drift
is denoted by R:

R = σS · ση = c
√

2δµ2ρ.

Theoretically, there are two possible scenarios:
1. Assume that both asset price and drift values are observable. This is

the case of full information.
2. Assume that only asset prices are observable but not the drift values.

This is the case of incomplete information.
Define the value function

J(t, η, x) = sup
π
E[U(Xπ

T )|Xt = x, ηt = η].

In order to solve this portfolio optimization problem consider the HJB
equation considered in Section 4.
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7.1.1 Solving portfolio optimization problem under full informa-
tion

Following [6], the value function under full information is of the form J(t, η, x)
(η stands for ηt and x stands for Xt) and satisfies the HJB equation (39):

max
π

{ ∂
∂t
J(t, η, x) +

∂

∂x
J(t, η, x)πηx+

1

2

∂2

∂x2
J(t, η, x)π2ΣSx

2

+
1

2

∂2

∂η2
J(t, η, x)Ση+

∂

∂x∂η
J(t, η, x)πRx+

∂

∂η
J(t, η, x)κµ̄− ∂

∂η
J(t, η, x)κη

}
= 0,

(66)
with boundary condition J(T, η, x) = xγ

γ
, γ < 1, γ 6= 0. The solution is

assumed to be of the following form:

J̃(t, η, x) =
xγ

γ
exp (η2At + ηBt + Ct),

where functions At, Bt, Ct are to be determined later.
The optimal portfolio strategy π∗ can be obtained by substituting the

value function J̃(t, x, η) into (66). The HJB equation gets the following
form:

max
π

{[
xγ
{
η2dAt

dt
+ η

dBt

dt
+
dCt
dt

}
+

1

2
ΣSx

2π2(γ(γ − 1))xγ−2

+
1

2
Σηx

γ(4η2A2
t ) + 4ηAtBt + 2At +B2

t )

+πRxγxγ−1(2ηAt +Bt) + πηxγxγ−1 + κµ̄(2ηAt +Bt)

−κη(2ηAt +Bt))
]

exp (η2At + ηBt + Ct)
}

= 0. (67)

Differentiating the expression in the brackets with respect to π and setting
it to zero one obtains the following:

ΣSx
2π(γ(γ − 1))xγ−2 +Rxγxγ−1(2ηAt +Bt) + ηxγxγ−1 = 0,

then

Proposition 7.1. (Brendle) The maximizer in (67) (optimal portfolio strat-
egy after Theorem 7.5 below) is as follows:

π∗(η, t) =
2RηAt + η +RBt

ΣS(1− γ)
. (68)
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Coefficients At, Bt and Ct are obtained by setting π∗ into (67):

η2dAt
dt

+ η
dBt

dt
+
dCt
dt

+
1

2
ΣS

(
2RηAt + η +RBt

ΣS(1− γ)

)2

(γ(1− γ))

+
1

2
Σηx

γ(4η2A2
t ) + 4ηAtBt + 2At +B2

t )

+
2RηAt + η +RBt

ΣS(1− γ)
Rγ(2ηAt +Bt) +

2RηAt + η +RBt

ΣS(1− γ)
ηγ

+κµ̄(2ηAt +Bt)− κη(2ηAt +Bt) = 0 (69)

Next, combine together the terms with η2, η and η0. For example, for η2

one obtains:

η2dAt
dt

+
1

2
γη2 (2RAt + 1)2

ΣS(1− γ)
+

1

2
Ση4A

2
tη

2

+η2 γ

ΣS(1− γ)
(2RAt + 1)− 2κAtη

2 + η2 γR

ΣS(1− γ)
(2RA2

t + 2At) = 0

Removing η2, one obtains an ODE for At. The same thing is done with terms
containing η and η0.

Proposition 7.2. (Brendle) Thus, coefficients At, Bt and Ct satisfy the
following ordinary differential equations

dAt
dt

= −2At

{
Ση +

γ

1− γ
R2Σ−1

S

}
At + 2κAt −

2γ

1− γ
Σ−1
S RAt −

1

2

γ

1− γ
Σ−1
S

dBt

dt
= −2At

{
Ση +

γ

1− γ
R2Σ−1

S

}
Bt + 2κAtµ̄+ κBt −

γ

1− γ
Σ−1
S RBt

dCt
dt

= −ΣηAt −
1

2

{
Ση +

γ

1− γ
R2Σ−1

S

}
Bt −Btκµ̄

with boundary condition AT = BT = CT = 0.

The same result for the optimal strategy π∗t can be obtained if one con-
siders the utility function of the form U(x) = −xγ for γ < 0.
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Verification theorem. Such a theorem can be formulated similarly as it
was done in the paper [3].

For the verification theorem let us assume that the utility function is
U(x) = xγ

γ
for γ < 1, γ 6= 0.

Let us introduce the new notation for the functions and operators.
The function h(t, η) is the part of the value function J̃(t, η, x)

h(t, η) = exp (η2At + ηBt + Ct).

The operator Hπ is the operator of the HJB equation:

Hπh(t, η) = Lπh(t, η) +Gh(t, η),

where

Lπh(t, η) = h(t, η)
[
πη +

1

2
ΣSπ

2(γ − 1) + πR(2ηAt +Bt)
]

and

Gh(t, η) =
h(t, η)

γ

[
η2dAt

dt
+ η

dBt

dt
+
dCt
dt

+
1

2
Ση(4η

2A2
t + 4ηAtBt + 2At +B2

t ) + κµ̄(2ηAt +Bt)

−κη(2ηAt +Bt)
]
.

Operator Lπ depends on the portfolio strategy π and G does not depend
on π.

The HJB equation is as follows:

sup
π
{Hπh(t, η)} = 0. (70)

Before the verification theorem is stated, the auxilary lemma has to be
formulated, based on the paper [3].

For J̃(t, η, x) = xγ

γ
h(t, η) and any admissible portfolio strategy πt with

wealth Xt = Xπ
t we have

dJ̃(t, ηt, Xt) = Xγ
t ·Hπth(t, ηt)dt+ dψπt , (71)

The following lemma gives the explicit form of ψπt .

Lemma 7.3.

ψπt =

∫ t

0

[
Xγ
s h(s, ηs)

[
(Bs + 2Asηs)

3∑
i=1

ση,idW
(i)
s + γπs

3∑
i=1

σS,idW
(i)
s

]]
(72)
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Proof. Let us denote Ft = Xγ
t which satisfies the following SDE (applying

Ito lemma)

dFt = γFt

(
ηtπt +

1

2
(γ − 1)ΣSπ

2
t

)
dt+ γFtπt

3∑
i=1

σS,idW
(i)
t .

Taking into account J(t, ηt, Xt) = 1
γ
Xγ
t h(t, ηt) = 1

γ
Fth(t, ηt), the product

rule yields

dJ(t, ηt, Xt) =
1

γ
Ftdh(t, ηt) +

1

γ
h(t, ηt)dFt.

The differential form of h(t, ηt) can be calculated using Ito lemma:

dh(t, ηt) = d(eη
2
tAt+ηtBt+Ct)

= eη
2
tAt+ηtBt+Ct

[
η2
t

dAt
dt

+ ηt
dBt

dt
+
dCt
dt

+κ(µ̄− ηt)(Bt + 2Atηt)dt+ (Bt + 2Atηt)
3∑
i=1

ση,idW
(i)
t

+
1

2
Σµ(4η2

tA
2
t + 4ηtAtBt +B2

t + 2At)dt
]
.

Therefore,

dJ(t, ηt, Xt) =
1

γ
Xγ
t (Lπh(t, ηt) +Gh(t, ηt)︸ ︷︷ ︸

Hπh(t,ηt)

)dt

+
1

γ
Xγ
t h(t, ηt)

[
(Bt + 2Atηt)

3∑
i=1

ση,idW
(i)
t + γπt

3∑
i=1

σS,idW
(i)
t

]
.

Therefore,

ψπt =

∫ t

0

[
Xγ
s h(s, ηs)

[
(Bs + 2Asηs)

3∑
i=1

ση,idW
(i)
s + γπs

3∑
i=1

σS,idW
(i)
s

]]
.

For the following verification theorem we need that ψπ is a martingale.
We simply require this for the strategies π we consider and refer to Remark
7.6 for a short discussion.

So we consider

A(t, η, x) = {π = (πs)s∈[t,T ]|π admissible, ψπ is martingale}

and require
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Assumption 7.4. For π∗t = π∗(ηt, t) in (68), ψπ
∗

t is a martingale.

Further, the value function J(t, η, x) will be considered only for π that
are in A(t, η, x):

J(t, η, x) = sup
π∈A(t,η,x)

E[U(Xπ
T )|Xt = x, ηt = η], (73)

and J̃(t, η, x) is as above.
Further, a verification theorem similar to the one in paper [3] is intro-

duced.

Theorem 7.5. (Verification Theorem) Under Assumption 7.4, we have that
J̃(t, η, x) = xγ

γ
h(t, η) is the value function when considering strategies in

A(t, η, x) and π∗t , given by (68), is the optimal strategy for the given portfolio
optimization problem.

Proof. Under Assumption 7.4, the optimal portfolio strategy π∗ is in A(t, η, x)
and is given by the maximizer for the HJB equation (70). Further, h satisfiees
the HJB equation (70) with h(T, ηT ) = 1.

For any portfolio strategy π ∈ A(t, η, x) the function J̃(t, µt, X
π
t ) satisfies

decomposition (71):

J̃(T, ηT , X
π
T ) = J̃(t, ηt, X

π
t ) +

∫ T

t

FsH
πsh(s, ηs)ds+ ψπT − ψπt ,

where ψπt is a martingale with zero expectation, J̃(t, ηt, X
π
t ) = 1

γ
(Xπ

t )γh(t, ηt),

Ft = (Xπ
t )γ. Since h(t, ηt) satisfies the HJB equation (70), then Hπh(t, ηt) ≤

0. Therefore, ∫ T

t

FsH
πsh(s, ηs)ds ≤ 0.

Moreover,
J̃(T, ηT , X

π
T ) ≤ J̃(t, ηt, X

π
t ) + ψπT − ψπt .

Taking into account that J̃(T, ηT , X
π
T ) = U(Xπ

T ), the conditional expectation
is taken on both sides:

Et,η,x[U(Xπ
T )] ≤ J̃(t, η, x).

Further, taking the supremum over all admissible trading strategies on
both sides, one obtaines the following result:

J(t, η, x) := sup
π∈A(t,η,x)

Et,η,x[U(Xπ
T )] ≤ J̃(t, η, x). (74)
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Since π∗ exist, we have an equality in (74). For π∗t we have the following:∫ T

t

Fs ·Hπ∗
sh(s, ηs)ds = 0.

Therefore,
J(t, η, x) = J̃(t, η, x).

This finishes the proof.

Remark 7.6. • For γ ∈ (0, 1), ψπt is a positive local martingale and,
thus, a supermartingale. Then we would consider in Theorem 7.5 all
admissible π and would need the martingale property only for π∗.

• Conditions for Assumption 7.4 could presumably be obtained following
similar arguments as e.g. in [23] or [31] based on repeated application
of the Hölder inequality and Burkholder-Davis-Gundy inequality.

7.1.2 Solving portfolio optimization problem under partial infor-
mation

Following [6], the value function under partial information is denoted by
Ĵ(t, η̂,Ω, x), where η̂ and Ω correspond to the filter: conditional mean

η̂t = E[ηt|F S
t ]

and conditional variance

Ωt = E[(ηt − η̂t)2|F S
t ],

where F S
t is augmented filtration generated by the asset prices. Both are the

solution of the Kalman-Bucy filtering problem. In continuous time η̂t and Ωt

satisfy the pair of differential equations which can also be solved numerically
in discrete time:

dη̂t = −κ(η̂t − µ̄t)dt+ (Ωt +R)Σ−1
S

(
dSt
St
− η̂tdt

)
dΩt

dt
= Ση − 2κΩt − (Ωt +R)2Σ−1

S .

Since Ωt is deterministic, we have Ĵ(t, η̂,Ω, x) = Ĵ(t, η̂, x).
The value function Ĵ(t, η̂, x) (η̂ stands for η̂t and x stands for Xt) satisfies

the Bellman equation:

max
π

{ ∂
∂t
Ĵ(t, η̂, x) +

∂

∂x
Ĵ(t, η̂, x)πη̂x+

1

2

∂2

∂x2
Ĵ(t, η̂, x)π2ΣSx

2
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+
1

2

∂2

∂η̂2
Ĵ(t, η̂, x)Σ−1

S (Ωt +R)2 +
∂

∂x∂η̂
Ĵ(t, η̂, x)π(R + Ωt)x

+
∂

∂η̂
Ĵ(t, η̂, x)κµ̄− ∂

∂η̂
Ĵ(t, η̂, x)κη̂

}
= 0

with boundary condition Ĵ(T, η̂, x) = xγ

γ
. The solution can be written in the

following form:

Ĵ(t, η̂, x) =
xγ

γ
exp (η̂2Ât + η̂B̂t + Ĉt).

Proposition 7.7. (Brendle) Functions Ât, B̂t, Ĉt satisfy the ordinary dif-
ferential equations:

dÂt
dt

= − 2Â2
t

1− γ
(Ωt +R)2Σ−1

S + 2κÂt −
2γ

1− γ
Σ−1
S (Ωt +R)Ât

dB̂t

dt
= − 2Ât

1− γ
(Ωt +R)2Σ−1

S B̂t + 2κÂtµ̄+ κB̂t −
γ

1− γ
Σ−1
S (Ωt +R)B̂t

dĈt
dt

= −Σ−1
S (Ωt +R)2Ât −

1

2

1

1− γ
B̂2
t (Ωt +R)2 − B̂tκµ̄

with boundary condition ÂT = B̂T = ĈT = 0. This system is solved backwards
in time.

Proposition 7.8. (Brendle) The optimal portfolio strategy π̂∗ under partial
information is obtained by solving the HJB in the same way as above:

π̂∗(t, η̂) =
(1 + 2(Ωt +R)Ât)η̂ + (Ωt +R)B̂t)

ΣS(1− γ)

=
(1 + 2RAt)(1− 2ΩtAt)

−1(η̂ + ΩtBt) +RBt

ΣS(1− γ)
.

The same result for the optimal strategy π̂∗ can be obtained if one con-
siders the utility function of the form U(x) = −xγ for γ < 1, γ 6= 0.

7.1.3 Solving portfolio optimization problem for the case κ 6= δ

Consider the model (59)-(60)-(61):

dSt
St

=
(
µt − cZt

)
dt+ νdWt +

√
µ2ρdBt,
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dµt = κ(µ̄− µt)dt+ ωdVt,

dZt = −δZtdt+
√

2δdBt,

where c = δ
√
µ2ρ/2δ.

If κ 6= δ, then one cannot transform this model into the model (62)-(63),
since in the case κ 6= δ we cannot switch to η as we did above in (63).

Consider the value of c. In order to apply the framework of [6] for solving
the portfolio optimization problem, it was assumed that the jumps of the
shot-noise process were ’small’. The second-order raw moment µ2 of the
distribution of the jump hight is also ’small’, and, therefore, c is ’small’ and
cZt is also ’small’ compared to the values of the drift µt. Thus, it would be
reasonable to neglect the term cZt. The new approximated model looks as
follows:

dSt
St

= µtdt+ νdWt +
√
µ2ρdBt, (75)

dµt = κ(µ̄− µt)dt+ ωdVt, (76)

where St is an asset price, µt is the drift process of the stock price, ν is the
volatility of the stock price, Wt is Wiener process, ρ is the jump intensity
of the shot-noise process λt, Bt is the standard Brownian motion. In the
second equation µ̄ is the mean of the drift, κ is the rate of mean reversion, ω
is volatility of the drift and Vt is Wiener process independent of Wt and Bt.

The model (75)-(76) in terms of the framework in [6] can be rewritten as
follows:

dSt = St

(
µtdt+

3∑
i=1

σS,idW
(i)
t

)
, (77)

dµt = κ(µ̄− µt)dt+
3∑
i=1

σµ,idW
(i)
t , (78)

where W
(1)
t , W

(2)
t , W

(3)
t are independent Wiener processes, W

(1)
t stands for

Wt, W
(2)
t stands for Bt, W

(3)
t stands for Vt and σS = (σS,1, σS,2, σS,3) =

(ν,
√
µ2ρ, 0) and σµ = (σµ,1, σµ,2, σµ,3) = (0, 0, ω).

The quadratic variation per unit time of the risky asset returns dSt/St is
given by

ΣS = σS · σTS = σ2
S,1 + σ2

S,2 = ν2 + µ2ρ,

the quadratic variation of the drift of the risky asset is

Σµ = σµ · σTµ = ω2,
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The covariation between the price of the risky asset and the value of the drift
is denoted by R:

R = σS · σµ = 0.

In order to solve this portfolio optimization problem one applies the
framework of [6], that was discussed in 7.1.1 and 7.1.2.

The model approximation (75)-(76) will be used in order to obtain the
simulated numerical results for solving the portfolio optimization problem
for the model (56),(58).

7.1.4 Logarithmic utility function

This is an extension of the framework in [6] for the case of the logarithmic
utility. The method for solving the portfolio optimization problem is the
same as discussed in 7.1.1 and 7.1.2, only the form of the value function is
different.

The portfolio optimization problem is solved for the model (62)-(63).
Define the logarithmic utility function U(x) = lnx. As before define the

value function

J(t, η, x) = sup
π
E[U(XT )|Xt = x, ηt = η].

Assume that the value function has the following form

J(t, η, x) = ln x+ (η2At + ηBt + Ct),

where the functions At, Bt and Ct to be determined later as in the framework
above. The value function J(t, η, x) (where x stands for Xt and η stands for
ηt) satisfies the HJB equation (66):

max
π

{ ∂
∂t
J(t, η, x) +

∂

∂x
J(t, η, x)πηx+

1

2

∂2

∂x2
J(t, η, x)π2ΣSx

2

+
1

2

∂2

∂η2
J(t, η, x)Ση +

∂

∂x∂η
J(t, µ, x)πRx

+
∂

∂η
J(t, η, x)κµ̄− ∂

∂η
J(t, η, x)κη

}
= 0, (79)

with boundary condition J(T, η, x) = ln x. The optimal portfolio strategy
π∗ can be defined by substituting the value function J(t, η, x) into the upper
equation. The HJB equation takes the following form:

max
π

{
η2dAt

dt
+ η

dBt

dt
+
dCt
dt
− 1

2
ΣSx

2π2

(
1

x2

)
+

1

2
Ση2At

83



+πRx · 0 + πtηx
1

x
+ κµ̄(2ηAt +Bt)− κη(2ηAt +Bt)

}
= 0. (80)

Differentiating the expression in the brackets with respect to πt and set-
ting it to zero one obtaines the following expression:

η − πΣS = 0.

Proposition 7.9. The optimal portfolio strategy is

π∗(η, t) =
η

ΣS

.

Coefficients At, Bt and Ct satisfy the following ordinary differential equations

dAt
dt

= 2κAt −
1

2ΣS

,

dBt

dt
= −2κµ̄At + κBt,

dCt
dt

= −κµ̄Bt − ΣηAt,

with boundary condition AT = BT = CT = 0.

For the case of partial information denote the value function as Ĵ(t, η̂, x),
which also depends on deterministic Ωt, where η̂ stands for η̂t and, η̂t and
Ωt as in the previous framework denote the conditional mean and covariance
matrix of ηt. Both are the solution of the Kalman-Bucy filtering problem.

The function Ĵ(t, η̂, x) (where x stands for Xt) satisfies the Bellman equa-
tion:

max
π

{ ∂
∂t
Ĵ(t, η̂, x) +

∂

∂x
Ĵ(t, η̂, x)πη̂x+

1

2

∂2

∂x2
Ĵ(t, η̂, x)π2ΣSx

2

+
1

2

∂2

∂η̂2
Ĵ(t, η̂, x)Σ−1

S (Ωt +R)2 +
∂

∂x∂η̂
Ĵ(t, η̂, x)πt(R + Ωt)x

+
∂

∂η̂
Ĵ(t, η̂, x)κµ̄− ∂

∂η̂
Ĵ(t, µ̂, x)κη̂

}
= 0

with boundary condition Ĵ(T, η̂, x) = lnx. The solution can be written in
the following form:

Ĵ(t, η̂, x) = ln x+ (η̂2Ât + η̂B̂t + Ĉt),
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The optimal portfolio strategy π∗t can be defined by substituting the value
function J(t, η̂, x) into the upper equation. The HJB equation takes the
following form:

max
π

{
η̂2dÂt

dt
+ η̂

dB̂t

dt
+
dĈt
dt
− 1

2
ΣSx

2π2

(
1

x2

)
+2

1

2
Σ−1
S (R + Ωt)

2At + π(R + Ωt)x · 0 + πη̂x
1

x
+ κµ̄(2η̂Ât + B̂t)

−κη̂(2η̂Ât + B̂t))
}

= 0. (81)

Differentiating the expression in the brackets with respect to π and setting
it to zero one obtaines the following ezpression:

η̂ − πΣS = 0.

Proposition 7.10. The optimal portfolio strategy

π̂∗(η̂, t) =
η̂

ΣS

.

Thus, the optimal strategy under partial information π̂∗ converges to the op-
timal strategy under full information π∗, if the filter η̂t converges to the true
drift process ηt.

Coefficients Ât, B̂t and Ĉt satisfy the following ordinary differential equa-
tions

dÂt
dt

= 2κÂt −
1

ΣS

,

dB̂t

dt
= κB̂t − 2κÂtµ̄,

dĈt
dt

= −κµ̄B̂t −
Ât(R + Ωt)

2

ΣS

,

with boundary condition ÂT = B̂T = ĈT = 0.

7.2 Portfolio optimization for the case when asset price
model is influenced by shot noise process

7.2.1 Portfolio optimization for shot noise without approximation

In this subsection we discuss the theoretical solution to the optimization
problem for the portfolio, consisting of an asset, whose dynamics follows
jump diffusion process, driven by Brownian motion and shot noise process,
and a bank account with the constant interest rate.

Suppose in the financial market there are two possible investments:

85



• bank account with price dynamics:

dPt = rPtdt

• risky asset

St = S0e
∫ t
0 µsds−

ν2

2
t+νWt+λt

or

dSt = St−

[
(µt − δλt)dt+ νdWt +

∫
E

(ey − 1)N(dt, dy)

]
,

drift process µt is described by the following SDE:

dµt = κ(µ̄− µt)dt+ ωdVt,

where Vt and Wt are independent Wiener processes, λt is the shot noise
process whose differential form is as follows:

dλt = −δλtdt+

∫
E

yN(dt, dy),

whereN(dt, dy) is the Poisson random measure with E[N(dt, dy)] = ρF (dy)dt,
where ρ is the jump intensity and F (dy) is the distribution of the jumps hight.

In this framework we do not intend to approximate the shot-noise process
and obtain approximate solution to the portfolio optimization problem, but
instead we intend to obtain a purely theoretical solution.

Define the wealth process Xt as follows:

dXt = Xt(1− πt)
dPt
Pt

+Xtπt
dSt
St

= (r(1− πt) + (µt − δλt)πt)Xtdt+ νπtXtdWt + πtXt−

∫
E

g(y)N(dt, dy),

where g(y) = ey − 1, π is the self-financing portfolio strategy, which denotes
the fraction of wealth invested in risky assets. For simplicity one can assume
r = 0. Denote the process πt to be the control process and the process Zt =
Z

(π)
t = (t,Xt, µt, λt) to be the controled jump diffusion process. Consider the

following performance criterion

Φ(z) = Ez[U(Xt)],

where U(x) = xγ

γ
, for γ < 1, γ 6= 0. The same result for the optimal trading

strategy π∗ can be obtained if one considers the power utility function of the
form U(x) = −xγ, γ < 0 as in [6].
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The problem is to find the optimal trading strategy π∗ so as to maximize
Ez[U(XT )] and the value function is

J(z) = J(t, x, µ, λ) = sup
π
Ez[U(XT )|Xt = x, µt = µ, λt = λ].

The generator of Z
(π)
t is as follows:

AJ(z) =
∂J

∂s
+ πx(µ− δλ)

∂J

∂x
+

1

2
ν2π2x2∂

2J

∂x2

+

∫
E

{J(x+ xπg(y))− J(x)}v(dy) +
1

2
ω2∂

2J

∂µ2
+ κµ̄

∂J

∂µ
− κµ∂J

∂µ

−δλ∂J
∂λ

+

∫
E

{J(λ+ y)− J(λ)}v(dy),

where v(dy) = ρF (dy), x stands for Xt, µ stands for µt, π stands for πt and
λ stands for λt.

According to the HJB equation for optimal control of jump diffusions [29],
the value function J(Z) is the solution of the following equation:

max
π
{AJ} = 0. (82)

Assume now that the value function has the following form:

J̃(z) = J̃(t, x, µ, λ) =
xγ

γ
h(t, µ, λ),

then

AJ̃(t, x, µ, λ) =
xγ

γ

∂h(t, µ, λ)

∂t

+πx(µ− δλ)xγ−1h(t, µ, λ)

+
1

2
ν2π2x2(γ − 1)xγ−2h(t, µ, λ)

+h(t, µ, λ)
1

γ

∫
E

{(x+ xπg(y))γ − xγ}v(dy)

+
1

2γ
ω2xγ

∂2h(t, µ, λ)

∂µ2
+

1

γ
κµ̄xγ

∂h(t, µ, λ)

∂µ

−1

γ
κµxγ

∂h(t, µ, λ)

∂µ
− 1

γ
δλxγ

∂h(t, µ, λ)

∂λ

+
1

γ
xγ
∫
E

{h(t, µ, λ+ y)− h(t, µ, λ)}v(dy) = p(π). (83)
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Denote the right hand side of the expression above by p(π) and differen-
tiate p(π) with respect to π, then set the derivative to zero:

dp(π)

dπ
= µ− δλ+ ν2π(γ − 1) +

∫
E

{(1 + πg(y))γ−1g(y)}v(dy) = 0.

Proposition 7.11. The maximizer π∗ = π(t, µ, λ) in (83) (the optimal trad-
ing strategy after Theorem 7.16 below) solves the integral equation

µ− δλ+ ν2π(γ − 1) +

∫
E

{(1 + πg(y))γ−1g(y)}v(dy) = 0. (84)

if
d2p

dπ2
(π(t, µ, λ)) < 0

for all possible values of t, µ, λ.

The same result for the optimal strategy π∗ can be obtained if one con-
siders the utility function of the form U(x) = −xγ for γ < 0.

Further, we comment on the condition in Proposition 7.11. The trading
strategy π is a maximizer of h(π) if

d2p(π)

dπ2
< 0,

therefore,

d2p(π)

dπ2
= ν2(γ − 1) + (γ − 1)

∫
E

(1 + πg(y))γ−2g2(y)v(dy) ≤ 0

or
(1 + πg(y)) > 0

as γ − 1 < 0.
It follows that

π < − 1

g(y)
for g(y) < 0

and

π > − 1

g(y)
for g(y) > 0.

Therefore,

π = sup
{
− 1

g(y)

∣∣∣y ∈ supp(v), g(y) > 0
}
< π

< inf
{
− 1

g(y)

∣∣∣y ∈ supp(v), g(y) < 0
}

= π.

88



If the jumps are normally distributed, then y can take values from −∞ to
∞, and g(y) = ey − 1 ∈ (−1,∞), therefore, π = 0 and π = 1. For other
types of distributions π can be less then zero and π can be bigger then one.

Thus, the trading strategy π, that maximizes p(π), belongs to the interval
(π, π) and, therefore, one can set a condition for the existence of the solution
of (84) on (π, π):∫

E

{(1 + πg(y))γ−1g(y)}v(dy) > 0 for π → π,

and ∫
E

{(1 + πg(y))γ−1g(y)}v(dy) < 0 for π → π.

7.2.2 Approximation of the optimal portfolio strategy and the
value function

Equation (84) can be solved numerically. As the equation (84) cannot be
solved explicitly, it would be reasonable to try to find an appropriate ap-
proximation π̃∗ of the optimal trading strategy π∗. Denote

H(η, π) = H(µ−δλ, π) = µ−δλ+ν2π(γ−1)+

∫
E

{(1 + πg(y))γ−1g(y)}v(dy) = 0,

where v(dy) = ρF (dy), F (dy) is the probability density of y.
The solution π to the equation (84) is a function of η = µ− δλ, i.e.

π = f(µ− δλ) = f(η),

and, therefore, H(η, f(η)) = 0. The derivative of H with respect to η is

∂H

∂η
= Hη +Hπf

′(η) = 0,

therefore,

f ′(η) = −Hη(η, f(η))

Hπ(η, f(η))
,

or

f ′(η) = − 1

(γ − 1)(ν2 + ρ
∫
E

(1 + πg(y))γ−2g2(y)F (dy))
.

Applying the first order Taylor expansion to π = f(η) one obtains

π = f(η) ≈ f(c) + f ′(c)(η − c).

89



As point c for the expansion one can use

c := η = µ− δλ = −(γ − 1)ν2π(c)− ρ
∫
E

(1 + π(c)g(y))γ−1g(y)F (dy)

Setting π(c) = 0, obtain the following:

c = −ρ
∫
E

g(y)F (dy).

If y is normally distributed with mean m and standard deviation σ, then
c = −ρ(em+σ2 − 1).

Therefore, the Taylor expansion of function π is

π = f(η) ≈ π(c) + f ′(c)(η − c) = 0− 1

(γ − 1)(ν2 + ρ
∫
E
g2(y)F (dy))

(η − c),

therefore,

π̃∗ = − 1

(γ − 1)(ν2 + ρ
∫
E
g2(y)F (dy))

(µ− δλ− c).

If y ∼ N(m,σ), then
∫
E
g2(y)v(dy) =

(
em+σ2 − 1

)2

.

Proposition 7.12. The first order approximation π̃∗ of the optimal trading
strategy π∗ is

π̃∗ = c1(µ− δλ− c), (85)

where

c1 =
1

(1− γ)(ν2 + ρ
∫
E
g2(y)F (dy))

.

Remark 7.13. The same result for the approximation π̃∗ of the optimal
trading strategy π∗ can be obtained, if one approximates the integral in the
equation (84) in the following way:∫

E

{(1 + πg(y))γ−1g(y)}v(dy) ≈
∫
E

{(1 + (γ − 1)πg(y))g(y)}v(dy)

= ρ

∫
E

g(y)F (dy) + (γ − 1)π

∫
E

g2(y)F (dy)

for ’small’ values of y.
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Having the explicit form of the approximation π̂∗ of the optimal trading
strategy π∗, one can set the explicit form of the approximating value function

J̃approx(t, x, µ, λ) =
xγ

γ
e(µ−δλ)2Ãt+(µ−δλ)B̃t+C̃t ,

where coefficients Ãt, B̃t, C̃t depend on the approximation π̃∗ of the optimal
trading strategy.

Setting π̃∗ into the HJB equation, one obtains the following:

1

γ

{
(µ− δλ)2dÃt

dt
+ (µ− δλ)

dB̃t

dt
+
dC̃t
dt

}
+c1(µ− δλ− c)(µ− δλ) +

1

2
ν2c2

1(µ− δλ− c)2(γ − 1)

+c1(µ− δλ− c)
∫
E

{g(y)}v(dy) +
1

2
c2

1(µ− δλ− c)2

∫
E

{(γ − 1)g2(y)}v(dy)

+
1

2γ
ω2((2Ãt(µ− δλ) + B̃t)

2 + 2Ãt) +
1

γ
κµ̄(2Ãt(µ− δλ) + B̃t)

−1

γ
κµ(2Ãt(µ− δλ) + B̃t)−

1

γ
δλ(−2δÃt(µ− δλ)− δB̃)

+
1

γ

∫
E

{−2δy(µ− δλ)At + δ2y2At − δyBt}v(dy) = 0.

The following approximations were used:∫
E

{(1 + πg(y))γ − 1}v(dy) ≈
∫
E

{
γπg(y) +

1

2
γ(γ − 1)π2g2(y)

}
v(dy)

and

e−2δy(µ−δλ)At+δ2y2At−δyBt − 1 ≈ −2δy(µ− δλ)At + δ2y2At − δyBt

for ’small’ values of y.
The expression

−1

γ
κµ(2Ãt(µ− δλ) + B̃t)−

1

γ
δλ(−2δÃt(µ− δλ)− δB̃)

can be rewritten as

−1

γ
2δÃt(µ− δλ)(µ− δλ)− 1

γ
δB̃t(µ− δλ)
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for κ = δ.
Therefore, the system of ODEs for the coefficients Ãt, B̃t, C̃t is as follows:

dÃt
dt

= −2ω2Ã2
t + 2δÃt − γc1 −

1

2
γ(γ − 1)ν2c2

1 +
γ

2
(γ − 1)c2

1

∫
E

g2(y)v(dy),

dB̃t

dt
= γc1c+ γ(γ − 1)ν2c2

1c− c1γ

∫
E

g(y)v(dy) + γ(γ − 1)c2
1c

∫
E

g2(y)v(dy)−

−2ω2ÃtB̃t − 2κµ̄Ãt + δB̃t + 2δÃt

∫
E

yv(dy),

dC̃t
dt

= −1

2
ν2γ(γ−1)c2

1c
2+γc1c

∫
E

g(y)v(dy)+γ(γ−1)c2
1c

2

∫
E

g2(y)v(dy)−ω2Ãt−

−1

2
ω2B̃2

t − κµ̄B̃t −
∫
E

(δ2y2Ãt − δyB̃t)v(dy),

where AT = BT = CT = 0, for κ = δ.

7.2.3 Verification result for the theoretical solution to the port-
folio optimization problem (without approximation)

The theoretical solution to the portfolio optimization problem with asset
price driven by shot noise process and Brownian motion was obtained in the
previous section. The aim of the verification result is to show that the solution
to the HJB equation is also the solution to the initial portfolio optimization
problem. Before the verification theorem is stated, the auxilary lemma has
to be formulated, based on the paper [3].

In order to formulate this auxilary lemma let us introduce the new nota-
tion for the functions and operators.

The function h(t, µ, λ) was earlier defined as the part of the value function
J̃(t, x, µ, λ). The operator Hπ corresponds to the generator A of Zt and
consists of two parts:

Hπh(t, µ, λ) = Lπh(t, µ, λ) +Gh(t, µ, λ),

where

Lπh(t, µ, λ) = h(t, µ, λ)
[
π(µ−δλ)+

1

2
ν2π2(γ−1)+

1

γ

∫
E

((1+πg(y))γ−1)v(dy)
]

and

Gh(t, µ, λ) =
1

γ

∂h(t, µ, λ)

∂t
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+
1

2γ
ω2∂

2h(t, µ, λ)

∂µ2
+

1

γ
κµ̄
∂h(t, µ, λ)

∂µ

−1

γ
κµt

∂h(t, µ, λ)

∂µ
− 1

γ
δλ
∂h(t, µ, λ)

∂λ

+
1

γ

∫
E

{h(t, µ, λ+ y)− h(t, µ, λ)}v(dy).

The HJB equation can be written as

sup
π
{Hπh(t, µ, λ, π)} = 0. (86)

For J̃(Z) = J̃(t, x, µ, λ) = 1
γ
xγh(t, µ, λ) and any admissible portfolio

strategy πt with wealth Xt = Xπ
t we have

dJ̃(t,Xt, µt, λt) =
1

γ
Xγ
t ·Hπth(t, µt, λt)dt+ dψπt , (87)

Further, we formulate the lemma, that gives the explicit form of ψπt .

Lemma 7.14.

ψπt =

∫ t

0

[
Xγ
s

[∫
E

{h(t, µt, λt + y)− h(t, µt, λt)}Ñ(dt, dy)

+ω
∂h(t, µt, λt)

∂µt
dVt+h(t, µt, λt)νπtdWt+h(t, µt, λt)

∫
E

((1+πtg(y))γ−1)Ñ(dt, dy)
]]

(88)

Proof. Let us denote Ft = Xγ
t which satisfies the following SDE (applying

Ito lemma)

dFt = γFt

(
(µt − δλt)πt +

1

2
(γ − 1)ν2π2

t

)
dt+ γFtνπtdWt

+γFt

∫
E

((1 + πtg(y))γ − 1)N(dt, dy).

Taking into account J(t,Xt, µt, λt) = 1
γ
Xγ
t h(t, µt, λt) = 1

γ
Fth(t, µt, λt),

the product rule yields

dJ(t,Xt, µt, λt) =
1

γ
Ftdh(t, µt, λt) +

1

γ
h(t, µt, λt)dFt.
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The differential form of h(t, µ, λ) can be calculated using Ito lemma:

dh(t, µ, λ) =
∂h(t, µ, λ)

∂t
dt

+
1

2
ω2∂

2h(t, µ, λ)

∂µ2
dt+ κµ̄

∂h(t, µ, λ)

∂µ
dt

−κµt
∂h(t, µ, λ)

∂µ
dt+ ω

∂h(t, µ, λ)

∂µ
dVt − δλ

∂h(t, µ, λ)

∂λ
dt

+

∫
E

{h(t, µ, λ+ y)− h(t, µ, λ)}N(dt, dy).

Notice that Ñ(dt, dy) = N(dt, dy)− v(dy)dt, therefore,

dJ(t,Xt, µt, λt) =
1

γ
Xγ
t (Lπh(t, µt, λt) +Gh(t, µt, λt)︸ ︷︷ ︸

Hπh(t,µt,λt)

)dt

+
1

γ
Xγ
t

[∫
E

{h(t, µt, λt + y)− h(t, µt, λt)}Ñ(dt, dy)

+ω
∂h(t, µt, λt)

∂µt
dVt+h(t, µt, λt)νπtdWt+h(t, µt, λt)

∫
E

((1+πtg(y))γ−1)Ñ(dt, dy)
]
.

Therefore,

ψπt =

∫ t

0

[
Xγ
s

[∫
E

{h(t, µt, λt + y)− h(t, µt, λt)}Ñ(dt, dy)

+ω
∂h(t, µt, λt)

∂µt
dVt+h(t, µt, λt)νπtdWt+h(t, µt, λt)

∫
E

((1+πtg(y))γ−1)Ñ(dt, dy)
]]

For the following verification theorem we need that ψπt is a martingale.
We simply require this for the portfolio strategies π we consider.

Consider

A(t, x, µ, λ) = {π = (πs)s∈[t,T ]|π admissible, ψπ is martingale}

and require

Assumption 7.15. For π∗t = π∗(t, µt, λt) in (84), ψπ
∗

t is a martingale.
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Further, the value function J(t, x, µ, λ) will be considered only for π that
are in A(t, x, µ, λ):

J(t, x, µ, λ) = sup
π∈A(t,x,µ,λ)

E[U(Xπ
T )|Xt = x, µt = µ, λt = λ], (89)

and J̃(t, x, µ, λ) is as above.
Further, a verification theorem similar to the one in paper [3] is intro-

duced.

Theorem 7.16. (Verification Theorem) Under Assumption 7.15, we have
that J̃(t, x, µ, λ) = 1

γ
xγh(t, µ, λ) is the value function when considering strate-

gies in A(t, x, µ, λ) and π∗t , given by (84), is the optimal strategy for the given
portfolio optimization problem.

Proof. Under Assumption 7.15, π∗t is in A(t, x, µ, λ) and is given by the
maximizer for the HJB equation (86). Further, h satisfies HJB equation
(86).

For any π ∈ A we apply Lemma 7.14 to J̃(t,Xπ
t , µt, λt):

J̃(T,Xπ
T , µT , λT ) = J̃(t,Xπ

t , µt, λt) +

∫ T

t

FsH
πsh(s, µs, λs)ds+ ψπT − ψπt ,

where ψπt is a martingale with zero expectation, J̃(t,Xπ
t , µt, λt) = 1

γ
(Xπ

t )γh(t, µt, λt),

Ft = (Xπ
t )γ. Since h(t, µ, λ) satisfies the HJB equation (86), thenHh(t, µt, λt) ≤

0. Therefore, ∫ T

t

FsH
πsh(s, µs, λs) ≤ 0.

Moreover,
J̃(T,Xπ

T , µT , λT ) ≤ J̃(t,Xπ
t , µt, λt) + ψπT − ψπt .

Taking into account that J̃(T,Xπ
T , µT , λT ) = U(Xπ

T ), the conditional expec-
tation is taken on both sides:

Et,x,µ,λ[U(Xπ
t )] ≤ J̃(t, x, µ, λ).

Further, taking the supremum over all admissible trading strategies on
both sides, one obtaines the following result:

J(t, x, µ, λ) := sup
π∈A(t,x,µ,λ)

Et,x,µ,λ[U(Xπ
T )] ≤ J̃(t, x, µ, λ). (90)

Since π∗ exists, we have an equality in (90). For π∗t we have the following:∫ T

t

Fs ·Hπ∗
sh(s, µs, λs)ds = 0.
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Therfore,
J(t, x, µ, λ) = J̃(t, x, µ, λ).

This finishes the proof.

The Remark 7.6 is also valid for this case.

7.2.4 Logarithmic utility function

Under the portfolio optimization problem of the previous section assume that
the utility function is

U(x) = lnx.

The value function, that solves the HJB equation (82), is assumed, with
respect to the logarithmic utility, as follows

J̃(z) = J̃(t, x, µ, λ) = lnx+ h(t, µ, λ).

Substituting this value function into the HJB equation (82) and then
differentiating with respect to π one obtaines the following result:

Proposition 7.17. The optimal trading strategy πt solves the integral equa-
tion

µt − δλt − ν2πt +

∫
E

g(y)

1 + πtg(y)
v(dy) = 0,

which can be solved numerically.

7.3 Numerical experiments

Consider the following asset price equation:

St = S0e
∫ t
0 (µs− 0.52

2
)ds+0.5Wt+λt , (91)

where µt is the drift process, which follows the equation:

dµt = 0.5(0.1− µt)dt+ 0.2dVt, (92)

where shot noise λt has following parameters: intensity of ρ the Poisson pro-
cess Mt equals 1.04 and the jump size y is normally distributed N(0, 0.007).

The portfolio Xt, consisting of an asset and a bank account is constructed,
and we want to find the optimal trading strategy π∗t (the proportion of wealth
invested into stocks at each time moment) so that to maximize the expected
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utility E[U(XT )] at terminal time T , where U is the utility function of the
form U(x) = −xγ with γ = −0.2 or U(x) = xγ/γ.

This portfolio optimization problem is solved using the theoretical result
(and the first-order approximation of the theoretical result), stated in 7.2,
and the result for the case when the shot-noise process is approximated by
Brownian motion, stated in 7.1.3.

In the simulated figures that are shown below, several possible solutions
to the portfolio optimization problem (91)-(92) are compared. First, this
problem is solved using the method proposed in the previous subsection (the-
oretical (unapproximated and approximated) solutions to portfolio optimiza-
tion problem for the asset price driven by shot noise process), second, the
above problem is solved under full and partial information using the method
proposed in the paper [6] and described in Subsection 7.1.

Figure 15 shows the stock price dynamics, in Figure 16 true and filtered
drift process are shown. Figure 17 compares the optimal trading strategies:
two strategies according to framework of subsection 7.1 (under full and partial
information), and two according to the theoretical unapproximated (84) and
approximated (85) solutions to the portfolio optimization problem from the
previous subsection. The dynamics of the wealth growth under four optimal
trading strategies is shown in Figure 18.

Figure 15: Asset price behaviour (first example)

The average error between real and filtered drift processes is 0.0077.
The average error between the strategy, obtained under theoretical solu-

tion (unapproximated), and the strategy, obtained under approximation of
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Figure 16: True and filtered drift processes (first example)

Figure 17: Optimal startegies (first example)
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shot-noise and filtering of the drift, is 0.0747. The optimal trading strategies
(theoretical unapproximated (84) and approximated (85) solutions ) are very
close to one another with the average error 0.0043.

Figure 18: Wealth processes (first example)

The average error between theoretical wealth process and the wealth pro-
cess, obtained under approximation of the shot noise process and filtering of
the drift, is 1.2732.

The second simulation example of the same model is shown in Figures
19, 20, 21 and 22.
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Figure 19: Asset price behaviour (second example)

Figure 20: True and filtered drift processes (second example)
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Figure 21: Optimal startegies (second example)

Figure 22: Wealth processes (second example)
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Error estimation. The error between the theoretical and approximated
portfolio wealth can be estimated by the loss in expected utility, i.e.

E[U(Xπ
T )]− E[U(Xapprox

T )],

where Xπ
T is the optimal portfolio wealth and Xapprox

T is the approximated
portfolio wealth at terminal time T and the utility function is U(x) = xγ/γ,
where γ = −0.2.

The loss in the utility between the portfolio wealth, obtained by applying
the theoretical (upapproximated) optimal portfolio strategy, and the wealth,
obtained by applying the opimal trading strategy under shot-noise approxi-
mation (for full and partial information), is 0.0033 and 0.0601 respectively.
The loss in the utility between the portfolio wealth, obtained by applying the
theoretical (unapproximated) optimal strategy and theoretical approximated
optimal strategy is 0.0275. The expected value is estimated as an average
over 1000 simulations.

The table below shows the expected utility of the terminal wealth for
two different utility functions. The terminal wealth is calculated using the
optimal portfolio strategies, obtained in different ways (theoretical solution
(unapproximated and approximated) and the shot-noise approximated so-
lution (under full and partial information)). In brackets one can see the
standard deviation of the expected utility.

Table 1: Expected utility E[U(XT )] and standard deviation of expected util-
ity

U(x) = ln x U(x) = xγ/γ
Theoretical solution (unapproximated) 4.6142 −2.0272(0.0573)
Theoretical solution (approximated) −2.0547(0.0668)

Approximate solution under
full information 4.4888 −2.0305(0.0590)

Approximate solution under
partial information 4.3222 −2.0873(0.1184)

In this table ’Theoretical solution (unapproximated)’ denotes the solu-
tion, obtained without approximating the shot-noise process and without
approximating the optimal portfolio strategy, as stated in 7.2.1. ’Theoret-
ical solution (approximated)’ means, that the solution is obtained without
approximating the shot-noise process but with approximation of the opti-
mal portfolio strategy, given in 7.2.2. Both ’Approximate solution under
full information’ and ’Approximate solution under partial information’ refer
to the framework by [6] under full and partial information respectively, as
considered in 7.1.
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7.4 Theoretical extension: Portfolio optimization for
the case when asset price is influenced by shot
noise process: observing big jumps

The shot noise process can consist of the jumps that are of big size and of
small size. There is a criterion in the literature that determines whether the
jump is big or not, and it will be considered later.

If the jumps are big, they can be visually observed and eliminated. The
asset price model with jumps is

dSt = St−

[
(µt − δλt)dt+ νdWt +

∫
E

(ey − 1)N(dt, dy)

]
,

and the asset price model without big jumps is

dSt = St− [(µt − δλt)dt+ νdWt] ,

drift process µt is described by the following SDE:

dµt = κ(µ̄− µt)dt+ ωdVt,

where Vt and Wt are independent Wiener processes.
One can estimate the drift µt using Kalman filtering. After estimating

the drift process, one can optimize the portfolio as proposed below.
Rewrite the stock price process using the innovation process:

dSt = St−

[
(µ̂t − δλt)dt+ νdW̃t +

∫
E

(ey − 1)N(dt, dy)

]
, (93)

where W̃t = Wt + 1
2

∫ t
0
(µs − µ̂s)ds is the innovation process. Substituting

W̃t into (93) we obtain the original stock price equation. According to the
proposition in [4] W̃t is a F S

t -adapted Brownian motion under measure P .
Further, one can solve the optimization problem using the theoretical method
stated in subsection 7.2.

The next question is how to distinguish and observe the jumps and par-
ticularly big jumps. According to the paper [24] there is a statistical test
that determines whether there is a jump at the current moment. Suppose
that the discussed Lévy process is of the form:

d logSt = µtdt+ νtdWt + dLt, (94)

where Lt is an Ft-adapted Lévy process independent of Wt. The processes
µt and νt satisfy
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Assumption 7.18. (Lee, Hannig) µt and νt are smooth, can be stochastic
and depend on the price process; these processes do not have big jumps over
a short time period; νt is always positive.

Definition 7.19. (Lee, Hannig) The piecewise constant process T (t) which
is used to test whether there is a jump in the time period (ti−1, ti] is defined
in the following way:

T (t) =
log (Sti/Sti−1

)

ν̂ti∆t
1/2

,

where for any g > 0, 0 < ω < 1/2 and t ∈ K

ν̂t
2 =

∆t−1

K

i−1∑
j=i−K

(logStj−m+1
/Stj−m)2I{logStj−m+1/Stj−m≤g∆tω},

where ∆t = T/n, n is the number of observations over [0, T ].

Theorem 7.20. (Lee, Hannig) Let T (t) be as in the definition 7.19 and
K →∞ and ∆tK → 0. Suppose Lévy process follows the dynamics (94) and
Assumption 7.18 is satisfied:
A. For any stopping time τ such that ∆S(τ) = 0 almost surely (there is no
jump at time τ almost surely), as ∆t→ 0

T (τ)→ N(0, 1),

where N(0, 1) denotes a standard normal distribution.
B. Define the time of kth jump bigger then h

τk,h = inf {t > τk−1,h,∆Lt > h}.

Then, as ∆t→∞

P

(
min
k

T (τk,h)

h/(ντk,h
√

∆t)
≥ 1

)
→ 1.

Therefore, T (τk,h)→∞ as ∆t→ 0.

In the paper [24] it is proposed to test for the presence and arrivals of big
jumps using the following rule. It is hypothesized that our realized returns
come from model without jump term d logSt = µtdt + νtdWt, and it is con-
sidered how large the magnitude of T (t) can be. For this, the asymptotic null
distribution of its maximums is studied in the following proposition in [24].
This offers the big-jump detection region.
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Proposition 7.21. (Lee, Hannig: big Lévy jump detection rule): Let T (t) be
as in Definition and K →∞ and ∆tK → 0. Suppose the process is without
jumps and Assumption 1 is satisfied. Then, as ∆t→ 0,

maxt∈(ti−1,ti] for 0≤i≤n |T (t)| − Cn
Sn

→ ξ,

where ξ has a cumulative distribution function P (ξ ≤ x) = exp(−e−x),

Cn = (2 log n)1/2 − log π + log log n

2(2 log n)1/2
,

Sn =
1

(2 log n)1/2
.

Notice that the test T (t) is defined as a piecewise constant and the maxi-
mum in the Proposition 7.21 is the same as if it were taken at all observation
times ti.

The main use of Proposition 7.21 is to set up the big-jump rejection
regions of the test: namely, detect a big jump arrival at testing time ti if the
absolute value of the test statistic is bigger than qαSn + Cn, where qα is the
α quantile of the limiting distribution of maximum ξ.

In the real market situation the shot noise process λt may consist of a
component λ

(1)
t that is generated by small jumps and a component λ

(2)
t that

is generated by big jumps, i.e.

λt = λ
(1)
t + λ

(2)
t ,

where λ
(k)
t = λ

(k)
0 e−δt +

∑M
(k)
t

i=1 Y
(k)
i e−δ(t−Si) for k = 1, 2. Here we have two

independent Poisson processes M
(1)
t and M

(2)
t , and random varibles Y

(1)
i , Y

(2)
i

have different distributions, corresponging to big and small jumps.
In this case small jumps can be approximated by Brownian motion and

the optimal filter can be computed according to [6] as described in Subsection
7.1. Big jumps can be tested and eliminated and then small jumps can again
be approximated by Brownian motion. Therefore, a portfolio optimization
problem with additional observable jumps would have to be solved.

8 Compound Poisson process as a noise term

of the asset price: filtering and portfolio

optimization

Asset price model that includes discontinuities has already been studied for
quite a long time. Compound Poisson process as a noise term was first
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proposed in the papers [30] and [27]. The general Lévy process as a noise term
was proposed in [26] as early as in 1963. From that time there have been many
studies (concerning Lévy processes as noise terms) in option pricing, portfolio
optimization, filtering and many more. Lévy process in the asset price models
discribe certain unexpected abrupt movements due to bankrupcy, natural
catastrophes, wars and etc.

Theoretical solutions to the filtering problem with jump-diffusion pro-
cesses were considered in the introductory part of the thesis (papers [15], [28], [32]).
But these theoretical solutions are most often not applicable in practice. In
this section of the thesis we propose an approximate solution to the filtering
and portfolio potimization problems, where asset price model is driven by
Brownian motion and compound Poisson process.

8.1 Filtering problem with compound Poisson process
as a noise term

Compound Poisson process is defined as follows:

Jt =
Mt∑
i=1

Yi =
∑
i,si≤t

Yi =

∫ t

0

∫
E

H(s, y)N(ds, dy),

where H(si, Yi) = Yi. This definition is a special case of the shot-noise process
with δ = 0.

Compound Poisson process Jt has the following differential form:

dJt =

∫
E

H(s, y)N(ds, dy) =

∫
E

yN(ds, dy).

Asset price process St is described by the similar model as it was assumed in
the shot-noise framework:

St = S0e
Lt = S0e

∫ t
0 µsds−

ν2

2
t+νWt+Jt ,

dµt = κ(µ̄− µt)dt+ ωdVt,

where Vt is the Brownian motion independent of Brownian motion Wt, ω is
the diffusion coefficient, µ̄ is mean value and κ is the rate of mean-reversion;
ν is volatility of the asset price equation, and Jt is the compound Poisson
prosess. This model structure of the asset price is mentioned in [10].

Let

dLt =

(
µt −

ν2

2

)
dt+ νdWt +

∫
E

yN(dt, dy).
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Thus,

dSt = S0e
Lt−dLct +

1

2
S0e

Lt−ν2dt+

∫
E

(S0e
Lt−+y − S0e

Lt−)N(dt, dx) =

= St−

[
µtdt+ νdWt +

∫
E

(ey − 1)N(dt, dy)

]
,

where dLct is the continuous part of dLt.
The same assumption as in the case of shot-noise process is made: if on

average the values of jumps Yi are less than some ’small’ ε, then the last
term can be approximated by linear function i.e. ey− 1 ≈ y. Then the SDE,
that corresponds to the stock price process, can be written in the following
approximate form:

dSt = µtSt−dt+ νSt−dWt + St−

∫
E

(ey − 1)N(dt, dy) ≈

≈ µtSt−dt+ νSt−dWt + St−dJt.

Returning back to the approximation of shot-noise process, we recall the
auxilary result from [7]

V
(ρ)
t =

Jt − µ1ρt√
µ2ρ/2δ

→
√

2δBt, as ρ→∞,

where Jt =
∑Mt

i=1 Yi, Mt is Poisson process with intensity ρ andBt is Brownian
motion.

This means that compound Poisson process Jt =
√
µ2ρ/2δV

ρ
t + µ1ρt can

be approximated by Bt
√
µ2ρ+ µ1ρt, thus

dJt ≈
√
µ2ρdBt + µ1ρdt. (95)

and, therefore,

dSt ≈ (µt + µ1ρ)St−dt+ νSt−dWt + St−dBt
√
µ2ρ,

where Bt and Wt are independent Brownian motions.
Therefore, the following asset price model is considered:

• unobservable drift of the stock price

dµt = κ(µ̄− µt)dt+ ωdVt, (96)

where Vt is Brownian motion independent of Wt and Bt, ω is the diffu-
sion coefficient, µ̄ is mean value and κ is the rate of mean-reversion;
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• observable stock price

dSt
St

= µtdt+ νdWt + dJt, (97)

or
dSt ≈ (µt + µ1ρ)St−dt+ νSt−dWt + St−dBt

√
µ2ρ.

If the drift process is unobservable, then it can be filtered by applying Kalman
filtering to the approximated asset price model (asset price equation driven
by two independent Brownian motions).

For numerical simulations the following parameters of the model are cho-
sen: ν = 0.3, κ = 0.5, µ̄ = 0.5, ω = 0.3, ρ = 0.008 and Y ∼ N(0, 0.0002).

Compound Poisson process is simulated so that jumps occur very rarely
(not more than 4 jumps during the whole time period). The convergence of
the normalized compound Poisson process to the Brownian motion is valid
only when ρ→∞. Therefore, approximation (95) should be valid for ’big’ ρ
(ρ is the jump intensity of the Poisson process Mt). When ρ is large, then it
is difficult to simulate the asset price process, since very large values occure
and the asset price process explodes. In the examples below we see that even
for a ’small’ ρ one obtaines a quite reasonable filtering results.

Two examples are presented below. Figures 23 and 26 show two com-
pound Poisson processes, Figures 24 and 27 show the asset price dynamics
influenced by Brownian motion and compound Poisson process. And, finally,
Figures 25 and 28 show the corresponding true drift processes that follow
Ornstein-Uhlenbeck and the filtered drift processes, that were obtained us-
ing Kalman filtering.
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Figure 23: Compound Poisson process (first example)

Figure 24: Dynamics of asset price influenced by compound Poisson process
(first example)
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Figure 25: True and filtered behavior of the drift process µt (first example)

Figure 26: Compound Poisson process (second example)
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Figure 27: Dynamics of asset price influenced by compound poisson process
(second example)

Figure 28: True and filtered behavior of the drift process µt (second example)
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8.2 Portfolio optimization for the case when asset price
model is driven by compound Poisson process: the-
oretical solution

This framework is similar to the framework of Subsection 7.2, where asset
price with shot-noise process was discussed. Here we consider the portfolio
optimization problem and its theoretical solution for the case when asset
price model is driven by Brownian motion and compound Poisson process.
Compound Poisson process is not approximated.

If one constructs a portfolio consisting of a risky asset, where compound
Poisson process in approximated by Brownian motion

dSt ≈ (µt + µ1ρ)St−dt+ νSt−dWt + St−dBt
√
µ2ρ,

and a bank account
dPt = rPtdt,

then one can use the framework of the paper [6](or subsection 7.1 of this
thesis) in order to obtain an approximate solution to the optimal portfolio
problem.

Further we present the theoretical solution to the optimal portfolio prob-
lem.

Suppose in the market there are two possible investments:

• bank account with price dynamics:

dPt = rPtdt

• risky asset

St = S0e
∫ t
0 µsds−

ν2

2
t+νWt+Jt

or

dSt = St−

[
µtdt+ νdWt +

∫
E

(ey − 1)N(dt, dy)

]
,

drift process µt is described by the following SDE:

dµt = κ(µ̄− µt)dt+ ωdVt,

where Vt and Wt are independent Wiener processes, Jt is the compound Pois-
son process, N(dt, dy) is the Poisson random measure with E[N(dt, dy)] =
ρF (dy)dt, where ρ is the jump intensity and F (dy) is the distribution of the
jumps hight.
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Define the wealth process Xt as follows:

dXt = Xt(1− πt)
dPt
Pt

+Xtπt
dSt
St

=

= [r(1− πt) + µtπt]Xtdt+ νπtXtdWt + πtXt−

∫
E

g(y)N(dt, dy),

where g(y) = ey − 1, π is the self-financing portfolio strategy, which de-
notes the fraction of wealth invested in risky assets. For simplicity one
can assume r = 0. The process πt is the control process and process
Zt = Z

(π)
t = (t,Xt, µt) is a controlled jump diffusion process. Consider

performance criterion
Φ(z) = Ez[U(Xt)],

where U(x) = xγ/γ, γ < 1, γ 6= 1. The problem is to find the optimal trading
strategy π∗ so as to maximize Ez[U(XT )].

The generator of Z
(π)
t is as follows:

AJ(z) =
∂J

∂t
+ πxµ

∂J

∂x
+

1

2
ν2π2x2∂

2J

∂x2
+

+

∫
E

{J(x+ xπg(y))− J(x)}v(dy) +
1

2
ω2∂

2J

∂µ2
+ κµ̄

∂J

∂µ
− κµ∂J

∂µ
,

where v(dy) = ρF (dy) and x stands for Xt, µ stands for µt and π stands for
πt.

According to HJB for optimal control of jump diffusions [29], the value
function J(z) is the solution of the following equation:

max
π
{AJ} = 0.

Set J̃(z) = J̃(t, x, µ) = xγ

γ
h(t, µ), then

AJ̃(t, x, µ) =
xγ

γ

∂h(t, µ)

∂t

+πxµxγ−1h(t, µ, λ)

+
1

2
ν2π2x2(γ − 1)xγ−2h(t, µ, λ)

+h(t, µ, λ)
1

γ

∫
E

{(x+ xπg(y))γ − xγ}v(dy)

+
1

2γ
ω2xγ

∂2h(t, µ, λ)

∂µ2
+

1

γ
κµ̄xγ

∂h(t, µ, λ)

∂µ

113



−1

γ
κµxγ

∂h(t, µ, λ)

∂µ
= p(π).

Denote the right hand side of the expression above by h(π) and differen-
tiate h(π) with respect to π, then set the derivative to zero.

Proposition 8.1. The optimal trading strategy satisfies the following integral
equation:

µ+ ν2π(γ − 1) +

∫
E

{(1 + πg(y))γ−1g(y)}v(dy) = 0.

if
d2p

dπ2
(π(t, µ)) < 0

for all possible values of t, µ.

This equation has to be solved numerically.

Remark 8.2. The integral equation in the above proposition can be obtained
by setting δ = 0 in the integral equation (84) in the Proposition 7.11. By
setting δ = 0, the shot-noise process λt is transformed into the compound
Poisson process Jt.

For numerical simulations consider the following asset price model:

St = S0e
Lt = S0e

∫ t
0 µsds−

0.52

2
t+0.5Wt+Jt , (98)

with drift model:
dµt = 0.5(0.05− µt)dt+ 0.1dVt,

where compound Poisson process Jt has following parameters: intensity of
ρ the Poisson process Mt equals 0.008 and the jump size y is normally dis-
tributed with N(0, 0.0002).

The portfolio Xt, consisting of an asset and a bank account is constructed,
and we want to find the optimal trading strategy π∗t (the proportion of wealth
invested into stocks at each time moment) so that to maximize the expected
utility E[U(XT )] at terminal time T , where U is the utility function of the
form U(x) = −xγ with γ = −0.2 or U(x) = xγ/γ.

Figure 29 shows the asset price process according to (98). True and fil-
tered drift processes of the model (98) are shown in Figure 30. Figure 31
compares the optimal portfolio strategies: theoretical solution (framework
of this subsection) and approximate solutions (under full and partial infor-
mation) based on [6]. And, finally, Figure 32 shows three wealth processes
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Figure 29: Asset price behaviour influenced by compound Poisson process
(third example)

Figure 30: True and filtered drift processes (third example)
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Figure 31: Optimal startegies (third example)

calculated under three different optimal portfolio strategies, that are shown
in Figure 31.

Average error between real and filtered drift processes is 0.0033.
Average error between jump-diffusion theoretical strategy and the strat-

egy for approximated and filtered case is 0.0225.

Figure 32: Wealth processes (third example)

Average error between theoretical wealth process and appoximate wealth
process is 2.0363.
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9 Summary of Part II

In this part of the thesis filtering problem together with portfolio optimiza-
tion for jump-duffusion processes was considered. Two particular cases of
jump processes were discussed: shot-noise process and compound Poisson
process. A filtering problem, that contains these jump processes as noise
terms, is infinite-dimensional and and cannot be solved explicitly. Therefore,
an approximate way of solving this filtering problem was suggested. The
idea was to approximate the shot-noise and compound Poisson processes
by the Brownian motion in order to obtain a diffusion process instead of a
jump-duffusion process and to apply the Kalman filtering.

The theoretical solution to the portfolio optimization problem of the
jump-diffusion asset price model was derived and the verification theorem
(for the case of the shot-noise driven asset price) was formulated and proved.
The portfolio optimization problem for the approximated diffusion asset price
model was solved by applying the results of the paper [6]. The numerical
experiments for filtering and portfolio optimization were carried out.

In this part of the thesis the asset price model under consideration consists
of a jump-diffusion asset price process and a diffusion process that discribes
the drift of the asset price process. In a more general case the drift pro-
cess can also follow a jump diffusion process (with shot-noise or compound
Poisson process as a jump part). Then shot-noise and compound Poisson
processes can be approximated by Brownian motion and Kalman filtering
can be applied. Portfolio optimization can be carried out using the frame-
work in [6]. The theoretical solution to the portfolio optimization problem
for the case, when both unobservable and observation processes follow jump-
diffusion equations (with shot-noise or compound Poisson process as a jump
part) is an idea for the future research.
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Part III

Filtering and Portfolio
Optimization for Heston’s
Stochastic Volatility Model
Heston’s stochastic volatility model is an asset price model, driven by Brow-
nian motion, where the volatility of the asset price is not constant or deter-
ministic, but itself follows a stochastic process. The drift of the asset price
is also driven by the same stochastic process as the volatility. The aim of
the filtering problem is to evaluate the stochastic volatility process using the
observations of the asset price. The coefficients of the Heston model are
not constant or linear, therefore, we have to deal with non-linear infinite-
dimensional filtering, which has to be solved in an approximate way. The
main idea of an approximate solution is to linearize the non-linear coeffi-
cients of both asset price and volatility equations, and then to apply Kalman
filtering to the linearized model.

Portfolio optimization problem for Heston’s stochastic volatility model
has to be solved under full and under partial information. The case of partial
information implies that the volatility process is unobservable and has to be
filtered having asset prices as observations.

10 Filtering of Heston model

10.1 Heston model

Consider Heston model in [21] that describes the dynamics of the stock price
process S(t), t > 0:

dSt = St(r + λzt)dt+ St
√
ztdWt, (99)

dzt = κ(θ − zt)dt+ σ
√
ztdVt, (100)

where zt, t > 0 is the stochastic volatility, r is short rate, λ ∈ R, θ > 0 is the
average volatility to which the expected value of zt tends, κ > 0 is the rate
at which zt reverts to θ, σ is the variance of the volatility zt. Both Wt and
Vt are independent Wiener processes.

In the financial market one gets the information about the stock prices
but does not know the actual values of the volatility, i.e. stock prices are
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observed in discrete time only. Let S1, S2, ..., Sk, k ∈ N be the discrete
observations of the stock price.

The aim of this part of the thesis is the following: having the discrete
observations Sk of the stock price under the model (99)-(100) one should
estimate the values of the stochastic volatility zk.

This is the problem of non-linear filtering. In order to solve this problem,
statistically linearized filter (SLF), mentioned in the introduction of [35], is
applied.

Statistically linearized filter is obtained by linearizing all non-linear stochas-
tic functions in the equations (99) and (100) and then by applying Kalman
filtering.

10.2 Method of statistical linearization

This method is in detail presented in the book [18].
Let zt and yt be random functions:

yt = ϕ(zt), (101)

where ϕ is non-linear function.
The non-linear transform (101) is to be approximated by a linearized

dependence Ut between random functions zt and yt. Decompose the random
functions zt and yt as follows:

zt = mz(t) + z0
t , (102)

yt = my(t) + y0
t , (103)

where mz(t), my(t) are expectations of zt and yt respectively, z0
t , y

0
t are

centered random variables.
The function Ut, that would approximate the non-linear function ϕ, is

assumed to be as follows:
Ut = ϕ0 + k1z

0
t , (104)

where ϕ0 and k1 are the coefficients which have to be determined.
Random functions are considered to be statistically equivalent if their

expectations and variances are the same, given a distribution law. So, coef-
ficients ϕ0 and k1 have to be determined in such a way that yt and Ut are
statistically equivalent.

There are two ways to determine the coefficients. The first one is to set
the expectations and variances of yt and Ut to be equal:

E[yt] = E[Ut], (105)
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E[yt −my(t)]
2 = E[Ut −mu(t)]

2, (106)

From (105) and (104) one obtains the value of the coefficient ϕ0:

ϕ0 = my(t). (107)

From (106), (104) and the expression for y(t) one obtains the formulae for
k1:

k1 = ±σy(t)
σz(t)

, (108)

where σy(t) =
√

Var(yt) and σz(t) =
√

Var(zt). The sign is chosen in such a
way that the signs of the true and approximating functions coincide.

The second way to determine the coefficients ϕ0 and k1 is as follows:

E[yt − Ut]2 → min . (109)

In this case the coefficients ϕ0 and k1 are the following:

ϕ0 = my(t), (110)

k1 =
Corr(zt, yt)

Var(zt)
, (111)

One possibility to calculate the coefficients ϕ0 and k1 is to estimate the
expectations and variances of the stochastic processes using empirical mean
and empirical variance. Note that the distribution is not known in case of
non-linear models. The only observation data that one gets in the financial
market is the value of the stock prices S1, S2, ..., Sk, k ∈ N or the stock price
increments S2−S1

S2
, S3−S2

S3
, .... The values of the stochastic volatility zt are not

known, but is is possible to simulate these values using the model (100).
Based on that, one can calculate the estimates for mz, my, σz and σy.

Therefore, Heston model can be approximated and linearized in the fol-
lowing way:

dSt ≈ St(r + λzt)dt+ St(ϕ0 + k1(zt −mz))dWt, (112)

dzt ≈ κ(θ − zt)dt+ σ(ϕ0 + k1(zt −mz))dVt, (113)

where mz is the expected value of the random variable zt.
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10.3 Numerical results

The discrete-time version of Heston model (99)-(100) is as follows:

∆Sk+1

Sk
= (r + λzk)∆t+

√
zk
√

∆tWk (114)

4zk+1 = κ(θ − zk)∆t+ σ
√
zk
√

∆tVk. (115)

In order to apply Kalman filtering one should first linearize all non-linear
functions in the model. The terms in the drift part are linear according
to the model, so one has to linearize only the square root function

√
zk. In

terms of the method of statistical linearization the function to be linearized is
yk =

√
zk and the approximating function is Ut = ϕ0+k1z

0
t = ϕ0+k1(zt−mz).

Denoting 4Sk+1

Sk
by sk the discrete version of the linearized model looks as

follows:

• signal (unobservable)

zk+1 = (1− κ∆t)zk + κθ∆t+ (σϕ0

√
∆t− σk1

√
∆tmz + σk1zk

√
∆t)Vk,

(116)

• observation

sk = λ∆tzk + r∆t+ (zkk1

√
∆t+ ϕ0

√
∆t−mzk1

√
∆t)Wk, (117)

where sk = ∆Sk+1/Sk are the returns from the stock price.
The model to be simulated is as follows:

∆Sk+1

Sk
= (0.2 + 1 · zk)∆t+

√
zk
√

∆tWk, (118)

4zk+1 = 0.5(0.5− zk)∆t+ 0.3
√
zk
√

∆tVk, (119)

where z0 = 0.25, S0 = 10 and V ∼ N(0, 0.3), W ∼ N(0, 0.3). The first
example follows below.

Figure 33 shows the simulation of the stochastic volatility process of He-
ston model and its version with linearized coefficients. One notices that the
method of statistical linearization performs quite well, as both processes are
very similar. Figure 34 shows the simulation of the stock price returns. The
first part of the figure shows the returns of the stock prices according to the
Heston model, the second one shows the linearized version. The method of
statistical linearization shows good performance.

Figures 35 and 36 show the stock price process and the drift processes
(true and filtered) respectively.
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Figure 33: Stochastic volatility of the asset price: original and linearized
processes (first example)

Figure 34: Simulated returns of the stock price process: Heston model and
linearized version of Heston model (first example)

Figure 35: Stock price process (first example)
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Figure 36: True and filtered stochastic volatility processes (first example)

Figure 37: Stochastic volatility of the asset price: original and linearized
processes (second example)

Figure 38: Simulated returns of the stock price process: Heston model and
linearized version of Heston model (second example)
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Figure 39: Stock price process (second example)

Figure 40: True and filtered stochastic volatility processes (second example)
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One sees that the dynamics of the true and filtered processes are quite
similar.

The second example simulates the same model and is shown in Figures
37, 38, 39 and 40.

125



11 Portfolio optimization for Heston model

The aim of this section is to solve the portfolio optimization problem for He-
ston’s stochastic volatility model under full and under partial information.
Under full information (both asset prices and volatility values are observ-
able) one can apply the results of the paper [21]. The way how to solve the
portfolio optimization problem under partial information (only asset prices
are observable) is developed in this section.

11.1 Portfolio optimization for Heston model under
full information

Consider the general portfolio optimization problem that was discussed in
Section 4:

dSt = St[µ(zt, t)dt+ σ(zt, t)dWt],

dzt = a(zt, t)dt+ b(zt, t)dVt,

where a, b are real valued functions, ρ is the correlation between Brownian
motions Wt and Vt.

If we set a(zt, t) = κ(θ − zt), b(zt, t) = σ
√
zt, µ(zt, t)) = r + λzt and

σ(zt, t) =
√
zt, then we obtain the Heston model:

dSt = St(r + λzt)dt+ S(t)
√
ztdWt,

dzt = κ(θ − zt)dt+ σ
√
ztdVt.

Following the paper [21], we define the portfolio wealth Xπ
t such that the

portfolio startegy πt denotes the fraction of wealth invested into the stock:

dXπ
t = Xπ

t πt[µ(zt, t)dt+ σ(zt, t)dWt] +Xπ
t (1− πt)rdt

= Xπ
t πt[(µ(zt, t)− r)dt+ σ(zt, t)dWt] +Xπ

t rdt

= Xπ
t [(r + (µ(zt, t)− r)πt)dt+ πt

√
ztdWt]

= Xπ
t [(r + λztπt)dt+ πt

√
ztdWt],

and the portfolio optimization problem is find the optimal portfolio strategy
so as to maximize the expected utility of the terminal wealth Xπ

T i.e.

max
π

E
[1

γ
(Xπ

T )γ
]
.

Without loss of generality we set r = 0 as in [6].
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Theorem 11.1. (Kraft) The function f in the value function J(t, x, z) =
(x)γ

γ
(f(t, z))

1−γ
1−γ+ρ2γ is real-valued and has the representation

f(t, zt) = exp
(γ
c
r(T − t)− Af (t, T )−Bf (t, T )zt

)
(120)

if
γ

1− γ
λ

(
κρ

σ
+
λ

2

)
<

κ2

2σ2
, (121)

where Af (t, T ) is a real-valued C1-function and Bf (t, T ) = 2β̃ eα̃(T−t)−1
eα̃(T−t)(k̃+α)−k̃+α̃

,

where β̃ = − 1
2c

γ
1−γλ

2, α̃ =

√
k̃2 + 2β̃σ2, c = 1−γ

1−γ+ρ2γ
, and k̃ = κ − γ

1−γρλσ

with k̃ > 0.

To recall, J(t, x, z) is the value function maxπ E
t,x,z
(

1
γ
(Xπ

t )γ
)

, which is

the solution to the HJB equation (40).
The candidates for the value function and for the optimal portfolio strat-

egy are well-defined under assumption (121).

Proposition 11.2. (Kraft) The candidate for the optimal strategy is

π∗t =
1

1− γ
λ− 1

1− γ
cρσBf (t, T ).

This result can be obtained in the following way. The following HJB
equation for the optimization problem has to be considered (x stands for
Xπ
t , z stands for zt and π stands for πt):

max
π

( ∂
∂t
J(t, x, z) + x(r + (µ(z, t)− r)πt)

∂

∂x
J(t, x, z)

+a(z, t)
∂

∂z
J(t, x, z) +

1

2
x2(σ(z, t))2π2 ∂

2

∂x2
J(t, x, z)

+πb(z, t)xσ(z, t)ρ
∂2

∂xz
J(t, x, z) +

1

2
(b(z, t))2 ∂

2

∂z2
J(t, x, z)

)
= 0

and substitute the value function J(t, x, z) (f given by (120)) into the HJB
equation:

max
π

{
exp(γ(T − t)− cAf (t, T )− cBf (t, T )z)×

×
[1

γ
(xγ
[
−γ − cdAf (t, T )

dt
− cz dBf (t, T )

dt

]
+ x(r + (µ(z, t)− r)π)

γ

γ
xγ−1

+a(z, t)
1

γ
xγ[−cBf (t, T )] +

1

2
x2(σ(z, t))2π2γ(γ − 1)

γ
xγ−2
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+b(z, t)xσ(z, t)ρ
γ

γ
xγ−1(−cBf (t, T )) +

1

2
(b(z, t))2 1

γ
xγc2B2

f (t, T )
]}

= 0.

Next, the expression in the brackets is differentiated with respect to π
and the derivative is set to zero:

µ(z, t)− r − b(z, t)ρcσ(z, t)Bf (t, T ) + π(γ − 1)(σ(z, t))2 = 0,

therefore

π∗(z, t) =
µ(z, t)− r − b(z, t)ρcσ(z, t)Bf (t, T )

(1− γ)(σ(z, t))2
.

Substituting the coefficients of the Heston model we obtain the following
optimal portfolio strategy:

π∗(z, t) =
λ

1− γ
− ρcσBf (t, T )

(1− γ)

and one sees that if ρ = 0 then

π∗t = λ/(1− γ) (122)

is constant.
Consider the linearized Heston model (method of statistical linearization

applied):
dSt ≈ St(r + λzt)dt+ St(ϕ0 + k1(zt −mz))dWt, (123)

dzt ≈ κ(θ − zt)dt+ σ(ϕ0 + k1(zt −mz))dVt, (124)

then in terms of the general model we have the following: a(zt, t) = κ(θ−zt),
b(zt, t) = σ(ϕ0 + k1(zt−mz)), µ(zt, t)) = r+ λzt and σ(zt, t) = (ϕ0 + k1(zt−
mz)), where mz is the mean value of zt.

The market price of risk in this case ζt = µ(zt, t)/σ(zt, t) = λzt/(ϕ0 +
k1(zt −mz)) is bounded, that means that Z is density and is well-defined.

Therefore, assuming that ρ = 0, the optimal portfolio strategy is

π∗(t, z) =
λz

(1− γ)(ϕ0 + k1(z −mz))2
. (125)

11.2 Portfolio optimization for Heston model under
partial information

The term ’partial information’ implies that only the asset prices St are ob-
servable but not the stochastic volatility process zt. For the portfolio opti-
mization problem one has to filter the unobservable variable zt. Recall that
Heston model looks as follows:

dst =
dSt
St

= (r + λzt)dt+
√
ztdWt, (126)
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dzt = κ(θ − zt)dt+ σ
√
ztdVt. (127)

Notice, that because the diffusion coefficients in both SDEs are not constant,
we cannot use Kalman filtering. Also for the case of the statistically linearized
version (123)-(124) of the Heston model Kalman filtering in continuous time
cannot be applied, because diffusion coefficients are linear functions but not
constant. In discrete time one could apply statistical linearization to the
original Heston model and then apply Kalman filtering in order to estimate
the unobservable variable zt.

But the extended Kalman filter (subsubsection 1.5.1) can be applied in
order to estimate the unobservable variable zt in continuous time. Consider
the following general form of signal and observation equations (126)-(127):

dzt = f(zt)dt+ σ(zt)dVt,

dst = h(zt)dt+ g(zt)dWt,

where Vt and Wt are independent Brownian motions, and f , σ, h, g are
linear or non-linear functions. In the case of Heston model (126)-(127) these
non-linear functions are the following:

f(zt) = κ(θ − zt), σ(zt) = σ
√
zt, h(zt) = r + λzt, g(zt) =

√
zt.

The SDEs with non-linear coefficients can be approximated by means of
Taylor expansion:

dzt ≈ (f ′(z̄t)(zt − z̄t) + f(z̄t))dt+ σ(z̄t)dVt,

dst ≈ (h′(z̄t)(zt − z̄t) + h(z̄t))dt+ g(z̄t)dWt,

where f ′ and h′ are the derivatives of f and h respectively and z̄ is the
solution of the following ODE:

dz̄t
dt

= f(z̄t), z̄0 = z0. (128)

The standard Kalman filter can be applied to the Taylor approximated signal
and observation SDEs.

Taking into account that f(zt) = κ(θ − zt), the solution to (128) is as
follows:

z̄t = (z0 − θ)e−κt + θ.

Further, f ′(z) = −κ and h′(z) = λ, therefore:

dzt ≈ (−κ(zt − z̄t) + κ(θ − z̄t))dt+ σ(z̄t)dVt,
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dst ≈ (λ(zt − z̄t) + r + λz̄t)dt+ g(z̄t)dWt

or
dzt ≈ κ(θ − zt)dt+ σ(z̄t)dVt = κ(θ − zt)dt+ σ

√
z̄tdVt

= f(zt)dt+ σ
√
z̄tdVt, (129)

dst ≈ (r + λzt)dt+ g(z̄t)dWt = (r + λzt)dt+
√
z̄tdWt

= h(zt)dt+
√
z̄tdWt. (130)

Now one can refer to the paper [6] and find the optimal portfolio strategy
under partial information. The conditional expectation ẑt = E[zt|F S

t ] (F S
t

is the filtration based on the observations of asset price process) of the drift
process zt satisfies

dẑt = κ(θ − ẑt)dt+ (Ωt +R)(g(z̄t))
−2(dst − (λẑt + r)dt),

where Ωt is the conditional covariance martix which satisfies the Ricatti equa-
tion

dΩt

dt
= σ(z̄t)− 2κΩt − (Ωt + ρ)(g(z̄t))

−2(Ωt + ρ).

In the above filtering equations R = ρg(z̄t)σ(z̄t).
The wealth process Xπ

t is as follows (taking into account the linearized
model (129)-(130)):

dXπ
t = Xπ

t πt[h(zt)dt+
√
z̄tdWt] +Xπ

t (1− πt)rdt

= Xπ
t πt[(h(zt)− r)dt+

√
z̄tdWt] +Xπ

t rdt

= Xπ
t [(r + (h(zt)− r)πt)dt+

√
z̄tdWt]

= Xπ
t [(r + λztπt)dt+ πt

√
z̄tdWt],

and the portfolio optimization problem is as before:

max
π

E
[1

γ
(Xπ

T )γ
]
.

Without loss of generality we can set r = 0 as in [6].
Consider the HJB equation for our optimization problem ((x stands for

Xπ
t , z stands for zt and π stands for πt)):

max
π

( ∂
∂t
J(t, z, x) + x(r + λẑπ)

∂

∂x
J(t, z, x) + κθ

∂

∂z
J(t, z, x)

−κẑ ∂
∂z
J(t, z, x) +

1

2
x2(g(z̄t))

2π2 ∂
2

∂x2
J(t, z, x)
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+πx(R + Ωt)
∂2

∂xz
J(t, z, x) +

1

2
(Ωt +R)2(g(z̄t))

−2 ∂
2

∂z2
J(t, z, x)

)
= 0

and substitute the value function J(t, x, ẑ) = (x)γ

γ
exp (ẑ2At + ẑBt + Ct) into

the HJB equation:

max
π

{1

γ

{
ẑ2dAt

dt
+ ẑ

dBt

dt
+
dCt
dt

}
+

1

2
π2(g(z̄t))

2(γ − 1)

+
1

2γ
(Ωt +R)(g(z̄t))

−2(4ẑ2A2
t + 2ẑAtBt + 2At +B2

t ) + π(Ωt +R)(2ẑAt +Bt)

+πλẑ + r +
κ

γ
θ(2ẑAt +Bt)−

κ

γ
ẑ(2ẑAt +Bt)

}
= 0.

Proposition 11.3. Differentiating the above expression with respect to π,
one obtains the following optimal portfolio strategy:

π∗(t, ẑ) =
λẑ + (Ωt +R)(2ẑAt +Bt)

(1− γ)(g(z̄t))2
, (131)

where
dAt
dt

= −γ(λ+ 2(Ωt +R)At)
2

2(1− γ)(g(z̄t))2
− 2(Ωt +R)2At

(g(z̄t))2
+ 2κAt,

dBt

dt
= − γ

2(1− γ)(g(z̄t))2
(3λr+4r(Ωt+R)At+2λ(Ω+R)Bt−4(Ωt+R)2AtBt)−

−2(Ωt +R)2AtBt

(g(z̄t))2
− 2κθAt + κBt,

dCt
dt

= − γ

2(1− γ)(g(z̄t))2
(r2 + 3(Ωt +R)rBt + (Ωt +R)2B2

t )−

−κθBt −
(Ωt +R)2(2At +B2

t )

2(g(z̄t))2
.

11.3 Numerical experiments

The model to be simulated looks as follows:

dSt
St

= (0 + 1 · zt)dt+
√
ztdWt,

dzt = 0.5(0.5− zt)dt+ 0.3
√
ztdVt,

where dVt ∼ N(0, 0.3) and dWt ∼ N(0, 0.5).
We present several figures below. On figure 41 the asset price dynamics is

shown. Figure 42 shows the true stochastic volatility process zt, the linearized
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stochastic volatility process and filter approximation, obtained by using the
extended Kalman filter. One cannotice that both approimations give very
similar results.

Figure 43 represents the optimal trading strategies for Heston model un-
der full information (122), under partial information (131), and for statisti-
cally linearized Heston model (125).

Figure 44 shows the wealth dynamics under three different trading strate-
gies presented in Figure 43.

Figure 41: Stock price process driven by Heston model

As a short summary let us discuss the average errors in the presented
example. The average error between the true process zt and the extended
Kalman filter is 0.0198.

Average errors between the optimal portfolio strategy under full informa-
tion and the strategies under partial information and statistical linearization
are 0.7620 and 0.0558 respectively.

And at last, the average errors between the wealth, obtained by apply-
ing the optimal strategy under full information, and the wealth obtained
under partial information and statistical linearization are 4.9344 and 0.3496
respectively.

The error between the optimal and approximated portfolio wealth can
be estimated by the loss in expected utility, i.e. E[U(Xπ

T )]− E[U(Xapprox
T )],

where Xπ
T is the optimal portfolio wealth and Xapprox

T is the approximated
portfolio wealth at terminal time T .
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Figure 42: True and filtered stochastic volatility process of the stock price
driven by Heston model

Figure 43: Optimal portfolio strategies for Heston model (under full and
partial information and statistically linearized strategy)
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Figure 44: Wealth processes for Heston model under three different optimal
portfolio strategies

The loss in the utility beween the portfolio wealth, obtained by applying
the optimal strategy under full information, and the wealth obtained under
partial information and statistical linearization are 0.0062 and 7, 56 · 10−4

respectively. The utility function is U(x) = xγ/γ, where γ = 0.5. The
expected value is estimated as an average over 1000 simulations.
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12 Filtering of Heston model with switching

of states

In this section the Heston model will be extended. The extension consists of
adding the switching of states of a certain parameter of the model. First, the
switching in the volatility of the stochastic volatility zt will be considered,
and then, the switching in the parameter λ in the drift of the asset price will
be considered. The switching of states of a certain parameter corresponds
to good and bad market conditions. For example, when the volatility of
the variable zt is big (bad market condition), then the estimate of zt (filter)
may deviate stronger from the original process zt, than in the case when the
volatility of zt is small, i.e. good market condition.

The portfolio optimization problem for the Heston model with switching
of states will not be considered in this section and is left for the future
research.

12.1 Switching in the stochastic volatility process

Consider the following modification of the Heston model:

dst =
dSt
St

= (r + λzt)dt+
√
ztdWt, (132)

dzt = κ(θ − zt)dt+ (σ11Mt=1 + σ21Mt=2)
√
ztdVt, (133)

In this case it is assumed that the volatility coefficient σ of the stochastic
volatility process zt is not always the same but can switch from one state
to another, respectively σ1 and σ2. The switching happens according to the
variable Mt which is a Markov chain with K = 2 states. So we have a Markov
Switching model. The filtering of the state of Mt is based on the observations
of the variance zt. But zt is not observed directly, one observes only the stock
prices St.

In this case it would be reasonable to combine Kalman filtering and fil-
tering of the Markov Switching model.

12.1.1 Statistical inference for Markov Switching model in the
stochastic volatility process

Let us assume that the parameters in (133) are known and also the transition
probabilities A = (aij), i, j = 1, ..., K of the Markov chain Mt are known.
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Inference about the state ofMt at time t given information F z
t = (z1, ..., zt)

is defined by the probability distribution P (Mt = l|F z
t ), where l = 1, ..., K.

The filtering algorithm is considered in detail in the book [12]. This
algorithm consists of recursive performance of two steps: prediction step and
filtering step. In order to obtain the inference about the state of the Markov
chain Mt at time t one needs the filtered probabilities P (Mt−1 = n|F z

t−1) of
the previous step (time t− 1) and the current value zt:

• First step t = 1

P (M1 = l|F z
0 ) =

K∑
n=1

anlP (M0 = n),

where P (M0 = n) is the initial distribution of the filtering problem.
This initial distribution can be chosen in many ways. If the transition
probability matrix is known, then one can determine the stationary
distribution of the Markov chain and take it as the initial distribution
P (M0 = n).

• Prediction of the state of the Markov chain:

P (Mt = l|F z
t−1) =

K∑
n=1

anlP (Mt−1 = n|F z
t−1). (134)

This formula gives the ’prior’ distribution of St given the information
up to time t− 1;

• Filtering of the state of the Markov chain:

P (Mt = l|F z
t ) =

p(zt|Mt = l, F z
t−1)P (Mt = l|F z

t−1)

p(zt|F z
t−1)

, (135)

where

p(zt|F z
t−1) =

K∑
n=1

p(zt|Mt = n, F z
t−1)P (Mt = n|F z

t−1). (136)

Formula 134 allows to improve the prediction step having the informa-
tion from the current observation zt.

The probability density function p(zt|Mt = l) can be determined only if the
functions in (133) are linearized and (133) is discretized. In this case the
density will be Gaussian.

But in order to estimate the state of the Markov chain Mt the volatility
zt should be first estimated through the stock prices St. This is done by first
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linearizing and discretizing the processes (133)-(132) and then by applying
discrete Kalman filtering. In order to linearize the processes (133)-(132) one
applies the method of statistical linearization, discussed in subsection 13.2.
The linearized continuous-time version of the model (133)-(132) is

dst =
dSt
St
≈ (r + λzt)dt+ (ϕ0 + k1(zt −mz))dWt,

dzt ≈ κ(θ − zt)dt+ (σ11Mt=1 + σ21Mt=2)(ϕ0 + k1(zt −mz))dVt,

Before the algorithm starts one has to set the transition matrix A of the
Markov chain Mt and its stationary distribution π. Also the initial state of
the Markov chain l = 1 has to be specified. So, summing up, one gets the
following algorithm on the nth, n = 1, ..., N iteration:

• Kalman filtering

– filter equations;

z∗k = (1− κ∆t)ẑk−1 + κθ∆t,

ẑk = z∗k +Kk

{
∆sk − r∆t− λ∆tz∗k

}
;

– variance of the estimation error and the coefficient K;

P ∗k = (1− κ∆t)2P̃k−1 + σ2
l ∆t(ϕ0 + k1(z∗k−1 −mz))

2Q,

Kk = P ∗kλ∆t
{

(λ∆t)2P ∗k + (ϕ0 + k1(z∗k −mz))
2R
}−1

,

P̃k = P ∗k −Kkλ∆tP ∗k ,

where ϕ0 and k1 are the coefficients of the statistical linearization
method, E[V 2

t ] = Q, E[W 2
t ] = R, the term ∆t is due to the dis-

cretization of the linearized version of the model (132)-(133) and l
is the current state of the Markov Chain Mt;

• filtering of switching Markov model

– prediction step

P (Mt = l|F z
t−1) =

2∑
n=1

anlP (Mt−1 = n|F z
t−1),

– fitering step

P (Mt = l|F z
t ) =

p(zt|Mt = l, F z
t−1)P (Mt = l|F z

t−1)

p(zt|F z
t−1)

,
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where

p(zt|F z
t−1) =

2∑
n=1

p(zt|Mt = n, F z
t−1)P (Mt = n|F z

t−1),

l = arg max
i=1,2

P (Mt = i|F z
t ).

One has to repeat the algorithm as many iterations as necessary, each time
with the updated value for the state l of the Markov chain Mt.

12.1.2 Numerical simulations of switching in stochastic volatility
process

For this example the Markov chain with the following transition probabilities
matrix A was chosen:

A =

(
0.7 0.3
0.2 0.8

)
The states of the Markov chain Mt are the following: in the state Mt = 1 the
volatility term is σ1 = 0.3, in the state Mt = 2 the volatility term is σ2 = 1.
The other parameters of the model are the same as in numerical examples in
Subsection 10.3. Further, the simulated figures are shown.

The first example consists of Figures 45, 46, 47, 48.

Figure 45: Stochastic volatility (with switching of states) of the asset price:
original and linearized processes (first example)

One can notice, that due to the switching of states of the diffusion co-
efficient in the stochastic volatility process, there are abrupt jumps in the
volatility process, as shown in Figures 45 and 49.
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Figure 46: Simulated returns of the stock price process: Heston model and
linearized version of Heston model (first example)

Figure 47: Stock price process (first example)

Figure 48: True and filtered stochastic volatility processes with switching of
states (first example)
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In the next example the transition matrix A of the Markov chain Mt

is as in the previous example and the states of the Markov chain Mt are
the following: in the state Mt = 1 the the volatility term is the following:
σ1 = 0.3, in the state Mt = 2 the volatility term is given by σ2 = 2. The
second example consists of Figures 49, 50, 51, 52.

Figure 49: Stochastic volatility (with switching of states) of the asset price:
original and linearized processes (second example)

Figure 50: Simulated returns of the stock price process: Heston model and
linearized version of Heston model (second example)
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Figure 51: Stock price process (second example)

Figure 52: True and filtered stochastic volatility processes with switching of
states (second example)
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12.2 Switching of states in the asset price process

Consider another modification of the Heston model:

dst =
dSt
St

= (r + (λ1 · 1Mt=1 + λ2 · 1Mt=2)zt)dt+ St
√
ztdWt, (137)

dzt = κ(θ − zt)dt+ σ
√
ztdVt, (138)

In this case it is assumed that the parameter λ is not always the same but
can switch from one state to another. The switching happens according the
the variable Mt which is a Markov chain with K = 2 states. So we have a
Markov Switching model. Unlike the previous case, the filtering of the state
of Mt is based on the observations of the variance St. But St itself depends
on the unobservable variable zt.

As in the case above it would also be reasonable to combine Kalman fil-
tering and filtering of the Markov Switching model, but in a slightly different
way.

12.2.1 Statistical inference for Markov Switching model in the
asset price process

Assume that the parameters in (137) are known and also the transition prob-
abilities A = (aij), i, j = 1, ..., K of the Markov chain Mt are known.

Inference about the state of Mt at time t given information about asset
prices F S

t = (S1, ..., St) is defined by the probability distribution P (Mt =
l|F S

t ), where l = 1, ..., K.
Filtering Algorithm is very similar to the filtering algorithm from the

previous subsection:

• First step t = 1

P (M1 = l|F S
0 ) =

K∑
n=1

anlP (M0 = n),

where P (M0 = k) is the initial distribution of the filtering problem.
This initial distribution can be chosen in many ways. If the matrix of
transition probabilities is known, then one can determine the stationary
distribution of the Markov chain and take it as the initial distribution
P (M0 = k).

• Prediction of the state of the Markov chain:

P (Mt = l|F S
t−1) =

K∑
n=1

anlP (Mt−1 = n|F S
t−1), (139)
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• Filtering for the state of the Markov chain:

P (Mt = l|F S
t ) =

p(st|Mt = l, F S
t−1)P (Mt = l|F S

t−1)

p(st|F S
t−1)

, (140)

where

p(st|F S
t−1) =

K∑
n=1

p(st|Mt = k, F S
t−1)P (Mt = n|F S

t−1). (141)

Instead of stock prices St, it would be reasonable to consider increments st.
The probability density function p(st|Mt = l) can be determined only if the
functions in (138) are linearized and discretized. In this case the density will
be Gaussian.

In order to estimate the state of the Markov chain Mt the volatility zt
should be first estimated through the increments of the stock prices st. This
is done by first linearizing and discrertizing the processes (138)-(137) and
then by applying Kalman filtering.

In order to linearize the processes (138)-(137) one applies the method of
statistical linearization, discussed in subsection 13.2. The linearized continuous-
time version of the model (138)-(137) is

dst =
dSt
St
≈ (r + (λ1 · 1Mt=1 + λ2 · 1Mt=2)zt)dt+ (ϕ0 + k1(zt −mz))dWt,

dzt ≈ κ(θ − zt)dt+ σ(ϕ0 + k1(zt −mz))dVt,

Before the algorithm starts one has to set the transition matrix A of the
Markov chain Mt and its stationary distribution π. Also the initial state of
the Markov chain l = 1 has to be specified. So, summing up, one gets the
following algorithm on the nth, n = 1, ..., N iteration:

• Kalman filter

– filter equations;

z∗k = (1− κ∆t)ẑk−1 + κθ∆t,

ẑk = z∗k +Kk

{
∆sk − r∆t− λl∆tz∗k

}
;

– variance of the estimation error and the coefficient K;

P ∗k = (1− κ∆t)2P̃k−1 + σ2∆t(ϕ0 + k1(z∗k−1 −mz))
2Q,

Kk = P ∗kλl∆t
{

(λl∆t)
2P ∗k + (ϕ0 + k1(z∗k −mz))

2R
}−1

,
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P̃k = P ∗k −Kkλl∆tP
∗
k ,

where ϕ0 and k1 are the coefficients of the statistical linearization
method, E[V 2

t ] = Q, E[W 2
t ] = R, the term ∆t is due to the dis-

cretization of the linearized version of the model (137)-(138) and l
is the current state of the Markov Chain Mt;

• Switching Markov model filtering

– prediction step

P (Mt = l|F S
t−1) =

2∑
n=1

anlP (Mt−1 = n|F S
t−1),

– filtering step

P (Mt = l|F S
t ) =

p(st|Mt = l, F S
t−1)P (Mt = l|F S

t−1)

p(st|F S
t−1)

,

where

p(st|F S
t−1) =

2∑
n=1

p(st|Mt = n, F S
t−1)P (Mt = n|F S

t−1),

l = arg max
i=1,2

P (Mt = i|F S
t ).

One has to repeat the algorithm as many iterations as necessary, each time
with the updated value for the state l of the Markov chain Mt.

Therefore, one sees that the filtering algorithm is very similar to the
filtering algorithm described in the previous subsection.

12.2.2 Numerical simulations of switching in the asset price pro-
cess

For this example the Markov chain with the following transition probabilities
matrix A was chosen:

A =

(
0.9 0.1
0.1 0.9

)
The states of the Markov chain Mt are the following: in the state Mt = 1 the
parameter λ in (137) equals λ1 = 1, in state Mt = 2 the parameter λ equals
λ2 = 3. The other parameters of the model are the same as in numerical
examples in Subsection 10.3. The simulated numerical experiment is shown
in Figures 53, 54, 55, 56.
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Figure 53: Stochastic volatility (with switching of states) of the asset price:
original and linearized processes (third example)

Figure 54: Simulated returns of the stock price process: Heston model and
linearized version of Heston model (third example)

Figure 55: Stock price process (third example)

145



Figure 56: True and filtered stochastic volatility processes with switching of
states (third example)

13 Summary of Part III

In the last part of the thesis filtering and portfolio optimization for Heston’s
stochastic volatility model was considered. For solving the non-linear filtering
problem two approximation methods were applied: the method of statistical
linearization together with Kalman filtering and the extended Kalman filter.
Both methods give quite similar results. The extended Kalman filter can be
further applied in order to solve the portfolio optimization problem under
partial information.
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14 Conclusion

In this thesis the problem of infinite-dimensional non-linear filtering with
applications to finance was considered. Two different models were discussed
in details:

• asset price model, driven by Brownian motion and shot-noise process
and the drift of the asset price equation modelled by Ornstein-Uhlenbeck
process;

• Heston’s stochastic volatility model.

The natural application of the filtering results for market models is portfolio
optimization. The problem of optimizing the portfolio was solved in the
thesis under different assumptions (full and partial information).

The existing results and papers ( [15], [28], [32]) show that it is quite dif-
ficult to solve the non-linear infinite-dimensional filtering problem explicitly.
Therefore, approximate solutions were derived.

If the asset price is not only influenced by Brownian motion, but also
by shot-noise process, then the stochastic drift of the asset price cannot be
filtered explicitly, because the filter would be infinite-dimensional. Instead,
it was proposed to approximate the shot-noise process by Brownian motion
as in [7] and apply Kalman filtering to the approximated model. The port-
folio optimization problem was solved for the approximated model (under
full and partial information) according to [6]. A verification theorem for
the framework of [6] was formulated and proved under suitable assumptions.
An important result of this thesis is a theoretical solution to the portfolio
optimization problem for the unapproximated (shot-noise driven) model. A
verification theorem for this theoretical result was formulated. In the real
market one cannot obtain the theoretical solution to the portfolio optimiza-
tion problem (because drift is unobservable), but only the solution for the
approximated model under partial information (the drift process filtered).
The simulations show that the approximated optimal solution is still quite
good.

Also, the case of compound Poisson process as the noise term was con-
sidered in the thesis. Instead of the shot-noise process one can consider a
compound Poisson process, which can also be approximated by a Brownian
motion, following [7]. Portfolio optimization was carried out under full and
partial information, and also a theoretical solution to this portfolio optimiza-
tion problem was derived.

Heston’s stochastic volatilty model is quite often used in practice. There-
fore, for practical needs one has to know how to filter the unobservable
stochastic volatility process. This can be done in two ways: linearize all
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non linear coefficients in Heston model and apply Kalman filtering or apply
the extended Kalman filter. For the purposes of portfolio optimization under
partial information one uses the filter results, obtained by applying extended
Kalman filter. Both was done after discretizing the model.
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